SemaChecking.cpp revision 3c73c41cefcfe76f36b7bed72c9f1ec195490951
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "Sema.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "SemaUtil.h"
23using namespace clang;
24
25/// CheckFunctionCall - Check a direct function call for various correctness
26/// and safety properties not strictly enforced by the C type system.
27Action::ExprResult
28Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29  llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30  // Get the IdentifierInfo* for the called function.
31  IdentifierInfo *FnInfo = FDecl->getIdentifier();
32
33  // None of the checks below are needed for functions that don't have
34  // simple names (e.g., C++ conversion functions).
35  if (!FnInfo)
36    return TheCall.take();
37
38  switch (FnInfo->getBuiltinID()) {
39  case Builtin::BI__builtin___CFStringMakeConstantString:
40    assert(TheCall->getNumArgs() == 1 &&
41           "Wrong # arguments to builtin CFStringMakeConstantString");
42    if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
43      return true;
44    return TheCall.take();
45  case Builtin::BI__builtin_stdarg_start:
46  case Builtin::BI__builtin_va_start:
47    if (SemaBuiltinVAStart(TheCall.get()))
48      return true;
49    return TheCall.take();
50  case Builtin::BI__builtin_isgreater:
51  case Builtin::BI__builtin_isgreaterequal:
52  case Builtin::BI__builtin_isless:
53  case Builtin::BI__builtin_islessequal:
54  case Builtin::BI__builtin_islessgreater:
55  case Builtin::BI__builtin_isunordered:
56    if (SemaBuiltinUnorderedCompare(TheCall.get()))
57      return true;
58    return TheCall.take();
59  case Builtin::BI__builtin_return_address:
60  case Builtin::BI__builtin_frame_address:
61    if (SemaBuiltinStackAddress(TheCall.get()))
62      return true;
63    return TheCall.take();
64  case Builtin::BI__builtin_shufflevector:
65    return SemaBuiltinShuffleVector(TheCall.get());
66  case Builtin::BI__builtin_prefetch:
67    if (SemaBuiltinPrefetch(TheCall.get()))
68      return true;
69    return TheCall.take();
70  case Builtin::BI__builtin_object_size:
71    if (SemaBuiltinObjectSize(TheCall.get()))
72      return true;
73  }
74
75  // FIXME: This mechanism should be abstracted to be less fragile and
76  // more efficient. For example, just map function ids to custom
77  // handlers.
78
79  // Search the KnownFunctionIDs for the identifier.
80  unsigned i = 0, e = id_num_known_functions;
81  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
82  if (i == e) return TheCall.take();
83
84  // Printf checking.
85  if (i <= id_vprintf) {
86    // Retrieve the index of the format string parameter and determine
87    // if the function is passed a va_arg argument.
88    unsigned format_idx = 0;
89    bool HasVAListArg = false;
90
91    switch (i) {
92    default: assert(false && "No format string argument index.");
93    case id_NSLog:         format_idx = 0; break;
94    case id_asprintf:      format_idx = 1; break;
95    case id_fprintf:       format_idx = 1; break;
96    case id_printf:        format_idx = 0; break;
97    case id_snprintf:      format_idx = 2; break;
98    case id_snprintf_chk:  format_idx = 4; break;
99    case id_sprintf:       format_idx = 1; break;
100    case id_sprintf_chk:   format_idx = 3; break;
101    case id_vasprintf:     format_idx = 1; HasVAListArg = true; break;
102    case id_vfprintf:      format_idx = 1; HasVAListArg = true; break;
103    case id_vsnprintf:     format_idx = 2; HasVAListArg = true; break;
104    case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
105    case id_vsprintf:      format_idx = 1; HasVAListArg = true; break;
106    case id_vsprintf_chk:  format_idx = 3; HasVAListArg = true; break;
107    case id_vprintf:       format_idx = 0; HasVAListArg = true; break;
108    }
109
110    CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
111  }
112
113  return TheCall.take();
114}
115
116/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
117/// CFString constructor is correct
118bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
119  Arg = Arg->IgnoreParenCasts();
120
121  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
122
123  if (!Literal || Literal->isWide()) {
124    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
125      << Arg->getSourceRange();
126    return true;
127  }
128
129  const char *Data = Literal->getStrData();
130  unsigned Length = Literal->getByteLength();
131
132  for (unsigned i = 0; i < Length; ++i) {
133    if (!isascii(Data[i])) {
134      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
135           diag::warn_cfstring_literal_contains_non_ascii_character)
136        << Arg->getSourceRange();
137      break;
138    }
139
140    if (!Data[i]) {
141      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
142           diag::warn_cfstring_literal_contains_nul_character)
143        << Arg->getSourceRange();
144      break;
145    }
146  }
147
148  return false;
149}
150
151/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
152/// Emit an error and return true on failure, return false on success.
153bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
154  Expr *Fn = TheCall->getCallee();
155  if (TheCall->getNumArgs() > 2) {
156    Diag(TheCall->getArg(2)->getLocStart(),
157         diag::err_typecheck_call_too_many_args)
158      << Fn->getSourceRange()
159      << SourceRange(TheCall->getArg(2)->getLocStart(),
160                     (*(TheCall->arg_end()-1))->getLocEnd());
161    return true;
162  }
163
164  // Determine whether the current function is variadic or not.
165  bool isVariadic;
166  if (getCurFunctionDecl())
167    isVariadic =
168      cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
169  else
170    isVariadic = getCurMethodDecl()->isVariadic();
171
172  if (!isVariadic) {
173    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
174    return true;
175  }
176
177  // Verify that the second argument to the builtin is the last argument of the
178  // current function or method.
179  bool SecondArgIsLastNamedArgument = false;
180  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
181
182  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
183    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
184      // FIXME: This isn't correct for methods (results in bogus warning).
185      // Get the last formal in the current function.
186      const ParmVarDecl *LastArg;
187      if (getCurFunctionDecl())
188        LastArg = *(getCurFunctionDecl()->param_end()-1);
189      else
190        LastArg = *(getCurMethodDecl()->param_end()-1);
191      SecondArgIsLastNamedArgument = PV == LastArg;
192    }
193  }
194
195  if (!SecondArgIsLastNamedArgument)
196    Diag(TheCall->getArg(1)->getLocStart(),
197         diag::warn_second_parameter_of_va_start_not_last_named_argument);
198  return false;
199}
200
201/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
202/// friends.  This is declared to take (...), so we have to check everything.
203bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
204  if (TheCall->getNumArgs() < 2)
205    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
206  if (TheCall->getNumArgs() > 2)
207    return Diag(TheCall->getArg(2)->getLocStart(),
208                diag::err_typecheck_call_too_many_args)
209      << SourceRange(TheCall->getArg(2)->getLocStart(),
210                     (*(TheCall->arg_end()-1))->getLocEnd());
211
212  Expr *OrigArg0 = TheCall->getArg(0);
213  Expr *OrigArg1 = TheCall->getArg(1);
214
215  // Do standard promotions between the two arguments, returning their common
216  // type.
217  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
218
219  // If the common type isn't a real floating type, then the arguments were
220  // invalid for this operation.
221  if (!Res->isRealFloatingType())
222    return Diag(OrigArg0->getLocStart(),
223                diag::err_typecheck_call_invalid_ordered_compare)
224      << OrigArg0->getType().getAsString() << OrigArg1->getType().getAsString()
225      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
226
227  return false;
228}
229
230bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
231  // The signature for these builtins is exact; the only thing we need
232  // to check is that the argument is a constant.
233  SourceLocation Loc;
234  if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
235    return Diag(Loc, diag::err_stack_const_level) << TheCall->getSourceRange();
236
237  return false;
238}
239
240/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
241// This is declared to take (...), so we have to check everything.
242Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
243  if (TheCall->getNumArgs() < 3)
244    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
245      << TheCall->getSourceRange();
246
247  QualType FAType = TheCall->getArg(0)->getType();
248  QualType SAType = TheCall->getArg(1)->getType();
249
250  if (!FAType->isVectorType() || !SAType->isVectorType()) {
251    Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
252      << SourceRange(TheCall->getArg(0)->getLocStart(),
253                     TheCall->getArg(1)->getLocEnd());
254    return true;
255  }
256
257  if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
258      Context.getCanonicalType(SAType).getUnqualifiedType()) {
259    Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
260      << SourceRange(TheCall->getArg(0)->getLocStart(),
261                     TheCall->getArg(1)->getLocEnd());
262    return true;
263  }
264
265  unsigned numElements = FAType->getAsVectorType()->getNumElements();
266  if (TheCall->getNumArgs() != numElements+2) {
267    if (TheCall->getNumArgs() < numElements+2)
268      return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
269               << TheCall->getSourceRange();
270    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
271             << TheCall->getSourceRange();
272  }
273
274  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
275    llvm::APSInt Result(32);
276    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
277      return Diag(TheCall->getLocStart(),
278                  diag::err_shufflevector_nonconstant_argument)
279                << TheCall->getArg(i)->getSourceRange();
280
281    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
282      return Diag(TheCall->getLocStart(),
283                  diag::err_shufflevector_argument_too_large)
284               << TheCall->getArg(i)->getSourceRange();
285  }
286
287  llvm::SmallVector<Expr*, 32> exprs;
288
289  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
290    exprs.push_back(TheCall->getArg(i));
291    TheCall->setArg(i, 0);
292  }
293
294  return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
295                               TheCall->getCallee()->getLocStart(),
296                               TheCall->getRParenLoc());
297}
298
299/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
300// This is declared to take (const void*, ...) and can take two
301// optional constant int args.
302bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
303  unsigned NumArgs = TheCall->getNumArgs();
304
305  if (NumArgs > 3)
306    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args)
307             << TheCall->getSourceRange();
308
309  // Argument 0 is checked for us and the remaining arguments must be
310  // constant integers.
311  for (unsigned i = 1; i != NumArgs; ++i) {
312    Expr *Arg = TheCall->getArg(i);
313    QualType RWType = Arg->getType();
314
315    const BuiltinType *BT = RWType->getAsBuiltinType();
316    llvm::APSInt Result;
317    if (!BT || BT->getKind() != BuiltinType::Int ||
318        !Arg->isIntegerConstantExpr(Result, Context))
319      return Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument)
320              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
321
322    // FIXME: gcc issues a warning and rewrites these to 0. These
323    // seems especially odd for the third argument since the default
324    // is 3.
325    if (i == 1) {
326      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
327        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
328             << "0" << "1" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
329    } else {
330      if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
331        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
332            << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
333    }
334  }
335
336  return false;
337}
338
339/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
340/// int type). This simply type checks that type is one of the defined
341/// constants (0-3).
342bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
343  Expr *Arg = TheCall->getArg(1);
344  QualType ArgType = Arg->getType();
345  const BuiltinType *BT = ArgType->getAsBuiltinType();
346  llvm::APSInt Result(32);
347  if (!BT || BT->getKind() != BuiltinType::Int ||
348      !Arg->isIntegerConstantExpr(Result, Context)) {
349    return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument)
350             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
351  }
352
353  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
354    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
355             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
356  }
357
358  return false;
359}
360
361/// CheckPrintfArguments - Check calls to printf (and similar functions) for
362/// correct use of format strings.
363///
364///  HasVAListArg - A predicate indicating whether the printf-like
365///    function is passed an explicit va_arg argument (e.g., vprintf)
366///
367///  format_idx - The index into Args for the format string.
368///
369/// Improper format strings to functions in the printf family can be
370/// the source of bizarre bugs and very serious security holes.  A
371/// good source of information is available in the following paper
372/// (which includes additional references):
373///
374///  FormatGuard: Automatic Protection From printf Format String
375///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
376///
377/// Functionality implemented:
378///
379///  We can statically check the following properties for string
380///  literal format strings for non v.*printf functions (where the
381///  arguments are passed directly):
382//
383///  (1) Are the number of format conversions equal to the number of
384///      data arguments?
