SemaChecking.cpp revision c82faca0be59b072b38bed375e21bd24f1f72647
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Sema.h"
16#include "clang/Sema/SemaInternal.h"
17#include "clang/Sema/ScopeInfo.h"
18#include "clang/Analysis/Analyses/FormatString.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Lex/LiteralSupport.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "clang/Basic/TargetBuiltins.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/ConvertUTF.h"
36
37#include <limits>
38using namespace clang;
39using namespace sema;
40
41/// getLocationOfStringLiteralByte - Return a source location that points to the
42/// specified byte of the specified string literal.
43///
44/// Strings are amazingly complex.  They can be formed from multiple tokens and
45/// can have escape sequences in them in addition to the usual trigraph and
46/// escaped newline business.  This routine handles this complexity.
47///
48SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49                                                    unsigned ByteNo) const {
50  assert(!SL->isWide() && "This doesn't work for wide strings yet");
51
52  // Loop over all of the tokens in this string until we find the one that
53  // contains the byte we're looking for.
54  unsigned TokNo = 0;
55  while (1) {
56    assert(TokNo < SL->getNumConcatenated() && "Invalid byte number!");
57    SourceLocation StrTokLoc = SL->getStrTokenLoc(TokNo);
58
59    // Get the spelling of the string so that we can get the data that makes up
60    // the string literal, not the identifier for the macro it is potentially
61    // expanded through.
62    SourceLocation StrTokSpellingLoc = SourceMgr.getSpellingLoc(StrTokLoc);
63
64    // Re-lex the token to get its length and original spelling.
65    std::pair<FileID, unsigned> LocInfo =
66      SourceMgr.getDecomposedLoc(StrTokSpellingLoc);
67    bool Invalid = false;
68    llvm::StringRef Buffer = SourceMgr.getBufferData(LocInfo.first, &Invalid);
69    if (Invalid)
70      return StrTokSpellingLoc;
71
72    const char *StrData = Buffer.data()+LocInfo.second;
73
74    // Create a langops struct and enable trigraphs.  This is sufficient for
75    // relexing tokens.
76    LangOptions LangOpts;
77    LangOpts.Trigraphs = true;
78
79    // Create a lexer starting at the beginning of this token.
80    Lexer TheLexer(StrTokSpellingLoc, LangOpts, Buffer.begin(), StrData,
81                   Buffer.end());
82    Token TheTok;
83    TheLexer.LexFromRawLexer(TheTok);
84
85    // Use the StringLiteralParser to compute the length of the string in bytes.
86    StringLiteralParser SLP(&TheTok, 1, PP, /*Complain=*/false);
87    unsigned TokNumBytes = SLP.GetStringLength();
88
89    // If the byte is in this token, return the location of the byte.
90    if (ByteNo < TokNumBytes ||
91        (ByteNo == TokNumBytes && TokNo == SL->getNumConcatenated())) {
92      unsigned Offset =
93        StringLiteralParser::getOffsetOfStringByte(TheTok, ByteNo, PP,
94                                                   /*Complain=*/false);
95
96      // Now that we know the offset of the token in the spelling, use the
97      // preprocessor to get the offset in the original source.
98      return PP.AdvanceToTokenCharacter(StrTokLoc, Offset);
99    }
100
101    // Move to the next string token.
102    ++TokNo;
103    ByteNo -= TokNumBytes;
104  }
105}
106
107/// CheckablePrintfAttr - does a function call have a "printf" attribute
108/// and arguments that merit checking?
109bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
110  if (Format->getType() == "printf") return true;
111  if (Format->getType() == "printf0") {
112    // printf0 allows null "format" string; if so don't check format/args
113    unsigned format_idx = Format->getFormatIdx() - 1;
114    // Does the index refer to the implicit object argument?
115    if (isa<CXXMemberCallExpr>(TheCall)) {
116      if (format_idx == 0)
117        return false;
118      --format_idx;
119    }
120    if (format_idx < TheCall->getNumArgs()) {
121      Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
122      if (!Format->isNullPointerConstant(Context,
123                                         Expr::NPC_ValueDependentIsNull))
124        return true;
125    }
126  }
127  return false;
128}
129
130ExprResult
131Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
132  ExprResult TheCallResult(Owned(TheCall));
133
134  switch (BuiltinID) {
135  case Builtin::BI__builtin___CFStringMakeConstantString:
136    assert(TheCall->getNumArgs() == 1 &&
137           "Wrong # arguments to builtin CFStringMakeConstantString");
138    if (CheckObjCString(TheCall->getArg(0)))
139      return ExprError();
140    break;
141  case Builtin::BI__builtin_stdarg_start:
142  case Builtin::BI__builtin_va_start:
143    if (SemaBuiltinVAStart(TheCall))
144      return ExprError();
145    break;
146  case Builtin::BI__builtin_isgreater:
147  case Builtin::BI__builtin_isgreaterequal:
148  case Builtin::BI__builtin_isless:
149  case Builtin::BI__builtin_islessequal:
150  case Builtin::BI__builtin_islessgreater:
151  case Builtin::BI__builtin_isunordered:
152    if (SemaBuiltinUnorderedCompare(TheCall))
153      return ExprError();
154    break;
155  case Builtin::BI__builtin_fpclassify:
156    if (SemaBuiltinFPClassification(TheCall, 6))
157      return ExprError();
158    break;
159  case Builtin::BI__builtin_isfinite:
160  case Builtin::BI__builtin_isinf:
161  case Builtin::BI__builtin_isinf_sign:
162  case Builtin::BI__builtin_isnan:
163  case Builtin::BI__builtin_isnormal:
164    if (SemaBuiltinFPClassification(TheCall, 1))
165      return ExprError();
166    break;
167  case Builtin::BI__builtin_return_address:
168  case Builtin::BI__builtin_frame_address: {
169    llvm::APSInt Result;
170    if (SemaBuiltinConstantArg(TheCall, 0, Result))
171      return ExprError();
172    break;
173  }
174  case Builtin::BI__builtin_eh_return_data_regno: {
175    llvm::APSInt Result;
176    if (SemaBuiltinConstantArg(TheCall, 0, Result))
177      return ExprError();
178    break;
179  }
180  case Builtin::BI__builtin_shufflevector:
181    return SemaBuiltinShuffleVector(TheCall);
182    // TheCall will be freed by the smart pointer here, but that's fine, since
183    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
184  case Builtin::BI__builtin_prefetch:
185    if (SemaBuiltinPrefetch(TheCall))
186      return ExprError();
187    break;
188  case Builtin::BI__builtin_object_size:
189    if (SemaBuiltinObjectSize(TheCall))
190      return ExprError();
191    break;
192  case Builtin::BI__builtin_longjmp:
193    if (SemaBuiltinLongjmp(TheCall))
194      return ExprError();
195    break;
196  case Builtin::BI__sync_fetch_and_add:
197  case Builtin::BI__sync_fetch_and_sub:
198  case Builtin::BI__sync_fetch_and_or:
199  case Builtin::BI__sync_fetch_and_and:
200  case Builtin::BI__sync_fetch_and_xor:
201  case Builtin::BI__sync_add_and_fetch:
202  case Builtin::BI__sync_sub_and_fetch:
203  case Builtin::BI__sync_and_and_fetch:
204  case Builtin::BI__sync_or_and_fetch:
205  case Builtin::BI__sync_xor_and_fetch:
206  case Builtin::BI__sync_val_compare_and_swap:
207  case Builtin::BI__sync_bool_compare_and_swap:
208  case Builtin::BI__sync_lock_test_and_set:
209  case Builtin::BI__sync_lock_release:
210    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
211  }
212
213  // Since the target specific builtins for each arch overlap, only check those
214  // of the arch we are compiling for.
215  if (BuiltinID >= Builtin::FirstTSBuiltin) {
216    switch (Context.Target.getTriple().getArch()) {
217      case llvm::Triple::arm:
218      case llvm::Triple::thumb:
219        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
220          return ExprError();
221        break;
222      case llvm::Triple::x86:
223      case llvm::Triple::x86_64:
224        if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
225          return ExprError();
226        break;
227      default:
228        break;
229    }
230  }
231
232  return move(TheCallResult);
233}
234
235bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
236  switch (BuiltinID) {
237  case X86::BI__builtin_ia32_palignr128:
238  case X86::BI__builtin_ia32_palignr: {
239    llvm::APSInt Result;
240    if (SemaBuiltinConstantArg(TheCall, 2, Result))
241      return true;
242    break;
243  }
244  }
245  return false;
246}
247
248// Get the valid immediate range for the specified NEON type code.
249static unsigned RFT(unsigned t, bool shift = false) {
250  bool quad = t & 0x10;
251
252  switch (t & 0x7) {
253    case 0: // i8
254      return shift ? 7 : (8 << (int)quad) - 1;
255    case 1: // i16
256      return shift ? 15 : (4 << (int)quad) - 1;
257    case 2: // i32
258      return shift ? 31 : (2 << (int)quad) - 1;
259    case 3: // i64
260      return shift ? 63 : (1 << (int)quad) - 1;
261    case 4: // f32
262      assert(!shift && "cannot shift float types!");
263      return (2 << (int)quad) - 1;
264    case 5: // poly8
265      assert(!shift && "cannot shift polynomial types!");
266      return (8 << (int)quad) - 1;
267    case 6: // poly16
268      assert(!shift && "cannot shift polynomial types!");
269      return (4 << (int)quad) - 1;
270    case 7: // float16
271      assert(!shift && "cannot shift float types!");
272      return (4 << (int)quad) - 1;
273  }
274  return 0;
275}
276
277bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
278  llvm::APSInt Result;
279
280  unsigned mask = 0;
281  unsigned TV = 0;
282  switch (BuiltinID) {
283#define GET_NEON_OVERLOAD_CHECK
284#include "clang/Basic/arm_neon.inc"
285#undef GET_NEON_OVERLOAD_CHECK
286  }
287
288  // For NEON intrinsics which are overloaded on vector element type, validate
289  // the immediate which specifies which variant to emit.
290  if (mask) {
291    unsigned ArgNo = TheCall->getNumArgs()-1;
292    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
293      return true;
294
295    TV = Result.getLimitedValue(32);
296    if ((TV > 31) || (mask & (1 << TV)) == 0)
297      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
298        << TheCall->getArg(ArgNo)->getSourceRange();
299  }
300
301  // For NEON intrinsics which take an immediate value as part of the
302  // instruction, range check them here.
303  unsigned i = 0, l = 0, u = 0;
304  switch (BuiltinID) {
305  default: return false;
306  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
307  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
308  case ARM::BI__builtin_arm_vcvtr_f:
309  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
310#define GET_NEON_IMMEDIATE_CHECK
311#include "clang/Basic/arm_neon.inc"
312#undef GET_NEON_IMMEDIATE_CHECK
313  };
314
315  // Check that the immediate argument is actually a constant.
316  if (SemaBuiltinConstantArg(TheCall, i, Result))
317    return true;
318
319  // Range check against the upper/lower values for this isntruction.
320  unsigned Val = Result.getZExtValue();
321  if (Val < l || Val > (u + l))
322    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
323      << l << u+l << TheCall->getArg(i)->getSourceRange();
324
325  // FIXME: VFP Intrinsics should error if VFP not present.
326  return false;
327}
328
329/// CheckFunctionCall - Check a direct function call for various correctness
330/// and safety properties not strictly enforced by the C type system.
331bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
332  // Get the IdentifierInfo* for the called function.
333  IdentifierInfo *FnInfo = FDecl->getIdentifier();
334
335  // None of the checks below are needed for functions that don't have
336  // simple names (e.g., C++ conversion functions).
337  if (!FnInfo)
338    return false;
339
340  // FIXME: This mechanism should be abstracted to be less fragile and
341  // more efficient. For example, just map function ids to custom
342  // handlers.
343
344  // Printf and scanf checking.
345  for (specific_attr_iterator<FormatAttr>
346         i = FDecl->specific_attr_begin<FormatAttr>(),
347         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
348
349    const FormatAttr *Format = *i;
350    const bool b = Format->getType() == "scanf";
351    if (b || CheckablePrintfAttr(Format, TheCall)) {
352      bool HasVAListArg = Format->getFirstArg() == 0;
353      CheckPrintfScanfArguments(TheCall, HasVAListArg,
354                                Format->getFormatIdx() - 1,
355                                HasVAListArg ? 0 : Format->getFirstArg() - 1,
356                                !b);
357    }
358  }
359
360  for (specific_attr_iterator<NonNullAttr>
361         i = FDecl->specific_attr_begin<NonNullAttr>(),
362         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
363    CheckNonNullArguments(*i, TheCall);
364  }
365
366  return false;
367}
368
369bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
370  // Printf checking.
