CodeGenModule.cpp revision f9d03c15e8642d4bd3686b8c8e8269242a0f37c6
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/ConvertUTF.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Frontend/CodeGenOptions.h"
39#include "llvm/ADT/APSInt.h"
40#include "llvm/ADT/Triple.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Target/Mangler.h"
49using namespace clang;
50using namespace CodeGen;
51
52static const char AnnotationSection[] = "llvm.metadata";
53
54static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59  }
60
61  llvm_unreachable("invalid C++ ABI kind");
62}
63
64
65CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                             llvm::Module &M, const llvm::DataLayout &TD,
67                             DiagnosticsEngine &diags)
68  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69    TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70    ABI(createCXXABI(*this)),
71    Types(*this),
72    TBAA(0),
73    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75    RRData(0), CFConstantStringClassRef(0),
76    ConstantStringClassRef(0), NSConstantStringType(0),
77    VMContext(M.getContext()),
78    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79    BlockObjectAssign(0), BlockObjectDispose(0),
80    BlockDescriptorType(0), GenericBlockLiteralType(0) {
81
82  // Initialize the type cache.
83  llvm::LLVMContext &LLVMContext = M.getContext();
84  VoidTy = llvm::Type::getVoidTy(LLVMContext);
85  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
86  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
87  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
88  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
89  FloatTy = llvm::Type::getFloatTy(LLVMContext);
90  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
91  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
92  PointerAlignInBytes =
93  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
94  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
95  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
96  Int8PtrTy = Int8Ty->getPointerTo(0);
97  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
98
99  if (LangOpts.ObjC1)
100    createObjCRuntime();
101  if (LangOpts.OpenCL)
102    createOpenCLRuntime();
103  if (LangOpts.CUDA)
104    createCUDARuntime();
105
106  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
107  if (LangOpts.SanitizeThread ||
108      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
109    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
110                           ABI.getMangleContext());
111
112  // If debug info or coverage generation is enabled, create the CGDebugInfo
113  // object.
114  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
115      CodeGenOpts.EmitGcovArcs ||
116      CodeGenOpts.EmitGcovNotes)
117    DebugInfo = new CGDebugInfo(*this);
118
119  Block.GlobalUniqueCount = 0;
120
121  if (C.getLangOpts().ObjCAutoRefCount)
122    ARCData = new ARCEntrypoints();
123  RRData = new RREntrypoints();
124}
125
126CodeGenModule::~CodeGenModule() {
127  delete ObjCRuntime;
128  delete OpenCLRuntime;
129  delete CUDARuntime;
130  delete TheTargetCodeGenInfo;
131  delete &ABI;
132  delete TBAA;
133  delete DebugInfo;
134  delete ARCData;
135  delete RRData;
136}
137
138void CodeGenModule::createObjCRuntime() {
139  // This is just isGNUFamily(), but we want to force implementors of
140  // new ABIs to decide how best to do this.
141  switch (LangOpts.ObjCRuntime.getKind()) {
142  case ObjCRuntime::GNUstep:
143  case ObjCRuntime::GCC:
144  case ObjCRuntime::ObjFW:
145    ObjCRuntime = CreateGNUObjCRuntime(*this);
146    return;
147
148  case ObjCRuntime::FragileMacOSX:
149  case ObjCRuntime::MacOSX:
150  case ObjCRuntime::iOS:
151    ObjCRuntime = CreateMacObjCRuntime(*this);
152    return;
153  }
154  llvm_unreachable("bad runtime kind");
155}
156
157void CodeGenModule::createOpenCLRuntime() {
158  OpenCLRuntime = new CGOpenCLRuntime(*this);
159}
160
161void CodeGenModule::createCUDARuntime() {
162  CUDARuntime = CreateNVCUDARuntime(*this);
163}
164
165void CodeGenModule::Release() {
166  EmitDeferred();
167  EmitCXXGlobalInitFunc();
168  EmitCXXGlobalDtorFunc();
169  if (ObjCRuntime)
170    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
171      AddGlobalCtor(ObjCInitFunction);
172  EmitCtorList(GlobalCtors, "llvm.global_ctors");
173  EmitCtorList(GlobalDtors, "llvm.global_dtors");
174  EmitGlobalAnnotations();
175  EmitLLVMUsed();
176
177  if (CodeGenOpts.ModulesAutolink) {
178    EmitModuleLinkOptions();
179  }
180
181  SimplifyPersonality();
182
183  if (getCodeGenOpts().EmitDeclMetadata)
184    EmitDeclMetadata();
185
186  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
187    EmitCoverageFile();
188
189  if (DebugInfo)
190    DebugInfo->finalize();
191}
192
193void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
194  // Make sure that this type is translated.
195  Types.UpdateCompletedType(TD);
196}
197
198llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
199  if (!TBAA)
200    return 0;
201  return TBAA->getTBAAInfo(QTy);
202}
203
204llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
205  if (!TBAA)
206    return 0;
207  return TBAA->getTBAAInfoForVTablePtr();
208}
209
210llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
211  if (!TBAA)
212    return 0;
213  return TBAA->getTBAAStructInfo(QTy);
214}
215
216void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
217                                        llvm::MDNode *TBAAInfo) {
218  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
219}
220
221bool CodeGenModule::isTargetDarwin() const {
222  return getContext().getTargetInfo().getTriple().isOSDarwin();
223}
224
225void CodeGenModule::Error(SourceLocation loc, StringRef error) {
226  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
227  getDiags().Report(Context.getFullLoc(loc), diagID);
228}
229
230/// ErrorUnsupported - Print out an error that codegen doesn't support the
231/// specified stmt yet.
232void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
233                                     bool OmitOnError) {
234  if (OmitOnError && getDiags().hasErrorOccurred())
235    return;
236  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
237                                               "cannot compile this %0 yet");
238  std::string Msg = Type;
239  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
240    << Msg << S->getSourceRange();
241}
242
243/// ErrorUnsupported - Print out an error that codegen doesn't support the
244/// specified decl yet.
245void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
246                                     bool OmitOnError) {
247  if (OmitOnError && getDiags().hasErrorOccurred())
248    return;
249  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
250                                               "cannot compile this %0 yet");
251  std::string Msg = Type;
252  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
253}
254
255llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
256  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
257}
258
259void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
260                                        const NamedDecl *D) const {
261  // Internal definitions always have default visibility.
262  if (GV->hasLocalLinkage()) {
263    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
264    return;
265  }
266
267  // Set visibility for definitions.
268  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
269  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
270    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
271}
272
273static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
274  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
275      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
276      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
277      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
278      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
279}
280
281static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
282    CodeGenOptions::TLSModel M) {
283  switch (M) {
284  case CodeGenOptions::GeneralDynamicTLSModel:
285    return llvm::GlobalVariable::GeneralDynamicTLSModel;
286  case CodeGenOptions::LocalDynamicTLSModel:
287    return llvm::GlobalVariable::LocalDynamicTLSModel;
288  case CodeGenOptions::InitialExecTLSModel:
289    return llvm::GlobalVariable::InitialExecTLSModel;
290  case CodeGenOptions::LocalExecTLSModel:
291    return llvm::GlobalVariable::LocalExecTLSModel;
292  }
293  llvm_unreachable("Invalid TLS model!");
294}
295
296void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
297                               const VarDecl &D) const {
298  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
299
300  llvm::GlobalVariable::ThreadLocalMode TLM;
301  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
302
303  // Override the TLS model if it is explicitly specified.
304  if (D.hasAttr<TLSModelAttr>()) {
305    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
306    TLM = GetLLVMTLSModel(Attr->getModel());
307  }
308
309  GV->setThreadLocalMode(TLM);
310}
311
312/// Set the symbol visibility of type information (vtable and RTTI)
313/// associated with the given type.
314void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
315                                      const CXXRecordDecl *RD,
316                                      TypeVisibilityKind TVK) const {
317  setGlobalVisibility(GV, RD);
318
319  if (!CodeGenOpts.HiddenWeakVTables)
320    return;
321
322  // We never want to drop the visibility for RTTI names.
323  if (TVK == TVK_ForRTTIName)
324    return;
325
326  // We want to drop the visibility to hidden for weak type symbols.
327  // This isn't possible if there might be unresolved references
328  // elsewhere that rely on this symbol being visible.
329
330  // This should be kept roughly in sync with setThunkVisibility
331  // in CGVTables.cpp.
332
333  // Preconditions.
334  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
335      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
336    return;
337
338  // Don't override an explicit visibility attribute.
339  if (RD->getExplicitVisibility())
340    return;
341
342  switch (RD->getTemplateSpecializationKind()) {
343  // We have to disable the optimization if this is an EI definition
344  // because there might be EI declarations in other shared objects.
345  case TSK_ExplicitInstantiationDefinition:
346  case TSK_ExplicitInstantiationDeclaration:
347    return;
348
349  // Every use of a non-template class's type information has to emit it.
350  case TSK_Undeclared:
351    break;
352
353  // In theory, implicit instantiations can ignore the possibility of
354  // an explicit instantiation declaration because there necessarily
355  // must be an EI definition somewhere with default visibility.  In
356  // practice, it's possible to have an explicit instantiation for
357  // an arbitrary template class, and linkers aren't necessarily able
358  // to deal with mixed-visibility symbols.
359  case TSK_ExplicitSpecialization:
360  case TSK_ImplicitInstantiation:
361    return;
362  }
363
364  // If there's a key function, there may be translation units
365  // that don't have the key function's definition.  But ignore
366  // this if we're emitting RTTI under -fno-rtti.
367  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
368    if (Context.getKeyFunction(RD))
369      return;
370  }
371
372  // Otherwise, drop the visibility to hidden.
373  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
374  GV->setUnnamedAddr(true);
375}
376
377StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
378  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
379
380  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
381  if (!Str.empty())
382    return Str;
383
384  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
385    IdentifierInfo *II = ND->getIdentifier();
386    assert(II && "Attempt to mangle unnamed decl.");
387
388    Str = II->getName();
389    return Str;
390  }
391
392  SmallString<256> Buffer;
393  llvm::raw_svector_ostream Out(Buffer);
394  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
395    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
396  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
397    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
398  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
399    getCXXABI().getMangleContext().mangleBlock(BD, Out,
400      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
401  else
402    getCXXABI().getMangleContext().mangleName(ND, Out);
403
404  // Allocate space for the mangled name.
405  Out.flush();
406  size_t Length = Buffer.size();
407  char *Name = MangledNamesAllocator.Allocate<char>(Length);
408  std::copy(Buffer.begin(), Buffer.end(), Name);
409
410  Str = StringRef(Name, Length);
411
412  return Str;
413}
414
415void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
416                                        const BlockDecl *BD) {
417  MangleContext &MangleCtx = getCXXABI().getMangleContext();
418  const Decl *D = GD.getDecl();
419  llvm::raw_svector_ostream Out(Buffer.getBuffer());
420  if (D == 0)
421    MangleCtx.mangleGlobalBlock(BD,
422      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
423  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
424    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
425  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
426    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
427  else
428    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
429}
430
431llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
432  return getModule().getNamedValue(Name);
433}
434
435/// AddGlobalCtor - Add a function to the list that will be called before
436/// main() runs.
437void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
438  // FIXME: Type coercion of void()* types.
439  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
440}
441
442/// AddGlobalDtor - Add a function to the list that will be called
443/// when the module is unloaded.
444void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
445  // FIXME: Type coercion of void()* types.
446  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
447}
448
449void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
450  // Ctor function type is void()*.
451  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
452  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
453
454  // Get the type of a ctor entry, { i32, void ()* }.
455  llvm::StructType *CtorStructTy =
456    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
457
458  // Construct the constructor and destructor arrays.
