CodeGenModule.cpp revision e67e4c93dfc9d68bff094c61b588f87456917f6f
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/ConvertUTF.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Frontend/CodeGenOptions.h"
39#include "llvm/ADT/APSInt.h"
40#include "llvm/ADT/Triple.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Target/Mangler.h"
49using namespace clang;
50using namespace CodeGen;
51
52static const char AnnotationSection[] = "llvm.metadata";
53
54static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59  }
60
61  llvm_unreachable("invalid C++ ABI kind");
62}
63
64
65CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                             llvm::Module &M, const llvm::DataLayout &TD,
67                             DiagnosticsEngine &diags)
68  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69    TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70    ABI(createCXXABI(*this)),
71    Types(*this),
72    TBAA(0),
73    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75    RRData(0), CFConstantStringClassRef(0),
76    ConstantStringClassRef(0), NSConstantStringType(0),
77    VMContext(M.getContext()),
78    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79    BlockObjectAssign(0), BlockObjectDispose(0),
80    BlockDescriptorType(0), GenericBlockLiteralType(0),
81    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
82    SanOpts(SanitizerBlacklist.isIn(M) ?
83            SanitizerOptions::Disabled : LangOpts.Sanitize) {
84
85  // Initialize the type cache.
86  llvm::LLVMContext &LLVMContext = M.getContext();
87  VoidTy = llvm::Type::getVoidTy(LLVMContext);
88  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
89  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
90  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
91  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
92  FloatTy = llvm::Type::getFloatTy(LLVMContext);
93  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
94  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
95  PointerAlignInBytes =
96  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
97  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
98  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
99  Int8PtrTy = Int8Ty->getPointerTo(0);
100  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
101
102  if (LangOpts.ObjC1)
103    createObjCRuntime();
104  if (LangOpts.OpenCL)
105    createOpenCLRuntime();
106  if (LangOpts.CUDA)
107    createCUDARuntime();
108
109  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
110  if (SanOpts.Thread ||
111      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
112    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
113                           ABI.getMangleContext());
114
115  // If debug info or coverage generation is enabled, create the CGDebugInfo
116  // object.
117  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
118      CodeGenOpts.EmitGcovArcs ||
119      CodeGenOpts.EmitGcovNotes)
120    DebugInfo = new CGDebugInfo(*this);
121
122  Block.GlobalUniqueCount = 0;
123
124  if (C.getLangOpts().ObjCAutoRefCount)
125    ARCData = new ARCEntrypoints();
126  RRData = new RREntrypoints();
127}
128
129CodeGenModule::~CodeGenModule() {
130  delete ObjCRuntime;
131  delete OpenCLRuntime;
132  delete CUDARuntime;
133  delete TheTargetCodeGenInfo;
134  delete &ABI;
135  delete TBAA;
136  delete DebugInfo;
137  delete ARCData;
138  delete RRData;
139}
140
141void CodeGenModule::createObjCRuntime() {
142  // This is just isGNUFamily(), but we want to force implementors of
143  // new ABIs to decide how best to do this.
144  switch (LangOpts.ObjCRuntime.getKind()) {
145  case ObjCRuntime::GNUstep:
146  case ObjCRuntime::GCC:
147  case ObjCRuntime::ObjFW:
148    ObjCRuntime = CreateGNUObjCRuntime(*this);
149    return;
150
151  case ObjCRuntime::FragileMacOSX:
152  case ObjCRuntime::MacOSX:
153  case ObjCRuntime::iOS:
154    ObjCRuntime = CreateMacObjCRuntime(*this);
155    return;
156  }
157  llvm_unreachable("bad runtime kind");
158}
159
160void CodeGenModule::createOpenCLRuntime() {
161  OpenCLRuntime = new CGOpenCLRuntime(*this);
162}
163
164void CodeGenModule::createCUDARuntime() {
165  CUDARuntime = CreateNVCUDARuntime(*this);
166}
167
168void CodeGenModule::Release() {
169  EmitDeferred();
170  EmitCXXGlobalInitFunc();
171  EmitCXXGlobalDtorFunc();
172  if (ObjCRuntime)
173    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
174      AddGlobalCtor(ObjCInitFunction);
175  EmitCtorList(GlobalCtors, "llvm.global_ctors");
176  EmitCtorList(GlobalDtors, "llvm.global_dtors");
177  EmitGlobalAnnotations();
178  EmitLLVMUsed();
179
180  if (CodeGenOpts.ModulesAutolink) {
181    EmitModuleLinkOptions();
182  }
183
184  SimplifyPersonality();
185
186  if (getCodeGenOpts().EmitDeclMetadata)
187    EmitDeclMetadata();
188
189  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
190    EmitCoverageFile();
191
192  if (DebugInfo)
193    DebugInfo->finalize();
194}
195
196void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
197  // Make sure that this type is translated.
198  Types.UpdateCompletedType(TD);
199}
200
201llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
202  if (!TBAA)
203    return 0;
204  return TBAA->getTBAAInfo(QTy);
205}
206
207llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
208  if (!TBAA)
209    return 0;
210  return TBAA->getTBAAInfoForVTablePtr();
211}
212
213llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
214  if (!TBAA)
215    return 0;
216  return TBAA->getTBAAStructInfo(QTy);
217}
218
219void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
220                                        llvm::MDNode *TBAAInfo) {
221  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
222}
223
224bool CodeGenModule::isTargetDarwin() const {
225  return getContext().getTargetInfo().getTriple().isOSDarwin();
226}
227
228void CodeGenModule::Error(SourceLocation loc, StringRef error) {
229  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
230  getDiags().Report(Context.getFullLoc(loc), diagID);
231}
232
233/// ErrorUnsupported - Print out an error that codegen doesn't support the
234/// specified stmt yet.
235void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
236                                     bool OmitOnError) {
237  if (OmitOnError && getDiags().hasErrorOccurred())
238    return;
239  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
240                                               "cannot compile this %0 yet");
241  std::string Msg = Type;
242  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
243    << Msg << S->getSourceRange();
244}
245
246/// ErrorUnsupported - Print out an error that codegen doesn't support the
247/// specified decl yet.
248void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
249                                     bool OmitOnError) {
250  if (OmitOnError && getDiags().hasErrorOccurred())
251    return;
252  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
253                                               "cannot compile this %0 yet");
254  std::string Msg = Type;
255  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
256}
257
258llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
259  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
260}
261
262void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
263                                        const NamedDecl *D) const {
264  // Internal definitions always have default visibility.
265  if (GV->hasLocalLinkage()) {
266    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
267    return;
268  }
269
270  // Set visibility for definitions.
271  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
272  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
273    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
277  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
278      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
279      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
280      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
281      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
282}
283
284static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
285    CodeGenOptions::TLSModel M) {
286  switch (M) {
287  case CodeGenOptions::GeneralDynamicTLSModel:
288    return llvm::GlobalVariable::GeneralDynamicTLSModel;
289  case CodeGenOptions::LocalDynamicTLSModel:
290    return llvm::GlobalVariable::LocalDynamicTLSModel;
291  case CodeGenOptions::InitialExecTLSModel:
292    return llvm::GlobalVariable::InitialExecTLSModel;
293  case CodeGenOptions::LocalExecTLSModel:
294    return llvm::GlobalVariable::LocalExecTLSModel;
295  }
296  llvm_unreachable("Invalid TLS model!");
297}
298
299void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
300                               const VarDecl &D) const {
301  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
302
303  llvm::GlobalVariable::ThreadLocalMode TLM;
304  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
305
306  // Override the TLS model if it is explicitly specified.
307  if (D.hasAttr<TLSModelAttr>()) {
308    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
309    TLM = GetLLVMTLSModel(Attr->getModel());
310  }
311
312  GV->setThreadLocalMode(TLM);
313}
314
315/// Set the symbol visibility of type information (vtable and RTTI)
316/// associated with the given type.
317void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
318                                      const CXXRecordDecl *RD,
319                                      TypeVisibilityKind TVK) const {
320  setGlobalVisibility(GV, RD);
321
322  if (!CodeGenOpts.HiddenWeakVTables)
323    return;
324
325  // We never want to drop the visibility for RTTI names.
326  if (TVK == TVK_ForRTTIName)
327    return;
328
329  // We want to drop the visibility to hidden for weak type symbols.
330  // This isn't possible if there might be unresolved references
331  // elsewhere that rely on this symbol being visible.
332
333  // This should be kept roughly in sync with setThunkVisibility
334  // in CGVTables.cpp.
335
336  // Preconditions.
337  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
338      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
339    return;
340
341  // Don't override an explicit visibility attribute.
342  if (RD->getExplicitVisibility())
343    return;
344
345  switch (RD->getTemplateSpecializationKind()) {
346  // We have to disable the optimization if this is an EI definition
347  // because there might be EI declarations in other shared objects.
348  case TSK_ExplicitInstantiationDefinition:
349  case TSK_ExplicitInstantiationDeclaration:
350    return;
351
352  // Every use of a non-template class's type information has to emit it.
353  case TSK_Undeclared:
354    break;
355
356  // In theory, implicit instantiations can ignore the possibility of
357  // an explicit instantiation declaration because there necessarily
358  // must be an EI definition somewhere with default visibility.  In
359  // practice, it's possible to have an explicit instantiation for
360  // an arbitrary template class, and linkers aren't necessarily able
361  // to deal with mixed-visibility symbols.
362  case TSK_ExplicitSpecialization:
363  case TSK_ImplicitInstantiation:
364    return;
365  }
366
367  // If there's a key function, there may be translation units
368  // that don't have the key function's definition.  But ignore
369  // this if we're emitting RTTI under -fno-rtti.
370  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
371    if (Context.getKeyFunction(RD))
372      return;
373  }
374
375  // Otherwise, drop the visibility to hidden.
376  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
377  GV->setUnnamedAddr(true);
378}
379
380StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
381  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
382
383  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
384  if (!Str.empty())
385    return Str;
386
387  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
388    IdentifierInfo *II = ND->getIdentifier();
389    assert(II && "Attempt to mangle unnamed decl.");
390
391    Str = II->getName();
392    return Str;
393  }
394
395  SmallString<256> Buffer;
396  llvm::raw_svector_ostream Out(Buffer);
397  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
398    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
399  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
400    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
401  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
402    getCXXABI().getMangleContext().mangleBlock(BD, Out,
403      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
404  else
405    getCXXABI().getMangleContext().mangleName(ND, Out);
406
407  // Allocate space for the mangled name.
408  Out.flush();
409  size_t Length = Buffer.size();
410  char *Name = MangledNamesAllocator.Allocate<char>(Length);
411  std::copy(Buffer.begin(), Buffer.end(), Name);
412
413  Str = StringRef(Name, Length);
414
415  return Str;
416}
417
418void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
419                                        const BlockDecl *BD) {
420  MangleContext &MangleCtx = getCXXABI().getMangleContext();
421  const Decl *D = GD.getDecl();
422  llvm::raw_svector_ostream Out(Buffer.getBuffer());
423  if (D == 0)
424    MangleCtx.mangleGlobalBlock(BD,
425      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
426  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
427    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
428  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
429    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
430  else
431    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
432}
433
434llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
435  return getModule().getNamedValue(Name);
436}
437
438/// AddGlobalCtor - Add a function to the list that will be called before
439/// main() runs.
440void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
441  // FIXME: Type coercion of void()* types.
442  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
443}
444
445/// AddGlobalDtor - Add a function to the list that will be called
446/// when the module is unloaded.
447void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
448  // FIXME: Type coercion of void()* types.
449  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
450}
451
452void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
453  // Ctor function type is void()*.
454  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
455  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
456
457  // Get the type of a ctor entry, { i32, void ()* }.
