ItaniumCXXABI.cpp revision fc8f0e14ad142ed811e90fbd9a30e419e301c717
1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CodeGenFunction.h"
24#include "CodeGenModule.h"
25#include <clang/AST/Mangle.h>
26#include <clang/AST/Type.h>
27#include <llvm/Target/TargetData.h>
28#include <llvm/Value.h>
29
30using namespace clang;
31using namespace CodeGen;
32
33namespace {
34class ItaniumCXXABI : public CodeGen::CGCXXABI {
35private:
36  const llvm::IntegerType *PtrDiffTy;
37protected:
38  bool IsARM;
39
40  // It's a little silly for us to cache this.
41  const llvm::IntegerType *getPtrDiffTy() {
42    if (!PtrDiffTy) {
43      QualType T = getContext().getPointerDiffType();
44      const llvm::Type *Ty = CGM.getTypes().ConvertTypeRecursive(T);
45      PtrDiffTy = cast<llvm::IntegerType>(Ty);
46    }
47    return PtrDiffTy;
48  }
49
50  bool NeedsArrayCookie(const CXXNewExpr *expr);
51  bool NeedsArrayCookie(const CXXDeleteExpr *expr,
52                        QualType elementType);
53
54public:
55  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
56    CGCXXABI(CGM), PtrDiffTy(0), IsARM(IsARM) { }
57
58  bool isZeroInitializable(const MemberPointerType *MPT);
59
60  const llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
61
62  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
63                                               llvm::Value *&This,
64                                               llvm::Value *MemFnPtr,
65                                               const MemberPointerType *MPT);
66
67  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
68                                            llvm::Value *Base,
69                                            llvm::Value *MemPtr,
70                                            const MemberPointerType *MPT);
71
72  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
73                                           const CastExpr *E,
74                                           llvm::Value *Src);
75
76  llvm::Constant *EmitMemberPointerConversion(llvm::Constant *C,
77                                              const CastExpr *E);
78
79  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
80
81  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
82  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
83                                        CharUnits offset);
84
85  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
86                                           llvm::Value *L,
87                                           llvm::Value *R,
88                                           const MemberPointerType *MPT,
89                                           bool Inequality);
90
91  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
92                                          llvm::Value *Addr,
93                                          const MemberPointerType *MPT);
94
95  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
96                                 CXXCtorType T,
97                                 CanQualType &ResTy,
98                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
99
100  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
101                                CXXDtorType T,
102                                CanQualType &ResTy,
103                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
104
105  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
106                                   QualType &ResTy,
107                                   FunctionArgList &Params);
108
109  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
110
111  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
112  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
113                                     llvm::Value *NewPtr,
114                                     llvm::Value *NumElements,
115                                     const CXXNewExpr *expr,
116                                     QualType ElementType);
117  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
118                       const CXXDeleteExpr *expr,
119                       QualType ElementType, llvm::Value *&NumElements,
120                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
121
122  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
123                       llvm::GlobalVariable *DeclPtr);
124};
125
126class ARMCXXABI : public ItaniumCXXABI {
127public:
128  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
129
130  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
131                                 CXXCtorType T,
132                                 CanQualType &ResTy,
133                                 llvm::SmallVectorImpl<CanQualType> &ArgTys);
134
135  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
136                                CXXDtorType T,
137                                CanQualType &ResTy,
138                                llvm::SmallVectorImpl<CanQualType> &ArgTys);
139
140  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
141                                   QualType &ResTy,
142                                   FunctionArgList &Params);
143
144  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
145
146  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
147
148  CharUnits GetArrayCookieSize(const CXXNewExpr *expr);
149  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
150                                     llvm::Value *NewPtr,
151                                     llvm::Value *NumElements,
152                                     const CXXNewExpr *expr,
153                                     QualType ElementType);
154  void ReadArrayCookie(CodeGenFunction &CGF, llvm::Value *Ptr,
155                       const CXXDeleteExpr *expr,
156                       QualType ElementType, llvm::Value *&NumElements,
157                       llvm::Value *&AllocPtr, CharUnits &CookieSize);
158
159private:
160  /// \brief Returns true if the given instance method is one of the
161  /// kinds that the ARM ABI says returns 'this'.
162  static bool HasThisReturn(GlobalDecl GD) {
163    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
164    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
165            (isa<CXXConstructorDecl>(MD)));
166  }
167};
168}
169
170CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
171  return new ItaniumCXXABI(CGM);
172}
173
174CodeGen::CGCXXABI *CodeGen::CreateARMCXXABI(CodeGenModule &CGM) {
175  return new ARMCXXABI(CGM);
176}
177
178const llvm::Type *
179ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
180  if (MPT->isMemberDataPointer())
181    return getPtrDiffTy();
182  else
183    return llvm::StructType::get(CGM.getLLVMContext(),
184                                 getPtrDiffTy(), getPtrDiffTy(), NULL);
185}
186
187/// In the Itanium and ARM ABIs, method pointers have the form:
188///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
189///
190/// In the Itanium ABI:
191///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
192///  - the this-adjustment is (memptr.adj)
193///  - the virtual offset is (memptr.ptr - 1)
194///
195/// In the ARM ABI:
196///  - method pointers are virtual if (memptr.adj & 1) is nonzero
197///  - the this-adjustment is (memptr.adj >> 1)
198///  - the virtual offset is (memptr.ptr)
199/// ARM uses 'adj' for the virtual flag because Thumb functions
200/// may be only single-byte aligned.