385///
386///  (2) Does each format conversion correctly match the type of the
387///      corresponding data argument?  (TODO)
388///
389/// Moreover, for all printf functions we can:
390///
391///  (3) Check for a missing format string (when not caught by type checking).
392///
393///  (4) Check for no-operation flags; e.g. using "#" with format
394///      conversion 'c'  (TODO)
395///
396///  (5) Check the use of '%n', a major source of security holes.
397///
398///  (6) Check for malformed format conversions that don't specify anything.
399///
400///  (7) Check for empty format strings.  e.g: printf("");
401///
402///  (8) Check that the format string is a wide literal.
403///
404///  (9) Also check the arguments of functions with the __format__ attribute.
405///      (TODO).
406///
407/// All of these checks can be done by parsing the format string.
408///
409/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
410void
411Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
412                           unsigned format_idx) {
413  Expr *Fn = TheCall->getCallee();
414
415  // CHECK: printf-like function is called with no format string.
416  if (format_idx >= TheCall->getNumArgs()) {
417    Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string)
418      << Fn->getSourceRange();
419    return;
420  }
421
422  Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
423
424  // CHECK: format string is not a string literal.
425  //
426  // Dynamically generated format strings are difficult to
427  // automatically vet at compile time.  Requiring that format strings
428  // are string literals: (1) permits the checking of format strings by
429  // the compiler and thereby (2) can practically remove the source of
430  // many format string exploits.
431
432  // Format string can be either ObjC string (e.g. @"%d") or
433  // C string (e.g. "%d")
434  // ObjC string uses the same format specifiers as C string, so we can use
435  // the same format string checking logic for both ObjC and C strings.
436  ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
437  StringLiteral *FExpr = NULL;
438
439  if(ObjCFExpr != NULL)
440    FExpr = ObjCFExpr->getString();
441  else
442    FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
443
444  if (FExpr == NULL) {
445    // For vprintf* functions (i.e., HasVAListArg==true), we add a
446    // special check to see if the format string is a function parameter
447    // of the function calling the printf function.  If the function
448    // has an attribute indicating it is a printf-like function, then we
449    // should suppress warnings concerning non-literals being used in a call
450    // to a vprintf function.  For example:
451    //
452    // void
453    // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
454    //      va_list ap;
455    //      va_start(ap, fmt);
456    //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
457    //      ...
458    //
459    //
460    //  FIXME: We don't have full attribute support yet, so just check to see
461    //    if the argument is a DeclRefExpr that references a parameter.  We'll
462    //    add proper support for checking the attribute later.
463    if (HasVAListArg)
464      if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
465        if (isa<ParmVarDecl>(DR->getDecl()))
466          return;
467
468    Diag(TheCall->getArg(format_idx)->getLocStart(),
469         diag::warn_printf_not_string_constant)
470      << OrigFormatExpr->getSourceRange();
471    return;
472  }
473
474  // CHECK: is the format string a wide literal?
475  if (FExpr->isWide()) {
476    Diag(FExpr->getLocStart(),
477         diag::warn_printf_format_string_is_wide_literal)
478      << OrigFormatExpr->getSourceRange();
479    return;
480  }
481
482  // Str - The format string.  NOTE: this is NOT null-terminated!
483  const char * const Str = FExpr->getStrData();
484
485  // CHECK: empty format string?
486  const unsigned StrLen = FExpr->getByteLength();
487
488  if (StrLen == 0) {
489    Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string)
490      << OrigFormatExpr->getSourceRange();
491    return;
492  }
493
494  // We process the format string using a binary state machine.  The
495  // current state is stored in CurrentState.
496  enum {
497    state_OrdChr,
498    state_Conversion
499  } CurrentState = state_OrdChr;
500
501  // numConversions - The number of conversions seen so far.  This is
502  //  incremented as we traverse the format string.
503  unsigned numConversions = 0;
504
505  // numDataArgs - The number of data arguments after the format
506  //  string.  This can only be determined for non vprintf-like
507  //  functions.  For those functions, this value is 1 (the sole
508  //  va_arg argument).