458  llvm::StructType *CtorStructTy =
459    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
460
461  // Construct the constructor and destructor arrays.
462  SmallVector<llvm::Constant*, 8> Ctors;
463  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
464    llvm::Constant *S[] = {
465      llvm::ConstantInt::get(Int32Ty, I->second, false),
466      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
467    };
468    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
469  }
470
471  if (!Ctors.empty()) {
472    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
473    new llvm::GlobalVariable(TheModule, AT, false,
474                             llvm::GlobalValue::AppendingLinkage,
475                             llvm::ConstantArray::get(AT, Ctors),
476                             GlobalName);
477  }
478}
479
480llvm::GlobalValue::LinkageTypes
481CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
482  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
483
484  if (Linkage == GVA_Internal)
485    return llvm::Function::InternalLinkage;
486
487  if (D->hasAttr<DLLExportAttr>())
488    return llvm::Function::DLLExportLinkage;
489
490  if (D->hasAttr<WeakAttr>())
491    return llvm::Function::WeakAnyLinkage;
492
493  // In C99 mode, 'inline' functions are guaranteed to have a strong
494  // definition somewhere else, so we can use available_externally linkage.
495  if (Linkage == GVA_C99Inline)
496    return llvm::Function::AvailableExternallyLinkage;
497
498  // Note that Apple's kernel linker doesn't support symbol
499  // coalescing, so we need to avoid linkonce and weak linkages there.
500  // Normally, this means we just map to internal, but for explicit
501  // instantiations we'll map to external.
502
503  // In C++, the compiler has to emit a definition in every translation unit
504  // that references the function.  We should use linkonce_odr because
505  // a) if all references in this translation unit are optimized away, we
506  // don't need to codegen it.  b) if the function persists, it needs to be
507  // merged with other definitions. c) C++ has the ODR, so we know the
508  // definition is dependable.
509  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
510    return !Context.getLangOpts().AppleKext
511             ? llvm::Function::LinkOnceODRLinkage
512             : llvm::Function::InternalLinkage;
513
514  // An explicit instantiation of a template has weak linkage, since
515  // explicit instantiations can occur in multiple translation units
516  // and must all be equivalent. However, we are not allowed to
517  // throw away these explicit instantiations.
518  if (Linkage == GVA_ExplicitTemplateInstantiation)
519    return !Context.getLangOpts().AppleKext
520             ? llvm::Function::WeakODRLinkage
521             : llvm::Function::ExternalLinkage;
522
523  // Otherwise, we have strong external linkage.
524  assert(Linkage == GVA_StrongExternal);
525  return llvm::Function::ExternalLinkage;
526}
527
528
529/// SetFunctionDefinitionAttributes - Set attributes for a global.
530///
531/// FIXME: This is currently only done for aliases and functions, but not for
532/// variables (these details are set in EmitGlobalVarDefinition for variables).
533void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
534                                                    llvm::GlobalValue *GV) {
535  SetCommonAttributes(D, GV);
536}
537
538void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
539                                              const CGFunctionInfo &Info,
540                                              llvm::Function *F) {
541  unsigned CallingConv;
542  AttributeListType AttributeList;
543  ConstructAttributeList(Info, D, AttributeList, CallingConv);
544  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
545  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
546}
547
548/// Determines whether the language options require us to model
549/// unwind exceptions.  We treat -fexceptions as mandating this
550/// except under the fragile ObjC ABI with only ObjC exceptions
551/// enabled.  This means, for example, that C with -fexceptions
552/// enables this.
553static bool hasUnwindExceptions(const LangOptions &LangOpts) {
554  // If exceptions are completely disabled, obviously this is false.
555  if (!LangOpts.Exceptions) return false;
556
557  // If C++ exceptions are enabled, this is true.
558  if (LangOpts.CXXExceptions) return true;
559
560  // If ObjC exceptions are enabled, this depends on the ABI.
561  if (LangOpts.ObjCExceptions) {
562    return LangOpts.ObjCRuntime.hasUnwindExceptions();
563  }
564
565  return true;
566}
567
568void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
569                                                           llvm::Function *F) {
570  if (CodeGenOpts.UnwindTables)
571    F->setHasUWTable();
572
573  if (!hasUnwindExceptions(LangOpts))
574    F->addFnAttr(llvm::Attribute::NoUnwind);
575
576  if (D->hasAttr<NakedAttr>()) {
577    // Naked implies noinline: we should not be inlining such functions.
578    F->addFnAttr(llvm::Attribute::Naked);
579    F->addFnAttr(llvm::Attribute::NoInline);
580  }
581
582  if (D->hasAttr<NoInlineAttr>())
583    F->addFnAttr(llvm::Attribute::NoInline);
584
585  // (noinline wins over always_inline, and we can't specify both in IR)
586  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
587      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
588                                       llvm::Attribute::NoInline))
589    F->addFnAttr(llvm::Attribute::AlwaysInline);
590
591  // FIXME: Communicate hot and cold attributes to LLVM more directly.
592  if (D->hasAttr<ColdAttr>())
593    F->addFnAttr(llvm::Attribute::OptimizeForSize);
594
595  if (D->hasAttr<MinSizeAttr>())
596    F->addFnAttr(llvm::Attribute::MinSize);
597
598  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
599    F->setUnnamedAddr(true);
600
601  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
602    if (MD->isVirtual())
603      F->setUnnamedAddr(true);
604
605  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
606    F->addFnAttr(llvm::Attribute::StackProtect);
607  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
608    F->addFnAttr(llvm::Attribute::StackProtectReq);
609
610  if (SanOpts.Address) {
611    // When AddressSanitizer is enabled, set AddressSafety attribute
612    // unless __attribute__((no_address_safety_analysis)) is used.
613    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
614      F->addFnAttr(llvm::Attribute::AddressSafety);
615  }
616
617  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
618  if (alignment)
619    F->setAlignment(alignment);
620
621  // C++ ABI requires 2-byte alignment for member functions.
622  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
623    F->setAlignment(2);
624}
625
626void CodeGenModule::SetCommonAttributes(const Decl *D,
627                                        llvm::GlobalValue *GV) {
628  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
629    setGlobalVisibility(GV, ND);
630  else
631    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
632
633  if (D->hasAttr<UsedAttr>())
634    AddUsedGlobal(GV);
635
636  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
637    GV->setSection(SA->getName());
638
639  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
640}
641
642void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
643                                                  llvm::Function *F,
644                                                  const CGFunctionInfo &FI) {
645  SetLLVMFunctionAttributes(D, FI, F);
646  SetLLVMFunctionAttributesForDefinition(D, F);
647
648  F->setLinkage(llvm::Function::InternalLinkage);
649
650  SetCommonAttributes(D, F);
651}
652
653void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
654                                          llvm::Function *F,
655                                          bool IsIncompleteFunction) {
656  if (unsigned IID = F->getIntrinsicID()) {
657    // If this is an intrinsic function, set the function's attributes
658    // to the intrinsic's attributes.
659    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
660                                                    (llvm::Intrinsic::ID)IID));
661    return;
662  }
663
664  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
665
666  if (!IsIncompleteFunction)
667    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
668
669  // Only a few attributes are set on declarations; these may later be
670  // overridden by a definition.
671
672  if (FD->hasAttr<DLLImportAttr>()) {
673    F->setLinkage(llvm::Function::DLLImportLinkage);
674  } else if (FD->hasAttr<WeakAttr>() ||
675             FD->isWeakImported()) {
676    // "extern_weak" is overloaded in LLVM; we probably should have
677    // separate linkage types for this.
678    F->setLinkage(llvm::Function::ExternalWeakLinkage);
679  } else {
680    F->setLinkage(llvm::Function::ExternalLinkage);
681
682    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
683    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
684      F->setVisibility(GetLLVMVisibility(LV.visibility()));
685    }
686  }
687
688  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
689    F->setSection(SA->getName());
690}
691
692void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
693  assert(!GV->isDeclaration() &&
694         "Only globals with definition can force usage.");
695  LLVMUsed.push_back(GV);
696}
697
698void CodeGenModule::EmitLLVMUsed() {
699  // Don't create llvm.used if there is no need.
700  if (LLVMUsed.empty())
701    return;
702
703  // Convert LLVMUsed to what ConstantArray needs.
704  SmallVector<llvm::Constant*, 8> UsedArray;
705  UsedArray.resize(LLVMUsed.size());
706  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
707    UsedArray[i] =
708     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
709                                    Int8PtrTy);
710  }
711
712  if (UsedArray.empty())
713    return;
714  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
715
716  llvm::GlobalVariable *GV =
717    new llvm::GlobalVariable(getModule(), ATy, false,
718                             llvm::GlobalValue::AppendingLinkage,
719                             llvm::ConstantArray::get(ATy, UsedArray),
720                             "llvm.used");
721
722  GV->setSection("llvm.metadata");
723}
724
725/// \brief Add link options implied by the given module, including modules
726/// it depends on, using a postorder walk.
727static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
728                                    Module *Mod,
729                                    SmallVectorImpl<llvm::Value *> &Metadata,
730                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
731  // Import this module's parent.
732  if (Mod->Parent && Visited.insert(Mod->Parent)) {
733    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
734  }
735
736  // Import this module's dependencies.
737  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
738    if (Visited.insert(Mod->Imports[I-1]))
739      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
740  }
741
742  // Add linker options to link against the libraries/frameworks
743  // described by this module.
744  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
745    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
746    // We need to know more about the linker to know how to encode these
747    // options propertly.
748
749    // Link against a framework.
750    if (Mod->LinkLibraries[I-1].IsFramework) {
751      llvm::Value *Args[2] = {
752        llvm::MDString::get(Context, "-framework"),
753        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
754      };
755
756      Metadata.push_back(llvm::MDNode::get(Context, Args));
757      continue;
758    }
759
760    // Link against a library.
761    llvm::Value *OptString
762    = llvm::MDString::get(Context,
763                          "-l" + Mod->LinkLibraries[I-1].Library);
764    Metadata.push_back(llvm::MDNode::get(Context, OptString));
765  }
766}
767
768void CodeGenModule::EmitModuleLinkOptions() {
769  // Collect the set of all of the modules we want to visit to emit link
770  // options, which is essentially the imported modules and all of their
771  // non-explicit child modules.
772  llvm::SetVector<clang::Module *> LinkModules;
773  llvm::SmallPtrSet<clang::Module *, 16> Visited;
774  SmallVector<clang::Module *, 16> Stack;
775
776  // Seed the stack with imported modules.
777  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
778                                               MEnd = ImportedModules.end();
779       M != MEnd; ++M) {
780    if (Visited.insert(*M))
781      Stack.push_back(*M);
782  }
783
784  // Find all of the modules to import, making a little effort to prune
785  // non-leaf modules.
786  while (!Stack.empty()) {
787    clang::Module *Mod = Stack.back();
788    Stack.pop_back();
789
790    bool AnyChildren = false;
791
792    // Visit the submodules of this module.
793    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
794                                        SubEnd = Mod->submodule_end();
795         Sub != SubEnd; ++Sub) {
796      // Skip explicit children; they need to be explicitly imported to be
797      // linked against.
798      if ((*Sub)->IsExplicit)
799        continue;
800
801      if (Visited.insert(*Sub)) {
802        Stack.push_back(*Sub);
803        AnyChildren = true;
804      }
805    }
806
807    // We didn't find any children, so add this module to the list of
808    // modules to link against.
809    if (!AnyChildren) {
810      LinkModules.insert(Mod);
811    }
812  }
813
814  // Add link options for all of the imported modules in reverse topological
815  // order.
