SemaChecking.cpp revision bbb6bb4952b77e57b842b4d3096848123ae690e7
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/Lookup.h"
20#include "clang/Sema/ScopeInfo.h"
21#include "clang/Analysis/Analyses/FormatString.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExprObjC.h"
29#include "clang/AST/EvaluatedExprVisitor.h"
30#include "clang/AST/DeclObjC.h"
31#include "clang/AST/StmtCXX.h"
32#include "clang/AST/StmtObjC.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "clang/Basic/TargetBuiltins.h"
39#include "clang/Basic/TargetInfo.h"
40#include "clang/Basic/ConvertUTF.h"
41#include <limits>
42using namespace clang;
43using namespace sema;
44
45SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
46                                                    unsigned ByteNo) const {
47  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
48                               PP.getLangOpts(), PP.getTargetInfo());
49}
50
51/// Checks that a call expression's argument count is the desired number.
52/// This is useful when doing custom type-checking.  Returns true on error.
53static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
54  unsigned argCount = call->getNumArgs();
55  if (argCount == desiredArgCount) return false;
56
57  if (argCount < desiredArgCount)
58    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
59        << 0 /*function call*/ << desiredArgCount << argCount
60        << call->getSourceRange();
61
62  // Highlight all the excess arguments.
63  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
64                    call->getArg(argCount - 1)->getLocEnd());
65
66  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
67    << 0 /*function call*/ << desiredArgCount << argCount
68    << call->getArg(1)->getSourceRange();
69}
70
71/// Check that the first argument to __builtin_annotation is an integer
72/// and the second argument is a non-wide string literal.
73static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
74  if (checkArgCount(S, TheCall, 2))
75    return true;
76
77  // First argument should be an integer.
78  Expr *ValArg = TheCall->getArg(0);
79  QualType Ty = ValArg->getType();
80  if (!Ty->isIntegerType()) {
81    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
82      << ValArg->getSourceRange();
83    return true;
84  }
85
86  // Second argument should be a constant string.
87  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
88  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
89  if (!Literal || !Literal->isAscii()) {
90    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
91      << StrArg->getSourceRange();
92    return true;
93  }
94
95  TheCall->setType(Ty);
96  return false;
97}
98
99ExprResult
100Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
101  ExprResult TheCallResult(Owned(TheCall));
102
103  // Find out if any arguments are required to be integer constant expressions.
104  unsigned ICEArguments = 0;
105  ASTContext::GetBuiltinTypeError Error;
106  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
107  if (Error != ASTContext::GE_None)
108    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
109
110  // If any arguments are required to be ICE's, check and diagnose.
111  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
112    // Skip arguments not required to be ICE's.
113    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
114
115    llvm::APSInt Result;
116    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
117      return true;
118    ICEArguments &= ~(1 << ArgNo);
119  }
120
121  switch (BuiltinID) {
122  case Builtin::BI__builtin___CFStringMakeConstantString:
123    assert(TheCall->getNumArgs() == 1 &&
124           "Wrong # arguments to builtin CFStringMakeConstantString");
125    if (CheckObjCString(TheCall->getArg(0)))
126      return ExprError();
127    break;
128  case Builtin::BI__builtin_stdarg_start:
129  case Builtin::BI__builtin_va_start:
130    if (SemaBuiltinVAStart(TheCall))
131      return ExprError();
132    break;
133  case Builtin::BI__builtin_isgreater:
134  case Builtin::BI__builtin_isgreaterequal:
135  case Builtin::BI__builtin_isless:
136  case Builtin::BI__builtin_islessequal:
137  case Builtin::BI__builtin_islessgreater:
138  case Builtin::BI__builtin_isunordered:
139    if (SemaBuiltinUnorderedCompare(TheCall))
140      return ExprError();
141    break;
142  case Builtin::BI__builtin_fpclassify:
143    if (SemaBuiltinFPClassification(TheCall, 6))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_isfinite:
147  case Builtin::BI__builtin_isinf:
148  case Builtin::BI__builtin_isinf_sign:
149  case Builtin::BI__builtin_isnan:
150  case Builtin::BI__builtin_isnormal:
151    if (SemaBuiltinFPClassification(TheCall, 1))
152      return ExprError();
153    break;
154  case Builtin::BI__builtin_shufflevector:
155    return SemaBuiltinShuffleVector(TheCall);
156    // TheCall will be freed by the smart pointer here, but that's fine, since
157    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
158  case Builtin::BI__builtin_prefetch:
159    if (SemaBuiltinPrefetch(TheCall))
160      return ExprError();
161    break;
162  case Builtin::BI__builtin_object_size:
163    if (SemaBuiltinObjectSize(TheCall))
164      return ExprError();
165    break;
166  case Builtin::BI__builtin_longjmp:
167    if (SemaBuiltinLongjmp(TheCall))
168      return ExprError();
169    break;
170
171  case Builtin::BI__builtin_classify_type:
172    if (checkArgCount(*this, TheCall, 1)) return true;
173    TheCall->setType(Context.IntTy);
174    break;
175  case Builtin::BI__builtin_constant_p:
176    if (checkArgCount(*this, TheCall, 1)) return true;
177    TheCall->setType(Context.IntTy);
178    break;
179  case Builtin::BI__sync_fetch_and_add:
180  case Builtin::BI__sync_fetch_and_add_1:
181  case Builtin::BI__sync_fetch_and_add_2:
182  case Builtin::BI__sync_fetch_and_add_4:
183  case Builtin::BI__sync_fetch_and_add_8:
184  case Builtin::BI__sync_fetch_and_add_16:
185  case Builtin::BI__sync_fetch_and_sub:
186  case Builtin::BI__sync_fetch_and_sub_1:
187  case Builtin::BI__sync_fetch_and_sub_2:
188  case Builtin::BI__sync_fetch_and_sub_4:
189  case Builtin::BI__sync_fetch_and_sub_8:
190  case Builtin::BI__sync_fetch_and_sub_16:
191  case Builtin::BI__sync_fetch_and_or:
192  case Builtin::BI__sync_fetch_and_or_1:
193  case Builtin::BI__sync_fetch_and_or_2:
194  case Builtin::BI__sync_fetch_and_or_4:
195  case Builtin::BI__sync_fetch_and_or_8:
196  case Builtin::BI__sync_fetch_and_or_16:
197  case Builtin::BI__sync_fetch_and_and:
198  case Builtin::BI__sync_fetch_and_and_1:
199  case Builtin::BI__sync_fetch_and_and_2:
200  case Builtin::BI__sync_fetch_and_and_4:
201  case Builtin::BI__sync_fetch_and_and_8:
202  case Builtin::BI__sync_fetch_and_and_16:
203  case Builtin::BI__sync_fetch_and_xor:
204  case Builtin::BI__sync_fetch_and_xor_1:
205  case Builtin::BI__sync_fetch_and_xor_2:
206  case Builtin::BI__sync_fetch_and_xor_4:
207  case Builtin::BI__sync_fetch_and_xor_8:
208  case Builtin::BI__sync_fetch_and_xor_16:
209  case Builtin::BI__sync_add_and_fetch:
210  case Builtin::BI__sync_add_and_fetch_1:
211  case Builtin::BI__sync_add_and_fetch_2:
212  case Builtin::BI__sync_add_and_fetch_4:
213  case Builtin::BI__sync_add_and_fetch_8:
214  case Builtin::BI__sync_add_and_fetch_16:
215  case Builtin::BI__sync_sub_and_fetch:
216  case Builtin::BI__sync_sub_and_fetch_1:
217  case Builtin::BI__sync_sub_and_fetch_2:
218  case Builtin::BI__sync_sub_and_fetch_4:
219  case Builtin::BI__sync_sub_and_fetch_8:
220  case Builtin::BI__sync_sub_and_fetch_16:
221  case Builtin::BI__sync_and_and_fetch:
222  case Builtin::BI__sync_and_and_fetch_1:
223  case Builtin::BI__sync_and_and_fetch_2:
224  case Builtin::BI__sync_and_and_fetch_4:
225  case Builtin::BI__sync_and_and_fetch_8:
226  case Builtin::BI__sync_and_and_fetch_16:
227  case Builtin::BI__sync_or_and_fetch:
228  case Builtin::BI__sync_or_and_fetch_1:
229  case Builtin::BI__sync_or_and_fetch_2:
230  case Builtin::BI__sync_or_and_fetch_4:
231  case Builtin::BI__sync_or_and_fetch_8:
232  case Builtin::BI__sync_or_and_fetch_16:
233  case Builtin::BI__sync_xor_and_fetch:
234  case Builtin::BI__sync_xor_and_fetch_1:
235  case Builtin::BI__sync_xor_and_fetch_2:
236  case Builtin::BI__sync_xor_and_fetch_4:
237  case Builtin::BI__sync_xor_and_fetch_8:
238  case Builtin::BI__sync_xor_and_fetch_16:
239  case Builtin::BI__sync_val_compare_and_swap:
240  case Builtin::BI__sync_val_compare_and_swap_1:
241  case Builtin::BI__sync_val_compare_and_swap_2:
242  case Builtin::BI__sync_val_compare_and_swap_4:
243  case Builtin::BI__sync_val_compare_and_swap_8:
244  case Builtin::BI__sync_val_compare_and_swap_16:
245  case Builtin::BI__sync_bool_compare_and_swap:
246  case Builtin::BI__sync_bool_compare_and_swap_1:
247  case Builtin::BI__sync_bool_compare_and_swap_2:
248  case Builtin::BI__sync_bool_compare_and_swap_4:
249  case Builtin::BI__sync_bool_compare_and_swap_8:
250  case Builtin::BI__sync_bool_compare_and_swap_16:
251  case Builtin::BI__sync_lock_test_and_set:
252  case Builtin::BI__sync_lock_test_and_set_1:
253  case Builtin::BI__sync_lock_test_and_set_2:
254  case Builtin::BI__sync_lock_test_and_set_4:
255  case Builtin::BI__sync_lock_test_and_set_8:
256  case Builtin::BI__sync_lock_test_and_set_16:
257  case Builtin::BI__sync_lock_release:
258  case Builtin::BI__sync_lock_release_1:
259  case Builtin::BI__sync_lock_release_2:
260  case Builtin::BI__sync_lock_release_4:
261  case Builtin::BI__sync_lock_release_8:
262  case Builtin::BI__sync_lock_release_16:
263  case Builtin::BI__sync_swap:
264  case Builtin::BI__sync_swap_1:
265  case Builtin::BI__sync_swap_2:
266  case Builtin::BI__sync_swap_4:
267  case Builtin::BI__sync_swap_8:
268  case Builtin::BI__sync_swap_16:
269    return SemaBuiltinAtomicOverloaded(TheCallResult);
270#define BUILTIN(ID, TYPE, ATTRS)
271#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
272  case Builtin::BI##ID: \
273    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
274#include "clang/Basic/Builtins.def"
275  case Builtin::BI__builtin_annotation:
276    if (SemaBuiltinAnnotation(*this, TheCall))
277      return ExprError();
278    break;
279  }
280
281  // Since the target specific builtins for each arch overlap, only check those
282  // of the arch we are compiling for.
283  if (BuiltinID >= Builtin::FirstTSBuiltin) {
284    switch (Context.getTargetInfo().getTriple().getArch()) {
285      case llvm::Triple::arm:
286      case llvm::Triple::thumb:
287        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
288          return ExprError();
289        break;
290      case llvm::Triple::mips:
291      case llvm::Triple::mipsel:
292      case llvm::Triple::mips64:
293      case llvm::Triple::mips64el:
294        if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
295          return ExprError();
296        break;
297      default:
298        break;
299    }
300  }
301
302  return TheCallResult;
303}
304
305// Get the valid immediate range for the specified NEON type code.
306static unsigned RFT(unsigned t, bool shift = false) {
307  NeonTypeFlags Type(t);
308  int IsQuad = Type.isQuad();
309  switch (Type.getEltType()) {
310  case NeonTypeFlags::Int8:
311  case NeonTypeFlags::Poly8:
312    return shift ? 7 : (8 << IsQuad) - 1;
313  case NeonTypeFlags::Int16:
314  case NeonTypeFlags::Poly16:
315    return shift ? 15 : (4 << IsQuad) - 1;
316  case NeonTypeFlags::Int32:
317    return shift ? 31 : (2 << IsQuad) - 1;
318  case NeonTypeFlags::Int64:
319    return shift ? 63 : (1 << IsQuad) - 1;
320  case NeonTypeFlags::Float16:
321    assert(!shift && "cannot shift float types!");
322    return (4 << IsQuad) - 1;
323  case NeonTypeFlags::Float32:
324    assert(!shift && "cannot shift float types!");
325    return (2 << IsQuad) - 1;
326  }
327  llvm_unreachable("Invalid NeonTypeFlag!");
328}
329
330/// getNeonEltType - Return the QualType corresponding to the elements of
331/// the vector type specified by the NeonTypeFlags.  This is used to check
332/// the pointer arguments for Neon load/store intrinsics.
333static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
334  switch (Flags.getEltType()) {
335  case NeonTypeFlags::Int8:
336    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
337  case NeonTypeFlags::Int16:
338    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
339  case NeonTypeFlags::Int32:
340    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
341  case NeonTypeFlags::Int64:
342    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
343  case NeonTypeFlags::Poly8:
344    return Context.SignedCharTy;
345  case NeonTypeFlags::Poly16:
346    return Context.ShortTy;
347  case NeonTypeFlags::Float16:
348    return Context.UnsignedShortTy;
349  case NeonTypeFlags::Float32:
350    return Context.FloatTy;
351  }
352  llvm_unreachable("Invalid NeonTypeFlag!");
353}
354
355bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
356  llvm::APSInt Result;
357
358  uint64_t mask = 0;
359  unsigned TV = 0;
360  int PtrArgNum = -1;
361  bool HasConstPtr = false;
362  switch (BuiltinID) {
363#define GET_NEON_OVERLOAD_CHECK
364#include "clang/Basic/arm_neon.inc"
365#undef GET_NEON_OVERLOAD_CHECK
366  }
367
368  // For NEON intrinsics which are overloaded on vector element type, validate
369  // the immediate which specifies which variant to emit.
370  unsigned ImmArg = TheCall->getNumArgs()-1;
371  if (mask) {
372    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
373      return true;
374
375    TV = Result.getLimitedValue(64);
376    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
377      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
378        << TheCall->getArg(ImmArg)->getSourceRange();
379  }
380
381  if (PtrArgNum >= 0) {
382    // Check that pointer arguments have the specified type.
383    Expr *Arg = TheCall->getArg(PtrArgNum);
384    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
385      Arg = ICE->getSubExpr();
386    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
387    QualType RHSTy = RHS.get()->getType();
388    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
389    if (HasConstPtr)
390      EltTy = EltTy.withConst();
391    QualType LHSTy = Context.getPointerType(EltTy);
392    AssignConvertType ConvTy;
393    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
394    if (RHS.isInvalid())
395      return true;
396    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
397                                 RHS.get(), AA_Assigning))
398      return true;
399  }
400
401  // For NEON intrinsics which take an immediate value as part of the
402  // instruction, range check them here.
403  unsigned i = 0, l = 0, u = 0;
404  switch (BuiltinID) {
405  default: return false;
406  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
407  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
408  case ARM::BI__builtin_arm_vcvtr_f:
409  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
410#define GET_NEON_IMMEDIATE_CHECK
411#include "clang/Basic/arm_neon.inc"
412#undef GET_NEON_IMMEDIATE_CHECK
413  };
414
415  // We can't check the value of a dependent argument.
416  if (TheCall->getArg(i)->isTypeDependent() ||
417      TheCall->getArg(i)->isValueDependent())
418    return false;
419
420  // Check that the immediate argument is actually a constant.
421  if (SemaBuiltinConstantArg(TheCall, i, Result))
422    return true;
423
424  // Range check against the upper/lower values for this isntruction.
425  unsigned Val = Result.getZExtValue();
426  if (Val < l || Val > (u + l))
427    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
428      << l << u+l << TheCall->getArg(i)->getSourceRange();
429
430  // FIXME: VFP Intrinsics should error if VFP not present.
431  return false;
432}
433
434bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
435  unsigned i = 0, l = 0, u = 0;
436  switch (BuiltinID) {
437  default: return false;
438  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
439  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
440  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
441  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
442  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
443  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
444  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
445  };
446
447  // We can't check the value of a dependent argument.
448  if (TheCall->getArg(i)->isTypeDependent() ||
449      TheCall->getArg(i)->isValueDependent())
450    return false;
451
452  // Check that the immediate argument is actually a constant.
453  llvm::APSInt Result;
454  if (SemaBuiltinConstantArg(TheCall, i, Result))
455    return true;
456
457  // Range check against the upper/lower values for this instruction.
458  unsigned Val = Result.getZExtValue();
459  if (Val < l || Val > u)
460    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
461      << l << u << TheCall->getArg(i)->getSourceRange();
462
463  return false;
464}
465
466/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
467/// parameter with the FormatAttr's correct format_idx and firstDataArg.
468/// Returns true when the format fits the function and the FormatStringInfo has
469/// been populated.
470bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
471                               FormatStringInfo *FSI) {
472  FSI->HasVAListArg = Format->getFirstArg() == 0;
473  FSI->FormatIdx = Format->getFormatIdx() - 1;
474  FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
475
476  // The way the format attribute works in GCC, the implicit this argument
477  // of member functions is counted. However, it doesn't appear in our own
478  // lists, so decrement format_idx in that case.
479  if (IsCXXMember) {
480    if(FSI->FormatIdx == 0)
481      return false;
482    --FSI->FormatIdx;
483    if (FSI->FirstDataArg != 0)
484      --FSI->FirstDataArg;
485  }
486  return true;
487}
488
489/// Handles the checks for format strings, non-POD arguments to vararg
490/// functions, and NULL arguments passed to non-NULL parameters.
491void Sema::checkCall(NamedDecl *FDecl, Expr **Args,
492                     unsigned NumArgs,
493                     unsigned NumProtoArgs,
494                     bool IsMemberFunction,
495                     SourceLocation Loc,
496                     SourceRange Range,
497                     VariadicCallType CallType) {
498  // FIXME: This mechanism should be abstracted to be less fragile and
499  // more efficient. For example, just map function ids to custom
500  // handlers.
501
502  // Printf and scanf checking.
503  bool HandledFormatString = false;
504  for (specific_attr_iterator<FormatAttr>
505         I = FDecl->specific_attr_begin<FormatAttr>(),
506         E = FDecl->specific_attr_end<FormatAttr>(); I != E ; ++I)
507    if (CheckFormatArguments(*I, Args, NumArgs, IsMemberFunction, CallType,
508                             Loc, Range))
509        HandledFormatString = true;
510
511  // Refuse POD arguments that weren't caught by the format string
512  // checks above.
513  if (!HandledFormatString && CallType != VariadicDoesNotApply)
514    for (unsigned ArgIdx = NumProtoArgs; ArgIdx < NumArgs; ++ArgIdx)
515      variadicArgumentPODCheck(Args[ArgIdx], CallType);
516
517  for (specific_attr_iterator<NonNullAttr>
518         I = FDecl->specific_attr_begin<NonNullAttr>(),
519         E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
520    CheckNonNullArguments(*I, Args, Loc);
521
522  // Type safety checking.
523  for (specific_attr_iterator<ArgumentWithTypeTagAttr>
524         i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
525         e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>(); i != e; ++i) {
526    CheckArgumentWithTypeTag(*i, Args);
527  }
528}
529
530/// CheckConstructorCall - Check a constructor call for correctness and safety
531/// properties not enforced by the C type system.
532void Sema::CheckConstructorCall(FunctionDecl *FDecl, Expr **Args,
533                                unsigned NumArgs,
534                                const FunctionProtoType *Proto,
535                                SourceLocation Loc) {
536  VariadicCallType CallType =
537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
538  checkCall(FDecl, Args, NumArgs, Proto->getNumArgs(),
539            /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
540}
541
542/// CheckFunctionCall - Check a direct function call for various correctness
543/// and safety properties not strictly enforced by the C type system.
544bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
545                             const FunctionProtoType *Proto) {
546  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall);
547  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
548                                                  TheCall->getCallee());
549  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
550  checkCall(FDecl, TheCall->getArgs(), TheCall->getNumArgs(), NumProtoArgs,
551            IsMemberFunction, TheCall->getRParenLoc(),
552            TheCall->getCallee()->getSourceRange(), CallType);
553
554  IdentifierInfo *FnInfo = FDecl->getIdentifier();
555  // None of the checks below are needed for functions that don't have
556  // simple names (e.g., C++ conversion functions).
557  if (!FnInfo)
558    return false;
559
560  unsigned CMId = FDecl->getMemoryFunctionKind();
561  if (CMId == 0)
562    return false;
563
564  // Handle memory setting and copying functions.
565  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
566    CheckStrlcpycatArguments(TheCall, FnInfo);
567  else if (CMId == Builtin::BIstrncat)
568    CheckStrncatArguments(TheCall, FnInfo);
569  else
570    CheckMemaccessArguments(TheCall, CMId, FnInfo);
571
572  return false;
573}
574
575bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
576                               Expr **Args, unsigned NumArgs) {
577  VariadicCallType CallType =
578      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
579
580  checkCall(Method, Args, NumArgs, Method->param_size(),
581            /*IsMemberFunction=*/false,
582            lbrac, Method->getSourceRange(), CallType);
583
584  return false;
585}
586
587bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall,
588                          const FunctionProtoType *Proto) {
589  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
590  if (!V)
591    return false;
592
593  QualType Ty = V->getType();
594  if (!Ty->isBlockPointerType())
595    return false;
596
597  VariadicCallType CallType =
598      Proto && Proto->isVariadic() ? VariadicBlock : VariadicDoesNotApply ;
599  unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
600
601  checkCall(NDecl, TheCall->getArgs(), TheCall->getNumArgs(),
602            NumProtoArgs, /*IsMemberFunction=*/false,
603            TheCall->getRParenLoc(),
604            TheCall->getCallee()->getSourceRange(), CallType);
605
606  return false;
607}
608
609ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
610                                         AtomicExpr::AtomicOp Op) {
611  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
612  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
613
614  // All these operations take one of the following forms:
615  enum {
616    // C    __c11_atomic_init(A *, C)
617    Init,
618    // C    __c11_atomic_load(A *, int)
619    Load,
620    // void __atomic_load(A *, CP, int)
621    Copy,
622    // C    __c11_atomic_add(A *, M, int)
623    Arithmetic,
624    // C    __atomic_exchange_n(A *, CP, int)
625    Xchg,
626    // void __atomic_exchange(A *, C *, CP, int)
627    GNUXchg,
628    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
629    C11CmpXchg,
630    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
631    GNUCmpXchg
632  } Form = Init;
633  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
634  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
635  // where:
636  //   C is an appropriate type,
637  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
638  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
639  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
640  //   the int parameters are for orderings.
641
642  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
643         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
644         && "need to update code for modified C11 atomics");
645  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
646               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
647  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
648             Op == AtomicExpr::AO__atomic_store_n ||
649             Op == AtomicExpr::AO__atomic_exchange_n ||
650             Op == AtomicExpr::AO__atomic_compare_exchange_n;
651  bool IsAddSub = false;
652
653  switch (Op) {
654  case AtomicExpr::AO__c11_atomic_init:
655    Form = Init;
656    break;
657
658  case AtomicExpr::AO__c11_atomic_load:
659  case AtomicExpr::AO__atomic_load_n:
660    Form = Load;
661    break;
662
663  case AtomicExpr::AO__c11_atomic_store:
664  case AtomicExpr::AO__atomic_load:
665  case AtomicExpr::AO__atomic_store:
666  case AtomicExpr::AO__atomic_store_n:
667    Form = Copy;
668    break;
669
670  case AtomicExpr::AO__c11_atomic_fetch_add:
671  case AtomicExpr::AO__c11_atomic_fetch_sub:
672  case AtomicExpr::AO__atomic_fetch_add:
673  case AtomicExpr::AO__atomic_fetch_sub:
674  case AtomicExpr::AO__atomic_add_fetch:
675  case AtomicExpr::AO__atomic_sub_fetch:
676    IsAddSub = true;
677    // Fall through.
678  case AtomicExpr::AO__c11_atomic_fetch_and:
679  case AtomicExpr::AO__c11_atomic_fetch_or:
680  case AtomicExpr::AO__c11_atomic_fetch_xor:
681  case AtomicExpr::AO__atomic_fetch_and:
682  case AtomicExpr::AO__atomic_fetch_or:
683  case AtomicExpr::AO__atomic_fetch_xor:
684  case AtomicExpr::AO__atomic_fetch_nand:
685  case AtomicExpr::AO__atomic_and_fetch:
686  case AtomicExpr::AO__atomic_or_fetch:
687  case AtomicExpr::AO__atomic_xor_fetch:
688  case AtomicExpr::AO__atomic_nand_fetch:
689    Form = Arithmetic;
690    break;
691
692  case AtomicExpr::AO__c11_atomic_exchange:
693  case AtomicExpr::AO__atomic_exchange_n:
694    Form = Xchg;
695    break;
696
697  case AtomicExpr::AO__atomic_exchange:
698    Form = GNUXchg;
699    break;
700
701  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
702  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
703    Form = C11CmpXchg;
704    break;
705
706  case AtomicExpr::AO__atomic_compare_exchange:
707  case AtomicExpr::AO__atomic_compare_exchange_n:
708    Form = GNUCmpXchg;
709    break;
710  }
711
712  // Check we have the right number of arguments.
