SemaChecking.cpp revision e2c60667d1bc29b7e148f9c9828dcbdbfc5b82b0
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements extra semantic analysis beyond what is enforced
11//  by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Sema.h"
17#include "clang/Sema/SemaInternal.h"
18#include "clang/Sema/Initialization.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Analysis/Analyses/FormatString.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/StmtObjC.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "clang/Basic/TargetBuiltins.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/ConvertUTF.h"
39#include <limits>
40using namespace clang;
41using namespace sema;
42
43SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
44                                                    unsigned ByteNo) const {
45  return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
46                               PP.getLangOpts(), PP.getTargetInfo());
47}
48
49/// Checks that a call expression's argument count is the desired number.
50/// This is useful when doing custom type-checking.  Returns true on error.
51static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
52  unsigned argCount = call->getNumArgs();
53  if (argCount == desiredArgCount) return false;
54
55  if (argCount < desiredArgCount)
56    return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
57        << 0 /*function call*/ << desiredArgCount << argCount
58        << call->getSourceRange();
59
60  // Highlight all the excess arguments.
61  SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
62                    call->getArg(argCount - 1)->getLocEnd());
63
64  return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
65    << 0 /*function call*/ << desiredArgCount << argCount
66    << call->getArg(1)->getSourceRange();
67}
68
69/// Check that the first argument to __builtin_annotation is an integer
70/// and the second argument is a non-wide string literal.
71static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
72  if (checkArgCount(S, TheCall, 2))
73    return true;
74
75  // First argument should be an integer.
76  Expr *ValArg = TheCall->getArg(0);
77  QualType Ty = ValArg->getType();
78  if (!Ty->isIntegerType()) {
79    S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
80      << ValArg->getSourceRange();
81    return true;
82  }
83
84  // Second argument should be a constant string.
85  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
86  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
87  if (!Literal || !Literal->isAscii()) {
88    S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
89      << StrArg->getSourceRange();
90    return true;
91  }
92
93  TheCall->setType(Ty);
94  return false;
95}
96
97ExprResult
98Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
99  ExprResult TheCallResult(Owned(TheCall));
100
101  // Find out if any arguments are required to be integer constant expressions.
102  unsigned ICEArguments = 0;
103  ASTContext::GetBuiltinTypeError Error;
104  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
105  if (Error != ASTContext::GE_None)
106    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
107
108  // If any arguments are required to be ICE's, check and diagnose.
109  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
110    // Skip arguments not required to be ICE's.
111    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
112
113    llvm::APSInt Result;
114    if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
115      return true;
116    ICEArguments &= ~(1 << ArgNo);
117  }
118
119  switch (BuiltinID) {
120  case Builtin::BI__builtin___CFStringMakeConstantString:
121    assert(TheCall->getNumArgs() == 1 &&
122           "Wrong # arguments to builtin CFStringMakeConstantString");
123    if (CheckObjCString(TheCall->getArg(0)))
124      return ExprError();
125    break;
126  case Builtin::BI__builtin_stdarg_start:
127  case Builtin::BI__builtin_va_start:
128    if (SemaBuiltinVAStart(TheCall))
129      return ExprError();
130    break;
131  case Builtin::BI__builtin_isgreater:
132  case Builtin::BI__builtin_isgreaterequal:
133  case Builtin::BI__builtin_isless:
134  case Builtin::BI__builtin_islessequal:
135  case Builtin::BI__builtin_islessgreater:
136  case Builtin::BI__builtin_isunordered:
137    if (SemaBuiltinUnorderedCompare(TheCall))
138      return ExprError();
139    break;
140  case Builtin::BI__builtin_fpclassify:
141    if (SemaBuiltinFPClassification(TheCall, 6))
142      return ExprError();
143    break;
144  case Builtin::BI__builtin_isfinite:
145  case Builtin::BI__builtin_isinf:
146  case Builtin::BI__builtin_isinf_sign:
147  case Builtin::BI__builtin_isnan:
148  case Builtin::BI__builtin_isnormal:
149    if (SemaBuiltinFPClassification(TheCall, 1))
150      return ExprError();
151    break;
152  case Builtin::BI__builtin_shufflevector:
153    return SemaBuiltinShuffleVector(TheCall);
154    // TheCall will be freed by the smart pointer here, but that's fine, since
155    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
156  case Builtin::BI__builtin_prefetch:
157    if (SemaBuiltinPrefetch(TheCall))
158      return ExprError();
159    break;
160  case Builtin::BI__builtin_object_size:
161    if (SemaBuiltinObjectSize(TheCall))
162      return ExprError();
163    break;
164  case Builtin::BI__builtin_longjmp:
165    if (SemaBuiltinLongjmp(TheCall))
166      return ExprError();
167    break;
168
169  case Builtin::BI__builtin_classify_type:
170    if (checkArgCount(*this, TheCall, 1)) return true;
171    TheCall->setType(Context.IntTy);
172    break;
173  case Builtin::BI__builtin_constant_p:
174    if (checkArgCount(*this, TheCall, 1)) return true;
175    TheCall->setType(Context.IntTy);
176    break;
177  case Builtin::BI__sync_fetch_and_add:
178  case Builtin::BI__sync_fetch_and_add_1:
179  case Builtin::BI__sync_fetch_and_add_2:
180  case Builtin::BI__sync_fetch_and_add_4:
181  case Builtin::BI__sync_fetch_and_add_8:
182  case Builtin::BI__sync_fetch_and_add_16:
183  case Builtin::BI__sync_fetch_and_sub:
184  case Builtin::BI__sync_fetch_and_sub_1:
185  case Builtin::BI__sync_fetch_and_sub_2:
186  case Builtin::BI__sync_fetch_and_sub_4:
187  case Builtin::BI__sync_fetch_and_sub_8:
188  case Builtin::BI__sync_fetch_and_sub_16:
189  case Builtin::BI__sync_fetch_and_or:
190  case Builtin::BI__sync_fetch_and_or_1:
191  case Builtin::BI__sync_fetch_and_or_2:
192  case Builtin::BI__sync_fetch_and_or_4:
193  case Builtin::BI__sync_fetch_and_or_8:
194  case Builtin::BI__sync_fetch_and_or_16:
195  case Builtin::BI__sync_fetch_and_and:
196  case Builtin::BI__sync_fetch_and_and_1:
197  case Builtin::BI__sync_fetch_and_and_2:
198  case Builtin::BI__sync_fetch_and_and_4:
199  case Builtin::BI__sync_fetch_and_and_8:
200  case Builtin::BI__sync_fetch_and_and_16:
201  case Builtin::BI__sync_fetch_and_xor:
202  case Builtin::BI__sync_fetch_and_xor_1:
203  case Builtin::BI__sync_fetch_and_xor_2:
204  case Builtin::BI__sync_fetch_and_xor_4:
205  case Builtin::BI__sync_fetch_and_xor_8:
206  case Builtin::BI__sync_fetch_and_xor_16:
207  case Builtin::BI__sync_add_and_fetch:
208  case Builtin::BI__sync_add_and_fetch_1:
209  case Builtin::BI__sync_add_and_fetch_2:
210  case Builtin::BI__sync_add_and_fetch_4:
211  case Builtin::BI__sync_add_and_fetch_8:
212  case Builtin::BI__sync_add_and_fetch_16:
213  case Builtin::BI__sync_sub_and_fetch:
214  case Builtin::BI__sync_sub_and_fetch_1:
215  case Builtin::BI__sync_sub_and_fetch_2:
216  case Builtin::BI__sync_sub_and_fetch_4:
217  case Builtin::BI__sync_sub_and_fetch_8:
218  case Builtin::BI__sync_sub_and_fetch_16:
219  case Builtin::BI__sync_and_and_fetch:
220  case Builtin::BI__sync_and_and_fetch_1:
221  case Builtin::BI__sync_and_and_fetch_2:
222  case Builtin::BI__sync_and_and_fetch_4:
223  case Builtin::BI__sync_and_and_fetch_8:
224  case Builtin::BI__sync_and_and_fetch_16:
225  case Builtin::BI__sync_or_and_fetch:
226  case Builtin::BI__sync_or_and_fetch_1:
227  case Builtin::BI__sync_or_and_fetch_2:
228  case Builtin::BI__sync_or_and_fetch_4:
229  case Builtin::BI__sync_or_and_fetch_8:
230  case Builtin::BI__sync_or_and_fetch_16:
231  case Builtin::BI__sync_xor_and_fetch:
232  case Builtin::BI__sync_xor_and_fetch_1:
233  case Builtin::BI__sync_xor_and_fetch_2:
234  case Builtin::BI__sync_xor_and_fetch_4:
235  case Builtin::BI__sync_xor_and_fetch_8:
236  case Builtin::BI__sync_xor_and_fetch_16:
237  case Builtin::BI__sync_val_compare_and_swap:
238  case Builtin::BI__sync_val_compare_and_swap_1:
239  case Builtin::BI__sync_val_compare_and_swap_2:
240  case Builtin::BI__sync_val_compare_and_swap_4:
241  case Builtin::BI__sync_val_compare_and_swap_8:
242  case Builtin::BI__sync_val_compare_and_swap_16:
243  case Builtin::BI__sync_bool_compare_and_swap:
244  case Builtin::BI__sync_bool_compare_and_swap_1:
245  case Builtin::BI__sync_bool_compare_and_swap_2:
246  case Builtin::BI__sync_bool_compare_and_swap_4:
247  case Builtin::BI__sync_bool_compare_and_swap_8:
248  case Builtin::BI__sync_bool_compare_and_swap_16:
249  case Builtin::BI__sync_lock_test_and_set:
250  case Builtin::BI__sync_lock_test_and_set_1:
251  case Builtin::BI__sync_lock_test_and_set_2:
252  case Builtin::BI__sync_lock_test_and_set_4:
253  case Builtin::BI__sync_lock_test_and_set_8:
254  case Builtin::BI__sync_lock_test_and_set_16:
255  case Builtin::BI__sync_lock_release:
256  case Builtin::BI__sync_lock_release_1:
257  case Builtin::BI__sync_lock_release_2:
258  case Builtin::BI__sync_lock_release_4:
259  case Builtin::BI__sync_lock_release_8:
260  case Builtin::BI__sync_lock_release_16:
261  case Builtin::BI__sync_swap:
262  case Builtin::BI__sync_swap_1:
263  case Builtin::BI__sync_swap_2:
264  case Builtin::BI__sync_swap_4:
265  case Builtin::BI__sync_swap_8:
266  case Builtin::BI__sync_swap_16:
267    return SemaBuiltinAtomicOverloaded(move(TheCallResult));
268#define BUILTIN(ID, TYPE, ATTRS)
269#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
270  case Builtin::BI##ID: \
271    return SemaAtomicOpsOverloaded(move(TheCallResult), AtomicExpr::AO##ID);
272#include "clang/Basic/Builtins.def"
273  case Builtin::BI__builtin_annotation:
274    if (SemaBuiltinAnnotation(*this, TheCall))
275      return ExprError();
276    break;
277  }
278
279  // Since the target specific builtins for each arch overlap, only check those
280  // of the arch we are compiling for.