371  const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
372  if (!Format)
373    return false;
374
375  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
376  if (!V)
377    return false;
378
379  QualType Ty = V->getType();
380  if (!Ty->isBlockPointerType())
381    return false;
382
383  const bool b = Format->getType() == "scanf";
384  if (!b && !CheckablePrintfAttr(Format, TheCall))
385    return false;
386
387  bool HasVAListArg = Format->getFirstArg() == 0;
388  CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
389                            HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
390
391  return false;
392}
393
394/// SemaBuiltinAtomicOverloaded - We have a call to a function like
395/// __sync_fetch_and_add, which is an overloaded function based on the pointer
396/// type of its first argument.  The main ActOnCallExpr routines have already
397/// promoted the types of arguments because all of these calls are prototyped as
398/// void(...).
399///
400/// This function goes through and does final semantic checking for these
401/// builtins,
402ExprResult
403Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
404  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
405  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
406  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
407
408  // Ensure that we have at least one argument to do type inference from.
409  if (TheCall->getNumArgs() < 1) {
410    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
411      << 0 << 1 << TheCall->getNumArgs()
412      << TheCall->getCallee()->getSourceRange();
413    return ExprError();
414  }
415
416  // Inspect the first argument of the atomic builtin.  This should always be
417  // a pointer type, whose element is an integral scalar or pointer type.
418  // Because it is a pointer type, we don't have to worry about any implicit
419  // casts here.
420  // FIXME: We don't allow floating point scalars as input.
421  Expr *FirstArg = TheCall->getArg(0);
422  if (!FirstArg->getType()->isPointerType()) {
423    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
424      << FirstArg->getType() << FirstArg->getSourceRange();
425    return ExprError();
426  }
427
428  QualType ValType =
429    FirstArg->getType()->getAs<PointerType>()->getPointeeType();
430  if (!ValType->isIntegerType() && !ValType->isPointerType() &&
431      !ValType->isBlockPointerType()) {
432    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
433      << FirstArg->getType() << FirstArg->getSourceRange();
434    return ExprError();
435  }
436
437  // The majority of builtins return a value, but a few have special return
438  // types, so allow them to override appropriately below.
439  QualType ResultType = ValType;
440
441  // We need to figure out which concrete builtin this maps onto.  For example,
442  // __sync_fetch_and_add with a 2 byte object turns into
443  // __sync_fetch_and_add_2.
444#define BUILTIN_ROW(x) \
445  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
446    Builtin::BI##x##_8, Builtin::BI##x##_16 }
447
448  static const unsigned BuiltinIndices[][5] = {
449    BUILTIN_ROW(__sync_fetch_and_add),
450    BUILTIN_ROW(__sync_fetch_and_sub),
451    BUILTIN_ROW(__sync_fetch_and_or),
452    BUILTIN_ROW(__sync_fetch_and_and),
453    BUILTIN_ROW(__sync_fetch_and_xor),
454
455    BUILTIN_ROW(__sync_add_and_fetch),
456    BUILTIN_ROW(__sync_sub_and_fetch),
457    BUILTIN_ROW(__sync_and_and_fetch),
458    BUILTIN_ROW(__sync_or_and_fetch),
459    BUILTIN_ROW(__sync_xor_and_fetch),
460
461    BUILTIN_ROW(__sync_val_compare_and_swap),
462    BUILTIN_ROW(__sync_bool_compare_and_swap),
463    BUILTIN_ROW(__sync_lock_test_and_set),
464    BUILTIN_ROW(__sync_lock_release)
465  };
466#undef BUILTIN_ROW
467
468  // Determine the index of the size.
469  unsigned SizeIndex;
470  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
471  case 1: SizeIndex = 0; break;
472  case 2: SizeIndex = 1; break;
473  case 4: SizeIndex = 2; break;
474  case 8: SizeIndex = 3; break;
475  case 16: SizeIndex = 4; break;
476  default:
477    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
478      << FirstArg->getType() << FirstArg->getSourceRange();
479    return ExprError();
480  }
481
482  // Each of these builtins has one pointer argument, followed by some number of
483  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
484  // that we ignore.  Find out which row of BuiltinIndices to read from as well
485  // as the number of fixed args.
486  unsigned BuiltinID = FDecl->getBuiltinID();
487  unsigned BuiltinIndex, NumFixed = 1;
488  switch (BuiltinID) {
489  default: assert(0 && "Unknown overloaded atomic builtin!");
490  case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
491  case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
492  case Builtin::BI__sync_fetch_and_or:  BuiltinIndex = 2; break;
493  case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
494  case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
495
496  case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
497  case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
498  case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
499  case Builtin::BI__sync_or_and_fetch:  BuiltinIndex = 8; break;
500  case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
501
502  case Builtin::BI__sync_val_compare_and_swap:
503    BuiltinIndex = 10;
504    NumFixed = 2;
505    break;
506  case Builtin::BI__sync_bool_compare_and_swap:
507    BuiltinIndex = 11;
508    NumFixed = 2;
509    ResultType = Context.BoolTy;
510    break;
511  case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
512  case Builtin::BI__sync_lock_release:
513    BuiltinIndex = 13;
514    NumFixed = 0;
515    ResultType = Context.VoidTy;
516    break;
517  }
518
519  // Now that we know how many fixed arguments we expect, first check that we
520  // have at least that many.
521  if (TheCall->getNumArgs() < 1+NumFixed) {
522    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
523      << 0 << 1+NumFixed << TheCall->getNumArgs()
524      << TheCall->getCallee()->getSourceRange();
525    return ExprError();
526  }
527
528  // Get the decl for the concrete builtin from this, we can tell what the
529  // concrete integer type we should convert to is.
530  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
531  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
532  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
533  FunctionDecl *NewBuiltinDecl =
534    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
535                                           TUScope, false, DRE->getLocStart()));
536
537  // The first argument --- the pointer --- has a fixed type; we
538  // deduce the types of the rest of the arguments accordingly.  Walk
539  // the remaining arguments, converting them to the deduced value type.
540  for (unsigned i = 0; i != NumFixed; ++i) {
541    Expr *Arg = TheCall->getArg(i+1);
542
543    // If the argument is an implicit cast, then there was a promotion due to
544    // "...", just remove it now.
545    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
546      Arg = ICE->getSubExpr();
547      ICE->setSubExpr(0);
548      TheCall->setArg(i+1, Arg);
549    }
550
551    // GCC does an implicit conversion to the pointer or integer ValType.  This
552    // can fail in some cases (1i -> int**), check for this error case now.
553    CastKind Kind = CK_Unknown;
554    CXXCastPath BasePath;
555    if (CheckCastTypes(Arg->getSourceRange(), ValType, Arg, Kind, BasePath))
556      return ExprError();
557
558    // Okay, we have something that *can* be converted to the right type.  Check
559    // to see if there is a potentially weird extension going on here.  This can
560    // happen when you do an atomic operation on something like an char* and
561    // pass in 42.  The 42 gets converted to char.  This is even more strange
562    // for things like 45.123 -> char, etc.
563    // FIXME: Do this check.
564    ImpCastExprToType(Arg, ValType, Kind, VK_RValue, &BasePath);
565    TheCall->setArg(i+1, Arg);
566  }
567
568  // Switch the DeclRefExpr to refer to the new decl.
569  DRE->setDecl(NewBuiltinDecl);
570  DRE->setType(NewBuiltinDecl->getType());
571
572  // Set the callee in the CallExpr.
573  // FIXME: This leaks the original parens and implicit casts.
574  Expr *PromotedCall = DRE;
575  UsualUnaryConversions(PromotedCall);
576  TheCall->setCallee(PromotedCall);
577
578  // Change the result type of the call to match the original value type. This
579  // is arbitrary, but the codegen for these builtins ins design to handle it
580  // gracefully.
581  TheCall->setType(ResultType);
582
583  return move(TheCallResult);
584}
585
586
587/// CheckObjCString - Checks that the argument to the builtin
588/// CFString constructor is correct
589/// Note: It might also make sense to do the UTF-16 conversion here (would
590/// simplify the backend).
591bool Sema::CheckObjCString(Expr *Arg) {
592  Arg = Arg->IgnoreParenCasts();
593  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
594
595  if (!Literal || Literal->isWide()) {
596    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
597      << Arg->getSourceRange();
598    return true;
599  }
600
601  size_t NulPos = Literal->getString().find('\0');
602  if (NulPos != llvm::StringRef::npos) {
603    Diag(getLocationOfStringLiteralByte(Literal, NulPos),
604         diag::warn_cfstring_literal_contains_nul_character)
605      << Arg->getSourceRange();
606  }
607  if (Literal->containsNonAsciiOrNull()) {
608    llvm::StringRef String = Literal->getString();
609    unsigned NumBytes = String.size();
610    llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
611    const UTF8 *FromPtr = (UTF8 *)String.data();
612    UTF16 *ToPtr = &ToBuf[0];
613
614    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
615                                                 &ToPtr, ToPtr + NumBytes,
616                                                 strictConversion);
617    // Check for conversion failure.
618    if (Result != conversionOK)
619      Diag(Arg->getLocStart(),
620           diag::warn_cfstring_truncated) << Arg->getSourceRange();
621  }
622  return false;
623}
624
625/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
626/// Emit an error and return true on failure, return false on success.
627bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
628  Expr *Fn = TheCall->getCallee();
629  if (TheCall->getNumArgs() > 2) {
630    Diag(TheCall->getArg(2)->getLocStart(),
631         diag::err_typecheck_call_too_many_args)
632      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
633      << Fn->getSourceRange()
634      << SourceRange(TheCall->getArg(2)->getLocStart(),
635                     (*(TheCall->arg_end()-1))->getLocEnd());
636    return true;
637  }
638
639  if (TheCall->getNumArgs() < 2) {
640    return Diag(TheCall->getLocEnd(),
641      diag::err_typecheck_call_too_few_args_at_least)
642      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
643  }
644
645  // Determine whether the current function is variadic or not.
646  BlockScopeInfo *CurBlock = getCurBlock();
647  bool isVariadic;
648  if (CurBlock)
649    isVariadic = CurBlock->TheDecl->isVariadic();
650  else if (FunctionDecl *FD = getCurFunctionDecl())
651    isVariadic = FD->isVariadic();
652  else
653    isVariadic = getCurMethodDecl()->isVariadic();
654
655  if (!isVariadic) {
656    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
657    return true;
658  }
659
660  // Verify that the second argument to the builtin is the last argument of the
661  // current function or method.
662  bool SecondArgIsLastNamedArgument = false;
663  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
664
665  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
666    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
667      // FIXME: This isn't correct for methods (results in bogus warning).
668      // Get the last formal in the current function.
669      const ParmVarDecl *LastArg;
670      if (CurBlock)
671        LastArg = *(CurBlock->TheDecl->param_end()-1);
672      else if (FunctionDecl *FD = getCurFunctionDecl())
673        LastArg = *(FD->param_end()-1);
674      else
675        LastArg = *(getCurMethodDecl()->param_end()-1);
676      SecondArgIsLastNamedArgument = PV == LastArg;
677    }
678  }
679
680  if (!SecondArgIsLastNamedArgument)
681    Diag(TheCall->getArg(1)->getLocStart(),
682         diag::warn_second_parameter_of_va_start_not_last_named_argument);
683  return false;
684}
685
686/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
687/// friends.  This is declared to take (...), so we have to check everything.
688bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
689  if (TheCall->getNumArgs() < 2)
690    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
691      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
692  if (TheCall->getNumArgs() > 2)
693    return Diag(TheCall->getArg(2)->getLocStart(),
694                diag::err_typecheck_call_too_many_args)
695      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
696      << SourceRange(TheCall->getArg(2)->getLocStart(),
697                     (*(TheCall->arg_end()-1))->getLocEnd());
698
699  Expr *OrigArg0 = TheCall->getArg(0);
700  Expr *OrigArg1 = TheCall->getArg(1);
701
702  // Do standard promotions between the two arguments, returning their common
703  // type.
704  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
705
706  // Make sure any conversions are pushed back into the call; this is
707  // type safe since unordered compare builtins are declared as "_Bool
708  // foo(...)".