816  SmallVector<llvm::Value *, 16> MetadataArgs;
817  Visited.clear();
818  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
819                                               MEnd = LinkModules.end();
820       M != MEnd; ++M) {
821    if (Visited.insert(*M))
822      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
823  }
824  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
825
826  // Add the linker options metadata flag.
827  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
828                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
829}
830
831void CodeGenModule::EmitDeferred() {
832  // Emit code for any potentially referenced deferred decls.  Since a
833  // previously unused static decl may become used during the generation of code
834  // for a static function, iterate until no changes are made.
835
836  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
837    if (!DeferredVTables.empty()) {
838      const CXXRecordDecl *RD = DeferredVTables.back();
839      DeferredVTables.pop_back();
840      getCXXABI().EmitVTables(RD);
841      continue;
842    }
843
844    GlobalDecl D = DeferredDeclsToEmit.back();
845    DeferredDeclsToEmit.pop_back();
846
847    // Check to see if we've already emitted this.  This is necessary
848    // for a couple of reasons: first, decls can end up in the
849    // deferred-decls queue multiple times, and second, decls can end
850    // up with definitions in unusual ways (e.g. by an extern inline
851    // function acquiring a strong function redefinition).  Just
852    // ignore these cases.
853    //
854    // TODO: That said, looking this up multiple times is very wasteful.
855    StringRef Name = getMangledName(D);
856    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
857    assert(CGRef && "Deferred decl wasn't referenced?");
858
859    if (!CGRef->isDeclaration())
860      continue;
861
862    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
863    // purposes an alias counts as a definition.
864    if (isa<llvm::GlobalAlias>(CGRef))
865      continue;
866
867    // Otherwise, emit the definition and move on to the next one.
868    EmitGlobalDefinition(D);
869  }
870}
871
872void CodeGenModule::EmitGlobalAnnotations() {
873  if (Annotations.empty())
874    return;
875
876  // Create a new global variable for the ConstantStruct in the Module.
877  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
878    Annotations[0]->getType(), Annotations.size()), Annotations);
879  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
880    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
881    "llvm.global.annotations");
882  gv->setSection(AnnotationSection);
883}
884
885llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
886  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
887  if (i != AnnotationStrings.end())
888    return i->second;
889
890  // Not found yet, create a new global.
891  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
892  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
893    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
894  gv->setSection(AnnotationSection);
895  gv->setUnnamedAddr(true);
896  AnnotationStrings[Str] = gv;
897  return gv;
898}
899
900llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
901  SourceManager &SM = getContext().getSourceManager();
902  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
903  if (PLoc.isValid())
904    return EmitAnnotationString(PLoc.getFilename());
905  return EmitAnnotationString(SM.getBufferName(Loc));
906}
907
908llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
909  SourceManager &SM = getContext().getSourceManager();
910  PresumedLoc PLoc = SM.getPresumedLoc(L);
911  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
912    SM.getExpansionLineNumber(L);
913  return llvm::ConstantInt::get(Int32Ty, LineNo);
914}
915
916llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
917                                                const AnnotateAttr *AA,
918                                                SourceLocation L) {
919  // Get the globals for file name, annotation, and the line number.
920  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
921                 *UnitGV = EmitAnnotationUnit(L),
922                 *LineNoCst = EmitAnnotationLineNo(L);
923
924  // Create the ConstantStruct for the global annotation.
925  llvm::Constant *Fields[4] = {
926    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
927    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
928    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
929    LineNoCst
930  };
931  return llvm::ConstantStruct::getAnon(Fields);
932}
933
934void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
935                                         llvm::GlobalValue *GV) {
936  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
937  // Get the struct elements for these annotations.
938  for (specific_attr_iterator<AnnotateAttr>
939       ai = D->specific_attr_begin<AnnotateAttr>(),
940       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
941    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
942}
943
944bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
945  // Never defer when EmitAllDecls is specified.
946  if (LangOpts.EmitAllDecls)
947    return false;
948
949  return !getContext().DeclMustBeEmitted(Global);
950}
951
952llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
953    const CXXUuidofExpr* E) {
954  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
955  // well-formed.
956  StringRef Uuid;
957  if (E->isTypeOperand())
958    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
959  else {
960    // Special case: __uuidof(0) means an all-zero GUID.
961    Expr *Op = E->getExprOperand();
962    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
963      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
964    else
965      Uuid = "00000000-0000-0000-0000-000000000000";
966  }
967  std::string Name = "__uuid_" + Uuid.str();
968
969  // Look for an existing global.
970  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
971    return GV;
972
973  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
974  assert(Init && "failed to initialize as constant");
975
976  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
977  // first field is declared as "long", which for many targets is 8 bytes.
978  // Those architectures are not supported. (With the MS abi, long is always 4
979  // bytes.)
980  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
981  if (Init->getType() != GuidType) {
982    DiagnosticsEngine &Diags = getDiags();
983    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
984        "__uuidof codegen is not supported on this architecture");
985    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
986    Init = llvm::UndefValue::get(GuidType);
987  }
988
989  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
990      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
991  GV->setUnnamedAddr(true);
992  return GV;
993}
994
995llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
996  const AliasAttr *AA = VD->getAttr<AliasAttr>();
997  assert(AA && "No alias?");
998
999  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1000
1001  // See if there is already something with the target's name in the module.
1002  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1003  if (Entry) {
1004    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1005    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1006  }
1007
1008  llvm::Constant *Aliasee;
1009  if (isa<llvm::FunctionType>(DeclTy))
1010    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1011                                      GlobalDecl(cast<FunctionDecl>(VD)),
1012                                      /*ForVTable=*/false);
1013  else
1014    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1015                                    llvm::PointerType::getUnqual(DeclTy), 0);
1016
1017  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1018  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1019  WeakRefReferences.insert(F);
1020
1021  return Aliasee;
1022}
1023
1024void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1025  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1026
1027  // Weak references don't produce any output by themselves.
1028  if (Global->hasAttr<WeakRefAttr>())
1029    return;
1030
1031  // If this is an alias definition (which otherwise looks like a declaration)
1032  // emit it now.
1033  if (Global->hasAttr<AliasAttr>())
1034    return EmitAliasDefinition(GD);
1035
1036  // If this is CUDA, be selective about which declarations we emit.
1037  if (LangOpts.CUDA) {
1038    if (CodeGenOpts.CUDAIsDevice) {
1039      if (!Global->hasAttr<CUDADeviceAttr>() &&
1040          !Global->hasAttr<CUDAGlobalAttr>() &&
1041          !Global->hasAttr<CUDAConstantAttr>() &&
1042          !Global->hasAttr<CUDASharedAttr>())
1043        return;
1044    } else {
1045      if (!Global->hasAttr<CUDAHostAttr>() && (
1046            Global->hasAttr<CUDADeviceAttr>() ||
1047            Global->hasAttr<CUDAConstantAttr>() ||
1048            Global->hasAttr<CUDASharedAttr>()))
1049        return;
1050    }
1051  }
1052
1053  // Ignore declarations, they will be emitted on their first use.
1054  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1055    // Forward declarations are emitted lazily on first use.
1056    if (!FD->doesThisDeclarationHaveABody()) {
1057      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1058        return;
1059
1060      const FunctionDecl *InlineDefinition = 0;
1061      FD->getBody(InlineDefinition);
1062
1063      StringRef MangledName = getMangledName(GD);
1064      DeferredDecls.erase(MangledName);
1065      EmitGlobalDefinition(InlineDefinition);
1066      return;
1067    }
1068  } else {
1069    const VarDecl *VD = cast<VarDecl>(Global);
1070    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1071
1072    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1073      return;
1074  }
1075
1076  // Defer code generation when possible if this is a static definition, inline
1077  // function etc.  These we only want to emit if they are used.
1078  if (!MayDeferGeneration(Global)) {
1079    // Emit the definition if it can't be deferred.
1080    EmitGlobalDefinition(GD);
1081    return;
1082  }
1083
1084  // If we're deferring emission of a C++ variable with an
1085  // initializer, remember the order in which it appeared in the file.
1086  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1087      cast<VarDecl>(Global)->hasInit()) {
1088    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1089    CXXGlobalInits.push_back(0);
1090  }
1091
1092  // If the value has already been used, add it directly to the
1093  // DeferredDeclsToEmit list.
1094  StringRef MangledName = getMangledName(GD);
1095  if (GetGlobalValue(MangledName))
1096    DeferredDeclsToEmit.push_back(GD);
1097  else {
1098    // Otherwise, remember that we saw a deferred decl with this name.  The
1099    // first use of the mangled name will cause it to move into
1100    // DeferredDeclsToEmit.
1101    DeferredDecls[MangledName] = GD;
1102  }
1103}
1104
1105namespace {
1106  struct FunctionIsDirectlyRecursive :
1107    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1108    const StringRef Name;
1109    const Builtin::Context &BI;
1110    bool Result;
1111    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1112      Name(N), BI(C), Result(false) {
1113    }
1114    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1115
1116    bool TraverseCallExpr(CallExpr *E) {
1117      const FunctionDecl *FD = E->getDirectCallee();
1118      if (!FD)
1119        return true;
1120      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1121      if (Attr && Name == Attr->getLabel()) {
1122        Result = true;
1123        return false;
1124      }
1125      unsigned BuiltinID = FD->getBuiltinID();
1126      if (!BuiltinID)
1127        return true;
1128      StringRef BuiltinName = BI.GetName(BuiltinID);
1129      if (BuiltinName.startswith("__builtin_") &&
1130          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1131        Result = true;
1132        return false;
1133      }
1134      return true;
1135    }
1136  };
1137}
1138
1139// isTriviallyRecursive - Check if this function calls another
1140// decl that, because of the asm attribute or the other decl being a builtin,
1141// ends up pointing to itself.
1142bool
1143CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1144  StringRef Name;
1145  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1146    // asm labels are a special kind of mangling we have to support.
1147    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1148    if (!Attr)
1149      return false;
1150    Name = Attr->getLabel();
1151  } else {
1152    Name = FD->getName();
1153  }
1154
1155  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1156  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1157  return Walker.Result;
1158}
1159
1160bool
1161CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1162  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1163    return true;
1164  if (CodeGenOpts.OptimizationLevel == 0 &&
1165      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1166    return false;
1167  // PR9614. Avoid cases where the source code is lying to us. An available
1168  // externally function should have an equivalent function somewhere else,
1169  // but a function that calls itself is clearly not equivalent to the real
1170  // implementation.
1171  // This happens in glibc's btowc and in some configure checks.
1172  return !isTriviallyRecursive(F);
1173}
1174
1175void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1176  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1177
1178  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1179                                 Context.getSourceManager(),
1180                                 "Generating code for declaration");
1181
1182  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1183    // At -O0, don't generate IR for functions with available_externally
1184    // linkage.
1185    if (!shouldEmitFunction(Function))
1186      return;
1187
1188    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1189      // Make sure to emit the definition(s) before we emit the thunks.
1190      // This is necessary for the generation of certain thunks.
1191      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1192        EmitCXXConstructor(CD, GD.getCtorType());
1193      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1194        EmitCXXDestructor(DD, GD.getDtorType());
1195      else
1196        EmitGlobalFunctionDefinition(GD);
1197
1198      if (Method->isVirtual())
1199        getVTables().EmitThunks(GD);
1200
1201      return;
1202    }
1203
1204    return EmitGlobalFunctionDefinition(GD);
1205  }
1206
1207  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1208    return EmitGlobalVarDefinition(VD);
1209
1210  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1211}
1212
1213/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1214/// module, create and return an llvm Function with the specified type. If there
1215/// is something in the module with the specified name, return it potentially
1216/// bitcasted to the right type.
