ItaniumCXXABI.cpp revision 5cd91b513455fd7753e8815b54f0a49bbca6602d
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targetting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CodeGenFunction.h"
24#include "CodeGenModule.h"
25#include "Mangle.h"
26#include <clang/AST/Type.h>
27#include <llvm/Target/TargetData.h>
28#include <llvm/Value.h>
29
30using namespace clang;
31using namespace CodeGen;
32
33namespace {
34class ItaniumCXXABI : public CodeGen::CGCXXABI {
35private:
36  const llvm::IntegerType *PtrDiffTy;
37protected:
38  CodeGen::MangleContext MangleCtx;
39  bool IsARM;
40
41  // It's a little silly for us to cache this.
42  const llvm::IntegerType *getPtrDiffTy() {
43    if (!PtrDiffTy) {
44      QualType T = getContext().getPointerDiffType();
45      const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T);
46      PtrDiffTy = cast<llvm::IntegerType>(Ty);
47    }
48    return PtrDiffTy;
49  }
50
51  bool NeedsArrayCookie(QualType ElementType);
52
53public:
54  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
55    CGCXXABI(CGM), PtrDiffTy(0), MangleCtx(getContext(), CGM.getDiags()),
56    IsARM(IsARM) { }
57
58  CodeGen::MangleContext &getMangleContext() {
59    return MangleCtx;
60  }
61
62  bool isZeroInitializable(const MemberPointerType *MPT);
63
64  const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
65
66  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
67                                               llvm::Value *&This,
68                                               llvm::Value *MemFnPtr,
69                                               const MemberPointerType *MPT);
70
71  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
72                                            llvm::Value *Base,
73                                            llvm::Value *MemPtr,
74                                            const MemberPointerType *MPT);
75
76  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
77                                           const CastExpr *E,
78                                           llvm::Value *Src);
79
80  llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
81                                              const CastExpr *E);
82
83  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
84
85  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
86  llvm::Constant *EmitMemberPointer(const FieldDecl *FD);
87
88  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
89                                           llvm::Value *L,
90                                           llvm::Value *R,
91                                           const MemberPointerType *MPT,
92                                           bool Inequality);
93
94  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
95                                          llvm::Value *Addr,
96                                          const MemberPointerType *MPT);
97
98  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
99                                 CXXCtorType T,
100                                 CanQualType &ResTy,
101                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
102
103  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
104                                CXXDtorType T,
105                                CanQualType &ResTy,
106                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
107
108  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
109                                   QualType &ResTy,
110                                   FunctionArgList &Params);
111
112  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
113
114  CharUnits GetArrayCookieSize(QualType ElementType);
115  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
116                                     llvm::Value *NewPtr,
117                                     llvm::Value *NumElements,
118                                     QualType ElementType);
119  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
120                       QualType ElementType, llvm::Value *&NumElements,
121                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
122
123  void EmitStaticLocalInit(CodeGenFunction &CGF, const VarDecl &D,
124                           llvm::GlobalVariable *DeclPtr);
125};
126
127class ARMCXXABI : public ItaniumCXXABI {
128public:
129  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
130
131  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
132                                 CXXCtorType T,
133                                 CanQualType &ResTy,
134                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
135
136  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
137                                CXXDtorType T,
138                                CanQualType &ResTy,
139                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
140
141  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
142                                   QualType &ResTy,
143                                   FunctionArgList &Params);
144
145  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
146
147  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
148
149  CharUnits GetArrayCookieSize(QualType ElementType);
150  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
151                                     llvm::Value *NewPtr,
152                                     llvm::Value *NumElements,
153                                     QualType ElementType);
154  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
155                       QualType ElementType, llvm::Value *&NumElements,
156                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
157
158private:
159  /// \brief Returns true if the given instance method is one of the
160  /// kinds that the ARM ABI says returns 'this'.