281  if (BuiltinID >= Builtin::FirstTSBuiltin) {
282    switch (Context.getTargetInfo().getTriple().getArch()) {
283      case llvm::Triple::arm:
284      case llvm::Triple::thumb:
285        if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
286          return ExprError();
287        break;
288      default:
289        break;
290    }
291  }
292
293  return move(TheCallResult);
294}
295
296// Get the valid immediate range for the specified NEON type code.
297static unsigned RFT(unsigned t, bool shift = false) {
298  NeonTypeFlags Type(t);
299  int IsQuad = Type.isQuad();
300  switch (Type.getEltType()) {
301  case NeonTypeFlags::Int8:
302  case NeonTypeFlags::Poly8:
303    return shift ? 7 : (8 << IsQuad) - 1;
304  case NeonTypeFlags::Int16:
305  case NeonTypeFlags::Poly16:
306    return shift ? 15 : (4 << IsQuad) - 1;
307  case NeonTypeFlags::Int32:
308    return shift ? 31 : (2 << IsQuad) - 1;
309  case NeonTypeFlags::Int64:
310    return shift ? 63 : (1 << IsQuad) - 1;
311  case NeonTypeFlags::Float16:
312    assert(!shift && "cannot shift float types!");
313    return (4 << IsQuad) - 1;
314  case NeonTypeFlags::Float32:
315    assert(!shift && "cannot shift float types!");
316    return (2 << IsQuad) - 1;
317  }
318  llvm_unreachable("Invalid NeonTypeFlag!");
319}
320
321/// getNeonEltType - Return the QualType corresponding to the elements of
322/// the vector type specified by the NeonTypeFlags.  This is used to check
323/// the pointer arguments for Neon load/store intrinsics.
324static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context) {
325  switch (Flags.getEltType()) {
326  case NeonTypeFlags::Int8:
327    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
328  case NeonTypeFlags::Int16:
329    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
330  case NeonTypeFlags::Int32:
331    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
332  case NeonTypeFlags::Int64:
333    return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
334  case NeonTypeFlags::Poly8:
335    return Context.SignedCharTy;
336  case NeonTypeFlags::Poly16:
337    return Context.ShortTy;
338  case NeonTypeFlags::Float16:
339    return Context.UnsignedShortTy;
340  case NeonTypeFlags::Float32:
341    return Context.FloatTy;
342  }
343  llvm_unreachable("Invalid NeonTypeFlag!");
344}
345
346bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
347  llvm::APSInt Result;
348
349  unsigned mask = 0;
350  unsigned TV = 0;
351  int PtrArgNum = -1;
352  bool HasConstPtr = false;
353  switch (BuiltinID) {
354#define GET_NEON_OVERLOAD_CHECK
355#include "clang/Basic/arm_neon.inc"
356#undef GET_NEON_OVERLOAD_CHECK
357  }
358
359  // For NEON intrinsics which are overloaded on vector element type, validate
360  // the immediate which specifies which variant to emit.
361  unsigned ImmArg = TheCall->getNumArgs()-1;
362  if (mask) {
363    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
364      return true;
365
366    TV = Result.getLimitedValue(64);
367    if ((TV > 63) || (mask & (1 << TV)) == 0)
368      return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
369        << TheCall->getArg(ImmArg)->getSourceRange();
370  }
371
372  if (PtrArgNum >= 0) {
373    // Check that pointer arguments have the specified type.
374    Expr *Arg = TheCall->getArg(PtrArgNum);
375    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
376      Arg = ICE->getSubExpr();
377    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
378    QualType RHSTy = RHS.get()->getType();
379    QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context);
380    if (HasConstPtr)
381      EltTy = EltTy.withConst();
382    QualType LHSTy = Context.getPointerType(EltTy);
383    AssignConvertType ConvTy;
384    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
385    if (RHS.isInvalid())
386      return true;
387    if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
388                                 RHS.get(), AA_Assigning))
389      return true;
390  }
391
392  // For NEON intrinsics which take an immediate value as part of the
393  // instruction, range check them here.
394  unsigned i = 0, l = 0, u = 0;
395  switch (BuiltinID) {
396  default: return false;
397  case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
398  case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
399  case ARM::BI__builtin_arm_vcvtr_f:
400  case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
401#define GET_NEON_IMMEDIATE_CHECK
402#include "clang/Basic/arm_neon.inc"
403#undef GET_NEON_IMMEDIATE_CHECK
404  };
405
406  // Check that the immediate argument is actually a constant.
407  if (SemaBuiltinConstantArg(TheCall, i, Result))
408    return true;
409
410  // Range check against the upper/lower values for this isntruction.
411  unsigned Val = Result.getZExtValue();
412  if (Val < l || Val > (u + l))
413    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
414      << l << u+l << TheCall->getArg(i)->getSourceRange();
415
416  // FIXME: VFP Intrinsics should error if VFP not present.
417  return false;
418}
419
420/// CheckFunctionCall - Check a direct function call for various correctness
421/// and safety properties not strictly enforced by the C type system.
422bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
423  // Get the IdentifierInfo* for the called function.
424  IdentifierInfo *FnInfo = FDecl->getIdentifier();
425
426  // None of the checks below are needed for functions that don't have
427  // simple names (e.g., C++ conversion functions).
428  if (!FnInfo)
429    return false;
430
431  // FIXME: This mechanism should be abstracted to be less fragile and
432  // more efficient. For example, just map function ids to custom
433  // handlers.
434
435  // Printf and scanf checking.
436  for (specific_attr_iterator<FormatAttr>
437         i = FDecl->specific_attr_begin<FormatAttr>(),
438         e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
439    CheckFormatArguments(*i, TheCall);
440  }
441
442  for (specific_attr_iterator<NonNullAttr>
443         i = FDecl->specific_attr_begin<NonNullAttr>(),
444         e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
445    CheckNonNullArguments(*i, TheCall->getArgs(),
446                          TheCall->getCallee()->getLocStart());
447  }
448
449  unsigned CMId = FDecl->getMemoryFunctionKind();
450  if (CMId == 0)
451    return false;
452
453  // Handle memory setting and copying functions.
454  if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
455    CheckStrlcpycatArguments(TheCall, FnInfo);
456  else if (CMId == Builtin::BIstrncat)
457    CheckStrncatArguments(TheCall, FnInfo);
458  else
459    CheckMemaccessArguments(TheCall, CMId, FnInfo);
460
461  return false;
462}
463
464bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
465                               Expr **Args, unsigned NumArgs) {
466  for (specific_attr_iterator<FormatAttr>
467       i = Method->specific_attr_begin<FormatAttr>(),
468       e = Method->specific_attr_end<FormatAttr>(); i != e ; ++i) {
469
470    CheckFormatArguments(*i, Args, NumArgs, false, lbrac,
471                         Method->getSourceRange());
472  }
473
474  // diagnose nonnull arguments.
475  for (specific_attr_iterator<NonNullAttr>
476       i = Method->specific_attr_begin<NonNullAttr>(),
477       e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) {
478    CheckNonNullArguments(*i, Args, lbrac);
479  }
480
481  return false;
482}
483
484bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
485  const VarDecl *V = dyn_cast<VarDecl>(NDecl);
486  if (!V)
487    return false;
488
489  QualType Ty = V->getType();
490  if (!Ty->isBlockPointerType())
491    return false;
492
493  // format string checking.
494  for (specific_attr_iterator<FormatAttr>
495       i = NDecl->specific_attr_begin<FormatAttr>(),
496       e = NDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
497    CheckFormatArguments(*i, TheCall);
498  }
499
500  return false;
501}
502
503ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
504                                         AtomicExpr::AtomicOp Op) {
505  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
506  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
507
508  // All these operations take one of the following forms:
509  enum {
510    // C    __c11_atomic_init(A *, C)
511    Init,
512    // C    __c11_atomic_load(A *, int)
513    Load,
514    // void __atomic_load(A *, CP, int)
515    Copy,
516    // C    __c11_atomic_add(A *, M, int)
517    Arithmetic,
518    // C    __atomic_exchange_n(A *, CP, int)
519    Xchg,
520    // void __atomic_exchange(A *, C *, CP, int)
521    GNUXchg,
522    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
523    C11CmpXchg,
524    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
525    GNUCmpXchg
526  } Form = Init;
527  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
528  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
529  // where:
530  //   C is an appropriate type,
531  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
532  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
533  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
534  //   the int parameters are for orderings.
535
536  assert(AtomicExpr::AO__c11_atomic_init == 0 &&
537         AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
538         && "need to update code for modified C11 atomics");
539  bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
540               Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
541  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
542             Op == AtomicExpr::AO__atomic_store_n ||
543             Op == AtomicExpr::AO__atomic_exchange_n ||
544             Op == AtomicExpr::AO__atomic_compare_exchange_n;
545  bool IsAddSub = false;
546
547  switch (Op) {
548  case AtomicExpr::AO__c11_atomic_init:
549    Form = Init;
550    break;
551
552  case AtomicExpr::AO__c11_atomic_load:
553  case AtomicExpr::AO__atomic_load_n:
554    Form = Load;
555    break;
556
557  case AtomicExpr::AO__c11_atomic_store:
558  case AtomicExpr::AO__atomic_load:
559  case AtomicExpr::AO__atomic_store:
560  case AtomicExpr::AO__atomic_store_n:
561    Form = Copy;
562    break;
563
564  case AtomicExpr::AO__c11_atomic_fetch_add:
565  case AtomicExpr::AO__c11_atomic_fetch_sub:
566  case AtomicExpr::AO__atomic_fetch_add:
567  case AtomicExpr::AO__atomic_fetch_sub:
568  case AtomicExpr::AO__atomic_add_fetch:
569  case AtomicExpr::AO__atomic_sub_fetch:
570    IsAddSub = true;
571    // Fall through.