1217///
1218/// If D is non-null, it specifies a decl that correspond to this.  This is used
1219/// to set the attributes on the function when it is first created.
1220llvm::Constant *
1221CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1222                                       llvm::Type *Ty,
1223                                       GlobalDecl D, bool ForVTable,
1224                                       llvm::Attribute ExtraAttrs) {
1225  // Lookup the entry, lazily creating it if necessary.
1226  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1227  if (Entry) {
1228    if (WeakRefReferences.erase(Entry)) {
1229      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1230      if (FD && !FD->hasAttr<WeakAttr>())
1231        Entry->setLinkage(llvm::Function::ExternalLinkage);
1232    }
1233
1234    if (Entry->getType()->getElementType() == Ty)
1235      return Entry;
1236
1237    // Make sure the result is of the correct type.
1238    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1239  }
1240
1241  // This function doesn't have a complete type (for example, the return
1242  // type is an incomplete struct). Use a fake type instead, and make
1243  // sure not to try to set attributes.
1244  bool IsIncompleteFunction = false;
1245
1246  llvm::FunctionType *FTy;
1247  if (isa<llvm::FunctionType>(Ty)) {
1248    FTy = cast<llvm::FunctionType>(Ty);
1249  } else {
1250    FTy = llvm::FunctionType::get(VoidTy, false);
1251    IsIncompleteFunction = true;
1252  }
1253
1254  llvm::Function *F = llvm::Function::Create(FTy,
1255                                             llvm::Function::ExternalLinkage,
1256                                             MangledName, &getModule());
1257  assert(F->getName() == MangledName && "name was uniqued!");
1258  if (D.getDecl())
1259    SetFunctionAttributes(D, F, IsIncompleteFunction);
1260  if (ExtraAttrs.hasAttributes())
1261    F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1262
1263  // This is the first use or definition of a mangled name.  If there is a
1264  // deferred decl with this name, remember that we need to emit it at the end
1265  // of the file.
1266  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1267  if (DDI != DeferredDecls.end()) {
1268    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1269    // list, and remove it from DeferredDecls (since we don't need it anymore).
1270    DeferredDeclsToEmit.push_back(DDI->second);
1271    DeferredDecls.erase(DDI);
1272
1273  // Otherwise, there are cases we have to worry about where we're
1274  // using a declaration for which we must emit a definition but where
1275  // we might not find a top-level definition:
1276  //   - member functions defined inline in their classes
1277  //   - friend functions defined inline in some class
1278  //   - special member functions with implicit definitions
1279  // If we ever change our AST traversal to walk into class methods,
1280  // this will be unnecessary.
1281  //
1282  // We also don't emit a definition for a function if it's going to be an entry
1283  // in a vtable, unless it's already marked as used.
1284  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1285    // Look for a declaration that's lexically in a record.
1286    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1287    FD = FD->getMostRecentDecl();
1288    do {
1289      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1290        if (FD->isImplicit() && !ForVTable) {
1291          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1292          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1293          break;
1294        } else if (FD->doesThisDeclarationHaveABody()) {
1295          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1296          break;
1297        }
1298      }
1299      FD = FD->getPreviousDecl();
1300    } while (FD);
1301  }
1302
1303  // Make sure the result is of the requested type.
1304  if (!IsIncompleteFunction) {
1305    assert(F->getType()->getElementType() == Ty);
1306    return F;
1307  }
1308
1309  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1310  return llvm::ConstantExpr::getBitCast(F, PTy);
1311}
1312
1313/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1314/// non-null, then this function will use the specified type if it has to
1315/// create it (this occurs when we see a definition of the function).
1316llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1317                                                 llvm::Type *Ty,
1318                                                 bool ForVTable) {
1319  // If there was no specific requested type, just convert it now.
1320  if (!Ty)
1321    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1322
1323  StringRef MangledName = getMangledName(GD);
1324  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1325}
1326
1327/// CreateRuntimeFunction - Create a new runtime function with the specified
1328/// type and name.
1329llvm::Constant *
1330CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1331                                     StringRef Name,
1332                                     llvm::Attribute ExtraAttrs) {
1333  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1334                                 ExtraAttrs);
1335}
1336
1337/// isTypeConstant - Determine whether an object of this type can be emitted
1338/// as a constant.
1339///
1340/// If ExcludeCtor is true, the duration when the object's constructor runs
1341/// will not be considered. The caller will need to verify that the object is
1342/// not written to during its construction.
1343bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1344  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1345    return false;
1346
1347  if (Context.getLangOpts().CPlusPlus) {
1348    if (const CXXRecordDecl *Record
1349          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1350      return ExcludeCtor && !Record->hasMutableFields() &&
1351             Record->hasTrivialDestructor();
1352  }
1353
1354  return true;
1355}
1356
1357/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1358/// create and return an llvm GlobalVariable with the specified type.  If there
1359/// is something in the module with the specified name, return it potentially
1360/// bitcasted to the right type.
1361///
1362/// If D is non-null, it specifies a decl that correspond to this.  This is used
1363/// to set the attributes on the global when it is first created.
1364llvm::Constant *
1365CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1366                                     llvm::PointerType *Ty,
1367                                     const VarDecl *D,
1368                                     bool UnnamedAddr) {
1369  // Lookup the entry, lazily creating it if necessary.
1370  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1371  if (Entry) {
1372    if (WeakRefReferences.erase(Entry)) {
1373      if (D && !D->hasAttr<WeakAttr>())
1374        Entry->setLinkage(llvm::Function::ExternalLinkage);
1375    }
1376
1377    if (UnnamedAddr)
1378      Entry->setUnnamedAddr(true);
1379
1380    if (Entry->getType() == Ty)
1381      return Entry;
1382
1383    // Make sure the result is of the correct type.
1384    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1385  }
1386
1387  // This is the first use or definition of a mangled name.  If there is a
1388  // deferred decl with this name, remember that we need to emit it at the end
1389  // of the file.
1390  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1391  if (DDI != DeferredDecls.end()) {
1392    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1393    // list, and remove it from DeferredDecls (since we don't need it anymore).
1394    DeferredDeclsToEmit.push_back(DDI->second);
1395    DeferredDecls.erase(DDI);
1396  }
1397
1398  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1399  llvm::GlobalVariable *GV =
1400    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1401                             llvm::GlobalValue::ExternalLinkage,
1402                             0, MangledName, 0,
1403                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1404
1405  // Handle things which are present even on external declarations.
1406  if (D) {
1407    // FIXME: This code is overly simple and should be merged with other global
1408    // handling.
1409    GV->setConstant(isTypeConstant(D->getType(), false));
1410
1411    // Set linkage and visibility in case we never see a definition.
1412    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1413    if (LV.linkage() != ExternalLinkage) {
1414      // Don't set internal linkage on declarations.
1415    } else {
1416      if (D->hasAttr<DLLImportAttr>())
1417        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1418      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1419        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1420
1421      // Set visibility on a declaration only if it's explicit.
1422      if (LV.visibilityExplicit())
1423        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1424    }
1425
1426    if (D->isThreadSpecified())
1427      setTLSMode(GV, *D);
1428  }
1429
1430  if (AddrSpace != Ty->getAddressSpace())
1431    return llvm::ConstantExpr::getBitCast(GV, Ty);
1432  else
1433    return GV;
1434}
1435
1436
1437llvm::GlobalVariable *
1438CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1439                                      llvm::Type *Ty,
1440                                      llvm::GlobalValue::LinkageTypes Linkage) {
1441  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1442  llvm::GlobalVariable *OldGV = 0;
1443
1444
1445  if (GV) {
1446    // Check if the variable has the right type.
1447    if (GV->getType()->getElementType() == Ty)
1448      return GV;
1449
1450    // Because C++ name mangling, the only way we can end up with an already
1451    // existing global with the same name is if it has been declared extern "C".
1452    assert(GV->isDeclaration() && "Declaration has wrong type!");
1453    OldGV = GV;
1454  }
1455
1456  // Create a new variable.
1457  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1458                                Linkage, 0, Name);
1459
1460  if (OldGV) {
1461    // Replace occurrences of the old variable if needed.
1462    GV->takeName(OldGV);
1463
1464    if (!OldGV->use_empty()) {
1465      llvm::Constant *NewPtrForOldDecl =
1466      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1467      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1468    }
1469
1470    OldGV->eraseFromParent();
1471  }
1472
1473  return GV;
1474}
1475
1476/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1477/// given global variable.  If Ty is non-null and if the global doesn't exist,
1478/// then it will be created with the specified type instead of whatever the
1479/// normal requested type would be.
1480llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1481                                                  llvm::Type *Ty) {
1482  assert(D->hasGlobalStorage() && "Not a global variable");
1483  QualType ASTTy = D->getType();
1484  if (Ty == 0)
1485    Ty = getTypes().ConvertTypeForMem(ASTTy);
1486
1487  llvm::PointerType *PTy =
1488    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1489
1490  StringRef MangledName = getMangledName(D);
1491  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1492}
1493
1494/// CreateRuntimeVariable - Create a new runtime global variable with the
1495/// specified type and name.
1496llvm::Constant *
1497CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1498                                     StringRef Name) {
1499  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1500                               true);
1501}
1502
1503void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1504  assert(!D->getInit() && "Cannot emit definite definitions here!");
1505
1506  if (MayDeferGeneration(D)) {
1507    // If we have not seen a reference to this variable yet, place it
1508    // into the deferred declarations table to be emitted if needed
1509    // later.
1510    StringRef MangledName = getMangledName(D);
1511    if (!GetGlobalValue(MangledName)) {
1512      DeferredDecls[MangledName] = D;
1513      return;
1514    }
1515  }
1516
1517  // The tentative definition is the only definition.
1518  EmitGlobalVarDefinition(D);
1519}
1520
1521void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1522  if (DefinitionRequired)
1523    getCXXABI().EmitVTables(Class);
1524}
1525
1526llvm::GlobalVariable::LinkageTypes
1527CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1528  if (RD->getLinkage() != ExternalLinkage)
1529    return llvm::GlobalVariable::InternalLinkage;
1530
1531  if (const CXXMethodDecl *KeyFunction
1532                                    = RD->getASTContext().getKeyFunction(RD)) {
1533    // If this class has a key function, use that to determine the linkage of
1534    // the vtable.
1535    const FunctionDecl *Def = 0;
1536    if (KeyFunction->hasBody(Def))
1537      KeyFunction = cast<CXXMethodDecl>(Def);
1538
1539    switch (KeyFunction->getTemplateSpecializationKind()) {
1540      case TSK_Undeclared:
1541      case TSK_ExplicitSpecialization:
1542        // When compiling with optimizations turned on, we emit all vtables,
1543        // even if the key function is not defined in the current translation
1544        // unit. If this is the case, use available_externally linkage.
1545        if (!Def && CodeGenOpts.OptimizationLevel)
1546          return llvm::GlobalVariable::AvailableExternallyLinkage;
1547
1548        if (KeyFunction->isInlined())
1549          return !Context.getLangOpts().AppleKext ?
1550                   llvm::GlobalVariable::LinkOnceODRLinkage :
1551                   llvm::Function::InternalLinkage;
1552
1553        return llvm::GlobalVariable::ExternalLinkage;
1554
1555      case TSK_ImplicitInstantiation:
1556        return !Context.getLangOpts().AppleKext ?
1557                 llvm::GlobalVariable::LinkOnceODRLinkage :
1558                 llvm::Function::InternalLinkage;
1559
1560      case TSK_ExplicitInstantiationDefinition:
1561        return !Context.getLangOpts().AppleKext ?
