ItaniumCXXABI.cpp revision 63fd408a61ae9b94e8d8a986832f526f7cdbfa84
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CGVTables.h"
24#include "CodeGenFunction.h"
25#include "CodeGenModule.h"
26#include "clang/AST/Mangle.h"
27#include "clang/AST/Type.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Value.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35namespace {
36class ItaniumCXXABI : public CodeGen::CGCXXABI {
37private:
38  llvm::IntegerType *PtrDiffTy;
39protected:
40  bool IsARM;
41
42  // It's a little silly for us to cache this.
43  llvm::IntegerType *getPtrDiffTy() {
44    if (!PtrDiffTy) {
45      QualType T = getContext().getPointerDiffType();
46      llvm::Type *Ty = CGM.getTypes().ConvertType(T);
47      PtrDiffTy = cast<llvm::IntegerType>(Ty);
48    }
49    return PtrDiffTy;
50  }
51
52public:
53  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
54    CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
55
56  bool isZeroInitializable(const MemberPointerType *MPT);
57
58  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
59
60  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
61                                               llvm::Value *&This,
62                                               llvm::Value *MemFnPtr,
63                                               const MemberPointerType *MPT);
64
65  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
66                                            llvm::Value *Base,
67                                            llvm::Value *MemPtr,
68                                            const MemberPointerType *MPT);
69
70  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
71                                           const CastExpr *E,
72                                           llvm::Value *Src);
73  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
74                                              llvm::Constant *Src);
75
76  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
77
78  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
79  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
80                                        CharUnits offset);
81  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
82  llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
83                                     CharUnits ThisAdjustment);
84
85  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
86                                           llvm::Value *L,
87                                           llvm::Value *R,
88                                           const MemberPointerType *MPT,
89                                           bool Inequality);
90
91  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
92                                          llvm::Value *Addr,
93                                          const MemberPointerType *MPT);
94
95  llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
96                                      llvm::Value *ptr,
97                                      QualType type);
98
99  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
100                                 CXXCtorType T,
101                                 CanQualType &ResTy,
102                                 SmallVectorImpl<CanQualType> &ArgTys);
103
104  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
105                                CXXDtorType T,
106                                CanQualType &ResTy,
107                                SmallVectorImpl<CanQualType> &ArgTys);
108
109  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
110                                   QualType &ResTy,
111                                   FunctionArgList &Params);
112
113  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
114
115  llvm::Value *EmitConstructorCall(CodeGenFunction &CGF,
116                           const CXXConstructorDecl *D,
117                           CXXCtorType Type, bool ForVirtualBase,
118                           bool Delegating,
119                           llvm::Value *This,
120                           CallExpr::const_arg_iterator ArgBeg,
121                           CallExpr::const_arg_iterator ArgEnd);
122
123  RValue EmitVirtualDestructorCall(CodeGenFunction &CGF,
124                                   const CXXDestructorDecl *Dtor,
125                                   CXXDtorType DtorType,
126                                   SourceLocation CallLoc,
127                                   ReturnValueSlot ReturnValue,
128                                   llvm::Value *This);
129
130  StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; }
131  StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; }
132
133  CharUnits getArrayCookieSizeImpl(QualType elementType);
134  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
135                                     llvm::Value *NewPtr,
136                                     llvm::Value *NumElements,
137                                     const CXXNewExpr *expr,
138                                     QualType ElementType);
139  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
140                                   llvm::Value *allocPtr,
141                                   CharUnits cookieSize);
142
143  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
144                       llvm::GlobalVariable *DeclPtr, bool PerformInit);
145  void registerGlobalDtor(CodeGenFunction &CGF, llvm::Constant *dtor,
146                          llvm::Constant *addr);
147};
148
149class ARMCXXABI : public ItaniumCXXABI {
150public:
151  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
152
153  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
154                                 CXXCtorType T,
155                                 CanQualType &ResTy,
156                                 SmallVectorImpl<CanQualType> &ArgTys);
157
158  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
159                                CXXDtorType T,
160                                CanQualType &ResTy,
161                                SmallVectorImpl<CanQualType> &ArgTys);
162
163  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
164                                   QualType &ResTy,
165                                   FunctionArgList &Params);
166
167  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
168
169  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
170
171  CharUnits getArrayCookieSizeImpl(QualType elementType);
172  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
173                                     llvm::Value *NewPtr,
174                                     llvm::Value *NumElements,
175                                     const CXXNewExpr *expr,
176                                     QualType ElementType);
177  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
178                                   CharUnits cookieSize);
179
180  /// \brief Returns true if the given instance method is one of the
181  /// kinds that the ARM ABI says returns 'this'.
