ItaniumCXXABI.cpp revision 0413db4a26b0a1577b75c2979b0eb21f3490d17a
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targetting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CodeGenFunction.h"
24#include "CodeGenModule.h"
25#include <clang/AST/Mangle.h>
26#include <clang/AST/Type.h>
27#include <llvm/Target/TargetData.h>
28#include <llvm/Value.h>
29
30using namespace clang;
31using namespace CodeGen;
32
33namespace {
34class ItaniumCXXABI : public CodeGen::CGCXXABI {
35private:
36  const llvm::IntegerType *PtrDiffTy;
37protected:
38  bool IsARM;
39
40  // It's a little silly for us to cache this.
41  const llvm::IntegerType *getPtrDiffTy() {
42    if (!PtrDiffTy) {
43      QualType T = getContext().getPointerDiffType();
44      const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T);
45      PtrDiffTy = cast<llvm::IntegerType>(Ty);
46    }
47    return PtrDiffTy;
48  }
49
50  bool NeedsArrayCookie(const CXXNewExpr *expr);
51  bool NeedsArrayCookie(const CXXDeleteExpr *expr,
52                        QualType elementType);
53
54public:
55  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
56    CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
57
58  bool isZeroInitializable(const MemberPointerType *MPT);
59
60  const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
61
62  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
63                                               llvm::Value *&This,
64                                               llvm::Value *MemFnPtr,
65                                               const MemberPointerType *MPT);
66
67  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
68                                            llvm::Value *Base,
69                                            llvm::Value *MemPtr,
70                                            const MemberPointerType *MPT);
71
72  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
73                                           const CastExpr *E,
74                                           llvm::Value *Src);
75
76  llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
77                                              const CastExpr *E);
78
79  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
80
81  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
82  llvm::Constant *EmitMemberPointer(const FieldDecl *FD);
83
84  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
85                                           llvm::Value *L,
86                                           llvm::Value *R,
87                                           const MemberPointerType *MPT,
88                                           bool Inequality);
89
90  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
91                                          llvm::Value *Addr,
92                                          const MemberPointerType *MPT);
93
94  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
95                                 CXXCtorType T,
96                                 CanQualType &ResTy,
97                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
98
99  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
100                                CXXDtorType T,
101                                CanQualType &ResTy,
102                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
103
104  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
105                                   QualType &ResTy,
106                                   FunctionArgList &Params);
107
108  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
109
110  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
111  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
112                                     llvm::Value *NewPtr,
113                                     llvm::Value *NumElements,
114                                     const CXXNewExpr *expr,
115                                     QualType ElementType);
116  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
117                       const CXXDeleteExpr *expr,
118                       QualType ElementType, llvm::Value *&NumElements,
119                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
120
121  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
122                       llvm::GlobalVariable *DeclPtr);
123};
124
125class ARMCXXABI : public ItaniumCXXABI {
126public:
127  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
128
129  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
130                                 CXXCtorType T,
131                                 CanQualType &ResTy,
132                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
133
134  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
135                                CXXDtorType T,
136                                CanQualType &ResTy,
137                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
138
139  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
140                                   QualType &ResTy,
141                                   FunctionArgList &Params);
142
143  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
144
145  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
146
147  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
148  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
149                                     llvm::Value *NewPtr,
150                                     llvm::Value *NumElements,
151                                     const CXXNewExpr *expr,
152                                     QualType ElementType);
153  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
154                       const CXXDeleteExpr *expr,
155                       QualType ElementType, llvm::Value *&NumElements,
156                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
157
158private:
159  /// \brief Returns true if the given instance method is one of the
160  /// kinds that the ARM ABI says returns 'this'.
161  static bool HasThisReturn(GlobalDecl GD) {
162    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
163    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
164            (isa<CXXConstructorDecl>(MD)));
165  }
166};
167}
168
169CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
170  return new ItaniumCXXABI(CGM);
171}
172
173CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
174  return new ARMCXXABI(CGM);
175}
176
177const llvm::Type *
178ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
179  if (MPT->isMemberDataPointer())
180    return getPtrDiffTy();
181  else
182    return llvm::StructType::get(CGM.getLLVMContext(),
183                                 getPtrDiffTy(), getPtrDiffTy(), NULL);
184}
185
186/// In the Itanium and ARM ABIs, method pointers have the form:
187///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
188///
189/// In the Itanium ABI:
190///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
191///  - the this-adjustment is (memptr.adj)
192///  - the virtual offset is (memptr.ptr - 1)
193///
194/// In the ARM ABI:
195///  - method pointers are virtual if (memptr.adj & 1) is nonzero
196///  - the this-adjustment is (memptr.adj >> 1)
197///  - the virtual offset is (memptr.ptr)
198/// ARM uses 'adj' for the virtual flag because Thumb functions
199/// may be only single-byte aligned.