201///
202/// If the member is virtual, the adjusted 'this' pointer points
203/// to a vtable pointer from which the virtual offset is applied.
204///
205/// If the member is non-virtual, memptr.ptr is the address of
206/// the function to call.
207llvm::Value *
208ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
209                                               llvm::Value *&This,
210                                               llvm::Value *MemFnPtr,
211                                               const MemberPointerType *MPT) {
212  CGBuilderTy &Builder = CGF.Builder;
213
214  const FunctionProtoType *FPT =
215    MPT->getPointeeType()->getAs<FunctionProtoType>();
216  const CXXRecordDecl *RD =
217    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
218
219  const llvm::FunctionType *FTy =
220    CGM.getTypes().GetFunctionType(CGM.getTypes().getFunctionInfo(RD, FPT),
221                                   FPT->isVariadic());
222
223  const llvm::IntegerType *ptrdiff = getPtrDiffTy();
224  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(ptrdiff, 1);
225
226  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
227  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
228  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
229
230  // Extract memptr.adj, which is in the second field.
231  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
232
233  // Compute the true adjustment.
234  llvm::Value *Adj = RawAdj;
235  if (IsARM)
236    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
237
238  // Apply the adjustment and cast back to the original struct type
239  // for consistency.
240  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
241  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
242  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
243
244  // Load the function pointer.
245  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
246
247  // If the LSB in the function pointer is 1, the function pointer points to
248  // a virtual function.
249  llvm::Value *IsVirtual;
250  if (IsARM)
251    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
252  else
253    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
254  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
255  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
256
257  // In the virtual path, the adjustment left 'This' pointing to the
258  // vtable of the correct base subobject.  The "function pointer" is an
259  // offset within the vtable (+1 for the virtual flag on non-ARM).
260  CGF.EmitBlock(FnVirtual);
261
262  // Cast the adjusted this to a pointer to vtable pointer and load.
263  const llvm::Type *VTableTy = Builder.getInt8PtrTy();
264  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
265  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
266
267  // Apply the offset.
268  llvm::Value *VTableOffset = FnAsInt;
269  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
270  VTable = Builder.CreateGEP(VTable, VTableOffset);
271
272  // Load the virtual function to call.
273  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
274  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
275  CGF.EmitBranch(FnEnd);
276
277  // In the non-virtual path, the function pointer is actually a
278  // function pointer.
279  CGF.EmitBlock(FnNonVirtual);
280  llvm::Value *NonVirtualFn =
281    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
282
283  // We're done.
284  CGF.EmitBlock(FnEnd);
285  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
286  Callee->addIncoming(VirtualFn, FnVirtual);
287  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
288  return Callee;
289}
290
291/// Compute an l-value by applying the given pointer-to-member to a
292/// base object.
293llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
294                                                         llvm::Value *Base,
295                                                         llvm::Value *MemPtr,
296                                           const MemberPointerType *MPT) {
297  assert(MemPtr->getType() == getPtrDiffTy());
298
299  CGBuilderTy &Builder = CGF.Builder;
300
301  unsigned AS = cast<llvm::PointerType>(Base->getType())->getAddressSpace();
302
303  // Cast to char*.
304  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
305
306  // Apply the offset, which we assume is non-null.
307  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
308
309  // Cast the address to the appropriate pointer type, adopting the
310  // address space of the base pointer.
311  const llvm::Type *PType
312    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
313  return Builder.CreateBitCast(Addr, PType);
314}
315
316/// Perform a derived-to-base or base-to-derived member pointer conversion.
317///
318/// Obligatory offset/adjustment diagram:
319///         <-- offset -->          <-- adjustment -->
320///   |--------------------------|----------------------|--------------------|
321///   ^Derived address point     ^Base address point    ^Member address point
322///
323/// So when converting a base member pointer to a derived member pointer,
324/// we add the offset to the adjustment because the address point has
325/// decreased;  and conversely, when converting a derived MP to a base MP
326/// we subtract the offset from the adjustment because the address point
327/// has increased.
328///
329/// The standard forbids (at compile time) conversion to and from
330/// virtual bases, which is why we don't have to consider them here.
331///
332/// The standard forbids (at run time) casting a derived MP to a base
333/// MP when the derived MP does not point to a member of the base.
334/// This is why -1 is a reasonable choice for null data member
335/// pointers.