182  bool HasThisReturn(GlobalDecl GD) const {
183    const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(GD.getDecl());
184    if (!MD) return false;
185    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
186            (isa<CXXConstructorDecl>(MD)));
187  }
188};
189}
190
191CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
192  switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
193  // For IR-generation purposes, there's no significant difference
194  // between the ARM and iOS ABIs.
195  case TargetCXXABI::GenericARM:
196  case TargetCXXABI::iOS:
197    return new ARMCXXABI(CGM);
198
199  // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
200  // include the other 32-bit ARM oddities: constructor/destructor return values
201  // and array cookies.
202  case TargetCXXABI::GenericAArch64:
203    return  new ItaniumCXXABI(CGM, /*IsARM = */ true);
204
205  case TargetCXXABI::GenericItanium:
206    return new ItaniumCXXABI(CGM);
207
208  case TargetCXXABI::Microsoft:
209    llvm_unreachable("Microsoft ABI is not Itanium-based");
210  }
211  llvm_unreachable("bad ABI kind");
212}
213
214llvm::Type *
215ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
216  if (MPT->isMemberDataPointer())
217    return getPtrDiffTy();
218  return llvm::StructType::get(getPtrDiffTy(), getPtrDiffTy(), NULL);
219}
220
221/// In the Itanium and ARM ABIs, method pointers have the form:
222///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
223///
224/// In the Itanium ABI:
225///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
226///  - the this-adjustment is (memptr.adj)
227///  - the virtual offset is (memptr.ptr - 1)
228///
229/// In the ARM ABI:
230///  - method pointers are virtual if (memptr.adj & 1) is nonzero
231///  - the this-adjustment is (memptr.adj >> 1)
232///  - the virtual offset is (memptr.ptr)
233/// ARM uses 'adj' for the virtual flag because Thumb functions
234/// may be only single-byte aligned.
235///
236/// If the member is virtual, the adjusted 'this' pointer points
237/// to a vtable pointer from which the virtual offset is applied.
238///
239/// If the member is non-virtual, memptr.ptr is the address of
240/// the function to call.
241llvm::Value *
242ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
243                                               llvm::Value *&This,
244                                               llvm::Value *MemFnPtr,
245                                               const MemberPointerType *MPT) {
246  CGBuilderTy &Builder = CGF.Builder;
247
248  const FunctionProtoType *FPT =
249    MPT->getPointeeType()->getAs<FunctionProtoType>();
250  const CXXRecordDecl *RD =
251    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
252
253  llvm::FunctionType *FTy =
254    CGM.getTypes().GetFunctionType(
255      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
256
257  llvm::IntegerType *ptrdiff = getPtrDiffTy();
258  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
259
260  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
261  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
262  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
263
264  // Extract memptr.adj, which is in the second field.
265  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
266
267  // Compute the true adjustment.
268  llvm::Value *Adj = RawAdj;
269  if (IsARM)
270    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
271
272  // Apply the adjustment and cast back to the original struct type
273  // for consistency.
274  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
275  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
276  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
277
278  // Load the function pointer.
279  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
280
281  // If the LSB in the function pointer is 1, the function pointer points to
282  // a virtual function.
283  llvm::Value *IsVirtual;
284  if (IsARM)
285    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
286  else
287    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
288  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
289  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
290
291  // In the virtual path, the adjustment left 'This' pointing to the
292  // vtable of the correct base subobject.  The "function pointer" is an
293  // offset within the vtable (+1 for the virtual flag on non-ARM).
294  CGF.EmitBlock(FnVirtual);
295
296  // Cast the adjusted this to a pointer to vtable pointer and load.
297  llvm::Type *VTableTy = Builder.getInt8PtrTy();
298  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
299  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
300
301  // Apply the offset.
302  llvm::Value *VTableOffset = FnAsInt;
303  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
304  VTable = Builder.CreateGEP(VTable, VTableOffset);
305
306  // Load the virtual function to call.
307  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
308  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
309  CGF.EmitBranch(FnEnd);
310
311  // In the non-virtual path, the function pointer is actually a
312  // function pointer.
313  CGF.EmitBlock(FnNonVirtual);
314  llvm::Value *NonVirtualFn =
315    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
316
317  // We're done.
318  CGF.EmitBlock(FnEnd);
319  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
320  Callee->addIncoming(VirtualFn, FnVirtual);
321  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
322  return Callee;
323}
324
325/// Compute an l-value by applying the given pointer-to-member to a
326/// base object.
327llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
328                                                         llvm::Value *Base,
329                                                         llvm::Value *MemPtr,
330                                           const MemberPointerType *MPT) {
331  assert(MemPtr->getType() == getPtrDiffTy());
332
333  CGBuilderTy &Builder = CGF.Builder;
334
335  unsigned AS = Base->getType()->getPointerAddressSpace();
336
337  // Cast to char*.