709  TheCall->setArg(0, OrigArg0);
710  TheCall->setArg(1, OrigArg1);
711
712  if (OrigArg0->isTypeDependent() || OrigArg1->isTypeDependent())
713    return false;
714
715  // If the common type isn't a real floating type, then the arguments were
716  // invalid for this operation.
717  if (!Res->isRealFloatingType())
718    return Diag(OrigArg0->getLocStart(),
719                diag::err_typecheck_call_invalid_ordered_compare)
720      << OrigArg0->getType() << OrigArg1->getType()
721      << SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd());
722
723  return false;
724}
725
726/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
727/// __builtin_isnan and friends.  This is declared to take (...), so we have
728/// to check everything. We expect the last argument to be a floating point
729/// value.
730bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
731  if (TheCall->getNumArgs() < NumArgs)
732    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
733      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
734  if (TheCall->getNumArgs() > NumArgs)
735    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
736                diag::err_typecheck_call_too_many_args)
737      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
738      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
739                     (*(TheCall->arg_end()-1))->getLocEnd());
740
741  Expr *OrigArg = TheCall->getArg(NumArgs-1);
742
743  if (OrigArg->isTypeDependent())
744    return false;
745
746  // This operation requires a non-_Complex floating-point number.
747  if (!OrigArg->getType()->isRealFloatingType())
748    return Diag(OrigArg->getLocStart(),
749                diag::err_typecheck_call_invalid_unary_fp)
750      << OrigArg->getType() << OrigArg->getSourceRange();
751
752  // If this is an implicit conversion from float -> double, remove it.
753  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
754    Expr *CastArg = Cast->getSubExpr();
755    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
756      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
757             "promotion from float to double is the only expected cast here");
758      Cast->setSubExpr(0);
759      TheCall->setArg(NumArgs-1, CastArg);
760      OrigArg = CastArg;
761    }
762  }
763
764  return false;
765}
766
767/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
768// This is declared to take (...), so we have to check everything.
769ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
770  if (TheCall->getNumArgs() < 2)
771    return ExprError(Diag(TheCall->getLocEnd(),
772                          diag::err_typecheck_call_too_few_args_at_least)
773      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
774      << TheCall->getSourceRange());
775
776  // Determine which of the following types of shufflevector we're checking:
777  // 1) unary, vector mask: (lhs, mask)
778  // 2) binary, vector mask: (lhs, rhs, mask)
779  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
780  QualType resType = TheCall->getArg(0)->getType();
781  unsigned numElements = 0;
782
783  if (!TheCall->getArg(0)->isTypeDependent() &&
784      !TheCall->getArg(1)->isTypeDependent()) {
785    QualType LHSType = TheCall->getArg(0)->getType();
786    QualType RHSType = TheCall->getArg(1)->getType();
787
788    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
789      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
790        << SourceRange(TheCall->getArg(0)->getLocStart(),
791                       TheCall->getArg(1)->getLocEnd());
792      return ExprError();
793    }
794
795    numElements = LHSType->getAs<VectorType>()->getNumElements();
796    unsigned numResElements = TheCall->getNumArgs() - 2;
797
798    // Check to see if we have a call with 2 vector arguments, the unary shuffle
799    // with mask.  If so, verify that RHS is an integer vector type with the
800    // same number of elts as lhs.
801    if (TheCall->getNumArgs() == 2) {
802      if (!RHSType->hasIntegerRepresentation() ||
803          RHSType->getAs<VectorType>()->getNumElements() != numElements)
804        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
805          << SourceRange(TheCall->getArg(1)->getLocStart(),
806                         TheCall->getArg(1)->getLocEnd());
807      numResElements = numElements;
808    }
809    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
810      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
811        << SourceRange(TheCall->getArg(0)->getLocStart(),
812                       TheCall->getArg(1)->getLocEnd());
813      return ExprError();
814    } else if (numElements != numResElements) {
815      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
816      resType = Context.getVectorType(eltType, numResElements,
817                                      VectorType::NotAltiVec);
818    }
819  }
820
821  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
822    if (TheCall->getArg(i)->isTypeDependent() ||
823        TheCall->getArg(i)->isValueDependent())
824      continue;
825
826    llvm::APSInt Result(32);
827    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
828      return ExprError(Diag(TheCall->getLocStart(),
829                  diag::err_shufflevector_nonconstant_argument)
830                << TheCall->getArg(i)->getSourceRange());
831
832    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
833      return ExprError(Diag(TheCall->getLocStart(),
834                  diag::err_shufflevector_argument_too_large)
835               << TheCall->getArg(i)->getSourceRange());
836  }
837
838  llvm::SmallVector<Expr*, 32> exprs;
839
840  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
841    exprs.push_back(TheCall->getArg(i));
842    TheCall->setArg(i, 0);
843  }
844
845  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
846                                            exprs.size(), resType,
847                                            TheCall->getCallee()->getLocStart(),
848                                            TheCall->getRParenLoc()));
849}
850
851/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
852// This is declared to take (const void*, ...) and can take two
853// optional constant int args.
854bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
855  unsigned NumArgs = TheCall->getNumArgs();
856
857  if (NumArgs > 3)
858    return Diag(TheCall->getLocEnd(),
859             diag::err_typecheck_call_too_many_args_at_most)
860             << 0 /*function call*/ << 3 << NumArgs
861             << TheCall->getSourceRange();
862
863  // Argument 0 is checked for us and the remaining arguments must be
864  // constant integers.
865  for (unsigned i = 1; i != NumArgs; ++i) {
866    Expr *Arg = TheCall->getArg(i);
867
868    llvm::APSInt Result;
869    if (SemaBuiltinConstantArg(TheCall, i, Result))
870      return true;
871
872    // FIXME: gcc issues a warning and rewrites these to 0. These
873    // seems especially odd for the third argument since the default
874    // is 3.
875    if (i == 1) {
876      if (Result.getLimitedValue() > 1)
877        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
878             << "0" << "1" << Arg->getSourceRange();
879    } else {
880      if (Result.getLimitedValue() > 3)
881        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
882            << "0" << "3" << Arg->getSourceRange();
883    }
884  }
885
886  return false;
887}
888
889/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
890/// TheCall is a constant expression.
891bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
892                                  llvm::APSInt &Result) {
893  Expr *Arg = TheCall->getArg(ArgNum);
894  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
895  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
896
897  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
898
899  if (!Arg->isIntegerConstantExpr(Result, Context))
900    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
901                << FDecl->getDeclName() <<  Arg->getSourceRange();
902
903  return false;
904}
905
906/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
907/// int type). This simply type checks that type is one of the defined
908/// constants (0-3).
909// For compatability check 0-3, llvm only handles 0 and 2.
910bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
911  llvm::APSInt Result;
912
913  // Check constant-ness first.
914  if (SemaBuiltinConstantArg(TheCall, 1, Result))
915    return true;
916
917  Expr *Arg = TheCall->getArg(1);
918  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
919    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
920             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
921  }
922
923  return false;
924}
925
926/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
927/// This checks that val is a constant 1.
928bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
929  Expr *Arg = TheCall->getArg(1);
930  llvm::APSInt Result;
931
932  // TODO: This is less than ideal. Overload this to take a value.
933  if (SemaBuiltinConstantArg(TheCall, 1, Result))
934    return true;
935
936  if (Result != 1)
937    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
938             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
939
940  return false;
941}
942
943// Handle i > 1 ? "x" : "y", recursivelly
944bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
945                                  bool HasVAListArg,
946                                  unsigned format_idx, unsigned firstDataArg,
947                                  bool isPrintf) {
948 tryAgain:
949  if (E->isTypeDependent() || E->isValueDependent())
950    return false;
951
952  switch (E->getStmtClass()) {
953  case Stmt::ConditionalOperatorClass: {
954    const ConditionalOperator *C = cast<ConditionalOperator>(E);
955    return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
956                                  format_idx, firstDataArg, isPrintf)
957        && SemaCheckStringLiteral(C->getRHS(), TheCall, HasVAListArg,
958                                  format_idx, firstDataArg, isPrintf);
959  }
960
961  case Stmt::IntegerLiteralClass:
962    // Technically -Wformat-nonliteral does not warn about this case.
963    // The behavior of printf and friends in this case is implementation
964    // dependent.  Ideally if the format string cannot be null then
965    // it should have a 'nonnull' attribute in the function prototype.
966    return true;
967
968  case Stmt::ImplicitCastExprClass: {
969    E = cast<ImplicitCastExpr>(E)->getSubExpr();
970    goto tryAgain;
971  }
972
973  case Stmt::ParenExprClass: {
974    E = cast<ParenExpr>(E)->getSubExpr();
975    goto tryAgain;
976  }
977
978  case Stmt::DeclRefExprClass: {
979    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
980
981    // As an exception, do not flag errors for variables binding to
982    // const string literals.
983    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
984      bool isConstant = false;
985      QualType T = DR->getType();
986
987      if (const ArrayType *AT = Context.getAsArrayType(T)) {
988        isConstant = AT->getElementType().isConstant(Context);
989      } else if (const PointerType *PT = T->getAs<PointerType>()) {
990        isConstant = T.isConstant(Context) &&
991                     PT->getPointeeType().isConstant(Context);
992      }
993
994      if (isConstant) {
995        if (const Expr *Init = VD->getAnyInitializer())
996          return SemaCheckStringLiteral(Init, TheCall,
997                                        HasVAListArg, format_idx, firstDataArg,
998                                        isPrintf);
999      }
1000
1001      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1002      // special check to see if the format string is a function parameter
1003      // of the function calling the printf function.  If the function
1004      // has an attribute indicating it is a printf-like function, then we
1005      // should suppress warnings concerning non-literals being used in a call
1006      // to a vprintf function.  For example:
1007      //
1008      // void
1009      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1010      //      va_list ap;
1011      //      va_start(ap, fmt);
1012      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1013      //      ...
1014      //
1015      //
1016      //  FIXME: We don't have full attribute support yet, so just check to see
1017      //    if the argument is a DeclRefExpr that references a parameter.  We'll
1018      //    add proper support for checking the attribute later.
1019      if (HasVAListArg)
1020        if (isa<ParmVarDecl>(VD))
1021          return true;
1022    }
1023
1024    return false;
1025  }
1026
1027  case Stmt::CallExprClass: {
1028    const CallExpr *CE = cast<CallExpr>(E);
1029    if (const ImplicitCastExpr *ICE
1030          = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
1031      if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1032        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1033          if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
1034            unsigned ArgIndex = FA->getFormatIdx();
1035            const Expr *Arg = CE->getArg(ArgIndex - 1);
1036
1037            return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
1038                                          format_idx, firstDataArg, isPrintf);
1039          }
1040        }
1041      }
1042    }
1043
1044    return false;
1045  }
1046  case Stmt::ObjCStringLiteralClass:
1047  case Stmt::StringLiteralClass: {
1048    const StringLiteral *StrE = NULL;
1049
1050    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1051      StrE = ObjCFExpr->getString();
1052    else
1053      StrE = cast<StringLiteral>(E);
1054
1055    if (StrE) {
1056      CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
1057                        firstDataArg, isPrintf);
1058      return true;
1059    }
1060
1061    return false;
1062  }
1063
1064  default:
1065    return false;
1066  }
1067}
1068
1069void
1070Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1071                            const CallExpr *TheCall) {
1072  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1073                                  e = NonNull->args_end();
1074       i != e; ++i) {
1075    const Expr *ArgExpr = TheCall->getArg(*i);
1076    if (ArgExpr->isNullPointerConstant(Context,
1077                                       Expr::NPC_ValueDependentIsNotNull))
1078      Diag(TheCall->getCallee()->getLocStart(), diag::warn_null_arg)
1079        << ArgExpr->getSourceRange();
1080  }
1081}
1082
1083/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1084/// functions) for correct use of format strings.
1085void
1086Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
1087                                unsigned format_idx, unsigned firstDataArg,
1088                                bool isPrintf) {
1089
1090  const Expr *Fn = TheCall->getCallee();
1091
1092  // The way the format attribute works in GCC, the implicit this argument
1093  // of member functions is counted. However, it doesn't appear in our own
1094  // lists, so decrement format_idx in that case.
1095  if (isa<CXXMemberCallExpr>(TheCall)) {
1096    // Catch a format attribute mistakenly referring to the object argument.