713  if (TheCall->getNumArgs() < NumArgs[Form]) {
714    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
715      << 0 << NumArgs[Form] << TheCall->getNumArgs()
716      << TheCall->getCallee()->getSourceRange();
717    return ExprError();
718  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
719    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
720         diag::err_typecheck_call_too_many_args)
721      << 0 << NumArgs[Form] << TheCall->getNumArgs()
722      << TheCall->getCallee()->getSourceRange();
723    return ExprError();
724  }
725
726  // Inspect the first argument of the atomic operation.
727  Expr *Ptr = TheCall->getArg(0);
728  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
729  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
730  if (!pointerType) {
731    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
732      << Ptr->getType() << Ptr->getSourceRange();
733    return ExprError();
734  }
735
736  // For a __c11 builtin, this should be a pointer to an _Atomic type.
737  QualType AtomTy = pointerType->getPointeeType(); // 'A'
738  QualType ValType = AtomTy; // 'C'
739  if (IsC11) {
740    if (!AtomTy->isAtomicType()) {
741      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
742        << Ptr->getType() << Ptr->getSourceRange();
743      return ExprError();
744    }
745    ValType = AtomTy->getAs<AtomicType>()->getValueType();
746  }
747
748  // For an arithmetic operation, the implied arithmetic must be well-formed.
749  if (Form == Arithmetic) {
750    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
751    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
752      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
753        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
754      return ExprError();
755    }
756    if (!IsAddSub && !ValType->isIntegerType()) {
757      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
758        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
759      return ExprError();
760    }
761  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
762    // For __atomic_*_n operations, the value type must be a scalar integral or
763    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
764    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
765      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
766    return ExprError();
767  }
768
769  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
770    // For GNU atomics, require a trivially-copyable type. This is not part of
771    // the GNU atomics specification, but we enforce it for sanity.
772    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
773      << Ptr->getType() << Ptr->getSourceRange();
774    return ExprError();
775  }
776
777  // FIXME: For any builtin other than a load, the ValType must not be
778  // const-qualified.
779
780  switch (ValType.getObjCLifetime()) {
781  case Qualifiers::OCL_None:
782  case Qualifiers::OCL_ExplicitNone:
783    // okay
784    break;
785
786  case Qualifiers::OCL_Weak:
787  case Qualifiers::OCL_Strong:
788  case Qualifiers::OCL_Autoreleasing:
789    // FIXME: Can this happen? By this point, ValType should be known
790    // to be trivially copyable.
791    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
792      << ValType << Ptr->getSourceRange();
793    return ExprError();
794  }
795
796  QualType ResultType = ValType;
797  if (Form == Copy || Form == GNUXchg || Form == Init)
798    ResultType = Context.VoidTy;
799  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
800    ResultType = Context.BoolTy;
801
802  // The type of a parameter passed 'by value'. In the GNU atomics, such
803  // arguments are actually passed as pointers.
804  QualType ByValType = ValType; // 'CP'
805  if (!IsC11 && !IsN)
806    ByValType = Ptr->getType();
807
808  // The first argument --- the pointer --- has a fixed type; we
809  // deduce the types of the rest of the arguments accordingly.  Walk
810  // the remaining arguments, converting them to the deduced value type.
811  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
812    QualType Ty;
813    if (i < NumVals[Form] + 1) {
814      switch (i) {
815      case 1:
816        // The second argument is the non-atomic operand. For arithmetic, this
817        // is always passed by value, and for a compare_exchange it is always
818        // passed by address. For the rest, GNU uses by-address and C11 uses
819        // by-value.
820        assert(Form != Load);
821        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
822          Ty = ValType;
823        else if (Form == Copy || Form == Xchg)
824          Ty = ByValType;
825        else if (Form == Arithmetic)
826          Ty = Context.getPointerDiffType();
827        else
828          Ty = Context.getPointerType(ValType.getUnqualifiedType());
829        break;
830      case 2:
831        // The third argument to compare_exchange / GNU exchange is a
832        // (pointer to a) desired value.
833        Ty = ByValType;
834        break;
835      case 3:
836        // The fourth argument to GNU compare_exchange is a 'weak' flag.
837        Ty = Context.BoolTy;
838        break;
839      }
840    } else {
841      // The order(s) are always converted to int.
842      Ty = Context.IntTy;
843    }
844
845    InitializedEntity Entity =
846        InitializedEntity::InitializeParameter(Context, Ty, false);
847    ExprResult Arg = TheCall->getArg(i);
848    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
849    if (Arg.isInvalid())
850      return true;
851    TheCall->setArg(i, Arg.get());
852  }
853
854  // Permute the arguments into a 'consistent' order.
855  SmallVector<Expr*, 5> SubExprs;
856  SubExprs.push_back(Ptr);
857  switch (Form) {
858  case Init:
859    // Note, AtomicExpr::getVal1() has a special case for this atomic.
860    SubExprs.push_back(TheCall->getArg(1)); // Val1
861    break;
862  case Load:
863    SubExprs.push_back(TheCall->getArg(1)); // Order
864    break;
865  case Copy:
866  case Arithmetic:
867  case Xchg:
868    SubExprs.push_back(TheCall->getArg(2)); // Order
869    SubExprs.push_back(TheCall->getArg(1)); // Val1
870    break;
871  case GNUXchg:
872    // Note, AtomicExpr::getVal2() has a special case for this atomic.
873    SubExprs.push_back(TheCall->getArg(3)); // Order
874    SubExprs.push_back(TheCall->getArg(1)); // Val1
875    SubExprs.push_back(TheCall->getArg(2)); // Val2
876    break;
877  case C11CmpXchg:
878    SubExprs.push_back(TheCall->getArg(3)); // Order
879    SubExprs.push_back(TheCall->getArg(1)); // Val1
880    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
881    SubExprs.push_back(TheCall->getArg(2)); // Val2
882    break;
883  case GNUCmpXchg:
884    SubExprs.push_back(TheCall->getArg(4)); // Order
885    SubExprs.push_back(TheCall->getArg(1)); // Val1
886    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
887    SubExprs.push_back(TheCall->getArg(2)); // Val2
888    SubExprs.push_back(TheCall->getArg(3)); // Weak
889    break;
890  }
891
892  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
893                                        SubExprs, ResultType, Op,
894                                        TheCall->getRParenLoc()));
895}
896
897
898/// checkBuiltinArgument - Given a call to a builtin function, perform
899/// normal type-checking on the given argument, updating the call in
900/// place.  This is useful when a builtin function requires custom
901/// type-checking for some of its arguments but not necessarily all of
902/// them.
903///
904/// Returns true on error.
905static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
906  FunctionDecl *Fn = E->getDirectCallee();
907  assert(Fn && "builtin call without direct callee!");
908
909  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
910  InitializedEntity Entity =
911    InitializedEntity::InitializeParameter(S.Context, Param);
912
913  ExprResult Arg = E->getArg(0);
914  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
915  if (Arg.isInvalid())
916    return true;
917
918  E->setArg(ArgIndex, Arg.take());
919  return false;
920}
921
922/// SemaBuiltinAtomicOverloaded - We have a call to a function like
923/// __sync_fetch_and_add, which is an overloaded function based on the pointer
924/// type of its first argument.  The main ActOnCallExpr routines have already
925/// promoted the types of arguments because all of these calls are prototyped as
926/// void(...).
927///
928/// This function goes through and does final semantic checking for these
929/// builtins,
930ExprResult
931Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
932  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
933  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
934  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
935
936  // Ensure that we have at least one argument to do type inference from.
937  if (TheCall->getNumArgs() < 1) {
938    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
939      << 0 << 1 << TheCall->getNumArgs()
940      << TheCall->getCallee()->getSourceRange();
941    return ExprError();
942  }
943
944  // Inspect the first argument of the atomic builtin.  This should always be
945  // a pointer type, whose element is an integral scalar or pointer type.
946  // Because it is a pointer type, we don't have to worry about any implicit
947  // casts here.
948  // FIXME: We don't allow floating point scalars as input.
949  Expr *FirstArg = TheCall->getArg(0);
950  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
951  if (FirstArgResult.isInvalid())
952    return ExprError();
953  FirstArg = FirstArgResult.take();
954  TheCall->setArg(0, FirstArg);
955
956  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
957  if (!pointerType) {
958    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
959      << FirstArg->getType() << FirstArg->getSourceRange();
960    return ExprError();
961  }
962
963  QualType ValType = pointerType->getPointeeType();
964  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
965      !ValType->isBlockPointerType()) {
966    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
967      << FirstArg->getType() << FirstArg->getSourceRange();
968    return ExprError();
969  }
970
971  switch (ValType.getObjCLifetime()) {
972  case Qualifiers::OCL_None:
973  case Qualifiers::OCL_ExplicitNone:
974    // okay
975    break;
976
977  case Qualifiers::OCL_Weak:
978  case Qualifiers::OCL_Strong:
979  case Qualifiers::OCL_Autoreleasing:
980    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
981      << ValType << FirstArg->getSourceRange();
982    return ExprError();
983  }
984
985  // Strip any qualifiers off ValType.
986  ValType = ValType.getUnqualifiedType();
987
988  // The majority of builtins return a value, but a few have special return
989  // types, so allow them to override appropriately below.
990  QualType ResultType = ValType;
991
992  // We need to figure out which concrete builtin this maps onto.  For example,
993  // __sync_fetch_and_add with a 2 byte object turns into
994  // __sync_fetch_and_add_2.
995#define BUILTIN_ROW(x) \
996  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
997    Builtin::BI##x##_8, Builtin::BI##x##_16 }
998
999  static const unsigned BuiltinIndices[][5] = {
1000    BUILTIN_ROW(__sync_fetch_and_add),
1001    BUILTIN_ROW(__sync_fetch_and_sub),
1002    BUILTIN_ROW(__sync_fetch_and_or),
1003    BUILTIN_ROW(__sync_fetch_and_and),
1004    BUILTIN_ROW(__sync_fetch_and_xor),
1005
1006    BUILTIN_ROW(__sync_add_and_fetch),
1007    BUILTIN_ROW(__sync_sub_and_fetch),
1008    BUILTIN_ROW(__sync_and_and_fetch),
1009    BUILTIN_ROW(__sync_or_and_fetch),
1010    BUILTIN_ROW(__sync_xor_and_fetch),
1011
1012    BUILTIN_ROW(__sync_val_compare_and_swap),
1013    BUILTIN_ROW(__sync_bool_compare_and_swap),
1014    BUILTIN_ROW(__sync_lock_test_and_set),
1015    BUILTIN_ROW(__sync_lock_release),
1016    BUILTIN_ROW(__sync_swap)
1017  };
1018#undef BUILTIN_ROW
1019
1020  // Determine the index of the size.
1021  unsigned SizeIndex;
1022  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1023  case 1: SizeIndex = 0; break;
1024  case 2: SizeIndex = 1; break;
1025  case 4: SizeIndex = 2; break;
1026  case 8: SizeIndex = 3; break;
1027  case 16: SizeIndex = 4; break;
1028  default:
1029    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1030      << FirstArg->getType() << FirstArg->getSourceRange();
1031    return ExprError();
1032  }
1033
1034  // Each of these builtins has one pointer argument, followed by some number of
1035  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1036  // that we ignore.  Find out which row of BuiltinIndices to read from as well
1037  // as the number of fixed args.
1038  unsigned BuiltinID = FDecl->getBuiltinID();
1039  unsigned BuiltinIndex, NumFixed = 1;
1040  switch (BuiltinID) {
1041  default: llvm_unreachable("Unknown overloaded atomic builtin!");
1042  case Builtin::BI__sync_fetch_and_add:
1043  case Builtin::BI__sync_fetch_and_add_1:
1044  case Builtin::BI__sync_fetch_and_add_2:
1045  case Builtin::BI__sync_fetch_and_add_4:
1046  case Builtin::BI__sync_fetch_and_add_8:
1047  case Builtin::BI__sync_fetch_and_add_16:
1048    BuiltinIndex = 0;
1049    break;
1050
1051  case Builtin::BI__sync_fetch_and_sub:
1052  case Builtin::BI__sync_fetch_and_sub_1:
1053  case Builtin::BI__sync_fetch_and_sub_2:
1054  case Builtin::BI__sync_fetch_and_sub_4:
1055  case Builtin::BI__sync_fetch_and_sub_8:
1056  case Builtin::BI__sync_fetch_and_sub_16:
1057    BuiltinIndex = 1;
1058    break;
1059
1060  case Builtin::BI__sync_fetch_and_or:
1061  case Builtin::BI__sync_fetch_and_or_1:
1062  case Builtin::BI__sync_fetch_and_or_2:
1063  case Builtin::BI__sync_fetch_and_or_4:
1064  case Builtin::BI__sync_fetch_and_or_8:
1065  case Builtin::BI__sync_fetch_and_or_16:
1066    BuiltinIndex = 2;
1067    break;
1068
1069  case Builtin::BI__sync_fetch_and_and:
1070  case Builtin::BI__sync_fetch_and_and_1:
1071  case Builtin::BI__sync_fetch_and_and_2:
1072  case Builtin::BI__sync_fetch_and_and_4:
1073  case Builtin::BI__sync_fetch_and_and_8:
1074  case Builtin::BI__sync_fetch_and_and_16:
1075    BuiltinIndex = 3;
1076    break;
1077
1078  case Builtin::BI__sync_fetch_and_xor:
1079  case Builtin::BI__sync_fetch_and_xor_1:
1080  case Builtin::BI__sync_fetch_and_xor_2:
1081  case Builtin::BI__sync_fetch_and_xor_4:
1082  case Builtin::BI__sync_fetch_and_xor_8:
1083  case Builtin::BI__sync_fetch_and_xor_16:
1084    BuiltinIndex = 4;
1085    break;
1086
1087  case Builtin::BI__sync_add_and_fetch:
1088  case Builtin::BI__sync_add_and_fetch_1:
1089  case Builtin::BI__sync_add_and_fetch_2:
1090  case Builtin::BI__sync_add_and_fetch_4:
1091  case Builtin::BI__sync_add_and_fetch_8:
1092  case Builtin::BI__sync_add_and_fetch_16:
1093    BuiltinIndex = 5;
1094    break;
1095
1096  case Builtin::BI__sync_sub_and_fetch:
1097  case Builtin::BI__sync_sub_and_fetch_1:
1098  case Builtin::BI__sync_sub_and_fetch_2:
1099  case Builtin::BI__sync_sub_and_fetch_4:
1100  case Builtin::BI__sync_sub_and_fetch_8:
1101  case Builtin::BI__sync_sub_and_fetch_16:
1102    BuiltinIndex = 6;
1103    break;
1104
1105  case Builtin::BI__sync_and_and_fetch:
1106  case Builtin::BI__sync_and_and_fetch_1:
1107  case Builtin::BI__sync_and_and_fetch_2:
1108  case Builtin::BI__sync_and_and_fetch_4:
1109  case Builtin::BI__sync_and_and_fetch_8:
1110  case Builtin::BI__sync_and_and_fetch_16:
1111    BuiltinIndex = 7;
1112    break;
1113
1114  case Builtin::BI__sync_or_and_fetch:
1115  case Builtin::BI__sync_or_and_fetch_1:
1116  case Builtin::BI__sync_or_and_fetch_2:
1117  case Builtin::BI__sync_or_and_fetch_4:
1118  case Builtin::BI__sync_or_and_fetch_8:
1119  case Builtin::BI__sync_or_and_fetch_16:
1120    BuiltinIndex = 8;
1121    break;
1122
1123  case Builtin::BI__sync_xor_and_fetch:
1124  case Builtin::BI__sync_xor_and_fetch_1:
1125  case Builtin::BI__sync_xor_and_fetch_2:
1126  case Builtin::BI__sync_xor_and_fetch_4:
1127  case Builtin::BI__sync_xor_and_fetch_8:
1128  case Builtin::BI__sync_xor_and_fetch_16:
1129    BuiltinIndex = 9;
1130    break;
1131
1132  case Builtin::BI__sync_val_compare_and_swap:
1133  case Builtin::BI__sync_val_compare_and_swap_1:
1134  case Builtin::BI__sync_val_compare_and_swap_2:
1135  case Builtin::BI__sync_val_compare_and_swap_4:
1136  case Builtin::BI__sync_val_compare_and_swap_8:
1137  case Builtin::BI__sync_val_compare_and_swap_16:
1138    BuiltinIndex = 10;
1139    NumFixed = 2;
1140    break;
1141
1142  case Builtin::BI__sync_bool_compare_and_swap:
1143  case Builtin::BI__sync_bool_compare_and_swap_1:
1144  case Builtin::BI__sync_bool_compare_and_swap_2:
1145  case Builtin::BI__sync_bool_compare_and_swap_4:
1146  case Builtin::BI__sync_bool_compare_and_swap_8:
1147  case Builtin::BI__sync_bool_compare_and_swap_16:
1148    BuiltinIndex = 11;
1149    NumFixed = 2;
1150    ResultType = Context.BoolTy;
1151    break;
1152
1153  case Builtin::BI__sync_lock_test_and_set:
1154  case Builtin::BI__sync_lock_test_and_set_1:
1155  case Builtin::BI__sync_lock_test_and_set_2:
1156  case Builtin::BI__sync_lock_test_and_set_4:
1157  case Builtin::BI__sync_lock_test_and_set_8:
1158  case Builtin::BI__sync_lock_test_and_set_16:
1159    BuiltinIndex = 12;
1160    break;
1161
1162  case Builtin::BI__sync_lock_release:
1163  case Builtin::BI__sync_lock_release_1:
1164  case Builtin::BI__sync_lock_release_2:
1165  case Builtin::BI__sync_lock_release_4:
1166  case Builtin::BI__sync_lock_release_8:
1167  case Builtin::BI__sync_lock_release_16:
1168    BuiltinIndex = 13;
1169    NumFixed = 0;
1170    ResultType = Context.VoidTy;
1171    break;
1172
1173  case Builtin::BI__sync_swap:
1174  case Builtin::BI__sync_swap_1:
1175  case Builtin::BI__sync_swap_2:
1176  case Builtin::BI__sync_swap_4:
1177  case Builtin::BI__sync_swap_8:
1178  case Builtin::BI__sync_swap_16:
1179    BuiltinIndex = 14;
1180    break;
1181  }
1182
1183  // Now that we know how many fixed arguments we expect, first check that we
1184  // have at least that many.
1185  if (TheCall->getNumArgs() < 1+NumFixed) {
1186    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1187      << 0 << 1+NumFixed << TheCall->getNumArgs()
1188      << TheCall->getCallee()->getSourceRange();
1189    return ExprError();
1190  }
1191
1192  // Get the decl for the concrete builtin from this, we can tell what the
1193  // concrete integer type we should convert to is.
1194  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1195  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1196  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1197  FunctionDecl *NewBuiltinDecl =
1198    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1199                                           TUScope, false, DRE->getLocStart()));
1200
1201  // The first argument --- the pointer --- has a fixed type; we
1202  // deduce the types of the rest of the arguments accordingly.  Walk
1203  // the remaining arguments, converting them to the deduced value type.
1204  for (unsigned i = 0; i != NumFixed; ++i) {
1205    ExprResult Arg = TheCall->getArg(i+1);
1206
1207    // GCC does an implicit conversion to the pointer or integer ValType.  This
1208    // can fail in some cases (1i -> int**), check for this error case now.
1209    // Initialize the argument.
1210    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1211                                                   ValType, /*consume*/ false);
1212    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1213    if (Arg.isInvalid())
1214      return ExprError();
1215
1216    // Okay, we have something that *can* be converted to the right type.  Check
1217    // to see if there is a potentially weird extension going on here.  This can
1218    // happen when you do an atomic operation on something like an char* and
1219    // pass in 42.  The 42 gets converted to char.  This is even more strange
1220    // for things like 45.123 -> char, etc.
1221    // FIXME: Do this check.
1222    TheCall->setArg(i+1, Arg.take());
1223  }
1224
1225  ASTContext& Context = this->getASTContext();
1226
1227  // Create a new DeclRefExpr to refer to the new decl.
1228  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1229      Context,
1230      DRE->getQualifierLoc(),
1231      SourceLocation(),
1232      NewBuiltinDecl,
1233      /*enclosing*/ false,
1234      DRE->getLocation(),
1235      Context.BuiltinFnTy,
1236      DRE->getValueKind());
1237
1238  // Set the callee in the CallExpr.
1239  // FIXME: This loses syntactic information.
1240  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1241  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1242                                              CK_BuiltinFnToFnPtr);
1243  TheCall->setCallee(PromotedCall.take());
1244
1245  // Change the result type of the call to match the original value type. This
1246  // is arbitrary, but the codegen for these builtins ins design to handle it
1247  // gracefully.
1248  TheCall->setType(ResultType);
1249
1250  return TheCallResult;
1251}
1252
1253/// CheckObjCString - Checks that the argument to the builtin
1254/// CFString constructor is correct
1255/// Note: It might also make sense to do the UTF-16 conversion here (would
1256/// simplify the backend).
1257bool Sema::CheckObjCString(Expr *Arg) {
1258  Arg = Arg->IgnoreParenCasts();
1259  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1260
1261  if (!Literal || !Literal->isAscii()) {
1262    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1263      << Arg->getSourceRange();
1264    return true;
1265  }
1266
1267  if (Literal->containsNonAsciiOrNull()) {
1268    StringRef String = Literal->getString();
1269    unsigned NumBytes = String.size();
1270    SmallVector<UTF16, 128> ToBuf(NumBytes);
1271    const UTF8 *FromPtr = (const UTF8 *)String.data();
1272    UTF16 *ToPtr = &ToBuf[0];
1273
1274    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1275                                                 &ToPtr, ToPtr + NumBytes,
1276                                                 strictConversion);
1277    // Check for conversion failure.
1278    if (Result != conversionOK)
1279      Diag(Arg->getLocStart(),
1280           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1281  }
1282  return false;
1283}
1284
1285/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1286/// Emit an error and return true on failure, return false on success.
1287bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1288  Expr *Fn = TheCall->getCallee();
1289  if (TheCall->getNumArgs() > 2) {
1290    Diag(TheCall->getArg(2)->getLocStart(),
1291         diag::err_typecheck_call_too_many_args)
1292      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1293      << Fn->getSourceRange()
1294      << SourceRange(TheCall->getArg(2)->getLocStart(),
1295                     (*(TheCall->arg_end()-1))->getLocEnd());
1296    return true;
1297  }
1298
1299  if (TheCall->getNumArgs() < 2) {
1300    return Diag(TheCall->getLocEnd(),
1301      diag::err_typecheck_call_too_few_args_at_least)
1302      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1303  }
1304
1305  // Type-check the first argument normally.
1306  if (checkBuiltinArgument(*this, TheCall, 0))
1307    return true;
1308
1309  // Determine whether the current function is variadic or not.
1310  BlockScopeInfo *CurBlock = getCurBlock();
1311  bool isVariadic;
1312  if (CurBlock)
1313    isVariadic = CurBlock->TheDecl->isVariadic();
1314  else if (FunctionDecl *FD = getCurFunctionDecl())
1315    isVariadic = FD->isVariadic();
1316  else
1317    isVariadic = getCurMethodDecl()->isVariadic();
1318
1319  if (!isVariadic) {
1320    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1321    return true;
1322  }
1323
1324  // Verify that the second argument to the builtin is the last argument of the
1325  // current function or method.
1326  bool SecondArgIsLastNamedArgument = false;
1327  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1328
1329  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1330    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1331      // FIXME: This isn't correct for methods (results in bogus warning).
1332      // Get the last formal in the current function.
1333      const ParmVarDecl *LastArg;
1334      if (CurBlock)
1335        LastArg = *(CurBlock->TheDecl->param_end()-1);
1336      else if (FunctionDecl *FD = getCurFunctionDecl())
1337        LastArg = *(FD->param_end()-1);
1338      else
1339        LastArg = *(getCurMethodDecl()->param_end()-1);
1340      SecondArgIsLastNamedArgument = PV == LastArg;
1341    }
1342  }
1343
1344  if (!SecondArgIsLastNamedArgument)
1345    Diag(TheCall->getArg(1)->getLocStart(),
1346         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1347  return false;
1348}
1349
1350/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1351/// friends.  This is declared to take (...), so we have to check everything.
1352bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1353  if (TheCall->getNumArgs() < 2)
1354    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1355      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1356  if (TheCall->getNumArgs() > 2)
1357    return Diag(TheCall->getArg(2)->getLocStart(),
1358                diag::err_typecheck_call_too_many_args)
1359      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1360      << SourceRange(TheCall->getArg(2)->getLocStart(),
1361                     (*(TheCall->arg_end()-1))->getLocEnd());
1362
1363  ExprResult OrigArg0 = TheCall->getArg(0);
1364  ExprResult OrigArg1 = TheCall->getArg(1);
1365
1366  // Do standard promotions between the two arguments, returning their common
1367  // type.
1368  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1369  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1370    return true;
1371
1372  // Make sure any conversions are pushed back into the call; this is
1373  // type safe since unordered compare builtins are declared as "_Bool
1374  // foo(...)".