459  SmallVector<llvm::Constant*, 8> Ctors;
460  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
461    llvm::Constant *S[] = {
462      llvm::ConstantInt::get(Int32Ty, I->second, false),
463      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
464    };
465    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
466  }
467
468  if (!Ctors.empty()) {
469    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
470    new llvm::GlobalVariable(TheModule, AT, false,
471                             llvm::GlobalValue::AppendingLinkage,
472                             llvm::ConstantArray::get(AT, Ctors),
473                             GlobalName);
474  }
475}
476
477llvm::GlobalValue::LinkageTypes
478CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
479  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
480
481  if (Linkage == GVA_Internal)
482    return llvm::Function::InternalLinkage;
483
484  if (D->hasAttr<DLLExportAttr>())
485    return llvm::Function::DLLExportLinkage;
486
487  if (D->hasAttr<WeakAttr>())
488    return llvm::Function::WeakAnyLinkage;
489
490  // In C99 mode, 'inline' functions are guaranteed to have a strong
491  // definition somewhere else, so we can use available_externally linkage.
492  if (Linkage == GVA_C99Inline)
493    return llvm::Function::AvailableExternallyLinkage;
494
495  // Note that Apple's kernel linker doesn't support symbol
496  // coalescing, so we need to avoid linkonce and weak linkages there.
497  // Normally, this means we just map to internal, but for explicit
498  // instantiations we'll map to external.
499
500  // In C++, the compiler has to emit a definition in every translation unit
501  // that references the function.  We should use linkonce_odr because
502  // a) if all references in this translation unit are optimized away, we
503  // don't need to codegen it.  b) if the function persists, it needs to be
504  // merged with other definitions. c) C++ has the ODR, so we know the
505  // definition is dependable.
506  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
507    return !Context.getLangOpts().AppleKext
508             ? llvm::Function::LinkOnceODRLinkage
509             : llvm::Function::InternalLinkage;
510
511  // An explicit instantiation of a template has weak linkage, since
512  // explicit instantiations can occur in multiple translation units
513  // and must all be equivalent. However, we are not allowed to
514  // throw away these explicit instantiations.
515  if (Linkage == GVA_ExplicitTemplateInstantiation)
516    return !Context.getLangOpts().AppleKext
517             ? llvm::Function::WeakODRLinkage
518             : llvm::Function::ExternalLinkage;
519
520  // Otherwise, we have strong external linkage.
521  assert(Linkage == GVA_StrongExternal);
522  return llvm::Function::ExternalLinkage;
523}
524
525
526/// SetFunctionDefinitionAttributes - Set attributes for a global.
527///
528/// FIXME: This is currently only done for aliases and functions, but not for
529/// variables (these details are set in EmitGlobalVarDefinition for variables).
530void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
531                                                    llvm::GlobalValue *GV) {
532  SetCommonAttributes(D, GV);
533}
534
535void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
536                                              const CGFunctionInfo &Info,
537                                              llvm::Function *F) {
538  unsigned CallingConv;
539  AttributeListType AttributeList;
540  ConstructAttributeList(Info, D, AttributeList, CallingConv);
541  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
542  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
543}
544
545/// Determines whether the language options require us to model
546/// unwind exceptions.  We treat -fexceptions as mandating this
547/// except under the fragile ObjC ABI with only ObjC exceptions
548/// enabled.  This means, for example, that C with -fexceptions
549/// enables this.
550static bool hasUnwindExceptions(const LangOptions &LangOpts) {
551  // If exceptions are completely disabled, obviously this is false.
552  if (!LangOpts.Exceptions) return false;
553
554  // If C++ exceptions are enabled, this is true.
555  if (LangOpts.CXXExceptions) return true;
556
557  // If ObjC exceptions are enabled, this depends on the ABI.
558  if (LangOpts.ObjCExceptions) {
559    return LangOpts.ObjCRuntime.hasUnwindExceptions();
560  }
561
562  return true;
563}
564
565void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
566                                                           llvm::Function *F) {
567  if (CodeGenOpts.UnwindTables)
568    F->setHasUWTable();
569
570  if (!hasUnwindExceptions(LangOpts))
571    F->addFnAttr(llvm::Attribute::NoUnwind);
572
573  if (D->hasAttr<NakedAttr>()) {
574    // Naked implies noinline: we should not be inlining such functions.
575    F->addFnAttr(llvm::Attribute::Naked);
576    F->addFnAttr(llvm::Attribute::NoInline);
577  }
578
579  if (D->hasAttr<NoInlineAttr>())
580    F->addFnAttr(llvm::Attribute::NoInline);
581
582  // (noinline wins over always_inline, and we can't specify both in IR)
583  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
584      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
585                                       llvm::Attribute::NoInline))
586    F->addFnAttr(llvm::Attribute::AlwaysInline);
587
588  // FIXME: Communicate hot and cold attributes to LLVM more directly.
589  if (D->hasAttr<ColdAttr>())
590    F->addFnAttr(llvm::Attribute::OptimizeForSize);
591
592  if (D->hasAttr<MinSizeAttr>())
593    F->addFnAttr(llvm::Attribute::MinSize);
594
595  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
596    F->setUnnamedAddr(true);
597
598  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
599    if (MD->isVirtual())
600      F->setUnnamedAddr(true);
601
602  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
603    F->addFnAttr(llvm::Attribute::StackProtect);
604  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
605    F->addFnAttr(llvm::Attribute::StackProtectReq);
606
607  if (LangOpts.SanitizeAddress) {
608    // When AddressSanitizer is enabled, set AddressSafety attribute
609    // unless __attribute__((no_address_safety_analysis)) is used.
610    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
611      F->addFnAttr(llvm::Attribute::AddressSafety);
612  }
613
614  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
615  if (alignment)
616    F->setAlignment(alignment);
617
618  // C++ ABI requires 2-byte alignment for member functions.
619  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
620    F->setAlignment(2);
621}
622
623void CodeGenModule::SetCommonAttributes(const Decl *D,
624                                        llvm::GlobalValue *GV) {
625  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
626    setGlobalVisibility(GV, ND);
627  else
628    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
629
630  if (D->hasAttr<UsedAttr>())
631    AddUsedGlobal(GV);
632
633  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
634    GV->setSection(SA->getName());
635
636  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
637}
638
639void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
640                                                  llvm::Function *F,
641                                                  const CGFunctionInfo &FI) {
642  SetLLVMFunctionAttributes(D, FI, F);
643  SetLLVMFunctionAttributesForDefinition(D, F);
644
645  F->setLinkage(llvm::Function::InternalLinkage);
646
647  SetCommonAttributes(D, F);
648}
649
650void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
651                                          llvm::Function *F,
652                                          bool IsIncompleteFunction) {
653  if (unsigned IID = F->getIntrinsicID()) {
654    // If this is an intrinsic function, set the function's attributes
655    // to the intrinsic's attributes.
656    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
657                                                    (llvm::Intrinsic::ID)IID));
658    return;
659  }
660
661  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
662
663  if (!IsIncompleteFunction)
664    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
665
666  // Only a few attributes are set on declarations; these may later be
667  // overridden by a definition.
668
669  if (FD->hasAttr<DLLImportAttr>()) {
670    F->setLinkage(llvm::Function::DLLImportLinkage);
671  } else if (FD->hasAttr<WeakAttr>() ||
672             FD->isWeakImported()) {
673    // "extern_weak" is overloaded in LLVM; we probably should have
674    // separate linkage types for this.
675    F->setLinkage(llvm::Function::ExternalWeakLinkage);
676  } else {
677    F->setLinkage(llvm::Function::ExternalLinkage);
678
679    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
680    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
681      F->setVisibility(GetLLVMVisibility(LV.visibility()));
682    }
683  }
684
685  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
686    F->setSection(SA->getName());
687}
688
689void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
690  assert(!GV->isDeclaration() &&
691         "Only globals with definition can force usage.");
692  LLVMUsed.push_back(GV);
693}
694
695void CodeGenModule::EmitLLVMUsed() {
696  // Don't create llvm.used if there is no need.
697  if (LLVMUsed.empty())
698    return;
699
700  // Convert LLVMUsed to what ConstantArray needs.
701  SmallVector<llvm::Constant*, 8> UsedArray;
702  UsedArray.resize(LLVMUsed.size());
703  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
704    UsedArray[i] =
705     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
706                                    Int8PtrTy);
707  }
708
709  if (UsedArray.empty())
710    return;
711  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
712
713  llvm::GlobalVariable *GV =
714    new llvm::GlobalVariable(getModule(), ATy, false,
715                             llvm::GlobalValue::AppendingLinkage,
716                             llvm::ConstantArray::get(ATy, UsedArray),
717                             "llvm.used");
718
719  GV->setSection("llvm.metadata");
720}
721
722/// \brief Add link options implied by the given module, including modules
723/// it depends on, using a postorder walk.
724static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
725                                    Module *Mod,
726                                    SmallVectorImpl<llvm::Value *> &Metadata,
727                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
728  // Import this module's parent.
729  if (Mod->Parent && Visited.insert(Mod->Parent)) {
730    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
731  }
732
733  // Import this module's dependencies.
734  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
735    if (Visited.insert(Mod->Imports[I-1]))
736      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
737  }
738
739  // Add linker options to link against the libraries/frameworks
740  // described by this module.
741  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
742    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
743    // We need to know more about the linker to know how to encode these
744    // options propertly.
745
746    // Link against a framework.
747    if (Mod->LinkLibraries[I-1].IsFramework) {
748      llvm::Value *Args[2] = {
749        llvm::MDString::get(Context, "-framework"),
750        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
751      };
752
753      Metadata.push_back(llvm::MDNode::get(Context, Args));
754      continue;
755    }
756
757    // Link against a library.
758    llvm::Value *OptString
759    = llvm::MDString::get(Context,
760                          "-l" + Mod->LinkLibraries[I-1].Library);
761    Metadata.push_back(llvm::MDNode::get(Context, OptString));
762  }
763}
764
765void CodeGenModule::EmitModuleLinkOptions() {
766  // Collect the set of all of the modules we want to visit to emit link
767  // options, which is essentially the imported modules and all of their
768  // non-explicit child modules.
769  llvm::SetVector<clang::Module *> LinkModules;
770  llvm::SmallPtrSet<clang::Module *, 16> Visited;
771  SmallVector<clang::Module *, 16> Stack;
772
773  // Seed the stack with imported modules.
774  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
775                                               MEnd = ImportedModules.end();
776       M != MEnd; ++M) {
777    if (Visited.insert(*M))
778      Stack.push_back(*M);
779  }
780
781  // Find all of the modules to import, making a little effort to prune
782  // non-leaf modules.
783  while (!Stack.empty()) {
784    clang::Module *Mod = Stack.back();
785    Stack.pop_back();
786
787    bool AnyChildren = false;
788
789    // Visit the submodules of this module.
790    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
791                                        SubEnd = Mod->submodule_end();
792         Sub != SubEnd; ++Sub) {
793      // Skip explicit children; they need to be explicitly imported to be
794      // linked against.
795      if ((*Sub)->IsExplicit)
796        continue;
797
798      if (Visited.insert(*Sub)) {
799        Stack.push_back(*Sub);
800        AnyChildren = true;
801      }
802    }
803
804    // We didn't find any children, so add this module to the list of
805    // modules to link against.
806    if (!AnyChildren) {
807      LinkModules.insert(Mod);
808    }
809  }
810
811  // Add link options for all of the imported modules in reverse topological
812  // order.
813  SmallVector<llvm::Value *, 16> MetadataArgs;
814  Visited.clear();
815  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
816                                               MEnd = LinkModules.end();
817       M != MEnd; ++M) {
818    if (Visited.insert(*M))
819      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
820  }
821  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
822
823  // Add the linker options metadata flag.