572  case AtomicExpr::AO__c11_atomic_fetch_and:
573  case AtomicExpr::AO__c11_atomic_fetch_or:
574  case AtomicExpr::AO__c11_atomic_fetch_xor:
575  case AtomicExpr::AO__atomic_fetch_and:
576  case AtomicExpr::AO__atomic_fetch_or:
577  case AtomicExpr::AO__atomic_fetch_xor:
578  case AtomicExpr::AO__atomic_fetch_nand:
579  case AtomicExpr::AO__atomic_and_fetch:
580  case AtomicExpr::AO__atomic_or_fetch:
581  case AtomicExpr::AO__atomic_xor_fetch:
582  case AtomicExpr::AO__atomic_nand_fetch:
583    Form = Arithmetic;
584    break;
585
586  case AtomicExpr::AO__c11_atomic_exchange:
587  case AtomicExpr::AO__atomic_exchange_n:
588    Form = Xchg;
589    break;
590
591  case AtomicExpr::AO__atomic_exchange:
592    Form = GNUXchg;
593    break;
594
595  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
596  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
597    Form = C11CmpXchg;
598    break;
599
600  case AtomicExpr::AO__atomic_compare_exchange:
601  case AtomicExpr::AO__atomic_compare_exchange_n:
602    Form = GNUCmpXchg;
603    break;
604  }
605
606  // Check we have the right number of arguments.
607  if (TheCall->getNumArgs() < NumArgs[Form]) {
608    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
609      << 0 << NumArgs[Form] << TheCall->getNumArgs()
610      << TheCall->getCallee()->getSourceRange();
611    return ExprError();
612  } else if (TheCall->getNumArgs() > NumArgs[Form]) {
613    Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
614         diag::err_typecheck_call_too_many_args)
615      << 0 << NumArgs[Form] << TheCall->getNumArgs()
616      << TheCall->getCallee()->getSourceRange();
617    return ExprError();
618  }
619
620  // Inspect the first argument of the atomic operation.
621  Expr *Ptr = TheCall->getArg(0);
622  Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
623  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
624  if (!pointerType) {
625    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
626      << Ptr->getType() << Ptr->getSourceRange();
627    return ExprError();
628  }
629
630  // For a __c11 builtin, this should be a pointer to an _Atomic type.
631  QualType AtomTy = pointerType->getPointeeType(); // 'A'
632  QualType ValType = AtomTy; // 'C'
633  if (IsC11) {
634    if (!AtomTy->isAtomicType()) {
635      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
636        << Ptr->getType() << Ptr->getSourceRange();
637      return ExprError();
638    }
639    ValType = AtomTy->getAs<AtomicType>()->getValueType();
640  }
641
642  // For an arithmetic operation, the implied arithmetic must be well-formed.
643  if (Form == Arithmetic) {
644    // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
645    if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
646      Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
647        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
648      return ExprError();
649    }
650    if (!IsAddSub && !ValType->isIntegerType()) {
651      Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
652        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
653      return ExprError();
654    }
655  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
656    // For __atomic_*_n operations, the value type must be a scalar integral or
657    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
658    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
659      << IsC11 << Ptr->getType() << Ptr->getSourceRange();
660    return ExprError();
661  }
662
663  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context)) {
664    // For GNU atomics, require a trivially-copyable type. This is not part of
665    // the GNU atomics specification, but we enforce it for sanity.
666    Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
667      << Ptr->getType() << Ptr->getSourceRange();
668    return ExprError();
669  }
670
671  // FIXME: For any builtin other than a load, the ValType must not be
672  // const-qualified.
673
674  switch (ValType.getObjCLifetime()) {
675  case Qualifiers::OCL_None:
676  case Qualifiers::OCL_ExplicitNone:
677    // okay
678    break;
679
680  case Qualifiers::OCL_Weak:
681  case Qualifiers::OCL_Strong:
682  case Qualifiers::OCL_Autoreleasing:
683    // FIXME: Can this happen? By this point, ValType should be known
684    // to be trivially copyable.
685    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
686      << ValType << Ptr->getSourceRange();
687    return ExprError();
688  }
689
690  QualType ResultType = ValType;
691  if (Form == Copy || Form == GNUXchg || Form == Init)
692    ResultType = Context.VoidTy;
693  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
694    ResultType = Context.BoolTy;
695
696  // The type of a parameter passed 'by value'. In the GNU atomics, such
697  // arguments are actually passed as pointers.
698  QualType ByValType = ValType; // 'CP'
699  if (!IsC11 && !IsN)
700    ByValType = Ptr->getType();
701
702  // The first argument --- the pointer --- has a fixed type; we
703  // deduce the types of the rest of the arguments accordingly.  Walk
704  // the remaining arguments, converting them to the deduced value type.
705  for (unsigned i = 1; i != NumArgs[Form]; ++i) {
706    QualType Ty;
707    if (i < NumVals[Form] + 1) {
708      switch (i) {
709      case 1:
710        // The second argument is the non-atomic operand. For arithmetic, this
711        // is always passed by value, and for a compare_exchange it is always
712        // passed by address. For the rest, GNU uses by-address and C11 uses
713        // by-value.
714        assert(Form != Load);
715        if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
716          Ty = ValType;
717        else if (Form == Copy || Form == Xchg)
718          Ty = ByValType;
719        else if (Form == Arithmetic)
720          Ty = Context.getPointerDiffType();
721        else
722          Ty = Context.getPointerType(ValType.getUnqualifiedType());
723        break;
724      case 2:
725        // The third argument to compare_exchange / GNU exchange is a
726        // (pointer to a) desired value.
727        Ty = ByValType;
728        break;
729      case 3:
730        // The fourth argument to GNU compare_exchange is a 'weak' flag.
731        Ty = Context.BoolTy;
732        break;
733      }
734    } else {
735      // The order(s) are always converted to int.
736      Ty = Context.IntTy;
737    }
738
739    InitializedEntity Entity =
740        InitializedEntity::InitializeParameter(Context, Ty, false);
741    ExprResult Arg = TheCall->getArg(i);
742    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
743    if (Arg.isInvalid())
744      return true;
745    TheCall->setArg(i, Arg.get());
746  }
747
748  // Permute the arguments into a 'consistent' order.
749  SmallVector<Expr*, 5> SubExprs;
750  SubExprs.push_back(Ptr);
751  switch (Form) {
752  case Init:
753    // Note, AtomicExpr::getVal1() has a special case for this atomic.
754    SubExprs.push_back(TheCall->getArg(1)); // Val1
755    break;
756  case Load:
757    SubExprs.push_back(TheCall->getArg(1)); // Order
758    break;
759  case Copy:
760  case Arithmetic:
761  case Xchg:
762    SubExprs.push_back(TheCall->getArg(2)); // Order
763    SubExprs.push_back(TheCall->getArg(1)); // Val1
764    break;
765  case GNUXchg:
766    // Note, AtomicExpr::getVal2() has a special case for this atomic.
767    SubExprs.push_back(TheCall->getArg(3)); // Order
768    SubExprs.push_back(TheCall->getArg(1)); // Val1
769    SubExprs.push_back(TheCall->getArg(2)); // Val2
770    break;
771  case C11CmpXchg:
772    SubExprs.push_back(TheCall->getArg(3)); // Order
773    SubExprs.push_back(TheCall->getArg(1)); // Val1
774    SubExprs.push_back(TheCall->getArg(4)); // OrderFail
775    SubExprs.push_back(TheCall->getArg(2)); // Val2
776    break;
777  case GNUCmpXchg:
778    SubExprs.push_back(TheCall->getArg(4)); // Order
779    SubExprs.push_back(TheCall->getArg(1)); // Val1
780    SubExprs.push_back(TheCall->getArg(5)); // OrderFail
781    SubExprs.push_back(TheCall->getArg(2)); // Val2
782    SubExprs.push_back(TheCall->getArg(3)); // Weak
783    break;
784  }
785
786  return Owned(new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
787                                        SubExprs.data(), SubExprs.size(),
788                                        ResultType, Op,
789                                        TheCall->getRParenLoc()));
790}
791
792
793/// checkBuiltinArgument - Given a call to a builtin function, perform
794/// normal type-checking on the given argument, updating the call in
795/// place.  This is useful when a builtin function requires custom
796/// type-checking for some of its arguments but not necessarily all of
797/// them.
798///
799/// Returns true on error.
800static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
801  FunctionDecl *Fn = E->getDirectCallee();
802  assert(Fn && "builtin call without direct callee!");
803
804  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
805  InitializedEntity Entity =
806    InitializedEntity::InitializeParameter(S.Context, Param);
807
808  ExprResult Arg = E->getArg(0);
809  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
810  if (Arg.isInvalid())
811    return true;
812
813  E->setArg(ArgIndex, Arg.take());
814  return false;
815}
816
817/// SemaBuiltinAtomicOverloaded - We have a call to a function like
818/// __sync_fetch_and_add, which is an overloaded function based on the pointer
819/// type of its first argument.  The main ActOnCallExpr routines have already
820/// promoted the types of arguments because all of these calls are prototyped as
821/// void(...).
822///
823/// This function goes through and does final semantic checking for these
824/// builtins,
825ExprResult
826Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
827  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
828  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
829  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
830
831  // Ensure that we have at least one argument to do type inference from.
832  if (TheCall->getNumArgs() < 1) {
833    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
834      << 0 << 1 << TheCall->getNumArgs()
835      << TheCall->getCallee()->getSourceRange();
836    return ExprError();
837  }
838
839  // Inspect the first argument of the atomic builtin.  This should always be
840  // a pointer type, whose element is an integral scalar or pointer type.
841  // Because it is a pointer type, we don't have to worry about any implicit
842  // casts here.
843  // FIXME: We don't allow floating point scalars as input.
844  Expr *FirstArg = TheCall->getArg(0);
845  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
846  if (FirstArgResult.isInvalid())
847    return ExprError();
848  FirstArg = FirstArgResult.take();
849  TheCall->setArg(0, FirstArg);
850
851  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
852  if (!pointerType) {
853    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
854      << FirstArg->getType() << FirstArg->getSourceRange();
855    return ExprError();
856  }
857
858  QualType ValType = pointerType->getPointeeType();
859  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
860      !ValType->isBlockPointerType()) {
861    Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
862      << FirstArg->getType() << FirstArg->getSourceRange();
863    return ExprError();
864  }
865
866  switch (ValType.getObjCLifetime()) {
867  case Qualifiers::OCL_None:
868  case Qualifiers::OCL_ExplicitNone:
869    // okay
870    break;
871
872  case Qualifiers::OCL_Weak:
873  case Qualifiers::OCL_Strong:
874  case Qualifiers::OCL_Autoreleasing:
875    Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
876      << ValType << FirstArg->getSourceRange();
877    return ExprError();
878  }
879
880  // Strip any qualifiers off ValType.