509  unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
510
511  // Inspect the format string.
512  unsigned StrIdx = 0;
513
514  // LastConversionIdx - Index within the format string where we last saw
515  //  a '%' character that starts a new format conversion.
516  unsigned LastConversionIdx = 0;
517
518  for (; StrIdx < StrLen; ++StrIdx) {
519
520    // Is the number of detected conversion conversions greater than
521    // the number of matching data arguments?  If so, stop.
522    if (!HasVAListArg && numConversions > numDataArgs) break;
523
524    // Handle "\0"
525    if (Str[StrIdx] == '\0') {
526      // The string returned by getStrData() is not null-terminated,
527      // so the presence of a null character is likely an error.
528      Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
529           diag::warn_printf_format_string_contains_null_char)
530        <<  OrigFormatExpr->getSourceRange();
531      return;
532    }
533
534    // Ordinary characters (not processing a format conversion).
535    if (CurrentState == state_OrdChr) {
536      if (Str[StrIdx] == '%') {
537        CurrentState = state_Conversion;
538        LastConversionIdx = StrIdx;
539      }
540      continue;
541    }
542
543    // Seen '%'.  Now processing a format conversion.
544    switch (Str[StrIdx]) {
545    // Handle dynamic precision or width specifier.
546    case '*': {
547      ++numConversions;
548
549      if (!HasVAListArg && numConversions > numDataArgs) {
550        SourceLocation Loc = FExpr->getLocStart();
551        Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
552
553        if (Str[StrIdx-1] == '.')
554          Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg)
555            << OrigFormatExpr->getSourceRange();
556        else
557          Diag(Loc, diag::warn_printf_asterisk_width_missing_arg)
558            << OrigFormatExpr->getSourceRange();
559
560        // Don't do any more checking.  We'll just emit spurious errors.
561        return;
562      }
563
564      // Perform type checking on width/precision specifier.
565      Expr *E = TheCall->getArg(format_idx+numConversions);
566      if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
567        if (BT->getKind() == BuiltinType::Int)
568          break;
569
570      SourceLocation Loc =
571        PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
572
573      if (Str[StrIdx-1] == '.')
574        Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type)
575          << E->getType().getAsString() << E->getSourceRange();
576      else
577        Diag(Loc, diag::warn_printf_asterisk_width_wrong_type)
578          << E->getType().getAsString() << E->getSourceRange();
579
580      break;
581    }
582
583    // Characters which can terminate a format conversion
584    // (e.g. "%d").  Characters that specify length modifiers or
585    // other flags are handled by the default case below.
586    //
587    // FIXME: additional checks will go into the following cases.
588    case 'i':
589    case 'd':
590    case 'o':
591    case 'u':
592    case 'x':
593    case 'X':
594    case 'D':
595    case 'O':
596    case 'U':
597    case 'e':
598    case 'E':
599    case 'f':
600    case 'F':
601    case 'g':
602    case 'G':
603    case 'a':
604    case 'A':
605    case 'c':
606    case 'C':
607    case 'S':
608    case 's':
609    case 'p':
610      ++numConversions;
611      CurrentState = state_OrdChr;
612      break;
613
614    // CHECK: Are we using "%n"?  Issue a warning.
615    case 'n': {
616      ++numConversions;
617      CurrentState = state_OrdChr;
618      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
619                                                      LastConversionIdx+1);
620
621      Diag(Loc, diag::warn_printf_write_back)<<OrigFormatExpr->getSourceRange();
622      break;
623    }
624
625    // Handle "%@"
626    case '@':
627      // %@ is allowed in ObjC format strings only.
628      if(ObjCFExpr != NULL)
629        CurrentState = state_OrdChr;
630      else {
631        // Issue a warning: invalid format conversion.
632        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
633                                                    LastConversionIdx+1);
634
635        Diag(Loc, diag::warn_printf_invalid_conversion,
636          std::string(Str+LastConversionIdx,
637          Str+std::min(LastConversionIdx+2, StrLen)),
638          OrigFormatExpr->getSourceRange());
639      }
640      ++numConversions;
641      break;
642
643    // Handle "%%"
644    case '%':
645      // Sanity check: Was the first "%" character the previous one?