336llvm::Value *
337ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
338                                           const CastExpr *E,
339                                           llvm::Value *Src) {
340  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
341         E->getCastKind() == CK_BaseToDerivedMemberPointer);
342
343  if (isa<llvm::Constant>(Src))
344    return EmitMemberPointerConversion(cast<llvm::Constant>(Src), E);
345
346  CGBuilderTy &Builder = CGF.Builder;
347
348  const MemberPointerType *SrcTy =
349    E->getSubExpr()->getType()->getAs<MemberPointerType>();
350  const MemberPointerType *DestTy = E->getType()->getAs<MemberPointerType>();
351
352  const CXXRecordDecl *SrcDecl = SrcTy->getClass()->getAsCXXRecordDecl();
353  const CXXRecordDecl *DestDecl = DestTy->getClass()->getAsCXXRecordDecl();
354
355  bool DerivedToBase =
356    E->getCastKind() == CK_DerivedToBaseMemberPointer;
357
358  const CXXRecordDecl *DerivedDecl;
359  if (DerivedToBase)
360    DerivedDecl = SrcDecl;
361  else
362    DerivedDecl = DestDecl;
363
364  llvm::Constant *Adj =
365    CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
366                                         E->path_begin(),
367                                         E->path_end());
368  if (!Adj) return Src;
369
370  // For member data pointers, this is just a matter of adding the
371  // offset if the source is non-null.
372  if (SrcTy->isMemberDataPointer()) {
373    llvm::Value *Dst;
374    if (DerivedToBase)
375      Dst = Builder.CreateNSWSub(Src, Adj, "adj");
376    else
377      Dst = Builder.CreateNSWAdd(Src, Adj, "adj");
378
379    // Null check.
380    llvm::Value *Null = llvm::Constant::getAllOnesValue(Src->getType());
381    llvm::Value *IsNull = Builder.CreateICmpEQ(Src, Null, "memptr.isnull");
382    return Builder.CreateSelect(IsNull, Src, Dst);
383  }
384
385  // The this-adjustment is left-shifted by 1 on ARM.
386  if (IsARM) {
387    uint64_t Offset = cast<llvm::ConstantInt>(Adj)->getZExtValue();
388    Offset <<= 1;
389    Adj = llvm::ConstantInt::get(Adj->getType(), Offset);
390  }
391
392  llvm::Value *SrcAdj = Builder.CreateExtractValue(Src, 1, "src.adj");
393  llvm::Value *DstAdj;
394  if (DerivedToBase)
395    DstAdj = Builder.CreateNSWSub(SrcAdj, Adj, "adj");
396  else
397    DstAdj = Builder.CreateNSWAdd(SrcAdj, Adj, "adj");
398
399  return Builder.CreateInsertValue(Src, DstAdj, 1);
400}
401
402llvm::Constant *
403ItaniumCXXABI::EmitMemberPointerConversion(llvm::Constant *C,
404                                           const CastExpr *E) {
405  const MemberPointerType *SrcTy =
406    E->getSubExpr()->getType()->getAs<MemberPointerType>();
407  const MemberPointerType *DestTy =
408    E->getType()->getAs<MemberPointerType>();
409
410  bool DerivedToBase =
411    E->getCastKind() == CK_DerivedToBaseMemberPointer;
412
413  const CXXRecordDecl *DerivedDecl;
414  if (DerivedToBase)
415    DerivedDecl = SrcTy->getClass()->getAsCXXRecordDecl();
416  else
417    DerivedDecl = DestTy->getClass()->getAsCXXRecordDecl();
418
419  // Calculate the offset to the base class.
420  llvm::Constant *Offset =
421    CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
422                                     E->path_begin(),
423                                     E->path_end());
424  // If there's no offset, we're done.
425  if (!Offset) return C;
426
427  // If the source is a member data pointer, we have to do a null
428  // check and then add the offset.  In the common case, we can fold
429  // away the offset.
430  if (SrcTy->isMemberDataPointer()) {
431    assert(C->getType() == getPtrDiffTy());
432
433    // If it's a constant int, just create a new constant int.
434    if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
435      int64_t Src = CI->getSExtValue();
436
437      // Null converts to null.
438      if (Src == -1) return CI;
439
440      // Otherwise, just add the offset.
441      int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
442      int64_t Dst = (DerivedToBase ? Src - OffsetV : Src + OffsetV);
443      return llvm::ConstantInt::get(CI->getType(), Dst, /*signed*/ true);
444    }
445
446    // Otherwise, we have to form a constant select expression.
447    llvm::Constant *Null = llvm::Constant::getAllOnesValue(C->getType());
448
449    llvm::Constant *IsNull =
450      llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, C, Null);
451
452    llvm::Constant *Dst;
453    if (DerivedToBase)
454      Dst = llvm::ConstantExpr::getNSWSub(C, Offset);
455    else
456      Dst = llvm::ConstantExpr::getNSWAdd(C, Offset);
457
458    return llvm::ConstantExpr::getSelect(IsNull, Null, Dst);
459  }
460
461  // The this-adjustment is left-shifted by 1 on ARM.