824  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
825                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
826}
827
828void CodeGenModule::EmitDeferred() {
829  // Emit code for any potentially referenced deferred decls.  Since a
830  // previously unused static decl may become used during the generation of code
831  // for a static function, iterate until no changes are made.
832
833  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
834    if (!DeferredVTables.empty()) {
835      const CXXRecordDecl *RD = DeferredVTables.back();
836      DeferredVTables.pop_back();
837      getCXXABI().EmitVTables(RD);
838      continue;
839    }
840
841    GlobalDecl D = DeferredDeclsToEmit.back();
842    DeferredDeclsToEmit.pop_back();
843
844    // Check to see if we've already emitted this.  This is necessary
845    // for a couple of reasons: first, decls can end up in the
846    // deferred-decls queue multiple times, and second, decls can end
847    // up with definitions in unusual ways (e.g. by an extern inline
848    // function acquiring a strong function redefinition).  Just
849    // ignore these cases.
850    //
851    // TODO: That said, looking this up multiple times is very wasteful.
852    StringRef Name = getMangledName(D);
853    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
854    assert(CGRef && "Deferred decl wasn't referenced?");
855
856    if (!CGRef->isDeclaration())
857      continue;
858
859    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
860    // purposes an alias counts as a definition.
861    if (isa<llvm::GlobalAlias>(CGRef))
862      continue;
863
864    // Otherwise, emit the definition and move on to the next one.
865    EmitGlobalDefinition(D);
866  }
867}
868
869void CodeGenModule::EmitGlobalAnnotations() {
870  if (Annotations.empty())
871    return;
872
873  // Create a new global variable for the ConstantStruct in the Module.
874  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
875    Annotations[0]->getType(), Annotations.size()), Annotations);
876  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
877    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
878    "llvm.global.annotations");
879  gv->setSection(AnnotationSection);
880}
881
882llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
883  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
884  if (i != AnnotationStrings.end())
885    return i->second;
886
887  // Not found yet, create a new global.
888  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
889  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
890    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
891  gv->setSection(AnnotationSection);
892  gv->setUnnamedAddr(true);
893  AnnotationStrings[Str] = gv;
894  return gv;
895}
896
897llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
898  SourceManager &SM = getContext().getSourceManager();
899  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
900  if (PLoc.isValid())
901    return EmitAnnotationString(PLoc.getFilename());
902  return EmitAnnotationString(SM.getBufferName(Loc));
903}
904
905llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
906  SourceManager &SM = getContext().getSourceManager();
907  PresumedLoc PLoc = SM.getPresumedLoc(L);
908  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
909    SM.getExpansionLineNumber(L);
910  return llvm::ConstantInt::get(Int32Ty, LineNo);
911}
912
913llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
914                                                const AnnotateAttr *AA,
915                                                SourceLocation L) {
916  // Get the globals for file name, annotation, and the line number.
917  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
918                 *UnitGV = EmitAnnotationUnit(L),
919                 *LineNoCst = EmitAnnotationLineNo(L);
920
921  // Create the ConstantStruct for the global annotation.
922  llvm::Constant *Fields[4] = {
923    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
924    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
925    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
926    LineNoCst
927  };
928  return llvm::ConstantStruct::getAnon(Fields);
929}
930
931void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
932                                         llvm::GlobalValue *GV) {
933  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
934  // Get the struct elements for these annotations.
935  for (specific_attr_iterator<AnnotateAttr>
936       ai = D->specific_attr_begin<AnnotateAttr>(),
937       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
938    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
939}
940
941bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
942  // Never defer when EmitAllDecls is specified.
943  if (LangOpts.EmitAllDecls)
944    return false;
945
946  return !getContext().DeclMustBeEmitted(Global);
947}
948
949llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
950    const CXXUuidofExpr* E) {
951  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
952  // well-formed.
953  StringRef Uuid;
954  if (E->isTypeOperand())
955    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
956  else {
957    // Special case: __uuidof(0) means an all-zero GUID.
958    Expr *Op = E->getExprOperand();
959    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
960      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
961    else
962      Uuid = "00000000-0000-0000-0000-000000000000";
963  }
964  std::string Name = "__uuid_" + Uuid.str();
965
966  // Look for an existing global.
967  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
968    return GV;
969
970  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
971  assert(Init && "failed to initialize as constant");
972
973  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
974  // first field is declared as "long", which for many targets is 8 bytes.
975  // Those architectures are not supported. (With the MS abi, long is always 4
976  // bytes.)
977  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
978  if (Init->getType() != GuidType) {
979    DiagnosticsEngine &Diags = getDiags();
980    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
981        "__uuidof codegen is not supported on this architecture");
982    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
983    Init = llvm::UndefValue::get(GuidType);
984  }
985
986  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
987      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
988  GV->setUnnamedAddr(true);
989  return GV;
990}
991
992llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
993  const AliasAttr *AA = VD->getAttr<AliasAttr>();
994  assert(AA && "No alias?");
995
996  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
997
998  // See if there is already something with the target's name in the module.
999  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1000  if (Entry) {
1001    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1002    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1003  }
1004
1005  llvm::Constant *Aliasee;
1006  if (isa<llvm::FunctionType>(DeclTy))
1007    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1008                                      GlobalDecl(cast<FunctionDecl>(VD)),
1009                                      /*ForVTable=*/false);
1010  else
1011    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1012                                    llvm::PointerType::getUnqual(DeclTy), 0);
1013
1014  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1015  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1016  WeakRefReferences.insert(F);
1017
1018  return Aliasee;
1019}
1020
1021void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1022  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1023
1024  // Weak references don't produce any output by themselves.
1025  if (Global->hasAttr<WeakRefAttr>())
1026    return;
1027
1028  // If this is an alias definition (which otherwise looks like a declaration)
1029  // emit it now.
1030  if (Global->hasAttr<AliasAttr>())
1031    return EmitAliasDefinition(GD);
1032
1033  // If this is CUDA, be selective about which declarations we emit.
1034  if (LangOpts.CUDA) {
1035    if (CodeGenOpts.CUDAIsDevice) {
1036      if (!Global->hasAttr<CUDADeviceAttr>() &&
1037          !Global->hasAttr<CUDAGlobalAttr>() &&
1038          !Global->hasAttr<CUDAConstantAttr>() &&
1039          !Global->hasAttr<CUDASharedAttr>())
1040        return;
1041    } else {
1042      if (!Global->hasAttr<CUDAHostAttr>() && (
1043            Global->hasAttr<CUDADeviceAttr>() ||
1044            Global->hasAttr<CUDAConstantAttr>() ||
1045            Global->hasAttr<CUDASharedAttr>()))
1046        return;
1047    }
1048  }
1049
1050  // Ignore declarations, they will be emitted on their first use.
1051  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1052    // Forward declarations are emitted lazily on first use.
1053    if (!FD->doesThisDeclarationHaveABody()) {
1054      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1055        return;
1056
1057      const FunctionDecl *InlineDefinition = 0;
1058      FD->getBody(InlineDefinition);
1059
1060      StringRef MangledName = getMangledName(GD);
1061      DeferredDecls.erase(MangledName);
1062      EmitGlobalDefinition(InlineDefinition);
1063      return;
1064    }
1065  } else {
1066    const VarDecl *VD = cast<VarDecl>(Global);
1067    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1068
1069    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1070      return;
1071  }
1072
1073  // Defer code generation when possible if this is a static definition, inline
1074  // function etc.  These we only want to emit if they are used.
1075  if (!MayDeferGeneration(Global)) {
1076    // Emit the definition if it can't be deferred.
1077    EmitGlobalDefinition(GD);
1078    return;
1079  }
1080
1081  // If we're deferring emission of a C++ variable with an
1082  // initializer, remember the order in which it appeared in the file.
1083  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1084      cast<VarDecl>(Global)->hasInit()) {
1085    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1086    CXXGlobalInits.push_back(0);
1087  }
1088
1089  // If the value has already been used, add it directly to the
1090  // DeferredDeclsToEmit list.
1091  StringRef MangledName = getMangledName(GD);
1092  if (GetGlobalValue(MangledName))
1093    DeferredDeclsToEmit.push_back(GD);
1094  else {
1095    // Otherwise, remember that we saw a deferred decl with this name.  The
1096    // first use of the mangled name will cause it to move into
1097    // DeferredDeclsToEmit.
1098    DeferredDecls[MangledName] = GD;
1099  }
1100}
1101
1102namespace {
1103  struct FunctionIsDirectlyRecursive :
1104    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1105    const StringRef Name;
1106    const Builtin::Context &BI;
1107    bool Result;
1108    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1109      Name(N), BI(C), Result(false) {
1110    }
1111    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1112
1113    bool TraverseCallExpr(CallExpr *E) {
1114      const FunctionDecl *FD = E->getDirectCallee();
1115      if (!FD)
1116        return true;
1117      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1118      if (Attr && Name == Attr->getLabel()) {
1119        Result = true;
1120        return false;
1121      }
1122      unsigned BuiltinID = FD->getBuiltinID();
1123      if (!BuiltinID)
1124        return true;
1125      StringRef BuiltinName = BI.GetName(BuiltinID);
1126      if (BuiltinName.startswith("__builtin_") &&
1127          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1128        Result = true;
1129        return false;
1130      }
1131      return true;
1132    }
1133  };
1134}
1135
1136// isTriviallyRecursive - Check if this function calls another
1137// decl that, because of the asm attribute or the other decl being a builtin,
1138// ends up pointing to itself.
1139bool
1140CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1141  StringRef Name;
1142  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1143    // asm labels are a special kind of mangling we have to support.
1144    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1145    if (!Attr)
1146      return false;
1147    Name = Attr->getLabel();
1148  } else {
1149    Name = FD->getName();
1150  }
1151
1152  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1153  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1154  return Walker.Result;
1155}
1156
1157bool
1158CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1159  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1160    return true;
1161  if (CodeGenOpts.OptimizationLevel == 0 &&
1162      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1163    return false;
1164  // PR9614. Avoid cases where the source code is lying to us. An available
1165  // externally function should have an equivalent function somewhere else,
1166  // but a function that calls itself is clearly not equivalent to the real
1167  // implementation.
1168  // This happens in glibc's btowc and in some configure checks.
1169  return !isTriviallyRecursive(F);
1170}
1171
1172void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1173  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1174
1175  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1176                                 Context.getSourceManager(),
1177                                 "Generating code for declaration");
1178
1179  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1180    // At -O0, don't generate IR for functions with available_externally
1181    // linkage.
1182    if (!shouldEmitFunction(Function))
1183      return;
1184
1185    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1186      // Make sure to emit the definition(s) before we emit the thunks.
1187      // This is necessary for the generation of certain thunks.
1188      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1189        EmitCXXConstructor(CD, GD.getCtorType());
1190      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1191        EmitCXXDestructor(DD, GD.getDtorType());
1192      else
1193        EmitGlobalFunctionDefinition(GD);
1194
1195      if (Method->isVirtual())
1196        getVTables().EmitThunks(GD);
1197
1198      return;
1199    }
1200
1201    return EmitGlobalFunctionDefinition(GD);
1202  }
1203
1204  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1205    return EmitGlobalVarDefinition(VD);
1206
1207  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1208}
1209
1210/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1211/// module, create and return an llvm Function with the specified type. If there
1212/// is something in the module with the specified name, return it potentially
1213/// bitcasted to the right type.
1214///
1215/// If D is non-null, it specifies a decl that correspond to this.  This is used
1216/// to set the attributes on the function when it is first created.