881  ValType = ValType.getUnqualifiedType();
882
883  // The majority of builtins return a value, but a few have special return
884  // types, so allow them to override appropriately below.
885  QualType ResultType = ValType;
886
887  // We need to figure out which concrete builtin this maps onto.  For example,
888  // __sync_fetch_and_add with a 2 byte object turns into
889  // __sync_fetch_and_add_2.
890#define BUILTIN_ROW(x) \
891  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
892    Builtin::BI##x##_8, Builtin::BI##x##_16 }
893
894  static const unsigned BuiltinIndices[][5] = {
895    BUILTIN_ROW(__sync_fetch_and_add),
896    BUILTIN_ROW(__sync_fetch_and_sub),
897    BUILTIN_ROW(__sync_fetch_and_or),
898    BUILTIN_ROW(__sync_fetch_and_and),
899    BUILTIN_ROW(__sync_fetch_and_xor),
900
901    BUILTIN_ROW(__sync_add_and_fetch),
902    BUILTIN_ROW(__sync_sub_and_fetch),
903    BUILTIN_ROW(__sync_and_and_fetch),
904    BUILTIN_ROW(__sync_or_and_fetch),
905    BUILTIN_ROW(__sync_xor_and_fetch),
906
907    BUILTIN_ROW(__sync_val_compare_and_swap),
908    BUILTIN_ROW(__sync_bool_compare_and_swap),
909    BUILTIN_ROW(__sync_lock_test_and_set),
910    BUILTIN_ROW(__sync_lock_release),
911    BUILTIN_ROW(__sync_swap)
912  };
913#undef BUILTIN_ROW
914
915  // Determine the index of the size.
916  unsigned SizeIndex;
917  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
918  case 1: SizeIndex = 0; break;
919  case 2: SizeIndex = 1; break;
920  case 4: SizeIndex = 2; break;
921  case 8: SizeIndex = 3; break;
922  case 16: SizeIndex = 4; break;
923  default:
924    Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
925      << FirstArg->getType() << FirstArg->getSourceRange();
926    return ExprError();
927  }
928
929  // Each of these builtins has one pointer argument, followed by some number of
930  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
931  // that we ignore.  Find out which row of BuiltinIndices to read from as well
932  // as the number of fixed args.
933  unsigned BuiltinID = FDecl->getBuiltinID();
934  unsigned BuiltinIndex, NumFixed = 1;
935  switch (BuiltinID) {
936  default: llvm_unreachable("Unknown overloaded atomic builtin!");
937  case Builtin::BI__sync_fetch_and_add:
938  case Builtin::BI__sync_fetch_and_add_1:
939  case Builtin::BI__sync_fetch_and_add_2:
940  case Builtin::BI__sync_fetch_and_add_4:
941  case Builtin::BI__sync_fetch_and_add_8:
942  case Builtin::BI__sync_fetch_and_add_16:
943    BuiltinIndex = 0;
944    break;
945
946  case Builtin::BI__sync_fetch_and_sub:
947  case Builtin::BI__sync_fetch_and_sub_1:
948  case Builtin::BI__sync_fetch_and_sub_2:
949  case Builtin::BI__sync_fetch_and_sub_4:
950  case Builtin::BI__sync_fetch_and_sub_8:
951  case Builtin::BI__sync_fetch_and_sub_16:
952    BuiltinIndex = 1;
953    break;
954
955  case Builtin::BI__sync_fetch_and_or:
956  case Builtin::BI__sync_fetch_and_or_1:
957  case Builtin::BI__sync_fetch_and_or_2:
958  case Builtin::BI__sync_fetch_and_or_4:
959  case Builtin::BI__sync_fetch_and_or_8:
960  case Builtin::BI__sync_fetch_and_or_16:
961    BuiltinIndex = 2;
962    break;
963
964  case Builtin::BI__sync_fetch_and_and:
965  case Builtin::BI__sync_fetch_and_and_1:
966  case Builtin::BI__sync_fetch_and_and_2:
967  case Builtin::BI__sync_fetch_and_and_4:
968  case Builtin::BI__sync_fetch_and_and_8:
969  case Builtin::BI__sync_fetch_and_and_16:
970    BuiltinIndex = 3;
971    break;
972
973  case Builtin::BI__sync_fetch_and_xor:
974  case Builtin::BI__sync_fetch_and_xor_1:
975  case Builtin::BI__sync_fetch_and_xor_2:
976  case Builtin::BI__sync_fetch_and_xor_4:
977  case Builtin::BI__sync_fetch_and_xor_8:
978  case Builtin::BI__sync_fetch_and_xor_16:
979    BuiltinIndex = 4;
980    break;
981
982  case Builtin::BI__sync_add_and_fetch:
983  case Builtin::BI__sync_add_and_fetch_1:
984  case Builtin::BI__sync_add_and_fetch_2:
985  case Builtin::BI__sync_add_and_fetch_4:
986  case Builtin::BI__sync_add_and_fetch_8:
987  case Builtin::BI__sync_add_and_fetch_16:
988    BuiltinIndex = 5;
989    break;
990
991  case Builtin::BI__sync_sub_and_fetch:
992  case Builtin::BI__sync_sub_and_fetch_1:
993  case Builtin::BI__sync_sub_and_fetch_2:
994  case Builtin::BI__sync_sub_and_fetch_4:
995  case Builtin::BI__sync_sub_and_fetch_8:
996  case Builtin::BI__sync_sub_and_fetch_16:
997    BuiltinIndex = 6;
998    break;
999
1000  case Builtin::BI__sync_and_and_fetch:
1001  case Builtin::BI__sync_and_and_fetch_1:
1002  case Builtin::BI__sync_and_and_fetch_2:
1003  case Builtin::BI__sync_and_and_fetch_4:
1004  case Builtin::BI__sync_and_and_fetch_8:
1005  case Builtin::BI__sync_and_and_fetch_16:
1006    BuiltinIndex = 7;
1007    break;
1008
1009  case Builtin::BI__sync_or_and_fetch:
1010  case Builtin::BI__sync_or_and_fetch_1:
1011  case Builtin::BI__sync_or_and_fetch_2:
1012  case Builtin::BI__sync_or_and_fetch_4:
1013  case Builtin::BI__sync_or_and_fetch_8:
1014  case Builtin::BI__sync_or_and_fetch_16:
1015    BuiltinIndex = 8;
1016    break;
1017
1018  case Builtin::BI__sync_xor_and_fetch:
1019  case Builtin::BI__sync_xor_and_fetch_1:
1020  case Builtin::BI__sync_xor_and_fetch_2:
1021  case Builtin::BI__sync_xor_and_fetch_4:
1022  case Builtin::BI__sync_xor_and_fetch_8:
1023  case Builtin::BI__sync_xor_and_fetch_16:
1024    BuiltinIndex = 9;
1025    break;
1026
1027  case Builtin::BI__sync_val_compare_and_swap:
1028  case Builtin::BI__sync_val_compare_and_swap_1:
1029  case Builtin::BI__sync_val_compare_and_swap_2:
1030  case Builtin::BI__sync_val_compare_and_swap_4:
1031  case Builtin::BI__sync_val_compare_and_swap_8:
1032  case Builtin::BI__sync_val_compare_and_swap_16:
1033    BuiltinIndex = 10;
1034    NumFixed = 2;
1035    break;
1036
1037  case Builtin::BI__sync_bool_compare_and_swap:
1038  case Builtin::BI__sync_bool_compare_and_swap_1:
1039  case Builtin::BI__sync_bool_compare_and_swap_2:
1040  case Builtin::BI__sync_bool_compare_and_swap_4:
1041  case Builtin::BI__sync_bool_compare_and_swap_8:
1042  case Builtin::BI__sync_bool_compare_and_swap_16:
1043    BuiltinIndex = 11;
1044    NumFixed = 2;
1045    ResultType = Context.BoolTy;
1046    break;
1047
1048  case Builtin::BI__sync_lock_test_and_set:
1049  case Builtin::BI__sync_lock_test_and_set_1:
1050  case Builtin::BI__sync_lock_test_and_set_2:
1051  case Builtin::BI__sync_lock_test_and_set_4:
1052  case Builtin::BI__sync_lock_test_and_set_8:
1053  case Builtin::BI__sync_lock_test_and_set_16:
1054    BuiltinIndex = 12;
1055    break;
1056
1057  case Builtin::BI__sync_lock_release:
1058  case Builtin::BI__sync_lock_release_1:
1059  case Builtin::BI__sync_lock_release_2:
1060  case Builtin::BI__sync_lock_release_4:
1061  case Builtin::BI__sync_lock_release_8:
1062  case Builtin::BI__sync_lock_release_16:
1063    BuiltinIndex = 13;
1064    NumFixed = 0;
1065    ResultType = Context.VoidTy;
1066    break;
1067
1068  case Builtin::BI__sync_swap:
1069  case Builtin::BI__sync_swap_1:
1070  case Builtin::BI__sync_swap_2:
1071  case Builtin::BI__sync_swap_4:
1072  case Builtin::BI__sync_swap_8:
1073  case Builtin::BI__sync_swap_16:
1074    BuiltinIndex = 14;
1075    break;
1076  }
1077
1078  // Now that we know how many fixed arguments we expect, first check that we
1079  // have at least that many.
1080  if (TheCall->getNumArgs() < 1+NumFixed) {
1081    Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1082      << 0 << 1+NumFixed << TheCall->getNumArgs()
1083      << TheCall->getCallee()->getSourceRange();
1084    return ExprError();
1085  }
1086
1087  // Get the decl for the concrete builtin from this, we can tell what the
1088  // concrete integer type we should convert to is.
1089  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1090  const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1091  IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
1092  FunctionDecl *NewBuiltinDecl =
1093    cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
1094                                           TUScope, false, DRE->getLocStart()));
1095
1096  // The first argument --- the pointer --- has a fixed type; we
1097  // deduce the types of the rest of the arguments accordingly.  Walk
1098  // the remaining arguments, converting them to the deduced value type.
1099  for (unsigned i = 0; i != NumFixed; ++i) {
1100    ExprResult Arg = TheCall->getArg(i+1);
1101
1102    // GCC does an implicit conversion to the pointer or integer ValType.  This
1103    // can fail in some cases (1i -> int**), check for this error case now.
1104    // Initialize the argument.