1375  TheCall->setArg(0, OrigArg0.get());
1376  TheCall->setArg(1, OrigArg1.get());
1377
1378  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1379    return false;
1380
1381  // If the common type isn't a real floating type, then the arguments were
1382  // invalid for this operation.
1383  if (Res.isNull() || !Res->isRealFloatingType())
1384    return Diag(OrigArg0.get()->getLocStart(),
1385                diag::err_typecheck_call_invalid_ordered_compare)
1386      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1387      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1388
1389  return false;
1390}
1391
1392/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1393/// __builtin_isnan and friends.  This is declared to take (...), so we have
1394/// to check everything. We expect the last argument to be a floating point
1395/// value.
1396bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1397  if (TheCall->getNumArgs() < NumArgs)
1398    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1399      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1400  if (TheCall->getNumArgs() > NumArgs)
1401    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1402                diag::err_typecheck_call_too_many_args)
1403      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1404      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1405                     (*(TheCall->arg_end()-1))->getLocEnd());
1406
1407  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1408
1409  if (OrigArg->isTypeDependent())
1410    return false;
1411
1412  // This operation requires a non-_Complex floating-point number.
1413  if (!OrigArg->getType()->isRealFloatingType())
1414    return Diag(OrigArg->getLocStart(),
1415                diag::err_typecheck_call_invalid_unary_fp)
1416      << OrigArg->getType() << OrigArg->getSourceRange();
1417
1418  // If this is an implicit conversion from float -> double, remove it.
1419  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1420    Expr *CastArg = Cast->getSubExpr();
1421    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1422      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1423             "promotion from float to double is the only expected cast here");
1424      Cast->setSubExpr(0);
1425      TheCall->setArg(NumArgs-1, CastArg);
1426    }
1427  }
1428
1429  return false;
1430}
1431
1432/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1433// This is declared to take (...), so we have to check everything.
1434ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1435  if (TheCall->getNumArgs() < 2)
1436    return ExprError(Diag(TheCall->getLocEnd(),
1437                          diag::err_typecheck_call_too_few_args_at_least)
1438      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1439      << TheCall->getSourceRange());
1440
1441  // Determine which of the following types of shufflevector we're checking:
1442  // 1) unary, vector mask: (lhs, mask)
1443  // 2) binary, vector mask: (lhs, rhs, mask)
1444  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1445  QualType resType = TheCall->getArg(0)->getType();
1446  unsigned numElements = 0;
1447
1448  if (!TheCall->getArg(0)->isTypeDependent() &&
1449      !TheCall->getArg(1)->isTypeDependent()) {
1450    QualType LHSType = TheCall->getArg(0)->getType();
1451    QualType RHSType = TheCall->getArg(1)->getType();
1452
1453    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1454      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1455        << SourceRange(TheCall->getArg(0)->getLocStart(),
1456                       TheCall->getArg(1)->getLocEnd());
1457      return ExprError();
1458    }
1459
1460    numElements = LHSType->getAs<VectorType>()->getNumElements();
1461    unsigned numResElements = TheCall->getNumArgs() - 2;
1462
1463    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1464    // with mask.  If so, verify that RHS is an integer vector type with the
1465    // same number of elts as lhs.
1466    if (TheCall->getNumArgs() == 2) {
1467      if (!RHSType->hasIntegerRepresentation() ||
1468          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1469        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1470          << SourceRange(TheCall->getArg(1)->getLocStart(),
1471                         TheCall->getArg(1)->getLocEnd());
1472      numResElements = numElements;
1473    }
1474    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1475      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1476        << SourceRange(TheCall->getArg(0)->getLocStart(),
1477                       TheCall->getArg(1)->getLocEnd());
1478      return ExprError();
1479    } else if (numElements != numResElements) {
1480      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1481      resType = Context.getVectorType(eltType, numResElements,
1482                                      VectorType::GenericVector);
1483    }
1484  }
1485
1486  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1487    if (TheCall->getArg(i)->isTypeDependent() ||
1488        TheCall->getArg(i)->isValueDependent())
1489      continue;
1490
1491    llvm::APSInt Result(32);
1492    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1493      return ExprError(Diag(TheCall->getLocStart(),
1494                  diag::err_shufflevector_nonconstant_argument)
1495                << TheCall->getArg(i)->getSourceRange());
1496
1497    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1498      return ExprError(Diag(TheCall->getLocStart(),
1499                  diag::err_shufflevector_argument_too_large)
1500               << TheCall->getArg(i)->getSourceRange());
1501  }
1502
1503  SmallVector<Expr*, 32> exprs;
1504
1505  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1506    exprs.push_back(TheCall->getArg(i));
1507    TheCall->setArg(i, 0);
1508  }
1509
1510  return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
1511                                            TheCall->getCallee()->getLocStart(),
1512                                            TheCall->getRParenLoc()));
1513}
1514
1515/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1516// This is declared to take (const void*, ...) and can take two
1517// optional constant int args.
1518bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1519  unsigned NumArgs = TheCall->getNumArgs();
1520
1521  if (NumArgs > 3)
1522    return Diag(TheCall->getLocEnd(),
1523             diag::err_typecheck_call_too_many_args_at_most)
1524             << 0 /*function call*/ << 3 << NumArgs
1525             << TheCall->getSourceRange();
1526
1527  // Argument 0 is checked for us and the remaining arguments must be
1528  // constant integers.
1529  for (unsigned i = 1; i != NumArgs; ++i) {
1530    Expr *Arg = TheCall->getArg(i);
1531
1532    // We can't check the value of a dependent argument.
1533    if (Arg->isTypeDependent() || Arg->isValueDependent())
1534      continue;
1535
1536    llvm::APSInt Result;
1537    if (SemaBuiltinConstantArg(TheCall, i, Result))
1538      return true;
1539
1540    // FIXME: gcc issues a warning and rewrites these to 0. These
1541    // seems especially odd for the third argument since the default
1542    // is 3.
1543    if (i == 1) {
1544      if (Result.getLimitedValue() > 1)
1545        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1546             << "0" << "1" << Arg->getSourceRange();
1547    } else {
1548      if (Result.getLimitedValue() > 3)
1549        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1550            << "0" << "3" << Arg->getSourceRange();
1551    }
1552  }
1553
1554  return false;
1555}
1556
1557/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1558/// TheCall is a constant expression.
1559bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1560                                  llvm::APSInt &Result) {
1561  Expr *Arg = TheCall->getArg(ArgNum);
1562  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1563  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1564
1565  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1566
1567  if (!Arg->isIntegerConstantExpr(Result, Context))
1568    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1569                << FDecl->getDeclName() <<  Arg->getSourceRange();
1570
1571  return false;
1572}
1573
1574/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1575/// int type). This simply type checks that type is one of the defined
1576/// constants (0-3).
1577// For compatibility check 0-3, llvm only handles 0 and 2.
1578bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1579  llvm::APSInt Result;
1580
1581  // We can't check the value of a dependent argument.
1582  if (TheCall->getArg(1)->isTypeDependent() ||
1583      TheCall->getArg(1)->isValueDependent())
1584    return false;
1585
1586  // Check constant-ness first.
1587  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1588    return true;
1589
1590  Expr *Arg = TheCall->getArg(1);
1591  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1592    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1593             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1594  }
1595
1596  return false;
1597}
1598
1599/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1600/// This checks that val is a constant 1.
1601bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1602  Expr *Arg = TheCall->getArg(1);
1603  llvm::APSInt Result;
1604
1605  // TODO: This is less than ideal. Overload this to take a value.
1606  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1607    return true;
1608
1609  if (Result != 1)
1610    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1611             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1612
1613  return false;
1614}
1615
1616// Determine if an expression is a string literal or constant string.
1617// If this function returns false on the arguments to a function expecting a
1618// format string, we will usually need to emit a warning.
1619// True string literals are then checked by CheckFormatString.
1620Sema::StringLiteralCheckType
1621Sema::checkFormatStringExpr(const Expr *E, Expr **Args,
1622                            unsigned NumArgs, bool HasVAListArg,
1623                            unsigned format_idx, unsigned firstDataArg,
1624                            FormatStringType Type, VariadicCallType CallType,
1625                            bool inFunctionCall) {
1626 tryAgain:
1627  if (E->isTypeDependent() || E->isValueDependent())
1628    return SLCT_NotALiteral;
1629
1630  E = E->IgnoreParenCasts();
1631
1632  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1633    // Technically -Wformat-nonliteral does not warn about this case.
1634    // The behavior of printf and friends in this case is implementation
1635    // dependent.  Ideally if the format string cannot be null then
1636    // it should have a 'nonnull' attribute in the function prototype.
1637    return SLCT_CheckedLiteral;
1638
1639  switch (E->getStmtClass()) {
1640  case Stmt::BinaryConditionalOperatorClass:
1641  case Stmt::ConditionalOperatorClass: {
1642    // The expression is a literal if both sub-expressions were, and it was
1643    // completely checked only if both sub-expressions were checked.
1644    const AbstractConditionalOperator *C =
1645        cast<AbstractConditionalOperator>(E);
1646    StringLiteralCheckType Left =
1647        checkFormatStringExpr(C->getTrueExpr(), Args, NumArgs,
1648                              HasVAListArg, format_idx, firstDataArg,
1649                              Type, CallType, inFunctionCall);
1650    if (Left == SLCT_NotALiteral)
1651      return SLCT_NotALiteral;
1652    StringLiteralCheckType Right =
1653        checkFormatStringExpr(C->getFalseExpr(), Args, NumArgs,
1654                              HasVAListArg, format_idx, firstDataArg,
1655                              Type, CallType, inFunctionCall);
1656    return Left < Right ? Left : Right;
1657  }
1658
1659  case Stmt::ImplicitCastExprClass: {
1660    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1661    goto tryAgain;
1662  }
1663
1664  case Stmt::OpaqueValueExprClass:
1665    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1666      E = src;
1667      goto tryAgain;
1668    }
1669    return SLCT_NotALiteral;
1670
1671  case Stmt::PredefinedExprClass:
1672    // While __func__, etc., are technically not string literals, they
1673    // cannot contain format specifiers and thus are not a security
1674    // liability.
1675    return SLCT_UncheckedLiteral;
1676
1677  case Stmt::DeclRefExprClass: {
1678    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1679
1680    // As an exception, do not flag errors for variables binding to
1681    // const string literals.
1682    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1683      bool isConstant = false;
1684      QualType T = DR->getType();
1685
1686      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1687        isConstant = AT->getElementType().isConstant(Context);
1688      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1689        isConstant = T.isConstant(Context) &&
1690                     PT->getPointeeType().isConstant(Context);
1691      } else if (T->isObjCObjectPointerType()) {
1692        // In ObjC, there is usually no "const ObjectPointer" type,
1693        // so don't check if the pointee type is constant.
1694        isConstant = T.isConstant(Context);
1695      }
1696
1697      if (isConstant) {
1698        if (const Expr *Init = VD->getAnyInitializer()) {
1699          // Look through initializers like const char c[] = { "foo" }
1700          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1701            if (InitList->isStringLiteralInit())
1702              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1703          }
1704          return checkFormatStringExpr(Init, Args, NumArgs,
1705                                       HasVAListArg, format_idx,
1706                                       firstDataArg, Type, CallType,
1707                                       /*inFunctionCall*/false);
1708        }
1709      }
1710
1711      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1712      // special check to see if the format string is a function parameter
1713      // of the function calling the printf function.  If the function
1714      // has an attribute indicating it is a printf-like function, then we
1715      // should suppress warnings concerning non-literals being used in a call
1716      // to a vprintf function.  For example:
1717      //
1718      // void
1719      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1720      //      va_list ap;
1721      //      va_start(ap, fmt);
1722      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1723      //      ...
1724      //
1725      if (HasVAListArg) {
1726        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1727          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1728            int PVIndex = PV->getFunctionScopeIndex() + 1;
1729            for (specific_attr_iterator<FormatAttr>
1730                 i = ND->specific_attr_begin<FormatAttr>(),
1731                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1732              FormatAttr *PVFormat = *i;
1733              // adjust for implicit parameter
1734              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1735                if (MD->isInstance())
1736                  ++PVIndex;
1737              // We also check if the formats are compatible.
1738              // We can't pass a 'scanf' string to a 'printf' function.
1739              if (PVIndex == PVFormat->getFormatIdx() &&
1740                  Type == GetFormatStringType(PVFormat))
1741                return SLCT_UncheckedLiteral;
1742            }
1743          }
1744        }
1745      }
1746    }
1747
1748    return SLCT_NotALiteral;
1749  }
1750
1751  case Stmt::CallExprClass:
1752  case Stmt::CXXMemberCallExprClass: {
1753    const CallExpr *CE = cast<CallExpr>(E);
1754    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1755      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1756        unsigned ArgIndex = FA->getFormatIdx();
1757        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1758          if (MD->isInstance())
1759            --ArgIndex;
1760        const Expr *Arg = CE->getArg(ArgIndex - 1);
1761
1762        return checkFormatStringExpr(Arg, Args, NumArgs,
1763                                     HasVAListArg, format_idx, firstDataArg,
1764                                     Type, CallType, inFunctionCall);
1765      } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1766        unsigned BuiltinID = FD->getBuiltinID();
1767        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
1768            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
1769          const Expr *Arg = CE->getArg(0);
1770          return checkFormatStringExpr(Arg, Args, NumArgs,
1771                                       HasVAListArg, format_idx,
1772                                       firstDataArg, Type, CallType,
1773                                       inFunctionCall);
1774        }
1775      }
1776    }
1777
1778    return SLCT_NotALiteral;
1779  }
1780  case Stmt::ObjCStringLiteralClass:
1781  case Stmt::StringLiteralClass: {
1782    const StringLiteral *StrE = NULL;
1783
1784    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1785      StrE = ObjCFExpr->getString();
1786    else
1787      StrE = cast<StringLiteral>(E);
1788
1789    if (StrE) {
1790      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1791                        firstDataArg, Type, inFunctionCall, CallType);
1792      return SLCT_CheckedLiteral;
1793    }
1794
1795    return SLCT_NotALiteral;
1796  }
1797
1798  default:
1799    return SLCT_NotALiteral;
1800  }
1801}
1802
1803void
1804Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1805                            const Expr * const *ExprArgs,
1806                            SourceLocation CallSiteLoc) {
1807  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1808                                  e = NonNull->args_end();
1809       i != e; ++i) {
1810    const Expr *ArgExpr = ExprArgs[*i];
1811    if (ArgExpr->isNullPointerConstant(Context,
1812                                       Expr::NPC_ValueDependentIsNotNull))
1813      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1814  }
1815}
1816
1817Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1818  return llvm::StringSwitch<FormatStringType>(Format->getType())
1819  .Case("scanf", FST_Scanf)
1820  .Cases("printf", "printf0", FST_Printf)
1821  .Cases("NSString", "CFString", FST_NSString)
1822  .Case("strftime", FST_Strftime)
1823  .Case("strfmon", FST_Strfmon)
1824  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1825  .Default(FST_Unknown);
1826}
1827
1828/// CheckFormatArguments - Check calls to printf and scanf (and similar
1829/// functions) for correct use of format strings.
1830/// Returns true if a format string has been fully checked.
1831bool Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1832                                unsigned NumArgs, bool IsCXXMember,
1833                                VariadicCallType CallType,
1834                                SourceLocation Loc, SourceRange Range) {
1835  FormatStringInfo FSI;
1836  if (getFormatStringInfo(Format, IsCXXMember, &FSI))
1837    return CheckFormatArguments(Args, NumArgs, FSI.HasVAListArg, FSI.FormatIdx,
1838                                FSI.FirstDataArg, GetFormatStringType(Format),
1839                                CallType, Loc, Range);
1840  return false;
1841}
1842
1843bool Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1844                                bool HasVAListArg, unsigned format_idx,
1845                                unsigned firstDataArg, FormatStringType Type,
1846                                VariadicCallType CallType,
1847                                SourceLocation Loc, SourceRange Range) {
1848  // CHECK: printf/scanf-like function is called with no format string.
1849  if (format_idx >= NumArgs) {
1850    Diag(Loc, diag::warn_missing_format_string) << Range;
1851    return false;
1852  }
1853
1854  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1855
1856  // CHECK: format string is not a string literal.
1857  //
1858  // Dynamically generated format strings are difficult to
1859  // automatically vet at compile time.  Requiring that format strings
1860  // are string literals: (1) permits the checking of format strings by
1861  // the compiler and thereby (2) can practically remove the source of
1862  // many format string exploits.
1863
1864  // Format string can be either ObjC string (e.g. @"%d") or
1865  // C string (e.g. "%d")
1866  // ObjC string uses the same format specifiers as C string, so we can use
1867  // the same format string checking logic for both ObjC and C strings.
1868  StringLiteralCheckType CT =
1869      checkFormatStringExpr(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1870                            format_idx, firstDataArg, Type, CallType);
1871  if (CT != SLCT_NotALiteral)
1872    // Literal format string found, check done!
1873    return CT == SLCT_CheckedLiteral;
1874
1875  // Strftime is particular as it always uses a single 'time' argument,
1876  // so it is safe to pass a non-literal string.
1877  if (Type == FST_Strftime)
1878    return false;
1879
1880  // Do not emit diag when the string param is a macro expansion and the
1881  // format is either NSString or CFString. This is a hack to prevent
1882  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1883  // which are usually used in place of NS and CF string literals.
1884  if (Type == FST_NSString &&
1885      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1886    return false;
1887
1888  // If there are no arguments specified, warn with -Wformat-security, otherwise
1889  // warn only with -Wformat-nonliteral.
1890  if (NumArgs == format_idx+1)
1891    Diag(Args[format_idx]->getLocStart(),
1892         diag::warn_format_nonliteral_noargs)
1893      << OrigFormatExpr->getSourceRange();
1894  else
1895    Diag(Args[format_idx]->getLocStart(),
1896         diag::warn_format_nonliteral)
1897           << OrigFormatExpr->getSourceRange();
1898  return false;
1899}
1900
1901namespace {
1902class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1903protected:
1904  Sema &S;
1905  const StringLiteral *FExpr;
1906  const Expr *OrigFormatExpr;
1907  const unsigned FirstDataArg;
1908  const unsigned NumDataArgs;
1909  const char *Beg; // Start of format string.
1910  const bool HasVAListArg;
1911  const Expr * const *Args;
1912  const unsigned NumArgs;
1913  unsigned FormatIdx;
1914  llvm::BitVector CoveredArgs;
1915  bool usesPositionalArgs;
1916  bool atFirstArg;
1917  bool inFunctionCall;
1918  Sema::VariadicCallType CallType;
1919public:
1920  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1921                     const Expr *origFormatExpr, unsigned firstDataArg,
1922                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
1923                     Expr **args, unsigned numArgs,
1924                     unsigned formatIdx, bool inFunctionCall,
1925                     Sema::VariadicCallType callType)
1926    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1927      FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
1928      Beg(beg), HasVAListArg(hasVAListArg),
1929      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1930      usesPositionalArgs(false), atFirstArg(true),
1931      inFunctionCall(inFunctionCall), CallType(callType) {
1932        CoveredArgs.resize(numDataArgs);
1933        CoveredArgs.reset();
1934      }
1935
1936  void DoneProcessing();
1937
1938  void HandleIncompleteSpecifier(const char *startSpecifier,
1939                                 unsigned specifierLen);
1940
1941  void HandleInvalidLengthModifier(
1942      const analyze_format_string::FormatSpecifier &FS,
1943      const analyze_format_string::ConversionSpecifier &CS,
1944      const char *startSpecifier, unsigned specifierLen);
1945
1946  void HandleNonStandardLengthModifier(
1947      const analyze_format_string::LengthModifier &LM,
1948      const char *startSpecifier, unsigned specifierLen);
1949
1950  void HandleNonStandardConversionSpecifier(
1951      const analyze_format_string::ConversionSpecifier &CS,
1952      const char *startSpecifier, unsigned specifierLen);
1953
1954  void HandleNonStandardConversionSpecification(
1955      const analyze_format_string::LengthModifier &LM,
1956      const analyze_format_string::ConversionSpecifier &CS,
1957      const char *startSpecifier, unsigned specifierLen);
1958
1959  virtual void HandlePosition(const char *startPos, unsigned posLen);
1960
1961  virtual void HandleInvalidPosition(const char *startSpecifier,
1962                                     unsigned specifierLen,
1963                                     analyze_format_string::PositionContext p);
1964
1965  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1966
1967  void HandleNullChar(const char *nullCharacter);
1968
1969  template <typename Range>
1970  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1971                                   const Expr *ArgumentExpr,
1972                                   PartialDiagnostic PDiag,
1973                                   SourceLocation StringLoc,
1974                                   bool IsStringLocation, Range StringRange,
1975                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
1976
1977protected:
1978  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1979                                        const char *startSpec,
1980                                        unsigned specifierLen,
1981                                        const char *csStart, unsigned csLen);
1982
1983  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1984                                         const char *startSpec,
1985                                         unsigned specifierLen);
1986
1987  SourceRange getFormatStringRange();
1988  CharSourceRange getSpecifierRange(const char *startSpecifier,
1989                                    unsigned specifierLen);
1990  SourceLocation getLocationOfByte(const char *x);
1991
1992  const Expr *getDataArg(unsigned i) const;
1993
1994  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1995                    const analyze_format_string::ConversionSpecifier &CS,
1996                    const char *startSpecifier, unsigned specifierLen,
1997                    unsigned argIndex);
1998
1999  template <typename Range>
2000  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2001                            bool IsStringLocation, Range StringRange,
2002                            ArrayRef<FixItHint> Fixit = ArrayRef<FixItHint>());
2003
2004  void CheckPositionalAndNonpositionalArgs(
2005      const analyze_format_string::FormatSpecifier *FS);
2006};
2007}
2008
2009SourceRange CheckFormatHandler::getFormatStringRange() {
2010  return OrigFormatExpr->getSourceRange();
2011}
2012
2013CharSourceRange CheckFormatHandler::
2014getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2015  SourceLocation Start = getLocationOfByte(startSpecifier);
2016  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2017
2018  // Advance the end SourceLocation by one due to half-open ranges.
2019  End = End.getLocWithOffset(1);
2020
2021  return CharSourceRange::getCharRange(Start, End);
2022}
2023
2024SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2025  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2026}
2027
2028void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2029                                                   unsigned specifierLen){
2030  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2031                       getLocationOfByte(startSpecifier),
2032                       /*IsStringLocation*/true,
2033                       getSpecifierRange(startSpecifier, specifierLen));
2034}
2035
2036void CheckFormatHandler::HandleInvalidLengthModifier(
2037    const analyze_format_string::FormatSpecifier &FS,
2038    const analyze_format_string::ConversionSpecifier &CS,
2039    const char *startSpecifier, unsigned specifierLen) {
2040  using namespace analyze_format_string;
2041
2042  const LengthModifier &LM = FS.getLengthModifier();
2043  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2044
2045  // See if we know how to fix this length modifier.
2046  llvm::Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2047  if (FixedLM) {
2048    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2049                           << LM.toString() << CS.toString(),
2050                         getLocationOfByte(LM.getStart()),
2051                         /*IsStringLocation*/true,
2052                         getSpecifierRange(startSpecifier, specifierLen));
2053
2054    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2055      << FixedLM->toString()
2056      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2057
2058  } else {
2059    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2060                           << LM.toString() << CS.toString(),
2061                         getLocationOfByte(LM.getStart()),
2062                         /*IsStringLocation*/true,
2063                         getSpecifierRange(startSpecifier, specifierLen),
2064                         FixItHint::CreateRemoval(LMRange));
2065  }
2066}
2067
2068void CheckFormatHandler::HandleNonStandardLengthModifier(
2069    const analyze_format_string::LengthModifier &LM,
2070    const char *startSpecifier, unsigned specifierLen) {
2071  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
2072                       << 0,
2073                       getLocationOfByte(LM.getStart()),
2074                       /*IsStringLocation*/true,
2075                       getSpecifierRange(startSpecifier, specifierLen));
2076}
2077
2078void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2079    const analyze_format_string::ConversionSpecifier &CS,
2080    const char *startSpecifier, unsigned specifierLen) {
2081  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
2082                       << 1,
2083                       getLocationOfByte(CS.getStart()),
2084                       /*IsStringLocation*/true,
2085                       getSpecifierRange(startSpecifier, specifierLen));
2086}
2087
2088void CheckFormatHandler::HandleNonStandardConversionSpecification(
2089    const analyze_format_string::LengthModifier &LM,
2090    const analyze_format_string::ConversionSpecifier &CS,
2091    const char *startSpecifier, unsigned specifierLen) {
2092  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
2093                       << LM.toString() << CS.toString(),
2094                       getLocationOfByte(LM.getStart()),
2095                       /*IsStringLocation*/true,
2096                       getSpecifierRange(startSpecifier, specifierLen));
2097}
2098
2099void CheckFormatHandler::HandlePosition(const char *startPos,
2100                                        unsigned posLen) {
2101  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2102                               getLocationOfByte(startPos),
2103                               /*IsStringLocation*/true,
2104                               getSpecifierRange(startPos, posLen));
2105}
2106
2107void
2108CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2109                                     analyze_format_string::PositionContext p) {
2110  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2111                         << (unsigned) p,
2112                       getLocationOfByte(startPos), /*IsStringLocation*/true,
2113                       getSpecifierRange(startPos, posLen));
2114}
2115
2116void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2117                                            unsigned posLen) {
2118  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2119                               getLocationOfByte(startPos),
2120                               /*IsStringLocation*/true,
2121                               getSpecifierRange(startPos, posLen));
2122}
2123
2124void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2125  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2126    // The presence of a null character is likely an error.