200///
201/// If the member is virtual, the adjusted 'this' pointer points
202/// to a vtable pointer from which the virtual offset is applied.
203///
204/// If the member is non-virtual, memptr.ptr is the address of
205/// the function to call.
206llvm::Value *
207ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
208                                               llvm::Value *&This,
209                                               llvm::Value *MemFnPtr,
210                                               const MemberPointerType *MPT) {
211  CGBuilderTy &Builder = CGF.Builder;
212
213  const FunctionProtoType *FPT =
214    MPT->getPointeeType()->getAs<FunctionProtoType>();
215  const CXXRecordDecl *RD =
216    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
217
218  const llvm::FunctionType *FTy =
219    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
220                                   FPT->isVariadic());
221
222  const llvm::IntegerType *ptrdiff = getPtrDiffTy();
223  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
224
225  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
226  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
227  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
228
229  // Extract memptr.adj, which is in the second field.
230  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
231
232  // Compute the true adjustment.
233  llvm::Value *Adj = RawAdj;
234  if (IsARM)
235    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
236
237  // Apply the adjustment and cast back to the original struct type
238  // for consistency.
239  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
240  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
241  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
242
243  // Load the function pointer.
244  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
245
246  // If the LSB in the function pointer is 1, the function pointer points to
247  // a virtual function.
248  llvm::Value *IsVirtual;
249  if (IsARM)
250    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
251  else
252    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
253  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
254  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
255
256  // In the virtual path, the adjustment left 'This' pointing to the
257  // vtable of the correct base subobject.  The "function pointer" is an
258  // offset within the vtable (+1 for the virtual flag on non-ARM).
259  CGF.EmitBlock(FnVirtual);
260
261  // Cast the adjusted this to a pointer to vtable pointer and load.
262  const llvm::Type *VTableTy = Builder.getInt8PtrTy();
263  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
264  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
265
266  // Apply the offset.
267  llvm::Value *VTableOffset = FnAsInt;
268  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
269  VTable = Builder.CreateGEP(VTable, VTableOffset);
270
271  // Load the virtual function to call.
272  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
273  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
274  CGF.EmitBranch(FnEnd);
275
276  // In the non-virtual path, the function pointer is actually a
277  // function pointer.
278  CGF.EmitBlock(FnNonVirtual);
279  llvm::Value *NonVirtualFn =
280    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
281
282  // We're done.
283  CGF.EmitBlock(FnEnd);
284  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo());
285  Callee->reserveOperandSpace(2);
286  Callee->addIncoming(VirtualFn, FnVirtual);
287  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
288  return Callee;
289}
290
291/// Compute an l-value by applying the given pointer-to-member to a
292/// base object.
293llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
294                                                         llvm::Value *Base,
295                                                         llvm::Value *MemPtr,
296                                           const MemberPointerType *MPT) {
297  assert(MemPtr->getType() == getPtrDiffTy());
298
299  CGBuilderTy &Builder = CGF.Builder;
300
301  unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
302
303  // Cast to char*.
304  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
305
306  // Apply the offset, which we assume is non-null.
307  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
308
309  // Cast the address to the appropriate pointer type, adopting the
310  // address space of the base pointer.
311  const llvm::Type *PType
312    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
313  return Builder.CreateBitCast(Addr, PType);
314}
315
316/// Perform a derived-to-base or base-to-derived member pointer conversion.
317///
318/// Obligatory offset/adjustment diagram:
319///         <-- offset -->          <-- adjustment -->
320///   |--------------------------|----------------------|--------------------|
321///   ^Derived address point     ^Base address point    ^Member address point
322///
323/// So when converting a base member pointer to a derived member pointer,
324/// we add the offset to the adjustment because the address point has
325/// decreased;  and conversely, when converting a derived MP to a base MP
326/// we subtract the offset from the adjustment because the address point
327/// has increased.
328///
329/// The standard forbids (at compile time) conversion to and from
330/// virtual bases, which is why we don't have to consider them here.