1105    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1106                                                   ValType, /*consume*/ false);
1107    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1108    if (Arg.isInvalid())
1109      return ExprError();
1110
1111    // Okay, we have something that *can* be converted to the right type.  Check
1112    // to see if there is a potentially weird extension going on here.  This can
1113    // happen when you do an atomic operation on something like an char* and
1114    // pass in 42.  The 42 gets converted to char.  This is even more strange
1115    // for things like 45.123 -> char, etc.
1116    // FIXME: Do this check.
1117    TheCall->setArg(i+1, Arg.take());
1118  }
1119
1120  ASTContext& Context = this->getASTContext();
1121
1122  // Create a new DeclRefExpr to refer to the new decl.
1123  DeclRefExpr* NewDRE = DeclRefExpr::Create(
1124      Context,
1125      DRE->getQualifierLoc(),
1126      SourceLocation(),
1127      NewBuiltinDecl,
1128      /*enclosing*/ false,
1129      DRE->getLocation(),
1130      NewBuiltinDecl->getType(),
1131      DRE->getValueKind());
1132
1133  // Set the callee in the CallExpr.
1134  // FIXME: This leaks the original parens and implicit casts.
1135  ExprResult PromotedCall = UsualUnaryConversions(NewDRE);
1136  if (PromotedCall.isInvalid())
1137    return ExprError();
1138  TheCall->setCallee(PromotedCall.take());
1139
1140  // Change the result type of the call to match the original value type. This
1141  // is arbitrary, but the codegen for these builtins ins design to handle it
1142  // gracefully.
1143  TheCall->setType(ResultType);
1144
1145  return move(TheCallResult);
1146}
1147
1148/// CheckObjCString - Checks that the argument to the builtin
1149/// CFString constructor is correct
1150/// Note: It might also make sense to do the UTF-16 conversion here (would
1151/// simplify the backend).
1152bool Sema::CheckObjCString(Expr *Arg) {
1153  Arg = Arg->IgnoreParenCasts();
1154  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1155
1156  if (!Literal || !Literal->isAscii()) {
1157    Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1158      << Arg->getSourceRange();
1159    return true;
1160  }
1161
1162  if (Literal->containsNonAsciiOrNull()) {
1163    StringRef String = Literal->getString();
1164    unsigned NumBytes = String.size();
1165    SmallVector<UTF16, 128> ToBuf(NumBytes);
1166    const UTF8 *FromPtr = (UTF8 *)String.data();
1167    UTF16 *ToPtr = &ToBuf[0];
1168
1169    ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1170                                                 &ToPtr, ToPtr + NumBytes,
1171                                                 strictConversion);
1172    // Check for conversion failure.
1173    if (Result != conversionOK)
1174      Diag(Arg->getLocStart(),
1175           diag::warn_cfstring_truncated) << Arg->getSourceRange();
1176  }
1177  return false;
1178}
1179
1180/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1181/// Emit an error and return true on failure, return false on success.
1182bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1183  Expr *Fn = TheCall->getCallee();
1184  if (TheCall->getNumArgs() > 2) {
1185    Diag(TheCall->getArg(2)->getLocStart(),
1186         diag::err_typecheck_call_too_many_args)
1187      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1188      << Fn->getSourceRange()
1189      << SourceRange(TheCall->getArg(2)->getLocStart(),
1190                     (*(TheCall->arg_end()-1))->getLocEnd());
1191    return true;
1192  }
1193
1194  if (TheCall->getNumArgs() < 2) {
1195    return Diag(TheCall->getLocEnd(),
1196      diag::err_typecheck_call_too_few_args_at_least)
1197      << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1198  }
1199
1200  // Type-check the first argument normally.
1201  if (checkBuiltinArgument(*this, TheCall, 0))
1202    return true;
1203
1204  // Determine whether the current function is variadic or not.
1205  BlockScopeInfo *CurBlock = getCurBlock();
1206  bool isVariadic;
1207  if (CurBlock)
1208    isVariadic = CurBlock->TheDecl->isVariadic();
1209  else if (FunctionDecl *FD = getCurFunctionDecl())
1210    isVariadic = FD->isVariadic();
1211  else
1212    isVariadic = getCurMethodDecl()->isVariadic();
1213
1214  if (!isVariadic) {
1215    Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1216    return true;
1217  }
1218
1219  // Verify that the second argument to the builtin is the last argument of the
1220  // current function or method.
1221  bool SecondArgIsLastNamedArgument = false;
1222  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1223
1224  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1225    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1226      // FIXME: This isn't correct for methods (results in bogus warning).
1227      // Get the last formal in the current function.
1228      const ParmVarDecl *LastArg;
1229      if (CurBlock)
1230        LastArg = *(CurBlock->TheDecl->param_end()-1);
1231      else if (FunctionDecl *FD = getCurFunctionDecl())
1232        LastArg = *(FD->param_end()-1);
1233      else
1234        LastArg = *(getCurMethodDecl()->param_end()-1);
1235      SecondArgIsLastNamedArgument = PV == LastArg;
1236    }
1237  }
1238
1239  if (!SecondArgIsLastNamedArgument)
1240    Diag(TheCall->getArg(1)->getLocStart(),
1241         diag::warn_second_parameter_of_va_start_not_last_named_argument);
1242  return false;
1243}
1244
1245/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
1246/// friends.  This is declared to take (...), so we have to check everything.
1247bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
1248  if (TheCall->getNumArgs() < 2)
1249    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1250      << 0 << 2 << TheCall->getNumArgs()/*function call*/;
1251  if (TheCall->getNumArgs() > 2)
1252    return Diag(TheCall->getArg(2)->getLocStart(),
1253                diag::err_typecheck_call_too_many_args)
1254      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1255      << SourceRange(TheCall->getArg(2)->getLocStart(),
1256                     (*(TheCall->arg_end()-1))->getLocEnd());
1257
1258  ExprResult OrigArg0 = TheCall->getArg(0);
1259  ExprResult OrigArg1 = TheCall->getArg(1);
1260
1261  // Do standard promotions between the two arguments, returning their common
1262  // type.
1263  QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
1264  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
1265    return true;
1266
1267  // Make sure any conversions are pushed back into the call; this is
1268  // type safe since unordered compare builtins are declared as "_Bool
1269  // foo(...)".
1270  TheCall->setArg(0, OrigArg0.get());
1271  TheCall->setArg(1, OrigArg1.get());
1272
1273  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
1274    return false;
1275
1276  // If the common type isn't a real floating type, then the arguments were
1277  // invalid for this operation.
1278  if (!Res->isRealFloatingType())
1279    return Diag(OrigArg0.get()->getLocStart(),
1280                diag::err_typecheck_call_invalid_ordered_compare)
1281      << OrigArg0.get()->getType() << OrigArg1.get()->getType()
1282      << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
1283
1284  return false;
1285}
1286
1287/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
1288/// __builtin_isnan and friends.  This is declared to take (...), so we have
1289/// to check everything. We expect the last argument to be a floating point
1290/// value.
1291bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
1292  if (TheCall->getNumArgs() < NumArgs)
1293    return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1294      << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
1295  if (TheCall->getNumArgs() > NumArgs)
1296    return Diag(TheCall->getArg(NumArgs)->getLocStart(),
1297                diag::err_typecheck_call_too_many_args)
1298      << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
1299      << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
1300                     (*(TheCall->arg_end()-1))->getLocEnd());
1301
1302  Expr *OrigArg = TheCall->getArg(NumArgs-1);
1303
1304  if (OrigArg->isTypeDependent())
1305    return false;
1306
1307  // This operation requires a non-_Complex floating-point number.
1308  if (!OrigArg->getType()->isRealFloatingType())
1309    return Diag(OrigArg->getLocStart(),
1310                diag::err_typecheck_call_invalid_unary_fp)
1311      << OrigArg->getType() << OrigArg->getSourceRange();
1312
1313  // If this is an implicit conversion from float -> double, remove it.
1314  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
1315    Expr *CastArg = Cast->getSubExpr();
1316    if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
1317      assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
1318             "promotion from float to double is the only expected cast here");
1319      Cast->setSubExpr(0);
1320      TheCall->setArg(NumArgs-1, CastArg);
1321    }
1322  }
1323
1324  return false;
1325}
1326
1327/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
1328// This is declared to take (...), so we have to check everything.
1329ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
1330  if (TheCall->getNumArgs() < 2)
1331    return ExprError(Diag(TheCall->getLocEnd(),
1332                          diag::err_typecheck_call_too_few_args_at_least)
1333      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1334      << TheCall->getSourceRange());
1335
1336  // Determine which of the following types of shufflevector we're checking:
1337  // 1) unary, vector mask: (lhs, mask)
1338  // 2) binary, vector mask: (lhs, rhs, mask)
1339  // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
1340  QualType resType = TheCall->getArg(0)->getType();
1341  unsigned numElements = 0;
1342
1343  if (!TheCall->getArg(0)->isTypeDependent() &&
1344      !TheCall->getArg(1)->isTypeDependent()) {
1345    QualType LHSType = TheCall->getArg(0)->getType();
1346    QualType RHSType = TheCall->getArg(1)->getType();
1347
1348    if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
1349      Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
1350        << SourceRange(TheCall->getArg(0)->getLocStart(),
1351                       TheCall->getArg(1)->getLocEnd());
1352      return ExprError();
1353    }
1354
1355    numElements = LHSType->getAs<VectorType>()->getNumElements();
1356    unsigned numResElements = TheCall->getNumArgs() - 2;
1357
1358    // Check to see if we have a call with 2 vector arguments, the unary shuffle
1359    // with mask.  If so, verify that RHS is an integer vector type with the
1360    // same number of elts as lhs.
1361    if (TheCall->getNumArgs() == 2) {
1362      if (!RHSType->hasIntegerRepresentation() ||
1363          RHSType->getAs<VectorType>()->getNumElements() != numElements)
1364        Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1365          << SourceRange(TheCall->getArg(1)->getLocStart(),
1366                         TheCall->getArg(1)->getLocEnd());
1367      numResElements = numElements;
1368    }
1369    else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
1370      Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
1371        << SourceRange(TheCall->getArg(0)->getLocStart(),
1372                       TheCall->getArg(1)->getLocEnd());
1373      return ExprError();
1374    } else if (numElements != numResElements) {
1375      QualType eltType = LHSType->getAs<VectorType>()->getElementType();
1376      resType = Context.getVectorType(eltType, numResElements,
1377                                      VectorType::GenericVector);
1378    }
1379  }
1380
1381  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
1382    if (TheCall->getArg(i)->isTypeDependent() ||
1383        TheCall->getArg(i)->isValueDependent())
1384      continue;
1385
1386    llvm::APSInt Result(32);
1387    if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
1388      return ExprError(Diag(TheCall->getLocStart(),
1389                  diag::err_shufflevector_nonconstant_argument)
1390                << TheCall->getArg(i)->getSourceRange());
1391
1392    if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
1393      return ExprError(Diag(TheCall->getLocStart(),
1394                  diag::err_shufflevector_argument_too_large)
1395               << TheCall->getArg(i)->getSourceRange());
1396  }
1397
1398  SmallVector<Expr*, 32> exprs;
1399
1400  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
1401    exprs.push_back(TheCall->getArg(i));
1402    TheCall->setArg(i, 0);
1403  }
1404
1405  return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
1406                                            exprs.size(), resType,
1407                                            TheCall->getCallee()->getLocStart(),
1408                                            TheCall->getRParenLoc()));
1409}
1410
1411/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
1412// This is declared to take (const void*, ...) and can take two
1413// optional constant int args.