2127    EmitFormatDiagnostic(
2128      S.PDiag(diag::warn_printf_format_string_contains_null_char),
2129      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2130      getFormatStringRange());
2131  }
2132}
2133
2134// Note that this may return NULL if there was an error parsing or building
2135// one of the argument expressions.
2136const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2137  return Args[FirstDataArg + i];
2138}
2139
2140void CheckFormatHandler::DoneProcessing() {
2141    // Does the number of data arguments exceed the number of
2142    // format conversions in the format string?
2143  if (!HasVAListArg) {
2144      // Find any arguments that weren't covered.
2145    CoveredArgs.flip();
2146    signed notCoveredArg = CoveredArgs.find_first();
2147    if (notCoveredArg >= 0) {
2148      assert((unsigned)notCoveredArg < NumDataArgs);
2149      if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2150        SourceLocation Loc = E->getLocStart();
2151        if (!S.getSourceManager().isInSystemMacro(Loc)) {
2152          EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2153                               Loc, /*IsStringLocation*/false,
2154                               getFormatStringRange());
2155        }
2156      }
2157    }
2158  }
2159}
2160
2161bool
2162CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2163                                                     SourceLocation Loc,
2164                                                     const char *startSpec,
2165                                                     unsigned specifierLen,
2166                                                     const char *csStart,
2167                                                     unsigned csLen) {
2168
2169  bool keepGoing = true;
2170  if (argIndex < NumDataArgs) {
2171    // Consider the argument coverered, even though the specifier doesn't
2172    // make sense.
2173    CoveredArgs.set(argIndex);
2174  }
2175  else {
2176    // If argIndex exceeds the number of data arguments we
2177    // don't issue a warning because that is just a cascade of warnings (and
2178    // they may have intended '%%' anyway). We don't want to continue processing
2179    // the format string after this point, however, as we will like just get
2180    // gibberish when trying to match arguments.
2181    keepGoing = false;
2182  }
2183
2184  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2185                         << StringRef(csStart, csLen),
2186                       Loc, /*IsStringLocation*/true,
2187                       getSpecifierRange(startSpec, specifierLen));
2188
2189  return keepGoing;
2190}
2191
2192void
2193CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2194                                                      const char *startSpec,
2195                                                      unsigned specifierLen) {
2196  EmitFormatDiagnostic(
2197    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2198    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2199}
2200
2201bool
2202CheckFormatHandler::CheckNumArgs(
2203  const analyze_format_string::FormatSpecifier &FS,
2204  const analyze_format_string::ConversionSpecifier &CS,
2205  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2206
2207  if (argIndex >= NumDataArgs) {
2208    PartialDiagnostic PDiag = FS.usesPositionalArg()
2209      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2210           << (argIndex+1) << NumDataArgs)
2211      : S.PDiag(diag::warn_printf_insufficient_data_args);
2212    EmitFormatDiagnostic(
2213      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2214      getSpecifierRange(startSpecifier, specifierLen));
2215    return false;
2216  }
2217  return true;
2218}
2219
2220template<typename Range>
2221void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2222                                              SourceLocation Loc,
2223                                              bool IsStringLocation,
2224                                              Range StringRange,
2225                                              ArrayRef<FixItHint> FixIt) {
2226  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2227                       Loc, IsStringLocation, StringRange, FixIt);
2228}
2229
2230/// \brief If the format string is not within the funcion call, emit a note
2231/// so that the function call and string are in diagnostic messages.
2232///
2233/// \param InFunctionCall if true, the format string is within the function
2234/// call and only one diagnostic message will be produced.  Otherwise, an
2235/// extra note will be emitted pointing to location of the format string.
2236///
2237/// \param ArgumentExpr the expression that is passed as the format string
2238/// argument in the function call.  Used for getting locations when two
2239/// diagnostics are emitted.
2240///
2241/// \param PDiag the callee should already have provided any strings for the
2242/// diagnostic message.  This function only adds locations and fixits
2243/// to diagnostics.
2244///
2245/// \param Loc primary location for diagnostic.  If two diagnostics are
2246/// required, one will be at Loc and a new SourceLocation will be created for
2247/// the other one.
2248///
2249/// \param IsStringLocation if true, Loc points to the format string should be
2250/// used for the note.  Otherwise, Loc points to the argument list and will
2251/// be used with PDiag.
2252///
2253/// \param StringRange some or all of the string to highlight.  This is
2254/// templated so it can accept either a CharSourceRange or a SourceRange.
2255///
2256/// \param FixIt optional fix it hint for the format string.
2257template<typename Range>
2258void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2259                                              const Expr *ArgumentExpr,
2260                                              PartialDiagnostic PDiag,
2261                                              SourceLocation Loc,
2262                                              bool IsStringLocation,
2263                                              Range StringRange,
2264                                              ArrayRef<FixItHint> FixIt) {
2265  if (InFunctionCall) {
2266    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
2267    D << StringRange;
2268    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2269         I != E; ++I) {
2270      D << *I;
2271    }
2272  } else {
2273    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2274      << ArgumentExpr->getSourceRange();
2275
2276    const Sema::SemaDiagnosticBuilder &Note =
2277      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2278             diag::note_format_string_defined);
2279
2280    Note << StringRange;
2281    for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
2282         I != E; ++I) {
2283      Note << *I;
2284    }
2285  }
2286}
2287
2288//===--- CHECK: Printf format string checking ------------------------------===//
2289
2290namespace {
2291class CheckPrintfHandler : public CheckFormatHandler {
2292  bool ObjCContext;
2293public:
2294  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2295                     const Expr *origFormatExpr, unsigned firstDataArg,
2296                     unsigned numDataArgs, bool isObjC,
2297                     const char *beg, bool hasVAListArg,
2298                     Expr **Args, unsigned NumArgs,
2299                     unsigned formatIdx, bool inFunctionCall,
2300                     Sema::VariadicCallType CallType)
2301  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2302                       numDataArgs, beg, hasVAListArg, Args, NumArgs,
2303                       formatIdx, inFunctionCall, CallType), ObjCContext(isObjC)
2304  {}
2305
2306
2307  bool HandleInvalidPrintfConversionSpecifier(
2308                                      const analyze_printf::PrintfSpecifier &FS,
2309                                      const char *startSpecifier,
2310                                      unsigned specifierLen);
2311
2312  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2313                             const char *startSpecifier,
2314                             unsigned specifierLen);
2315  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2316                       const char *StartSpecifier,
2317                       unsigned SpecifierLen,
2318                       const Expr *E);
2319
2320  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2321                    const char *startSpecifier, unsigned specifierLen);
2322  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2323                           const analyze_printf::OptionalAmount &Amt,
2324                           unsigned type,
2325                           const char *startSpecifier, unsigned specifierLen);
2326  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2327                  const analyze_printf::OptionalFlag &flag,
2328                  const char *startSpecifier, unsigned specifierLen);
2329  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2330                         const analyze_printf::OptionalFlag &ignoredFlag,
2331                         const analyze_printf::OptionalFlag &flag,
2332                         const char *startSpecifier, unsigned specifierLen);
2333  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
2334                           const Expr *E, const CharSourceRange &CSR);
2335
2336};
2337}
2338
2339bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2340                                      const analyze_printf::PrintfSpecifier &FS,
2341                                      const char *startSpecifier,
2342                                      unsigned specifierLen) {
2343  const analyze_printf::PrintfConversionSpecifier &CS =
2344    FS.getConversionSpecifier();
2345
2346  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2347                                          getLocationOfByte(CS.getStart()),
2348                                          startSpecifier, specifierLen,
2349                                          CS.getStart(), CS.getLength());
2350}
2351
2352bool CheckPrintfHandler::HandleAmount(
2353                               const analyze_format_string::OptionalAmount &Amt,
2354                               unsigned k, const char *startSpecifier,
2355                               unsigned specifierLen) {
2356
2357  if (Amt.hasDataArgument()) {
2358    if (!HasVAListArg) {
2359      unsigned argIndex = Amt.getArgIndex();
2360      if (argIndex >= NumDataArgs) {
2361        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2362                               << k,
2363                             getLocationOfByte(Amt.getStart()),
2364                             /*IsStringLocation*/true,
2365                             getSpecifierRange(startSpecifier, specifierLen));
2366        // Don't do any more checking.  We will just emit
2367        // spurious errors.
2368        return false;
2369      }
2370
2371      // Type check the data argument.  It should be an 'int'.
2372      // Although not in conformance with C99, we also allow the argument to be
2373      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2374      // doesn't emit a warning for that case.
2375      CoveredArgs.set(argIndex);
2376      const Expr *Arg = getDataArg(argIndex);
2377      if (!Arg)
2378        return false;
2379
2380      QualType T = Arg->getType();
2381
2382      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
2383      assert(AT.isValid());
2384
2385      if (!AT.matchesType(S.Context, T)) {
2386        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2387                               << k << AT.getRepresentativeTypeName(S.Context)
2388                               << T << Arg->getSourceRange(),
2389                             getLocationOfByte(Amt.getStart()),
2390                             /*IsStringLocation*/true,
2391                             getSpecifierRange(startSpecifier, specifierLen));
2392        // Don't do any more checking.  We will just emit
2393        // spurious errors.
2394        return false;
2395      }
2396    }
2397  }
2398  return true;
2399}
2400
2401void CheckPrintfHandler::HandleInvalidAmount(
2402                                      const analyze_printf::PrintfSpecifier &FS,
2403                                      const analyze_printf::OptionalAmount &Amt,
2404                                      unsigned type,
2405                                      const char *startSpecifier,
2406                                      unsigned specifierLen) {
2407  const analyze_printf::PrintfConversionSpecifier &CS =
2408    FS.getConversionSpecifier();
2409
2410  FixItHint fixit =
2411    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2412      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2413                                 Amt.getConstantLength()))
2414      : FixItHint();
2415
2416  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2417                         << type << CS.toString(),
2418                       getLocationOfByte(Amt.getStart()),
2419                       /*IsStringLocation*/true,
2420                       getSpecifierRange(startSpecifier, specifierLen),
2421                       fixit);
2422}
2423
2424void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2425                                    const analyze_printf::OptionalFlag &flag,
2426                                    const char *startSpecifier,
2427                                    unsigned specifierLen) {
2428  // Warn about pointless flag with a fixit removal.
2429  const analyze_printf::PrintfConversionSpecifier &CS =
2430    FS.getConversionSpecifier();
2431  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2432                         << flag.toString() << CS.toString(),
2433                       getLocationOfByte(flag.getPosition()),
2434                       /*IsStringLocation*/true,
2435                       getSpecifierRange(startSpecifier, specifierLen),
2436                       FixItHint::CreateRemoval(
2437                         getSpecifierRange(flag.getPosition(), 1)));
2438}
2439
2440void CheckPrintfHandler::HandleIgnoredFlag(
2441                                const analyze_printf::PrintfSpecifier &FS,
2442                                const analyze_printf::OptionalFlag &ignoredFlag,
2443                                const analyze_printf::OptionalFlag &flag,
2444                                const char *startSpecifier,
2445                                unsigned specifierLen) {
2446  // Warn about ignored flag with a fixit removal.
2447  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2448                         << ignoredFlag.toString() << flag.toString(),
2449                       getLocationOfByte(ignoredFlag.getPosition()),
2450                       /*IsStringLocation*/true,
2451                       getSpecifierRange(startSpecifier, specifierLen),
2452                       FixItHint::CreateRemoval(
2453                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2454}
2455
2456// Determines if the specified is a C++ class or struct containing
2457// a member with the specified name and kind (e.g. a CXXMethodDecl named
2458// "c_str()").
2459template<typename MemberKind>
2460static llvm::SmallPtrSet<MemberKind*, 1>
2461CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
2462  const RecordType *RT = Ty->getAs<RecordType>();
2463  llvm::SmallPtrSet<MemberKind*, 1> Results;
2464
2465  if (!RT)
2466    return Results;
2467  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
2468  if (!RD)
2469    return Results;
2470
2471  LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
2472                 Sema::LookupMemberName);
2473
2474  // We just need to include all members of the right kind turned up by the
2475  // filter, at this point.
2476  if (S.LookupQualifiedName(R, RT->getDecl()))
2477    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2478      NamedDecl *decl = (*I)->getUnderlyingDecl();
2479      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
2480        Results.insert(FK);
2481    }
2482  return Results;
2483}
2484
2485// Check if a (w)string was passed when a (w)char* was needed, and offer a
2486// better diagnostic if so. AT is assumed to be valid.
2487// Returns true when a c_str() conversion method is found.
2488bool CheckPrintfHandler::checkForCStrMembers(
2489    const analyze_printf::ArgType &AT, const Expr *E,
2490    const CharSourceRange &CSR) {
2491  typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
2492
2493  MethodSet Results =
2494      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
2495
2496  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
2497       MI != ME; ++MI) {
2498    const CXXMethodDecl *Method = *MI;
2499    if (Method->getNumParams() == 0 &&
2500          AT.matchesType(S.Context, Method->getResultType())) {
2501      // FIXME: Suggest parens if the expression needs them.
2502      SourceLocation EndLoc =
2503          S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
2504      S.Diag(E->getLocStart(), diag::note_printf_c_str)
2505          << "c_str()"
2506          << FixItHint::CreateInsertion(EndLoc, ".c_str()");
2507      return true;
2508    }
2509  }
2510
2511  return false;
2512}
2513
2514bool
2515CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2516                                            &FS,
2517                                          const char *startSpecifier,
2518                                          unsigned specifierLen) {
2519
2520  using namespace analyze_format_string;
2521  using namespace analyze_printf;
2522  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2523
2524  if (FS.consumesDataArgument()) {
2525    if (atFirstArg) {
2526        atFirstArg = false;
2527        usesPositionalArgs = FS.usesPositionalArg();
2528    }
2529    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2530      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2531                                        startSpecifier, specifierLen);
2532      return false;
2533    }
2534  }
2535
2536  // First check if the field width, precision, and conversion specifier
2537  // have matching data arguments.
2538  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2539                    startSpecifier, specifierLen)) {
2540    return false;
2541  }
2542
2543  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2544                    startSpecifier, specifierLen)) {
2545    return false;
2546  }
2547
2548  if (!CS.consumesDataArgument()) {
2549    // FIXME: Technically specifying a precision or field width here
2550    // makes no sense.  Worth issuing a warning at some point.
2551    return true;
2552  }
2553
2554  // Consume the argument.
2555  unsigned argIndex = FS.getArgIndex();
2556  if (argIndex < NumDataArgs) {
2557    // The check to see if the argIndex is valid will come later.
2558    // We set the bit here because we may exit early from this
2559    // function if we encounter some other error.
2560    CoveredArgs.set(argIndex);
2561  }
2562
2563  // Check for using an Objective-C specific conversion specifier
2564  // in a non-ObjC literal.
2565  if (!ObjCContext && CS.isObjCArg()) {
2566    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2567                                                  specifierLen);
2568  }
2569
2570  // Check for invalid use of field width
2571  if (!FS.hasValidFieldWidth()) {
2572    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2573        startSpecifier, specifierLen);
2574  }
2575
2576  // Check for invalid use of precision
2577  if (!FS.hasValidPrecision()) {
2578    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2579        startSpecifier, specifierLen);
2580  }
2581
2582  // Check each flag does not conflict with any other component.
2583  if (!FS.hasValidThousandsGroupingPrefix())
2584    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2585  if (!FS.hasValidLeadingZeros())
2586    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2587  if (!FS.hasValidPlusPrefix())
2588    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2589  if (!FS.hasValidSpacePrefix())
2590    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2591  if (!FS.hasValidAlternativeForm())
2592    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2593  if (!FS.hasValidLeftJustified())
2594    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2595
2596  // Check that flags are not ignored by another flag
2597  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2598    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2599        startSpecifier, specifierLen);
2600  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2601    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2602            startSpecifier, specifierLen);
2603
2604  // Check the length modifier is valid with the given conversion specifier.
2605  const LengthModifier &LM = FS.getLengthModifier();
2606  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2607    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen);
2608  else if (!FS.hasStandardLengthModifier())
2609    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2610  else if (!FS.hasStandardLengthConversionCombination())
2611    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2612                                             specifierLen);
2613
2614  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2615    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2616
2617  // The remaining checks depend on the data arguments.
2618  if (HasVAListArg)
2619    return true;
2620
2621  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2622    return false;
2623
2624  const Expr *Arg = getDataArg(argIndex);
2625  if (!Arg)
2626    return true;
2627
2628  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
2629}
2630
2631static bool requiresParensToAddCast(const Expr *E) {
2632  // FIXME: We should have a general way to reason about operator
2633  // precedence and whether parens are actually needed here.
2634  // Take care of a few common cases where they aren't.
2635  const Expr *Inside = E->IgnoreImpCasts();
2636  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
2637    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
2638
2639  switch (Inside->getStmtClass()) {
2640  case Stmt::ArraySubscriptExprClass:
2641  case Stmt::CallExprClass:
2642  case Stmt::DeclRefExprClass:
2643  case Stmt::MemberExprClass:
2644  case Stmt::ObjCIvarRefExprClass:
2645  case Stmt::ObjCMessageExprClass:
2646  case Stmt::ObjCPropertyRefExprClass:
2647  case Stmt::ParenExprClass:
2648  case Stmt::UnaryOperatorClass:
2649    return false;
2650  default:
2651    return true;
2652  }
2653}
2654
2655bool
2656CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
2657                                    const char *StartSpecifier,
2658                                    unsigned SpecifierLen,
2659                                    const Expr *E) {
2660  using namespace analyze_format_string;
2661  using namespace analyze_printf;
2662  // Now type check the data expression that matches the
2663  // format specifier.
2664  const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
2665                                                    ObjCContext);
2666  if (!AT.isValid())
2667    return true;
2668
2669  QualType IntendedTy = E->getType();
2670  if (AT.matchesType(S.Context, IntendedTy))
2671    return true;
2672
2673  // Look through argument promotions for our error message's reported type.
2674  // This includes the integral and floating promotions, but excludes array
2675  // and function pointer decay; seeing that an argument intended to be a
2676  // string has type 'char [6]' is probably more confusing than 'char *'.
2677  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2678    if (ICE->getCastKind() == CK_IntegralCast ||
2679        ICE->getCastKind() == CK_FloatingCast) {
2680      E = ICE->getSubExpr();
2681      IntendedTy = E->getType();
2682
2683      // Check if we didn't match because of an implicit cast from a 'char'
2684      // or 'short' to an 'int'.  This is done because printf is a varargs
2685      // function.
2686      if (ICE->getType() == S.Context.IntTy ||
2687          ICE->getType() == S.Context.UnsignedIntTy) {
2688        // All further checking is done on the subexpression.
2689        if (AT.matchesType(S.Context, IntendedTy))
2690          return true;
2691      }
2692    }
2693  }
2694
2695  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2696    // Special-case some of Darwin's platform-independence types.
2697    if (const TypedefType *UserTy = IntendedTy->getAs<TypedefType>()) {
2698      StringRef Name = UserTy->getDecl()->getName();
2699      IntendedTy = llvm::StringSwitch<QualType>(Name)
2700        .Case("NSInteger", S.Context.LongTy)
2701        .Case("NSUInteger", S.Context.UnsignedLongTy)
2702        .Case("SInt32", S.Context.IntTy)
2703        .Case("UInt32", S.Context.UnsignedIntTy)
2704        .Default(IntendedTy);
2705    }
2706  }
2707
2708  // We may be able to offer a FixItHint if it is a supported type.
2709  PrintfSpecifier fixedFS = FS;
2710  bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
2711                                 S.Context, ObjCContext);
2712
2713  if (success) {
2714    // Get the fix string from the fixed format specifier
2715    SmallString<16> buf;
2716    llvm::raw_svector_ostream os(buf);
2717    fixedFS.toString(os);
2718
2719    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
2720
2721    if (IntendedTy != E->getType()) {
2722      // The canonical type for formatting this value is different from the
2723      // actual type of the expression. (This occurs, for example, with Darwin's
2724      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
2725      // should be printed as 'long' for 64-bit compatibility.)
2726      // Rather than emitting a normal format/argument mismatch, we want to
2727      // add a cast to the recommended type (and correct the format string
2728      // if necessary).
2729      SmallString<16> CastBuf;
2730      llvm::raw_svector_ostream CastFix(CastBuf);
2731      CastFix << "(";
2732      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
2733      CastFix << ")";
2734
2735      SmallVector<FixItHint,4> Hints;
2736      if (!AT.matchesType(S.Context, IntendedTy))
2737        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
2738
2739      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
2740        // If there's already a cast present, just replace it.
2741        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
2742        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
2743
2744      } else if (!requiresParensToAddCast(E)) {
2745        // If the expression has high enough precedence,
2746        // just write the C-style cast.
2747        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2748                                                   CastFix.str()));
2749      } else {
2750        // Otherwise, add parens around the expression as well as the cast.
2751        CastFix << "(";
2752        Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
2753                                                   CastFix.str()));
2754
2755        SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
2756        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
2757      }
2758
2759      // We extract the name from the typedef because we don't want to show
2760      // the underlying type in the diagnostic.
2761      const TypedefType *UserTy = cast<TypedefType>(E->getType());
2762      StringRef Name = UserTy->getDecl()->getName();
2763
2764      // Finally, emit the diagnostic.
2765      EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
2766                             << Name << IntendedTy
2767                             << E->getSourceRange(),
2768                           E->getLocStart(), /*IsStringLocation=*/false,
2769                           SpecRange, Hints);
2770    } else {
2771      EmitFormatDiagnostic(
2772        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2773          << AT.getRepresentativeTypeName(S.Context) << IntendedTy
2774          << E->getSourceRange(),
2775        E->getLocStart(),
2776        /*IsStringLocation*/false,
2777        SpecRange,
2778        FixItHint::CreateReplacement(SpecRange, os.str()));
2779    }
2780  } else {
2781    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
2782                                                   SpecifierLen);
2783    // Since the warning for passing non-POD types to variadic functions
2784    // was deferred until now, we emit a warning for non-POD
2785    // arguments here.
2786    if (S.isValidVarArgType(E->getType()) == Sema::VAK_Invalid) {
2787      unsigned DiagKind;
2788      if (E->getType()->isObjCObjectType())
2789        DiagKind = diag::err_cannot_pass_objc_interface_to_vararg_format;
2790      else
2791        DiagKind = diag::warn_non_pod_vararg_with_format_string;
2792
2793      EmitFormatDiagnostic(
2794        S.PDiag(DiagKind)
2795          << S.getLangOpts().CPlusPlus0x
2796          << E->getType()
2797          << CallType
2798          << AT.getRepresentativeTypeName(S.Context)
2799          << CSR
2800          << E->getSourceRange(),
2801        E->getLocStart(), /*IsStringLocation*/false, CSR);
2802
2803      checkForCStrMembers(AT, E, CSR);
2804    } else
2805      EmitFormatDiagnostic(
2806        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2807          << AT.getRepresentativeTypeName(S.Context) << E->getType()
2808          << CSR
2809          << E->getSourceRange(),
2810        E->getLocStart(), /*IsStringLocation*/false, CSR);
2811  }
2812
2813  return true;
2814}
2815
2816//===--- CHECK: Scanf format string checking ------------------------------===//
2817
2818namespace {
2819class CheckScanfHandler : public CheckFormatHandler {
2820public:
2821  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2822                    const Expr *origFormatExpr, unsigned firstDataArg,
2823                    unsigned numDataArgs, const char *beg, bool hasVAListArg,
2824                    Expr **Args, unsigned NumArgs,
2825                    unsigned formatIdx, bool inFunctionCall,
2826                    Sema::VariadicCallType CallType)
2827  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2828                       numDataArgs, beg, hasVAListArg,
2829                       Args, NumArgs, formatIdx, inFunctionCall, CallType)
2830  {}
2831
2832  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2833                            const char *startSpecifier,
2834                            unsigned specifierLen);
2835
2836  bool HandleInvalidScanfConversionSpecifier(
2837          const analyze_scanf::ScanfSpecifier &FS,
2838          const char *startSpecifier,
2839          unsigned specifierLen);
2840
2841  void HandleIncompleteScanList(const char *start, const char *end);
2842};
2843}
2844
2845void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2846                                                 const char *end) {
2847  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2848                       getLocationOfByte(end), /*IsStringLocation*/true,
2849                       getSpecifierRange(start, end - start));
2850}
2851
2852bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2853                                        const analyze_scanf::ScanfSpecifier &FS,
2854                                        const char *startSpecifier,
2855                                        unsigned specifierLen) {
2856
2857  const analyze_scanf::ScanfConversionSpecifier &CS =
2858    FS.getConversionSpecifier();
2859
2860  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2861                                          getLocationOfByte(CS.getStart()),
2862                                          startSpecifier, specifierLen,
2863                                          CS.getStart(), CS.getLength());
2864}
2865
2866bool CheckScanfHandler::HandleScanfSpecifier(
2867                                       const analyze_scanf::ScanfSpecifier &FS,
2868                                       const char *startSpecifier,
2869                                       unsigned specifierLen) {
2870
2871  using namespace analyze_scanf;
2872  using namespace analyze_format_string;
2873
2874  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2875
2876  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2877  // be used to decide if we are using positional arguments consistently.