1217llvm::Constant *
1218CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1219                                       llvm::Type *Ty,
1220                                       GlobalDecl D, bool ForVTable,
1221                                       llvm::Attribute ExtraAttrs) {
1222  // Lookup the entry, lazily creating it if necessary.
1223  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1224  if (Entry) {
1225    if (WeakRefReferences.erase(Entry)) {
1226      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1227      if (FD && !FD->hasAttr<WeakAttr>())
1228        Entry->setLinkage(llvm::Function::ExternalLinkage);
1229    }
1230
1231    if (Entry->getType()->getElementType() == Ty)
1232      return Entry;
1233
1234    // Make sure the result is of the correct type.
1235    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1236  }
1237
1238  // This function doesn't have a complete type (for example, the return
1239  // type is an incomplete struct). Use a fake type instead, and make
1240  // sure not to try to set attributes.
1241  bool IsIncompleteFunction = false;
1242
1243  llvm::FunctionType *FTy;
1244  if (isa<llvm::FunctionType>(Ty)) {
1245    FTy = cast<llvm::FunctionType>(Ty);
1246  } else {
1247    FTy = llvm::FunctionType::get(VoidTy, false);
1248    IsIncompleteFunction = true;
1249  }
1250
1251  llvm::Function *F = llvm::Function::Create(FTy,
1252                                             llvm::Function::ExternalLinkage,
1253                                             MangledName, &getModule());
1254  assert(F->getName() == MangledName && "name was uniqued!");
1255  if (D.getDecl())
1256    SetFunctionAttributes(D, F, IsIncompleteFunction);
1257  if (ExtraAttrs.hasAttributes())
1258    F->addAttribute(llvm::AttributeSet::FunctionIndex, ExtraAttrs);
1259
1260  // This is the first use or definition of a mangled name.  If there is a
1261  // deferred decl with this name, remember that we need to emit it at the end
1262  // of the file.
1263  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1264  if (DDI != DeferredDecls.end()) {
1265    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1266    // list, and remove it from DeferredDecls (since we don't need it anymore).
1267    DeferredDeclsToEmit.push_back(DDI->second);
1268    DeferredDecls.erase(DDI);
1269
1270  // Otherwise, there are cases we have to worry about where we're
1271  // using a declaration for which we must emit a definition but where
1272  // we might not find a top-level definition:
1273  //   - member functions defined inline in their classes
1274  //   - friend functions defined inline in some class
1275  //   - special member functions with implicit definitions
1276  // If we ever change our AST traversal to walk into class methods,
1277  // this will be unnecessary.
1278  //
1279  // We also don't emit a definition for a function if it's going to be an entry
1280  // in a vtable, unless it's already marked as used.
1281  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1282    // Look for a declaration that's lexically in a record.
1283    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1284    FD = FD->getMostRecentDecl();
1285    do {
1286      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1287        if (FD->isImplicit() && !ForVTable) {
1288          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1289          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1290          break;
1291        } else if (FD->doesThisDeclarationHaveABody()) {
1292          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1293          break;
1294        }
1295      }
1296      FD = FD->getPreviousDecl();
1297    } while (FD);
1298  }
1299
1300  // Make sure the result is of the requested type.
1301  if (!IsIncompleteFunction) {
1302    assert(F->getType()->getElementType() == Ty);
1303    return F;
1304  }
1305
1306  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1307  return llvm::ConstantExpr::getBitCast(F, PTy);
1308}
1309
1310/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1311/// non-null, then this function will use the specified type if it has to
1312/// create it (this occurs when we see a definition of the function).
1313llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1314                                                 llvm::Type *Ty,
1315                                                 bool ForVTable) {
1316  // If there was no specific requested type, just convert it now.
1317  if (!Ty)
1318    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1319
1320  StringRef MangledName = getMangledName(GD);
1321  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1322}
1323
1324/// CreateRuntimeFunction - Create a new runtime function with the specified
1325/// type and name.
1326llvm::Constant *
1327CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1328                                     StringRef Name,
1329                                     llvm::Attribute ExtraAttrs) {
1330  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1331                                 ExtraAttrs);
1332}
1333
1334/// isTypeConstant - Determine whether an object of this type can be emitted
1335/// as a constant.
1336///
1337/// If ExcludeCtor is true, the duration when the object's constructor runs
1338/// will not be considered. The caller will need to verify that the object is
1339/// not written to during its construction.
1340bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1341  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1342    return false;
1343
1344  if (Context.getLangOpts().CPlusPlus) {
1345    if (const CXXRecordDecl *Record
1346          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1347      return ExcludeCtor && !Record->hasMutableFields() &&
1348             Record->hasTrivialDestructor();
1349  }
1350
1351  return true;
1352}
1353
1354/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1355/// create and return an llvm GlobalVariable with the specified type.  If there
1356/// is something in the module with the specified name, return it potentially
1357/// bitcasted to the right type.
1358///
1359/// If D is non-null, it specifies a decl that correspond to this.  This is used
1360/// to set the attributes on the global when it is first created.
1361llvm::Constant *
1362CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1363                                     llvm::PointerType *Ty,
1364                                     const VarDecl *D,
1365                                     bool UnnamedAddr) {
1366  // Lookup the entry, lazily creating it if necessary.
1367  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1368  if (Entry) {
1369    if (WeakRefReferences.erase(Entry)) {
1370      if (D && !D->hasAttr<WeakAttr>())
1371        Entry->setLinkage(llvm::Function::ExternalLinkage);
1372    }
1373
1374    if (UnnamedAddr)
1375      Entry->setUnnamedAddr(true);
1376
1377    if (Entry->getType() == Ty)
1378      return Entry;
1379
1380    // Make sure the result is of the correct type.
1381    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1382  }
1383
1384  // This is the first use or definition of a mangled name.  If there is a
1385  // deferred decl with this name, remember that we need to emit it at the end
1386  // of the file.
1387  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1388  if (DDI != DeferredDecls.end()) {
1389    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1390    // list, and remove it from DeferredDecls (since we don't need it anymore).
1391    DeferredDeclsToEmit.push_back(DDI->second);
1392    DeferredDecls.erase(DDI);
1393  }
1394
1395  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1396  llvm::GlobalVariable *GV =
1397    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1398                             llvm::GlobalValue::ExternalLinkage,
1399                             0, MangledName, 0,
1400                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1401
1402  // Handle things which are present even on external declarations.
1403  if (D) {
1404    // FIXME: This code is overly simple and should be merged with other global
1405    // handling.
1406    GV->setConstant(isTypeConstant(D->getType(), false));
1407
1408    // Set linkage and visibility in case we never see a definition.
1409    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1410    if (LV.linkage() != ExternalLinkage) {
1411      // Don't set internal linkage on declarations.
1412    } else {
1413      if (D->hasAttr<DLLImportAttr>())
1414        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1415      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1416        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1417
1418      // Set visibility on a declaration only if it's explicit.
1419      if (LV.visibilityExplicit())
1420        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1421    }
1422
1423    if (D->isThreadSpecified())
1424      setTLSMode(GV, *D);
1425  }
1426
1427  if (AddrSpace != Ty->getAddressSpace())
1428    return llvm::ConstantExpr::getBitCast(GV, Ty);
1429  else
1430    return GV;
1431}
1432
1433
1434llvm::GlobalVariable *
1435CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1436                                      llvm::Type *Ty,
1437                                      llvm::GlobalValue::LinkageTypes Linkage) {
1438  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1439  llvm::GlobalVariable *OldGV = 0;
1440
1441
1442  if (GV) {
1443    // Check if the variable has the right type.
1444    if (GV->getType()->getElementType() == Ty)
1445      return GV;
1446
1447    // Because C++ name mangling, the only way we can end up with an already
1448    // existing global with the same name is if it has been declared extern "C".
1449    assert(GV->isDeclaration() && "Declaration has wrong type!");
1450    OldGV = GV;
1451  }
1452
1453  // Create a new variable.
1454  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1455                                Linkage, 0, Name);
1456
1457  if (OldGV) {
1458    // Replace occurrences of the old variable if needed.
1459    GV->takeName(OldGV);
1460
1461    if (!OldGV->use_empty()) {
1462      llvm::Constant *NewPtrForOldDecl =
1463      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1464      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1465    }
1466
1467    OldGV->eraseFromParent();
1468  }
1469
1470  return GV;
1471}
1472
1473/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1474/// given global variable.  If Ty is non-null and if the global doesn't exist,
1475/// then it will be created with the specified type instead of whatever the
1476/// normal requested type would be.
1477llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1478                                                  llvm::Type *Ty) {
1479  assert(D->hasGlobalStorage() && "Not a global variable");
1480  QualType ASTTy = D->getType();
1481  if (Ty == 0)
1482    Ty = getTypes().ConvertTypeForMem(ASTTy);
1483
1484  llvm::PointerType *PTy =
1485    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1486
1487  StringRef MangledName = getMangledName(D);
1488  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1489}
1490
1491/// CreateRuntimeVariable - Create a new runtime global variable with the
1492/// specified type and name.
1493llvm::Constant *
1494CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1495                                     StringRef Name) {
1496  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1497                               true);
1498}
1499
1500void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1501  assert(!D->getInit() && "Cannot emit definite definitions here!");
1502
1503  if (MayDeferGeneration(D)) {
1504    // If we have not seen a reference to this variable yet, place it
1505    // into the deferred declarations table to be emitted if needed
1506    // later.
1507    StringRef MangledName = getMangledName(D);
1508    if (!GetGlobalValue(MangledName)) {
1509      DeferredDecls[MangledName] = D;
1510      return;
1511    }
1512  }
1513
1514  // The tentative definition is the only definition.
1515  EmitGlobalVarDefinition(D);
1516}
1517
1518void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1519  if (DefinitionRequired)
1520    getCXXABI().EmitVTables(Class);
1521}
1522
1523llvm::GlobalVariable::LinkageTypes
1524CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1525  if (RD->getLinkage() != ExternalLinkage)
1526    return llvm::GlobalVariable::InternalLinkage;
1527
1528  if (const CXXMethodDecl *KeyFunction
1529                                    = RD->getASTContext().getKeyFunction(RD)) {
1530    // If this class has a key function, use that to determine the linkage of
1531    // the vtable.
1532    const FunctionDecl *Def = 0;
1533    if (KeyFunction->hasBody(Def))
1534      KeyFunction = cast<CXXMethodDecl>(Def);
1535
1536    switch (KeyFunction->getTemplateSpecializationKind()) {
1537      case TSK_Undeclared:
1538      case TSK_ExplicitSpecialization:
1539        // When compiling with optimizations turned on, we emit all vtables,
1540        // even if the key function is not defined in the current translation
1541        // unit. If this is the case, use available_externally linkage.
1542        if (!Def && CodeGenOpts.OptimizationLevel)
1543          return llvm::GlobalVariable::AvailableExternallyLinkage;
1544
1545        if (KeyFunction->isInlined())
1546          return !Context.getLangOpts().AppleKext ?
1547                   llvm::GlobalVariable::LinkOnceODRLinkage :
1548                   llvm::Function::InternalLinkage;
1549
1550        return llvm::GlobalVariable::ExternalLinkage;
1551
1552      case TSK_ImplicitInstantiation:
1553        return !Context.getLangOpts().AppleKext ?
1554                 llvm::GlobalVariable::LinkOnceODRLinkage :
1555                 llvm::Function::InternalLinkage;
1556
1557      case TSK_ExplicitInstantiationDefinition:
1558        return !Context.getLangOpts().AppleKext ?
1559                 llvm::GlobalVariable::WeakODRLinkage :
1560                 llvm::Function::InternalLinkage;
1561
1562      case TSK_ExplicitInstantiationDeclaration:
1563        // FIXME: Use available_externally linkage. However, this currently
1564        // breaks LLVM's build due to undefined symbols.