1414bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
1415  unsigned NumArgs = TheCall->getNumArgs();
1416
1417  if (NumArgs > 3)
1418    return Diag(TheCall->getLocEnd(),
1419             diag::err_typecheck_call_too_many_args_at_most)
1420             << 0 /*function call*/ << 3 << NumArgs
1421             << TheCall->getSourceRange();
1422
1423  // Argument 0 is checked for us and the remaining arguments must be
1424  // constant integers.
1425  for (unsigned i = 1; i != NumArgs; ++i) {
1426    Expr *Arg = TheCall->getArg(i);
1427
1428    llvm::APSInt Result;
1429    if (SemaBuiltinConstantArg(TheCall, i, Result))
1430      return true;
1431
1432    // FIXME: gcc issues a warning and rewrites these to 0. These
1433    // seems especially odd for the third argument since the default
1434    // is 3.
1435    if (i == 1) {
1436      if (Result.getLimitedValue() > 1)
1437        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1438             << "0" << "1" << Arg->getSourceRange();
1439    } else {
1440      if (Result.getLimitedValue() > 3)
1441        return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1442            << "0" << "3" << Arg->getSourceRange();
1443    }
1444  }
1445
1446  return false;
1447}
1448
1449/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
1450/// TheCall is a constant expression.
1451bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
1452                                  llvm::APSInt &Result) {
1453  Expr *Arg = TheCall->getArg(ArgNum);
1454  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1455  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1456
1457  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
1458
1459  if (!Arg->isIntegerConstantExpr(Result, Context))
1460    return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
1461                << FDecl->getDeclName() <<  Arg->getSourceRange();
1462
1463  return false;
1464}
1465
1466/// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
1467/// int type). This simply type checks that type is one of the defined
1468/// constants (0-3).
1469// For compatibility check 0-3, llvm only handles 0 and 2.
1470bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
1471  llvm::APSInt Result;
1472
1473  // Check constant-ness first.
1474  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1475    return true;
1476
1477  Expr *Arg = TheCall->getArg(1);
1478  if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
1479    return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
1480             << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1481  }
1482
1483  return false;
1484}
1485
1486/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
1487/// This checks that val is a constant 1.
1488bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
1489  Expr *Arg = TheCall->getArg(1);
1490  llvm::APSInt Result;
1491
1492  // TODO: This is less than ideal. Overload this to take a value.
1493  if (SemaBuiltinConstantArg(TheCall, 1, Result))
1494    return true;
1495
1496  if (Result != 1)
1497    return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
1498             << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
1499
1500  return false;
1501}
1502
1503// Handle i > 1 ? "x" : "y", recursively.
1504bool Sema::SemaCheckStringLiteral(const Expr *E, Expr **Args,
1505                                  unsigned NumArgs, bool HasVAListArg,
1506                                  unsigned format_idx, unsigned firstDataArg,
1507                                  FormatStringType Type, bool inFunctionCall) {
1508 tryAgain:
1509  if (E->isTypeDependent() || E->isValueDependent())
1510    return false;
1511
1512  E = E->IgnoreParenCasts();
1513
1514  if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1515    // Technically -Wformat-nonliteral does not warn about this case.
1516    // The behavior of printf and friends in this case is implementation
1517    // dependent.  Ideally if the format string cannot be null then
1518    // it should have a 'nonnull' attribute in the function prototype.
1519    return true;
1520
1521  switch (E->getStmtClass()) {
1522  case Stmt::BinaryConditionalOperatorClass:
1523  case Stmt::ConditionalOperatorClass: {
1524    const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
1525    return SemaCheckStringLiteral(C->getTrueExpr(), Args, NumArgs, HasVAListArg,
1526                                  format_idx, firstDataArg, Type,
1527                                  inFunctionCall)
1528       && SemaCheckStringLiteral(C->getFalseExpr(), Args, NumArgs, HasVAListArg,
1529                                 format_idx, firstDataArg, Type,
1530                                 inFunctionCall);
1531  }
1532
1533  case Stmt::ImplicitCastExprClass: {
1534    E = cast<ImplicitCastExpr>(E)->getSubExpr();
1535    goto tryAgain;
1536  }
1537
1538  case Stmt::OpaqueValueExprClass:
1539    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
1540      E = src;
1541      goto tryAgain;
1542    }
1543    return false;
1544
1545  case Stmt::PredefinedExprClass:
1546    // While __func__, etc., are technically not string literals, they
1547    // cannot contain format specifiers and thus are not a security
1548    // liability.
1549    return true;
1550
1551  case Stmt::DeclRefExprClass: {
1552    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
1553
1554    // As an exception, do not flag errors for variables binding to
1555    // const string literals.
1556    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
1557      bool isConstant = false;
1558      QualType T = DR->getType();
1559
1560      if (const ArrayType *AT = Context.getAsArrayType(T)) {
1561        isConstant = AT->getElementType().isConstant(Context);
1562      } else if (const PointerType *PT = T->getAs<PointerType>()) {
1563        isConstant = T.isConstant(Context) &&
1564                     PT->getPointeeType().isConstant(Context);
1565      } else if (T->isObjCObjectPointerType()) {
1566        // In ObjC, there is usually no "const ObjectPointer" type,
1567        // so don't check if the pointee type is constant.
1568        isConstant = T.isConstant(Context);
1569      }
1570
1571      if (isConstant) {
1572        if (const Expr *Init = VD->getAnyInitializer()) {
1573          // Look through initializers like const char c[] = { "foo" }
1574          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
1575            if (InitList->isStringLiteralInit())
1576              Init = InitList->getInit(0)->IgnoreParenImpCasts();
1577          }
1578          return SemaCheckStringLiteral(Init, Args, NumArgs,
1579                                        HasVAListArg, format_idx, firstDataArg,
1580                                        Type, /*inFunctionCall*/false);
1581        }
1582      }
1583
1584      // For vprintf* functions (i.e., HasVAListArg==true), we add a
1585      // special check to see if the format string is a function parameter
1586      // of the function calling the printf function.  If the function
1587      // has an attribute indicating it is a printf-like function, then we
1588      // should suppress warnings concerning non-literals being used in a call
1589      // to a vprintf function.  For example:
1590      //
1591      // void
1592      // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
1593      //      va_list ap;
1594      //      va_start(ap, fmt);
1595      //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
1596      //      ...
1597      //
1598      if (HasVAListArg) {
1599        if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
1600          if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
1601            int PVIndex = PV->getFunctionScopeIndex() + 1;
1602            for (specific_attr_iterator<FormatAttr>
1603                 i = ND->specific_attr_begin<FormatAttr>(),
1604                 e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
1605              FormatAttr *PVFormat = *i;
1606              // adjust for implicit parameter
1607              if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1608                if (MD->isInstance())
1609                  ++PVIndex;
1610              // We also check if the formats are compatible.
1611              // We can't pass a 'scanf' string to a 'printf' function.
1612              if (PVIndex == PVFormat->getFormatIdx() &&
1613                  Type == GetFormatStringType(PVFormat))
1614                return true;
1615            }
1616          }
1617        }
1618      }
1619    }
1620
1621    return false;
1622  }
1623
1624  case Stmt::CallExprClass:
1625  case Stmt::CXXMemberCallExprClass: {
1626    const CallExpr *CE = cast<CallExpr>(E);
1627    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
1628      if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
1629        unsigned ArgIndex = FA->getFormatIdx();
1630        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
1631          if (MD->isInstance())
1632            --ArgIndex;
1633        const Expr *Arg = CE->getArg(ArgIndex - 1);
1634
1635        return SemaCheckStringLiteral(Arg, Args, NumArgs, HasVAListArg,
1636                                      format_idx, firstDataArg, Type,
1637                                      inFunctionCall);
1638      }
1639    }
1640
1641    return false;
1642  }
1643  case Stmt::ObjCStringLiteralClass:
1644  case Stmt::StringLiteralClass: {
1645    const StringLiteral *StrE = NULL;
1646
1647    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
1648      StrE = ObjCFExpr->getString();
1649    else
1650      StrE = cast<StringLiteral>(E);
1651
1652    if (StrE) {
1653      CheckFormatString(StrE, E, Args, NumArgs, HasVAListArg, format_idx,
1654                        firstDataArg, Type, inFunctionCall);
1655      return true;
1656    }
1657
1658    return false;
1659  }
1660
1661  default:
1662    return false;
1663  }
1664}
1665
1666void
1667Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
1668                            const Expr * const *ExprArgs,
1669                            SourceLocation CallSiteLoc) {
1670  for (NonNullAttr::args_iterator i = NonNull->args_begin(),
1671                                  e = NonNull->args_end();
1672       i != e; ++i) {
1673    const Expr *ArgExpr = ExprArgs[*i];
1674    if (ArgExpr->isNullPointerConstant(Context,
1675                                       Expr::NPC_ValueDependentIsNotNull))
1676      Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1677  }
1678}
1679
1680Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
1681  return llvm::StringSwitch<FormatStringType>(Format->getType())
1682  .Case("scanf", FST_Scanf)
1683  .Cases("printf", "printf0", FST_Printf)
1684  .Cases("NSString", "CFString", FST_NSString)
1685  .Case("strftime", FST_Strftime)
1686  .Case("strfmon", FST_Strfmon)
1687  .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
1688  .Default(FST_Unknown);
1689}
1690
1691/// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
1692/// functions) for correct use of format strings.
1693void Sema::CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall) {
1694  bool IsCXXMember = false;
1695  // The way the format attribute works in GCC, the implicit this argument
1696  // of member functions is counted. However, it doesn't appear in our own
1697  // lists, so decrement format_idx in that case.