338  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
339
340  // Apply the offset, which we assume is non-null.
341  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
342
343  // Cast the address to the appropriate pointer type, adopting the
344  // address space of the base pointer.
345  llvm::Type *PType
346    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
347  return Builder.CreateBitCast(Addr, PType);
348}
349
350/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
351/// conversion.
352///
353/// Bitcast conversions are always a no-op under Itanium.
354///
355/// Obligatory offset/adjustment diagram:
356///         <-- offset -->          <-- adjustment -->
357///   |--------------------------|----------------------|--------------------|
358///   ^Derived address point     ^Base address point    ^Member address point
359///
360/// So when converting a base member pointer to a derived member pointer,
361/// we add the offset to the adjustment because the address point has
362/// decreased;  and conversely, when converting a derived MP to a base MP
363/// we subtract the offset from the adjustment because the address point
364/// has increased.
365///
366/// The standard forbids (at compile time) conversion to and from
367/// virtual bases, which is why we don't have to consider them here.
368///
369/// The standard forbids (at run time) casting a derived MP to a base
370/// MP when the derived MP does not point to a member of the base.
371/// This is why -1 is a reasonable choice for null data member
372/// pointers.
373llvm::Value *
374ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
375                                           const CastExpr *E,
376                                           llvm::Value *src) {
377  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
378         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
379         E->getCastKind() == CK_ReinterpretMemberPointer);
380
381  // Under Itanium, reinterprets don't require any additional processing.
382  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
383
384  // Use constant emission if we can.
385  if (isa<llvm::Constant>(src))
386    return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
387
388  llvm::Constant *adj = getMemberPointerAdjustment(E);
389  if (!adj) return src;
390
391  CGBuilderTy &Builder = CGF.Builder;
392  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
393
394  const MemberPointerType *destTy =
395    E->getType()->castAs<MemberPointerType>();
396
397  // For member data pointers, this is just a matter of adding the
398  // offset if the source is non-null.
399  if (destTy->isMemberDataPointer()) {
400    llvm::Value *dst;
401    if (isDerivedToBase)
402      dst = Builder.CreateNSWSub(src, adj, "adj");
403    else
404      dst = Builder.CreateNSWAdd(src, adj, "adj");
405
406    // Null check.
407    llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
408    llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
409    return Builder.CreateSelect(isNull, src, dst);
410  }
411
412  // The this-adjustment is left-shifted by 1 on ARM.
413  if (IsARM) {
414    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
415    offset <<= 1;
416    adj = llvm::ConstantInt::get(adj->getType(), offset);
417  }
418
419  llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
420  llvm::Value *dstAdj;
421  if (isDerivedToBase)
422    dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
423  else
424    dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
425
426  return Builder.CreateInsertValue(src, dstAdj, 1);
427}
428
429llvm::Constant *
430ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
431                                           llvm::Constant *src) {
432  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
433         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
434         E->getCastKind() == CK_ReinterpretMemberPointer);
435
436  // Under Itanium, reinterprets don't require any additional processing.
437  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
438
439  // If the adjustment is trivial, we don't need to do anything.
440  llvm::Constant *adj = getMemberPointerAdjustment(E);
441  if (!adj) return src;
442
443  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
444
445  const MemberPointerType *destTy =
446    E->getType()->castAs<MemberPointerType>();
447
448  // For member data pointers, this is just a matter of adding the
449  // offset if the source is non-null.
450  if (destTy->isMemberDataPointer()) {
451    // null maps to null.
452    if (src->isAllOnesValue()) return src;
453
454    if (isDerivedToBase)
455      return llvm::ConstantExpr::getNSWSub(src, adj);
456    else
457      return llvm::ConstantExpr::getNSWAdd(src, adj);
458  }
459
460  // The this-adjustment is left-shifted by 1 on ARM.
461  if (IsARM) {
462    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
463    offset <<= 1;
464    adj = llvm::ConstantInt::get(adj->getType(), offset);
465  }
466
467  llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
468  llvm::Constant *dstAdj;
469  if (isDerivedToBase)
470    dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
471  else
472    dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
473
474  return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
475}
476
477llvm::Constant *
478ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
479  llvm::Type *ptrdiff_t = getPtrDiffTy();
480
481  // Itanium C++ ABI 2.3:
482  //   A NULL pointer is represented as -1.