161  static bool HasThisReturn(GlobalDecl GD) {
162    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
163    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
164            (isa<CXXConstructorDecl>(MD)));
165  }
166};
167}
168
169CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
170  return new ItaniumCXXABI(CGM);
171}
172
173CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
174  return new ARMCXXABI(CGM);
175}
176
177const llvm::Type *
178ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
179  if (MPT->isMemberDataPointer())
180    return getPtrDiffTy();
181  else
182    return llvm::StructType::get(CGM.getLLVMContext(),
183                                 getPtrDiffTy(), getPtrDiffTy(), NULL);
184}
185
186/// In the Itanium and ARM ABIs, method pointers have the form:
187///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
188///
189/// In the Itanium ABI:
190///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
191///  - the this-adjustment is (memptr.adj)
192///  - the virtual offset is (memptr.ptr - 1)
193///
194/// In the ARM ABI:
195///  - method pointers are virtual if (memptr.adj & 1) is nonzero
196///  - the this-adjustment is (memptr.adj >> 1)
197///  - the virtual offset is (memptr.ptr)
198/// ARM uses 'adj' for the virtual flag because Thumb functions
199/// may be only single-byte aligned.
200///
201/// If the member is virtual, the adjusted 'this' pointer points
202/// to a vtable pointer from which the virtual offset is applied.
203///
204/// If the member is non-virtual, memptr.ptr is the address of
205/// the function to call.
206llvm::Value *
207ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
208                                               llvm::Value *&This,
209                                               llvm::Value *MemFnPtr,
210                                               const MemberPointerType *MPT) {
211  CGBuilderTy &Builder = CGF.Builder;
212
213  const FunctionProtoType *FPT =
214    MPT->getPointeeType()->getAs<FunctionProtoType>();
215  const CXXRecordDecl *RD =
216    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
217
218  const llvm::FunctionType *FTy =
219    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
220                                   FPT->isVariadic());
221
222  const llvm::IntegerType *ptrdiff = getPtrDiffTy();
223  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
224
225  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
226  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
227  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
228
229  // Extract memptr.adj, which is in the second field.
230  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
231
232  // Compute the true adjustment.
233  llvm::Value *Adj = RawAdj;
234  if (IsARM)
235    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
236
237  // Apply the adjustment and cast back to the original struct type
238  // for consistency.
239  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
240  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
241  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
242
243  // Load the function pointer.
244  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
245
246  // If the LSB in the function pointer is 1, the function pointer points to
247  // a virtual function.
248  llvm::Value *IsVirtual;
249  if (IsARM)
250    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
251  else
252    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
253  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
254  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
255
256  // In the virtual path, the adjustment left 'This' pointing to the
257  // vtable of the correct base subobject.  The "function pointer" is an
258  // offset within the vtable (+1 for the virtual flag on non-ARM).
259  CGF.EmitBlock(FnVirtual);
260
261  // Cast the adjusted this to a pointer to vtable pointer and load.
262  const llvm::Type *VTableTy = Builder.getInt8PtrTy();
263  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
264  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
265
266  // Apply the offset.
267  llvm::Value *VTableOffset = FnAsInt;
268  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
269  VTable = Builder.CreateGEP(VTable, VTableOffset);
270
271  // Load the virtual function to call.
272  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
273  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
274  CGF.EmitBranch(FnEnd);
275
276  // In the non-virtual path, the function pointer is actually a
277  // function pointer.
278  CGF.EmitBlock(FnNonVirtual);
279  llvm::Value *NonVirtualFn =
280    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
281
282  // We're done.
283  CGF.EmitBlock(FnEnd);
284  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo());
285  Callee->reserveOperandSpace(2);
286  Callee->addIncoming(VirtualFn, FnVirtual);
287  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
288  return Callee;
289}
290
291/// Compute an l-value by applying the given pointer-to-member to a
292/// base object.
293llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
294                                                         llvm::Value *Base,
295                                                         llvm::Value *MemPtr,
296                                           const MemberPointerType *MPT) {
297  assert(MemPtr->getType() == getPtrDiffTy());
298
299  CGBuilderTy &Builder = CGF.Builder;
300
301  unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
302
303  // Cast to char*.
304  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
305
306  // Apply the offset, which we assume is non-null.
307  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
308
309  // Cast the address to the appropriate pointer type, adopting the
310  // address space of the base pointer.
311  const llvm::Type *PType
312    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
313  return Builder.CreateBitCast(Addr, PType);
314}
315
316/// Perform a derived-to-base or base-to-derived member pointer conversion.
317///
318/// Obligatory offset/adjustment diagram:
319///         <-- offset -->          <-- adjustment -->
320///   |--------------------------|----------------------|--------------------|
321///   ^Derived address point     ^Base address point    ^Member address point
322///
323/// So when converting a base member pointer to a derived member pointer,
324/// we add the offset to the adjustment because the address point has
325/// decreased;  and conversely, when converting a derived MP to a base MP
326/// we subtract the offset from the adjustment because the address point
327/// has increased.