1698  IsCXXMember = isa<CXXMemberCallExpr>(TheCall);
1699  CheckFormatArguments(Format, TheCall->getArgs(), TheCall->getNumArgs(),
1700                       IsCXXMember, TheCall->getRParenLoc(),
1701                       TheCall->getCallee()->getSourceRange());
1702}
1703
1704void Sema::CheckFormatArguments(const FormatAttr *Format, Expr **Args,
1705                                unsigned NumArgs, bool IsCXXMember,
1706                                SourceLocation Loc, SourceRange Range) {
1707  bool HasVAListArg = Format->getFirstArg() == 0;
1708  unsigned format_idx = Format->getFormatIdx() - 1;
1709  unsigned firstDataArg = HasVAListArg ? 0 : Format->getFirstArg() - 1;
1710  if (IsCXXMember) {
1711    if (format_idx == 0)
1712      return;
1713    --format_idx;
1714    if(firstDataArg != 0)
1715      --firstDataArg;
1716  }
1717  CheckFormatArguments(Args, NumArgs, HasVAListArg, format_idx,
1718                       firstDataArg, GetFormatStringType(Format), Loc, Range);
1719}
1720
1721void Sema::CheckFormatArguments(Expr **Args, unsigned NumArgs,
1722                                bool HasVAListArg, unsigned format_idx,
1723                                unsigned firstDataArg, FormatStringType Type,
1724                                SourceLocation Loc, SourceRange Range) {
1725  // CHECK: printf/scanf-like function is called with no format string.
1726  if (format_idx >= NumArgs) {
1727    Diag(Loc, diag::warn_missing_format_string) << Range;
1728    return;
1729  }
1730
1731  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
1732
1733  // CHECK: format string is not a string literal.
1734  //
1735  // Dynamically generated format strings are difficult to
1736  // automatically vet at compile time.  Requiring that format strings
1737  // are string literals: (1) permits the checking of format strings by
1738  // the compiler and thereby (2) can practically remove the source of
1739  // many format string exploits.
1740
1741  // Format string can be either ObjC string (e.g. @"%d") or
1742  // C string (e.g. "%d")
1743  // ObjC string uses the same format specifiers as C string, so we can use
1744  // the same format string checking logic for both ObjC and C strings.
1745  if (SemaCheckStringLiteral(OrigFormatExpr, Args, NumArgs, HasVAListArg,
1746                             format_idx, firstDataArg, Type))
1747    return;  // Literal format string found, check done!
1748
1749  // Strftime is particular as it always uses a single 'time' argument,
1750  // so it is safe to pass a non-literal string.
1751  if (Type == FST_Strftime)
1752    return;
1753
1754  // Do not emit diag when the string param is a macro expansion and the
1755  // format is either NSString or CFString. This is a hack to prevent
1756  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
1757  // which are usually used in place of NS and CF string literals.
1758  if (Type == FST_NSString &&
1759      SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
1760    return;
1761
1762  // If there are no arguments specified, warn with -Wformat-security, otherwise
1763  // warn only with -Wformat-nonliteral.
1764  if (NumArgs == format_idx+1)
1765    Diag(Args[format_idx]->getLocStart(),
1766         diag::warn_format_nonliteral_noargs)
1767      << OrigFormatExpr->getSourceRange();
1768  else
1769    Diag(Args[format_idx]->getLocStart(),
1770         diag::warn_format_nonliteral)
1771           << OrigFormatExpr->getSourceRange();
1772}
1773
1774namespace {
1775class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
1776protected:
1777  Sema &S;
1778  const StringLiteral *FExpr;
1779  const Expr *OrigFormatExpr;
1780  const unsigned FirstDataArg;
1781  const unsigned NumDataArgs;
1782  const bool IsObjCLiteral;
1783  const char *Beg; // Start of format string.
1784  const bool HasVAListArg;
1785  const Expr * const *Args;
1786  const unsigned NumArgs;
1787  unsigned FormatIdx;
1788  llvm::BitVector CoveredArgs;
1789  bool usesPositionalArgs;
1790  bool atFirstArg;
1791  bool inFunctionCall;
1792public:
1793  CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
1794                     const Expr *origFormatExpr, unsigned firstDataArg,
1795                     unsigned numDataArgs, bool isObjCLiteral,
1796                     const char *beg, bool hasVAListArg,
1797                     Expr **args, unsigned numArgs,
1798                     unsigned formatIdx, bool inFunctionCall)
1799    : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
1800      FirstDataArg(firstDataArg),
1801      NumDataArgs(numDataArgs),
1802      IsObjCLiteral(isObjCLiteral), Beg(beg),
1803      HasVAListArg(hasVAListArg),
1804      Args(args), NumArgs(numArgs), FormatIdx(formatIdx),
1805      usesPositionalArgs(false), atFirstArg(true),
1806      inFunctionCall(inFunctionCall) {
1807        CoveredArgs.resize(numDataArgs);
1808        CoveredArgs.reset();
1809      }
1810
1811  void DoneProcessing();
1812
1813  void HandleIncompleteSpecifier(const char *startSpecifier,
1814                                 unsigned specifierLen);
1815
1816  void HandleNonStandardLengthModifier(
1817      const analyze_format_string::LengthModifier &LM,
1818      const char *startSpecifier, unsigned specifierLen);
1819
1820  void HandleNonStandardConversionSpecifier(
1821      const analyze_format_string::ConversionSpecifier &CS,
1822      const char *startSpecifier, unsigned specifierLen);
1823
1824  void HandleNonStandardConversionSpecification(
1825      const analyze_format_string::LengthModifier &LM,
1826      const analyze_format_string::ConversionSpecifier &CS,
1827      const char *startSpecifier, unsigned specifierLen);
1828
1829  virtual void HandlePosition(const char *startPos, unsigned posLen);
1830
1831  virtual void HandleInvalidPosition(const char *startSpecifier,
1832                                     unsigned specifierLen,
1833                                     analyze_format_string::PositionContext p);
1834
1835  virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
1836
1837  void HandleNullChar(const char *nullCharacter);
1838
1839  template <typename Range>
1840  static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
1841                                   const Expr *ArgumentExpr,
1842                                   PartialDiagnostic PDiag,
1843                                   SourceLocation StringLoc,
1844                                   bool IsStringLocation, Range StringRange,
1845                                   FixItHint Fixit = FixItHint());
1846
1847protected:
1848  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
1849                                        const char *startSpec,
1850                                        unsigned specifierLen,
1851                                        const char *csStart, unsigned csLen);
1852
1853  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
1854                                         const char *startSpec,
1855                                         unsigned specifierLen);
1856
1857  SourceRange getFormatStringRange();
1858  CharSourceRange getSpecifierRange(const char *startSpecifier,
1859                                    unsigned specifierLen);
1860  SourceLocation getLocationOfByte(const char *x);
1861
1862  const Expr *getDataArg(unsigned i) const;
1863
1864  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
1865                    const analyze_format_string::ConversionSpecifier &CS,
1866                    const char *startSpecifier, unsigned specifierLen,
1867                    unsigned argIndex);
1868
1869  template <typename Range>
1870  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
1871                            bool IsStringLocation, Range StringRange,
1872                            FixItHint Fixit = FixItHint());
1873
1874  void CheckPositionalAndNonpositionalArgs(
1875      const analyze_format_string::FormatSpecifier *FS);
1876};
1877}
1878
1879SourceRange CheckFormatHandler::getFormatStringRange() {
1880  return OrigFormatExpr->getSourceRange();
1881}
1882
1883CharSourceRange CheckFormatHandler::
1884getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
1885  SourceLocation Start = getLocationOfByte(startSpecifier);
1886  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
1887
1888  // Advance the end SourceLocation by one due to half-open ranges.
1889  End = End.getLocWithOffset(1);
1890
1891  return CharSourceRange::getCharRange(Start, End);
1892}
1893
1894SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
1895  return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
1896}
1897
1898void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
1899                                                   unsigned specifierLen){
1900  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
1901                       getLocationOfByte(startSpecifier),
1902                       /*IsStringLocation*/true,
1903                       getSpecifierRange(startSpecifier, specifierLen));
1904}
1905
1906void CheckFormatHandler::HandleNonStandardLengthModifier(
1907    const analyze_format_string::LengthModifier &LM,
1908    const char *startSpecifier, unsigned specifierLen) {
1909  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << LM.toString()
1910                       << 0,
1911                       getLocationOfByte(LM.getStart()),
1912                       /*IsStringLocation*/true,
1913                       getSpecifierRange(startSpecifier, specifierLen));
1914}
1915
1916void CheckFormatHandler::HandleNonStandardConversionSpecifier(
1917    const analyze_format_string::ConversionSpecifier &CS,
1918    const char *startSpecifier, unsigned specifierLen) {
1919  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) << CS.toString()
1920                       << 1,
1921                       getLocationOfByte(CS.getStart()),
1922                       /*IsStringLocation*/true,
1923                       getSpecifierRange(startSpecifier, specifierLen));
1924}
1925
1926void CheckFormatHandler::HandleNonStandardConversionSpecification(
1927    const analyze_format_string::LengthModifier &LM,
1928    const analyze_format_string::ConversionSpecifier &CS,
1929    const char *startSpecifier, unsigned specifierLen) {
1930  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_conversion_spec)
1931                       << LM.toString() << CS.toString(),
1932                       getLocationOfByte(LM.getStart()),
1933                       /*IsStringLocation*/true,
1934                       getSpecifierRange(startSpecifier, specifierLen));
1935}
1936
1937void CheckFormatHandler::HandlePosition(const char *startPos,
1938                                        unsigned posLen) {
1939  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
1940                               getLocationOfByte(startPos),
1941                               /*IsStringLocation*/true,
1942                               getSpecifierRange(startPos, posLen));
1943}
1944
1945void
1946CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
1947                                     analyze_format_string::PositionContext p) {
1948  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
1949                         << (unsigned) p,
1950                       getLocationOfByte(startPos), /*IsStringLocation*/true,
1951                       getSpecifierRange(startPos, posLen));
1952}
1953
1954void CheckFormatHandler::HandleZeroPosition(const char *startPos,
1955                                            unsigned posLen) {
1956  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
1957                               getLocationOfByte(startPos),
1958                               /*IsStringLocation*/true,
1959                               getSpecifierRange(startPos, posLen));
1960}
1961
1962void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
1963  if (!IsObjCLiteral) {
1964    // The presence of a null character is likely an error.
1965    EmitFormatDiagnostic(
1966      S.PDiag(diag::warn_printf_format_string_contains_null_char),
1967      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
1968      getFormatStringRange());
1969  }
1970}
1971
1972const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
1973  return Args[FirstDataArg + i];
1974}
1975
1976void CheckFormatHandler::DoneProcessing() {
1977    // Does the number of data arguments exceed the number of
1978    // format conversions in the format string?