483  if (MPT->isMemberDataPointer())
484    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
485
486  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
487  llvm::Constant *Values[2] = { Zero, Zero };
488  return llvm::ConstantStruct::getAnon(Values);
489}
490
491llvm::Constant *
492ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
493                                     CharUnits offset) {
494  // Itanium C++ ABI 2.3:
495  //   A pointer to data member is an offset from the base address of
496  //   the class object containing it, represented as a ptrdiff_t
497  return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
498}
499
500llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
501  return BuildMemberPointer(MD, CharUnits::Zero());
502}
503
504llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
505                                                  CharUnits ThisAdjustment) {
506  assert(MD->isInstance() && "Member function must not be static!");
507  MD = MD->getCanonicalDecl();
508
509  CodeGenTypes &Types = CGM.getTypes();
510  llvm::Type *ptrdiff_t = getPtrDiffTy();
511
512  // Get the function pointer (or index if this is a virtual function).
513  llvm::Constant *MemPtr[2];
514  if (MD->isVirtual()) {
515    uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
516
517    const ASTContext &Context = getContext();
518    CharUnits PointerWidth =
519      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
520    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
521
522    if (IsARM) {
523      // ARM C++ ABI 3.2.1:
524      //   This ABI specifies that adj contains twice the this
525      //   adjustment, plus 1 if the member function is virtual. The
526      //   least significant bit of adj then makes exactly the same
527      //   discrimination as the least significant bit of ptr does for
528      //   Itanium.
529      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
530      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
531                                         2 * ThisAdjustment.getQuantity() + 1);
532    } else {
533      // Itanium C++ ABI 2.3:
534      //   For a virtual function, [the pointer field] is 1 plus the
535      //   virtual table offset (in bytes) of the function,
536      //   represented as a ptrdiff_t.
537      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
538      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t,
539                                         ThisAdjustment.getQuantity());
540    }
541  } else {
542    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
543    llvm::Type *Ty;
544    // Check whether the function has a computable LLVM signature.
545    if (Types.isFuncTypeConvertible(FPT)) {
546      // The function has a computable LLVM signature; use the correct type.
547      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
548    } else {
549      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
550      // function type is incomplete.
551      Ty = ptrdiff_t;
552    }
553    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
554
555    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
556    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, (IsARM ? 2 : 1) *
557                                       ThisAdjustment.getQuantity());
558  }
559
560  return llvm::ConstantStruct::getAnon(MemPtr);
561}
562
563llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
564                                                 QualType MPType) {
565  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
566  const ValueDecl *MPD = MP.getMemberPointerDecl();
567  if (!MPD)
568    return EmitNullMemberPointer(MPT);
569
570  // Compute the this-adjustment.
571  CharUnits ThisAdjustment = CharUnits::Zero();
572  ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
573  bool DerivedMember = MP.isMemberPointerToDerivedMember();
574  const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
575  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
576    const CXXRecordDecl *Base = RD;
577    const CXXRecordDecl *Derived = Path[I];
578    if (DerivedMember)
579      std::swap(Base, Derived);
580    ThisAdjustment +=
581      getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
582    RD = Path[I];
583  }
584  if (DerivedMember)
585    ThisAdjustment = -ThisAdjustment;
586
587  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
588    return BuildMemberPointer(MD, ThisAdjustment);
589
590  CharUnits FieldOffset =
591    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
592  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
593}
594
595/// The comparison algorithm is pretty easy: the member pointers are
596/// the same if they're either bitwise identical *or* both null.
597///
598/// ARM is different here only because null-ness is more complicated.
599llvm::Value *
600ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
601                                           llvm::Value *L,
602                                           llvm::Value *R,
603                                           const MemberPointerType *MPT,
604                                           bool Inequality) {
605  CGBuilderTy &Builder = CGF.Builder;
606
607  llvm::ICmpInst::Predicate Eq;
608  llvm::Instruction::BinaryOps And, Or;
609  if (Inequality) {
610    Eq = llvm::ICmpInst::ICMP_NE;
611    And = llvm::Instruction::Or;
612    Or = llvm::Instruction::And;
613  } else {
614    Eq = llvm::ICmpInst::ICMP_EQ;
615    And = llvm::Instruction::And;
616    Or = llvm::Instruction::Or;
617  }
618
619  // Member data pointers are easy because there's a unique null
620  // value, so it just comes down to bitwise equality.
621  if (MPT->isMemberDataPointer())
622    return Builder.CreateICmp(Eq, L, R);
623
624  // For member function pointers, the tautologies are more complex.
625  // The Itanium tautology is:
626  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
627  // The ARM tautology is:
628  //   (L == R) <==> (L.ptr == R.ptr &&
629  //                  (L.adj == R.adj ||
630  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
631  // The inequality tautologies have exactly the same structure, except
632  // applying De Morgan's laws.
633
634  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
635  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
636
637  // This condition tests whether L.ptr == R.ptr.  This must always be
638  // true for equality to hold.
639  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
640
641  // This condition, together with the assumption that L.ptr == R.ptr,
642  // tests whether the pointers are both null.  ARM imposes an extra
643  // condition.