331///
332/// The standard forbids (at run time) casting a derived MP to a base
333/// MP when the derived MP does not point to a member of the base.
334/// This is why -1 is a reasonable choice for null data member
335/// pointers.
336llvm::Value *
337ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
338                                           const CastExpr *E,
339                                           llvm::Value *Src) {
340  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
341         E->getCastKind() == CK_BaseToDerivedMemberPointer);
342
343  if (isa<llvm::Constant>(Src))
344    return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
345
346  CGBuilderTy &Builder = CGF.Builder;
347
348  const MemberPointerType *SrcTy =
349    E->getSubExpr()->getType()->getAs<MemberPointerType>();
350  const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
351
352  const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
353  const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
354
355  bool DerivedToBase =
356    E->getCastKind() == CK_DerivedToBaseMemberPointer;
357
358  const CXXRecordDecl *DerivedDecl;
359  if (DerivedToBase)
360    DerivedDecl = SrcDecl;
361  else
362    DerivedDecl = DestDecl;
363
364  llvm::Constant *Adj =
365    CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
366                                         E->path_begin(),
367                                         E->path_end());
368  if (!Adj) return Src;
369
370  // For member data pointers, this is just a matter of adding the
371  // offset if the source is non-null.
372  if (SrcTy->isMemberDataPointer()) {
373    llvm::Value *Dst;
374    if (DerivedToBase)
375      Dst = Builder.CreateNSWSub(Src, Adj, "adj");
376    else
377      Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
378
379    // Null check.
380    llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
381    llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
382    return Builder.CreateSelect(IsNull, Src, Dst);
383  }
384
385  // The this-adjustment is left-shifted by 1 on ARM.
386  if (IsARM) {
387    uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
388    Offset <<= 1;
389    Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
390  }
391
392  llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
393  llvm::Value *DstAdj;
394  if (DerivedToBase)
395    DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
396  else
397    DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
398
399  return Builder.CreateInsertValue(Src, DstAdj, 1);
400}
401
402llvm::Constant *
403ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
404                                           const CastExpr *E) {
405  const MemberPointerType *SrcTy =
406    E->getSubExpr()->getType()->getAs<MemberPointerType>();
407  const MemberPointerType *DestTy =
408    E->getType()->getAs<MemberPointerType>();
409
410  bool DerivedToBase =
411    E->getCastKind() == CK_DerivedToBaseMemberPointer;
412
413  const CXXRecordDecl *DerivedDecl;
414  if (DerivedToBase)
415    DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
416  else
417    DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
418
419  // Calculate the offset to the base class.
420  llvm::Constant *Offset =
421    CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
422                                     E->path_begin(),
423                                     E->path_end());
424  // If there's no offset, we're done.
425  if (!Offset) return C;
426
427  // If the source is a member data pointer, we have to do a null
428  // check and then add the offset.  In the common case, we can fold
429  // away the offset.
430  if (SrcTy->isMemberDataPointer()) {
431    assert(C->getType() == getPtrDiffTy());
432
433    // If it's a constant int, just create a new constant int.
434    if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
435      int64_t Src = CI->getSExtValue();
436
437      // Null converts to null.
438      if (Src == -1) return CI;
439
440      // Otherwise, just add the offset.
441      int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
442      int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
443      return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
444    }
445
446    // Otherwise, we have to form a constant select expression.
447    llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
448
449    llvm::Constant *IsNull =
450      llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
451
452    llvm::Constant *Dst;
453    if (DerivedToBase)
454      Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
455    else
456      Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
457
458    return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
459  }
460
461  // The this-adjustment is left-shifted by 1 on ARM.
462  if (IsARM) {
463    int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
464    OffsetV <<= 1;
465    Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
466  }
467
468  llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
469
470  llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
471  if (DerivedToBase)
472    Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
473  else
474    Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
475
476  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
477                                   /*Packed=*/false);
478}
479
480
481llvm::Constant *
482ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
483  const llvm::Type *ptrdiff_t = getPtrDiffTy();
484
485  // Itanium C++ ABI 2.3:
486  //   A NULL pointer is represented as -1.