462  if (IsARM) {
463    int64_t OffsetV = cast<llvm::ConstantInt>(Offset)->getSExtValue();
464    OffsetV <<= 1;
465    Offset = llvm::ConstantInt::get(Offset->getType(), OffsetV);
466  }
467
468  llvm::ConstantStruct *CS = cast<llvm::ConstantStruct>(C);
469
470  llvm::Constant *Values[2] = { CS->getOperand(0), 0 };
471  if (DerivedToBase)
472    Values[1] = llvm::ConstantExpr::getSub(CS->getOperand(1), Offset);
473  else
474    Values[1] = llvm::ConstantExpr::getAdd(CS->getOperand(1), Offset);
475
476  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
477                                   /*Packed=*/false);
478}
479
480
481llvm::Constant *
482ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
483  const llvm::Type *ptrdiff_t = getPtrDiffTy();
484
485  // Itanium C++ ABI 2.3:
486  //   A NULL pointer is represented as -1.
487  if (MPT->isMemberDataPointer())
488    return llvm::ConstantInt::get(ptrdiff_t, -1ULL, /*isSigned=*/true);
489
490  llvm::Constant *Zero = llvm::ConstantInt::get(ptrdiff_t, 0);
491  llvm::Constant *Values[2] = { Zero, Zero };
492  return llvm::ConstantStruct::get(CGM.getLLVMContext(), Values, 2,
493                                   /*Packed=*/false);
494}
495
496llvm::Constant *
497ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
498                                     CharUnits offset) {
499  // Itanium C++ ABI 2.3:
500  //   A pointer to data member is an offset from the base address of
501  //   the class object containing it, represented as a ptrdiff_t
502  return llvm::ConstantInt::get(getPtrDiffTy(), offset.getQuantity());
503}
504
505llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
506  assert(MD->isInstance() && "Member function must not be static!");
507  MD = MD->getCanonicalDecl();
508
509  CodeGenTypes &Types = CGM.getTypes();
510  const llvm::Type *ptrdiff_t = getPtrDiffTy();
511
512  // Get the function pointer (or index if this is a virtual function).
513  llvm::Constant *MemPtr[2];
514  if (MD->isVirtual()) {
515    uint64_t Index = CGM.getVTables().getMethodVTableIndex(MD);
516
517    const ASTContext &Context = getContext();
518    CharUnits PointerWidth =
519      Context.toCharUnitsFromBits(Context.Target.getPointerWidth(0));
520    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
521
522    if (IsARM) {
523      // ARM C++ ABI 3.2.1:
524      //   This ABI specifies that adj contains twice the this
525      //   adjustment, plus 1 if the member function is virtual. The
526      //   least significant bit of adj then makes exactly the same
527      //   discrimination as the least significant bit of ptr does for
528      //   Itanium.
529      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset);
530      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 1);
531    } else {
532      // Itanium C++ ABI 2.3:
533      //   For a virtual function, [the pointer field] is 1 plus the
534      //   virtual table offset (in bytes) of the function,
535      //   represented as a ptrdiff_t.
536      MemPtr[0] = llvm::ConstantInt::get(ptrdiff_t, VTableOffset + 1);
537      MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
538    }
539  } else {
540    QualType fnType = MD->getType();
541    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
542    const llvm::Type *Ty;
543    // Check whether the function has a computable LLVM signature.
544    if (!CodeGenTypes::VerifyFuncTypeComplete(FPT)) {
545      // The function has a computable LLVM signature; use the correct type.
546      Ty = Types.GetFunctionType(Types.getFunctionInfo(MD),
547                                 FPT->isVariadic());
548    } else {
549      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
550      // function type is incomplete.
551      Ty = ptrdiff_t;
552    }
553    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
554
555    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, ptrdiff_t);
556    MemPtr[1] = llvm::ConstantInt::get(ptrdiff_t, 0);
557  }
558
559  return llvm::ConstantStruct::get(CGM.getLLVMContext(),
560                                   MemPtr, 2, /*Packed=*/false);
561}
562
563/// The comparison algorithm is pretty easy: the member pointers are
564/// the same if they're either bitwise identical *or* both null.
565///
566/// ARM is different here only because null-ness is more complicated.
567llvm::Value *
568ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
569                                           llvm::Value *L,
570                                           llvm::Value *R,
571                                           const MemberPointerType *MPT,
572                                           bool Inequality) {
573  CGBuilderTy &Builder = CGF.Builder;
574
575  llvm::ICmpInst::Predicate Eq;
576  llvm::Instruction::BinaryOps And, Or;
577  if (Inequality) {
578    Eq = llvm::ICmpInst::ICMP_NE;
579    And = llvm::Instruction::Or;
580    Or = llvm::Instruction::And;
581  } else {
582    Eq = llvm::ICmpInst::ICMP_EQ;
583    And = llvm::Instruction::And;
584    Or = llvm::Instruction::Or;
585  }
586
587  // Member data pointers are easy because there's a unique null
588  // value, so it just comes down to bitwise equality.