644  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
645  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
646
647  // This condition tests whether L.adj == R.adj.  If this isn't
648  // true, the pointers are unequal unless they're both null.
649  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
650  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
651  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
652
653  // Null member function pointers on ARM clear the low bit of Adj,
654  // so the zero condition has to check that neither low bit is set.
655  if (IsARM) {
656    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
657
658    // Compute (l.adj | r.adj) & 1 and test it against zero.
659    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
660    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
661    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
662                                                      "cmp.or.adj");
663    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
664  }
665
666  // Tie together all our conditions.
667  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
668  Result = Builder.CreateBinOp(And, PtrEq, Result,
669                               Inequality ? "memptr.ne" : "memptr.eq");
670  return Result;
671}
672
673llvm::Value *
674ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
675                                          llvm::Value *MemPtr,
676                                          const MemberPointerType *MPT) {
677  CGBuilderTy &Builder = CGF.Builder;
678
679  /// For member data pointers, this is just a check against -1.
680  if (MPT->isMemberDataPointer()) {
681    assert(MemPtr->getType() == getPtrDiffTy());
682    llvm::Value *NegativeOne =
683      llvm::Constant::getAllOnesValue(MemPtr->getType());
684    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
685  }
686
687  // In Itanium, a member function pointer is not null if 'ptr' is not null.
688  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
689
690  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
691  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
692
693  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
694  // (the virtual bit) is set.
695  if (IsARM) {
696    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
697    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
698    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
699    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
700                                                  "memptr.isvirtual");
701    Result = Builder.CreateOr(Result, IsVirtual);
702  }
703
704  return Result;
705}
706
707/// The Itanium ABI requires non-zero initialization only for data
708/// member pointers, for which '0' is a valid offset.
709bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
710  return MPT->getPointeeType()->isFunctionType();
711}
712
713/// The Itanium ABI always places an offset to the complete object
714/// at entry -2 in the vtable.
715llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
716                                                   llvm::Value *ptr,
717                                                   QualType type) {
718  // Grab the vtable pointer as an intptr_t*.
719  llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
720
721  // Track back to entry -2 and pull out the offset there.
722  llvm::Value *offsetPtr =
723    CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
724  llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
725  offset->setAlignment(CGF.PointerAlignInBytes);
726
727  // Apply the offset.
728  ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
729  return CGF.Builder.CreateInBoundsGEP(ptr, offset);
730}
731
732/// The generic ABI passes 'this', plus a VTT if it's initializing a
733/// base subobject.
734void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
735                                              CXXCtorType Type,
736                                              CanQualType &ResTy,
737                                SmallVectorImpl<CanQualType> &ArgTys) {
738  ASTContext &Context = getContext();
739
740  // 'this' is already there.
741
742  // Check if we need to add a VTT parameter (which has type void **).
743  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
744    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
745}
746
747/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
748void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
749                                          CXXCtorType Type,
750                                          CanQualType &ResTy,
751                                SmallVectorImpl<CanQualType> &ArgTys) {
752  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
753  ResTy = ArgTys[0];
754}
755
756/// The generic ABI passes 'this', plus a VTT if it's destroying a
757/// base subobject.
758void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
759                                             CXXDtorType Type,
760                                             CanQualType &ResTy,
761                                SmallVectorImpl<CanQualType> &ArgTys) {
762  ASTContext &Context = getContext();
763
764  // 'this' is already there.
765
766  // Check if we need to add a VTT parameter (which has type void **).
767  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
768    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
769}
770
771/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
772/// for non-deleting destructors.
773void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
774                                         CXXDtorType Type,
775                                         CanQualType &ResTy,
776                                SmallVectorImpl<CanQualType> &ArgTys) {
777  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
778
779  if (Type != Dtor_Deleting)
780    ResTy = ArgTys[0];
781}
782
783void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
784                                                QualType &ResTy,
785                                                FunctionArgList &Params) {
786  /// Create the 'this' variable.
787  BuildThisParam(CGF, Params);
788
789  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
790  assert(MD->isInstance());
791
792  // Check if we need a VTT parameter as well.
793  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
794    ASTContext &Context = getContext();
795
796    // FIXME: avoid the fake decl
797    QualType T = Context.getPointerType(Context.VoidPtrTy);
798    ImplicitParamDecl *VTTDecl
799      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
800                                  &Context.Idents.get("vtt"), T);
801    Params.push_back(VTTDecl);
802    getVTTDecl(CGF) = VTTDecl;
803  }
804}
805
806void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
807                                            QualType &ResTy,
808                                            FunctionArgList &Params) {
809  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
810
811  // Return 'this' from certain constructors and destructors.