328///
329/// The standard forbids (at compile time) conversion to and from
330/// virtual bases, which is why we don't have to consider them here.
331///
332/// The standard forbids (at run time) casting a derived MP to a base
333/// MP when the derived MP does not point to a member of the base.
334/// This is why -1 is a reasonable choice for null data member
335/// pointers.
336llvm::Value *
337ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
338                                           const CastExpr *E,
339                                           llvm::Value *Src) {
340  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
341         E->getCastKind() == CK_BaseToDerivedMemberPointer);
342
343  if (isa<llvm::Constant>(Src))
344    return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
345
346  CGBuilderTy &Builder = CGF.Builder;
347
348  const MemberPointerType *SrcTy =
349    E->getSubExpr()->getType()->getAs<MemberPointerType>();
350  const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
351
352  const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
353  const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
354
355  bool DerivedToBase =
356    E->getCastKind() == CK_DerivedToBaseMemberPointer;
357
358  const CXXRecordDecl *BaseDecl, *DerivedDecl;
359  if (DerivedToBase)
360    DerivedDecl = SrcDecl, BaseDecl = DestDecl;
361  else
362    BaseDecl = SrcDecl, DerivedDecl = DestDecl;
363
364  llvm::Constant *Adj =
365    CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
366                                         E->path_begin(),
367                                         E->path_end());
368  if (!Adj) return Src;
369
370  // For member data pointers, this is just a matter of adding the
371  // offset if the source is non-null.
372  if (SrcTy->isMemberDataPointer()) {
373    llvm::Value *Dst;
374    if (DerivedToBase)
375      Dst = Builder.CreateNSWSub(Src, Adj, "adj");
376    else
377      Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
378
379    // Null check.
380    llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
381    llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
382    return Builder.CreateSelect(IsNull, Src, Dst);
383  }
384
385  // The this-adjustment is left-shifted by 1 on ARM.
386  if (IsARM) {
387    uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
388    Offset <<= 1;
389    Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
390  }
391
392  llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
393  llvm::Value *DstAdj;
394  if (DerivedToBase)
395    DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
396  else
397    DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
398
399  return Builder.CreateInsertValue(Src, DstAdj, 1);
400}
401
402llvm::Constant *
403ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
404                                           const CastExpr *E) {
405  const MemberPointerType *SrcTy =
406    E->getSubExpr()->getType()->getAs<MemberPointerType>();
407  const MemberPointerType *DestTy =
408    E->getType()->getAs<MemberPointerType>();
409
410  bool DerivedToBase =
411    E->getCastKind() == CK_DerivedToBaseMemberPointer;
412
413  const CXXRecordDecl *DerivedDecl;
414  if (DerivedToBase)
415    DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
416  else
417    DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
418
419  // Calculate the offset to the base class.
420  llvm::Constant *Offset =
421    CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
422                                     E->path_begin(),
423                                     E->path_end());
424  // If there's no offset, we're done.
425  if (!Offset) return C;
426
427  // If the source is a member data pointer, we have to do a null
428  // check and then add the offset.  In the common case, we can fold
429  // away the offset.
430  if (SrcTy->isMemberDataPointer()) {
431    assert(C->getType() == getPtrDiffTy());
432
433    // If it's a constant int, just create a new constant int.
434    if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
435      int64_t Src = CI->getSExtValue();
436
437      // Null converts to null.
438      if (Src == -1) return CI;
439
440      // Otherwise, just add the offset.
441      int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
442      int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
443      return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
444    }
445
446    // Otherwise, we have to form a constant select expression.
447    llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
448
449    llvm::Constant *IsNull =
450      llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
451
452    llvm::Constant *Dst;
453    if (DerivedToBase)
454      Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
455    else
456      Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
457
458    return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
459  }
460
461  // The this-adjustment is left-shifted by 1 on ARM.
462  if (IsARM) {
463    int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
464    OffsetV <<= 1;
465    Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
466  }
467
468  llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
469
470  llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
471  if (DerivedToBase)
472    Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
473  else
474    Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
475
476  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
477                                   /*Packed=*/false);
478}
479
480
481llvm::Constant *
482ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
483  const llvm::Type *ptrdiff_t = getPtrDiffTy();
484
485  // Itanium C++ ABI 2.3:
486  //   A NULL pointer is represented as -1.