487  if (MPT->isMemberDataPointer())
488    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
489
490  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
491  llvm::Constant *Values[2] = { Zero, Zero };
492  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
493                                   /*Packed=*/false);
494}
495
496static uint64_t getFieldOffset(const FieldDecl *FD, CodeGenModule &CGM) {
497  const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(FD->getParent());
498  const llvm::StructType *ClassLTy = RL.getLLVMType();
499
500  unsigned FieldNo = RL.getLLVMFieldNo(FD);
501  return
502       CGM.getTargetData().getStructLayout(ClassLTy)->getElementOffset(FieldNo);
503}
504
505llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const FieldDecl *FD) {
506  // Itanium C++ ABI 2.3:
507  //   A pointer to data member is an offset from the base address of
508  //   the class object containing it, represented as a ptrdiff_t
509
510  const RecordDecl *parent = FD->getParent();
511  if (!parent->isAnonymousStructOrUnion())
512    return llvm::ConstantInt::get(getPtrDiffTy(), getFieldOffset(FD, CGM));
513
514  // Handle a field injected from an anonymous struct or union.
515
516  assert(FD->getDeclName() && "Requested pointer to member with no name!");
517
518  // Find the record which the field was injected into.
519  while (parent->isAnonymousStructOrUnion())
520    parent = cast<RecordDecl>(parent->getParent());
521
522  RecordDecl::lookup_const_result lookup = parent->lookup(FD->getDeclName());
523  assert(lookup.first != lookup.second && "Didn't find the field!");
524  const IndirectFieldDecl *indirectFD = cast<IndirectFieldDecl>(*lookup.first);
525
526  uint64_t Offset = 0;
527  for (IndirectFieldDecl::chain_iterator
528         I= indirectFD->chain_begin(), E= indirectFD->chain_end(); I!=E; ++I) {
529    Offset += getFieldOffset(cast<FieldDecl>(*I), CGM);
530  }
531
532  return llvm::ConstantInt::get(getPtrDiffTy(), Offset);
533}
534
535llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
536  assert(MD->isInstance() && "Member function must not be static!");
537  MD = MD->getCanonicalDecl();
538
539  CodeGenTypes &Types = CGM.getTypes();
540  const llvm::Type *ptrdiff_t = getPtrDiffTy();
541
542  // Get the function pointer (or index if this is a virtual function).
543  llvm::Constant *MemPtr[2];
544  if (MD->isVirtual()) {
545    uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD);
546
547    // FIXME: We shouldn't use / 8 here.
548    uint64_t PointerWidthInBytes =
549      getContext().Target.getPointerWidth(0) / 8;
550    uint64_t VTableOffset = (Index * PointerWidthInBytes);
551
552    if (IsARM) {
553      // ARM C++ ABI 3.2.1:
554      //   This ABI specifies that adj contains twice the this
555      //   adjustment, plus 1 if the member function is virtual. The
556      //   least significant bit of adj then makes exactly the same
557      //   discrimination as the least significant bit of ptr does for
558      //   Itanium.
559      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
560      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
561    } else {
562      // Itanium C++ ABI 2.3:
563      //   For a virtual function, [the pointer field] is 1 plus the
564      //   virtual table offset (in bytes) of the function,
565      //   represented as a ptrdiff_t.
566      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
567      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
568    }
569  } else {
570    const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
571    const llvm::Type *Ty;
572    // Check whether the function has a computable LLVM signature.
573    if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) {
574      // The function has a computable LLVM signature; use the correct type.
575      Ty = Types.GetFunctionType(Types.getFunctionInfo(MD), FPT->isVariadic());
576    } else {
577      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
578      // function type is incomplete.
579      Ty = ptrdiff_t;
580    }
581
582    llvm::Constant *Addr = CGM.GetAddrOfFunction(MD, Ty);
583    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(Addr, ptrdiff_t);
584    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
585  }
586
587  return llvm::ConstantStruct::get(CGM.getLLVMContext(),
588                                   MemPtr, 2, /*Packed=*/false);
589}
590
591/// The comparison algorithm is pretty easy: the member pointers are
592/// the same if they're either bitwise identical *or* both null.
593///
594/// ARM is different here only because null-ness is more complicated.