2878  if (FS.consumesDataArgument()) {
2879    if (atFirstArg) {
2880      atFirstArg = false;
2881      usesPositionalArgs = FS.usesPositionalArg();
2882    }
2883    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2884      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2885                                        startSpecifier, specifierLen);
2886      return false;
2887    }
2888  }
2889
2890  // Check if the field with is non-zero.
2891  const OptionalAmount &Amt = FS.getFieldWidth();
2892  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2893    if (Amt.getConstantAmount() == 0) {
2894      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2895                                                   Amt.getConstantLength());
2896      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2897                           getLocationOfByte(Amt.getStart()),
2898                           /*IsStringLocation*/true, R,
2899                           FixItHint::CreateRemoval(R));
2900    }
2901  }
2902
2903  if (!FS.consumesDataArgument()) {
2904    // FIXME: Technically specifying a precision or field width here
2905    // makes no sense.  Worth issuing a warning at some point.
2906    return true;
2907  }
2908
2909  // Consume the argument.
2910  unsigned argIndex = FS.getArgIndex();
2911  if (argIndex < NumDataArgs) {
2912      // The check to see if the argIndex is valid will come later.
2913      // We set the bit here because we may exit early from this
2914      // function if we encounter some other error.
2915    CoveredArgs.set(argIndex);
2916  }
2917
2918  // Check the length modifier is valid with the given conversion specifier.
2919  const LengthModifier &LM = FS.getLengthModifier();
2920  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
2921    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen);
2922  else if (!FS.hasStandardLengthModifier())
2923    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2924  else if (!FS.hasStandardLengthConversionCombination())
2925    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2926                                             specifierLen);
2927
2928  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2929    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2930
2931  // The remaining checks depend on the data arguments.
2932  if (HasVAListArg)
2933    return true;
2934
2935  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2936    return false;
2937
2938  // Check that the argument type matches the format specifier.
2939  const Expr *Ex = getDataArg(argIndex);
2940  if (!Ex)
2941    return true;
2942
2943  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
2944  if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
2945    ScanfSpecifier fixedFS = FS;
2946    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2947                                   S.Context);
2948
2949    if (success) {
2950      // Get the fix string from the fixed format specifier.
2951      SmallString<128> buf;
2952      llvm::raw_svector_ostream os(buf);
2953      fixedFS.toString(os);
2954
2955      EmitFormatDiagnostic(
2956        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2957          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2958          << Ex->getSourceRange(),
2959        Ex->getLocStart(),
2960        /*IsStringLocation*/false,
2961        getSpecifierRange(startSpecifier, specifierLen),
2962        FixItHint::CreateReplacement(
2963          getSpecifierRange(startSpecifier, specifierLen),
2964          os.str()));
2965    } else {
2966      EmitFormatDiagnostic(
2967        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2968          << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
2969          << Ex->getSourceRange(),
2970        Ex->getLocStart(),
2971        /*IsStringLocation*/false,
2972        getSpecifierRange(startSpecifier, specifierLen));
2973    }
2974  }
2975
2976  return true;
2977}
2978
2979void Sema::CheckFormatString(const StringLiteral *FExpr,
2980                             const Expr *OrigFormatExpr,
2981                             Expr **Args, unsigned NumArgs,
2982                             bool HasVAListArg, unsigned format_idx,
2983                             unsigned firstDataArg, FormatStringType Type,
2984                             bool inFunctionCall, VariadicCallType CallType) {
2985
2986  // CHECK: is the format string a wide literal?
2987  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
2988    CheckFormatHandler::EmitFormatDiagnostic(
2989      *this, inFunctionCall, Args[format_idx],
2990      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2991      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2992    return;
2993  }
2994
2995  // Str - The format string.  NOTE: this is NOT null-terminated!
2996  StringRef StrRef = FExpr->getString();
2997  const char *Str = StrRef.data();
2998  unsigned StrLen = StrRef.size();
2999  const unsigned numDataArgs = NumArgs - firstDataArg;
3000
3001  // CHECK: empty format string?
3002  if (StrLen == 0 && numDataArgs > 0) {
3003    CheckFormatHandler::EmitFormatDiagnostic(
3004      *this, inFunctionCall, Args[format_idx],
3005      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
3006      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3007    return;
3008  }
3009
3010  if (Type == FST_Printf || Type == FST_NSString) {
3011    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
3012                         numDataArgs, (Type == FST_NSString),
3013                         Str, HasVAListArg, Args, NumArgs, format_idx,
3014                         inFunctionCall, CallType);
3015
3016    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
3017                                                  getLangOpts()))
3018      H.DoneProcessing();
3019  } else if (Type == FST_Scanf) {
3020    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
3021                        Str, HasVAListArg, Args, NumArgs, format_idx,
3022                        inFunctionCall, CallType);
3023
3024    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
3025                                                 getLangOpts()))
3026      H.DoneProcessing();
3027  } // TODO: handle other formats
3028}
3029
3030//===--- CHECK: Standard memory functions ---------------------------------===//
3031
3032/// \brief Determine whether the given type is a dynamic class type (e.g.,
3033/// whether it has a vtable).
3034static bool isDynamicClassType(QualType T) {
3035  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3036    if (CXXRecordDecl *Definition = Record->getDefinition())
3037      if (Definition->isDynamicClass())
3038        return true;
3039
3040  return false;
3041}
3042
3043/// \brief If E is a sizeof expression, returns its argument expression,
3044/// otherwise returns NULL.
3045static const Expr *getSizeOfExprArg(const Expr* E) {
3046  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3047      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3048    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
3049      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
3050
3051  return 0;
3052}
3053
3054/// \brief If E is a sizeof expression, returns its argument type.
3055static QualType getSizeOfArgType(const Expr* E) {
3056  if (const UnaryExprOrTypeTraitExpr *SizeOf =
3057      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
3058    if (SizeOf->getKind() == clang::UETT_SizeOf)
3059      return SizeOf->getTypeOfArgument();
3060
3061  return QualType();
3062}
3063
3064/// \brief Check for dangerous or invalid arguments to memset().
3065///
3066/// This issues warnings on known problematic, dangerous or unspecified
3067/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
3068/// function calls.
3069///
3070/// \param Call The call expression to diagnose.
3071void Sema::CheckMemaccessArguments(const CallExpr *Call,
3072                                   unsigned BId,
3073                                   IdentifierInfo *FnName) {
3074  assert(BId != 0);
3075
3076  // It is possible to have a non-standard definition of memset.  Validate
3077  // we have enough arguments, and if not, abort further checking.
3078  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
3079  if (Call->getNumArgs() < ExpectedNumArgs)
3080    return;
3081
3082  unsigned LastArg = (BId == Builtin::BImemset ||
3083                      BId == Builtin::BIstrndup ? 1 : 2);
3084  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
3085  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
3086
3087  // We have special checking when the length is a sizeof expression.
3088  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
3089  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
3090  llvm::FoldingSetNodeID SizeOfArgID;
3091
3092  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
3093    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
3094    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
3095
3096    QualType DestTy = Dest->getType();
3097    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
3098      QualType PointeeTy = DestPtrTy->getPointeeType();
3099
3100      // Never warn about void type pointers. This can be used to suppress
3101      // false positives.
3102      if (PointeeTy->isVoidType())
3103        continue;
3104
3105      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
3106      // actually comparing the expressions for equality. Because computing the
3107      // expression IDs can be expensive, we only do this if the diagnostic is
3108      // enabled.
3109      if (SizeOfArg &&
3110          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
3111                                   SizeOfArg->getExprLoc())) {
3112        // We only compute IDs for expressions if the warning is enabled, and
3113        // cache the sizeof arg's ID.
3114        if (SizeOfArgID == llvm::FoldingSetNodeID())
3115          SizeOfArg->Profile(SizeOfArgID, Context, true);
3116        llvm::FoldingSetNodeID DestID;
3117        Dest->Profile(DestID, Context, true);
3118        if (DestID == SizeOfArgID) {
3119          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
3120          //       over sizeof(src) as well.
3121          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
3122          StringRef ReadableName = FnName->getName();
3123
3124          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
3125            if (UnaryOp->getOpcode() == UO_AddrOf)
3126              ActionIdx = 1; // If its an address-of operator, just remove it.
3127          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
3128            ActionIdx = 2; // If the pointee's size is sizeof(char),
3129                           // suggest an explicit length.
3130
3131          // If the function is defined as a builtin macro, do not show macro
3132          // expansion.
3133          SourceLocation SL = SizeOfArg->getExprLoc();
3134          SourceRange DSR = Dest->getSourceRange();
3135          SourceRange SSR = SizeOfArg->getSourceRange();
3136          SourceManager &SM  = PP.getSourceManager();
3137
3138          if (SM.isMacroArgExpansion(SL)) {
3139            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
3140            SL = SM.getSpellingLoc(SL);
3141            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
3142                             SM.getSpellingLoc(DSR.getEnd()));
3143            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
3144                             SM.getSpellingLoc(SSR.getEnd()));
3145          }
3146
3147          DiagRuntimeBehavior(SL, SizeOfArg,
3148                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
3149                                << ReadableName
3150                                << PointeeTy
3151                                << DestTy
3152                                << DSR
3153                                << SSR);
3154          DiagRuntimeBehavior(SL, SizeOfArg,
3155                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
3156                                << ActionIdx
3157                                << SSR);
3158
3159          break;
3160        }
3161      }
3162
3163      // Also check for cases where the sizeof argument is the exact same
3164      // type as the memory argument, and where it points to a user-defined
3165      // record type.
3166      if (SizeOfArgTy != QualType()) {
3167        if (PointeeTy->isRecordType() &&
3168            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
3169          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
3170                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
3171                                << FnName << SizeOfArgTy << ArgIdx
3172                                << PointeeTy << Dest->getSourceRange()
3173                                << LenExpr->getSourceRange());
3174          break;
3175        }
3176      }
3177
3178      // Always complain about dynamic classes.
3179      if (isDynamicClassType(PointeeTy)) {
3180
3181        unsigned OperationType = 0;
3182        // "overwritten" if we're warning about the destination for any call
3183        // but memcmp; otherwise a verb appropriate to the call.
3184        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
3185          if (BId == Builtin::BImemcpy)
3186            OperationType = 1;
3187          else if(BId == Builtin::BImemmove)
3188            OperationType = 2;
3189          else if (BId == Builtin::BImemcmp)
3190            OperationType = 3;
3191        }
3192
3193        DiagRuntimeBehavior(
3194          Dest->getExprLoc(), Dest,
3195          PDiag(diag::warn_dyn_class_memaccess)
3196            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
3197            << FnName << PointeeTy
3198            << OperationType
3199            << Call->getCallee()->getSourceRange());
3200      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
3201               BId != Builtin::BImemset)
3202        DiagRuntimeBehavior(
3203          Dest->getExprLoc(), Dest,
3204          PDiag(diag::warn_arc_object_memaccess)
3205            << ArgIdx << FnName << PointeeTy
3206            << Call->getCallee()->getSourceRange());
3207      else
3208        continue;
3209
3210      DiagRuntimeBehavior(
3211        Dest->getExprLoc(), Dest,
3212        PDiag(diag::note_bad_memaccess_silence)
3213          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
3214      break;
3215    }
3216  }
3217}
3218
3219// A little helper routine: ignore addition and subtraction of integer literals.
3220// This intentionally does not ignore all integer constant expressions because
3221// we don't want to remove sizeof().
3222static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
3223  Ex = Ex->IgnoreParenCasts();
3224
3225  for (;;) {
3226    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
3227    if (!BO || !BO->isAdditiveOp())
3228      break;
3229
3230    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
3231    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
3232
3233    if (isa<IntegerLiteral>(RHS))
3234      Ex = LHS;
3235    else if (isa<IntegerLiteral>(LHS))
3236      Ex = RHS;
3237    else
3238      break;
3239  }
3240
3241  return Ex;
3242}
3243
3244static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
3245                                                      ASTContext &Context) {
3246  // Only handle constant-sized or VLAs, but not flexible members.
3247  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
3248    // Only issue the FIXIT for arrays of size > 1.
3249    if (CAT->getSize().getSExtValue() <= 1)
3250      return false;
3251  } else if (!Ty->isVariableArrayType()) {
3252    return false;
3253  }
3254  return true;
3255}
3256
3257// Warn if the user has made the 'size' argument to strlcpy or strlcat
3258// be the size of the source, instead of the destination.
3259void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
3260                                    IdentifierInfo *FnName) {
3261
3262  // Don't crash if the user has the wrong number of arguments
3263  if (Call->getNumArgs() != 3)
3264    return;
3265
3266  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
3267  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
3268  const Expr *CompareWithSrc = NULL;
3269
3270  // Look for 'strlcpy(dst, x, sizeof(x))'
3271  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
3272    CompareWithSrc = Ex;
3273  else {
3274    // Look for 'strlcpy(dst, x, strlen(x))'
3275    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
3276      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
3277          && SizeCall->getNumArgs() == 1)
3278        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
3279    }
3280  }
3281
3282  if (!CompareWithSrc)
3283    return;
3284
3285  // Determine if the argument to sizeof/strlen is equal to the source
3286  // argument.  In principle there's all kinds of things you could do
3287  // here, for instance creating an == expression and evaluating it with
3288  // EvaluateAsBooleanCondition, but this uses a more direct technique:
3289  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
3290  if (!SrcArgDRE)
3291    return;
3292
3293  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
3294  if (!CompareWithSrcDRE ||
3295      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
3296    return;
3297
3298  const Expr *OriginalSizeArg = Call->getArg(2);
3299  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
3300    << OriginalSizeArg->getSourceRange() << FnName;
3301
3302  // Output a FIXIT hint if the destination is an array (rather than a
3303  // pointer to an array).  This could be enhanced to handle some
3304  // pointers if we know the actual size, like if DstArg is 'array+2'
3305  // we could say 'sizeof(array)-2'.
3306  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
3307  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
3308    return;
3309
3310  SmallString<128> sizeString;
3311  llvm::raw_svector_ostream OS(sizeString);
3312  OS << "sizeof(";
3313  DstArg->printPretty(OS, 0, getPrintingPolicy());
3314  OS << ")";
3315
3316  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
3317    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
3318                                    OS.str());
3319}
3320
3321/// Check if two expressions refer to the same declaration.
3322static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
3323  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
3324    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
3325      return D1->getDecl() == D2->getDecl();
3326  return false;
3327}
3328
3329static const Expr *getStrlenExprArg(const Expr *E) {
3330  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
3331    const FunctionDecl *FD = CE->getDirectCallee();
3332    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
3333      return 0;
3334    return CE->getArg(0)->IgnoreParenCasts();
3335  }
3336  return 0;
3337}
3338
3339// Warn on anti-patterns as the 'size' argument to strncat.
3340// The correct size argument should look like following:
3341//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
3342void Sema::CheckStrncatArguments(const CallExpr *CE,
3343                                 IdentifierInfo *FnName) {
3344  // Don't crash if the user has the wrong number of arguments.
3345  if (CE->getNumArgs() < 3)
3346    return;
3347  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
3348  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
3349  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
3350
3351  // Identify common expressions, which are wrongly used as the size argument
3352  // to strncat and may lead to buffer overflows.
3353  unsigned PatternType = 0;
3354  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
3355    // - sizeof(dst)
3356    if (referToTheSameDecl(SizeOfArg, DstArg))
3357      PatternType = 1;
3358    // - sizeof(src)
3359    else if (referToTheSameDecl(SizeOfArg, SrcArg))
3360      PatternType = 2;
3361  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
3362    if (BE->getOpcode() == BO_Sub) {
3363      const Expr *L = BE->getLHS()->IgnoreParenCasts();
3364      const Expr *R = BE->getRHS()->IgnoreParenCasts();
3365      // - sizeof(dst) - strlen(dst)
3366      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
3367          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
3368        PatternType = 1;
3369      // - sizeof(src) - (anything)
3370      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
3371        PatternType = 2;
3372    }
3373  }
3374
3375  if (PatternType == 0)
3376    return;
3377
3378  // Generate the diagnostic.
3379  SourceLocation SL = LenArg->getLocStart();
3380  SourceRange SR = LenArg->getSourceRange();
3381  SourceManager &SM  = PP.getSourceManager();
3382
3383  // If the function is defined as a builtin macro, do not show macro expansion.
3384  if (SM.isMacroArgExpansion(SL)) {
3385    SL = SM.getSpellingLoc(SL);
3386    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
3387                     SM.getSpellingLoc(SR.getEnd()));
3388  }
3389
3390  // Check if the destination is an array (rather than a pointer to an array).
3391  QualType DstTy = DstArg->getType();
3392  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
3393                                                                    Context);
3394  if (!isKnownSizeArray) {
3395    if (PatternType == 1)
3396      Diag(SL, diag::warn_strncat_wrong_size) << SR;
3397    else
3398      Diag(SL, diag::warn_strncat_src_size) << SR;
3399    return;
3400  }
3401
3402  if (PatternType == 1)
3403    Diag(SL, diag::warn_strncat_large_size) << SR;
3404  else
3405    Diag(SL, diag::warn_strncat_src_size) << SR;
3406
3407  SmallString<128> sizeString;
3408  llvm::raw_svector_ostream OS(sizeString);
3409  OS << "sizeof(";
3410  DstArg->printPretty(OS, 0, getPrintingPolicy());
3411  OS << ") - ";
3412  OS << "strlen(";
3413  DstArg->printPretty(OS, 0, getPrintingPolicy());
3414  OS << ") - 1";
3415
3416  Diag(SL, diag::note_strncat_wrong_size)
3417    << FixItHint::CreateReplacement(SR, OS.str());
3418}
3419
3420//===--- CHECK: Return Address of Stack Variable --------------------------===//
3421
3422static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3423                     Decl *ParentDecl);
3424static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3425                      Decl *ParentDecl);
3426
3427/// CheckReturnStackAddr - Check if a return statement returns the address
3428///   of a stack variable.
3429void
3430Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3431                           SourceLocation ReturnLoc) {
3432
3433  Expr *stackE = 0;
3434  SmallVector<DeclRefExpr *, 8> refVars;
3435
3436  // Perform checking for returned stack addresses, local blocks,
3437  // label addresses or references to temporaries.
3438  if (lhsType->isPointerType() ||
3439      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3440    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3441  } else if (lhsType->isReferenceType()) {
3442    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3443  }
3444
3445  if (stackE == 0)
3446    return; // Nothing suspicious was found.
3447
3448  SourceLocation diagLoc;
3449  SourceRange diagRange;
3450  if (refVars.empty()) {
3451    diagLoc = stackE->getLocStart();
3452    diagRange = stackE->getSourceRange();
3453  } else {
3454    // We followed through a reference variable. 'stackE' contains the
3455    // problematic expression but we will warn at the return statement pointing
3456    // at the reference variable. We will later display the "trail" of
3457    // reference variables using notes.
3458    diagLoc = refVars[0]->getLocStart();
3459    diagRange = refVars[0]->getSourceRange();
3460  }
3461
3462  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3463    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3464                                             : diag::warn_ret_stack_addr)
3465     << DR->getDecl()->getDeclName() << diagRange;
3466  } else if (isa<BlockExpr>(stackE)) { // local block.
3467    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3468  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3469    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3470  } else { // local temporary.
3471    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3472                                             : diag::warn_ret_local_temp_addr)
3473     << diagRange;
3474  }
3475
3476  // Display the "trail" of reference variables that we followed until we
3477  // found the problematic expression using notes.
3478  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3479    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3480    // If this var binds to another reference var, show the range of the next
3481    // var, otherwise the var binds to the problematic expression, in which case
3482    // show the range of the expression.
3483    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3484                                  : stackE->getSourceRange();
3485    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3486      << VD->getDeclName() << range;
3487  }
3488}
3489
3490/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3491///  check if the expression in a return statement evaluates to an address
3492///  to a location on the stack, a local block, an address of a label, or a
3493///  reference to local temporary. The recursion is used to traverse the
3494///  AST of the return expression, with recursion backtracking when we
3495///  encounter a subexpression that (1) clearly does not lead to one of the
3496///  above problematic expressions (2) is something we cannot determine leads to
3497///  a problematic expression based on such local checking.
3498///
3499///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3500///  the expression that they point to. Such variables are added to the
3501///  'refVars' vector so that we know what the reference variable "trail" was.
3502///
3503///  EvalAddr processes expressions that are pointers that are used as
3504///  references (and not L-values).  EvalVal handles all other values.
3505///  At the base case of the recursion is a check for the above problematic
3506///  expressions.
3507///
3508///  This implementation handles:
3509///
3510///   * pointer-to-pointer casts
3511///   * implicit conversions from array references to pointers
3512///   * taking the address of fields
3513///   * arbitrary interplay between "&" and "*" operators
3514///   * pointer arithmetic from an address of a stack variable
3515///   * taking the address of an array element where the array is on the stack
3516static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3517                      Decl *ParentDecl) {
3518  if (E->isTypeDependent())
3519      return NULL;
3520
3521  // We should only be called for evaluating pointer expressions.
3522  assert((E->getType()->isAnyPointerType() ||
3523          E->getType()->isBlockPointerType() ||
3524          E->getType()->isObjCQualifiedIdType()) &&
3525         "EvalAddr only works on pointers");
3526
3527  E = E->IgnoreParens();
3528
3529  // Our "symbolic interpreter" is just a dispatch off the currently
3530  // viewed AST node.  We then recursively traverse the AST by calling
3531  // EvalAddr and EvalVal appropriately.
3532  switch (E->getStmtClass()) {
3533  case Stmt::DeclRefExprClass: {
3534    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3535
3536    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3537      // If this is a reference variable, follow through to the expression that
3538      // it points to.
3539      if (V->hasLocalStorage() &&
3540          V->getType()->isReferenceType() && V->hasInit()) {
3541        // Add the reference variable to the "trail".
3542        refVars.push_back(DR);
3543        return EvalAddr(V->getInit(), refVars, ParentDecl);
3544      }
3545
3546    return NULL;
3547  }
3548
3549  case Stmt::UnaryOperatorClass: {
3550    // The only unary operator that make sense to handle here
3551    // is AddrOf.  All others don't make sense as pointers.
3552    UnaryOperator *U = cast<UnaryOperator>(E);
3553
3554    if (U->getOpcode() == UO_AddrOf)
3555      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3556    else
3557      return NULL;
3558  }
3559
3560  case Stmt::BinaryOperatorClass: {
3561    // Handle pointer arithmetic.  All other binary operators are not valid
3562    // in this context.
3563    BinaryOperator *B = cast<BinaryOperator>(E);
3564    BinaryOperatorKind op = B->getOpcode();
3565
3566    if (op != BO_Add && op != BO_Sub)
3567      return NULL;
3568
3569    Expr *Base = B->getLHS();
3570
3571    // Determine which argument is the real pointer base.  It could be
3572    // the RHS argument instead of the LHS.
3573    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3574
3575    assert (Base->getType()->isPointerType());
3576    return EvalAddr(Base, refVars, ParentDecl);
3577  }
3578
3579  // For conditional operators we need to see if either the LHS or RHS are
3580  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3581  case Stmt::ConditionalOperatorClass: {
3582    ConditionalOperator *C = cast<ConditionalOperator>(E);
3583
3584    // Handle the GNU extension for missing LHS.
3585    if (Expr *lhsExpr = C->getLHS()) {
3586    // In C++, we can have a throw-expression, which has 'void' type.
3587      if (!lhsExpr->getType()->isVoidType())
3588        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3589          return LHS;
3590    }
3591
3592    // In C++, we can have a throw-expression, which has 'void' type.
3593    if (C->getRHS()->getType()->isVoidType())
3594      return NULL;
3595
3596    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3597  }
3598
3599  case Stmt::BlockExprClass:
3600    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3601      return E; // local block.
3602    return NULL;
3603
3604  case Stmt::AddrLabelExprClass:
3605    return E; // address of label.
3606
3607  case Stmt::ExprWithCleanupsClass:
3608    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3609                    ParentDecl);
3610
3611  // For casts, we need to handle conversions from arrays to
3612  // pointer values, and pointer-to-pointer conversions.
3613  case Stmt::ImplicitCastExprClass:
3614  case Stmt::CStyleCastExprClass:
3615  case Stmt::CXXFunctionalCastExprClass:
3616  case Stmt::ObjCBridgedCastExprClass:
3617  case Stmt::CXXStaticCastExprClass:
3618  case Stmt::CXXDynamicCastExprClass:
3619  case Stmt::CXXConstCastExprClass:
3620  case Stmt::CXXReinterpretCastExprClass: {
3621    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3622    switch (cast<CastExpr>(E)->getCastKind()) {
3623    case CK_BitCast:
3624    case CK_LValueToRValue:
3625    case CK_NoOp:
3626    case CK_BaseToDerived:
3627    case CK_DerivedToBase:
3628    case CK_UncheckedDerivedToBase:
3629    case CK_Dynamic:
3630    case CK_CPointerToObjCPointerCast:
3631    case CK_BlockPointerToObjCPointerCast:
3632    case CK_AnyPointerToBlockPointerCast:
3633      return EvalAddr(SubExpr, refVars, ParentDecl);
3634
3635    case CK_ArrayToPointerDecay:
3636      return EvalVal(SubExpr, refVars, ParentDecl);
3637
3638    default:
3639      return 0;
3640    }
3641  }
3642
3643  case Stmt::MaterializeTemporaryExprClass:
3644    if (Expr *Result = EvalAddr(
3645                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3646                                refVars, ParentDecl))
3647      return Result;
3648
3649    return E;
3650
3651  // Everything else: we simply don't reason about them.