1565        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1566        return !Context.getLangOpts().AppleKext ?
1567                 llvm::GlobalVariable::LinkOnceODRLinkage :
1568                 llvm::Function::InternalLinkage;
1569    }
1570  }
1571
1572  if (Context.getLangOpts().AppleKext)
1573    return llvm::Function::InternalLinkage;
1574
1575  switch (RD->getTemplateSpecializationKind()) {
1576  case TSK_Undeclared:
1577  case TSK_ExplicitSpecialization:
1578  case TSK_ImplicitInstantiation:
1579    // FIXME: Use available_externally linkage. However, this currently
1580    // breaks LLVM's build due to undefined symbols.
1581    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1582  case TSK_ExplicitInstantiationDeclaration:
1583    return llvm::GlobalVariable::LinkOnceODRLinkage;
1584
1585  case TSK_ExplicitInstantiationDefinition:
1586      return llvm::GlobalVariable::WeakODRLinkage;
1587  }
1588
1589  llvm_unreachable("Invalid TemplateSpecializationKind!");
1590}
1591
1592CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1593    return Context.toCharUnitsFromBits(
1594      TheDataLayout.getTypeStoreSizeInBits(Ty));
1595}
1596
1597llvm::Constant *
1598CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1599                                                       const Expr *rawInit) {
1600  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1601  if (const ExprWithCleanups *withCleanups =
1602          dyn_cast<ExprWithCleanups>(rawInit)) {
1603    cleanups = withCleanups->getObjects();
1604    rawInit = withCleanups->getSubExpr();
1605  }
1606
1607  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1608  if (!init || !init->initializesStdInitializerList() ||
1609      init->getNumInits() == 0)
1610    return 0;
1611
1612  ASTContext &ctx = getContext();
1613  unsigned numInits = init->getNumInits();
1614  // FIXME: This check is here because we would otherwise silently miscompile
1615  // nested global std::initializer_lists. Better would be to have a real
1616  // implementation.
1617  for (unsigned i = 0; i < numInits; ++i) {
1618    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1619    if (inner && inner->initializesStdInitializerList()) {
1620      ErrorUnsupported(inner, "nested global std::initializer_list");
1621      return 0;
1622    }
1623  }
1624
1625  // Synthesize a fake VarDecl for the array and initialize that.
1626  QualType elementType = init->getInit(0)->getType();
1627  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1628  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1629                                                ArrayType::Normal, 0);
1630
1631  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1632  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1633                                              arrayType, D->getLocation());
1634  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1635                                                          D->getDeclContext()),
1636                                          D->getLocStart(), D->getLocation(),
1637                                          name, arrayType, sourceInfo,
1638                                          SC_Static, SC_Static);
1639
1640  // Now clone the InitListExpr to initialize the array instead.
1641  // Incredible hack: we want to use the existing InitListExpr here, so we need
1642  // to tell it that it no longer initializes a std::initializer_list.
1643  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1644                        init->getNumInits());
1645  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1646                                           init->getRBraceLoc());
1647  arrayInit->setType(arrayType);
1648
1649  if (!cleanups.empty())
1650    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1651
1652  backingArray->setInit(arrayInit);
1653
1654  // Emit the definition of the array.
1655  EmitGlobalVarDefinition(backingArray);
1656
1657  // Inspect the initializer list to validate it and determine its type.
1658  // FIXME: doing this every time is probably inefficient; caching would be nice
1659  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1660  RecordDecl::field_iterator field = record->field_begin();
1661  if (field == record->field_end()) {
1662    ErrorUnsupported(D, "weird std::initializer_list");
1663    return 0;
1664  }
1665  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1666  // Start pointer.
1667  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1668    ErrorUnsupported(D, "weird std::initializer_list");
1669    return 0;
1670  }
1671  ++field;
1672  if (field == record->field_end()) {
1673    ErrorUnsupported(D, "weird std::initializer_list");
1674    return 0;
1675  }
1676  bool isStartEnd = false;
1677  if (ctx.hasSameType(field->getType(), elementPtr)) {
1678    // End pointer.
1679    isStartEnd = true;
1680  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1681    ErrorUnsupported(D, "weird std::initializer_list");
1682    return 0;
1683  }
1684
1685  // Now build an APValue representing the std::initializer_list.
1686  APValue initListValue(APValue::UninitStruct(), 0, 2);
1687  APValue &startField = initListValue.getStructField(0);
1688  APValue::LValuePathEntry startOffsetPathEntry;
1689  startOffsetPathEntry.ArrayIndex = 0;
1690  startField = APValue(APValue::LValueBase(backingArray),
1691                       CharUnits::fromQuantity(0),
1692                       llvm::makeArrayRef(startOffsetPathEntry),
1693                       /*IsOnePastTheEnd=*/false, 0);
1694
1695  if (isStartEnd) {
1696    APValue &endField = initListValue.getStructField(1);
1697    APValue::LValuePathEntry endOffsetPathEntry;
1698    endOffsetPathEntry.ArrayIndex = numInits;
1699    endField = APValue(APValue::LValueBase(backingArray),
1700                       ctx.getTypeSizeInChars(elementType) * numInits,
1701                       llvm::makeArrayRef(endOffsetPathEntry),
1702                       /*IsOnePastTheEnd=*/true, 0);
1703  } else {
1704    APValue &sizeField = initListValue.getStructField(1);
1705    sizeField = APValue(llvm::APSInt(numElements));
1706  }
1707
1708  // Emit the constant for the initializer_list.
1709  llvm::Constant *llvmInit =
1710      EmitConstantValueForMemory(initListValue, D->getType());
1711  assert(llvmInit && "failed to initialize as constant");
1712  return llvmInit;
1713}
1714
1715unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1716                                                 unsigned AddrSpace) {
1717  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1718    if (D->hasAttr<CUDAConstantAttr>())
1719      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1720    else if (D->hasAttr<CUDASharedAttr>())
1721      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1722    else
1723      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1724  }
1725
1726  return AddrSpace;
1727}
1728
1729void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1730  llvm::Constant *Init = 0;
1731  QualType ASTTy = D->getType();
1732  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1733  bool NeedsGlobalCtor = false;
1734  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1735
1736  const VarDecl *InitDecl;
1737  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1738
1739  if (!InitExpr) {
1740    // This is a tentative definition; tentative definitions are
1741    // implicitly initialized with { 0 }.
1742    //
1743    // Note that tentative definitions are only emitted at the end of
1744    // a translation unit, so they should never have incomplete
1745    // type. In addition, EmitTentativeDefinition makes sure that we
1746    // never attempt to emit a tentative definition if a real one
1747    // exists. A use may still exists, however, so we still may need
1748    // to do a RAUW.
1749    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1750    Init = EmitNullConstant(D->getType());
1751  } else {
1752    // If this is a std::initializer_list, emit the special initializer.
1753    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1754    // An empty init list will perform zero-initialization, which happens
1755    // to be exactly what we want.
1756    // FIXME: It does so in a global constructor, which is *not* what we
1757    // want.
1758
1759    if (!Init) {
1760      initializedGlobalDecl = GlobalDecl(D);
1761      Init = EmitConstantInit(*InitDecl);
1762    }
1763    if (!Init) {
1764      QualType T = InitExpr->getType();
1765      if (D->getType()->isReferenceType())
1766        T = D->getType();
1767
1768      if (getLangOpts().CPlusPlus) {
1769        Init = EmitNullConstant(T);
1770        NeedsGlobalCtor = true;
1771      } else {
1772        ErrorUnsupported(D, "static initializer");
1773        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1774      }
1775    } else {
1776      // We don't need an initializer, so remove the entry for the delayed
1777      // initializer position (just in case this entry was delayed) if we
1778      // also don't need to register a destructor.
1779      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1780        DelayedCXXInitPosition.erase(D);
1781    }
1782  }
1783
1784  llvm::Type* InitType = Init->getType();
1785  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1786
1787  // Strip off a bitcast if we got one back.
1788  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1789    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1790           // all zero index gep.
1791           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1792    Entry = CE->getOperand(0);
1793  }
1794
1795  // Entry is now either a Function or GlobalVariable.
1796  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1797
1798  // We have a definition after a declaration with the wrong type.
1799  // We must make a new GlobalVariable* and update everything that used OldGV
1800  // (a declaration or tentative definition) with the new GlobalVariable*
1801  // (which will be a definition).
1802  //
1803  // This happens if there is a prototype for a global (e.g.
1804  // "extern int x[];") and then a definition of a different type (e.g.
1805  // "int x[10];"). This also happens when an initializer has a different type
1806  // from the type of the global (this happens with unions).
1807  if (GV == 0 ||
1808      GV->getType()->getElementType() != InitType ||
1809      GV->getType()->getAddressSpace() !=
1810       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1811
1812    // Move the old entry aside so that we'll create a new one.
1813    Entry->setName(StringRef());
1814
1815    // Make a new global with the correct type, this is now guaranteed to work.
1816    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1817
1818    // Replace all uses of the old global with the new global
1819    llvm::Constant *NewPtrForOldDecl =
1820        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1821    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1822
1823    // Erase the old global, since it is no longer used.
1824    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1825  }
1826
1827  if (D->hasAttr<AnnotateAttr>())
1828    AddGlobalAnnotations(D, GV);
1829
1830  GV->setInitializer(Init);
1831
1832  // If it is safe to mark the global 'constant', do so now.
1833  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1834                  isTypeConstant(D->getType(), true));
1835
1836  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1837
1838  // Set the llvm linkage type as appropriate.
1839  llvm::GlobalValue::LinkageTypes Linkage =
1840    GetLLVMLinkageVarDefinition(D, GV);
1841  GV->setLinkage(Linkage);
1842  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1843    // common vars aren't constant even if declared const.
1844    GV->setConstant(false);
1845
1846  SetCommonAttributes(D, GV);
1847
1848  // Emit the initializer function if necessary.
1849  if (NeedsGlobalCtor || NeedsGlobalDtor)
1850    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1851
1852  // If we are compiling with ASan, add metadata indicating dynamically
1853  // initialized globals.
1854  if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1855    llvm::Module &M = getModule();
1856
1857    llvm::NamedMDNode *DynamicInitializers =
1858        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1859    llvm::Value *GlobalToAdd[] = { GV };
1860    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1861    DynamicInitializers->addOperand(ThisGlobal);
1862  }
1863
1864  // Emit global variable debug information.
1865  if (CGDebugInfo *DI = getModuleDebugInfo())
1866    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1867      DI->EmitGlobalVariable(GV, D);
1868}
1869
1870llvm::GlobalValue::LinkageTypes
1871CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1872                                           llvm::GlobalVariable *GV) {
1873  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1874  if (Linkage == GVA_Internal)
1875    return llvm::Function::InternalLinkage;
1876  else if (D->hasAttr<DLLImportAttr>())
1877    return llvm::Function::DLLImportLinkage;
1878  else if (D->hasAttr<DLLExportAttr>())
1879    return llvm::Function::DLLExportLinkage;
1880  else if (D->hasAttr<WeakAttr>()) {
1881    if (GV->isConstant())
1882      return llvm::GlobalVariable::WeakODRLinkage;
1883    else
1884      return llvm::GlobalVariable::WeakAnyLinkage;
1885  } else if (Linkage == GVA_TemplateInstantiation ||
1886             Linkage == GVA_ExplicitTemplateInstantiation)
1887    return llvm::GlobalVariable::WeakODRLinkage;
1888  else if (!getLangOpts().CPlusPlus &&
1889           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1890             D->getAttr<CommonAttr>()) &&
1891           !D->hasExternalStorage() && !D->getInit() &&
1892           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1893           !D->getAttr<WeakImportAttr>()) {
1894    // Thread local vars aren't considered common linkage.