595llvm::Value *
596ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
597                                           llvm::Value *L,
598                                           llvm::Value *R,
599                                           const MemberPointerType *MPT,
600                                           bool Inequality) {
601  CGBuilderTy &Builder = CGF.Builder;
602
603  llvm::ICmpInst::Predicate Eq;
604  llvm::Instruction::BinaryOps And, Or;
605  if (Inequality) {
606    Eq = llvm::ICmpInst::ICMP_NE;
607    And = llvm::Instruction::Or;
608    Or = llvm::Instruction::And;
609  } else {
610    Eq = llvm::ICmpInst::ICMP_EQ;
611    And = llvm::Instruction::And;
612    Or = llvm::Instruction::Or;
613  }
614
615  // Member data pointers are easy because there's a unique null
616  // value, so it just comes down to bitwise equality.
617  if (MPT->isMemberDataPointer())
618    return Builder.CreateICmp(Eq, L, R);
619
620  // For member function pointers, the tautologies are more complex.
621  // The Itanium tautology is:
622  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
623  // The ARM tautology is:
624  //   (L == R) <==> (L.ptr == R.ptr &&
625  //                  (L.adj == R.adj ||
626  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
627  // The inequality tautologies have exactly the same structure, except
628  // applying De Morgan's laws.
629
630  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
631  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
632
633  // This condition tests whether L.ptr == R.ptr.  This must always be
634  // true for equality to hold.
635  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
636
637  // This condition, together with the assumption that L.ptr == R.ptr,
638  // tests whether the pointers are both null.  ARM imposes an extra
639  // condition.
640  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
641  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
642
643  // This condition tests whether L.adj == R.adj.  If this isn't
644  // true, the pointers are unequal unless they're both null.
645  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
646  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
647  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
648
649  // Null member function pointers on ARM clear the low bit of Adj,
650  // so the zero condition has to check that neither low bit is set.
651  if (IsARM) {
652    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
653
654    // Compute (l.adj | r.adj) & 1 and test it against zero.
655    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
656    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
657    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
658                                                      "cmp.or.adj");
659    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
660  }
661
662  // Tie together all our conditions.
663  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
664  Result = Builder.CreateBinOp(And, PtrEq, Result,
665                               Inequality ? "memptr.ne" : "memptr.eq");
666  return Result;
667}
668
669llvm::Value *
670ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
671                                          llvm::Value *MemPtr,
672                                          const MemberPointerType *MPT) {
673  CGBuilderTy &Builder = CGF.Builder;
674
675  /// For member data pointers, this is just a check against -1.
676  if (MPT->isMemberDataPointer()) {
677    assert(MemPtr->getType() == getPtrDiffTy());
678    llvm::Value *NegativeOne =
679      llvm::Constant::getAllOnesValue(MemPtr->getType());
680    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
681  }
682
683  // In Itanium, a member function pointer is null if 'ptr' is null.
684  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
685
686  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
687  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
688
689  // In ARM, it's that, plus the low bit of 'adj' must be zero.
690  if (IsARM) {
691    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
692    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
693    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
694    llvm::Value *IsNotVirtual = Builder.CreateICmpEQ(VirtualBit, Zero,
695                                                     "memptr.notvirtual");
696    Result = Builder.CreateAnd(Result, IsNotVirtual);
697  }
698
699  return Result;
700}
701
702/// The Itanium ABI requires non-zero initialization only for data
703/// member pointers, for which '0' is a valid offset.
704bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
705  return MPT->getPointeeType()->isFunctionType();
706}
707
708/// The generic ABI passes 'this', plus a VTT if it's initializing a
709/// base subobject.
710void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
711                                              CXXCtorType Type,
712                                              CanQualType &ResTy,
713                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
714  ASTContext &Context = getContext();
715
716  // 'this' is already there.
717
718  // Check if we need to add a VTT parameter (which has type void **).
719  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
720    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
721}
722
723/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
724void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
725                                          CXXCtorType Type,
726                                          CanQualType &ResTy,
727                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
728  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
729  ResTy = ArgTys[0];
730}
731
732/// The generic ABI passes 'this', plus a VTT if it's destroying a
733/// base subobject.
734void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
735                                             CXXDtorType Type,
736                                             CanQualType &ResTy,
737                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
738  ASTContext &Context = getContext();
739
740  // 'this' is already there.
741
742  // Check if we need to add a VTT parameter (which has type void **).
743  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
744    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
745}
746
747/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
748/// for non-deleting destructors.
749void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
750                                         CXXDtorType Type,
751                                         CanQualType &ResTy,
752                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
753  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
754
755  if (Type != Dtor_Deleting)
756    ResTy = ArgTys[0];
757}
758
759void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
760                                                QualType &ResTy,
761                                                FunctionArgList &Params) {
762  /// Create the 'this' variable.