3652  default:
3653    return NULL;
3654  }
3655}
3656
3657
3658///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3659///   See the comments for EvalAddr for more details.
3660static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3661                     Decl *ParentDecl) {
3662do {
3663  // We should only be called for evaluating non-pointer expressions, or
3664  // expressions with a pointer type that are not used as references but instead
3665  // are l-values (e.g., DeclRefExpr with a pointer type).
3666
3667  // Our "symbolic interpreter" is just a dispatch off the currently
3668  // viewed AST node.  We then recursively traverse the AST by calling
3669  // EvalAddr and EvalVal appropriately.
3670
3671  E = E->IgnoreParens();
3672  switch (E->getStmtClass()) {
3673  case Stmt::ImplicitCastExprClass: {
3674    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3675    if (IE->getValueKind() == VK_LValue) {
3676      E = IE->getSubExpr();
3677      continue;
3678    }
3679    return NULL;
3680  }
3681
3682  case Stmt::ExprWithCleanupsClass:
3683    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3684
3685  case Stmt::DeclRefExprClass: {
3686    // When we hit a DeclRefExpr we are looking at code that refers to a
3687    // variable's name. If it's not a reference variable we check if it has
3688    // local storage within the function, and if so, return the expression.
3689    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3690
3691    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3692      // Check if it refers to itself, e.g. "int& i = i;".
3693      if (V == ParentDecl)
3694        return DR;
3695
3696      if (V->hasLocalStorage()) {
3697        if (!V->getType()->isReferenceType())
3698          return DR;
3699
3700        // Reference variable, follow through to the expression that
3701        // it points to.
3702        if (V->hasInit()) {
3703          // Add the reference variable to the "trail".
3704          refVars.push_back(DR);
3705          return EvalVal(V->getInit(), refVars, V);
3706        }
3707      }
3708    }
3709
3710    return NULL;
3711  }
3712
3713  case Stmt::UnaryOperatorClass: {
3714    // The only unary operator that make sense to handle here
3715    // is Deref.  All others don't resolve to a "name."  This includes
3716    // handling all sorts of rvalues passed to a unary operator.
3717    UnaryOperator *U = cast<UnaryOperator>(E);
3718
3719    if (U->getOpcode() == UO_Deref)
3720      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3721
3722    return NULL;
3723  }
3724
3725  case Stmt::ArraySubscriptExprClass: {
3726    // Array subscripts are potential references to data on the stack.  We
3727    // retrieve the DeclRefExpr* for the array variable if it indeed
3728    // has local storage.
3729    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3730  }
3731
3732  case Stmt::ConditionalOperatorClass: {
3733    // For conditional operators we need to see if either the LHS or RHS are
3734    // non-NULL Expr's.  If one is non-NULL, we return it.
3735    ConditionalOperator *C = cast<ConditionalOperator>(E);
3736
3737    // Handle the GNU extension for missing LHS.
3738    if (Expr *lhsExpr = C->getLHS())
3739      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3740        return LHS;
3741
3742    return EvalVal(C->getRHS(), refVars, ParentDecl);
3743  }
3744
3745  // Accesses to members are potential references to data on the stack.
3746  case Stmt::MemberExprClass: {
3747    MemberExpr *M = cast<MemberExpr>(E);
3748
3749    // Check for indirect access.  We only want direct field accesses.
3750    if (M->isArrow())
3751      return NULL;
3752
3753    // Check whether the member type is itself a reference, in which case
3754    // we're not going to refer to the member, but to what the member refers to.
3755    if (M->getMemberDecl()->getType()->isReferenceType())
3756      return NULL;
3757
3758    return EvalVal(M->getBase(), refVars, ParentDecl);
3759  }
3760
3761  case Stmt::MaterializeTemporaryExprClass:
3762    if (Expr *Result = EvalVal(
3763                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3764                               refVars, ParentDecl))
3765      return Result;
3766
3767    return E;
3768
3769  default:
3770    // Check that we don't return or take the address of a reference to a
3771    // temporary. This is only useful in C++.
3772    if (!E->isTypeDependent() && E->isRValue())
3773      return E;
3774
3775    // Everything else: we simply don't reason about them.
3776    return NULL;
3777  }
3778} while (true);
3779}
3780
3781//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3782
3783/// Check for comparisons of floating point operands using != and ==.
3784/// Issue a warning if these are no self-comparisons, as they are not likely
3785/// to do what the programmer intended.
3786void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3787  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3788  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3789
3790  // Special case: check for x == x (which is OK).
3791  // Do not emit warnings for such cases.
3792  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3793    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3794      if (DRL->getDecl() == DRR->getDecl())
3795        return;
3796
3797
3798  // Special case: check for comparisons against literals that can be exactly
3799  //  represented by APFloat.  In such cases, do not emit a warning.  This
3800  //  is a heuristic: often comparison against such literals are used to
3801  //  detect if a value in a variable has not changed.  This clearly can
3802  //  lead to false negatives.
3803  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3804    if (FLL->isExact())
3805      return;
3806  } else
3807    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
3808      if (FLR->isExact())
3809        return;
3810
3811  // Check for comparisons with builtin types.
3812  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3813    if (CL->isBuiltinCall())
3814      return;
3815
3816  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3817    if (CR->isBuiltinCall())
3818      return;
3819
3820  // Emit the diagnostic.
3821  Diag(Loc, diag::warn_floatingpoint_eq)
3822    << LHS->getSourceRange() << RHS->getSourceRange();
3823}
3824
3825//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3826//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3827
3828namespace {
3829
3830/// Structure recording the 'active' range of an integer-valued
3831/// expression.
3832struct IntRange {
3833  /// The number of bits active in the int.
3834  unsigned Width;
3835
3836  /// True if the int is known not to have negative values.
3837  bool NonNegative;
3838
3839  IntRange(unsigned Width, bool NonNegative)
3840    : Width(Width), NonNegative(NonNegative)
3841  {}
3842
3843  /// Returns the range of the bool type.
3844  static IntRange forBoolType() {
3845    return IntRange(1, true);
3846  }
3847
3848  /// Returns the range of an opaque value of the given integral type.
3849  static IntRange forValueOfType(ASTContext &C, QualType T) {
3850    return forValueOfCanonicalType(C,
3851                          T->getCanonicalTypeInternal().getTypePtr());
3852  }
3853
3854  /// Returns the range of an opaque value of a canonical integral type.
3855  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3856    assert(T->isCanonicalUnqualified());
3857
3858    if (const VectorType *VT = dyn_cast<VectorType>(T))
3859      T = VT->getElementType().getTypePtr();
3860    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3861      T = CT->getElementType().getTypePtr();
3862
3863    // For enum types, use the known bit width of the enumerators.
3864    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3865      EnumDecl *Enum = ET->getDecl();
3866      if (!Enum->isCompleteDefinition())
3867        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3868
3869      unsigned NumPositive = Enum->getNumPositiveBits();
3870      unsigned NumNegative = Enum->getNumNegativeBits();
3871
3872      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3873    }
3874
3875    const BuiltinType *BT = cast<BuiltinType>(T);
3876    assert(BT->isInteger());
3877
3878    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3879  }
3880
3881  /// Returns the "target" range of a canonical integral type, i.e.
3882  /// the range of values expressible in the type.
3883  ///
3884  /// This matches forValueOfCanonicalType except that enums have the
3885  /// full range of their type, not the range of their enumerators.
3886  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3887    assert(T->isCanonicalUnqualified());
3888
3889    if (const VectorType *VT = dyn_cast<VectorType>(T))
3890      T = VT->getElementType().getTypePtr();
3891    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3892      T = CT->getElementType().getTypePtr();
3893    if (const EnumType *ET = dyn_cast<EnumType>(T))
3894      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3895
3896    const BuiltinType *BT = cast<BuiltinType>(T);
3897    assert(BT->isInteger());
3898
3899    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3900  }
3901
3902  /// Returns the supremum of two ranges: i.e. their conservative merge.
3903  static IntRange join(IntRange L, IntRange R) {
3904    return IntRange(std::max(L.Width, R.Width),
3905                    L.NonNegative && R.NonNegative);
3906  }
3907
3908  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3909  static IntRange meet(IntRange L, IntRange R) {
3910    return IntRange(std::min(L.Width, R.Width),
3911                    L.NonNegative || R.NonNegative);
3912  }
3913};
3914
3915static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3916                              unsigned MaxWidth) {
3917  if (value.isSigned() && value.isNegative())
3918    return IntRange(value.getMinSignedBits(), false);
3919
3920  if (value.getBitWidth() > MaxWidth)
3921    value = value.trunc(MaxWidth);
3922
3923  // isNonNegative() just checks the sign bit without considering
3924  // signedness.
3925  return IntRange(value.getActiveBits(), true);
3926}
3927
3928static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3929                              unsigned MaxWidth) {
3930  if (result.isInt())
3931    return GetValueRange(C, result.getInt(), MaxWidth);
3932
3933  if (result.isVector()) {
3934    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3935    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3936      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3937      R = IntRange::join(R, El);
3938    }
3939    return R;
3940  }
3941
3942  if (result.isComplexInt()) {
3943    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3944    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3945    return IntRange::join(R, I);
3946  }
3947
3948  // This can happen with lossless casts to intptr_t of "based" lvalues.
3949  // Assume it might use arbitrary bits.
3950  // FIXME: The only reason we need to pass the type in here is to get
3951  // the sign right on this one case.  It would be nice if APValue
3952  // preserved this.
3953  assert(result.isLValue() || result.isAddrLabelDiff());
3954  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3955}
3956
3957/// Pseudo-evaluate the given integer expression, estimating the
3958/// range of values it might take.
3959///
3960/// \param MaxWidth - the width to which the value will be truncated
3961static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3962  E = E->IgnoreParens();
3963
3964  // Try a full evaluation first.
3965  Expr::EvalResult result;
3966  if (E->EvaluateAsRValue(result, C))
3967    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3968
3969  // I think we only want to look through implicit casts here; if the
3970  // user has an explicit widening cast, we should treat the value as
3971  // being of the new, wider type.
3972  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3973    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3974      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3975
3976    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3977
3978    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3979
3980    // Assume that non-integer casts can span the full range of the type.
3981    if (!isIntegerCast)
3982      return OutputTypeRange;
3983
3984    IntRange SubRange
3985      = GetExprRange(C, CE->getSubExpr(),
3986                     std::min(MaxWidth, OutputTypeRange.Width));
3987
3988    // Bail out if the subexpr's range is as wide as the cast type.
3989    if (SubRange.Width >= OutputTypeRange.Width)
3990      return OutputTypeRange;
3991
3992    // Otherwise, we take the smaller width, and we're non-negative if
3993    // either the output type or the subexpr is.
3994    return IntRange(SubRange.Width,
3995                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3996  }
3997
3998  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3999    // If we can fold the condition, just take that operand.
4000    bool CondResult;
4001    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
4002      return GetExprRange(C, CondResult ? CO->getTrueExpr()
4003                                        : CO->getFalseExpr(),
4004                          MaxWidth);
4005
4006    // Otherwise, conservatively merge.
4007    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
4008    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
4009    return IntRange::join(L, R);
4010  }
4011
4012  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4013    switch (BO->getOpcode()) {
4014
4015    // Boolean-valued operations are single-bit and positive.
4016    case BO_LAnd:
4017    case BO_LOr:
4018    case BO_LT:
4019    case BO_GT:
4020    case BO_LE:
4021    case BO_GE:
4022    case BO_EQ:
4023    case BO_NE:
4024      return IntRange::forBoolType();
4025
4026    // The type of the assignments is the type of the LHS, so the RHS
4027    // is not necessarily the same type.
4028    case BO_MulAssign:
4029    case BO_DivAssign:
4030    case BO_RemAssign:
4031    case BO_AddAssign:
4032    case BO_SubAssign:
4033    case BO_XorAssign:
4034    case BO_OrAssign:
4035      // TODO: bitfields?
4036      return IntRange::forValueOfType(C, E->getType());
4037
4038    // Simple assignments just pass through the RHS, which will have
4039    // been coerced to the LHS type.
4040    case BO_Assign:
4041      // TODO: bitfields?
4042      return GetExprRange(C, BO->getRHS(), MaxWidth);
4043
4044    // Operations with opaque sources are black-listed.
4045    case BO_PtrMemD:
4046    case BO_PtrMemI:
4047      return IntRange::forValueOfType(C, E->getType());
4048
4049    // Bitwise-and uses the *infinum* of the two source ranges.
4050    case BO_And:
4051    case BO_AndAssign:
4052      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
4053                            GetExprRange(C, BO->getRHS(), MaxWidth));
4054
4055    // Left shift gets black-listed based on a judgement call.
4056    case BO_Shl:
4057      // ...except that we want to treat '1 << (blah)' as logically
4058      // positive.  It's an important idiom.
4059      if (IntegerLiteral *I
4060            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
4061        if (I->getValue() == 1) {
4062          IntRange R = IntRange::forValueOfType(C, E->getType());
4063          return IntRange(R.Width, /*NonNegative*/ true);
4064        }
4065      }
4066      // fallthrough
4067
4068    case BO_ShlAssign:
4069      return IntRange::forValueOfType(C, E->getType());
4070
4071    // Right shift by a constant can narrow its left argument.
4072    case BO_Shr:
4073    case BO_ShrAssign: {
4074      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4075
4076      // If the shift amount is a positive constant, drop the width by
4077      // that much.
4078      llvm::APSInt shift;
4079      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
4080          shift.isNonNegative()) {
4081        unsigned zext = shift.getZExtValue();
4082        if (zext >= L.Width)
4083          L.Width = (L.NonNegative ? 0 : 1);
4084        else
4085          L.Width -= zext;
4086      }
4087
4088      return L;
4089    }
4090
4091    // Comma acts as its right operand.
4092    case BO_Comma:
4093      return GetExprRange(C, BO->getRHS(), MaxWidth);
4094
4095    // Black-list pointer subtractions.
4096    case BO_Sub:
4097      if (BO->getLHS()->getType()->isPointerType())
4098        return IntRange::forValueOfType(C, E->getType());
4099      break;
4100
4101    // The width of a division result is mostly determined by the size
4102    // of the LHS.
4103    case BO_Div: {
4104      // Don't 'pre-truncate' the operands.
4105      unsigned opWidth = C.getIntWidth(E->getType());
4106      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4107
4108      // If the divisor is constant, use that.
4109      llvm::APSInt divisor;
4110      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
4111        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
4112        if (log2 >= L.Width)
4113          L.Width = (L.NonNegative ? 0 : 1);
4114        else
4115          L.Width = std::min(L.Width - log2, MaxWidth);
4116        return L;
4117      }
4118
4119      // Otherwise, just use the LHS's width.
4120      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4121      return IntRange(L.Width, L.NonNegative && R.NonNegative);
4122    }
4123
4124    // The result of a remainder can't be larger than the result of
4125    // either side.
4126    case BO_Rem: {
4127      // Don't 'pre-truncate' the operands.
4128      unsigned opWidth = C.getIntWidth(E->getType());
4129      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
4130      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
4131
4132      IntRange meet = IntRange::meet(L, R);
4133      meet.Width = std::min(meet.Width, MaxWidth);
4134      return meet;
4135    }
4136
4137    // The default behavior is okay for these.
4138    case BO_Mul:
4139    case BO_Add:
4140    case BO_Xor:
4141    case BO_Or:
4142      break;
4143    }
4144
4145    // The default case is to treat the operation as if it were closed
4146    // on the narrowest type that encompasses both operands.
4147    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
4148    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
4149    return IntRange::join(L, R);
4150  }
4151
4152  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
4153    switch (UO->getOpcode()) {
4154    // Boolean-valued operations are white-listed.
4155    case UO_LNot:
4156      return IntRange::forBoolType();
4157
4158    // Operations with opaque sources are black-listed.
4159    case UO_Deref:
4160    case UO_AddrOf: // should be impossible
4161      return IntRange::forValueOfType(C, E->getType());
4162
4163    default:
4164      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
4165    }
4166  }
4167
4168  if (dyn_cast<OffsetOfExpr>(E)) {
4169    IntRange::forValueOfType(C, E->getType());
4170  }
4171
4172  if (FieldDecl *BitField = E->getBitField())
4173    return IntRange(BitField->getBitWidthValue(C),
4174                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
4175
4176  return IntRange::forValueOfType(C, E->getType());
4177}
4178
4179static IntRange GetExprRange(ASTContext &C, Expr *E) {
4180  return GetExprRange(C, E, C.getIntWidth(E->getType()));
4181}
4182
4183/// Checks whether the given value, which currently has the given
4184/// source semantics, has the same value when coerced through the
4185/// target semantics.
4186static bool IsSameFloatAfterCast(const llvm::APFloat &value,
4187                                 const llvm::fltSemantics &Src,
4188                                 const llvm::fltSemantics &Tgt) {
4189  llvm::APFloat truncated = value;
4190
4191  bool ignored;
4192  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
4193  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
4194
4195  return truncated.bitwiseIsEqual(value);
4196}
4197
4198/// Checks whether the given value, which currently has the given
4199/// source semantics, has the same value when coerced through the
4200/// target semantics.
4201///
4202/// The value might be a vector of floats (or a complex number).
4203static bool IsSameFloatAfterCast(const APValue &value,
4204                                 const llvm::fltSemantics &Src,
4205                                 const llvm::fltSemantics &Tgt) {
4206  if (value.isFloat())
4207    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
4208
4209  if (value.isVector()) {
4210    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
4211      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
4212        return false;
4213    return true;
4214  }
4215
4216  assert(value.isComplexFloat());
4217  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
4218          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
4219}
4220
4221static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
4222
4223static bool IsZero(Sema &S, Expr *E) {
4224  // Suppress cases where we are comparing against an enum constant.
4225  if (const DeclRefExpr *DR =
4226      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
4227    if (isa<EnumConstantDecl>(DR->getDecl()))
4228      return false;
4229
4230  // Suppress cases where the '0' value is expanded from a macro.
4231  if (E->getLocStart().isMacroID())
4232    return false;
4233
4234  llvm::APSInt Value;
4235  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
4236}
4237
4238static bool HasEnumType(Expr *E) {
4239  // Strip off implicit integral promotions.
4240  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4241    if (ICE->getCastKind() != CK_IntegralCast &&
4242        ICE->getCastKind() != CK_NoOp)
4243      break;
4244    E = ICE->getSubExpr();
4245  }
4246
4247  return E->getType()->isEnumeralType();
4248}
4249
4250static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
4251  BinaryOperatorKind op = E->getOpcode();
4252  if (E->isValueDependent())
4253    return;
4254
4255  if (op == BO_LT && IsZero(S, E->getRHS())) {
4256    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4257      << "< 0" << "false" << HasEnumType(E->getLHS())
4258      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4259  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
4260    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
4261      << ">= 0" << "true" << HasEnumType(E->getLHS())
4262      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4263  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
4264    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4265      << "0 >" << "false" << HasEnumType(E->getRHS())
4266      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4267  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
4268    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
4269      << "0 <=" << "true" << HasEnumType(E->getRHS())
4270      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
4271  }
4272}
4273
4274/// Analyze the operands of the given comparison.  Implements the
4275/// fallback case from AnalyzeComparison.
4276static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
4277  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4278  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4279}
4280
4281/// \brief Implements -Wsign-compare.
4282///
4283/// \param E the binary operator to check for warnings
4284static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
4285  // The type the comparison is being performed in.
4286  QualType T = E->getLHS()->getType();
4287  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
4288         && "comparison with mismatched types");
4289
4290  // We don't do anything special if this isn't an unsigned integral
4291  // comparison:  we're only interested in integral comparisons, and
4292  // signed comparisons only happen in cases we don't care to warn about.
4293  //
4294  // We also don't care about value-dependent expressions or expressions
4295  // whose result is a constant.
4296  if (!T->hasUnsignedIntegerRepresentation()
4297      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
4298    return AnalyzeImpConvsInComparison(S, E);
4299
4300  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
4301  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
4302
4303  // Check to see if one of the (unmodified) operands is of different
4304  // signedness.
4305  Expr *signedOperand, *unsignedOperand;
4306  if (LHS->getType()->hasSignedIntegerRepresentation()) {
4307    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
4308           "unsigned comparison between two signed integer expressions?");
4309    signedOperand = LHS;
4310    unsignedOperand = RHS;
4311  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
4312    signedOperand = RHS;
4313    unsignedOperand = LHS;
4314  } else {
4315    CheckTrivialUnsignedComparison(S, E);
4316    return AnalyzeImpConvsInComparison(S, E);
4317  }
4318
4319  // Otherwise, calculate the effective range of the signed operand.
4320  IntRange signedRange = GetExprRange(S.Context, signedOperand);
4321
4322  // Go ahead and analyze implicit conversions in the operands.  Note
4323  // that we skip the implicit conversions on both sides.
4324  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
4325  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
4326
4327  // If the signed range is non-negative, -Wsign-compare won't fire,
4328  // but we should still check for comparisons which are always true
4329  // or false.
4330  if (signedRange.NonNegative)
4331    return CheckTrivialUnsignedComparison(S, E);
4332
4333  // For (in)equality comparisons, if the unsigned operand is a
4334  // constant which cannot collide with a overflowed signed operand,
4335  // then reinterpreting the signed operand as unsigned will not
4336  // change the result of the comparison.
4337  if (E->isEqualityOp()) {
4338    unsigned comparisonWidth = S.Context.getIntWidth(T);
4339    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
4340
4341    // We should never be unable to prove that the unsigned operand is
4342    // non-negative.
4343    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
4344
4345    if (unsignedRange.Width < comparisonWidth)
4346      return;
4347  }
4348
4349  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
4350    S.PDiag(diag::warn_mixed_sign_comparison)
4351      << LHS->getType() << RHS->getType()
4352      << LHS->getSourceRange() << RHS->getSourceRange());
4353}
4354
4355/// Analyzes an attempt to assign the given value to a bitfield.
4356///
4357/// Returns true if there was something fishy about the attempt.
4358static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
4359                                      SourceLocation InitLoc) {
4360  assert(Bitfield->isBitField());
4361  if (Bitfield->isInvalidDecl())
4362    return false;
4363
4364  // White-list bool bitfields.
4365  if (Bitfield->getType()->isBooleanType())
4366    return false;
4367
4368  // Ignore value- or type-dependent expressions.
4369  if (Bitfield->getBitWidth()->isValueDependent() ||
4370      Bitfield->getBitWidth()->isTypeDependent() ||
4371      Init->isValueDependent() ||
4372      Init->isTypeDependent())
4373    return false;
4374
4375  Expr *OriginalInit = Init->IgnoreParenImpCasts();
4376
4377  llvm::APSInt Value;
4378  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
4379    return false;
4380
4381  unsigned OriginalWidth = Value.getBitWidth();
4382  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4383
4384  if (OriginalWidth <= FieldWidth)
4385    return false;
4386
4387  // Compute the value which the bitfield will contain.
4388  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4389  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4390
4391  // Check whether the stored value is equal to the original value.
4392  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4393  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
4394    return false;
4395
4396  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4397  // therefore don't strictly fit into a signed bitfield of width 1.
4398  if (FieldWidth == 1 && Value == 1)
4399    return false;
4400
4401  std::string PrettyValue = Value.toString(10);
4402  std::string PrettyTrunc = TruncatedValue.toString(10);
4403
4404  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4405    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4406    << Init->getSourceRange();
4407
4408  return true;
4409}
4410
4411/// Analyze the given simple or compound assignment for warning-worthy
4412/// operations.
4413static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4414  // Just recurse on the LHS.
4415  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4416
4417  // We want to recurse on the RHS as normal unless we're assigning to
4418  // a bitfield.
4419  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4420    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4421                                  E->getOperatorLoc())) {
4422      // Recurse, ignoring any implicit conversions on the RHS.
4423      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4424                                        E->getOperatorLoc());
4425    }
4426  }
4427
4428  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4429}
4430
4431/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4432static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4433                            SourceLocation CContext, unsigned diag,
4434                            bool pruneControlFlow = false) {
4435  if (pruneControlFlow) {
4436    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4437                          S.PDiag(diag)
4438                            << SourceType << T << E->getSourceRange()
4439                            << SourceRange(CContext));
4440    return;
4441  }
4442  S.Diag(E->getExprLoc(), diag)
4443    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4444}
4445
4446/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4447static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4448                            SourceLocation CContext, unsigned diag,
4449                            bool pruneControlFlow = false) {
4450  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4451}
4452
4453/// Diagnose an implicit cast from a literal expression. Does not warn when the
4454/// cast wouldn't lose information.