1562                 llvm::GlobalVariable::WeakODRLinkage :
1563                 llvm::Function::InternalLinkage;
1564
1565      case TSK_ExplicitInstantiationDeclaration:
1566        // FIXME: Use available_externally linkage. However, this currently
1567        // breaks LLVM's build due to undefined symbols.
1568        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1569        return !Context.getLangOpts().AppleKext ?
1570                 llvm::GlobalVariable::LinkOnceODRLinkage :
1571                 llvm::Function::InternalLinkage;
1572    }
1573  }
1574
1575  if (Context.getLangOpts().AppleKext)
1576    return llvm::Function::InternalLinkage;
1577
1578  switch (RD->getTemplateSpecializationKind()) {
1579  case TSK_Undeclared:
1580  case TSK_ExplicitSpecialization:
1581  case TSK_ImplicitInstantiation:
1582    // FIXME: Use available_externally linkage. However, this currently
1583    // breaks LLVM's build due to undefined symbols.
1584    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1585  case TSK_ExplicitInstantiationDeclaration:
1586    return llvm::GlobalVariable::LinkOnceODRLinkage;
1587
1588  case TSK_ExplicitInstantiationDefinition:
1589      return llvm::GlobalVariable::WeakODRLinkage;
1590  }
1591
1592  llvm_unreachable("Invalid TemplateSpecializationKind!");
1593}
1594
1595CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1596    return Context.toCharUnitsFromBits(
1597      TheDataLayout.getTypeStoreSizeInBits(Ty));
1598}
1599
1600llvm::Constant *
1601CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1602                                                       const Expr *rawInit) {
1603  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1604  if (const ExprWithCleanups *withCleanups =
1605          dyn_cast<ExprWithCleanups>(rawInit)) {
1606    cleanups = withCleanups->getObjects();
1607    rawInit = withCleanups->getSubExpr();
1608  }
1609
1610  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1611  if (!init || !init->initializesStdInitializerList() ||
1612      init->getNumInits() == 0)
1613    return 0;
1614
1615  ASTContext &ctx = getContext();
1616  unsigned numInits = init->getNumInits();
1617  // FIXME: This check is here because we would otherwise silently miscompile
1618  // nested global std::initializer_lists. Better would be to have a real
1619  // implementation.
1620  for (unsigned i = 0; i < numInits; ++i) {
1621    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1622    if (inner && inner->initializesStdInitializerList()) {
1623      ErrorUnsupported(inner, "nested global std::initializer_list");
1624      return 0;
1625    }
1626  }
1627
1628  // Synthesize a fake VarDecl for the array and initialize that.
1629  QualType elementType = init->getInit(0)->getType();
1630  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1631  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1632                                                ArrayType::Normal, 0);
1633
1634  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1635  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1636                                              arrayType, D->getLocation());
1637  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1638                                                          D->getDeclContext()),
1639                                          D->getLocStart(), D->getLocation(),
1640                                          name, arrayType, sourceInfo,
1641                                          SC_Static, SC_Static);
1642
1643  // Now clone the InitListExpr to initialize the array instead.
1644  // Incredible hack: we want to use the existing InitListExpr here, so we need
1645  // to tell it that it no longer initializes a std::initializer_list.
1646  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1647                        init->getNumInits());
1648  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1649                                           init->getRBraceLoc());
1650  arrayInit->setType(arrayType);
1651
1652  if (!cleanups.empty())
1653    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1654
1655  backingArray->setInit(arrayInit);
1656
1657  // Emit the definition of the array.
1658  EmitGlobalVarDefinition(backingArray);
1659
1660  // Inspect the initializer list to validate it and determine its type.
1661  // FIXME: doing this every time is probably inefficient; caching would be nice
1662  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1663  RecordDecl::field_iterator field = record->field_begin();
1664  if (field == record->field_end()) {
1665    ErrorUnsupported(D, "weird std::initializer_list");
1666    return 0;
1667  }
1668  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1669  // Start pointer.
1670  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1671    ErrorUnsupported(D, "weird std::initializer_list");
1672    return 0;
1673  }
1674  ++field;
1675  if (field == record->field_end()) {
1676    ErrorUnsupported(D, "weird std::initializer_list");
1677    return 0;
1678  }
1679  bool isStartEnd = false;
1680  if (ctx.hasSameType(field->getType(), elementPtr)) {
1681    // End pointer.
1682    isStartEnd = true;
1683  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1684    ErrorUnsupported(D, "weird std::initializer_list");
1685    return 0;
1686  }
1687
1688  // Now build an APValue representing the std::initializer_list.
1689  APValue initListValue(APValue::UninitStruct(), 0, 2);
1690  APValue &startField = initListValue.getStructField(0);
1691  APValue::LValuePathEntry startOffsetPathEntry;
1692  startOffsetPathEntry.ArrayIndex = 0;
1693  startField = APValue(APValue::LValueBase(backingArray),
1694                       CharUnits::fromQuantity(0),
1695                       llvm::makeArrayRef(startOffsetPathEntry),
1696                       /*IsOnePastTheEnd=*/false, 0);
1697
1698  if (isStartEnd) {
1699    APValue &endField = initListValue.getStructField(1);
1700    APValue::LValuePathEntry endOffsetPathEntry;
1701    endOffsetPathEntry.ArrayIndex = numInits;
1702    endField = APValue(APValue::LValueBase(backingArray),
1703                       ctx.getTypeSizeInChars(elementType) * numInits,
1704                       llvm::makeArrayRef(endOffsetPathEntry),
1705                       /*IsOnePastTheEnd=*/true, 0);
1706  } else {
1707    APValue &sizeField = initListValue.getStructField(1);
1708    sizeField = APValue(llvm::APSInt(numElements));
1709  }
1710
1711  // Emit the constant for the initializer_list.
1712  llvm::Constant *llvmInit =
1713      EmitConstantValueForMemory(initListValue, D->getType());
1714  assert(llvmInit && "failed to initialize as constant");
1715  return llvmInit;
1716}
1717
1718unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1719                                                 unsigned AddrSpace) {
1720  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1721    if (D->hasAttr<CUDAConstantAttr>())
1722      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1723    else if (D->hasAttr<CUDASharedAttr>())
1724      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1725    else
1726      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1727  }
1728
1729  return AddrSpace;
1730}
1731
1732void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1733  llvm::Constant *Init = 0;
1734  QualType ASTTy = D->getType();
1735  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1736  bool NeedsGlobalCtor = false;
1737  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1738
1739  const VarDecl *InitDecl;
1740  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1741
1742  if (!InitExpr) {
1743    // This is a tentative definition; tentative definitions are
1744    // implicitly initialized with { 0 }.
1745    //
1746    // Note that tentative definitions are only emitted at the end of
1747    // a translation unit, so they should never have incomplete
1748    // type. In addition, EmitTentativeDefinition makes sure that we
1749    // never attempt to emit a tentative definition if a real one
1750    // exists. A use may still exists, however, so we still may need
1751    // to do a RAUW.
1752    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1753    Init = EmitNullConstant(D->getType());
1754  } else {
1755    // If this is a std::initializer_list, emit the special initializer.
1756    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1757    // An empty init list will perform zero-initialization, which happens
1758    // to be exactly what we want.
1759    // FIXME: It does so in a global constructor, which is *not* what we
1760    // want.
1761
1762    if (!Init) {
1763      initializedGlobalDecl = GlobalDecl(D);
1764      Init = EmitConstantInit(*InitDecl);
1765    }
1766    if (!Init) {
1767      QualType T = InitExpr->getType();
1768      if (D->getType()->isReferenceType())
1769        T = D->getType();
1770
1771      if (getLangOpts().CPlusPlus) {
1772        Init = EmitNullConstant(T);
1773        NeedsGlobalCtor = true;
1774      } else {
1775        ErrorUnsupported(D, "static initializer");
1776        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1777      }
1778    } else {
1779      // We don't need an initializer, so remove the entry for the delayed
1780      // initializer position (just in case this entry was delayed) if we
1781      // also don't need to register a destructor.
1782      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1783        DelayedCXXInitPosition.erase(D);
1784    }
1785  }
1786
1787  llvm::Type* InitType = Init->getType();
1788  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1789
1790  // Strip off a bitcast if we got one back.
1791  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1792    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1793           // all zero index gep.
1794           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1795    Entry = CE->getOperand(0);
1796  }
1797
1798  // Entry is now either a Function or GlobalVariable.
1799  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1800
1801  // We have a definition after a declaration with the wrong type.
1802  // We must make a new GlobalVariable* and update everything that used OldGV
1803  // (a declaration or tentative definition) with the new GlobalVariable*
1804  // (which will be a definition).
1805  //
1806  // This happens if there is a prototype for a global (e.g.
1807  // "extern int x[];") and then a definition of a different type (e.g.
1808  // "int x[10];"). This also happens when an initializer has a different type
1809  // from the type of the global (this happens with unions).
1810  if (GV == 0 ||
1811      GV->getType()->getElementType() != InitType ||
1812      GV->getType()->getAddressSpace() !=
1813       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1814
1815    // Move the old entry aside so that we'll create a new one.
1816    Entry->setName(StringRef());
1817
1818    // Make a new global with the correct type, this is now guaranteed to work.
1819    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1820
1821    // Replace all uses of the old global with the new global
1822    llvm::Constant *NewPtrForOldDecl =
1823        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1824    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1825
1826    // Erase the old global, since it is no longer used.
1827    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1828  }
1829
1830  if (D->hasAttr<AnnotateAttr>())
1831    AddGlobalAnnotations(D, GV);
1832
1833  GV->setInitializer(Init);
1834
1835  // If it is safe to mark the global 'constant', do so now.
1836  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1837                  isTypeConstant(D->getType(), true));
1838
1839  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1840
1841  // Set the llvm linkage type as appropriate.
1842  llvm::GlobalValue::LinkageTypes Linkage =
1843    GetLLVMLinkageVarDefinition(D, GV);
1844  GV->setLinkage(Linkage);
1845  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1846    // common vars aren't constant even if declared const.
1847    GV->setConstant(false);
1848
1849  SetCommonAttributes(D, GV);
1850
1851  // Emit the initializer function if necessary.
1852  if (NeedsGlobalCtor || NeedsGlobalDtor)
1853    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1854
1855  // If we are compiling with ASan, add metadata indicating dynamically
1856  // initialized globals.
1857  if (SanOpts.Address && NeedsGlobalCtor) {
1858    llvm::Module &M = getModule();
1859
1860    llvm::NamedMDNode *DynamicInitializers =
1861        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1862    llvm::Value *GlobalToAdd[] = { GV };
1863    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1864    DynamicInitializers->addOperand(ThisGlobal);
1865  }
1866
1867  // Emit global variable debug information.
1868  if (CGDebugInfo *DI = getModuleDebugInfo())
1869    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1870      DI->EmitGlobalVariable(GV, D);
1871}
1872
1873llvm::GlobalValue::LinkageTypes
1874CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1875                                           llvm::GlobalVariable *GV) {
1876  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1877  if (Linkage == GVA_Internal)
1878    return llvm::Function::InternalLinkage;
1879  else if (D->hasAttr<DLLImportAttr>())
1880    return llvm::Function::DLLImportLinkage;
1881  else if (D->hasAttr<DLLExportAttr>())
1882    return llvm::Function::DLLExportLinkage;
1883  else if (D->hasAttr<WeakAttr>()) {
1884    if (GV->isConstant())
1885      return llvm::GlobalVariable::WeakODRLinkage;
1886    else
1887      return llvm::GlobalVariable::WeakAnyLinkage;
1888  } else if (Linkage == GVA_TemplateInstantiation ||
1889             Linkage == GVA_ExplicitTemplateInstantiation)
1890    return llvm::GlobalVariable::WeakODRLinkage;
1891  else if (!getLangOpts().CPlusPlus &&
1892           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1893             D->getAttr<CommonAttr>()) &&
1894           !D->hasExternalStorage() && !D->getInit() &&
1895           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1896           !D->getAttr<WeakImportAttr>()) {
1897    // Thread local vars aren't considered common linkage.