763  BuildThisParam(CGF, Params);
764
765  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
766  assert(MD->isInstance());
767
768  // Check if we need a VTT parameter as well.
769  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
770    ASTContext &Context = getContext();
771
772    // FIXME: avoid the fake decl
773    QualType T = Context.getPointerType(Context.VoidPtrTy);
774    ImplicitParamDecl *VTTDecl
775      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
776                                  &Context.Idents.get("vtt"), T);
777    Params.push_back(std::make_pair(VTTDecl, VTTDecl->getType()));
778    getVTTDecl(CGF) = VTTDecl;
779  }
780}
781
782void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
783                                            QualType &ResTy,
784                                            FunctionArgList &Params) {
785  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
786
787  // Return 'this' from certain constructors and destructors.
788  if (HasThisReturn(CGF.CurGD))
789    ResTy = Params[0].second;
790}
791
792void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
793  /// Initialize the 'this' slot.
794  EmitThisParam(CGF);
795
796  /// Initialize the 'vtt' slot if needed.
797  if (getVTTDecl(CGF)) {
798    getVTTValue(CGF)
799      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
800                               "vtt");
801  }
802}
803
804void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
805  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
806
807  /// Initialize the return slot to 'this' at the start of the
808  /// function.
809  if (HasThisReturn(CGF.CurGD))
810    CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
811}
812
813void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
814                                    RValue RV, QualType ResultType) {
815  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
816    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
817
818  // Destructor thunks in the ARM ABI have indeterminate results.
819  const llvm::Type *T =
820    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
821  RValue Undef = RValue::get(llvm::UndefValue::get(T));
822  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
823}
824
825/************************** Array allocation cookies **************************/
826
827bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
828  // If the class's usual deallocation function takes two arguments,
829  // it needs a cookie.
830  if (expr->doesUsualArrayDeleteWantSize())
831    return true;
832
833  // Otherwise, if the class has a non-trivial destructor, it always
834  // needs a cookie.
835  const CXXRecordDecl *record =
836    expr->getAllocatedType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
837  return (record && !record->hasTrivialDestructor());
838}
839
840bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
841                                     QualType elementType) {
842  // If the class's usual deallocation function takes two arguments,
843  // it needs a cookie.
844  if (expr->doesUsualArrayDeleteWantSize())
845    return true;
846
847  // Otherwise, if the class has a non-trivial destructor, it always
848  // needs a cookie.
849  const CXXRecordDecl *record =
850    elementType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
851  return (record && !record->hasTrivialDestructor());
852}
853
854CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
855  if (!NeedsArrayCookie(expr))
856    return CharUnits::Zero();
857
858  // Padding is the maximum of sizeof(size_t) and alignof(elementType)
859  ASTContext &Ctx = getContext();
860  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
861                  Ctx.getTypeAlignInChars(expr->getAllocatedType()));
862}
863
864llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
865                                                  llvm::Value *NewPtr,
866                                                  llvm::Value *NumElements,
867                                                  const CXXNewExpr *expr,
868                                                  QualType ElementType) {
869  assert(NeedsArrayCookie(expr));
870
871  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
872
873  ASTContext &Ctx = getContext();
874  QualType SizeTy = Ctx.getSizeType();
875  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
876
877  // The size of the cookie.
878  CharUnits CookieSize =
879    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
880
881  // Compute an offset to the cookie.
882  llvm::Value *CookiePtr = NewPtr;
883  CharUnits CookieOffset = CookieSize - SizeSize;
884  if (!CookieOffset.isZero())
885    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
886                                                 CookieOffset.getQuantity());
887
888  // Write the number of elements into the appropriate slot.
889  llvm::Value *NumElementsPtr
890    = CGF.Builder.CreateBitCast(CookiePtr,
891                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
892  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
893
894  // Finally, compute a pointer to the actual data buffer by skipping
895  // over the cookie completely.
896  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
897                                                CookieSize.getQuantity());
898}
899
900void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
901                                    llvm::Value *Ptr,
902                                    const CXXDeleteExpr *expr,
903                                    QualType ElementType,
904                                    llvm::Value *&NumElements,
905                                    llvm::Value *&AllocPtr,
906                                    CharUnits &CookieSize) {
907  // Derive a char* in the same address space as the pointer.
908  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
909  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
910
911  // If we don't need an array cookie, bail out early.