1895    return llvm::GlobalVariable::CommonLinkage;
1896  }
1897  return llvm::GlobalVariable::ExternalLinkage;
1898}
1899
1900/// Replace the uses of a function that was declared with a non-proto type.
1901/// We want to silently drop extra arguments from call sites
1902static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1903                                          llvm::Function *newFn) {
1904  // Fast path.
1905  if (old->use_empty()) return;
1906
1907  llvm::Type *newRetTy = newFn->getReturnType();
1908  SmallVector<llvm::Value*, 4> newArgs;
1909
1910  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1911         ui != ue; ) {
1912    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1913    llvm::User *user = *use;
1914
1915    // Recognize and replace uses of bitcasts.  Most calls to
1916    // unprototyped functions will use bitcasts.
1917    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1918      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1919        replaceUsesOfNonProtoConstant(bitcast, newFn);
1920      continue;
1921    }
1922
1923    // Recognize calls to the function.
1924    llvm::CallSite callSite(user);
1925    if (!callSite) continue;
1926    if (!callSite.isCallee(use)) continue;
1927
1928    // If the return types don't match exactly, then we can't
1929    // transform this call unless it's dead.
1930    if (callSite->getType() != newRetTy && !callSite->use_empty())
1931      continue;
1932
1933    // Get the call site's attribute list.
1934    SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1935    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1936
1937    // Collect any return attributes from the call.
1938    llvm::Attribute returnAttrs = oldAttrs.getRetAttributes();
1939    if (returnAttrs.hasAttributes())
1940      newAttrs.push_back(llvm::AttributeWithIndex::get(
1941                                llvm::AttributeSet::ReturnIndex, returnAttrs));
1942
1943    // If the function was passed too few arguments, don't transform.
1944    unsigned newNumArgs = newFn->arg_size();
1945    if (callSite.arg_size() < newNumArgs) continue;
1946
1947    // If extra arguments were passed, we silently drop them.
1948    // If any of the types mismatch, we don't transform.
1949    unsigned argNo = 0;
1950    bool dontTransform = false;
1951    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1952           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1953      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1954        dontTransform = true;
1955        break;
1956      }
1957
1958      // Add any parameter attributes.
1959      llvm::Attribute pAttrs = oldAttrs.getParamAttributes(argNo + 1);
1960      if (pAttrs.hasAttributes())
1961        newAttrs.push_back(llvm::AttributeWithIndex::get(argNo + 1, pAttrs));
1962    }
1963    if (dontTransform)
1964      continue;
1965
1966    llvm::Attribute fnAttrs = oldAttrs.getFnAttributes();
1967    if (fnAttrs.hasAttributes())
1968      newAttrs.push_back(llvm::
1969                       AttributeWithIndex::get(llvm::AttributeSet::FunctionIndex,
1970                                               fnAttrs));
1971
1972    // Okay, we can transform this.  Create the new call instruction and copy
1973    // over the required information.
1974    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1975
1976    llvm::CallSite newCall;
1977    if (callSite.isCall()) {
1978      newCall = llvm::CallInst::Create(newFn, newArgs, "",
1979                                       callSite.getInstruction());
1980    } else {
1981      llvm::InvokeInst *oldInvoke =
1982        cast<llvm::InvokeInst>(callSite.getInstruction());
1983      newCall = llvm::InvokeInst::Create(newFn,
1984                                         oldInvoke->getNormalDest(),
1985                                         oldInvoke->getUnwindDest(),
1986                                         newArgs, "",
1987                                         callSite.getInstruction());
1988    }
1989    newArgs.clear(); // for the next iteration
1990
1991    if (!newCall->getType()->isVoidTy())
1992      newCall->takeName(callSite.getInstruction());
1993    newCall.setAttributes(
1994                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1995    newCall.setCallingConv(callSite.getCallingConv());
1996
1997    // Finally, remove the old call, replacing any uses with the new one.
1998    if (!callSite->use_empty())
1999      callSite->replaceAllUsesWith(newCall.getInstruction());
2000
2001    // Copy debug location attached to CI.
2002    if (!callSite->getDebugLoc().isUnknown())
2003      newCall->setDebugLoc(callSite->getDebugLoc());
2004    callSite->eraseFromParent();
2005  }
2006}
2007
2008/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2009/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2010/// existing call uses of the old function in the module, this adjusts them to
2011/// call the new function directly.
2012///
2013/// This is not just a cleanup: the always_inline pass requires direct calls to
2014/// functions to be able to inline them.  If there is a bitcast in the way, it
2015/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2016/// run at -O0.
2017static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2018                                                      llvm::Function *NewFn) {
2019  // If we're redefining a global as a function, don't transform it.
2020  if (!isa<llvm::Function>(Old)) return;
2021
2022  replaceUsesOfNonProtoConstant(Old, NewFn);
2023}
2024
2025void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2026  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2027  // If we have a definition, this might be a deferred decl. If the
2028  // instantiation is explicit, make sure we emit it at the end.
2029  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2030    GetAddrOfGlobalVar(VD);
2031}
2032
2033void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2034  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2035
2036  // Compute the function info and LLVM type.
2037  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2038  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2039
2040  // Get or create the prototype for the function.
2041  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2042
2043  // Strip off a bitcast if we got one back.
2044  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2045    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2046    Entry = CE->getOperand(0);
2047  }
2048
2049
2050  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2051    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2052
2053    // If the types mismatch then we have to rewrite the definition.
2054    assert(OldFn->isDeclaration() &&
2055           "Shouldn't replace non-declaration");
2056
2057    // F is the Function* for the one with the wrong type, we must make a new
2058    // Function* and update everything that used F (a declaration) with the new
2059    // Function* (which will be a definition).
2060    //
2061    // This happens if there is a prototype for a function
2062    // (e.g. "int f()") and then a definition of a different type
2063    // (e.g. "int f(int x)").  Move the old function aside so that it
2064    // doesn't interfere with GetAddrOfFunction.
2065    OldFn->setName(StringRef());
2066    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2067
2068    // This might be an implementation of a function without a
2069    // prototype, in which case, try to do special replacement of
2070    // calls which match the new prototype.  The really key thing here
2071    // is that we also potentially drop arguments from the call site
2072    // so as to make a direct call, which makes the inliner happier
2073    // and suppresses a number of optimizer warnings (!) about
2074    // dropping arguments.
2075    if (!OldFn->use_empty()) {
2076      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2077      OldFn->removeDeadConstantUsers();
2078    }
2079
2080    // Replace uses of F with the Function we will endow with a body.
2081    if (!Entry->use_empty()) {
2082      llvm::Constant *NewPtrForOldDecl =
2083        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2084      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2085    }
2086
2087    // Ok, delete the old function now, which is dead.
2088    OldFn->eraseFromParent();
2089
2090    Entry = NewFn;
2091  }
2092
2093  // We need to set linkage and visibility on the function before
2094  // generating code for it because various parts of IR generation
2095  // want to propagate this information down (e.g. to local static
2096  // declarations).
2097  llvm::Function *Fn = cast<llvm::Function>(Entry);
2098  setFunctionLinkage(D, Fn);
2099
2100  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2101  setGlobalVisibility(Fn, D);
2102
2103  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2104
2105  SetFunctionDefinitionAttributes(D, Fn);
2106  SetLLVMFunctionAttributesForDefinition(D, Fn);
2107
2108  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2109    AddGlobalCtor(Fn, CA->getPriority());
2110  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2111    AddGlobalDtor(Fn, DA->getPriority());
2112  if (D->hasAttr<AnnotateAttr>())
2113    AddGlobalAnnotations(D, Fn);
2114}
2115
2116void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2117  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2118  const AliasAttr *AA = D->getAttr<AliasAttr>();
2119  assert(AA && "Not an alias?");
2120
2121  StringRef MangledName = getMangledName(GD);
2122
2123  // If there is a definition in the module, then it wins over the alias.
2124  // This is dubious, but allow it to be safe.  Just ignore the alias.
2125  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2126  if (Entry && !Entry->isDeclaration())
2127    return;
2128
2129  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2130
2131  // Create a reference to the named value.  This ensures that it is emitted
2132  // if a deferred decl.
2133  llvm::Constant *Aliasee;
2134  if (isa<llvm::FunctionType>(DeclTy))
2135    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2136                                      /*ForVTable=*/false);
2137  else
2138    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2139                                    llvm::PointerType::getUnqual(DeclTy), 0);
2140
2141  // Create the new alias itself, but don't set a name yet.
2142  llvm::GlobalValue *GA =
2143    new llvm::GlobalAlias(Aliasee->getType(),
2144                          llvm::Function::ExternalLinkage,
2145                          "", Aliasee, &getModule());
2146
2147  if (Entry) {
2148    assert(Entry->isDeclaration());
2149
2150    // If there is a declaration in the module, then we had an extern followed
2151    // by the alias, as in:
2152    //   extern int test6();
2153    //   ...
2154    //   int test6() __attribute__((alias("test7")));
2155    //
2156    // Remove it and replace uses of it with the alias.
2157    GA->takeName(Entry);
2158
2159    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2160                                                          Entry->getType()));
2161    Entry->eraseFromParent();
2162  } else {
2163    GA->setName(MangledName);
2164  }
2165
2166  // Set attributes which are particular to an alias; this is a
2167  // specialization of the attributes which may be set on a global
2168  // variable/function.
2169  if (D->hasAttr<DLLExportAttr>()) {
2170    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2171      // The dllexport attribute is ignored for undefined symbols.
2172      if (FD->hasBody())
2173        GA->setLinkage(llvm::Function::DLLExportLinkage);
2174    } else {
2175      GA->setLinkage(llvm::Function::DLLExportLinkage);
2176    }
2177  } else if (D->hasAttr<WeakAttr>() ||
2178             D->hasAttr<WeakRefAttr>() ||
2179             D->isWeakImported()) {
2180    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2181  }
2182
2183  SetCommonAttributes(D, GA);
2184}
2185
2186llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2187                                            ArrayRef<llvm::Type*> Tys) {
2188  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2189                                         Tys);
2190}
2191
2192static llvm::StringMapEntry<llvm::Constant*> &
2193GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2194                         const StringLiteral *Literal,
2195                         bool TargetIsLSB,
2196                         bool &IsUTF16,
2197                         unsigned &StringLength) {
2198  StringRef String = Literal->getString();
2199  unsigned NumBytes = String.size();
2200
2201  // Check for simple case.
2202  if (!Literal->containsNonAsciiOrNull()) {
2203    StringLength = NumBytes;
2204    return Map.GetOrCreateValue(String);
2205  }
2206
2207  // Otherwise, convert the UTF8 literals into a string of shorts.
2208  IsUTF16 = true;
2209
2210  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2211  const UTF8 *FromPtr = (const UTF8 *)String.data();
2212  UTF16 *ToPtr = &ToBuf[0];
2213
2214  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2215                           &ToPtr, ToPtr + NumBytes,
2216                           strictConversion);
2217
2218  // ConvertUTF8toUTF16 returns the length in ToPtr.
2219  StringLength = ToPtr - &ToBuf[0];
2220
2221  // Add an explicit null.
2222  *ToPtr = 0;
2223  return Map.
2224    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2225                               (StringLength + 1) * 2));
2226}
2227
2228static llvm::StringMapEntry<llvm::Constant*> &
2229GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2230                       const StringLiteral *Literal,
2231                       unsigned &StringLength) {
2232  StringRef String = Literal->getString();
2233  StringLength = String.size();
2234  return Map.GetOrCreateValue(String);
2235}
2236
2237llvm::Constant *
2238CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2239  unsigned StringLength = 0;
2240  bool isUTF16 = false;
2241  llvm::StringMapEntry<llvm::Constant*> &Entry =
2242    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2243                             getDataLayout().isLittleEndian(),
2244                             isUTF16, StringLength);
2245
2246  if (llvm::Constant *C = Entry.getValue())
2247    return C;
2248
2249  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2250  llvm::Constant *Zeros[] = { Zero, Zero };
2251
2252  // If we don't already have it, get __CFConstantStringClassReference.