1898    return llvm::GlobalVariable::CommonLinkage;
1899  }
1900  return llvm::GlobalVariable::ExternalLinkage;
1901}
1902
1903/// Replace the uses of a function that was declared with a non-proto type.
1904/// We want to silently drop extra arguments from call sites
1905static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1906                                          llvm::Function *newFn) {
1907  // Fast path.
1908  if (old->use_empty()) return;
1909
1910  llvm::Type *newRetTy = newFn->getReturnType();
1911  SmallVector<llvm::Value*, 4> newArgs;
1912
1913  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1914         ui != ue; ) {
1915    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1916    llvm::User *user = *use;
1917
1918    // Recognize and replace uses of bitcasts.  Most calls to
1919    // unprototyped functions will use bitcasts.
1920    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1921      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1922        replaceUsesOfNonProtoConstant(bitcast, newFn);
1923      continue;
1924    }
1925
1926    // Recognize calls to the function.
1927    llvm::CallSite callSite(user);
1928    if (!callSite) continue;
1929    if (!callSite.isCallee(use)) continue;
1930
1931    // If the return types don't match exactly, then we can't
1932    // transform this call unless it's dead.
1933    if (callSite->getType() != newRetTy && !callSite->use_empty())
1934      continue;
1935
1936    // Get the call site's attribute list.
1937    SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1938    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1939
1940    // Collect any return attributes from the call.
1941    llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1942    if (returnAttrs.hasAttributes())
1943      newAttrs.push_back(llvm::AttributeWithIndex::get(
1944                                llvm::AttributeSet::ReturnIndex, returnAttrs));
1945
1946    // If the function was passed too few arguments, don't transform.
1947    unsigned newNumArgs = newFn->arg_size();
1948    if (callSite.arg_size() < newNumArgs) continue;
1949
1950    // If extra arguments were passed, we silently drop them.
1951    // If any of the types mismatch, we don't transform.
1952    unsigned argNo = 0;
1953    bool dontTransform = false;
1954    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1955           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1956      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1957        dontTransform = true;
1958        break;
1959      }
1960
1961      // Add any parameter attributes.
1962      llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1963      if (pAttrs.hasAttributes())
1964        newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1965    }
1966    if (dontTransform)
1967      continue;
1968
1969    llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1970    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1971      newAttrs.push_back(llvm::
1972                       AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1973                                               fnAttrs));
1974
1975    // Okay, we can transform this.  Create the new call instruction and copy
1976    // over the required information.
1977    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1978
1979    llvm::CallSite newCall;
1980    if (callSite.isCall()) {
1981      newCall = llvm::CallInst::Create(newFn, newArgs, "",
1982                                       callSite.getInstruction());
1983    } else {
1984      llvm::InvokeInst *oldInvoke =
1985        cast<llvm::InvokeInst>(callSite.getInstruction());
1986      newCall = llvm::InvokeInst::Create(newFn,
1987                                         oldInvoke->getNormalDest(),
1988                                         oldInvoke->getUnwindDest(),
1989                                         newArgs, "",
1990                                         callSite.getInstruction());
1991    }
1992    newArgs.clear(); // for the next iteration
1993
1994    if (!newCall->getType()->isVoidTy())
1995      newCall->takeName(callSite.getInstruction());
1996    newCall.setAttributes(
1997                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1998    newCall.setCallingConv(callSite.getCallingConv());
1999
2000    // Finally, remove the old call, replacing any uses with the new one.
2001    if (!callSite->use_empty())
2002      callSite->replaceAllUsesWith(newCall.getInstruction());
2003
2004    // Copy debug location attached to CI.
2005    if (!callSite->getDebugLoc().isUnknown())
2006      newCall->setDebugLoc(callSite->getDebugLoc());
2007    callSite->eraseFromParent();
2008  }
2009}
2010
2011/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2012/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2013/// existing call uses of the old function in the module, this adjusts them to
2014/// call the new function directly.
2015///
2016/// This is not just a cleanup: the always_inline pass requires direct calls to
2017/// functions to be able to inline them.  If there is a bitcast in the way, it
2018/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2019/// run at -O0.
2020static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2021                                                      llvm::Function *NewFn) {
2022  // If we're redefining a global as a function, don't transform it.
2023  if (!isa<llvm::Function>(Old)) return;
2024
2025  replaceUsesOfNonProtoConstant(Old, NewFn);
2026}
2027
2028void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2029  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2030  // If we have a definition, this might be a deferred decl. If the
2031  // instantiation is explicit, make sure we emit it at the end.
2032  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2033    GetAddrOfGlobalVar(VD);
2034}
2035
2036void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2037  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2038
2039  // Compute the function info and LLVM type.
2040  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2041  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2042
2043  // Get or create the prototype for the function.
2044  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2045
2046  // Strip off a bitcast if we got one back.
2047  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2048    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2049    Entry = CE->getOperand(0);
2050  }
2051
2052
2053  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2054    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2055
2056    // If the types mismatch then we have to rewrite the definition.
2057    assert(OldFn->isDeclaration() &&
2058           "Shouldn't replace non-declaration");
2059
2060    // F is the Function* for the one with the wrong type, we must make a new
2061    // Function* and update everything that used F (a declaration) with the new
2062    // Function* (which will be a definition).
2063    //
2064    // This happens if there is a prototype for a function
2065    // (e.g. "int f()") and then a definition of a different type
2066    // (e.g. "int f(int x)").  Move the old function aside so that it
2067    // doesn't interfere with GetAddrOfFunction.
2068    OldFn->setName(StringRef());
2069    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2070
2071    // This might be an implementation of a function without a
2072    // prototype, in which case, try to do special replacement of
2073    // calls which match the new prototype.  The really key thing here
2074    // is that we also potentially drop arguments from the call site
2075    // so as to make a direct call, which makes the inliner happier
2076    // and suppresses a number of optimizer warnings (!) about
2077    // dropping arguments.
2078    if (!OldFn->use_empty()) {
2079      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2080      OldFn->removeDeadConstantUsers();
2081    }
2082
2083    // Replace uses of F with the Function we will endow with a body.
2084    if (!Entry->use_empty()) {
2085      llvm::Constant *NewPtrForOldDecl =
2086        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2087      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2088    }
2089
2090    // Ok, delete the old function now, which is dead.
2091    OldFn->eraseFromParent();
2092
2093    Entry = NewFn;
2094  }
2095
2096  // We need to set linkage and visibility on the function before
2097  // generating code for it because various parts of IR generation
2098  // want to propagate this information down (e.g. to local static
2099  // declarations).
2100  llvm::Function *Fn = cast<llvm::Function>(Entry);
2101  setFunctionLinkage(D, Fn);
2102
2103  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2104  setGlobalVisibility(Fn, D);
2105
2106  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2107
2108  SetFunctionDefinitionAttributes(D, Fn);
2109  SetLLVMFunctionAttributesForDefinition(D, Fn);
2110
2111  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2112    AddGlobalCtor(Fn, CA->getPriority());
2113  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2114    AddGlobalDtor(Fn, DA->getPriority());
2115  if (D->hasAttr<AnnotateAttr>())
2116    AddGlobalAnnotations(D, Fn);
2117}
2118
2119void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2120  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2121  const AliasAttr *AA = D->getAttr<AliasAttr>();
2122  assert(AA && "Not an alias?");
2123
2124  StringRef MangledName = getMangledName(GD);
2125
2126  // If there is a definition in the module, then it wins over the alias.
2127  // This is dubious, but allow it to be safe.  Just ignore the alias.
2128  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2129  if (Entry && !Entry->isDeclaration())
2130    return;
2131
2132  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2133
2134  // Create a reference to the named value.  This ensures that it is emitted
2135  // if a deferred decl.
2136  llvm::Constant *Aliasee;
2137  if (isa<llvm::FunctionType>(DeclTy))
2138    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2139                                      /*ForVTable=*/false);
2140  else
2141    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2142                                    llvm::PointerType::getUnqual(DeclTy), 0);
2143
2144  // Create the new alias itself, but don't set a name yet.
2145  llvm::GlobalValue *GA =
2146    new llvm::GlobalAlias(Aliasee->getType(),
2147                          llvm::Function::ExternalLinkage,
2148                          "", Aliasee, &getModule());
2149
2150  if (Entry) {
2151    assert(Entry->isDeclaration());
2152
2153    // If there is a declaration in the module, then we had an extern followed
2154    // by the alias, as in:
2155    //   extern int test6();
2156    //   ...
2157    //   int test6() __attribute__((alias("test7")));
2158    //
2159    // Remove it and replace uses of it with the alias.
2160    GA->takeName(Entry);
2161
2162    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2163                                                          Entry->getType()));
2164    Entry->eraseFromParent();
2165  } else {
2166    GA->setName(MangledName);
2167  }
2168
2169  // Set attributes which are particular to an alias; this is a
2170  // specialization of the attributes which may be set on a global
2171  // variable/function.
2172  if (D->hasAttr<DLLExportAttr>()) {
2173    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2174      // The dllexport attribute is ignored for undefined symbols.
2175      if (FD->hasBody())
2176        GA->setLinkage(llvm::Function::DLLExportLinkage);
2177    } else {
2178      GA->setLinkage(llvm::Function::DLLExportLinkage);
2179    }
2180  } else if (D->hasAttr<WeakAttr>() ||
2181             D->hasAttr<WeakRefAttr>() ||
2182             D->isWeakImported()) {
2183    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2184  }
2185
2186  SetCommonAttributes(D, GA);
2187}
2188
2189llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2190                                            ArrayRef<llvm::Type*> Tys) {
2191  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2192                                         Tys);
2193}
2194
2195static llvm::StringMapEntry<llvm::Constant*> &
2196GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2197                         const StringLiteral *Literal,
2198                         bool TargetIsLSB,
2199                         bool &IsUTF16,
2200                         unsigned &StringLength) {
2201  StringRef String = Literal->getString();
2202  unsigned NumBytes = String.size();
2203
2204  // Check for simple case.
2205  if (!Literal->containsNonAsciiOrNull()) {
2206    StringLength = NumBytes;
2207    return Map.GetOrCreateValue(String);
2208  }
2209
2210  // Otherwise, convert the UTF8 literals into a string of shorts.
2211  IsUTF16 = true;
2212
2213  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2214  const UTF8 *FromPtr = (const UTF8 *)String.data();
2215  UTF16 *ToPtr = &ToBuf[0];
2216
2217  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2218                           &ToPtr, ToPtr + NumBytes,
2219                           strictConversion);
2220
2221  // ConvertUTF8toUTF16 returns the length in ToPtr.
2222  StringLength = ToPtr - &ToBuf[0];
2223
2224  // Add an explicit null.
2225  *ToPtr = 0;
2226  return Map.
2227    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2228                               (StringLength + 1) * 2));
2229}
2230
2231static llvm::StringMapEntry<llvm::Constant*> &
2232GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2233                       const StringLiteral *Literal,
2234                       unsigned &StringLength) {
2235  StringRef String = Literal->getString();
2236  StringLength = String.size();
2237  return Map.GetOrCreateValue(String);
2238}
2239
2240llvm::Constant *
2241CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2242  unsigned StringLength = 0;
2243  bool isUTF16 = false;
2244  llvm::StringMapEntry<llvm::Constant*> &Entry =
2245    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2246                             getDataLayout().isLittleEndian(),
2247                             isUTF16, StringLength);
2248
2249  if (llvm::Constant *C = Entry.getValue())
2250    return C;
2251
2252  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2253  llvm::Constant *Zeros[] = { Zero, Zero };
2254
2255  // If we don't already have it, get __CFConstantStringClassReference.