487  if (MPT->isMemberDataPointer())
488    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
489
490  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
491  llvm::Constant *Values[2] = { Zero, Zero };
492  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
493                                   /*Packed=*/false);
494}
495
496llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const FieldDecl *FD) {
497  // Itanium C++ ABI 2.3:
498  //   A pointer to data member is an offset from the base address of
499  //   the class object containing it, represented as a ptrdiff_t
500
501  QualType ClassType = getContext().getTypeDeclType(FD->getParent());
502  const llvm::StructType *ClassLTy =
503    cast<llvm::StructType>(CGM.getTypes().ConvertType(ClassType));
504
505  const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(FD->getParent());
506  unsigned FieldNo = RL.getLLVMFieldNo(FD);
507  uint64_t Offset =
508    CGM.getTargetData().getStructLayout(ClassLTy)->getElementOffset(FieldNo);
509
510  return llvm::ConstantInt::get(getPtrDiffTy(), Offset);
511}
512
513llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
514  assert(MD->isInstance() && "Member function must not be static!");
515  MD = MD->getCanonicalDecl();
516
517  CodeGenTypes &Types = CGM.getTypes();
518  const llvm::Type *ptrdiff_t = getPtrDiffTy();
519
520  // Get the function pointer (or index if this is a virtual function).
521  llvm::Constant *MemPtr[2];
522  if (MD->isVirtual()) {
523    uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD);
524
525    // FIXME: We shouldn't use / 8 here.
526    uint64_t PointerWidthInBytes =
527      getContext().Target.getPointerWidth(0) / 8;
528    uint64_t VTableOffset = (Index * PointerWidthInBytes);
529
530    if (IsARM) {
531      // ARM C++ ABI 3.2.1:
532      //   This ABI specifies that adj contains twice the this
533      //   adjustment, plus 1 if the member function is virtual. The
534      //   least significant bit of adj then makes exactly the same
535      //   discrimination as the least significant bit of ptr does for
536      //   Itanium.
537      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
538      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
539    } else {
540      // Itanium C++ ABI 2.3:
541      //   For a virtual function, [the pointer field] is 1 plus the
542      //   virtual table offset (in bytes) of the function,
543      //   represented as a ptrdiff_t.
544      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
545      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
546    }
547  } else {
548    const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
549    const llvm::Type *Ty;
550    // Check whether the function has a computable LLVM signature.
551    if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) {
552      // The function has a computable LLVM signature; use the correct type.
553      Ty = Types.GetFunctionType(Types.getFunctionInfo(MD), FPT->isVariadic());
554    } else {
555      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
556      // function type is incomplete.
557      Ty = ptrdiff_t;
558    }
559
560    llvm::Constant *Addr = CGM.GetAddrOfFunction(MD, Ty);
561    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(Addr, ptrdiff_t);
562    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
563  }
564
565  return llvm::ConstantStruct::get(CGM.getLLVMContext(),
566                                   MemPtr, 2, /*Packed=*/false);
567}
568
569/// The comparison algorithm is pretty easy: the member pointers are
570/// the same if they're either bitwise identical *or* both null.
571///
572/// ARM is different here only because null-ness is more complicated.
573llvm::Value *
574ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
575                                           llvm::Value *L,
576                                           llvm::Value *R,
577                                           const MemberPointerType *MPT,
578                                           bool Inequality) {
579  CGBuilderTy &Builder = CGF.Builder;
580
581  llvm::ICmpInst::Predicate Eq;
582  llvm::Instruction::BinaryOps And, Or;
583  if (Inequality) {
584    Eq = llvm::ICmpInst::ICMP_NE;
585    And = llvm::Instruction::Or;
586    Or = llvm::Instruction::And;
587  } else {
588    Eq = llvm::ICmpInst::ICMP_EQ;
589    And = llvm::Instruction::And;
590    Or = llvm::Instruction::Or;
591  }
592
593  // Member data pointers are easy because there's a unique null
594  // value, so it just comes down to bitwise equality.
595  if (MPT->isMemberDataPointer())
596    return Builder.CreateICmp(Eq, L, R);
597
598  // For member function pointers, the tautologies are more complex.
599  // The Itanium tautology is:
600  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
601  // The ARM tautology is:
602  //   (L == R) <==> (L.ptr == R.ptr &&
603  //                  (L.adj == R.adj ||
604  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
605  // The inequality tautologies have exactly the same structure, except
606  // applying De Morgan's laws.