2253  if (!CFConstantStringClassRef) {
2254    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2255    Ty = llvm::ArrayType::get(Ty, 0);
2256    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2257                                           "__CFConstantStringClassReference");
2258    // Decay array -> ptr
2259    CFConstantStringClassRef =
2260      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2261  }
2262
2263  QualType CFTy = getContext().getCFConstantStringType();
2264
2265  llvm::StructType *STy =
2266    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2267
2268  llvm::Constant *Fields[4];
2269
2270  // Class pointer.
2271  Fields[0] = CFConstantStringClassRef;
2272
2273  // Flags.
2274  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2275  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2276    llvm::ConstantInt::get(Ty, 0x07C8);
2277
2278  // String pointer.
2279  llvm::Constant *C = 0;
2280  if (isUTF16) {
2281    ArrayRef<uint16_t> Arr =
2282      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2283                                     const_cast<char *>(Entry.getKey().data())),
2284                                   Entry.getKey().size() / 2);
2285    C = llvm::ConstantDataArray::get(VMContext, Arr);
2286  } else {
2287    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2288  }
2289
2290  llvm::GlobalValue::LinkageTypes Linkage;
2291  if (isUTF16)
2292    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2293    Linkage = llvm::GlobalValue::InternalLinkage;
2294  else
2295    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2296    // when using private linkage. It is not clear if this is a bug in ld
2297    // or a reasonable new restriction.
2298    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2299
2300  // Note: -fwritable-strings doesn't make the backing store strings of
2301  // CFStrings writable. (See <rdar://problem/10657500>)
2302  llvm::GlobalVariable *GV =
2303    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2304                             Linkage, C, ".str");
2305  GV->setUnnamedAddr(true);
2306  if (isUTF16) {
2307    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2308    GV->setAlignment(Align.getQuantity());
2309  } else {
2310    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2311    GV->setAlignment(Align.getQuantity());
2312  }
2313
2314  // String.
2315  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2316
2317  if (isUTF16)
2318    // Cast the UTF16 string to the correct type.
2319    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2320
2321  // String length.
2322  Ty = getTypes().ConvertType(getContext().LongTy);
2323  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2324
2325  // The struct.
2326  C = llvm::ConstantStruct::get(STy, Fields);
2327  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2328                                llvm::GlobalVariable::PrivateLinkage, C,
2329                                "_unnamed_cfstring_");
2330  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2331    GV->setSection(Sect);
2332  Entry.setValue(GV);
2333
2334  return GV;
2335}
2336
2337static RecordDecl *
2338CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2339                 DeclContext *DC, IdentifierInfo *Id) {
2340  SourceLocation Loc;
2341  if (Ctx.getLangOpts().CPlusPlus)
2342    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2343  else
2344    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2345}
2346
2347llvm::Constant *
2348CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2349  unsigned StringLength = 0;
2350  llvm::StringMapEntry<llvm::Constant*> &Entry =
2351    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2352
2353  if (llvm::Constant *C = Entry.getValue())
2354    return C;
2355
2356  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2357  llvm::Constant *Zeros[] = { Zero, Zero };
2358
2359  // If we don't already have it, get _NSConstantStringClassReference.
2360  if (!ConstantStringClassRef) {
2361    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2362    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2363    llvm::Constant *GV;
2364    if (LangOpts.ObjCRuntime.isNonFragile()) {
2365      std::string str =
2366        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2367                            : "OBJC_CLASS_$_" + StringClass;
2368      GV = getObjCRuntime().GetClassGlobal(str);
2369      // Make sure the result is of the correct type.
2370      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2371      ConstantStringClassRef =
2372        llvm::ConstantExpr::getBitCast(GV, PTy);
2373    } else {
2374      std::string str =
2375        StringClass.empty() ? "_NSConstantStringClassReference"
2376                            : "_" + StringClass + "ClassReference";
2377      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2378      GV = CreateRuntimeVariable(PTy, str);
2379      // Decay array -> ptr
2380      ConstantStringClassRef =
2381        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2382    }
2383  }
2384
2385  if (!NSConstantStringType) {
2386    // Construct the type for a constant NSString.
2387    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2388                                     Context.getTranslationUnitDecl(),
2389                                   &Context.Idents.get("__builtin_NSString"));
2390    D->startDefinition();
2391
2392    QualType FieldTypes[3];
2393
2394    // const int *isa;
2395    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2396    // const char *str;
2397    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2398    // unsigned int length;
2399    FieldTypes[2] = Context.UnsignedIntTy;
2400
2401    // Create fields
2402    for (unsigned i = 0; i < 3; ++i) {
2403      FieldDecl *Field = FieldDecl::Create(Context, D,
2404                                           SourceLocation(),
2405                                           SourceLocation(), 0,
2406                                           FieldTypes[i], /*TInfo=*/0,
2407                                           /*BitWidth=*/0,
2408                                           /*Mutable=*/false,
2409                                           ICIS_NoInit);
2410      Field->setAccess(AS_public);
2411      D->addDecl(Field);
2412    }
2413
2414    D->completeDefinition();
2415    QualType NSTy = Context.getTagDeclType(D);
2416    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2417  }
2418
2419  llvm::Constant *Fields[3];
2420
2421  // Class pointer.
2422  Fields[0] = ConstantStringClassRef;
2423
2424  // String pointer.
2425  llvm::Constant *C =
2426    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2427
2428  llvm::GlobalValue::LinkageTypes Linkage;
2429  bool isConstant;
2430  Linkage = llvm::GlobalValue::PrivateLinkage;
2431  isConstant = !LangOpts.WritableStrings;
2432
2433  llvm::GlobalVariable *GV =
2434  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2435                           ".str");
2436  GV->setUnnamedAddr(true);
2437  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2438  GV->setAlignment(Align.getQuantity());
2439  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2440
2441  // String length.
2442  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2443  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2444
2445  // The struct.
2446  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2447  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2448                                llvm::GlobalVariable::PrivateLinkage, C,
2449                                "_unnamed_nsstring_");
2450  // FIXME. Fix section.
2451  if (const char *Sect =
2452        LangOpts.ObjCRuntime.isNonFragile()
2453          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2454          : getContext().getTargetInfo().getNSStringSection())
2455    GV->setSection(Sect);
2456  Entry.setValue(GV);
2457
2458  return GV;
2459}
2460
2461QualType CodeGenModule::getObjCFastEnumerationStateType() {
2462  if (ObjCFastEnumerationStateType.isNull()) {
2463    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2464                                     Context.getTranslationUnitDecl(),
2465                      &Context.Idents.get("__objcFastEnumerationState"));
2466    D->startDefinition();
2467
2468    QualType FieldTypes[] = {
2469      Context.UnsignedLongTy,
2470      Context.getPointerType(Context.getObjCIdType()),
2471      Context.getPointerType(Context.UnsignedLongTy),
2472      Context.getConstantArrayType(Context.UnsignedLongTy,
2473                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2474    };
2475
2476    for (size_t i = 0; i < 4; ++i) {
2477      FieldDecl *Field = FieldDecl::Create(Context,
2478                                           D,
2479                                           SourceLocation(),
2480                                           SourceLocation(), 0,
2481                                           FieldTypes[i], /*TInfo=*/0,
2482                                           /*BitWidth=*/0,
2483                                           /*Mutable=*/false,
2484                                           ICIS_NoInit);
2485      Field->setAccess(AS_public);
2486      D->addDecl(Field);
2487    }
2488
2489    D->completeDefinition();
2490    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2491  }
2492
2493  return ObjCFastEnumerationStateType;
2494}
2495
2496llvm::Constant *
2497CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2498  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2499
2500  // Don't emit it as the address of the string, emit the string data itself
2501  // as an inline array.
2502  if (E->getCharByteWidth() == 1) {
2503    SmallString<64> Str(E->getString());
2504
2505    // Resize the string to the right size, which is indicated by its type.
2506    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2507    Str.resize(CAT->getSize().getZExtValue());
2508    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2509  }
2510
2511  llvm::ArrayType *AType =
2512    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2513  llvm::Type *ElemTy = AType->getElementType();
2514  unsigned NumElements = AType->getNumElements();
2515
2516  // Wide strings have either 2-byte or 4-byte elements.
2517  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2518    SmallVector<uint16_t, 32> Elements;
2519    Elements.reserve(NumElements);
2520
2521    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2522      Elements.push_back(E->getCodeUnit(i));
2523    Elements.resize(NumElements);
2524    return llvm::ConstantDataArray::get(VMContext, Elements);
2525  }
2526
2527  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2528  SmallVector<uint32_t, 32> Elements;
2529  Elements.reserve(NumElements);
2530
2531  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2532    Elements.push_back(E->getCodeUnit(i));
2533  Elements.resize(NumElements);
2534  return llvm::ConstantDataArray::get(VMContext, Elements);
2535}
2536
2537/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2538/// constant array for the given string literal.
2539llvm::Constant *
2540CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2541  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2542  if (S->isAscii() || S->isUTF8()) {
2543    SmallString<64> Str(S->getString());
2544
2545    // Resize the string to the right size, which is indicated by its type.
2546    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2547    Str.resize(CAT->getSize().getZExtValue());
2548    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2549  }
2550
2551  // FIXME: the following does not memoize wide strings.
2552  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2553  llvm::GlobalVariable *GV =
2554    new llvm::GlobalVariable(getModule(),C->getType(),
2555                             !LangOpts.WritableStrings,
2556                             llvm::GlobalValue::PrivateLinkage,
2557                             C,".str");
2558
2559  GV->setAlignment(Align.getQuantity());
2560  GV->setUnnamedAddr(true);
2561  return GV;
2562}
2563
2564/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2565/// array for the given ObjCEncodeExpr node.
2566llvm::Constant *
2567CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2568  std::string Str;
2569  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2570
2571  return GetAddrOfConstantCString(Str);
2572}
2573
2574
2575/// GenerateWritableString -- Creates storage for a string literal.
2576static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2577                                             bool constant,
2578                                             CodeGenModule &CGM,
2579                                             const char *GlobalName,
2580                                             unsigned Alignment) {
2581  // Create Constant for this string literal. Don't add a '\0'.
2582  llvm::Constant *C =
2583      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2584
2585  // Create a global variable for this string
2586  llvm::GlobalVariable *GV =
2587    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2588                             llvm::GlobalValue::PrivateLinkage,
2589                             C, GlobalName);
2590  GV->setAlignment(Alignment);
2591  GV->setUnnamedAddr(true);
2592  return GV;
2593}
2594
2595/// GetAddrOfConstantString - Returns a pointer to a character array
2596/// containing the literal. This contents are exactly that of the
2597/// given string, i.e. it will not be null terminated automatically;
2598/// see GetAddrOfConstantCString. Note that whether the result is
2599/// actually a pointer to an LLVM constant depends on
2600/// Feature.WriteableStrings.
2601///
2602/// The result has pointer to array type.
2603llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2604                                                       const char *GlobalName,
2605                                                       unsigned Alignment) {
2606  // Get the default prefix if a name wasn't specified.
2607  if (!GlobalName)
2608    GlobalName = ".str";
2609
2610  // Don't share any string literals if strings aren't constant.