2256  if (!CFConstantStringClassRef) {
2257    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2258    Ty = llvm::ArrayType::get(Ty, 0);
2259    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2260                                           "__CFConstantStringClassReference");
2261    // Decay array -> ptr
2262    CFConstantStringClassRef =
2263      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2264  }
2265
2266  QualType CFTy = getContext().getCFConstantStringType();
2267
2268  llvm::StructType *STy =
2269    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2270
2271  llvm::Constant *Fields[4];
2272
2273  // Class pointer.
2274  Fields[0] = CFConstantStringClassRef;
2275
2276  // Flags.
2277  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2278  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2279    llvm::ConstantInt::get(Ty, 0x07C8);
2280
2281  // String pointer.
2282  llvm::Constant *C = 0;
2283  if (isUTF16) {
2284    ArrayRef<uint16_t> Arr =
2285      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2286                                     const_cast<char *>(Entry.getKey().data())),
2287                                   Entry.getKey().size() / 2);
2288    C = llvm::ConstantDataArray::get(VMContext, Arr);
2289  } else {
2290    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2291  }
2292
2293  llvm::GlobalValue::LinkageTypes Linkage;
2294  if (isUTF16)
2295    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2296    Linkage = llvm::GlobalValue::InternalLinkage;
2297  else
2298    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2299    // when using private linkage. It is not clear if this is a bug in ld
2300    // or a reasonable new restriction.
2301    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2302
2303  // Note: -fwritable-strings doesn't make the backing store strings of
2304  // CFStrings writable. (See <rdar://problem/10657500>)
2305  llvm::GlobalVariable *GV =
2306    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2307                             Linkage, C, ".str");
2308  GV->setUnnamedAddr(true);
2309  if (isUTF16) {
2310    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2311    GV->setAlignment(Align.getQuantity());
2312  } else {
2313    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2314    GV->setAlignment(Align.getQuantity());
2315  }
2316
2317  // String.
2318  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2319
2320  if (isUTF16)
2321    // Cast the UTF16 string to the correct type.
2322    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2323
2324  // String length.
2325  Ty = getTypes().ConvertType(getContext().LongTy);
2326  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2327
2328  // The struct.
2329  C = llvm::ConstantStruct::get(STy, Fields);
2330  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2331                                llvm::GlobalVariable::PrivateLinkage, C,
2332                                "_unnamed_cfstring_");
2333  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2334    GV->setSection(Sect);
2335  Entry.setValue(GV);
2336
2337  return GV;
2338}
2339
2340static RecordDecl *
2341CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2342                 DeclContext *DC, IdentifierInfo *Id) {
2343  SourceLocation Loc;
2344  if (Ctx.getLangOpts().CPlusPlus)
2345    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2346  else
2347    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2348}
2349
2350llvm::Constant *
2351CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2352  unsigned StringLength = 0;
2353  llvm::StringMapEntry<llvm::Constant*> &Entry =
2354    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2355
2356  if (llvm::Constant *C = Entry.getValue())
2357    return C;
2358
2359  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2360  llvm::Constant *Zeros[] = { Zero, Zero };
2361
2362  // If we don't already have it, get _NSConstantStringClassReference.
2363  if (!ConstantStringClassRef) {
2364    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2365    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2366    llvm::Constant *GV;
2367    if (LangOpts.ObjCRuntime.isNonFragile()) {
2368      std::string str =
2369        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2370                            : "OBJC_CLASS_$_" + StringClass;
2371      GV = getObjCRuntime().GetClassGlobal(str);
2372      // Make sure the result is of the correct type.
2373      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2374      ConstantStringClassRef =
2375        llvm::ConstantExpr::getBitCast(GV, PTy);
2376    } else {
2377      std::string str =
2378        StringClass.empty() ? "_NSConstantStringClassReference"
2379                            : "_" + StringClass + "ClassReference";
2380      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2381      GV = CreateRuntimeVariable(PTy, str);
2382      // Decay array -> ptr
2383      ConstantStringClassRef =
2384        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2385    }
2386  }
2387
2388  if (!NSConstantStringType) {
2389    // Construct the type for a constant NSString.
2390    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2391                                     Context.getTranslationUnitDecl(),
2392                                   &Context.Idents.get("__builtin_NSString"));
2393    D->startDefinition();
2394
2395    QualType FieldTypes[3];
2396
2397    // const int *isa;
2398    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2399    // const char *str;
2400    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2401    // unsigned int length;
2402    FieldTypes[2] = Context.UnsignedIntTy;
2403
2404    // Create fields
2405    for (unsigned i = 0; i < 3; ++i) {
2406      FieldDecl *Field = FieldDecl::Create(Context, D,
2407                                           SourceLocation(),
2408                                           SourceLocation(), 0,
2409                                           FieldTypes[i], /*TInfo=*/0,
2410                                           /*BitWidth=*/0,
2411                                           /*Mutable=*/false,
2412                                           ICIS_NoInit);
2413      Field->setAccess(AS_public);
2414      D->addDecl(Field);
2415    }
2416
2417    D->completeDefinition();
2418    QualType NSTy = Context.getTagDeclType(D);
2419    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2420  }
2421
2422  llvm::Constant *Fields[3];
2423
2424  // Class pointer.
2425  Fields[0] = ConstantStringClassRef;
2426
2427  // String pointer.
2428  llvm::Constant *C =
2429    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2430
2431  llvm::GlobalValue::LinkageTypes Linkage;
2432  bool isConstant;
2433  Linkage = llvm::GlobalValue::PrivateLinkage;
2434  isConstant = !LangOpts.WritableStrings;
2435
2436  llvm::GlobalVariable *GV =
2437  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2438                           ".str");
2439  GV->setUnnamedAddr(true);
2440  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2441  GV->setAlignment(Align.getQuantity());
2442  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2443
2444  // String length.
2445  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2446  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2447
2448  // The struct.
2449  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2450  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2451                                llvm::GlobalVariable::PrivateLinkage, C,
2452                                "_unnamed_nsstring_");
2453  // FIXME. Fix section.
2454  if (const char *Sect =
2455        LangOpts.ObjCRuntime.isNonFragile()
2456          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2457          : getContext().getTargetInfo().getNSStringSection())
2458    GV->setSection(Sect);
2459  Entry.setValue(GV);
2460
2461  return GV;
2462}
2463
2464QualType CodeGenModule::getObjCFastEnumerationStateType() {
2465  if (ObjCFastEnumerationStateType.isNull()) {
2466    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2467                                     Context.getTranslationUnitDecl(),
2468                      &Context.Idents.get("__objcFastEnumerationState"));
2469    D->startDefinition();
2470
2471    QualType FieldTypes[] = {
2472      Context.UnsignedLongTy,
2473      Context.getPointerType(Context.getObjCIdType()),
2474      Context.getPointerType(Context.UnsignedLongTy),
2475      Context.getConstantArrayType(Context.UnsignedLongTy,
2476                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2477    };
2478
2479    for (size_t i = 0; i < 4; ++i) {
2480      FieldDecl *Field = FieldDecl::Create(Context,
2481                                           D,
2482                                           SourceLocation(),
2483                                           SourceLocation(), 0,
2484                                           FieldTypes[i], /*TInfo=*/0,
2485                                           /*BitWidth=*/0,
2486                                           /*Mutable=*/false,
2487                                           ICIS_NoInit);
2488      Field->setAccess(AS_public);
2489      D->addDecl(Field);
2490    }
2491
2492    D->completeDefinition();
2493    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2494  }
2495
2496  return ObjCFastEnumerationStateType;
2497}
2498
2499llvm::Constant *
2500CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2501  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2502
2503  // Don't emit it as the address of the string, emit the string data itself
2504  // as an inline array.
2505  if (E->getCharByteWidth() == 1) {
2506    SmallString<64> Str(E->getString());
2507
2508    // Resize the string to the right size, which is indicated by its type.
2509    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2510    Str.resize(CAT->getSize().getZExtValue());
2511    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2512  }
2513
2514  llvm::ArrayType *AType =
2515    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2516  llvm::Type *ElemTy = AType->getElementType();
2517  unsigned NumElements = AType->getNumElements();
2518
2519  // Wide strings have either 2-byte or 4-byte elements.
2520  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2521    SmallVector<uint16_t, 32> Elements;
2522    Elements.reserve(NumElements);
2523
2524    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2525      Elements.push_back(E->getCodeUnit(i));
2526    Elements.resize(NumElements);
2527    return llvm::ConstantDataArray::get(VMContext, Elements);
2528  }
2529
2530  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2531  SmallVector<uint32_t, 32> Elements;
2532  Elements.reserve(NumElements);
2533
2534  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2535    Elements.push_back(E->getCodeUnit(i));
2536  Elements.resize(NumElements);
2537  return llvm::ConstantDataArray::get(VMContext, Elements);
2538}
2539
2540/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2541/// constant array for the given string literal.
2542llvm::Constant *
2543CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2544  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2545  if (S->isAscii() || S->isUTF8()) {
2546    SmallString<64> Str(S->getString());
2547
2548    // Resize the string to the right size, which is indicated by its type.
2549    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2550    Str.resize(CAT->getSize().getZExtValue());
2551    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2552  }
2553
2554  // FIXME: the following does not memoize wide strings.
2555  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2556  llvm::GlobalVariable *GV =
2557    new llvm::GlobalVariable(getModule(),C->getType(),
2558                             !LangOpts.WritableStrings,
2559                             llvm::GlobalValue::PrivateLinkage,
2560                             C,".str");
2561
2562  GV->setAlignment(Align.getQuantity());
2563  GV->setUnnamedAddr(true);
2564  return GV;
2565}
2566
2567/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2568/// array for the given ObjCEncodeExpr node.
2569llvm::Constant *
2570CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2571  std::string Str;
2572  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2573
2574  return GetAddrOfConstantCString(Str);
2575}
2576
2577
2578/// GenerateWritableString -- Creates storage for a string literal.
2579static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2580                                             bool constant,
2581                                             CodeGenModule &CGM,
2582                                             const char *GlobalName,
2583                                             unsigned Alignment) {
2584  // Create Constant for this string literal. Don't add a '\0'.
2585  llvm::Constant *C =
2586      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2587
2588  // Create a global variable for this string
2589  llvm::GlobalVariable *GV =
2590    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2591                             llvm::GlobalValue::PrivateLinkage,
2592                             C, GlobalName);
2593  GV->setAlignment(Alignment);
2594  GV->setUnnamedAddr(true);
2595  return GV;
2596}
2597
2598/// GetAddrOfConstantString - Returns a pointer to a character array
2599/// containing the literal. This contents are exactly that of the
2600/// given string, i.e. it will not be null terminated automatically;
2601/// see GetAddrOfConstantCString. Note that whether the result is
2602/// actually a pointer to an LLVM constant depends on
2603/// Feature.WriteableStrings.
2604///
2605/// The result has pointer to array type.
2606llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2607                                                       const char *GlobalName,
2608                                                       unsigned Alignment) {
2609  // Get the default prefix if a name wasn't specified.
2610  if (!GlobalName)
2611    GlobalName = ".str";
2612
2613  // Don't share any string literals if strings aren't constant.
2614  if (LangOpts.WritableStrings)
2615    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2616
2617  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2618    ConstantStringMap.GetOrCreateValue(Str);
2619
2620  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2621    if (Alignment > GV->getAlignment()) {
2622      GV->setAlignment(Alignment);
2623    }
2624    return GV;
2625  }
2626
2627  // Create a global variable for this.