812  if (HasThisReturn(CGF.CurGD))
813    ResTy = Params[0]->getType();
814}
815
816void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
817  /// Initialize the 'this' slot.
818  EmitThisParam(CGF);
819
820  /// Initialize the 'vtt' slot if needed.
821  if (getVTTDecl(CGF)) {
822    getVTTValue(CGF)
823      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
824                               "vtt");
825  }
826}
827
828void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
829  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
830
831  /// Initialize the return slot to 'this' at the start of the
832  /// function.
833  if (HasThisReturn(CGF.CurGD))
834    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
835}
836
837llvm::Value *ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF,
838                                        const CXXConstructorDecl *D,
839                                        CXXCtorType Type, bool ForVirtualBase,
840                                        bool Delegating,
841                                        llvm::Value *This,
842                                        CallExpr::const_arg_iterator ArgBeg,
843                                        CallExpr::const_arg_iterator ArgEnd) {
844  llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase,
845                                         Delegating);
846  QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
847  llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
848
849  // FIXME: Provide a source location here.
850  CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), This,
851                        VTT, VTTTy, ArgBeg, ArgEnd);
852  return Callee;
853}
854
855RValue ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
856                                                const CXXDestructorDecl *Dtor,
857                                                CXXDtorType DtorType,
858                                                SourceLocation CallLoc,
859                                                ReturnValueSlot ReturnValue,
860                                                llvm::Value *This) {
861  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
862
863  const CGFunctionInfo *FInfo
864    = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
865  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
866  llvm::Value *Callee = CGF.BuildVirtualCall(Dtor, DtorType, This, Ty);
867
868  return CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValue, This,
869                               /*ImplicitParam=*/0, QualType(), 0, 0);
870}
871
872void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
873                                    RValue RV, QualType ResultType) {
874  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
875    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
876
877  // Destructor thunks in the ARM ABI have indeterminate results.
878  llvm::Type *T =
879    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
880  RValue Undef = RValue::get(llvm::UndefValue::get(T));
881  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
882}
883
884/************************** Array allocation cookies **************************/
885
886CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
887  // The array cookie is a size_t; pad that up to the element alignment.
888  // The cookie is actually right-justified in that space.
889  return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
890                  CGM.getContext().getTypeAlignInChars(elementType));
891}
892
893llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
894                                                  llvm::Value *NewPtr,
895                                                  llvm::Value *NumElements,
896                                                  const CXXNewExpr *expr,
897                                                  QualType ElementType) {
898  assert(requiresArrayCookie(expr));
899
900  unsigned AS = NewPtr->getType()->getPointerAddressSpace();
901
902  ASTContext &Ctx = getContext();
903  QualType SizeTy = Ctx.getSizeType();
904  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
905
906  // The size of the cookie.
907  CharUnits CookieSize =
908    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
909  assert(CookieSize == getArrayCookieSizeImpl(ElementType));
910
911  // Compute an offset to the cookie.
912  llvm::Value *CookiePtr = NewPtr;
913  CharUnits CookieOffset = CookieSize - SizeSize;
914  if (!CookieOffset.isZero())
915    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
916                                                 CookieOffset.getQuantity());
917
918  // Write the number of elements into the appropriate slot.
919  llvm::Value *NumElementsPtr
920    = CGF.Builder.CreateBitCast(CookiePtr,
921                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
922  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
923
924  // Finally, compute a pointer to the actual data buffer by skipping
925  // over the cookie completely.
926  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
927                                                CookieSize.getQuantity());
928}
929
930llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
931                                                llvm::Value *allocPtr,
932                                                CharUnits cookieSize) {
933  // The element size is right-justified in the cookie.
934  llvm::Value *numElementsPtr = allocPtr;
935  CharUnits numElementsOffset =
936    cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
937  if (!numElementsOffset.isZero())
938    numElementsPtr =
939      CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
940                                             numElementsOffset.getQuantity());
941
942  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
943  numElementsPtr =
944    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
945  return CGF.Builder.CreateLoad(numElementsPtr);
946}
947
948CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
949  // ARM says that the cookie is always:
950  //   struct array_cookie {
951  //     std::size_t element_size; // element_size != 0
952  //     std::size_t element_count;
953  //   };
954  // But the base ABI doesn't give anything an alignment greater than
955  // 8, so we can dismiss this as typical ABI-author blindness to
956  // actual language complexity and round up to the element alignment.
957  return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
958                  CGM.getContext().getTypeAlignInChars(elementType));
959}
960
961llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
962                                              llvm::Value *newPtr,
963                                              llvm::Value *numElements,
964                                              const CXXNewExpr *expr,
965                                              QualType elementType) {
966  assert(requiresArrayCookie(expr));
967
968  // NewPtr is a char*, but we generalize to arbitrary addrspaces.