589  if (MPT->isMemberDataPointer())
590    return Builder.CreateICmp(Eq, L, R);
591
592  // For member function pointers, the tautologies are more complex.
593  // The Itanium tautology is:
594  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
595  // The ARM tautology is:
596  //   (L == R) <==> (L.ptr == R.ptr &&
597  //                  (L.adj == R.adj ||
598  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
599  // The inequality tautologies have exactly the same structure, except
600  // applying De Morgan's laws.
601
602  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
603  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
604
605  // This condition tests whether L.ptr == R.ptr.  This must always be
606  // true for equality to hold.
607  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
608
609  // This condition, together with the assumption that L.ptr == R.ptr,
610  // tests whether the pointers are both null.  ARM imposes an extra
611  // condition.
612  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
613  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
614
615  // This condition tests whether L.adj == R.adj.  If this isn't
616  // true, the pointers are unequal unless they're both null.
617  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
618  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
619  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
620
621  // Null member function pointers on ARM clear the low bit of Adj,
622  // so the zero condition has to check that neither low bit is set.
623  if (IsARM) {
624    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
625
626    // Compute (l.adj | r.adj) & 1 and test it against zero.
627    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
628    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
629    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
630                                                      "cmp.or.adj");
631    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
632  }
633
634  // Tie together all our conditions.
635  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
636  Result = Builder.CreateBinOp(And, PtrEq, Result,
637                               Inequality ? "memptr.ne" : "memptr.eq");
638  return Result;
639}
640
641llvm::Value *
642ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
643                                          llvm::Value *MemPtr,
644                                          const MemberPointerType *MPT) {
645  CGBuilderTy &Builder = CGF.Builder;
646
647  /// For member data pointers, this is just a check against -1.
648  if (MPT->isMemberDataPointer()) {
649    assert(MemPtr->getType() == getPtrDiffTy());
650    llvm::Value *NegativeOne =
651      llvm::Constant::getAllOnesValue(MemPtr->getType());
652    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
653  }
654
655  // In Itanium, a member function pointer is null if 'ptr' is null.
656  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
657
658  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
659  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
660
661  // In ARM, it's that, plus the low bit of 'adj' must be zero.
662  if (IsARM) {
663    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
664    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
665    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
666    llvm::Value *IsNotVirtual = Builder.CreateICmpEQ(VirtualBit, Zero,
667                                                     "memptr.notvirtual");
668    Result = Builder.CreateAnd(Result, IsNotVirtual);
669  }
670
671  return Result;
672}
673
674/// The Itanium ABI requires non-zero initialization only for data
675/// member pointers, for which '0' is a valid offset.
676bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
677  return MPT->getPointeeType()->isFunctionType();
678}
679
680/// The generic ABI passes 'this', plus a VTT if it's initializing a
681/// base subobject.
682void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
683                                              CXXCtorType Type,
684                                              CanQualType &ResTy,
685                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
686  ASTContext &Context = getContext();
687
688  // 'this' is already there.
689
690  // Check if we need to add a VTT parameter (which has type void **).
691  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
692    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
693}
694
695/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
696void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
697                                          CXXCtorType Type,
698                                          CanQualType &ResTy,
699                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
700  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
701  ResTy = ArgTys[0];
702}
703
704/// The generic ABI passes 'this', plus a VTT if it's destroying a
705/// base subobject.
706void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
707                                             CXXDtorType Type,
708                                             CanQualType &ResTy,
709                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
710  ASTContext &Context = getContext();
711
712  // 'this' is already there.
713
714  // Check if we need to add a VTT parameter (which has type void **).
715  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
716    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
717}
718
719/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
720/// for non-deleting destructors.
721void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
722                                         CXXDtorType Type,
723                                         CanQualType &ResTy,
724                                llvm::SmallVectorImpl<CanQualType> &ArgTys) {
725  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
726
727  if (Type != Dtor_Deleting)
728    ResTy = ArgTys[0];
729}
730
731void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
732                                                QualType &ResTy,
733                                                FunctionArgList &Params) {
734  /// Create the 'this' variable.
735  BuildThisParam(CGF, Params);
736
737  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
738  assert(MD->isInstance());
739
740  // Check if we need a VTT parameter as well.
741  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
742    ASTContext &Context = getContext();
743
744    // FIXME: avoid the fake decl
745    QualType T = Context.getPointerType(Context.VoidPtrTy);
746    ImplicitParamDecl *VTTDecl
747      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
748                                  &Context.Idents.get("vtt"), T);
749    Params.push_back(VTTDecl);
750    getVTTDecl(CGF) = VTTDecl;
751  }
752}
753
754void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
755                                            QualType &ResTy,
756                                            FunctionArgList &Params) {
757  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
758
759  // Return 'this' from certain constructors and destructors.