4455void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4456                                    SourceLocation CContext) {
4457  // Try to convert the literal exactly to an integer. If we can, don't warn.
4458  bool isExact = false;
4459  const llvm::APFloat &Value = FL->getValue();
4460  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4461                            T->hasUnsignedIntegerRepresentation());
4462  if (Value.convertToInteger(IntegerValue,
4463                             llvm::APFloat::rmTowardZero, &isExact)
4464      == llvm::APFloat::opOK && isExact)
4465    return;
4466
4467  SmallString<16> PrettySourceValue;
4468  Value.toString(PrettySourceValue);
4469  SmallString<16> PrettyTargetValue;
4470  if (T->isSpecificBuiltinType(BuiltinType::Bool))
4471    PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
4472  else
4473    IntegerValue.toString(PrettyTargetValue);
4474
4475  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4476    << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
4477    << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
4478}
4479
4480std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4481  if (!Range.Width) return "0";
4482
4483  llvm::APSInt ValueInRange = Value;
4484  ValueInRange.setIsSigned(!Range.NonNegative);
4485  ValueInRange = ValueInRange.trunc(Range.Width);
4486  return ValueInRange.toString(10);
4487}
4488
4489static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
4490  if (!isa<ImplicitCastExpr>(Ex))
4491    return false;
4492
4493  Expr *InnerE = Ex->IgnoreParenImpCasts();
4494  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
4495  const Type *Source =
4496    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4497  if (Target->isDependentType())
4498    return false;
4499
4500  const BuiltinType *FloatCandidateBT =
4501    dyn_cast<BuiltinType>(ToBool ? Source : Target);
4502  const Type *BoolCandidateType = ToBool ? Target : Source;
4503
4504  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
4505          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
4506}
4507
4508void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
4509                                      SourceLocation CC) {
4510  unsigned NumArgs = TheCall->getNumArgs();
4511  for (unsigned i = 0; i < NumArgs; ++i) {
4512    Expr *CurrA = TheCall->getArg(i);
4513    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
4514      continue;
4515
4516    bool IsSwapped = ((i > 0) &&
4517        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
4518    IsSwapped |= ((i < (NumArgs - 1)) &&
4519        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
4520    if (IsSwapped) {
4521      // Warn on this floating-point to bool conversion.
4522      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
4523                      CurrA->getType(), CC,
4524                      diag::warn_impcast_floating_point_to_bool);
4525    }
4526  }
4527}
4528
4529void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4530                             SourceLocation CC, bool *ICContext = 0) {
4531  if (E->isTypeDependent() || E->isValueDependent()) return;
4532
4533  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4534  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4535  if (Source == Target) return;
4536  if (Target->isDependentType()) return;
4537
4538  // If the conversion context location is invalid don't complain. We also
4539  // don't want to emit a warning if the issue occurs from the expansion of
4540  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4541  // delay this check as long as possible. Once we detect we are in that
4542  // scenario, we just return.
4543  if (CC.isInvalid())
4544    return;
4545
4546  // Diagnose implicit casts to bool.
4547  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4548    if (isa<StringLiteral>(E))
4549      // Warn on string literal to bool.  Checks for string literals in logical
4550      // expressions, for instances, assert(0 && "error here"), is prevented
4551      // by a check in AnalyzeImplicitConversions().
4552      return DiagnoseImpCast(S, E, T, CC,
4553                             diag::warn_impcast_string_literal_to_bool);
4554    if (Source->isFunctionType()) {
4555      // Warn on function to bool. Checks free functions and static member
4556      // functions. Weakly imported functions are excluded from the check,
4557      // since it's common to test their value to check whether the linker
4558      // found a definition for them.
4559      ValueDecl *D = 0;
4560      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4561        D = R->getDecl();
4562      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4563        D = M->getMemberDecl();
4564      }
4565
4566      if (D && !D->isWeak()) {
4567        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4568          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4569            << F << E->getSourceRange() << SourceRange(CC);
4570          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4571            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4572          QualType ReturnType;
4573          UnresolvedSet<4> NonTemplateOverloads;
4574          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4575          if (!ReturnType.isNull()
4576              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4577            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4578              << FixItHint::CreateInsertion(
4579                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4580          return;
4581        }
4582      }
4583    }
4584  }
4585
4586  // Strip vector types.
4587  if (isa<VectorType>(Source)) {
4588    if (!isa<VectorType>(Target)) {
4589      if (S.SourceMgr.isInSystemMacro(CC))
4590        return;
4591      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4592    }
4593
4594    // If the vector cast is cast between two vectors of the same size, it is
4595    // a bitcast, not a conversion.
4596    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4597      return;
4598
4599    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4600    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4601  }
4602
4603  // Strip complex types.
4604  if (isa<ComplexType>(Source)) {
4605    if (!isa<ComplexType>(Target)) {
4606      if (S.SourceMgr.isInSystemMacro(CC))
4607        return;
4608
4609      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4610    }
4611
4612    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4613    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4614  }
4615
4616  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4617  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4618
4619  // If the source is floating point...
4620  if (SourceBT && SourceBT->isFloatingPoint()) {
4621    // ...and the target is floating point...
4622    if (TargetBT && TargetBT->isFloatingPoint()) {
4623      // ...then warn if we're dropping FP rank.
4624
4625      // Builtin FP kinds are ordered by increasing FP rank.
4626      if (SourceBT->getKind() > TargetBT->getKind()) {
4627        // Don't warn about float constants that are precisely
4628        // representable in the target type.
4629        Expr::EvalResult result;
4630        if (E->EvaluateAsRValue(result, S.Context)) {
4631          // Value might be a float, a float vector, or a float complex.
4632          if (IsSameFloatAfterCast(result.Val,
4633                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4634                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4635            return;
4636        }
4637
4638        if (S.SourceMgr.isInSystemMacro(CC))
4639          return;
4640
4641        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4642      }
4643      return;
4644    }
4645
4646    // If the target is integral, always warn.
4647    if (TargetBT && TargetBT->isInteger()) {
4648      if (S.SourceMgr.isInSystemMacro(CC))
4649        return;
4650
4651      Expr *InnerE = E->IgnoreParenImpCasts();
4652      // We also want to warn on, e.g., "int i = -1.234"
4653      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4654        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4655          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4656
4657      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4658        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4659      } else {
4660        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4661      }
4662    }
4663
4664    // If the target is bool, warn if expr is a function or method call.
4665    if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
4666        isa<CallExpr>(E)) {
4667      // Check last argument of function call to see if it is an
4668      // implicit cast from a type matching the type the result
4669      // is being cast to.
4670      CallExpr *CEx = cast<CallExpr>(E);
4671      unsigned NumArgs = CEx->getNumArgs();
4672      if (NumArgs > 0) {
4673        Expr *LastA = CEx->getArg(NumArgs - 1);
4674        Expr *InnerE = LastA->IgnoreParenImpCasts();
4675        const Type *InnerType =
4676          S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
4677        if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
4678          // Warn on this floating-point to bool conversion
4679          DiagnoseImpCast(S, E, T, CC,
4680                          diag::warn_impcast_floating_point_to_bool);
4681        }
4682      }
4683    }
4684    return;
4685  }
4686
4687  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4688           == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
4689      && !Target->isBlockPointerType() && !Target->isMemberPointerType()) {
4690    SourceLocation Loc = E->getSourceRange().getBegin();
4691    if (Loc.isMacroID())
4692      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4693    if (!Loc.isMacroID() || CC.isMacroID())
4694      S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4695          << T << clang::SourceRange(CC)
4696          << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4697  }
4698
4699  if (!Source->isIntegerType() || !Target->isIntegerType())
4700    return;
4701
4702  // TODO: remove this early return once the false positives for constant->bool
4703  // in templates, macros, etc, are reduced or removed.
4704  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
4705    return;
4706
4707  IntRange SourceRange = GetExprRange(S.Context, E);
4708  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4709
4710  if (SourceRange.Width > TargetRange.Width) {
4711    // If the source is a constant, use a default-on diagnostic.
4712    // TODO: this should happen for bitfield stores, too.
4713    llvm::APSInt Value(32);
4714    if (E->isIntegerConstantExpr(Value, S.Context)) {
4715      if (S.SourceMgr.isInSystemMacro(CC))
4716        return;
4717
4718      std::string PrettySourceValue = Value.toString(10);
4719      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4720
4721      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4722        S.PDiag(diag::warn_impcast_integer_precision_constant)
4723            << PrettySourceValue << PrettyTargetValue
4724            << E->getType() << T << E->getSourceRange()
4725            << clang::SourceRange(CC));
4726      return;
4727    }
4728
4729    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4730    if (S.SourceMgr.isInSystemMacro(CC))
4731      return;
4732
4733    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4734      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4735                             /* pruneControlFlow */ true);
4736    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4737  }
4738
4739  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4740      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4741       SourceRange.Width == TargetRange.Width)) {
4742
4743    if (S.SourceMgr.isInSystemMacro(CC))
4744      return;
4745
4746    unsigned DiagID = diag::warn_impcast_integer_sign;
4747
4748    // Traditionally, gcc has warned about this under -Wsign-compare.
4749    // We also want to warn about it in -Wconversion.
4750    // So if -Wconversion is off, use a completely identical diagnostic
4751    // in the sign-compare group.
4752    // The conditional-checking code will
4753    if (ICContext) {
4754      DiagID = diag::warn_impcast_integer_sign_conditional;
4755      *ICContext = true;
4756    }
4757
4758    return DiagnoseImpCast(S, E, T, CC, DiagID);
4759  }
4760
4761  // Diagnose conversions between different enumeration types.
4762  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4763  // type, to give us better diagnostics.
4764  QualType SourceType = E->getType();
4765  if (!S.getLangOpts().CPlusPlus) {
4766    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4767      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4768        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4769        SourceType = S.Context.getTypeDeclType(Enum);
4770        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4771      }
4772  }
4773
4774  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4775    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4776      if ((SourceEnum->getDecl()->getIdentifier() ||
4777           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4778          (TargetEnum->getDecl()->getIdentifier() ||
4779           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4780          SourceEnum != TargetEnum) {
4781        if (S.SourceMgr.isInSystemMacro(CC))
4782          return;
4783
4784        return DiagnoseImpCast(S, E, SourceType, T, CC,
4785                               diag::warn_impcast_different_enum_types);
4786      }
4787
4788  return;
4789}
4790
4791void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4792                              SourceLocation CC, QualType T);
4793
4794void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4795                             SourceLocation CC, bool &ICContext) {
4796  E = E->IgnoreParenImpCasts();
4797
4798  if (isa<ConditionalOperator>(E))
4799    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
4800
4801  AnalyzeImplicitConversions(S, E, CC);
4802  if (E->getType() != T)
4803    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4804  return;
4805}
4806
4807void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
4808                              SourceLocation CC, QualType T) {
4809  AnalyzeImplicitConversions(S, E->getCond(), CC);
4810
4811  bool Suspicious = false;
4812  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4813  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4814
4815  // If -Wconversion would have warned about either of the candidates
4816  // for a signedness conversion to the context type...
4817  if (!Suspicious) return;
4818
4819  // ...but it's currently ignored...
4820  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4821                                 CC))
4822    return;
4823
4824  // ...then check whether it would have warned about either of the
4825  // candidates for a signedness conversion to the condition type.
4826  if (E->getType() == T) return;
4827
4828  Suspicious = false;
4829  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4830                          E->getType(), CC, &Suspicious);
4831  if (!Suspicious)
4832    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4833                            E->getType(), CC, &Suspicious);
4834}
4835
4836/// AnalyzeImplicitConversions - Find and report any interesting
4837/// implicit conversions in the given expression.  There are a couple
4838/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4839void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4840  QualType T = OrigE->getType();
4841  Expr *E = OrigE->IgnoreParenImpCasts();
4842
4843  if (E->isTypeDependent() || E->isValueDependent())
4844    return;
4845
4846  // For conditional operators, we analyze the arguments as if they
4847  // were being fed directly into the output.
4848  if (isa<ConditionalOperator>(E)) {
4849    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4850    CheckConditionalOperator(S, CO, CC, T);
4851    return;
4852  }
4853
4854  // Check implicit argument conversions for function calls.
4855  if (CallExpr *Call = dyn_cast<CallExpr>(E))
4856    CheckImplicitArgumentConversions(S, Call, CC);
4857
4858  // Go ahead and check any implicit conversions we might have skipped.
4859  // The non-canonical typecheck is just an optimization;
4860  // CheckImplicitConversion will filter out dead implicit conversions.
4861  if (E->getType() != T)
4862    CheckImplicitConversion(S, E, T, CC);
4863
4864  // Now continue drilling into this expression.
4865
4866  // Skip past explicit casts.
4867  if (isa<ExplicitCastExpr>(E)) {
4868    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4869    return AnalyzeImplicitConversions(S, E, CC);
4870  }
4871
4872  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4873    // Do a somewhat different check with comparison operators.
4874    if (BO->isComparisonOp())
4875      return AnalyzeComparison(S, BO);
4876
4877    // And with simple assignments.
4878    if (BO->getOpcode() == BO_Assign)
4879      return AnalyzeAssignment(S, BO);
4880  }
4881
4882  // These break the otherwise-useful invariant below.  Fortunately,
4883  // we don't really need to recurse into them, because any internal
4884  // expressions should have been analyzed already when they were
4885  // built into statements.
4886  if (isa<StmtExpr>(E)) return;
4887
4888  // Don't descend into unevaluated contexts.
4889  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4890
4891  // Now just recurse over the expression's children.
4892  CC = E->getExprLoc();
4893  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4894  bool IsLogicalOperator = BO && BO->isLogicalOp();
4895  for (Stmt::child_range I = E->children(); I; ++I) {
4896    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4897    if (!ChildExpr)
4898      continue;
4899
4900    if (IsLogicalOperator &&
4901        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4902      // Ignore checking string literals that are in logical operators.
4903      continue;
4904    AnalyzeImplicitConversions(S, ChildExpr, CC);
4905  }
4906}
4907
4908} // end anonymous namespace
4909
4910/// Diagnoses "dangerous" implicit conversions within the given
4911/// expression (which is a full expression).  Implements -Wconversion
4912/// and -Wsign-compare.
4913///
4914/// \param CC the "context" location of the implicit conversion, i.e.
4915///   the most location of the syntactic entity requiring the implicit
4916///   conversion
4917void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4918  // Don't diagnose in unevaluated contexts.
4919  if (isUnevaluatedContext())
4920    return;
4921
4922  // Don't diagnose for value- or type-dependent expressions.
4923  if (E->isTypeDependent() || E->isValueDependent())
4924    return;
4925
4926  // Check for array bounds violations in cases where the check isn't triggered
4927  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4928  // ArraySubscriptExpr is on the RHS of a variable initialization.
4929  CheckArrayAccess(E);
4930
4931  // This is not the right CC for (e.g.) a variable initialization.
4932  AnalyzeImplicitConversions(*this, E, CC);
4933}
4934
4935void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4936                                       FieldDecl *BitField,
4937                                       Expr *Init) {
4938  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4939}
4940
4941/// CheckParmsForFunctionDef - Check that the parameters of the given
4942/// function are appropriate for the definition of a function. This
4943/// takes care of any checks that cannot be performed on the
4944/// declaration itself, e.g., that the types of each of the function
4945/// parameters are complete.
4946bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4947                                    bool CheckParameterNames) {
4948  bool HasInvalidParm = false;
4949  for (; P != PEnd; ++P) {
4950    ParmVarDecl *Param = *P;
4951
4952    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4953    // function declarator that is part of a function definition of
4954    // that function shall not have incomplete type.
4955    //
4956    // This is also C++ [dcl.fct]p6.
4957    if (!Param->isInvalidDecl() &&
4958        RequireCompleteType(Param->getLocation(), Param->getType(),
4959                            diag::err_typecheck_decl_incomplete_type)) {
4960      Param->setInvalidDecl();
4961      HasInvalidParm = true;
4962    }
4963
4964    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4965    // declaration of each parameter shall include an identifier.
4966    if (CheckParameterNames &&
4967        Param->getIdentifier() == 0 &&
4968        !Param->isImplicit() &&
4969        !getLangOpts().CPlusPlus)
4970      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4971
4972    // C99 6.7.5.3p12:
4973    //   If the function declarator is not part of a definition of that
4974    //   function, parameters may have incomplete type and may use the [*]
4975    //   notation in their sequences of declarator specifiers to specify
4976    //   variable length array types.
4977    QualType PType = Param->getOriginalType();
4978    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4979      if (AT->getSizeModifier() == ArrayType::Star) {
4980        // FIXME: This diagnosic should point the '[*]' if source-location
4981        // information is added for it.
4982        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4983      }
4984    }
4985  }
4986
4987  return HasInvalidParm;
4988}
4989
4990/// CheckCastAlign - Implements -Wcast-align, which warns when a
4991/// pointer cast increases the alignment requirements.
4992void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4993  // This is actually a lot of work to potentially be doing on every
4994  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4995  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4996                                          TRange.getBegin())
4997        == DiagnosticsEngine::Ignored)
4998    return;
4999
5000  // Ignore dependent types.
5001  if (T->isDependentType() || Op->getType()->isDependentType())
5002    return;
5003
5004  // Require that the destination be a pointer type.
5005  const PointerType *DestPtr = T->getAs<PointerType>();
5006  if (!DestPtr) return;
5007
5008  // If the destination has alignment 1, we're done.
5009  QualType DestPointee = DestPtr->getPointeeType();
5010  if (DestPointee->isIncompleteType()) return;
5011  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
5012  if (DestAlign.isOne()) return;
5013
5014  // Require that the source be a pointer type.
5015  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
5016  if (!SrcPtr) return;
5017  QualType SrcPointee = SrcPtr->getPointeeType();
5018
5019  // Whitelist casts from cv void*.  We already implicitly
5020  // whitelisted casts to cv void*, since they have alignment 1.
5021  // Also whitelist casts involving incomplete types, which implicitly
5022  // includes 'void'.
5023  if (SrcPointee->isIncompleteType()) return;
5024
5025  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
5026  if (SrcAlign >= DestAlign) return;
5027
5028  Diag(TRange.getBegin(), diag::warn_cast_align)
5029    << Op->getType() << T
5030    << static_cast<unsigned>(SrcAlign.getQuantity())
5031    << static_cast<unsigned>(DestAlign.getQuantity())
5032    << TRange << Op->getSourceRange();
5033}
5034
5035static const Type* getElementType(const Expr *BaseExpr) {
5036  const Type* EltType = BaseExpr->getType().getTypePtr();
5037  if (EltType->isAnyPointerType())
5038    return EltType->getPointeeType().getTypePtr();
5039  else if (EltType->isArrayType())
5040    return EltType->getBaseElementTypeUnsafe();
5041  return EltType;
5042}
5043
5044/// \brief Check whether this array fits the idiom of a size-one tail padded
5045/// array member of a struct.
5046///
5047/// We avoid emitting out-of-bounds access warnings for such arrays as they are
5048/// commonly used to emulate flexible arrays in C89 code.
5049static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
5050                                    const NamedDecl *ND) {
5051  if (Size != 1 || !ND) return false;
5052
5053  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
5054  if (!FD) return false;
5055
5056  // Don't consider sizes resulting from macro expansions or template argument
5057  // substitution to form C89 tail-padded arrays.
5058
5059  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
5060  while (TInfo) {
5061    TypeLoc TL = TInfo->getTypeLoc();
5062    // Look through typedefs.
5063    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
5064    if (TTL) {
5065      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
5066      TInfo = TDL->getTypeSourceInfo();
5067      continue;
5068    }
5069    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
5070    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
5071    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
5072      return false;
5073    break;
5074  }
5075
5076  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
5077  if (!RD) return false;
5078  if (RD->isUnion()) return false;
5079  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5080    if (!CRD->isStandardLayout()) return false;
5081  }
5082
5083  // See if this is the last field decl in the record.
5084  const Decl *D = FD;
5085  while ((D = D->getNextDeclInContext()))
5086    if (isa<FieldDecl>(D))
5087      return false;
5088  return true;
5089}
5090
5091void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
5092                            const ArraySubscriptExpr *ASE,
5093                            bool AllowOnePastEnd, bool IndexNegated) {
5094  IndexExpr = IndexExpr->IgnoreParenImpCasts();
5095  if (IndexExpr->isValueDependent())
5096    return;
5097
5098  const Type *EffectiveType = getElementType(BaseExpr);
5099  BaseExpr = BaseExpr->IgnoreParenCasts();
5100  const ConstantArrayType *ArrayTy =
5101    Context.getAsConstantArrayType(BaseExpr->getType());
5102  if (!ArrayTy)
5103    return;
5104
5105  llvm::APSInt index;
5106  if (!IndexExpr->EvaluateAsInt(index, Context))
5107    return;
5108  if (IndexNegated)
5109    index = -index;
5110
5111  const NamedDecl *ND = NULL;
5112  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5113    ND = dyn_cast<NamedDecl>(DRE->getDecl());
5114  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5115    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5116
5117  if (index.isUnsigned() || !index.isNegative()) {
5118    llvm::APInt size = ArrayTy->getSize();
5119    if (!size.isStrictlyPositive())
5120      return;
5121
5122    const Type* BaseType = getElementType(BaseExpr);
5123    if (BaseType != EffectiveType) {
5124      // Make sure we're comparing apples to apples when comparing index to size
5125      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
5126      uint64_t array_typesize = Context.getTypeSize(BaseType);
5127      // Handle ptrarith_typesize being zero, such as when casting to void*
5128      if (!ptrarith_typesize) ptrarith_typesize = 1;
5129      if (ptrarith_typesize != array_typesize) {
5130        // There's a cast to a different size type involved
5131        uint64_t ratio = array_typesize / ptrarith_typesize;
5132        // TODO: Be smarter about handling cases where array_typesize is not a
5133        // multiple of ptrarith_typesize
5134        if (ptrarith_typesize * ratio == array_typesize)
5135          size *= llvm::APInt(size.getBitWidth(), ratio);
5136      }
5137    }
5138
5139    if (size.getBitWidth() > index.getBitWidth())
5140      index = index.zext(size.getBitWidth());
5141    else if (size.getBitWidth() < index.getBitWidth())
5142      size = size.zext(index.getBitWidth());
5143
5144    // For array subscripting the index must be less than size, but for pointer
5145    // arithmetic also allow the index (offset) to be equal to size since
5146    // computing the next address after the end of the array is legal and
5147    // commonly done e.g. in C++ iterators and range-based for loops.
5148    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
5149      return;
5150
5151    // Also don't warn for arrays of size 1 which are members of some
5152    // structure. These are often used to approximate flexible arrays in C89
5153    // code.
5154    if (IsTailPaddedMemberArray(*this, size, ND))
5155      return;
5156
5157    // Suppress the warning if the subscript expression (as identified by the
5158    // ']' location) and the index expression are both from macro expansions
5159    // within a system header.
5160    if (ASE) {
5161      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
5162          ASE->getRBracketLoc());
5163      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
5164        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
5165            IndexExpr->getLocStart());
5166        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
5167          return;
5168      }
5169    }
5170
5171    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
5172    if (ASE)
5173      DiagID = diag::warn_array_index_exceeds_bounds;
5174
5175    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5176                        PDiag(DiagID) << index.toString(10, true)
5177                          << size.toString(10, true)
5178                          << (unsigned)size.getLimitedValue(~0U)
5179                          << IndexExpr->getSourceRange());
5180  } else {
5181    unsigned DiagID = diag::warn_array_index_precedes_bounds;
5182    if (!ASE) {
5183      DiagID = diag::warn_ptr_arith_precedes_bounds;
5184      if (index.isNegative()) index = -index;
5185    }
5186
5187    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
5188                        PDiag(DiagID) << index.toString(10, true)
5189                          << IndexExpr->getSourceRange());
5190  }
5191
5192  if (!ND) {
5193    // Try harder to find a NamedDecl to point at in the note.
5194    while (const ArraySubscriptExpr *ASE =
5195           dyn_cast<ArraySubscriptExpr>(BaseExpr))
5196      BaseExpr = ASE->getBase()->IgnoreParenCasts();
5197    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
5198      ND = dyn_cast<NamedDecl>(DRE->getDecl());
5199    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
5200      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
5201  }
5202
5203  if (ND)
5204    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
5205                        PDiag(diag::note_array_index_out_of_bounds)
5206                          << ND->getDeclName());
5207}
5208
5209void Sema::CheckArrayAccess(const Expr *expr) {
5210  int AllowOnePastEnd = 0;
5211  while (expr) {
5212    expr = expr->IgnoreParenImpCasts();
5213    switch (expr->getStmtClass()) {
5214      case Stmt::ArraySubscriptExprClass: {
5215        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
5216        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
5217                         AllowOnePastEnd > 0);
5218        return;
5219      }
5220      case Stmt::UnaryOperatorClass: {
5221        // Only unwrap the * and & unary operators
5222        const UnaryOperator *UO = cast<UnaryOperator>(expr);
5223        expr = UO->getSubExpr();
5224        switch (UO->getOpcode()) {
5225          case UO_AddrOf:
5226            AllowOnePastEnd++;
5227            break;
5228          case UO_Deref:
5229            AllowOnePastEnd--;
5230            break;
5231          default:
5232            return;
5233        }
5234        break;
5235      }
5236      case Stmt::ConditionalOperatorClass: {
5237        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
5238        if (const Expr *lhs = cond->getLHS())
5239          CheckArrayAccess(lhs);
5240        if (const Expr *rhs = cond->getRHS())
5241          CheckArrayAccess(rhs);
5242        return;
5243      }
5244      default:
5245        return;
5246    }
5247  }
5248}
5249
5250//===--- CHECK: Objective-C retain cycles ----------------------------------//
5251
5252namespace {
5253  struct RetainCycleOwner {
5254    RetainCycleOwner() : Variable(0), Indirect(false) {}
5255    VarDecl *Variable;
5256    SourceRange Range;
5257    SourceLocation Loc;
5258    bool Indirect;
5259
5260    void setLocsFrom(Expr *e) {
5261      Loc = e->getExprLoc();
5262      Range = e->getSourceRange();
5263    }
5264  };
5265}
5266
5267/// Consider whether capturing the given variable can possibly lead to
5268/// a retain cycle.