646      // If not, we will assume that we have a malformed format
647      // conversion, and that the current "%" character is the start
648      // of a new conversion.
649      if (StrIdx - LastConversionIdx == 1)
650        CurrentState = state_OrdChr;
651      else {
652        // Issue a warning: invalid format conversion.
653        SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
654                                                        LastConversionIdx+1);
655
656        Diag(Loc, diag::warn_printf_invalid_conversion,
657             std::string(Str+LastConversionIdx, Str+StrIdx),
658             OrigFormatExpr->getSourceRange());
659
660        // This conversion is broken.  Advance to the next format
661        // conversion.
662        LastConversionIdx = StrIdx;
663        ++numConversions;
664      }
665      break;
666
667    default:
668      // This case catches all other characters: flags, widths, etc.
669      // We should eventually process those as well.
670      break;
671    }
672  }
673
674  if (CurrentState == state_Conversion) {
675    // Issue a warning: invalid format conversion.
676    SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
677                                                    LastConversionIdx+1);
678
679    Diag(Loc, diag::warn_printf_invalid_conversion,
680         std::string(Str+LastConversionIdx,
681                     Str+std::min(LastConversionIdx+2, StrLen)),
682         OrigFormatExpr->getSourceRange());
683    return;
684  }
685
686  if (!HasVAListArg) {
687    // CHECK: Does the number of format conversions exceed the number
688    //        of data arguments?
689    if (numConversions > numDataArgs) {
690      SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
691                                                      LastConversionIdx);
692
693      Diag(Loc, diag::warn_printf_insufficient_data_args)
694        << OrigFormatExpr->getSourceRange();
695    }
696    // CHECK: Does the number of data arguments exceed the number of
697    //        format conversions in the format string?
698    else if (numConversions < numDataArgs)
699      Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
700           diag::warn_printf_too_many_data_args)
701        << OrigFormatExpr->getSourceRange();
702  }
703}
704
705//===--- CHECK: Return Address of Stack Variable --------------------------===//
706
707static DeclRefExpr* EvalVal(Expr *E);
708static DeclRefExpr* EvalAddr(Expr* E);
709
710/// CheckReturnStackAddr - Check if a return statement returns the address
711///   of a stack variable.
712void
713Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
714                           SourceLocation ReturnLoc) {
715
716  // Perform checking for returned stack addresses.
717  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
718    if (DeclRefExpr *DR = EvalAddr(RetValExp))
719      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
720       << DR->getDecl()->getIdentifier() << RetValExp->getSourceRange();
721
722    // Skip over implicit cast expressions when checking for block expressions.
723    if (ImplicitCastExpr *IcExpr =
724          dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
725      RetValExp = IcExpr->getSubExpr();
726
727    if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
728      Diag(C->getLocStart(), diag::err_ret_local_block)
729        << C->getSourceRange();
730  }
731  // Perform checking for stack values returned by reference.
732  else if (lhsType->isReferenceType()) {
733    // Check for a reference to the stack
734    if (DeclRefExpr *DR = EvalVal(RetValExp))
735      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
736        << DR->getDecl()->getIdentifier()
737        << RetValExp->getSourceRange();
738  }
739}
740
741/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
742///  check if the expression in a return statement evaluates to an address
743///  to a location on the stack.  The recursion is used to traverse the
744///  AST of the return expression, with recursion backtracking when we
745///  encounter a subexpression that (1) clearly does not lead to the address
746///  of a stack variable or (2) is something we cannot determine leads to
747///  the address of a stack variable based on such local checking.
748///
749///  EvalAddr processes expressions that are pointers that are used as
750///  references (and not L-values).  EvalVal handles all other values.
751///  At the base case of the recursion is a check for a DeclRefExpr* in
752///  the refers to a stack variable.