1097    if (format_idx == 0)
1098      return;
1099    --format_idx;
1100    if(firstDataArg != 0)
1101      --firstDataArg;
1102  }
1103
1104  // CHECK: printf/scanf-like function is called with no format string.
1105  if (format_idx >= TheCall->getNumArgs()) {
1106    Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
1107      << Fn->getSourceRange();
1108    return;
1109  }
1110
1111  const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
1112
1113  // CHECK: format string is not a string literal.
1114  //
1115  // Dynamically generated format strings are difficult to
1116  // automatically vet at compile time.  Requiring that format strings
1117  // are string literals: (1) permits the checking of format strings by
1118  // the compiler and thereby (2) can practically remove the source of
1119  // many format string exploits.
1120
1121  // Format string can be either ObjC string (e.g. @"%d") or
1122  // C string (e.g. "%d")
1123  // ObjC string uses the same format specifiers as C string, so we can use
1124  // the same format string checking logic for both ObjC and C strings.
1125  if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
1126                             firstDataArg, isPrintf))
1127    return;  // Literal format string found, check done!
1128
1129  // If there are no arguments specified, warn with -Wformat-security, otherwise
1130  // warn only with -Wformat-nonliteral.
1131  if (TheCall->getNumArgs() == format_idx+1)
1132    Diag(TheCall->getArg(format_idx)->getLocStart(),
1133         diag::warn_format_nonliteral_noargs)
1134      << OrigFormatExpr->getSourceRange();
1135  else
1136    Diag(TheCall->getArg(format_idx)->getLocStart(),
1137         diag::warn_format_nonliteral)
1138           << OrigFormatExpr->getSourceRange();
1139}
1140
1141namespace {
1142class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1143protected:
1144  Sema &S;
1145  const StringLiteral *FExpr;
1146  const Expr *OrigFormatExpr;
1147  const unsigned FirstDataArg;
1148  const unsigned NumDataArgs;
1149  const bool IsObjCLiteral;
1150  const char *Beg; // Start of format string.
1151  const bool HasVAListArg;
1152  const CallExpr *TheCall;
1153  unsigned FormatIdx;
1154  llvm::BitVector CoveredArgs;
1155  bool usesPositionalArgs;
1156  bool atFirstArg;
1157public:
1158  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1159                     const Expr *origFormatExpr, unsigned firstDataArg,
1160                     unsigned numDataArgs, bool isObjCLiteral,
1161                     const char *beg, bool hasVAListArg,
1162                     const CallExpr *theCall, unsigned formatIdx)
1163    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1164      FirstDataArg(firstDataArg),
1165      NumDataArgs(numDataArgs),
1166      IsObjCLiteral(isObjCLiteral), Beg(beg),
1167      HasVAListArg(hasVAListArg),
1168      TheCall(theCall), FormatIdx(formatIdx),
1169      usesPositionalArgs(false), atFirstArg(true) {
1170        CoveredArgs.resize(numDataArgs);
1171        CoveredArgs.reset();
1172      }
1173
1174  void DoneProcessing();
1175
1176  void HandleIncompleteSpecifier(const char *startSpecifier,
1177                                 unsigned specifierLen);
1178
1179  virtual void HandleInvalidPosition(const char *startSpecifier,
1180                                     unsigned specifierLen,
1181                                     analyze_format_string::PositionContext p);
1182
1183  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1184
1185  void HandleNullChar(const char *nullCharacter);
1186
1187protected:
1188  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1189                                        const char *startSpec,
1190                                        unsigned specifierLen,
1191                                        const char *csStart, unsigned csLen);
1192
1193  SourceRange getFormatStringRange();
1194  CharSourceRange getSpecifierRange(const char *startSpecifier,
1195                                    unsigned specifierLen);
1196  SourceLocation getLocationOfByte(const char *x);
1197
1198  const Expr *getDataArg(unsigned i) const;
1199
1200  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1201                    const analyze_format_string::ConversionSpecifier &CS,
1202                    const char *startSpecifier, unsigned specifierLen,
1203                    unsigned argIndex);
1204};
1205}
1206
1207SourceRange CheckFormatHandler::getFormatStringRange() {
1208  return OrigFormatExpr->getSourceRange();
1209}
1210
1211CharSourceRange CheckFormatHandler::
1212getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1213  SourceLocation Start = getLocationOfByte(startSpecifier);
1214  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1215
1216  // Advance the end SourceLocation by one due to half-open ranges.
1217  End = End.getFileLocWithOffset(1);
1218
1219  return CharSourceRange::getCharRange(Start, End);
1220}
1221
1222SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1223  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1224}
1225
1226void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1227                                                   unsigned specifierLen){
1228  SourceLocation Loc = getLocationOfByte(startSpecifier);
1229  S.Diag(Loc, diag::warn_printf_incomplete_specifier)
1230    << getSpecifierRange(startSpecifier, specifierLen);
1231}
1232
1233void
1234CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1235                                     analyze_format_string::PositionContext p) {
1236  SourceLocation Loc = getLocationOfByte(startPos);
1237  S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
1238    << (unsigned) p << getSpecifierRange(startPos, posLen);
1239}
1240
1241void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1242                                            unsigned posLen) {
1243  SourceLocation Loc = getLocationOfByte(startPos);
1244  S.Diag(Loc, diag::warn_format_zero_positional_specifier)
1245    << getSpecifierRange(startPos, posLen);
1246}
1247
1248void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1249  // The presence of a null character is likely an error.
1250  S.Diag(getLocationOfByte(nullCharacter),
1251         diag::warn_printf_format_string_contains_null_char)
1252    << getFormatStringRange();
1253}
1254
1255const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1256  return TheCall->getArg(FirstDataArg + i);
1257}
1258
1259void CheckFormatHandler::DoneProcessing() {
1260    // Does the number of data arguments exceed the number of
1261    // format conversions in the format string?
1262  if (!HasVAListArg) {
1263      // Find any arguments that weren't covered.
1264    CoveredArgs.flip();
1265    signed notCoveredArg = CoveredArgs.find_first();
1266    if (notCoveredArg >= 0) {
1267      assert((unsigned)notCoveredArg < NumDataArgs);
1268      S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
1269             diag::warn_printf_data_arg_not_used)
1270      << getFormatStringRange();
1271    }
1272  }
1273}
1274
1275bool
1276CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1277                                                     SourceLocation Loc,
1278                                                     const char *startSpec,
1279                                                     unsigned specifierLen,
1280                                                     const char *csStart,
1281                                                     unsigned csLen) {
1282
1283  bool keepGoing = true;
1284  if (argIndex < NumDataArgs) {
1285    // Consider the argument coverered, even though the specifier doesn't
1286    // make sense.
1287    CoveredArgs.set(argIndex);
1288  }
1289  else {
1290    // If argIndex exceeds the number of data arguments we
1291    // don't issue a warning because that is just a cascade of warnings (and
1292    // they may have intended '%%' anyway). We don't want to continue processing
1293    // the format string after this point, however, as we will like just get
1294    // gibberish when trying to match arguments.
1295    keepGoing = false;
1296  }
1297
1298  S.Diag(Loc, diag::warn_format_invalid_conversion)
1299    << llvm::StringRef(csStart, csLen)
1300    << getSpecifierRange(startSpec, specifierLen);
1301
1302  return keepGoing;
1303}
1304
1305bool
1306CheckFormatHandler::CheckNumArgs(
1307  const analyze_format_string::FormatSpecifier &FS,
1308  const analyze_format_string::ConversionSpecifier &CS,
1309  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
1310
1311  if (argIndex >= NumDataArgs) {
1312    if (FS.usesPositionalArg())  {
1313      S.Diag(getLocationOfByte(CS.getStart()),
1314             diag::warn_printf_positional_arg_exceeds_data_args)
1315      << (argIndex+1) << NumDataArgs
1316      << getSpecifierRange(startSpecifier, specifierLen);
1317    }
1318    else {
1319      S.Diag(getLocationOfByte(CS.getStart()),
1320             diag::warn_printf_insufficient_data_args)
1321      << getSpecifierRange(startSpecifier, specifierLen);
1322    }
1323
1324    return false;
1325  }
1326  return true;
1327}
1328
1329//===--- CHECK: Printf format string checking ------------------------------===//
1330
1331namespace {
1332class CheckPrintfHandler : public CheckFormatHandler {
1333public:
1334  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
1335                     const Expr *origFormatExpr, unsigned firstDataArg,
1336                     unsigned numDataArgs, bool isObjCLiteral,
1337                     const char *beg, bool hasVAListArg,
1338                     const CallExpr *theCall, unsigned formatIdx)
1339  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1340                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1341                       theCall, formatIdx) {}
1342
1343
1344  bool HandleInvalidPrintfConversionSpecifier(
1345                                      const analyze_printf::PrintfSpecifier &FS,
1346                                      const char *startSpecifier,
1347                                      unsigned specifierLen);
1348
1349  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
1350                             const char *startSpecifier,
1351                             unsigned specifierLen);
1352
1353  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
1354                    const char *startSpecifier, unsigned specifierLen);
1355  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
1356                           const analyze_printf::OptionalAmount &Amt,
1357                           unsigned type,
1358                           const char *startSpecifier, unsigned specifierLen);
1359  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1360                  const analyze_printf::OptionalFlag &flag,
1361                  const char *startSpecifier, unsigned specifierLen);
1362  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
1363                         const analyze_printf::OptionalFlag &ignoredFlag,
1364                         const analyze_printf::OptionalFlag &flag,
1365                         const char *startSpecifier, unsigned specifierLen);
1366};
1367}
1368
1369bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
1370                                      const analyze_printf::PrintfSpecifier &FS,
1371                                      const char *startSpecifier,
1372                                      unsigned specifierLen) {
1373  const analyze_printf::PrintfConversionSpecifier &CS =
1374    FS.getConversionSpecifier();
1375
1376  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1377                                          getLocationOfByte(CS.getStart()),
1378                                          startSpecifier, specifierLen,
1379                                          CS.getStart(), CS.getLength());
1380}
1381
1382bool CheckPrintfHandler::HandleAmount(
1383                               const analyze_format_string::OptionalAmount &Amt,
1384                               unsigned k, const char *startSpecifier,
1385                               unsigned specifierLen) {
1386
1387  if (Amt.hasDataArgument()) {
1388    if (!HasVAListArg) {
1389      unsigned argIndex = Amt.getArgIndex();
1390      if (argIndex >= NumDataArgs) {
1391        S.Diag(getLocationOfByte(Amt.getStart()),
1392               diag::warn_printf_asterisk_missing_arg)
1393          << k << getSpecifierRange(startSpecifier, specifierLen);
1394        // Don't do any more checking.  We will just emit
1395        // spurious errors.
1396        return false;
1397      }
1398
1399      // Type check the data argument.  It should be an 'int'.
1400      // Although not in conformance with C99, we also allow the argument to be
1401      // an 'unsigned int' as that is a reasonably safe case.  GCC also
1402      // doesn't emit a warning for that case.
1403      CoveredArgs.set(argIndex);
1404      const Expr *Arg = getDataArg(argIndex);
1405      QualType T = Arg->getType();
1406
1407      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
1408      assert(ATR.isValid());
1409
1410      if (!ATR.matchesType(S.Context, T)) {
1411        S.Diag(getLocationOfByte(Amt.getStart()),
1412               diag::warn_printf_asterisk_wrong_type)
1413          << k
1414          << ATR.getRepresentativeType(S.Context) << T
1415          << getSpecifierRange(startSpecifier, specifierLen)
1416          << Arg->getSourceRange();
1417        // Don't do any more checking.  We will just emit
1418        // spurious errors.
1419        return false;
1420      }
1421    }
1422  }
1423  return true;
1424}
1425
1426void CheckPrintfHandler::HandleInvalidAmount(
1427                                      const analyze_printf::PrintfSpecifier &FS,
1428                                      const analyze_printf::OptionalAmount &Amt,
1429                                      unsigned type,
1430                                      const char *startSpecifier,
1431                                      unsigned specifierLen) {
1432  const analyze_printf::PrintfConversionSpecifier &CS =
1433    FS.getConversionSpecifier();
1434  switch (Amt.getHowSpecified()) {
1435  case analyze_printf::OptionalAmount::Constant:
1436    S.Diag(getLocationOfByte(Amt.getStart()),
1437        diag::warn_printf_nonsensical_optional_amount)
1438      << type
1439      << CS.toString()
1440      << getSpecifierRange(startSpecifier, specifierLen)
1441      << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
1442          Amt.getConstantLength()));
1443    break;
1444
1445  default:
1446    S.Diag(getLocationOfByte(Amt.getStart()),
1447        diag::warn_printf_nonsensical_optional_amount)
1448      << type
1449      << CS.toString()
1450      << getSpecifierRange(startSpecifier, specifierLen);
1451    break;
1452  }
1453}
1454
1455void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
1456                                    const analyze_printf::OptionalFlag &flag,
1457                                    const char *startSpecifier,
1458                                    unsigned specifierLen) {
1459  // Warn about pointless flag with a fixit removal.