607
608  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
609  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
610
611  // This condition tests whether L.ptr == R.ptr.  This must always be
612  // true for equality to hold.
613  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
614
615  // This condition, together with the assumption that L.ptr == R.ptr,
616  // tests whether the pointers are both null.  ARM imposes an extra
617  // condition.
618  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
619  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
620
621  // This condition tests whether L.adj == R.adj.  If this isn't
622  // true, the pointers are unequal unless they're both null.
623  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
624  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
625  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
626
627  // Null member function pointers on ARM clear the low bit of Adj,
628  // so the zero condition has to check that neither low bit is set.
629  if (IsARM) {
630    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
631
632    // Compute (l.adj | r.adj) & 1 and test it against zero.
633    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
634    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
635    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
636                                                      "cmp.or.adj");
637    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
638  }
639
640  // Tie together all our conditions.
641  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
642  Result = Builder.CreateBinOp(And, PtrEq, Result,
643                               Inequality ? "memptr.ne" : "memptr.eq");
644  return Result;
645}
646
647llvm::Value *
648ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
649                                          llvm::Value *MemPtr,
650                                          const MemberPointerType *MPT) {
651  CGBuilderTy &Builder = CGF.Builder;
652
653  /// For member data pointers, this is just a check against -1.
654  if (MPT->isMemberDataPointer()) {
655    assert(MemPtr->getType() == getPtrDiffTy());
656    llvm::Value *NegativeOne =
657      llvm::Constant::getAllOnesValue(MemPtr->getType());
658    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
659  }
660
661  // In Itanium, a member function pointer is null if 'ptr' is null.
662  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
663
664  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
665  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
666
667  // In ARM, it's that, plus the low bit of 'adj' must be zero.
668  if (IsARM) {
669    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
670    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
671    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
672    llvm::Value *IsNotVirtual = Builder.CreateICmpEQ(VirtualBit, Zero,
673                                                     "memptr.notvirtual");
674    Result = Builder.CreateAnd(Result, IsNotVirtual);
675  }
676
677  return Result;
678}
679
680/// The Itanium ABI requires non-zero initialization only for data
681/// member pointers, for which '0' is a valid offset.
682bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
683  return MPT->getPointeeType()->isFunctionType();
684}
685
686/// The generic ABI passes 'this', plus a VTT if it's initializing a
687/// base subobject.
688void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
689                                              CXXCtorType Type,
690                                              CanQualType &ResTy,
691                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
692  ASTContext &Context = getContext();
693
694  // 'this' is already there.
695
696  // Check if we need to add a VTT parameter (which has type void **).
697  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
698    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
699}
700
701/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
702void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
703                                          CXXCtorType Type,
704                                          CanQualType &ResTy,
705                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
706  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
707  ResTy = ArgTys[0];
708}
709
710/// The generic ABI passes 'this', plus a VTT if it's destroying a
711/// base subobject.
712void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
713                                             CXXDtorType Type,
714                                             CanQualType &ResTy,
715                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
716  ASTContext &Context = getContext();
717
718  // 'this' is already there.
719
720  // Check if we need to add a VTT parameter (which has type void **).
721  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
722    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
723}
724
725/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
726/// for non-deleting destructors.
727void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
728                                         CXXDtorType Type,
729                                         CanQualType &ResTy,
730                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
731  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
732
733  if (Type != Dtor_Deleting)
734    ResTy = ArgTys[0];
735}
736
737void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
738                                                QualType &ResTy,
739                                                FunctionArgList &Params) {
740  /// Create the 'this' variable.
741  BuildThisParam(CGF, Params);
742
743  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
744  assert(MD->isInstance());
745
746  // Check if we need a VTT parameter as well.
747  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
748    ASTContext &Context = getContext();
749
750    // FIXME: avoid the fake decl
751    QualType T = Context.getPointerType(Context.VoidPtrTy);
752    ImplicitParamDecl *VTTDecl
753      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
754                                  &Context.Idents.get("vtt"), T);
755    Params.push_back(std::make_pair(VTTDecl, VTTDecl->getType()));
756    getVTTDecl(CGF) = VTTDecl;
757  }
758}
759
760void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
761                                            QualType &ResTy,
762                                            FunctionArgList &Params) {
763  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
764
765  // Return 'this' from certain constructors and destructors.