753///
754///  This implementation handles:
755///
756///   * pointer-to-pointer casts
757///   * implicit conversions from array references to pointers
758///   * taking the address of fields
759///   * arbitrary interplay between "&" and "*" operators
760///   * pointer arithmetic from an address of a stack variable
761///   * taking the address of an array element where the array is on the stack
762static DeclRefExpr* EvalAddr(Expr *E) {
763  // We should only be called for evaluating pointer expressions.
764  assert((E->getType()->isPointerType() ||
765          E->getType()->isBlockPointerType() ||
766          E->getType()->isObjCQualifiedIdType()) &&
767         "EvalAddr only works on pointers");
768
769  // Our "symbolic interpreter" is just a dispatch off the currently
770  // viewed AST node.  We then recursively traverse the AST by calling
771  // EvalAddr and EvalVal appropriately.
772  switch (E->getStmtClass()) {
773  case Stmt::ParenExprClass:
774    // Ignore parentheses.
775    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
776
777  case Stmt::UnaryOperatorClass: {
778    // The only unary operator that make sense to handle here
779    // is AddrOf.  All others don't make sense as pointers.
780    UnaryOperator *U = cast<UnaryOperator>(E);
781
782    if (U->getOpcode() == UnaryOperator::AddrOf)
783      return EvalVal(U->getSubExpr());
784    else
785      return NULL;
786  }
787
788  case Stmt::BinaryOperatorClass: {
789    // Handle pointer arithmetic.  All other binary operators are not valid
790    // in this context.
791    BinaryOperator *B = cast<BinaryOperator>(E);
792    BinaryOperator::Opcode op = B->getOpcode();
793
794    if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
795      return NULL;
796
797    Expr *Base = B->getLHS();
798
799    // Determine which argument is the real pointer base.  It could be
800    // the RHS argument instead of the LHS.
801    if (!Base->getType()->isPointerType()) Base = B->getRHS();
802
803    assert (Base->getType()->isPointerType());
804    return EvalAddr(Base);
805  }
806
807  // For conditional operators we need to see if either the LHS or RHS are
808  // valid DeclRefExpr*s.  If one of them is valid, we return it.
809  case Stmt::ConditionalOperatorClass: {
810    ConditionalOperator *C = cast<ConditionalOperator>(E);
811
812    // Handle the GNU extension for missing LHS.
813    if (Expr *lhsExpr = C->getLHS())
814      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
815        return LHS;
816
817     return EvalAddr(C->getRHS());
818  }
819
820  // For casts, we need to handle conversions from arrays to
821  // pointer values, and pointer-to-pointer conversions.
822  case Stmt::ImplicitCastExprClass:
823  case Stmt::CStyleCastExprClass:
824  case Stmt::CXXFunctionalCastExprClass: {
825    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
826    QualType T = SubExpr->getType();
827
828    if (SubExpr->getType()->isPointerType() ||
829        SubExpr->getType()->isBlockPointerType() ||
830        SubExpr->getType()->isObjCQualifiedIdType())
831      return EvalAddr(SubExpr);
832    else if (T->isArrayType())
833      return EvalVal(SubExpr);
834    else
835      return 0;
836  }
837
838  // C++ casts.  For dynamic casts, static casts, and const casts, we
839  // are always converting from a pointer-to-pointer, so we just blow
840  // through the cast.  In the case the dynamic cast doesn't fail (and
841  // return NULL), we take the conservative route and report cases
842  // where we return the address of a stack variable.  For Reinterpre
843  // FIXME: The comment about is wrong; we're not always converting
844  // from pointer to pointer. I'm guessing that this code should also
845  // handle references to objects.
846  case Stmt::CXXStaticCastExprClass:
847  case Stmt::CXXDynamicCastExprClass:
848  case Stmt::CXXConstCastExprClass:
849  case Stmt::CXXReinterpretCastExprClass: {
850      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
851      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
852        return EvalAddr(S);
853      else
854        return NULL;
855  }
856
857  // Everything else: we simply don't reason about them.
858  default:
859    return NULL;
860  }
861}
862
863
864///  EvalVal - This function is complements EvalAddr in the mutual recursion.