760  if (HasThisReturn(CGF.CurGD))
761    ResTy = Params[0]->getType();
762}
763
764void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
765  /// Initialize the 'this' slot.
766  EmitThisParam(CGF);
767
768  /// Initialize the 'vtt' slot if needed.
769  if (getVTTDecl(CGF)) {
770    getVTTValue(CGF)
771      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
772                               "vtt");
773  }
774}
775
776void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
777  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
778
779  /// Initialize the return slot to 'this' at the start of the
780  /// function.
781  if (HasThisReturn(CGF.CurGD))
782    CGF.Builder.CreateStore(CGF.LoadCXXThis(), CGF.ReturnValue);
783}
784
785void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
786                                    RValue RV, QualType ResultType) {
787  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
788    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
789
790  // Destructor thunks in the ARM ABI have indeterminate results.
791  const llvm::Type *T =
792    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
793  RValue Undef = RValue::get(llvm::UndefValue::get(T));
794  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
795}
796
797/************************** Array allocation cookies **************************/
798
799bool ItaniumCXXABI::NeedsArrayCookie(const CXXNewExpr *expr) {
800  // If the class's usual deallocation function takes two arguments,
801  // it needs a cookie.
802  if (expr->doesUsualArrayDeleteWantSize())
803    return true;
804
805  // Otherwise, if the class has a non-trivial destructor, it always
806  // needs a cookie.
807  const CXXRecordDecl *record =
808    expr->getAllocatedType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
809  return (record && !record->hasTrivialDestructor());
810}
811
812bool ItaniumCXXABI::NeedsArrayCookie(const CXXDeleteExpr *expr,
813                                     QualType elementType) {
814  // If the class's usual deallocation function takes two arguments,
815  // it needs a cookie.
816  if (expr->doesUsualArrayDeleteWantSize())
817    return true;
818
819  // Otherwise, if the class has a non-trivial destructor, it always
820  // needs a cookie.
821  const CXXRecordDecl *record =
822    elementType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
823  return (record && !record->hasTrivialDestructor());
824}
825
826CharUnits ItaniumCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
827  if (!NeedsArrayCookie(expr))
828    return CharUnits::Zero();
829
830  // Padding is the maximum of sizeof(size_t) and alignof(elementType)
831  ASTContext &Ctx = getContext();
832  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
833                  Ctx.getTypeAlignInChars(expr->getAllocatedType()));
834}
835
836llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
837                                                  llvm::Value *NewPtr,
838                                                  llvm::Value *NumElements,
839                                                  const CXXNewExpr *expr,
840                                                  QualType ElementType) {
841  assert(NeedsArrayCookie(expr));
842
843  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
844
845  ASTContext &Ctx = getContext();
846  QualType SizeTy = Ctx.getSizeType();
847  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
848
849  // The size of the cookie.
850  CharUnits CookieSize =
851    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
852
853  // Compute an offset to the cookie.
854  llvm::Value *CookiePtr = NewPtr;
855  CharUnits CookieOffset = CookieSize - SizeSize;
856  if (!CookieOffset.isZero())
857    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
858                                                 CookieOffset.getQuantity());
859
860  // Write the number of elements into the appropriate slot.
861  llvm::Value *NumElementsPtr
862    = CGF.Builder.CreateBitCast(CookiePtr,
863                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
864  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
865
866  // Finally, compute a pointer to the actual data buffer by skipping
867  // over the cookie completely.
868  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
869                                                CookieSize.getQuantity());
870}
871
872void ItaniumCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
873                                    llvm::Value *Ptr,
874                                    const CXXDeleteExpr *expr,
875                                    QualType ElementType,
876                                    llvm::Value *&NumElements,
877                                    llvm::Value *&AllocPtr,
878                                    CharUnits &CookieSize) {
879  // Derive a char* in the same address space as the pointer.
880  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
881  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
882
883  // If we don't need an array cookie, bail out early.
884  if (!NeedsArrayCookie(expr, ElementType)) {
885    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
886    NumElements = 0;
887    CookieSize = CharUnits::Zero();
888    return;
889  }
890
891  QualType SizeTy = getContext().getSizeType();
892  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
893  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
894
895  CookieSize
896    = std::max(SizeSize, getContext().getTypeAlignInChars(ElementType));
897
898  CharUnits NumElementsOffset = CookieSize - SizeSize;
899
900  // Compute the allocated pointer.
901  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
902  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
903                                                    -CookieSize.getQuantity());
904
905  llvm::Value *NumElementsPtr = AllocPtr;
906  if (!NumElementsOffset.isZero())
907    NumElementsPtr =
908      CGF.Builder.CreateConstInBoundsGEP1_64(NumElementsPtr,
909                                             NumElementsOffset.getQuantity());
910  NumElementsPtr =
911    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
912  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
913}
914
915CharUnits ARMCXXABI::GetArrayCookieSize(const CXXNewExpr *expr) {
916  if (!NeedsArrayCookie(expr))
917    return CharUnits::Zero();
918
919  // On ARM, the cookie is always:
920  //   struct array_cookie {
921  //     std::size_t element_size; // element_size != 0
922  //     std::size_t element_count;
923  //   };
924  // TODO: what should we do if the allocated type actually wants
925  // greater alignment?