969  unsigned AS = newPtr->getType()->getPointerAddressSpace();
970
971  // The cookie is always at the start of the buffer.
972  llvm::Value *cookie = newPtr;
973
974  // The first element is the element size.
975  cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
976  llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
977                 getContext().getTypeSizeInChars(elementType).getQuantity());
978  CGF.Builder.CreateStore(elementSize, cookie);
979
980  // The second element is the element count.
981  cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
982  CGF.Builder.CreateStore(numElements, cookie);
983
984  // Finally, compute a pointer to the actual data buffer by skipping
985  // over the cookie completely.
986  CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
987  return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
988                                                cookieSize.getQuantity());
989}
990
991llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
992                                            llvm::Value *allocPtr,
993                                            CharUnits cookieSize) {
994  // The number of elements is at offset sizeof(size_t) relative to
995  // the allocated pointer.
996  llvm::Value *numElementsPtr
997    = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
998
999  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1000  numElementsPtr =
1001    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
1002  return CGF.Builder.CreateLoad(numElementsPtr);
1003}
1004
1005/*********************** Static local initialization **************************/
1006
1007static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1008                                         llvm::PointerType *GuardPtrTy) {
1009  // int __cxa_guard_acquire(__guard *guard_object);
1010  llvm::FunctionType *FTy =
1011    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1012                            GuardPtrTy, /*isVarArg=*/false);
1013  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
1014                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1015                                              llvm::AttributeSet::FunctionIndex,
1016                                                 llvm::Attribute::NoUnwind));
1017}
1018
1019static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1020                                         llvm::PointerType *GuardPtrTy) {
1021  // void __cxa_guard_release(__guard *guard_object);
1022  llvm::FunctionType *FTy =
1023    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1024  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
1025                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1026                                              llvm::AttributeSet::FunctionIndex,
1027                                                 llvm::Attribute::NoUnwind));
1028}
1029
1030static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1031                                       llvm::PointerType *GuardPtrTy) {
1032  // void __cxa_guard_abort(__guard *guard_object);
1033  llvm::FunctionType *FTy =
1034    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1035  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
1036                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1037                                              llvm::AttributeSet::FunctionIndex,
1038                                                 llvm::Attribute::NoUnwind));
1039}
1040
1041namespace {
1042  struct CallGuardAbort : EHScopeStack::Cleanup {
1043    llvm::GlobalVariable *Guard;
1044    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1045
1046    void Emit(CodeGenFunction &CGF, Flags flags) {
1047      CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
1048                                  Guard);
1049    }
1050  };
1051}
1052
1053/// The ARM code here follows the Itanium code closely enough that we
1054/// just special-case it at particular places.
1055void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1056                                    const VarDecl &D,
1057                                    llvm::GlobalVariable *var,
1058                                    bool shouldPerformInit) {
1059  CGBuilderTy &Builder = CGF.Builder;
1060
1061  // We only need to use thread-safe statics for local variables;
1062  // global initialization is always single-threaded.
1063  bool threadsafe =
1064    (getContext().getLangOpts().ThreadsafeStatics && D.isLocalVarDecl());
1065
1066  // If we have a global variable with internal linkage and thread-safe statics
1067  // are disabled, we can just let the guard variable be of type i8.
1068  bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
1069
1070  llvm::IntegerType *guardTy;
1071  if (useInt8GuardVariable) {
1072    guardTy = CGF.Int8Ty;
1073  } else {
1074    // Guard variables are 64 bits in the generic ABI and size width on ARM
1075    // (i.e. 32-bit on AArch32, 64-bit on AArch64).
1076    guardTy = (IsARM ? CGF.SizeTy : CGF.Int64Ty);
1077  }
1078  llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
1079
1080  // Create the guard variable if we don't already have it (as we
1081  // might if we're double-emitting this function body).
1082  llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
1083  if (!guard) {
1084    // Mangle the name for the guard.
1085    SmallString<256> guardName;
1086    {
1087      llvm::raw_svector_ostream out(guardName);
1088      getMangleContext().mangleItaniumGuardVariable(&D, out);
1089      out.flush();
1090    }
1091
1092    // Create the guard variable with a zero-initializer.
1093    // Just absorb linkage and visibility from the guarded variable.
1094    guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
1095                                     false, var->getLinkage(),
1096                                     llvm::ConstantInt::get(guardTy, 0),
1097                                     guardName.str());
1098    guard->setVisibility(var->getVisibility());
1099
1100    CGM.setStaticLocalDeclGuardAddress(&D, guard);
1101  }
1102
1103  // Test whether the variable has completed initialization.