912  if (!NeedsArrayCookie(expr, ElementType)) {
913    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
914    NumElements = 0;
915    CookieSize = CharUnits::Zero();
916    return;
917  }
918
919  QualType SizeTy = getContext().getSizeType();
920  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
921  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
922
923  CookieSize
924    = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
925
926  CharUnits NumElementsOffset = CookieSize - SizeSize;
927
928  // Compute the allocated pointer.
929  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
930  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
931                                                    -CookieSize.getQuantity());
932
933  llvm::Value *NumElementsPtr = AllocPtr;
934  if (!NumElementsOffset.isZero())
935    NumElementsPtr =
936      CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
937                                             NumElementsOffset.getQuantity());
938  NumElementsPtr =
939    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
940  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
941}
942
943CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
944  if (!NeedsArrayCookie(expr))
945    return CharUnits::Zero();
946
947  // On ARM, the cookie is always:
948  //   struct array_cookie {
949  //     std::size_t element_size; // element_size != 0
950  //     std::size_t element_count;
951  //   };
952  // TODO: what should we do if the allocated type actually wants
953  // greater alignment?
954  return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
955}
956
957llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
958                                              llvm::Value *NewPtr,
959                                              llvm::Value *NumElements,
960                                              const CXXNewExpr *expr,
961                                              QualType ElementType) {
962  assert(NeedsArrayCookie(expr));
963
964  // NewPtr is a char*.
965
966  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
967
968  ASTContext &Ctx = getContext();
969  CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
970  const llvm::IntegerType *SizeTy =
971    cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
972
973  // The cookie is always at the start of the buffer.
974  llvm::Value *CookiePtr = NewPtr;
975
976  // The first element is the element size.
977  CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
978  llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
979                          Ctx.getTypeSizeInChars(ElementType).getQuantity());
980  CGF.Builder.CreateStore(ElementSize, CookiePtr);
981
982  // The second element is the element count.
983  CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
984  CGF.Builder.CreateStore(NumElements, CookiePtr);
985
986  // Finally, compute a pointer to the actual data buffer by skipping
987  // over the cookie completely.
988  CharUnits CookieSize = 2 * SizeSize;
989  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
990                                                CookieSize.getQuantity());
991}
992
993void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
994                                llvm::Value *Ptr,
995                                const CXXDeleteExpr *expr,
996                                QualType ElementType,
997                                llvm::Value *&NumElements,
998                                llvm::Value *&AllocPtr,
999                                CharUnits &CookieSize) {
1000  // Derive a char* in the same address space as the pointer.
1001  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1002  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
1003
1004  // If we don't need an array cookie, bail out early.
1005  if (!NeedsArrayCookie(expr, ElementType)) {
1006    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1007    NumElements = 0;
1008    CookieSize = CharUnits::Zero();
1009    return;
1010  }
1011
1012  QualType SizeTy = getContext().getSizeType();
1013  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
1014  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
1015
1016  // The cookie size is always 2 * sizeof(size_t).
1017  CookieSize = 2 * SizeSize;
1018
1019  // The allocated pointer is the input ptr, minus that amount.
1020  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1021  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1022                                               -CookieSize.getQuantity());
1023
1024  // The number of elements is at offset sizeof(size_t) relative to that.
1025  llvm::Value *NumElementsPtr
1026    = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1027                                             SizeSize.getQuantity());
1028  NumElementsPtr =
1029    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1030  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1031}
1032
1033/*********************** Static local initialization **************************/
1034
1035static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1036                                         const llvm::PointerType *GuardPtrTy) {
1037  // int __cxa_guard_acquire(__guard *guard_object);
1038
1039  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1040  const llvm::FunctionType *FTy =
1041    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1042                            Args, /*isVarArg=*/false);
1043
1044  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
1045}
1046
1047static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1048                                         const llvm::PointerType *GuardPtrTy) {
1049  // void __cxa_guard_release(__guard *guard_object);
1050
1051  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1052
1053  const llvm::FunctionType *FTy =
1054    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1055                            Args, /*isVarArg=*/false);
1056
1057  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
1058}
1059
1060static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1061                                       const llvm::PointerType *GuardPtrTy) {
1062  // void __cxa_guard_abort(__guard *guard_object);
1063
1064  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1065
1066  const llvm::FunctionType *FTy =
1067    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1068                            Args, /*isVarArg=*/false);
1069
1070  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
1071}
1072
1073namespace {
1074  struct CallGuardAbort : EHScopeStack::Cleanup {
1075    llvm::GlobalVariable *Guard;
1076    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1077
1078    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1079      CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1080        ->setDoesNotThrow();
1081    }
1082  };
1083}
1084
1085/// The ARM code here follows the Itanium code closely enough that we
1086/// just special-case it at particular places.