1460  const analyze_printf::PrintfConversionSpecifier &CS =
1461    FS.getConversionSpecifier();
1462  S.Diag(getLocationOfByte(flag.getPosition()),
1463      diag::warn_printf_nonsensical_flag)
1464    << flag.toString() << CS.toString()
1465    << getSpecifierRange(startSpecifier, specifierLen)
1466    << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
1467}
1468
1469void CheckPrintfHandler::HandleIgnoredFlag(
1470                                const analyze_printf::PrintfSpecifier &FS,
1471                                const analyze_printf::OptionalFlag &ignoredFlag,
1472                                const analyze_printf::OptionalFlag &flag,
1473                                const char *startSpecifier,
1474                                unsigned specifierLen) {
1475  // Warn about ignored flag with a fixit removal.
1476  S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
1477      diag::warn_printf_ignored_flag)
1478    << ignoredFlag.toString() << flag.toString()
1479    << getSpecifierRange(startSpecifier, specifierLen)
1480    << FixItHint::CreateRemoval(getSpecifierRange(
1481        ignoredFlag.getPosition(), 1));
1482}
1483
1484bool
1485CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
1486                                            &FS,
1487                                          const char *startSpecifier,
1488                                          unsigned specifierLen) {
1489
1490  using namespace analyze_format_string;
1491  using namespace analyze_printf;
1492  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
1493
1494  if (FS.consumesDataArgument()) {
1495    if (atFirstArg) {
1496        atFirstArg = false;
1497        usesPositionalArgs = FS.usesPositionalArg();
1498    }
1499    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1500      // Cannot mix-and-match positional and non-positional arguments.
1501      S.Diag(getLocationOfByte(CS.getStart()),
1502             diag::warn_format_mix_positional_nonpositional_args)
1503        << getSpecifierRange(startSpecifier, specifierLen);
1504      return false;
1505    }
1506  }
1507
1508  // First check if the field width, precision, and conversion specifier
1509  // have matching data arguments.
1510  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
1511                    startSpecifier, specifierLen)) {
1512    return false;
1513  }
1514
1515  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
1516                    startSpecifier, specifierLen)) {
1517    return false;
1518  }
1519
1520  if (!CS.consumesDataArgument()) {
1521    // FIXME: Technically specifying a precision or field width here
1522    // makes no sense.  Worth issuing a warning at some point.
1523    return true;
1524  }
1525
1526  // Consume the argument.
1527  unsigned argIndex = FS.getArgIndex();
1528  if (argIndex < NumDataArgs) {
1529    // The check to see if the argIndex is valid will come later.
1530    // We set the bit here because we may exit early from this
1531    // function if we encounter some other error.
1532    CoveredArgs.set(argIndex);
1533  }
1534
1535  // Check for using an Objective-C specific conversion specifier
1536  // in a non-ObjC literal.
1537  if (!IsObjCLiteral && CS.isObjCArg()) {
1538    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
1539                                                  specifierLen);
1540  }
1541
1542  // Check for invalid use of field width
1543  if (!FS.hasValidFieldWidth()) {
1544    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
1545        startSpecifier, specifierLen);
1546  }
1547
1548  // Check for invalid use of precision
1549  if (!FS.hasValidPrecision()) {
1550    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
1551        startSpecifier, specifierLen);
1552  }
1553
1554  // Check each flag does not conflict with any other component.
1555  if (!FS.hasValidLeadingZeros())
1556    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
1557  if (!FS.hasValidPlusPrefix())
1558    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
1559  if (!FS.hasValidSpacePrefix())
1560    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
1561  if (!FS.hasValidAlternativeForm())
1562    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
1563  if (!FS.hasValidLeftJustified())
1564    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
1565
1566  // Check that flags are not ignored by another flag
1567  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
1568    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
1569        startSpecifier, specifierLen);
1570  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
1571    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
1572            startSpecifier, specifierLen);
1573
1574  // Check the length modifier is valid with the given conversion specifier.
1575  const LengthModifier &LM = FS.getLengthModifier();
1576  if (!FS.hasValidLengthModifier())
1577    S.Diag(getLocationOfByte(LM.getStart()),
1578        diag::warn_format_nonsensical_length)
1579      << LM.toString() << CS.toString()
1580      << getSpecifierRange(startSpecifier, specifierLen)
1581      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1582          LM.getLength()));
1583
1584  // Are we using '%n'?
1585  if (CS.getKind() == ConversionSpecifier::nArg) {
1586    // Issue a warning about this being a possible security issue.
1587    S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
1588      << getSpecifierRange(startSpecifier, specifierLen);
1589    // Continue checking the other format specifiers.
1590    return true;
1591  }
1592
1593  // The remaining checks depend on the data arguments.
1594  if (HasVAListArg)
1595    return true;
1596
1597  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1598    return false;
1599
1600  // Now type check the data expression that matches the
1601  // format specifier.
1602  const Expr *Ex = getDataArg(argIndex);
1603  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
1604  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
1605    // Check if we didn't match because of an implicit cast from a 'char'
1606    // or 'short' to an 'int'.  This is done because printf is a varargs
1607    // function.
1608    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
1609      if (ICE->getType() == S.Context.IntTy)
1610        if (ATR.matchesType(S.Context, ICE->getSubExpr()->getType()))
1611          return true;
1612
1613    // We may be able to offer a FixItHint if it is a supported type.
1614    PrintfSpecifier fixedFS = FS;
1615    bool success = fixedFS.fixType(Ex->getType());
1616
1617    if (success) {
1618      // Get the fix string from the fixed format specifier
1619      llvm::SmallString<128> buf;
1620      llvm::raw_svector_ostream os(buf);
1621      fixedFS.toString(os);
1622
1623      // FIXME: getRepresentativeType() perhaps should return a string
1624      // instead of a QualType to better handle when the representative
1625      // type is 'wint_t' (which is defined in the system headers).
1626      S.Diag(getLocationOfByte(CS.getStart()),
1627          diag::warn_printf_conversion_argument_type_mismatch)
1628        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1629        << getSpecifierRange(startSpecifier, specifierLen)
1630        << Ex->getSourceRange()
1631        << FixItHint::CreateReplacement(
1632            getSpecifierRange(startSpecifier, specifierLen),
1633            os.str());
1634    }
1635    else {
1636      S.Diag(getLocationOfByte(CS.getStart()),
1637             diag::warn_printf_conversion_argument_type_mismatch)
1638        << ATR.getRepresentativeType(S.Context) << Ex->getType()
1639        << getSpecifierRange(startSpecifier, specifierLen)
1640        << Ex->getSourceRange();
1641    }
1642  }
1643
1644  return true;
1645}
1646
1647//===--- CHECK: Scanf format string checking ------------------------------===//
1648
1649namespace {
1650class CheckScanfHandler : public CheckFormatHandler {
1651public:
1652  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
1653                    const Expr *origFormatExpr, unsigned firstDataArg,
1654                    unsigned numDataArgs, bool isObjCLiteral,
1655                    const char *beg, bool hasVAListArg,
1656                    const CallExpr *theCall, unsigned formatIdx)
1657  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
1658                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
1659                       theCall, formatIdx) {}
1660
1661  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
1662                            const char *startSpecifier,
1663                            unsigned specifierLen);
1664
1665  bool HandleInvalidScanfConversionSpecifier(
1666          const analyze_scanf::ScanfSpecifier &FS,
1667          const char *startSpecifier,
1668          unsigned specifierLen);
1669
1670  void HandleIncompleteScanList(const char *start, const char *end);
1671};
1672}
1673
1674void CheckScanfHandler::HandleIncompleteScanList(const char *start,
1675                                                 const char *end) {
1676  S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
1677    << getSpecifierRange(start, end - start);
1678}
1679
1680bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
1681                                        const analyze_scanf::ScanfSpecifier &FS,
1682                                        const char *startSpecifier,
1683                                        unsigned specifierLen) {
1684
1685  const analyze_scanf::ScanfConversionSpecifier &CS =
1686    FS.getConversionSpecifier();
1687
1688  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
1689                                          getLocationOfByte(CS.getStart()),
1690                                          startSpecifier, specifierLen,
1691                                          CS.getStart(), CS.getLength());
1692}
1693
1694bool CheckScanfHandler::HandleScanfSpecifier(
1695                                       const analyze_scanf::ScanfSpecifier &FS,
1696                                       const char *startSpecifier,
1697                                       unsigned specifierLen) {
1698
1699  using namespace analyze_scanf;
1700  using namespace analyze_format_string;
1701
1702  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
1703
1704  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
1705  // be used to decide if we are using positional arguments consistently.
1706  if (FS.consumesDataArgument()) {
1707    if (atFirstArg) {
1708      atFirstArg = false;
1709      usesPositionalArgs = FS.usesPositionalArg();
1710    }
1711    else if (usesPositionalArgs != FS.usesPositionalArg()) {
1712      // Cannot mix-and-match positional and non-positional arguments.
1713      S.Diag(getLocationOfByte(CS.getStart()),
1714             diag::warn_format_mix_positional_nonpositional_args)
1715        << getSpecifierRange(startSpecifier, specifierLen);
1716      return false;
1717    }
1718  }
1719
1720  // Check if the field with is non-zero.
1721  const OptionalAmount &Amt = FS.getFieldWidth();
1722  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
1723    if (Amt.getConstantAmount() == 0) {
1724      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
1725                                                   Amt.getConstantLength());
1726      S.Diag(getLocationOfByte(Amt.getStart()),
1727             diag::warn_scanf_nonzero_width)
1728        << R << FixItHint::CreateRemoval(R);
1729    }
1730  }
1731
1732  if (!FS.consumesDataArgument()) {
1733    // FIXME: Technically specifying a precision or field width here
1734    // makes no sense.  Worth issuing a warning at some point.
1735    return true;
1736  }
1737
1738  // Consume the argument.
1739  unsigned argIndex = FS.getArgIndex();
1740  if (argIndex < NumDataArgs) {
1741      // The check to see if the argIndex is valid will come later.
1742      // We set the bit here because we may exit early from this
1743      // function if we encounter some other error.
1744    CoveredArgs.set(argIndex);
1745  }
1746
1747  // Check the length modifier is valid with the given conversion specifier.
1748  const LengthModifier &LM = FS.getLengthModifier();
1749  if (!FS.hasValidLengthModifier()) {
1750    S.Diag(getLocationOfByte(LM.getStart()),
1751           diag::warn_format_nonsensical_length)
1752      << LM.toString() << CS.toString()
1753      << getSpecifierRange(startSpecifier, specifierLen)
1754      << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
1755                                                    LM.getLength()));
1756  }
1757
1758  // The remaining checks depend on the data arguments.
1759  if (HasVAListArg)
1760    return true;
1761
1762  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
1763    return false;
1764
1765  // FIXME: Check that the argument type matches the format specifier.
1766
1767  return true;
1768}
1769
1770void Sema::CheckFormatString(const StringLiteral *FExpr,
1771                             const Expr *OrigFormatExpr,
1772                             const CallExpr *TheCall, bool HasVAListArg,
1773                             unsigned format_idx, unsigned firstDataArg,
1774                             bool isPrintf) {
1775
1776  // CHECK: is the format string a wide literal?
1777  if (FExpr->isWide()) {
1778    Diag(FExpr->getLocStart(),
1779         diag::warn_format_string_is_wide_literal)
1780    << OrigFormatExpr->getSourceRange();
1781    return;
1782  }
1783
1784  // Str - The format string.  NOTE: this is NOT null-terminated!
1785  llvm::StringRef StrRef = FExpr->getString();
1786  const char *Str = StrRef.data();
1787  unsigned StrLen = StrRef.size();
1788
1789  // CHECK: empty format string?