2628  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2629                                                   Alignment);
2630  Entry.setValue(GV);
2631  return GV;
2632}
2633
2634/// GetAddrOfConstantCString - Returns a pointer to a character
2635/// array containing the literal and a terminating '\0'
2636/// character. The result has pointer to array type.
2637llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2638                                                        const char *GlobalName,
2639                                                        unsigned Alignment) {
2640  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2641  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2642}
2643
2644/// EmitObjCPropertyImplementations - Emit information for synthesized
2645/// properties for an implementation.
2646void CodeGenModule::EmitObjCPropertyImplementations(const
2647                                                    ObjCImplementationDecl *D) {
2648  for (ObjCImplementationDecl::propimpl_iterator
2649         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2650    ObjCPropertyImplDecl *PID = *i;
2651
2652    // Dynamic is just for type-checking.
2653    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2654      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2655
2656      // Determine which methods need to be implemented, some may have
2657      // been overridden. Note that ::isPropertyAccessor is not the method
2658      // we want, that just indicates if the decl came from a
2659      // property. What we want to know is if the method is defined in
2660      // this implementation.
2661      if (!D->getInstanceMethod(PD->getGetterName()))
2662        CodeGenFunction(*this).GenerateObjCGetter(
2663                                 const_cast<ObjCImplementationDecl *>(D), PID);
2664      if (!PD->isReadOnly() &&
2665          !D->getInstanceMethod(PD->getSetterName()))
2666        CodeGenFunction(*this).GenerateObjCSetter(
2667                                 const_cast<ObjCImplementationDecl *>(D), PID);
2668    }
2669  }
2670}
2671
2672static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2673  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2674  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2675       ivar; ivar = ivar->getNextIvar())
2676    if (ivar->getType().isDestructedType())
2677      return true;
2678
2679  return false;
2680}
2681
2682/// EmitObjCIvarInitializations - Emit information for ivar initialization
2683/// for an implementation.
2684void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2685  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2686  if (needsDestructMethod(D)) {
2687    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2688    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2689    ObjCMethodDecl *DTORMethod =
2690      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2691                             cxxSelector, getContext().VoidTy, 0, D,
2692                             /*isInstance=*/true, /*isVariadic=*/false,
2693                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2694                             /*isDefined=*/false, ObjCMethodDecl::Required);
2695    D->addInstanceMethod(DTORMethod);
2696    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2697    D->setHasDestructors(true);
2698  }
2699
2700  // If the implementation doesn't have any ivar initializers, we don't need
2701  // a .cxx_construct.
2702  if (D->getNumIvarInitializers() == 0)
2703    return;
2704
2705  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2706  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2707  // The constructor returns 'self'.
2708  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2709                                                D->getLocation(),
2710                                                D->getLocation(),
2711                                                cxxSelector,
2712                                                getContext().getObjCIdType(), 0,
2713                                                D, /*isInstance=*/true,
2714                                                /*isVariadic=*/false,
2715                                                /*isPropertyAccessor=*/true,
2716                                                /*isImplicitlyDeclared=*/true,
2717                                                /*isDefined=*/false,
2718                                                ObjCMethodDecl::Required);
2719  D->addInstanceMethod(CTORMethod);
2720  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2721  D->setHasNonZeroConstructors(true);
2722}
2723
2724/// EmitNamespace - Emit all declarations in a namespace.
2725void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2726  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2727       I != E; ++I)
2728    EmitTopLevelDecl(*I);
2729}
2730
2731// EmitLinkageSpec - Emit all declarations in a linkage spec.
2732void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2733  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2734      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2735    ErrorUnsupported(LSD, "linkage spec");
2736    return;
2737  }
2738
2739  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2740       I != E; ++I) {
2741    // Meta-data for ObjC class includes references to implemented methods.
2742    // Generate class's method definitions first.
2743    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2744      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2745           MEnd = OID->meth_end();
2746           M != MEnd; ++M)
2747        EmitTopLevelDecl(*M);
2748    }
2749    EmitTopLevelDecl(*I);
2750  }
2751}
2752
2753/// EmitTopLevelDecl - Emit code for a single top level declaration.
2754void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2755  // If an error has occurred, stop code generation, but continue
2756  // parsing and semantic analysis (to ensure all warnings and errors
2757  // are emitted).
2758  if (Diags.hasErrorOccurred())
2759    return;
2760
2761  // Ignore dependent declarations.
2762  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2763    return;
2764
2765  switch (D->getKind()) {
2766  case Decl::CXXConversion:
2767  case Decl::CXXMethod:
2768  case Decl::Function:
2769    // Skip function templates
2770    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2771        cast<FunctionDecl>(D)->isLateTemplateParsed())
2772      return;
2773
2774    EmitGlobal(cast<FunctionDecl>(D));
2775    break;
2776
2777  case Decl::Var:
2778    EmitGlobal(cast<VarDecl>(D));
2779    break;
2780
2781  // Indirect fields from global anonymous structs and unions can be
2782  // ignored; only the actual variable requires IR gen support.
2783  case Decl::IndirectField:
2784    break;
2785
2786  // C++ Decls
2787  case Decl::Namespace:
2788    EmitNamespace(cast<NamespaceDecl>(D));
2789    break;
2790    // No code generation needed.
2791  case Decl::UsingShadow:
2792  case Decl::Using:
2793  case Decl::UsingDirective:
2794  case Decl::ClassTemplate:
2795  case Decl::FunctionTemplate:
2796  case Decl::TypeAliasTemplate:
2797  case Decl::NamespaceAlias:
2798  case Decl::Block:
2799    break;
2800  case Decl::CXXConstructor:
2801    // Skip function templates
2802    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2803        cast<FunctionDecl>(D)->isLateTemplateParsed())
2804      return;
2805
2806    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2807    break;
2808  case Decl::CXXDestructor:
2809    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2810      return;
2811    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2812    break;
2813
2814  case Decl::StaticAssert:
2815    // Nothing to do.
2816    break;
2817
2818  // Objective-C Decls
2819
2820  // Forward declarations, no (immediate) code generation.
2821  case Decl::ObjCInterface:
2822  case Decl::ObjCCategory:
2823    break;
2824
2825  case Decl::ObjCProtocol: {
2826    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2827    if (Proto->isThisDeclarationADefinition())
2828      ObjCRuntime->GenerateProtocol(Proto);
2829    break;
2830  }
2831
2832  case Decl::ObjCCategoryImpl:
2833    // Categories have properties but don't support synthesize so we
2834    // can ignore them here.
2835    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2836    break;
2837
2838  case Decl::ObjCImplementation: {
2839    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2840    EmitObjCPropertyImplementations(OMD);
2841    EmitObjCIvarInitializations(OMD);
2842    ObjCRuntime->GenerateClass(OMD);
2843    // Emit global variable debug information.
2844    if (CGDebugInfo *DI = getModuleDebugInfo())
2845      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2846        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2847            OMD->getClassInterface()), OMD->getLocation());
2848    break;
2849  }
2850  case Decl::ObjCMethod: {
2851    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2852    // If this is not a prototype, emit the body.
2853    if (OMD->getBody())
2854      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2855    break;
2856  }
2857  case Decl::ObjCCompatibleAlias:
2858    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2859    break;
2860
2861  case Decl::LinkageSpec:
2862    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2863    break;
2864
2865  case Decl::FileScopeAsm: {
2866    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2867    StringRef AsmString = AD->getAsmString()->getString();
2868
2869    const std::string &S = getModule().getModuleInlineAsm();
2870    if (S.empty())
2871      getModule().setModuleInlineAsm(AsmString);
2872    else if (S.end()[-1] == '\n')
2873      getModule().setModuleInlineAsm(S + AsmString.str());
2874    else
2875      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2876    break;
2877  }
2878
2879  case Decl::Import: {
2880    ImportDecl *Import = cast<ImportDecl>(D);
2881
2882    // Ignore import declarations that come from imported modules.
2883    if (clang::Module *Owner = Import->getOwningModule()) {
2884      if (getLangOpts().CurrentModule.empty() ||
2885          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2886        break;
2887    }
2888
2889    ImportedModules.insert(Import->getImportedModule());
2890    break;
2891 }
2892
2893  default:
2894    // Make sure we handled everything we should, every other kind is a
2895    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2896    // function. Need to recode Decl::Kind to do that easily.
2897    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2898  }
2899}
2900
2901/// Turns the given pointer into a constant.
2902static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2903                                          const void *Ptr) {
2904  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2905  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2906  return llvm::ConstantInt::get(i64, PtrInt);
2907}
2908
2909static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2910                                   llvm::NamedMDNode *&GlobalMetadata,
2911                                   GlobalDecl D,
2912                                   llvm::GlobalValue *Addr) {
2913  if (!GlobalMetadata)
2914    GlobalMetadata =
2915      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2916
2917  // TODO: should we report variant information for ctors/dtors?
2918  llvm::Value *Ops[] = {
2919    Addr,
2920    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2921  };
2922  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2923}
2924
2925/// Emits metadata nodes associating all the global values in the
2926/// current module with the Decls they came from.  This is useful for
2927/// projects using IR gen as a subroutine.
2928///
2929/// Since there's currently no way to associate an MDNode directly
2930/// with an llvm::GlobalValue, we create a global named metadata
2931/// with the name 'clang.global.decl.ptrs'.
2932void CodeGenModule::EmitDeclMetadata() {
2933  llvm::NamedMDNode *GlobalMetadata = 0;
2934
2935  // StaticLocalDeclMap
2936  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2937         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2938       I != E; ++I) {
2939    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2940    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2941  }
2942}
2943
2944/// Emits metadata nodes for all the local variables in the current
2945/// function.
2946void CodeGenFunction::EmitDeclMetadata() {
2947  if (LocalDeclMap.empty()) return;
2948
2949  llvm::LLVMContext &Context = getLLVMContext();
2950
2951  // Find the unique metadata ID for this name.
2952  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2953
2954  llvm::NamedMDNode *GlobalMetadata = 0;
2955
2956  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2957         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2958    const Decl *D = I->first;
2959    llvm::Value *Addr = I->second;
2960
2961    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2962      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2963      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2964    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2965      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2966      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2967    }
2968  }
2969}
2970
2971void CodeGenModule::EmitCoverageFile() {
2972  if (!getCodeGenOpts().CoverageFile.empty()) {
2973    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2974      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2975      llvm::LLVMContext &Ctx = TheModule.getContext();
2976      llvm::MDString *CoverageFile =
2977          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2978      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2979        llvm::MDNode *CU = CUNode->getOperand(i);
2980        llvm::Value *node[] = { CoverageFile, CU };
2981        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2982        GCov->addOperand(N);
2983      }
2984    }
2985  }
2986}
2987
2988llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2989                                                     QualType GuidType) {
2990  // Sema has checked that all uuid strings are of the form
2991  // "12345678-1234-1234-1234-1234567890ab".
2992  assert(Uuid.size() == 36);
2993  const char *Uuidstr = Uuid.data();
2994  for (int i = 0; i < 36; ++i) {
2995    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2996    else                                         assert(isxdigit(Uuidstr[i]));
2997  }
2998
2999  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3000  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3001  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3002  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3003
3004  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3005  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3006  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3007  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3008  APValue& Arr = InitStruct.getStructField(3);
3009  Arr = APValue(APValue::UninitArray(), 8, 8);
3010  for (int t = 0; t < 8; ++t)
3011    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3012          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3013
3014  return EmitConstantValue(InitStruct, GuidType);
3015}
3016