865///   See the comments for EvalAddr for more details.
866static DeclRefExpr* EvalVal(Expr *E) {
867
868  // We should only be called for evaluating non-pointer expressions, or
869  // expressions with a pointer type that are not used as references but instead
870  // are l-values (e.g., DeclRefExpr with a pointer type).
871
872  // Our "symbolic interpreter" is just a dispatch off the currently
873  // viewed AST node.  We then recursively traverse the AST by calling
874  // EvalAddr and EvalVal appropriately.
875  switch (E->getStmtClass()) {
876  case Stmt::DeclRefExprClass: {
877    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
878    //  at code that refers to a variable's name.  We check if it has local
879    //  storage within the function, and if so, return the expression.
880    DeclRefExpr *DR = cast<DeclRefExpr>(E);
881
882    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
883      if(V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
884
885    return NULL;
886  }
887
888  case Stmt::ParenExprClass:
889    // Ignore parentheses.
890    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
891
892  case Stmt::UnaryOperatorClass: {
893    // The only unary operator that make sense to handle here
894    // is Deref.  All others don't resolve to a "name."  This includes
895    // handling all sorts of rvalues passed to a unary operator.
896    UnaryOperator *U = cast<UnaryOperator>(E);
897
898    if (U->getOpcode() == UnaryOperator::Deref)
899      return EvalAddr(U->getSubExpr());
900
901    return NULL;
902  }
903
904  case Stmt::ArraySubscriptExprClass: {
905    // Array subscripts are potential references to data on the stack.  We
906    // retrieve the DeclRefExpr* for the array variable if it indeed
907    // has local storage.
908    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
909  }
910
911  case Stmt::ConditionalOperatorClass: {
912    // For conditional operators we need to see if either the LHS or RHS are
913    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
914    ConditionalOperator *C = cast<ConditionalOperator>(E);
915
916    // Handle the GNU extension for missing LHS.
917    if (Expr *lhsExpr = C->getLHS())
918      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
919        return LHS;
920
921    return EvalVal(C->getRHS());
922  }
923
924  // Accesses to members are potential references to data on the stack.
925  case Stmt::MemberExprClass: {
926    MemberExpr *M = cast<MemberExpr>(E);
927
928    // Check for indirect access.  We only want direct field accesses.
929    if (!M->isArrow())
930      return EvalVal(M->getBase());
931    else
932      return NULL;
933  }
934
935  // Everything else: we simply don't reason about them.
936  default:
937    return NULL;
938  }
939}
940
941//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
942
943/// Check for comparisons of floating point operands using != and ==.
944/// Issue a warning if these are no self-comparisons, as they are not likely
945/// to do what the programmer intended.
946void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
947  bool EmitWarning = true;
948
949  Expr* LeftExprSansParen = lex->IgnoreParens();
950  Expr* RightExprSansParen = rex->IgnoreParens();
951
952  // Special case: check for x == x (which is OK).
953  // Do not emit warnings for such cases.
954  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
955    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
956      if (DRL->getDecl() == DRR->getDecl())
957        EmitWarning = false;
958
959
960  // Special case: check for comparisons against literals that can be exactly
961  //  represented by APFloat.  In such cases, do not emit a warning.  This
962  //  is a heuristic: often comparison against such literals are used to
963  //  detect if a value in a variable has not changed.  This clearly can
964  //  lead to false negatives.
965  if (EmitWarning) {
966    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
967      if (FLL->isExact())
968        EmitWarning = false;
969    }
970    else
971      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
972        if (FLR->isExact())
973          EmitWarning = false;
974    }
975  }
976
977  // Check for comparisons with builtin types.
978  if (EmitWarning)
979    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
980      if (isCallBuiltin(CL))
981        EmitWarning = false;
982
983  if (EmitWarning)
984    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
985      if (isCallBuiltin(CR))
986        EmitWarning = false;
987
988  // Emit the diagnostic.
989  if (EmitWarning)
990    Diag(loc, diag::warn_floatingpoint_eq)
991      << lex->getSourceRange() << rex->getSourceRange();
992}
993