766  if (HasThisReturn(CGF.CurGD))
767    ResTy = Params[0].second;
768}
769
770void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
771  /// Initialize the 'this' slot.
772  EmitThisParam(CGF);
773
774  /// Initialize the 'vtt' slot if needed.
775  if (getVTTDecl(CGF)) {
776    getVTTValue(CGF)
777      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
778                               "vtt");
779  }
780}
781
782void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
783  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
784
785  /// Initialize the return slot to 'this' at the start of the
786  /// function.
787  if (HasThisReturn(CGF.CurGD))
788    CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
789}
790
791void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
792                                    RValue RV, QualType ResultType) {
793  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
794    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
795
796  // Destructor thunks in the ARM ABI have indeterminate results.
797  const llvm::Type *T =
798    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
799  RValue Undef = RValue::get(llvm::UndefValue::get(T));
800  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
801}
802
803/************************** Array allocation cookies **************************/
804
805bool ItaniumCXXABI::NeedsArrayCookie(QualType ElementType) {
806  ElementType = getContext().getBaseElementType(ElementType);
807  const RecordType *RT = ElementType->getAs<RecordType>();
808  if (!RT) return false;
809
810  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
811
812  // If the class has a non-trivial destructor, it always needs a cookie.
813  if (!RD->hasTrivialDestructor()) return true;
814
815  // If the class's usual deallocation function takes two arguments,
816  // it needs a cookie.  Otherwise we don't need a cookie.
817  const CXXMethodDecl *UsualDeallocationFunction = 0;
818
819  // Usual deallocation functions of this form are always found on the
820  // class.
821  //
822  // FIXME: what exactly is this code supposed to do if there's an
823  // ambiguity?  That's possible with using declarations.
824  DeclarationName OpName =
825    getContext().DeclarationNames.getCXXOperatorName(OO_Array_Delete);
826  DeclContext::lookup_const_iterator Op, OpEnd;
827  for (llvm::tie(Op, OpEnd) = RD->lookup(OpName); Op != OpEnd; ++Op) {
828    const CXXMethodDecl *Delete =
829      cast<CXXMethodDecl>((*Op)->getUnderlyingDecl());
830
831    if (Delete->isUsualDeallocationFunction()) {
832      UsualDeallocationFunction = Delete;
833      break;
834    }
835  }
836
837  // No usual deallocation function, we don't need a cookie.
838  if (!UsualDeallocationFunction)
839    return false;
840
841  // The usual deallocation function doesn't take a size_t argument,
842  // so we don't need a cookie.
843  if (UsualDeallocationFunction->getNumParams() == 1)
844    return false;
845
846  assert(UsualDeallocationFunction->getNumParams() == 2 &&
847         "Unexpected deallocation function type!");
848  return true;
849}
850
851CharUnits ItaniumCXXABI::GetArrayCookieSize(QualType ElementType) {
852  if (!NeedsArrayCookie(ElementType))
853    return CharUnits::Zero();
854
855  // Padding is the maximum of sizeof(size_t) and alignof(ElementType)
856  ASTContext &Ctx = getContext();
857  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
858                  Ctx.getTypeAlignInChars(ElementType));
859}
860
861llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
862                                                  llvm::Value *NewPtr,
863                                                  llvm::Value *NumElements,
864                                                  QualType ElementType) {
865  assert(NeedsArrayCookie(ElementType));
866
867  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
868
869  ASTContext &Ctx = getContext();
870  QualType SizeTy = Ctx.getSizeType();
871  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
872
873  // The size of the cookie.
874  CharUnits CookieSize =
875    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
876
877  // Compute an offset to the cookie.
878  llvm::Value *CookiePtr = NewPtr;
879  CharUnits CookieOffset = CookieSize - SizeSize;
880  if (!CookieOffset.isZero())
881    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
882                                                 CookieOffset.getQuantity());
883
884  // Write the number of elements into the appropriate slot.
885  llvm::Value *NumElementsPtr
886    = CGF.Builder.CreateBitCast(CookiePtr,
887                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
888  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
889
890  // Finally, compute a pointer to the actual data buffer by skipping
891  // over the cookie completely.
892  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
893                                                CookieSize.getQuantity());
894}
895
896void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
897                                    llvm::Value *Ptr,
898                                    QualType ElementType,
899                                    llvm::Value *&NumElements,
900                                    llvm::Value *&AllocPtr,
901                                    CharUnits &CookieSize) {
902  // Derive a char* in the same address space as the pointer.