5269static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
5270  // In ARC, it's captured strongly iff the variable has __strong
5271  // lifetime.  In MRR, it's captured strongly if the variable is
5272  // __block and has an appropriate type.
5273  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5274    return false;
5275
5276  owner.Variable = var;
5277  owner.setLocsFrom(ref);
5278  return true;
5279}
5280
5281static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
5282  while (true) {
5283    e = e->IgnoreParens();
5284    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
5285      switch (cast->getCastKind()) {
5286      case CK_BitCast:
5287      case CK_LValueBitCast:
5288      case CK_LValueToRValue:
5289      case CK_ARCReclaimReturnedObject:
5290        e = cast->getSubExpr();
5291        continue;
5292
5293      default:
5294        return false;
5295      }
5296    }
5297
5298    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
5299      ObjCIvarDecl *ivar = ref->getDecl();
5300      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
5301        return false;
5302
5303      // Try to find a retain cycle in the base.
5304      if (!findRetainCycleOwner(S, ref->getBase(), owner))
5305        return false;
5306
5307      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
5308      owner.Indirect = true;
5309      return true;
5310    }
5311
5312    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
5313      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
5314      if (!var) return false;
5315      return considerVariable(var, ref, owner);
5316    }
5317
5318    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
5319      if (member->isArrow()) return false;
5320
5321      // Don't count this as an indirect ownership.
5322      e = member->getBase();
5323      continue;
5324    }
5325
5326    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
5327      // Only pay attention to pseudo-objects on property references.
5328      ObjCPropertyRefExpr *pre
5329        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
5330                                              ->IgnoreParens());
5331      if (!pre) return false;
5332      if (pre->isImplicitProperty()) return false;
5333      ObjCPropertyDecl *property = pre->getExplicitProperty();
5334      if (!property->isRetaining() &&
5335          !(property->getPropertyIvarDecl() &&
5336            property->getPropertyIvarDecl()->getType()
5337              .getObjCLifetime() == Qualifiers::OCL_Strong))
5338          return false;
5339
5340      owner.Indirect = true;
5341      if (pre->isSuperReceiver()) {
5342        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
5343        if (!owner.Variable)
5344          return false;
5345        owner.Loc = pre->getLocation();
5346        owner.Range = pre->getSourceRange();
5347        return true;
5348      }
5349      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
5350                              ->getSourceExpr());
5351      continue;
5352    }
5353
5354    // Array ivars?
5355
5356    return false;
5357  }
5358}
5359
5360namespace {
5361  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
5362    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
5363      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
5364        Variable(variable), Capturer(0) {}
5365
5366    VarDecl *Variable;
5367    Expr *Capturer;
5368
5369    void VisitDeclRefExpr(DeclRefExpr *ref) {
5370      if (ref->getDecl() == Variable && !Capturer)
5371        Capturer = ref;
5372    }
5373
5374    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
5375      if (Capturer) return;
5376      Visit(ref->getBase());
5377      if (Capturer && ref->isFreeIvar())
5378        Capturer = ref;
5379    }
5380
5381    void VisitBlockExpr(BlockExpr *block) {
5382      // Look inside nested blocks
5383      if (block->getBlockDecl()->capturesVariable(Variable))
5384        Visit(block->getBlockDecl()->getBody());
5385    }
5386
5387    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
5388      if (Capturer) return;
5389      if (OVE->getSourceExpr())
5390        Visit(OVE->getSourceExpr());
5391    }
5392  };
5393}
5394
5395/// Check whether the given argument is a block which captures a
5396/// variable.
5397static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
5398  assert(owner.Variable && owner.Loc.isValid());
5399
5400  e = e->IgnoreParenCasts();
5401  BlockExpr *block = dyn_cast<BlockExpr>(e);
5402  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
5403    return 0;
5404
5405  FindCaptureVisitor visitor(S.Context, owner.Variable);
5406  visitor.Visit(block->getBlockDecl()->getBody());
5407  return visitor.Capturer;
5408}
5409
5410static void diagnoseRetainCycle(Sema &S, Expr *capturer,
5411                                RetainCycleOwner &owner) {
5412  assert(capturer);
5413  assert(owner.Variable && owner.Loc.isValid());
5414
5415  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
5416    << owner.Variable << capturer->getSourceRange();
5417  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
5418    << owner.Indirect << owner.Range;
5419}
5420
5421/// Check for a keyword selector that starts with the word 'add' or
5422/// 'set'.
5423static bool isSetterLikeSelector(Selector sel) {
5424  if (sel.isUnarySelector()) return false;
5425
5426  StringRef str = sel.getNameForSlot(0);
5427  while (!str.empty() && str.front() == '_') str = str.substr(1);
5428  if (str.startswith("set"))
5429    str = str.substr(3);
5430  else if (str.startswith("add")) {
5431    // Specially whitelist 'addOperationWithBlock:'.
5432    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
5433      return false;
5434    str = str.substr(3);
5435  }
5436  else
5437    return false;
5438
5439  if (str.empty()) return true;
5440  return !islower(str.front());
5441}
5442
5443/// Check a message send to see if it's likely to cause a retain cycle.
5444void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
5445  // Only check instance methods whose selector looks like a setter.
5446  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
5447    return;
5448
5449  // Try to find a variable that the receiver is strongly owned by.
5450  RetainCycleOwner owner;
5451  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
5452    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
5453      return;
5454  } else {
5455    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
5456    owner.Variable = getCurMethodDecl()->getSelfDecl();
5457    owner.Loc = msg->getSuperLoc();
5458    owner.Range = msg->getSuperLoc();
5459  }
5460
5461  // Check whether the receiver is captured by any of the arguments.
5462  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
5463    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
5464      return diagnoseRetainCycle(*this, capturer, owner);
5465}
5466
5467/// Check a property assign to see if it's likely to cause a retain cycle.
5468void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5469  RetainCycleOwner owner;
5470  if (!findRetainCycleOwner(*this, receiver, owner))
5471    return;
5472
5473  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5474    diagnoseRetainCycle(*this, capturer, owner);
5475}
5476
5477bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5478                              QualType LHS, Expr *RHS) {
5479  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5480  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5481    return false;
5482  // strip off any implicit cast added to get to the one arc-specific
5483  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5484    if (cast->getCastKind() == CK_ARCConsumeObject) {
5485      Diag(Loc, diag::warn_arc_retained_assign)
5486        << (LT == Qualifiers::OCL_ExplicitNone) << 1
5487        << RHS->getSourceRange();
5488      return true;
5489    }
5490    RHS = cast->getSubExpr();
5491  }
5492  return false;
5493}
5494
5495void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5496                              Expr *LHS, Expr *RHS) {
5497  QualType LHSType;
5498  // PropertyRef on LHS type need be directly obtained from
5499  // its declaration as it has a PsuedoType.
5500  ObjCPropertyRefExpr *PRE
5501    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5502  if (PRE && !PRE->isImplicitProperty()) {
5503    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5504    if (PD)
5505      LHSType = PD->getType();
5506  }
5507
5508  if (LHSType.isNull())
5509    LHSType = LHS->getType();
5510  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5511    return;
5512  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5513  // FIXME. Check for other life times.
5514  if (LT != Qualifiers::OCL_None)
5515    return;
5516
5517  if (PRE) {
5518    if (PRE->isImplicitProperty())
5519      return;
5520    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5521    if (!PD)
5522      return;
5523
5524    unsigned Attributes = PD->getPropertyAttributes();
5525    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5526      // when 'assign' attribute was not explicitly specified
5527      // by user, ignore it and rely on property type itself
5528      // for lifetime info.
5529      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5530      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5531          LHSType->isObjCRetainableType())
5532        return;
5533
5534      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5535        if (cast->getCastKind() == CK_ARCConsumeObject) {
5536          Diag(Loc, diag::warn_arc_retained_property_assign)
5537          << RHS->getSourceRange();
5538          return;
5539        }
5540        RHS = cast->getSubExpr();
5541      }
5542    }
5543    else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
5544      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5545        if (cast->getCastKind() == CK_ARCConsumeObject) {
5546          Diag(Loc, diag::warn_arc_retained_assign)
5547          << 0 << 0<< RHS->getSourceRange();
5548          return;
5549        }
5550        RHS = cast->getSubExpr();
5551      }
5552    }
5553  }
5554}
5555
5556//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5557
5558namespace {
5559bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5560                                 SourceLocation StmtLoc,
5561                                 const NullStmt *Body) {
5562  // Do not warn if the body is a macro that expands to nothing, e.g:
5563  //
5564  // #define CALL(x)
5565  // if (condition)
5566  //   CALL(0);
5567  //
5568  if (Body->hasLeadingEmptyMacro())
5569    return false;
5570
5571  // Get line numbers of statement and body.
5572  bool StmtLineInvalid;
5573  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5574                                                      &StmtLineInvalid);
5575  if (StmtLineInvalid)
5576    return false;
5577
5578  bool BodyLineInvalid;
5579  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5580                                                      &BodyLineInvalid);
5581  if (BodyLineInvalid)
5582    return false;
5583
5584  // Warn if null statement and body are on the same line.
5585  if (StmtLine != BodyLine)
5586    return false;
5587
5588  return true;
5589}
5590} // Unnamed namespace
5591
5592void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5593                                 const Stmt *Body,
5594                                 unsigned DiagID) {
5595  // Since this is a syntactic check, don't emit diagnostic for template
5596  // instantiations, this just adds noise.
5597  if (CurrentInstantiationScope)
5598    return;
5599
5600  // The body should be a null statement.
5601  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5602  if (!NBody)
5603    return;
5604
5605  // Do the usual checks.
5606  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5607    return;
5608
5609  Diag(NBody->getSemiLoc(), DiagID);
5610  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5611}
5612
5613void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5614                                 const Stmt *PossibleBody) {
5615  assert(!CurrentInstantiationScope); // Ensured by caller
5616
5617  SourceLocation StmtLoc;
5618  const Stmt *Body;
5619  unsigned DiagID;
5620  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5621    StmtLoc = FS->getRParenLoc();
5622    Body = FS->getBody();
5623    DiagID = diag::warn_empty_for_body;
5624  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5625    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5626    Body = WS->getBody();
5627    DiagID = diag::warn_empty_while_body;
5628  } else
5629    return; // Neither `for' nor `while'.
5630
5631  // The body should be a null statement.
5632  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5633  if (!NBody)
5634    return;
5635
5636  // Skip expensive checks if diagnostic is disabled.
5637  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5638          DiagnosticsEngine::Ignored)
5639    return;
5640
5641  // Do the usual checks.
5642  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5643    return;
5644
5645  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5646  // noise level low, emit diagnostics only if for/while is followed by a
5647  // CompoundStmt, e.g.:
5648  //    for (int i = 0; i < n; i++);
5649  //    {
5650  //      a(i);
5651  //    }
5652  // or if for/while is followed by a statement with more indentation
5653  // than for/while itself:
5654  //    for (int i = 0; i < n; i++);
5655  //      a(i);
5656  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5657  if (!ProbableTypo) {
5658    bool BodyColInvalid;
5659    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5660                             PossibleBody->getLocStart(),
5661                             &BodyColInvalid);
5662    if (BodyColInvalid)
5663      return;
5664
5665    bool StmtColInvalid;
5666    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5667                             S->getLocStart(),
5668                             &StmtColInvalid);
5669    if (StmtColInvalid)
5670      return;
5671
5672    if (BodyCol > StmtCol)
5673      ProbableTypo = true;
5674  }
5675
5676  if (ProbableTypo) {
5677    Diag(NBody->getSemiLoc(), DiagID);
5678    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5679  }
5680}
5681
5682//===--- Layout compatibility ----------------------------------------------//
5683
5684namespace {
5685
5686bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
5687
5688/// \brief Check if two enumeration types are layout-compatible.
5689bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
5690  // C++11 [dcl.enum] p8:
5691  // Two enumeration types are layout-compatible if they have the same
5692  // underlying type.
5693  return ED1->isComplete() && ED2->isComplete() &&
5694         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
5695}
5696
5697/// \brief Check if two fields are layout-compatible.
5698bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
5699  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
5700    return false;
5701
5702  if (Field1->isBitField() != Field2->isBitField())
5703    return false;
5704
5705  if (Field1->isBitField()) {
5706    // Make sure that the bit-fields are the same length.
5707    unsigned Bits1 = Field1->getBitWidthValue(C);
5708    unsigned Bits2 = Field2->getBitWidthValue(C);
5709
5710    if (Bits1 != Bits2)
5711      return false;
5712  }
5713
5714  return true;
5715}
5716
5717/// \brief Check if two standard-layout structs are layout-compatible.
5718/// (C++11 [class.mem] p17)
5719bool isLayoutCompatibleStruct(ASTContext &C,
5720                              RecordDecl *RD1,
5721                              RecordDecl *RD2) {
5722  // If both records are C++ classes, check that base classes match.
5723  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
5724    // If one of records is a CXXRecordDecl we are in C++ mode,
5725    // thus the other one is a CXXRecordDecl, too.
5726    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
5727    // Check number of base classes.
5728    if (D1CXX->getNumBases() != D2CXX->getNumBases())
5729      return false;
5730
5731    // Check the base classes.
5732    for (CXXRecordDecl::base_class_const_iterator
5733               Base1 = D1CXX->bases_begin(),
5734           BaseEnd1 = D1CXX->bases_end(),
5735              Base2 = D2CXX->bases_begin();
5736         Base1 != BaseEnd1;
5737         ++Base1, ++Base2) {
5738      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
5739        return false;
5740    }
5741  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
5742    // If only RD2 is a C++ class, it should have zero base classes.
5743    if (D2CXX->getNumBases() > 0)
5744      return false;
5745  }
5746
5747  // Check the fields.
5748  RecordDecl::field_iterator Field2 = RD2->field_begin(),
5749                             Field2End = RD2->field_end(),
5750                             Field1 = RD1->field_begin(),
5751                             Field1End = RD1->field_end();
5752  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
5753    if (!isLayoutCompatible(C, *Field1, *Field2))
5754      return false;
5755  }
5756  if (Field1 != Field1End || Field2 != Field2End)
5757    return false;
5758
5759  return true;
5760}
5761
5762/// \brief Check if two standard-layout unions are layout-compatible.
5763/// (C++11 [class.mem] p18)
5764bool isLayoutCompatibleUnion(ASTContext &C,
5765                             RecordDecl *RD1,
5766                             RecordDecl *RD2) {
5767  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
5768  for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
5769                                  Field2End = RD2->field_end();
5770       Field2 != Field2End; ++Field2) {
5771    UnmatchedFields.insert(*Field2);
5772  }
5773
5774  for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
5775                                  Field1End = RD1->field_end();
5776       Field1 != Field1End; ++Field1) {
5777    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
5778        I = UnmatchedFields.begin(),
5779        E = UnmatchedFields.end();
5780
5781    for ( ; I != E; ++I) {
5782      if (isLayoutCompatible(C, *Field1, *I)) {
5783        bool Result = UnmatchedFields.erase(*I);
5784        (void) Result;
5785        assert(Result);
5786        break;
5787      }
5788    }
5789    if (I == E)
5790      return false;
5791  }
5792
5793  return UnmatchedFields.empty();
5794}
5795
5796bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
5797  if (RD1->isUnion() != RD2->isUnion())
5798    return false;
5799
5800  if (RD1->isUnion())
5801    return isLayoutCompatibleUnion(C, RD1, RD2);
5802  else
5803    return isLayoutCompatibleStruct(C, RD1, RD2);
5804}
5805
5806/// \brief Check if two types are layout-compatible in C++11 sense.
5807bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
5808  if (T1.isNull() || T2.isNull())
5809    return false;
5810
5811  // C++11 [basic.types] p11:
5812  // If two types T1 and T2 are the same type, then T1 and T2 are
5813  // layout-compatible types.
5814  if (C.hasSameType(T1, T2))
5815    return true;
5816
5817  T1 = T1.getCanonicalType().getUnqualifiedType();
5818  T2 = T2.getCanonicalType().getUnqualifiedType();
5819
5820  const Type::TypeClass TC1 = T1->getTypeClass();
5821  const Type::TypeClass TC2 = T2->getTypeClass();
5822
5823  if (TC1 != TC2)
5824    return false;
5825
5826  if (TC1 == Type::Enum) {
5827    return isLayoutCompatible(C,
5828                              cast<EnumType>(T1)->getDecl(),
5829                              cast<EnumType>(T2)->getDecl());
5830  } else if (TC1 == Type::Record) {
5831    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
5832      return false;
5833
5834    return isLayoutCompatible(C,
5835                              cast<RecordType>(T1)->getDecl(),
5836                              cast<RecordType>(T2)->getDecl());
5837  }
5838
5839  return false;
5840}
5841}
5842
5843//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
5844
5845namespace {
5846/// \brief Given a type tag expression find the type tag itself.
5847///
5848/// \param TypeExpr Type tag expression, as it appears in user's code.
5849///
5850/// \param VD Declaration of an identifier that appears in a type tag.
5851///
5852/// \param MagicValue Type tag magic value.
5853bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
5854                     const ValueDecl **VD, uint64_t *MagicValue) {
5855  while(true) {
5856    if (!TypeExpr)
5857      return false;
5858
5859    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
5860
5861    switch (TypeExpr->getStmtClass()) {
5862    case Stmt::UnaryOperatorClass: {
5863      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
5864      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
5865        TypeExpr = UO->getSubExpr();
5866        continue;
5867      }
5868      return false;
5869    }
5870
5871    case Stmt::DeclRefExprClass: {
5872      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
5873      *VD = DRE->getDecl();
5874      return true;
5875    }
5876
5877    case Stmt::IntegerLiteralClass: {
5878      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
5879      llvm::APInt MagicValueAPInt = IL->getValue();
5880      if (MagicValueAPInt.getActiveBits() <= 64) {
5881        *MagicValue = MagicValueAPInt.getZExtValue();
5882        return true;
5883      } else
5884        return false;
5885    }
5886
5887    case Stmt::BinaryConditionalOperatorClass:
5888    case Stmt::ConditionalOperatorClass: {
5889      const AbstractConditionalOperator *ACO =
5890          cast<AbstractConditionalOperator>(TypeExpr);
5891      bool Result;
5892      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
5893        if (Result)
5894          TypeExpr = ACO->getTrueExpr();
5895        else
5896          TypeExpr = ACO->getFalseExpr();
5897        continue;
5898      }
5899      return false;
5900    }
5901
5902    case Stmt::BinaryOperatorClass: {
5903      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
5904      if (BO->getOpcode() == BO_Comma) {
5905        TypeExpr = BO->getRHS();
5906        continue;
5907      }
5908      return false;
5909    }
5910
5911    default:
5912      return false;
5913    }
5914  }
5915}
5916
5917/// \brief Retrieve the C type corresponding to type tag TypeExpr.
5918///
5919/// \param TypeExpr Expression that specifies a type tag.
5920///
5921/// \param MagicValues Registered magic values.
5922///
5923/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
5924///        kind.
5925///
5926/// \param TypeInfo Information about the corresponding C type.
5927///
5928/// \returns true if the corresponding C type was found.
5929bool GetMatchingCType(
5930        const IdentifierInfo *ArgumentKind,
5931        const Expr *TypeExpr, const ASTContext &Ctx,
5932        const llvm::DenseMap<Sema::TypeTagMagicValue,
5933                             Sema::TypeTagData> *MagicValues,
5934        bool &FoundWrongKind,
5935        Sema::TypeTagData &TypeInfo) {
5936  FoundWrongKind = false;
5937
5938  // Variable declaration that has type_tag_for_datatype attribute.
5939  const ValueDecl *VD = NULL;
5940
5941  uint64_t MagicValue;
5942
5943  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
5944    return false;
5945
5946  if (VD) {
5947    for (specific_attr_iterator<TypeTagForDatatypeAttr>
5948             I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
5949             E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
5950         I != E; ++I) {
5951      if (I->getArgumentKind() != ArgumentKind) {
5952        FoundWrongKind = true;
5953        return false;
5954      }
5955      TypeInfo.Type = I->getMatchingCType();
5956      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
5957      TypeInfo.MustBeNull = I->getMustBeNull();
5958      return true;
5959    }
5960    return false;
5961  }
5962
5963  if (!MagicValues)
5964    return false;
5965
5966  llvm::DenseMap<Sema::TypeTagMagicValue,
5967                 Sema::TypeTagData>::const_iterator I =
5968      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
5969  if (I == MagicValues->end())
5970    return false;
5971
5972  TypeInfo = I->second;
5973  return true;
5974}
5975} // unnamed namespace
5976
5977void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
5978                                      uint64_t MagicValue, QualType Type,
5979                                      bool LayoutCompatible,
5980                                      bool MustBeNull) {
5981  if (!TypeTagForDatatypeMagicValues)
5982    TypeTagForDatatypeMagicValues.reset(
5983        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
5984
5985  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
5986  (*TypeTagForDatatypeMagicValues)[Magic] =
5987      TypeTagData(Type, LayoutCompatible, MustBeNull);
5988}
5989
5990namespace {
5991bool IsSameCharType(QualType T1, QualType T2) {
5992  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
5993  if (!BT1)
5994    return false;
5995
5996  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
5997  if (!BT2)
5998    return false;
5999
6000  BuiltinType::Kind T1Kind = BT1->getKind();
6001  BuiltinType::Kind T2Kind = BT2->getKind();
6002
6003  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
6004         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
6005         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
6006         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
6007}
6008} // unnamed namespace
6009
6010void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
6011                                    const Expr * const *ExprArgs) {
6012  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
6013  bool IsPointerAttr = Attr->getIsPointer();
6014
6015  const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
6016  bool FoundWrongKind;
6017  TypeTagData TypeInfo;
6018  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
6019                        TypeTagForDatatypeMagicValues.get(),
6020                        FoundWrongKind, TypeInfo)) {
6021    if (FoundWrongKind)
6022      Diag(TypeTagExpr->getExprLoc(),
6023           diag::warn_type_tag_for_datatype_wrong_kind)
6024        << TypeTagExpr->getSourceRange();
6025    return;
6026  }
6027
6028  const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
6029  if (IsPointerAttr) {
6030    // Skip implicit cast of pointer to `void *' (as a function argument).
6031    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
6032      if (ICE->getType()->isVoidPointerType())
6033        ArgumentExpr = ICE->getSubExpr();
6034  }
6035  QualType ArgumentType = ArgumentExpr->getType();
6036
6037  // Passing a `void*' pointer shouldn't trigger a warning.
6038  if (IsPointerAttr && ArgumentType->isVoidPointerType())
6039    return;
6040
6041  if (TypeInfo.MustBeNull) {
6042    // Type tag with matching void type requires a null pointer.
6043    if (!ArgumentExpr->isNullPointerConstant(Context,
6044                                             Expr::NPC_ValueDependentIsNotNull)) {
6045      Diag(ArgumentExpr->getExprLoc(),
6046           diag::warn_type_safety_null_pointer_required)
6047          << ArgumentKind->getName()
6048          << ArgumentExpr->getSourceRange()
6049          << TypeTagExpr->getSourceRange();
6050    }
6051    return;
6052  }
6053
6054  QualType RequiredType = TypeInfo.Type;
6055  if (IsPointerAttr)
6056    RequiredType = Context.getPointerType(RequiredType);
6057
6058  bool mismatch = false;
6059  if (!TypeInfo.LayoutCompatible) {
6060    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
6061
6062    // C++11 [basic.fundamental] p1:
6063    // Plain char, signed char, and unsigned char are three distinct types.
6064    //
6065    // But we treat plain `char' as equivalent to `signed char' or `unsigned
6066    // char' depending on the current char signedness mode.
6067    if (mismatch)
6068      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
6069                                           RequiredType->getPointeeType())) ||
6070          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
6071        mismatch = false;
6072  } else
6073    if (IsPointerAttr)
6074      mismatch = !isLayoutCompatible(Context,
6075                                     ArgumentType->getPointeeType(),
6076                                     RequiredType->getPointeeType());
6077    else
6078      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
6079
6080  if (mismatch)
6081    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
6082        << ArgumentType << ArgumentKind->getName()
6083        << TypeInfo.LayoutCompatible << RequiredType
6084        << ArgumentExpr->getSourceRange()
6085        << TypeTagExpr->getSourceRange();
6086}
6087
6088