1790  if (StrLen == 0) {
1791    Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
1792    << OrigFormatExpr->getSourceRange();
1793    return;
1794  }
1795
1796  if (isPrintf) {
1797    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1798                         TheCall->getNumArgs() - firstDataArg,
1799                         isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1800                         HasVAListArg, TheCall, format_idx);
1801
1802    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
1803      H.DoneProcessing();
1804  }
1805  else {
1806    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
1807                        TheCall->getNumArgs() - firstDataArg,
1808                        isa<ObjCStringLiteral>(OrigFormatExpr), Str,
1809                        HasVAListArg, TheCall, format_idx);
1810
1811    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
1812      H.DoneProcessing();
1813  }
1814}
1815
1816//===--- CHECK: Return Address of Stack Variable --------------------------===//
1817
1818static DeclRefExpr* EvalVal(Expr *E);
1819static DeclRefExpr* EvalAddr(Expr* E);
1820
1821/// CheckReturnStackAddr - Check if a return statement returns the address
1822///   of a stack variable.
1823void
1824Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
1825                           SourceLocation ReturnLoc) {
1826
1827  // Perform checking for returned stack addresses.
1828  if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
1829    if (DeclRefExpr *DR = EvalAddr(RetValExp))
1830      Diag(DR->getLocStart(), diag::warn_ret_stack_addr)
1831       << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1832
1833    // Skip over implicit cast expressions when checking for block expressions.
1834    RetValExp = RetValExp->IgnoreParenCasts();
1835
1836    if (BlockExpr *C = dyn_cast<BlockExpr>(RetValExp))
1837      if (C->hasBlockDeclRefExprs())
1838        Diag(C->getLocStart(), diag::err_ret_local_block)
1839          << C->getSourceRange();
1840
1841    if (AddrLabelExpr *ALE = dyn_cast<AddrLabelExpr>(RetValExp))
1842      Diag(ALE->getLocStart(), diag::warn_ret_addr_label)
1843        << ALE->getSourceRange();
1844
1845  } else if (lhsType->isReferenceType()) {
1846    // Perform checking for stack values returned by reference.
1847    // Check for a reference to the stack
1848    if (DeclRefExpr *DR = EvalVal(RetValExp))
1849      Diag(DR->getLocStart(), diag::warn_ret_stack_ref)
1850        << DR->getDecl()->getDeclName() << RetValExp->getSourceRange();
1851  }
1852}
1853
1854/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
1855///  check if the expression in a return statement evaluates to an address
1856///  to a location on the stack.  The recursion is used to traverse the
1857///  AST of the return expression, with recursion backtracking when we
1858///  encounter a subexpression that (1) clearly does not lead to the address
1859///  of a stack variable or (2) is something we cannot determine leads to
1860///  the address of a stack variable based on such local checking.
1861///
1862///  EvalAddr processes expressions that are pointers that are used as
1863///  references (and not L-values).  EvalVal handles all other values.
1864///  At the base case of the recursion is a check for a DeclRefExpr* in
1865///  the refers to a stack variable.
1866///
1867///  This implementation handles:
1868///
1869///   * pointer-to-pointer casts
1870///   * implicit conversions from array references to pointers
1871///   * taking the address of fields
1872///   * arbitrary interplay between "&" and "*" operators
1873///   * pointer arithmetic from an address of a stack variable
1874///   * taking the address of an array element where the array is on the stack
1875static DeclRefExpr* EvalAddr(Expr *E) {
1876  // We should only be called for evaluating pointer expressions.
1877  assert((E->getType()->isAnyPointerType() ||
1878          E->getType()->isBlockPointerType() ||
1879          E->getType()->isObjCQualifiedIdType()) &&
1880         "EvalAddr only works on pointers");
1881
1882  // Our "symbolic interpreter" is just a dispatch off the currently
1883  // viewed AST node.  We then recursively traverse the AST by calling
1884  // EvalAddr and EvalVal appropriately.
1885  switch (E->getStmtClass()) {
1886  case Stmt::ParenExprClass:
1887    // Ignore parentheses.
1888    return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
1889
1890  case Stmt::UnaryOperatorClass: {
1891    // The only unary operator that make sense to handle here
1892    // is AddrOf.  All others don't make sense as pointers.
1893    UnaryOperator *U = cast<UnaryOperator>(E);
1894
1895    if (U->getOpcode() == UO_AddrOf)
1896      return EvalVal(U->getSubExpr());
1897    else
1898      return NULL;
1899  }
1900
1901  case Stmt::BinaryOperatorClass: {
1902    // Handle pointer arithmetic.  All other binary operators are not valid
1903    // in this context.
1904    BinaryOperator *B = cast<BinaryOperator>(E);
1905    BinaryOperatorKind op = B->getOpcode();
1906
1907    if (op != BO_Add && op != BO_Sub)
1908      return NULL;
1909
1910    Expr *Base = B->getLHS();
1911
1912    // Determine which argument is the real pointer base.  It could be
1913    // the RHS argument instead of the LHS.
1914    if (!Base->getType()->isPointerType()) Base = B->getRHS();
1915
1916    assert (Base->getType()->isPointerType());
1917    return EvalAddr(Base);
1918  }
1919
1920  // For conditional operators we need to see if either the LHS or RHS are
1921  // valid DeclRefExpr*s.  If one of them is valid, we return it.
1922  case Stmt::ConditionalOperatorClass: {
1923    ConditionalOperator *C = cast<ConditionalOperator>(E);
1924
1925    // Handle the GNU extension for missing LHS.
1926    if (Expr *lhsExpr = C->getLHS())
1927      if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
1928        return LHS;
1929
1930     return EvalAddr(C->getRHS());
1931  }
1932
1933  // For casts, we need to handle conversions from arrays to
1934  // pointer values, and pointer-to-pointer conversions.
1935  case Stmt::ImplicitCastExprClass:
1936  case Stmt::CStyleCastExprClass:
1937  case Stmt::CXXFunctionalCastExprClass: {
1938    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1939    QualType T = SubExpr->getType();
1940
1941    if (SubExpr->getType()->isPointerType() ||
1942        SubExpr->getType()->isBlockPointerType() ||
1943        SubExpr->getType()->isObjCQualifiedIdType())
1944      return EvalAddr(SubExpr);
1945    else if (T->isArrayType())
1946      return EvalVal(SubExpr);
1947    else
1948      return 0;
1949  }
1950
1951  // C++ casts.  For dynamic casts, static casts, and const casts, we
1952  // are always converting from a pointer-to-pointer, so we just blow
1953  // through the cast.  In the case the dynamic cast doesn't fail (and
1954  // return NULL), we take the conservative route and report cases
1955  // where we return the address of a stack variable.  For Reinterpre
1956  // FIXME: The comment about is wrong; we're not always converting
1957  // from pointer to pointer. I'm guessing that this code should also
1958  // handle references to objects.
1959  case Stmt::CXXStaticCastExprClass:
1960  case Stmt::CXXDynamicCastExprClass:
1961  case Stmt::CXXConstCastExprClass:
1962  case Stmt::CXXReinterpretCastExprClass: {
1963      Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
1964      if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
1965        return EvalAddr(S);
1966      else
1967        return NULL;
1968  }
1969
1970  // Everything else: we simply don't reason about them.
1971  default:
1972    return NULL;
1973  }
1974}
1975
1976
1977///  EvalVal - This function is complements EvalAddr in the mutual recursion.
1978///   See the comments for EvalAddr for more details.
1979static DeclRefExpr* EvalVal(Expr *E) {
1980do {
1981  // We should only be called for evaluating non-pointer expressions, or
1982  // expressions with a pointer type that are not used as references but instead
1983  // are l-values (e.g., DeclRefExpr with a pointer type).
1984
1985  // Our "symbolic interpreter" is just a dispatch off the currently
1986  // viewed AST node.  We then recursively traverse the AST by calling
1987  // EvalAddr and EvalVal appropriately.
1988  switch (E->getStmtClass()) {
1989  case Stmt::ImplicitCastExprClass: {
1990    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
1991    if (IE->getValueKind() == VK_LValue) {
1992      E = IE->getSubExpr();
1993      continue;
1994    }
1995    return NULL;
1996  }
1997
1998  case Stmt::DeclRefExprClass: {
1999    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
2000    //  at code that refers to a variable's name.  We check if it has local
2001    //  storage within the function, and if so, return the expression.
2002    DeclRefExpr *DR = cast<DeclRefExpr>(E);
2003
2004    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
2005      if (V->hasLocalStorage() && !V->getType()->isReferenceType()) return DR;
2006
2007    return NULL;
2008  }
2009
2010  case Stmt::ParenExprClass: {
2011    // Ignore parentheses.
2012    E = cast<ParenExpr>(E)->getSubExpr();
2013    continue;
2014  }
2015
2016  case Stmt::UnaryOperatorClass: {
2017    // The only unary operator that make sense to handle here
2018    // is Deref.  All others don't resolve to a "name."  This includes
2019    // handling all sorts of rvalues passed to a unary operator.
2020    UnaryOperator *U = cast<UnaryOperator>(E);
2021
2022    if (U->getOpcode() == UO_Deref)
2023      return EvalAddr(U->getSubExpr());
2024
2025    return NULL;
2026  }
2027
2028  case Stmt::ArraySubscriptExprClass: {
2029    // Array subscripts are potential references to data on the stack.  We
2030    // retrieve the DeclRefExpr* for the array variable if it indeed
2031    // has local storage.
2032    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
2033  }
2034
2035  case Stmt::ConditionalOperatorClass: {
2036    // For conditional operators we need to see if either the LHS or RHS are
2037    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
2038    ConditionalOperator *C = cast<ConditionalOperator>(E);
2039
2040    // Handle the GNU extension for missing LHS.
2041    if (Expr *lhsExpr = C->getLHS())
2042      if (DeclRefExpr *LHS = EvalVal(lhsExpr))
2043        return LHS;
2044
2045    return EvalVal(C->getRHS());
2046  }
2047
2048  // Accesses to members are potential references to data on the stack.
2049  case Stmt::MemberExprClass: {
2050    MemberExpr *M = cast<MemberExpr>(E);
2051
2052    // Check for indirect access.  We only want direct field accesses.
2053    if (M->isArrow())
2054      return NULL;
2055
2056    // Check whether the member type is itself a reference, in which case
2057    // we're not going to refer to the member, but to what the member refers to.
2058    if (M->getMemberDecl()->getType()->isReferenceType())
2059      return NULL;
2060
2061    return EvalVal(M->getBase());
2062  }
2063
2064  // Everything else: we simply don't reason about them.
2065  default:
2066    return NULL;
2067  }
2068} while (true);
2069}
2070
2071//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
2072
2073/// Check for comparisons of floating point operands using != and ==.
2074/// Issue a warning if these are no self-comparisons, as they are not likely
2075/// to do what the programmer intended.
2076void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
2077  bool EmitWarning = true;
2078
2079  Expr* LeftExprSansParen = lex->IgnoreParens();
2080  Expr* RightExprSansParen = rex->IgnoreParens();
2081
2082  // Special case: check for x == x (which is OK).
2083  // Do not emit warnings for such cases.
2084  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
2085    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
2086      if (DRL->getDecl() == DRR->getDecl())
2087        EmitWarning = false;
2088
2089
2090  // Special case: check for comparisons against literals that can be exactly
2091  //  represented by APFloat.  In such cases, do not emit a warning.  This
2092  //  is a heuristic: often comparison against such literals are used to
2093  //  detect if a value in a variable has not changed.  This clearly can
2094  //  lead to false negatives.
2095  if (EmitWarning) {
2096    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
2097      if (FLL->isExact())
2098        EmitWarning = false;
2099    } else
2100      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
2101        if (FLR->isExact())
2102          EmitWarning = false;
2103    }
2104  }
2105
2106  // Check for comparisons with builtin types.
2107  if (EmitWarning)
2108    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
2109      if (CL->isBuiltinCall(Context))
2110        EmitWarning = false;
2111
2112  if (EmitWarning)
2113    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
2114      if (CR->isBuiltinCall(Context))
2115        EmitWarning = false;
2116
2117  // Emit the diagnostic.
2118  if (EmitWarning)
2119    Diag(loc, diag::warn_floatingpoint_eq)
2120      << lex->getSourceRange() << rex->getSourceRange();
2121}
2122
2123//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
2124//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
2125
2126namespace {
2127
2128/// Structure recording the 'active' range of an integer-valued
2129/// expression.
2130struct IntRange {
2131  /// The number of bits active in the int.
2132  unsigned Width;
2133
2134  /// True if the int is known not to have negative values.