903  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
904  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
905
906  // If we don't need an array cookie, bail out early.
907  if (!NeedsArrayCookie(ElementType)) {
908    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
909    NumElements = 0;
910    CookieSize = CharUnits::Zero();
911    return;
912  }
913
914  QualType SizeTy = getContext().getSizeType();
915  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
916  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
917
918  CookieSize
919    = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
920
921  CharUnits NumElementsOffset = CookieSize - SizeSize;
922
923  // Compute the allocated pointer.
924  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
925  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
926                                                    -CookieSize.getQuantity());
927
928  llvm::Value *NumElementsPtr = AllocPtr;
929  if (!NumElementsOffset.isZero())
930    NumElementsPtr =
931      CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
932                                             NumElementsOffset.getQuantity());
933  NumElementsPtr =
934    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
935  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
936}
937
938CharUnits ARMCXXABI::GetArrayCookieSize(QualType ElementType) {
939  if (!NeedsArrayCookie(ElementType))
940    return CharUnits::Zero();
941
942  // On ARM, the cookie is always:
943  //   struct array_cookie {
944  //     std::size_t element_size; // element_size != 0
945  //     std::size_t element_count;
946  //   };
947  // TODO: what should we do if the allocated type actually wants
948  // greater alignment?
949  return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
950}
951
952llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
953                                              llvm::Value *NewPtr,
954                                              llvm::Value *NumElements,
955                                              QualType ElementType) {
956  assert(NeedsArrayCookie(ElementType));
957
958  // NewPtr is a char*.
959
960  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
961
962  ASTContext &Ctx = getContext();
963  CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
964  const llvm::IntegerType *SizeTy =
965    cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
966
967  // The cookie is always at the start of the buffer.
968  llvm::Value *CookiePtr = NewPtr;
969
970  // The first element is the element size.
971  CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
972  llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
973                          Ctx.getTypeSizeInChars(ElementType).getQuantity());
974  CGF.Builder.CreateStore(ElementSize, CookiePtr);
975
976  // The second element is the element count.
977  CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
978  CGF.Builder.CreateStore(NumElements, CookiePtr);
979
980  // Finally, compute a pointer to the actual data buffer by skipping
981  // over the cookie completely.
982  CharUnits CookieSize = 2 * SizeSize;
983  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
984                                                CookieSize.getQuantity());
985}
986
987void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
988                                llvm::Value *Ptr,
989                                QualType ElementType,
990                                llvm::Value *&NumElements,
991                                llvm::Value *&AllocPtr,
992                                CharUnits &CookieSize) {
993  // Derive a char* in the same address space as the pointer.
994  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
995  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
996
997  // If we don't need an array cookie, bail out early.
998  if (!NeedsArrayCookie(ElementType)) {
999    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1000    NumElements = 0;
1001    CookieSize = CharUnits::Zero();
1002    return;
1003  }
1004
1005  QualType SizeTy = getContext().getSizeType();
1006  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
1007  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
1008
1009  // The cookie size is always 2 * sizeof(size_t).
1010  CookieSize = 2 * SizeSize;
1011  CharUnits NumElementsOffset = CookieSize - SizeSize;
1012
1013  // The allocated pointer is the input ptr, minus that amount.
1014  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
1015  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1016                                               -CookieSize.getQuantity());
1017
1018  // The number of elements is at offset sizeof(size_t) relative to that.
1019  llvm::Value *NumElementsPtr
1020    = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
1021                                             SizeSize.getQuantity());
1022  NumElementsPtr =
1023    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1024  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1025}
1026
1027/*********************** Static local initialization **************************/
1028
1029static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1030                                         const llvm::PointerType *GuardPtrTy) {
1031  // int __cxa_guard_acquire(__guard *guard_object);
1032
1033  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1034  const llvm::FunctionType *FTy =
1035    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1036                            Args, /*isVarArg=*/false);
1037
1038  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
1039}
1040
1041static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1042                                         const llvm::PointerType *GuardPtrTy) {
1043  // void __cxa_guard_release(__guard *guard_object);
1044
1045  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1046
1047  const llvm::FunctionType *FTy =
1048    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1049                            Args, /*isVarArg=*/false);
1050
1051  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
1052}
1053
1054static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1055                                       const llvm::PointerType *GuardPtrTy) {
1056  // void __cxa_guard_abort(__guard *guard_object);
1057
1058  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1059
1060  const llvm::FunctionType *FTy =
1061    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1062                            Args, /*isVarArg=*/false);
1063
1064  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
1065}
1066
1067namespace {
1068  struct CallGuardAbort : EHScopeStack::Cleanup {
1069    llvm::GlobalVariable *Guard;
1070    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1071
1072    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1073      CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1074        ->setDoesNotThrow();
1075    }
1076  };
1077}
1078
1079/// The ARM code here follows the Itanium code closely enough that we
1080/// just special-case it at particular places.