1104  llvm::Value *isInitialized;
1105
1106  // ARM C++ ABI 3.2.3.1:
1107  //   To support the potential use of initialization guard variables
1108  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1109  //   synchronizing instructions we define a static initialization
1110  //   guard variable to be a 4-byte aligned, 4- byte word with the
1111  //   following inline access protocol.
1112  //     #define INITIALIZED 1
1113  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1114  //       if (__cxa_guard_acquire(&obj_guard))
1115  //         ...
1116  //     }
1117  if (IsARM && !useInt8GuardVariable) {
1118    llvm::Value *V = Builder.CreateLoad(guard);
1119    llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1);
1120    V = Builder.CreateAnd(V, Test1);
1121    isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1122
1123  // Itanium C++ ABI 3.3.2:
1124  //   The following is pseudo-code showing how these functions can be used:
1125  //     if (obj_guard.first_byte == 0) {
1126  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1127  //         try {
1128  //           ... initialize the object ...;
1129  //         } catch (...) {
1130  //            __cxa_guard_abort (&obj_guard);
1131  //            throw;
1132  //         }
1133  //         ... queue object destructor with __cxa_atexit() ...;
1134  //         __cxa_guard_release (&obj_guard);
1135  //       }
1136  //     }
1137  } else {
1138    // Load the first byte of the guard variable.
1139    llvm::LoadInst *LI =
1140      Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
1141    LI->setAlignment(1);
1142
1143    // Itanium ABI:
1144    //   An implementation supporting thread-safety on multiprocessor
1145    //   systems must also guarantee that references to the initialized
1146    //   object do not occur before the load of the initialization flag.
1147    //
1148    // In LLVM, we do this by marking the load Acquire.
1149    if (threadsafe)
1150      LI->setAtomic(llvm::Acquire);
1151
1152    isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1153  }
1154
1155  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1156  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1157
1158  // Check if the first byte of the guard variable is zero.
1159  Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
1160
1161  CGF.EmitBlock(InitCheckBlock);
1162
1163  // Variables used when coping with thread-safe statics and exceptions.
1164  if (threadsafe) {
1165    // Call __cxa_guard_acquire.
1166    llvm::Value *V
1167      = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
1168
1169    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1170
1171    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1172                         InitBlock, EndBlock);
1173
1174    // Call __cxa_guard_abort along the exceptional edge.
1175    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
1176
1177    CGF.EmitBlock(InitBlock);
1178  }
1179
1180  // Emit the initializer and add a global destructor if appropriate.
1181  CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
1182
1183  if (threadsafe) {
1184    // Pop the guard-abort cleanup if we pushed one.
1185    CGF.PopCleanupBlock();
1186
1187    // Call __cxa_guard_release.  This cannot throw.
1188    CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
1189  } else {
1190    Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
1191  }
1192
1193  CGF.EmitBlock(EndBlock);
1194}
1195
1196/// Register a global destructor using __cxa_atexit.
1197static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
1198                                        llvm::Constant *dtor,
1199                                        llvm::Constant *addr) {
1200  // We're assuming that the destructor function is something we can
1201  // reasonably call with the default CC.  Go ahead and cast it to the
1202  // right prototype.
1203  llvm::Type *dtorTy =
1204    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
1205
1206  // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
1207  llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
1208  llvm::FunctionType *atexitTy =
1209    llvm::FunctionType::get(CGF.IntTy, paramTys, false);
1210
1211  // Fetch the actual function.
1212  llvm::Constant *atexit =
1213    CGF.CGM.CreateRuntimeFunction(atexitTy, "__cxa_atexit");
1214  if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
1215    fn->setDoesNotThrow();
1216
1217  // Create a variable that binds the atexit to this shared object.
1218  llvm::Constant *handle =
1219    CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
1220
1221  llvm::Value *args[] = {
1222    llvm::ConstantExpr::getBitCast(dtor, dtorTy),
1223    llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
1224    handle
1225  };
1226  CGF.EmitNounwindRuntimeCall(atexit, args);
1227}
1228
1229/// Register a global destructor as best as we know how.
1230void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
1231                                       llvm::Constant *dtor,
1232                                       llvm::Constant *addr) {
1233  // Use __cxa_atexit if available.
1234  if (CGM.getCodeGenOpts().CXAAtExit) {
1235    return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr);
1236  }
1237
1238  // In Apple kexts, we want to add a global destructor entry.
1239  // FIXME: shouldn't this be guarded by some variable?
1240  if (CGM.getLangOpts().AppleKext) {
1241    // Generate a global destructor entry.
1242    return CGM.AddCXXDtorEntry(dtor, addr);
1243  }
1244
1245  CGF.registerGlobalDtorWithAtExit(dtor, addr);
1246}
1247