2135  bool NonNegative;
2136
2137  IntRange(unsigned Width, bool NonNegative)
2138    : Width(Width), NonNegative(NonNegative)
2139  {}
2140
2141  // Returns the range of the bool type.
2142  static IntRange forBoolType() {
2143    return IntRange(1, true);
2144  }
2145
2146  // Returns the range of an integral type.
2147  static IntRange forType(ASTContext &C, QualType T) {
2148    return forCanonicalType(C, T->getCanonicalTypeInternal().getTypePtr());
2149  }
2150
2151  // Returns the range of an integeral type based on its canonical
2152  // representation.
2153  static IntRange forCanonicalType(ASTContext &C, const Type *T) {
2154    assert(T->isCanonicalUnqualified());
2155
2156    if (const VectorType *VT = dyn_cast<VectorType>(T))
2157      T = VT->getElementType().getTypePtr();
2158    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
2159      T = CT->getElementType().getTypePtr();
2160
2161    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
2162      EnumDecl *Enum = ET->getDecl();
2163      unsigned NumPositive = Enum->getNumPositiveBits();
2164      unsigned NumNegative = Enum->getNumNegativeBits();
2165
2166      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
2167    }
2168
2169    const BuiltinType *BT = cast<BuiltinType>(T);
2170    assert(BT->isInteger());
2171
2172    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
2173  }
2174
2175  // Returns the supremum of two ranges: i.e. their conservative merge.
2176  static IntRange join(IntRange L, IntRange R) {
2177    return IntRange(std::max(L.Width, R.Width),
2178                    L.NonNegative && R.NonNegative);
2179  }
2180
2181  // Returns the infinum of two ranges: i.e. their aggressive merge.
2182  static IntRange meet(IntRange L, IntRange R) {
2183    return IntRange(std::min(L.Width, R.Width),
2184                    L.NonNegative || R.NonNegative);
2185  }
2186};
2187
2188IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
2189  if (value.isSigned() && value.isNegative())
2190    return IntRange(value.getMinSignedBits(), false);
2191
2192  if (value.getBitWidth() > MaxWidth)
2193    value.trunc(MaxWidth);
2194
2195  // isNonNegative() just checks the sign bit without considering
2196  // signedness.
2197  return IntRange(value.getActiveBits(), true);
2198}
2199
2200IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
2201                       unsigned MaxWidth) {
2202  if (result.isInt())
2203    return GetValueRange(C, result.getInt(), MaxWidth);
2204
2205  if (result.isVector()) {
2206    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
2207    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
2208      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
2209      R = IntRange::join(R, El);
2210    }
2211    return R;
2212  }
2213
2214  if (result.isComplexInt()) {
2215    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
2216    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
2217    return IntRange::join(R, I);
2218  }
2219
2220  // This can happen with lossless casts to intptr_t of "based" lvalues.
2221  // Assume it might use arbitrary bits.
2222  // FIXME: The only reason we need to pass the type in here is to get
2223  // the sign right on this one case.  It would be nice if APValue
2224  // preserved this.
2225  assert(result.isLValue());
2226  return IntRange(MaxWidth, Ty->isUnsignedIntegerType());
2227}
2228
2229/// Pseudo-evaluate the given integer expression, estimating the
2230/// range of values it might take.
2231///
2232/// \param MaxWidth - the width to which the value will be truncated
2233IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
2234  E = E->IgnoreParens();
2235
2236  // Try a full evaluation first.
2237  Expr::EvalResult result;
2238  if (E->Evaluate(result, C))
2239    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
2240
2241  // I think we only want to look through implicit casts here; if the
2242  // user has an explicit widening cast, we should treat the value as
2243  // being of the new, wider type.
2244  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
2245    if (CE->getCastKind() == CK_NoOp)
2246      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
2247
2248    IntRange OutputTypeRange = IntRange::forType(C, CE->getType());
2249
2250    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
2251    if (!isIntegerCast && CE->getCastKind() == CK_Unknown)
2252      isIntegerCast = CE->getSubExpr()->getType()->isIntegerType();
2253
2254    // Assume that non-integer casts can span the full range of the type.
2255    if (!isIntegerCast)
2256      return OutputTypeRange;
2257
2258    IntRange SubRange
2259      = GetExprRange(C, CE->getSubExpr(),
2260                     std::min(MaxWidth, OutputTypeRange.Width));
2261
2262    // Bail out if the subexpr's range is as wide as the cast type.
2263    if (SubRange.Width >= OutputTypeRange.Width)
2264      return OutputTypeRange;
2265
2266    // Otherwise, we take the smaller width, and we're non-negative if
2267    // either the output type or the subexpr is.
2268    return IntRange(SubRange.Width,
2269                    SubRange.NonNegative || OutputTypeRange.NonNegative);
2270  }
2271
2272  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2273    // If we can fold the condition, just take that operand.
2274    bool CondResult;
2275    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
2276      return GetExprRange(C, CondResult ? CO->getTrueExpr()
2277                                        : CO->getFalseExpr(),
2278                          MaxWidth);
2279
2280    // Otherwise, conservatively merge.
2281    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
2282    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
2283    return IntRange::join(L, R);
2284  }
2285
2286  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2287    switch (BO->getOpcode()) {
2288
2289    // Boolean-valued operations are single-bit and positive.
2290    case BO_LAnd:
2291    case BO_LOr:
2292    case BO_LT:
2293    case BO_GT:
2294    case BO_LE:
2295    case BO_GE:
2296    case BO_EQ:
2297    case BO_NE:
2298      return IntRange::forBoolType();
2299
2300    // The type of these compound assignments is the type of the LHS,
2301    // so the RHS is not necessarily an integer.
2302    case BO_MulAssign:
2303    case BO_DivAssign:
2304    case BO_RemAssign:
2305    case BO_AddAssign:
2306    case BO_SubAssign:
2307      return IntRange::forType(C, E->getType());
2308
2309    // Operations with opaque sources are black-listed.
2310    case BO_PtrMemD:
2311    case BO_PtrMemI:
2312      return IntRange::forType(C, E->getType());
2313
2314    // Bitwise-and uses the *infinum* of the two source ranges.
2315    case BO_And:
2316    case BO_AndAssign:
2317      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
2318                            GetExprRange(C, BO->getRHS(), MaxWidth));
2319
2320    // Left shift gets black-listed based on a judgement call.
2321    case BO_Shl:
2322      // ...except that we want to treat '1 << (blah)' as logically
2323      // positive.  It's an important idiom.
2324      if (IntegerLiteral *I
2325            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
2326        if (I->getValue() == 1) {
2327          IntRange R = IntRange::forType(C, E->getType());
2328          return IntRange(R.Width, /*NonNegative*/ true);
2329        }
2330      }
2331      // fallthrough
2332
2333    case BO_ShlAssign:
2334      return IntRange::forType(C, E->getType());
2335
2336    // Right shift by a constant can narrow its left argument.
2337    case BO_Shr:
2338    case BO_ShrAssign: {
2339      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2340
2341      // If the shift amount is a positive constant, drop the width by
2342      // that much.
2343      llvm::APSInt shift;
2344      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
2345          shift.isNonNegative()) {
2346        unsigned zext = shift.getZExtValue();
2347        if (zext >= L.Width)
2348          L.Width = (L.NonNegative ? 0 : 1);
2349        else
2350          L.Width -= zext;
2351      }
2352
2353      return L;
2354    }
2355
2356    // Comma acts as its right operand.
2357    case BO_Comma:
2358      return GetExprRange(C, BO->getRHS(), MaxWidth);
2359
2360    // Black-list pointer subtractions.
2361    case BO_Sub:
2362      if (BO->getLHS()->getType()->isPointerType())
2363        return IntRange::forType(C, E->getType());
2364      // fallthrough
2365
2366    default:
2367      break;
2368    }
2369
2370    // Treat every other operator as if it were closed on the
2371    // narrowest type that encompasses both operands.
2372    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
2373    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
2374    return IntRange::join(L, R);
2375  }
2376
2377  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2378    switch (UO->getOpcode()) {
2379    // Boolean-valued operations are white-listed.
2380    case UO_LNot:
2381      return IntRange::forBoolType();
2382
2383    // Operations with opaque sources are black-listed.
2384    case UO_Deref:
2385    case UO_AddrOf: // should be impossible
2386      return IntRange::forType(C, E->getType());
2387
2388    default:
2389      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
2390    }
2391  }
2392
2393  if (dyn_cast<OffsetOfExpr>(E)) {
2394    IntRange::forType(C, E->getType());
2395  }
2396
2397  FieldDecl *BitField = E->getBitField();
2398  if (BitField) {
2399    llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
2400    unsigned BitWidth = BitWidthAP.getZExtValue();
2401
2402    return IntRange(BitWidth, BitField->getType()->isUnsignedIntegerType());
2403  }
2404
2405  return IntRange::forType(C, E->getType());
2406}
2407
2408IntRange GetExprRange(ASTContext &C, Expr *E) {
2409  return GetExprRange(C, E, C.getIntWidth(E->getType()));
2410}
2411
2412/// Checks whether the given value, which currently has the given
2413/// source semantics, has the same value when coerced through the
2414/// target semantics.
2415bool IsSameFloatAfterCast(const llvm::APFloat &value,
2416                          const llvm::fltSemantics &Src,
2417                          const llvm::fltSemantics &Tgt) {
2418  llvm::APFloat truncated = value;
2419
2420  bool ignored;
2421  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
2422  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
2423
2424  return truncated.bitwiseIsEqual(value);
2425}
2426
2427/// Checks whether the given value, which currently has the given
2428/// source semantics, has the same value when coerced through the
2429/// target semantics.
2430///
2431/// The value might be a vector of floats (or a complex number).
2432bool IsSameFloatAfterCast(const APValue &value,
2433                          const llvm::fltSemantics &Src,
2434                          const llvm::fltSemantics &Tgt) {
2435  if (value.isFloat())
2436    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
2437
2438  if (value.isVector()) {
2439    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
2440      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
2441        return false;
2442    return true;
2443  }
2444
2445  assert(value.isComplexFloat());
2446  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
2447          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
2448}
2449
2450void AnalyzeImplicitConversions(Sema &S, Expr *E);
2451
2452bool IsZero(Sema &S, Expr *E) {
2453  llvm::APSInt Value;
2454  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
2455}
2456
2457void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
2458  BinaryOperatorKind op = E->getOpcode();
2459  if (op == BO_LT && IsZero(S, E->getRHS())) {
2460    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2461      << "< 0" << "false"
2462      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2463  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
2464    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
2465      << ">= 0" << "true"
2466      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2467  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
2468    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2469      << "0 >" << "false"
2470      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2471  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
2472    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
2473      << "0 <=" << "true"
2474      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
2475  }
2476}
2477
2478/// Analyze the operands of the given comparison.  Implements the
2479/// fallback case from AnalyzeComparison.
2480void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
2481  AnalyzeImplicitConversions(S, E->getLHS());
2482  AnalyzeImplicitConversions(S, E->getRHS());
2483}
2484
2485/// \brief Implements -Wsign-compare.
2486///
2487/// \param lex the left-hand expression
2488/// \param rex the right-hand expression
2489/// \param OpLoc the location of the joining operator
2490/// \param BinOpc binary opcode or 0
2491void AnalyzeComparison(Sema &S, BinaryOperator *E) {
2492  // The type the comparison is being performed in.
2493  QualType T = E->getLHS()->getType();
2494  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
2495         && "comparison with mismatched types");
2496
2497  // We don't do anything special if this isn't an unsigned integral
2498  // comparison:  we're only interested in integral comparisons, and
2499  // signed comparisons only happen in cases we don't care to warn about.
2500  if (!T->hasUnsignedIntegerRepresentation())
2501    return AnalyzeImpConvsInComparison(S, E);
2502
2503  Expr *lex = E->getLHS()->IgnoreParenImpCasts();
2504  Expr *rex = E->getRHS()->IgnoreParenImpCasts();
2505
2506  // Check to see if one of the (unmodified) operands is of different
2507  // signedness.
2508  Expr *signedOperand, *unsignedOperand;
2509  if (lex->getType()->hasSignedIntegerRepresentation()) {
2510    assert(!rex->getType()->hasSignedIntegerRepresentation() &&
2511           "unsigned comparison between two signed integer expressions?");
2512    signedOperand = lex;
2513    unsignedOperand = rex;
2514  } else if (rex->getType()->hasSignedIntegerRepresentation()) {
2515    signedOperand = rex;
2516    unsignedOperand = lex;
2517  } else {
2518    CheckTrivialUnsignedComparison(S, E);
2519    return AnalyzeImpConvsInComparison(S, E);
2520  }
2521
2522  // Otherwise, calculate the effective range of the signed operand.