1081void ItaniumCXXABI::EmitStaticLocalInit(CodeGenFunction &CGF,
1082                                        const VarDecl &D,
1083                                        llvm::GlobalVariable *GV) {
1084  CGBuilderTy &Builder = CGF.Builder;
1085  bool ThreadsafeStatics = getContext().getLangOptions().ThreadsafeStatics;
1086
1087  // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1088  const llvm::IntegerType *GuardTy
1089    = (IsARM ? Builder.getInt32Ty() : Builder.getInt64Ty());
1090  const llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
1091
1092  // Create the guard variable.
1093  llvm::SmallString<256> GuardVName;
1094  getMangleContext().mangleItaniumGuardVariable(&D, GuardVName);
1095  llvm::GlobalVariable *GuardVariable =
1096    new llvm::GlobalVariable(CGM.getModule(), GuardTy,
1097                             false, GV->getLinkage(),
1098                             llvm::ConstantInt::get(GuardTy, 0),
1099                             GuardVName.str());
1100
1101  // Test whether the variable has completed initialization.
1102  llvm::Value *IsInitialized;
1103
1104  // ARM C++ ABI 3.2.3.1:
1105  //   To support the potential use of initialization guard variables
1106  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1107  //   synchronizing instructions we define a static initialization
1108  //   guard variable to be a 4-byte aligned, 4- byte word with the
1109  //   following inline access protocol.
1110  //     #define INITIALIZED 1
1111  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1112  //       if (__cxa_guard_acquire(&obj_guard))
1113  //         ...
1114  //     }
1115  if (IsARM) {
1116    llvm::Value *V = Builder.CreateLoad(GuardVariable);
1117    V = Builder.CreateAnd(V, Builder.getInt32(1));
1118    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1119
1120  // Itanium C++ ABI 3.3.2:
1121  //   The following is pseudo-code showing how these functions can be used:
1122  //     if (obj_guard.first_byte == 0) {
1123  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1124  //         try {
1125  //           ... initialize the object ...;
1126  //         } catch (...) {
1127  //            __cxa_guard_abort (&obj_guard);
1128  //            throw;
1129  //         }
1130  //         ... queue object destructor with __cxa_atexit() ...;
1131  //         __cxa_guard_release (&obj_guard);
1132  //       }
1133  //     }
1134  } else {
1135    // Load the first byte of the guard variable.
1136    const llvm::Type *PtrTy = Builder.getInt8PtrTy();
1137    llvm::Value *V =
1138      Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy), "tmp");
1139
1140    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1141  }
1142
1143  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1144  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1145
1146  // Check if the first byte of the guard variable is zero.
1147  Builder.CreateCondBr(IsInitialized, InitCheckBlock, EndBlock);
1148
1149  CGF.EmitBlock(InitCheckBlock);
1150
1151  // Variables used when coping with thread-safe statics and exceptions.
1152  if (ThreadsafeStatics) {
1153    // Call __cxa_guard_acquire.
1154    llvm::Value *V
1155      = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
1156
1157    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1158
1159    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1160                         InitBlock, EndBlock);
1161
1162    // Call __cxa_guard_abort along the exceptional edge.
1163    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
1164
1165    CGF.EmitBlock(InitBlock);
1166  }
1167
1168  // Emit the initializer and add a global destructor if appropriate.
1169  CGF.EmitCXXGlobalVarDeclInit(D, GV);
1170
1171  if (ThreadsafeStatics) {
1172    // Pop the guard-abort cleanup if we pushed one.
1173    CGF.PopCleanupBlock();
1174
1175    // Call __cxa_guard_release.  This cannot throw.
1176    Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
1177  } else {
1178    Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
1179  }
1180
1181  CGF.EmitBlock(EndBlock);
1182}
1183