926  return getContext().getTypeSizeInChars(getContext().getSizeType()) * 2;
927}
928
929llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
930                                              llvm::Value *NewPtr,
931                                              llvm::Value *NumElements,
932                                              const CXXNewExpr *expr,
933                                              QualType ElementType) {
934  assert(NeedsArrayCookie(expr));
935
936  // NewPtr is a char*.
937
938  unsigned AS = cast<llvm::PointerType>(NewPtr->getType())->getAddressSpace();
939
940  ASTContext &Ctx = getContext();
941  CharUnits SizeSize = Ctx.getTypeSizeInChars(Ctx.getSizeType());
942  const llvm::IntegerType *SizeTy =
943    cast<llvm::IntegerType>(CGF.ConvertType(Ctx.getSizeType()));
944
945  // The cookie is always at the start of the buffer.
946  llvm::Value *CookiePtr = NewPtr;
947
948  // The first element is the element size.
949  CookiePtr = CGF.Builder.CreateBitCast(CookiePtr, SizeTy->getPointerTo(AS));
950  llvm::Value *ElementSize = llvm::ConstantInt::get(SizeTy,
951                          Ctx.getTypeSizeInChars(ElementType).getQuantity());
952  CGF.Builder.CreateStore(ElementSize, CookiePtr);
953
954  // The second element is the element count.
955  CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_32(CookiePtr, 1);
956  CGF.Builder.CreateStore(NumElements, CookiePtr);
957
958  // Finally, compute a pointer to the actual data buffer by skipping
959  // over the cookie completely.
960  CharUnits CookieSize = 2 * SizeSize;
961  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
962                                                CookieSize.getQuantity());
963}
964
965void ARMCXXABI::ReadArrayCookie(CodeGenFunction &CGF,
966                                llvm::Value *Ptr,
967                                const CXXDeleteExpr *expr,
968                                QualType ElementType,
969                                llvm::Value *&NumElements,
970                                llvm::Value *&AllocPtr,
971                                CharUnits &CookieSize) {
972  // Derive a char* in the same address space as the pointer.
973  unsigned AS = cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
974  const llvm::Type *CharPtrTy = CGF.Builder.getInt8Ty()->getPointerTo(AS);
975
976  // If we don't need an array cookie, bail out early.
977  if (!NeedsArrayCookie(expr, ElementType)) {
978    AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
979    NumElements = 0;
980    CookieSize = CharUnits::Zero();
981    return;
982  }
983
984  QualType SizeTy = getContext().getSizeType();
985  CharUnits SizeSize = getContext().getTypeSizeInChars(SizeTy);
986  const llvm::Type *SizeLTy = CGF.ConvertType(SizeTy);
987
988  // The cookie size is always 2 * sizeof(size_t).
989  CookieSize = 2 * SizeSize;
990
991  // The allocated pointer is the input ptr, minus that amount.
992  AllocPtr = CGF.Builder.CreateBitCast(Ptr, CharPtrTy);
993  AllocPtr = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
994                                               -CookieSize.getQuantity());
995
996  // The number of elements is at offset sizeof(size_t) relative to that.
997  llvm::Value *NumElementsPtr
998    = CGF.Builder.CreateConstInBoundsGEP1_64(AllocPtr,
999                                             SizeSize.getQuantity());
1000  NumElementsPtr =
1001    CGF.Builder.CreateBitCast(NumElementsPtr, SizeLTy->getPointerTo(AS));
1002  NumElements = CGF.Builder.CreateLoad(NumElementsPtr);
1003}
1004
1005/*********************** Static local initialization **************************/
1006
1007static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1008                                         const llvm::PointerType *GuardPtrTy) {
1009  // int __cxa_guard_acquire(__guard *guard_object);
1010
1011  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1012  const llvm::FunctionType *FTy =
1013    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1014                            Args, /*isVarArg=*/false);
1015
1016  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire");
1017}
1018
1019static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1020                                         const llvm::PointerType *GuardPtrTy) {
1021  // void __cxa_guard_release(__guard *guard_object);
1022
1023  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1024
1025  const llvm::FunctionType *FTy =
1026    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1027                            Args, /*isVarArg=*/false);
1028
1029  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release");
1030}
1031
1032static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1033                                       const llvm::PointerType *GuardPtrTy) {
1034  // void __cxa_guard_abort(__guard *guard_object);
1035
1036  std::vector<const llvm::Type*> Args(1, GuardPtrTy);
1037
1038  const llvm::FunctionType *FTy =
1039    llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
1040                            Args, /*isVarArg=*/false);
1041
1042  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort");
1043}
1044
1045namespace {
1046  struct CallGuardAbort : EHScopeStack::Cleanup {
1047    llvm::GlobalVariable *Guard;
1048    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1049
1050    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1051      CGF.Builder.CreateCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard)
1052        ->setDoesNotThrow();
1053    }
1054  };
1055}
1056
1057/// The ARM code here follows the Itanium code closely enough that we
1058/// just special-case it at particular places.