2523  IntRange signedRange = GetExprRange(S.Context, signedOperand);
2524
2525  // Go ahead and analyze implicit conversions in the operands.  Note
2526  // that we skip the implicit conversions on both sides.
2527  AnalyzeImplicitConversions(S, lex);
2528  AnalyzeImplicitConversions(S, rex);
2529
2530  // If the signed range is non-negative, -Wsign-compare won't fire,
2531  // but we should still check for comparisons which are always true
2532  // or false.
2533  if (signedRange.NonNegative)
2534    return CheckTrivialUnsignedComparison(S, E);
2535
2536  // For (in)equality comparisons, if the unsigned operand is a
2537  // constant which cannot collide with a overflowed signed operand,
2538  // then reinterpreting the signed operand as unsigned will not
2539  // change the result of the comparison.
2540  if (E->isEqualityOp()) {
2541    unsigned comparisonWidth = S.Context.getIntWidth(T);
2542    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
2543
2544    // We should never be unable to prove that the unsigned operand is
2545    // non-negative.
2546    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
2547
2548    if (unsignedRange.Width < comparisonWidth)
2549      return;
2550  }
2551
2552  S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
2553    << lex->getType() << rex->getType()
2554    << lex->getSourceRange() << rex->getSourceRange();
2555}
2556
2557/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
2558void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
2559  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
2560}
2561
2562void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
2563                             bool *ICContext = 0) {
2564  if (E->isTypeDependent() || E->isValueDependent()) return;
2565
2566  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
2567  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
2568  if (Source == Target) return;
2569  if (Target->isDependentType()) return;
2570
2571  // Never diagnose implicit casts to bool.
2572  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
2573    return;
2574
2575  // Strip vector types.
2576  if (isa<VectorType>(Source)) {
2577    if (!isa<VectorType>(Target))
2578      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);
2579
2580    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
2581    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
2582  }
2583
2584  // Strip complex types.
2585  if (isa<ComplexType>(Source)) {
2586    if (!isa<ComplexType>(Target))
2587      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);
2588
2589    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
2590    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
2591  }
2592
2593  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
2594  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
2595
2596  // If the source is floating point...
2597  if (SourceBT && SourceBT->isFloatingPoint()) {
2598    // ...and the target is floating point...
2599    if (TargetBT && TargetBT->isFloatingPoint()) {
2600      // ...then warn if we're dropping FP rank.
2601
2602      // Builtin FP kinds are ordered by increasing FP rank.
2603      if (SourceBT->getKind() > TargetBT->getKind()) {
2604        // Don't warn about float constants that are precisely
2605        // representable in the target type.
2606        Expr::EvalResult result;
2607        if (E->Evaluate(result, S.Context)) {
2608          // Value might be a float, a float vector, or a float complex.
2609          if (IsSameFloatAfterCast(result.Val,
2610                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
2611                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
2612            return;
2613        }
2614
2615        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
2616      }
2617      return;
2618    }
2619
2620    // If the target is integral, always warn.
2621    if ((TargetBT && TargetBT->isInteger()))
2622      // TODO: don't warn for integer values?
2623      DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);
2624
2625    return;
2626  }
2627
2628  if (!Source->isIntegerType() || !Target->isIntegerType())
2629    return;
2630
2631  IntRange SourceRange = GetExprRange(S.Context, E);
2632  IntRange TargetRange = IntRange::forCanonicalType(S.Context, Target);
2633
2634  if (SourceRange.Width > TargetRange.Width) {
2635    // People want to build with -Wshorten-64-to-32 and not -Wconversion
2636    // and by god we'll let them.
2637    if (SourceRange.Width == 64 && TargetRange.Width == 32)
2638      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
2639    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
2640  }
2641
2642  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
2643      (!TargetRange.NonNegative && SourceRange.NonNegative &&
2644       SourceRange.Width == TargetRange.Width)) {
2645    unsigned DiagID = diag::warn_impcast_integer_sign;
2646
2647    // Traditionally, gcc has warned about this under -Wsign-compare.
2648    // We also want to warn about it in -Wconversion.
2649    // So if -Wconversion is off, use a completely identical diagnostic
2650    // in the sign-compare group.
2651    // The conditional-checking code will
2652    if (ICContext) {
2653      DiagID = diag::warn_impcast_integer_sign_conditional;
2654      *ICContext = true;
2655    }
2656
2657    return DiagnoseImpCast(S, E, T, DiagID);
2658  }
2659
2660  return;
2661}
2662
2663void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
2664
2665void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
2666                             bool &ICContext) {
2667  E = E->IgnoreParenImpCasts();
2668
2669  if (isa<ConditionalOperator>(E))
2670    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
2671
2672  AnalyzeImplicitConversions(S, E);
2673  if (E->getType() != T)
2674    return CheckImplicitConversion(S, E, T, &ICContext);
2675  return;
2676}
2677
2678void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
2679  AnalyzeImplicitConversions(S, E->getCond());
2680
2681  bool Suspicious = false;
2682  CheckConditionalOperand(S, E->getTrueExpr(), T, Suspicious);
2683  CheckConditionalOperand(S, E->getFalseExpr(), T, Suspicious);
2684
2685  // If -Wconversion would have warned about either of the candidates
2686  // for a signedness conversion to the context type...
2687  if (!Suspicious) return;
2688
2689  // ...but it's currently ignored...
2690  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional))
2691    return;
2692
2693  // ...and -Wsign-compare isn't...
2694  if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional))
2695    return;
2696
2697  // ...then check whether it would have warned about either of the
2698  // candidates for a signedness conversion to the condition type.
2699  if (E->getType() != T) {
2700    Suspicious = false;
2701    CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
2702                            E->getType(), &Suspicious);
2703    if (!Suspicious)
2704      CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
2705                              E->getType(), &Suspicious);
2706    if (!Suspicious)
2707      return;
2708  }
2709
2710  // If so, emit a diagnostic under -Wsign-compare.
2711  Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
2712  Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
2713  S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
2714    << lex->getType() << rex->getType()
2715    << lex->getSourceRange() << rex->getSourceRange();
2716}
2717
2718/// AnalyzeImplicitConversions - Find and report any interesting
2719/// implicit conversions in the given expression.  There are a couple
2720/// of competing diagnostics here, -Wconversion and -Wsign-compare.
2721void AnalyzeImplicitConversions(Sema &S, Expr *OrigE) {
2722  QualType T = OrigE->getType();
2723  Expr *E = OrigE->IgnoreParenImpCasts();
2724
2725  // For conditional operators, we analyze the arguments as if they
2726  // were being fed directly into the output.
2727  if (isa<ConditionalOperator>(E)) {
2728    ConditionalOperator *CO = cast<ConditionalOperator>(E);
2729    CheckConditionalOperator(S, CO, T);
2730    return;
2731  }
2732
2733  // Go ahead and check any implicit conversions we might have skipped.
2734  // The non-canonical typecheck is just an optimization;
2735  // CheckImplicitConversion will filter out dead implicit conversions.
2736  if (E->getType() != T)
2737    CheckImplicitConversion(S, E, T);
2738
2739  // Now continue drilling into this expression.
2740
2741  // Skip past explicit casts.
2742  if (isa<ExplicitCastExpr>(E)) {
2743    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
2744    return AnalyzeImplicitConversions(S, E);
2745  }
2746
2747  // Do a somewhat different check with comparison operators.
2748  if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isComparisonOp())
2749    return AnalyzeComparison(S, cast<BinaryOperator>(E));
2750
2751  // These break the otherwise-useful invariant below.  Fortunately,
2752  // we don't really need to recurse into them, because any internal
2753  // expressions should have been analyzed already when they were
2754  // built into statements.
2755  if (isa<StmtExpr>(E)) return;
2756
2757  // Don't descend into unevaluated contexts.
2758  if (isa<SizeOfAlignOfExpr>(E)) return;
2759
2760  // Now just recurse over the expression's children.
2761  for (Stmt::child_iterator I = E->child_begin(), IE = E->child_end();
2762         I != IE; ++I)
2763    AnalyzeImplicitConversions(S, cast<Expr>(*I));
2764}
2765
2766} // end anonymous namespace
2767
2768/// Diagnoses "dangerous" implicit conversions within the given
2769/// expression (which is a full expression).  Implements -Wconversion
2770/// and -Wsign-compare.
2771void Sema::CheckImplicitConversions(Expr *E) {
2772  // Don't diagnose in unevaluated contexts.
2773  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
2774    return;
2775
2776  // Don't diagnose for value- or type-dependent expressions.
2777  if (E->isTypeDependent() || E->isValueDependent())
2778    return;
2779
2780  AnalyzeImplicitConversions(*this, E);
2781}
2782
2783/// CheckParmsForFunctionDef - Check that the parameters of the given
2784/// function are appropriate for the definition of a function. This
2785/// takes care of any checks that cannot be performed on the
2786/// declaration itself, e.g., that the types of each of the function
2787/// parameters are complete.
2788bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
2789  bool HasInvalidParm = false;
2790  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2791    ParmVarDecl *Param = FD->getParamDecl(p);
2792
2793    // C99 6.7.5.3p4: the parameters in a parameter type list in a
2794    // function declarator that is part of a function definition of
2795    // that function shall not have incomplete type.
2796    //
2797    // This is also C++ [dcl.fct]p6.
2798    if (!Param->isInvalidDecl() &&
2799        RequireCompleteType(Param->getLocation(), Param->getType(),
2800                               diag::err_typecheck_decl_incomplete_type)) {
2801      Param->setInvalidDecl();
2802      HasInvalidParm = true;
2803    }
2804
2805    // C99 6.9.1p5: If the declarator includes a parameter type list, the
2806    // declaration of each parameter shall include an identifier.
2807    if (Param->getIdentifier() == 0 &&
2808        !Param->isImplicit() &&
2809        !getLangOptions().CPlusPlus)
2810      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
2811
2812    // C99 6.7.5.3p12:
2813    //   If the function declarator is not part of a definition of that
2814    //   function, parameters may have incomplete type and may use the [*]
2815    //   notation in their sequences of declarator specifiers to specify
2816    //   variable length array types.
2817    QualType PType = Param->getOriginalType();
2818    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
2819      if (AT->getSizeModifier() == ArrayType::Star) {
2820        // FIXME: This diagnosic should point the the '[*]' if source-location
2821        // information is added for it.
2822        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
2823      }
2824    }
2825  }
2826
2827  return HasInvalidParm;
2828}
2829
2830/// CheckCastAlign - Implements -Wcast-align, which warns when a
2831/// pointer cast increases the alignment requirements.
2832void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
2833  // This is actually a lot of work to potentially be doing on every
2834  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
2835  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align)
2836        == Diagnostic::Ignored)
2837    return;
2838
2839  // Ignore dependent types.
2840  if (T->isDependentType() || Op->getType()->isDependentType())
2841    return;
2842
2843  // Require that the destination be a pointer type.
2844  const PointerType *DestPtr = T->getAs<PointerType>();
2845  if (!DestPtr) return;
2846
2847  // If the destination has alignment 1, we're done.
2848  QualType DestPointee = DestPtr->getPointeeType();
2849  if (DestPointee->isIncompleteType()) return;
2850  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
2851  if (DestAlign.isOne()) return;
2852
2853  // Require that the source be a pointer type.
2854  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
2855  if (!SrcPtr) return;
2856  QualType SrcPointee = SrcPtr->getPointeeType();
2857
2858  // Whitelist casts from cv void*.  We already implicitly
2859  // whitelisted casts to cv void*, since they have alignment 1.
2860  // Also whitelist casts involving incomplete types, which implicitly
2861  // includes 'void'.
2862  if (SrcPointee->isIncompleteType()) return;
2863
2864  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
2865  if (SrcAlign >= DestAlign) return;
2866
2867  Diag(TRange.getBegin(), diag::warn_cast_align)
2868    << Op->getType() << T
2869    << static_cast<unsigned>(SrcAlign.getQuantity())
2870    << static_cast<unsigned>(DestAlign.getQuantity())
2871    << TRange << Op->getSourceRange();
2872}
2873
2874