2611  if (LangOpts.WritableStrings)
2612    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2613
2614  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2615    ConstantStringMap.GetOrCreateValue(Str);
2616
2617  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2618    if (Alignment > GV->getAlignment()) {
2619      GV->setAlignment(Alignment);
2620    }
2621    return GV;
2622  }
2623
2624  // Create a global variable for this.
2625  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2626                                                   Alignment);
2627  Entry.setValue(GV);
2628  return GV;
2629}
2630
2631/// GetAddrOfConstantCString - Returns a pointer to a character
2632/// array containing the literal and a terminating '\0'
2633/// character. The result has pointer to array type.
2634llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2635                                                        const char *GlobalName,
2636                                                        unsigned Alignment) {
2637  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2638  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2639}
2640
2641/// EmitObjCPropertyImplementations - Emit information for synthesized
2642/// properties for an implementation.
2643void CodeGenModule::EmitObjCPropertyImplementations(const
2644                                                    ObjCImplementationDecl *D) {
2645  for (ObjCImplementationDecl::propimpl_iterator
2646         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2647    ObjCPropertyImplDecl *PID = *i;
2648
2649    // Dynamic is just for type-checking.
2650    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2651      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2652
2653      // Determine which methods need to be implemented, some may have
2654      // been overridden. Note that ::isPropertyAccessor is not the method
2655      // we want, that just indicates if the decl came from a
2656      // property. What we want to know is if the method is defined in
2657      // this implementation.
2658      if (!D->getInstanceMethod(PD->getGetterName()))
2659        CodeGenFunction(*this).GenerateObjCGetter(
2660                                 const_cast<ObjCImplementationDecl *>(D), PID);
2661      if (!PD->isReadOnly() &&
2662          !D->getInstanceMethod(PD->getSetterName()))
2663        CodeGenFunction(*this).GenerateObjCSetter(
2664                                 const_cast<ObjCImplementationDecl *>(D), PID);
2665    }
2666  }
2667}
2668
2669static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2670  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2671  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2672       ivar; ivar = ivar->getNextIvar())
2673    if (ivar->getType().isDestructedType())
2674      return true;
2675
2676  return false;
2677}
2678
2679/// EmitObjCIvarInitializations - Emit information for ivar initialization
2680/// for an implementation.
2681void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2682  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2683  if (needsDestructMethod(D)) {
2684    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2685    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2686    ObjCMethodDecl *DTORMethod =
2687      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2688                             cxxSelector, getContext().VoidTy, 0, D,
2689                             /*isInstance=*/true, /*isVariadic=*/false,
2690                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2691                             /*isDefined=*/false, ObjCMethodDecl::Required);
2692    D->addInstanceMethod(DTORMethod);
2693    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2694    D->setHasDestructors(true);
2695  }
2696
2697  // If the implementation doesn't have any ivar initializers, we don't need
2698  // a .cxx_construct.
2699  if (D->getNumIvarInitializers() == 0)
2700    return;
2701
2702  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2703  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2704  // The constructor returns 'self'.
2705  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2706                                                D->getLocation(),
2707                                                D->getLocation(),
2708                                                cxxSelector,
2709                                                getContext().getObjCIdType(), 0,
2710                                                D, /*isInstance=*/true,
2711                                                /*isVariadic=*/false,
2712                                                /*isPropertyAccessor=*/true,
2713                                                /*isImplicitlyDeclared=*/true,
2714                                                /*isDefined=*/false,
2715                                                ObjCMethodDecl::Required);
2716  D->addInstanceMethod(CTORMethod);
2717  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2718  D->setHasNonZeroConstructors(true);
2719}
2720
2721/// EmitNamespace - Emit all declarations in a namespace.
2722void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2723  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2724       I != E; ++I)
2725    EmitTopLevelDecl(*I);
2726}
2727
2728// EmitLinkageSpec - Emit all declarations in a linkage spec.
2729void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2730  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2731      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2732    ErrorUnsupported(LSD, "linkage spec");
2733    return;
2734  }
2735
2736  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2737       I != E; ++I) {
2738    // Meta-data for ObjC class includes references to implemented methods.
2739    // Generate class's method definitions first.
2740    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2741      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2742           MEnd = OID->meth_end();
2743           M != MEnd; ++M)
2744        EmitTopLevelDecl(*M);
2745    }
2746    EmitTopLevelDecl(*I);
2747  }
2748}
2749
2750/// EmitTopLevelDecl - Emit code for a single top level declaration.
2751void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2752  // If an error has occurred, stop code generation, but continue
2753  // parsing and semantic analysis (to ensure all warnings and errors
2754  // are emitted).
2755  if (Diags.hasErrorOccurred())
2756    return;
2757
2758  // Ignore dependent declarations.
2759  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2760    return;
2761
2762  switch (D->getKind()) {
2763  case Decl::CXXConversion:
2764  case Decl::CXXMethod:
2765  case Decl::Function:
2766    // Skip function templates
2767    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2768        cast<FunctionDecl>(D)->isLateTemplateParsed())
2769      return;
2770
2771    EmitGlobal(cast<FunctionDecl>(D));
2772    break;
2773
2774  case Decl::Var:
2775    EmitGlobal(cast<VarDecl>(D));
2776    break;
2777
2778  // Indirect fields from global anonymous structs and unions can be
2779  // ignored; only the actual variable requires IR gen support.
2780  case Decl::IndirectField:
2781    break;
2782
2783  // C++ Decls
2784  case Decl::Namespace:
2785    EmitNamespace(cast<NamespaceDecl>(D));
2786    break;
2787    // No code generation needed.
2788  case Decl::UsingShadow:
2789  case Decl::Using:
2790  case Decl::UsingDirective:
2791  case Decl::ClassTemplate:
2792  case Decl::FunctionTemplate:
2793  case Decl::TypeAliasTemplate:
2794  case Decl::NamespaceAlias:
2795  case Decl::Block:
2796    break;
2797  case Decl::CXXConstructor:
2798    // Skip function templates
2799    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2800        cast<FunctionDecl>(D)->isLateTemplateParsed())
2801      return;
2802
2803    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2804    break;
2805  case Decl::CXXDestructor:
2806    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2807      return;
2808    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2809    break;
2810
2811  case Decl::StaticAssert:
2812    // Nothing to do.
2813    break;
2814
2815  // Objective-C Decls
2816
2817  // Forward declarations, no (immediate) code generation.
2818  case Decl::ObjCInterface:
2819  case Decl::ObjCCategory:
2820    break;
2821
2822  case Decl::ObjCProtocol: {
2823    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2824    if (Proto->isThisDeclarationADefinition())
2825      ObjCRuntime->GenerateProtocol(Proto);
2826    break;
2827  }
2828
2829  case Decl::ObjCCategoryImpl:
2830    // Categories have properties but don't support synthesize so we
2831    // can ignore them here.
2832    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2833    break;
2834
2835  case Decl::ObjCImplementation: {
2836    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2837    EmitObjCPropertyImplementations(OMD);
2838    EmitObjCIvarInitializations(OMD);
2839    ObjCRuntime->GenerateClass(OMD);
2840    // Emit global variable debug information.
2841    if (CGDebugInfo *DI = getModuleDebugInfo())
2842      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2843        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2844            OMD->getClassInterface()), OMD->getLocation());
2845    break;
2846  }
2847  case Decl::ObjCMethod: {
2848    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2849    // If this is not a prototype, emit the body.
2850    if (OMD->getBody())
2851      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2852    break;
2853  }
2854  case Decl::ObjCCompatibleAlias:
2855    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2856    break;
2857
2858  case Decl::LinkageSpec:
2859    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2860    break;
2861
2862  case Decl::FileScopeAsm: {
2863    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2864    StringRef AsmString = AD->getAsmString()->getString();
2865
2866    const std::string &S = getModule().getModuleInlineAsm();
2867    if (S.empty())
2868      getModule().setModuleInlineAsm(AsmString);
2869    else if (S.end()[-1] == '\n')
2870      getModule().setModuleInlineAsm(S + AsmString.str());
2871    else
2872      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2873    break;
2874  }
2875
2876  case Decl::Import: {
2877    ImportDecl *Import = cast<ImportDecl>(D);
2878
2879    // Ignore import declarations that come from imported modules.
2880    if (clang::Module *Owner = Import->getOwningModule()) {
2881      if (getLangOpts().CurrentModule.empty() ||
2882          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2883        break;
2884    }
2885
2886    ImportedModules.insert(Import->getImportedModule());
2887    break;
2888 }
2889
2890  default:
2891    // Make sure we handled everything we should, every other kind is a
2892    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2893    // function. Need to recode Decl::Kind to do that easily.
2894    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2895  }
2896}
2897
2898/// Turns the given pointer into a constant.
2899static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2900                                          const void *Ptr) {
2901  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2902  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2903  return llvm::ConstantInt::get(i64, PtrInt);
2904}
2905
2906static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2907                                   llvm::NamedMDNode *&GlobalMetadata,
2908                                   GlobalDecl D,
2909                                   llvm::GlobalValue *Addr) {
2910  if (!GlobalMetadata)
2911    GlobalMetadata =
2912      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2913
2914  // TODO: should we report variant information for ctors/dtors?
2915  llvm::Value *Ops[] = {
2916    Addr,
2917    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2918  };
2919  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2920}
2921
2922/// Emits metadata nodes associating all the global values in the
2923/// current module with the Decls they came from.  This is useful for
2924/// projects using IR gen as a subroutine.
2925///
2926/// Since there's currently no way to associate an MDNode directly
2927/// with an llvm::GlobalValue, we create a global named metadata
2928/// with the name 'clang.global.decl.ptrs'.
2929void CodeGenModule::EmitDeclMetadata() {
2930  llvm::NamedMDNode *GlobalMetadata = 0;
2931
2932  // StaticLocalDeclMap
2933  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2934         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2935       I != E; ++I) {
2936    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2937    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2938  }
2939}
2940
2941/// Emits metadata nodes for all the local variables in the current
2942/// function.
2943void CodeGenFunction::EmitDeclMetadata() {
2944  if (LocalDeclMap.empty()) return;
2945
2946  llvm::LLVMContext &Context = getLLVMContext();
2947
2948  // Find the unique metadata ID for this name.
2949  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2950
2951  llvm::NamedMDNode *GlobalMetadata = 0;
2952
2953  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2954         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2955    const Decl *D = I->first;
2956    llvm::Value *Addr = I->second;
2957
2958    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2959      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2960      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2961    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2962      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2963      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2964    }
2965  }
2966}
2967
2968void CodeGenModule::EmitCoverageFile() {
2969  if (!getCodeGenOpts().CoverageFile.empty()) {
2970    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2971      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2972      llvm::LLVMContext &Ctx = TheModule.getContext();
2973      llvm::MDString *CoverageFile =
2974          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2975      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2976        llvm::MDNode *CU = CUNode->getOperand(i);
2977        llvm::Value *node[] = { CoverageFile, CU };
2978        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2979        GCov->addOperand(N);
2980      }
2981    }
2982  }
2983}
2984
2985llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2986                                                     QualType GuidType) {
2987  // Sema has checked that all uuid strings are of the form
2988  // "12345678-1234-1234-1234-1234567890ab".
2989  assert(Uuid.size() == 36);
2990  const char *Uuidstr = Uuid.data();
2991  for (int i = 0; i < 36; ++i) {
2992    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2993    else                                         assert(isxdigit(Uuidstr[i]));
2994  }
2995
2996  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2997  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2998  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2999  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3000
3001  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3002  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3003  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3004  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3005  APValue& Arr = InitStruct.getStructField(3);
3006  Arr = APValue(APValue::UninitArray(), 8, 8);
3007  for (int t = 0; t < 8; ++t)
3008    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3009          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3010
3011  return EmitConstantValue(InitStruct, GuidType);
3012}
3013