1059void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1060                                    const VarDecl &D,
1061                                    llvm::GlobalVariable *GV) {
1062  CGBuilderTy &Builder = CGF.Builder;
1063
1064  // We only need to use thread-safe statics for local variables;
1065  // global initialization is always single-threaded.
1066  bool ThreadsafeStatics = (getContext().getLangOptions().ThreadsafeStatics &&
1067                            D.isLocalVarDecl());
1068
1069  // Guard variables are 64 bits in the generic ABI and 32 bits on ARM.
1070  const llvm::IntegerType *GuardTy
1071    = (IsARM ? Builder.getInt32Ty() : Builder.getInt64Ty());
1072  const llvm::PointerType *GuardPtrTy = GuardTy->getPointerTo();
1073
1074  // Create the guard variable.
1075  llvm::SmallString<256> GuardVName;
1076  llvm::raw_svector_ostream Out(GuardVName);
1077  getMangleContext().mangleItaniumGuardVariable(&D, Out);
1078  Out.flush();
1079
1080  // Just absorb linkage and visibility from the variable.
1081  llvm::GlobalVariable *GuardVariable =
1082    new llvm::GlobalVariable(CGM.getModule(), GuardTy,
1083                             false, GV->getLinkage(),
1084                             llvm::ConstantInt::get(GuardTy, 0),
1085                             GuardVName.str());
1086  GuardVariable->setVisibility(GV->getVisibility());
1087
1088  // Test whether the variable has completed initialization.
1089  llvm::Value *IsInitialized;
1090
1091  // ARM C++ ABI 3.2.3.1:
1092  //   To support the potential use of initialization guard variables
1093  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1094  //   synchronizing instructions we define a static initialization
1095  //   guard variable to be a 4-byte aligned, 4- byte word with the
1096  //   following inline access protocol.
1097  //     #define INITIALIZED 1
1098  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1099  //       if (__cxa_guard_acquire(&obj_guard))
1100  //         ...
1101  //     }
1102  if (IsARM) {
1103    llvm::Value *V = Builder.CreateLoad(GuardVariable);
1104    V = Builder.CreateAnd(V, Builder.getInt32(1));
1105    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1106
1107  // Itanium C++ ABI 3.3.2:
1108  //   The following is pseudo-code showing how these functions can be used:
1109  //     if (obj_guard.first_byte == 0) {
1110  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1111  //         try {
1112  //           ... initialize the object ...;
1113  //         } catch (...) {
1114  //            __cxa_guard_abort (&obj_guard);
1115  //            throw;
1116  //         }
1117  //         ... queue object destructor with __cxa_atexit() ...;
1118  //         __cxa_guard_release (&obj_guard);
1119  //       }
1120  //     }
1121  } else {
1122    // Load the first byte of the guard variable.
1123    const llvm::Type *PtrTy = Builder.getInt8PtrTy();
1124    llvm::Value *V =
1125      Builder.CreateLoad(Builder.CreateBitCast(GuardVariable, PtrTy), "tmp");
1126
1127    IsInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1128  }
1129
1130  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1131  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1132
1133  // Check if the first byte of the guard variable is zero.
1134  Builder.CreateCondBr(IsInitialized, InitCheckBlock, EndBlock);
1135
1136  CGF.EmitBlock(InitCheckBlock);
1137
1138  // Variables used when coping with thread-safe statics and exceptions.
1139  if (ThreadsafeStatics) {
1140    // Call __cxa_guard_acquire.
1141    llvm::Value *V
1142      = Builder.CreateCall(getGuardAcquireFn(CGM, GuardPtrTy), GuardVariable);
1143
1144    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1145
1146    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1147                         InitBlock, EndBlock);
1148
1149    // Call __cxa_guard_abort along the exceptional edge.
1150    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, GuardVariable);
1151
1152    CGF.EmitBlock(InitBlock);
1153  }
1154
1155  // Emit the initializer and add a global destructor if appropriate.
1156  CGF.EmitCXXGlobalVarDeclInit(D, GV);
1157
1158  if (ThreadsafeStatics) {
1159    // Pop the guard-abort cleanup if we pushed one.
1160    CGF.PopCleanupBlock();
1161
1162    // Call __cxa_guard_release.  This cannot throw.
1163    Builder.CreateCall(getGuardReleaseFn(CGM, GuardPtrTy), GuardVariable);
1164  } else {
1165    Builder.CreateStore(llvm::ConstantInt::get(GuardTy, 1), GuardVariable);
1166  }
1167
1168  CGF.EmitBlock(EndBlock);
1169}
1170