1087void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1088                                    const VarDecl &D,
1089                                    llvm::GlobalVariable *GV) {
1090  CGBuilderTy &Builder = CGF.Builder;
1091
1092  // We only need to use thread-safe statics for local variables;
1093  // global initialization is always single-threaded.
1094  bool ThreadsafeStatics = (getContext().getLangOptions().ThreadsafeStatics &&
1095                            D.isLocalVarDecl());
1096
1097  // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1098  const llvm::IntegerType *GuardTy
1099    = (IsARM ? Builder.getInt32Ty() : Builder.getInt64Ty());
1100  const llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
1101
1102  // Create the guard variable.
1103  llvm::SmallString<256> GuardVName;
1104  getMangleContext().mangleItaniumGuardVariable(&D, GuardVName);
1105
1106  // Just absorb linkage and visibility from the variable.
1107  llvm::GlobalVariable *GuardVariable =
1108    new llvm::GlobalVariable(CGM.getModule(), GuardTy,
1109                             false, GV->getLinkage(),
1110                             llvm::ConstantInt::get(GuardTy, 0),
1111                             GuardVName.str());
1112  GuardVariable->setVisibility(GV->getVisibility());
1113
1114  // Test whether the variable has completed initialization.
1115  llvm::Value *IsInitialized;
1116
1117  // ARM C++ ABI 3.2.3.1:
1118  //   To support the potential use of initialization guard variables
1119  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1120  //   synchronizing instructions we define a static initialization
1121  //   guard variable to be a 4-byte aligned, 4- byte word with the
1122  //   following inline access protocol.
1123  //     #define INITIALIZED 1
1124  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1125  //       if (__cxa_guard_acquire(&obj_guard))
1126  //         ...
1127  //     }
1128  if (IsARM) {
1129    llvm::Value *V = Builder.CreateLoad(GuardVariable);
1130    V = Builder.CreateAnd(V, Builder.getInt32(1));
1131    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1132
1133  // Itanium C++ ABI 3.3.2:
1134  //   The following is pseudo-code showing how these functions can be used:
1135  //     if (obj_guard.first_byte == 0) {
1136  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1137  //         try {
1138  //           ... initialize the object ...;
1139  //         } catch (...) {
1140  //            __cxa_guard_abort (&obj_guard);
1141  //            throw;
1142  //         }
1143  //         ... queue object destructor with __cxa_atexit() ...;
1144  //         __cxa_guard_release (&obj_guard);
1145  //       }
1146  //     }
1147  } else {
1148    // Load the first byte of the guard variable.
1149    const llvm::Type *PtrTy = Builder.getInt8PtrTy();
1150    llvm::Value *V =
1151      Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy), "tmp");
1152
1153    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1154  }
1155
1156  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1157  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1158
1159  // Check if the first byte of the guard variable is zero.
1160  Builder.CreateCondBr(IsInitialized, InitCheckBlock, EndBlock);
1161
1162  CGF.EmitBlock(InitCheckBlock);
1163
1164  // Variables used when coping with thread-safe statics and exceptions.
1165  if (ThreadsafeStatics) {
1166    // Call __cxa_guard_acquire.
1167    llvm::Value *V
1168      = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
1169
1170    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1171
1172    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1173                         InitBlock, EndBlock);
1174
1175    // Call __cxa_guard_abort along the exceptional edge.
1176    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
1177
1178    CGF.EmitBlock(InitBlock);
1179  }
1180
1181  // Emit the initializer and add a global destructor if appropriate.
1182  CGF.EmitCXXGlobalVarDeclInit(D, GV);
1183
1184  if (ThreadsafeStatics) {
1185    // Pop the guard-abort cleanup if we pushed one.
1186    CGF.PopCleanupBlock();
1187
1188    // Call __cxa_guard_release.  This cannot throw.
1189    Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
1190  } else {
1191    Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
1192  }
1193
1194  CGF.EmitBlock(EndBlock);
1195}
1196