1979  if (!HasVAListArg) {
1980      // Find any arguments that weren't covered.
1981    CoveredArgs.flip();
1982    signed notCoveredArg = CoveredArgs.find_first();
1983    if (notCoveredArg >= 0) {
1984      assert((unsigned)notCoveredArg < NumDataArgs);
1985      SourceLocation Loc = getDataArg((unsigned) notCoveredArg)->getLocStart();
1986      if (!S.getSourceManager().isInSystemMacro(Loc)) {
1987        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
1988                             Loc,
1989                             /*IsStringLocation*/false, getFormatStringRange());
1990      }
1991    }
1992  }
1993}
1994
1995bool
1996CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
1997                                                     SourceLocation Loc,
1998                                                     const char *startSpec,
1999                                                     unsigned specifierLen,
2000                                                     const char *csStart,
2001                                                     unsigned csLen) {
2002
2003  bool keepGoing = true;
2004  if (argIndex < NumDataArgs) {
2005    // Consider the argument coverered, even though the specifier doesn't
2006    // make sense.
2007    CoveredArgs.set(argIndex);
2008  }
2009  else {
2010    // If argIndex exceeds the number of data arguments we
2011    // don't issue a warning because that is just a cascade of warnings (and
2012    // they may have intended '%%' anyway). We don't want to continue processing
2013    // the format string after this point, however, as we will like just get
2014    // gibberish when trying to match arguments.
2015    keepGoing = false;
2016  }
2017
2018  EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2019                         << StringRef(csStart, csLen),
2020                       Loc, /*IsStringLocation*/true,
2021                       getSpecifierRange(startSpec, specifierLen));
2022
2023  return keepGoing;
2024}
2025
2026void
2027CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2028                                                      const char *startSpec,
2029                                                      unsigned specifierLen) {
2030  EmitFormatDiagnostic(
2031    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2032    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2033}
2034
2035bool
2036CheckFormatHandler::CheckNumArgs(
2037  const analyze_format_string::FormatSpecifier &FS,
2038  const analyze_format_string::ConversionSpecifier &CS,
2039  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2040
2041  if (argIndex >= NumDataArgs) {
2042    PartialDiagnostic PDiag = FS.usesPositionalArg()
2043      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
2044           << (argIndex+1) << NumDataArgs)
2045      : S.PDiag(diag::warn_printf_insufficient_data_args);
2046    EmitFormatDiagnostic(
2047      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
2048      getSpecifierRange(startSpecifier, specifierLen));
2049    return false;
2050  }
2051  return true;
2052}
2053
2054template<typename Range>
2055void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
2056                                              SourceLocation Loc,
2057                                              bool IsStringLocation,
2058                                              Range StringRange,
2059                                              FixItHint FixIt) {
2060  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
2061                       Loc, IsStringLocation, StringRange, FixIt);
2062}
2063
2064/// \brief If the format string is not within the funcion call, emit a note
2065/// so that the function call and string are in diagnostic messages.
2066///
2067/// \param inFunctionCall if true, the format string is within the function
2068/// call and only one diagnostic message will be produced.  Otherwise, an
2069/// extra note will be emitted pointing to location of the format string.
2070///
2071/// \param ArgumentExpr the expression that is passed as the format string
2072/// argument in the function call.  Used for getting locations when two
2073/// diagnostics are emitted.
2074///
2075/// \param PDiag the callee should already have provided any strings for the
2076/// diagnostic message.  This function only adds locations and fixits
2077/// to diagnostics.
2078///
2079/// \param Loc primary location for diagnostic.  If two diagnostics are
2080/// required, one will be at Loc and a new SourceLocation will be created for
2081/// the other one.
2082///
2083/// \param IsStringLocation if true, Loc points to the format string should be
2084/// used for the note.  Otherwise, Loc points to the argument list and will
2085/// be used with PDiag.
2086///
2087/// \param StringRange some or all of the string to highlight.  This is
2088/// templated so it can accept either a CharSourceRange or a SourceRange.
2089///
2090/// \param Fixit optional fix it hint for the format string.
2091template<typename Range>
2092void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
2093                                              const Expr *ArgumentExpr,
2094                                              PartialDiagnostic PDiag,
2095                                              SourceLocation Loc,
2096                                              bool IsStringLocation,
2097                                              Range StringRange,
2098                                              FixItHint FixIt) {
2099  if (InFunctionCall)
2100    S.Diag(Loc, PDiag) << StringRange << FixIt;
2101  else {
2102    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
2103      << ArgumentExpr->getSourceRange();
2104    S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
2105           diag::note_format_string_defined)
2106      << StringRange << FixIt;
2107  }
2108}
2109
2110//===--- CHECK: Printf format string checking ------------------------------===//
2111
2112namespace {
2113class CheckPrintfHandler : public CheckFormatHandler {
2114public:
2115  CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
2116                     const Expr *origFormatExpr, unsigned firstDataArg,
2117                     unsigned numDataArgs, bool isObjCLiteral,
2118                     const char *beg, bool hasVAListArg,
2119                     Expr **Args, unsigned NumArgs,
2120                     unsigned formatIdx, bool inFunctionCall)
2121  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2122                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2123                       Args, NumArgs, formatIdx, inFunctionCall) {}
2124
2125
2126  bool HandleInvalidPrintfConversionSpecifier(
2127                                      const analyze_printf::PrintfSpecifier &FS,
2128                                      const char *startSpecifier,
2129                                      unsigned specifierLen);
2130
2131  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
2132                             const char *startSpecifier,
2133                             unsigned specifierLen);
2134
2135  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
2136                    const char *startSpecifier, unsigned specifierLen);
2137  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
2138                           const analyze_printf::OptionalAmount &Amt,
2139                           unsigned type,
2140                           const char *startSpecifier, unsigned specifierLen);
2141  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2142                  const analyze_printf::OptionalFlag &flag,
2143                  const char *startSpecifier, unsigned specifierLen);
2144  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
2145                         const analyze_printf::OptionalFlag &ignoredFlag,
2146                         const analyze_printf::OptionalFlag &flag,
2147                         const char *startSpecifier, unsigned specifierLen);
2148};
2149}
2150
2151bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
2152                                      const analyze_printf::PrintfSpecifier &FS,
2153                                      const char *startSpecifier,
2154                                      unsigned specifierLen) {
2155  const analyze_printf::PrintfConversionSpecifier &CS =
2156    FS.getConversionSpecifier();
2157
2158  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2159                                          getLocationOfByte(CS.getStart()),
2160                                          startSpecifier, specifierLen,
2161                                          CS.getStart(), CS.getLength());
2162}
2163
2164bool CheckPrintfHandler::HandleAmount(
2165                               const analyze_format_string::OptionalAmount &Amt,
2166                               unsigned k, const char *startSpecifier,
2167                               unsigned specifierLen) {
2168
2169  if (Amt.hasDataArgument()) {
2170    if (!HasVAListArg) {
2171      unsigned argIndex = Amt.getArgIndex();
2172      if (argIndex >= NumDataArgs) {
2173        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
2174                               << k,
2175                             getLocationOfByte(Amt.getStart()),
2176                             /*IsStringLocation*/true,
2177                             getSpecifierRange(startSpecifier, specifierLen));
2178        // Don't do any more checking.  We will just emit
2179        // spurious errors.
2180        return false;
2181      }
2182
2183      // Type check the data argument.  It should be an 'int'.
2184      // Although not in conformance with C99, we also allow the argument to be
2185      // an 'unsigned int' as that is a reasonably safe case.  GCC also
2186      // doesn't emit a warning for that case.
2187      CoveredArgs.set(argIndex);
2188      const Expr *Arg = getDataArg(argIndex);
2189      QualType T = Arg->getType();
2190
2191      const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
2192      assert(ATR.isValid());
2193
2194      if (!ATR.matchesType(S.Context, T)) {
2195        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
2196                               << k << ATR.getRepresentativeTypeName(S.Context)
2197                               << T << Arg->getSourceRange(),
2198                             getLocationOfByte(Amt.getStart()),
2199                             /*IsStringLocation*/true,
2200                             getSpecifierRange(startSpecifier, specifierLen));
2201        // Don't do any more checking.  We will just emit
2202        // spurious errors.
2203        return false;
2204      }
2205    }
2206  }
2207  return true;
2208}
2209
2210void CheckPrintfHandler::HandleInvalidAmount(
2211                                      const analyze_printf::PrintfSpecifier &FS,
2212                                      const analyze_printf::OptionalAmount &Amt,
2213                                      unsigned type,
2214                                      const char *startSpecifier,
2215                                      unsigned specifierLen) {
2216  const analyze_printf::PrintfConversionSpecifier &CS =
2217    FS.getConversionSpecifier();
2218
2219  FixItHint fixit =
2220    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
2221      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
2222                                 Amt.getConstantLength()))
2223      : FixItHint();
2224
2225  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
2226                         << type << CS.toString(),
2227                       getLocationOfByte(Amt.getStart()),
2228                       /*IsStringLocation*/true,
2229                       getSpecifierRange(startSpecifier, specifierLen),
2230                       fixit);
2231}
2232
2233void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
2234                                    const analyze_printf::OptionalFlag &flag,
2235                                    const char *startSpecifier,
2236                                    unsigned specifierLen) {
2237  // Warn about pointless flag with a fixit removal.
2238  const analyze_printf::PrintfConversionSpecifier &CS =
2239    FS.getConversionSpecifier();
2240  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
2241                         << flag.toString() << CS.toString(),
2242                       getLocationOfByte(flag.getPosition()),
2243                       /*IsStringLocation*/true,
2244                       getSpecifierRange(startSpecifier, specifierLen),
2245                       FixItHint::CreateRemoval(
2246                         getSpecifierRange(flag.getPosition(), 1)));
2247}
2248
2249void CheckPrintfHandler::HandleIgnoredFlag(
2250                                const analyze_printf::PrintfSpecifier &FS,
2251                                const analyze_printf::OptionalFlag &ignoredFlag,
2252                                const analyze_printf::OptionalFlag &flag,
2253                                const char *startSpecifier,
2254                                unsigned specifierLen) {
2255  // Warn about ignored flag with a fixit removal.
2256  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
2257                         << ignoredFlag.toString() << flag.toString(),
2258                       getLocationOfByte(ignoredFlag.getPosition()),
2259                       /*IsStringLocation*/true,
2260                       getSpecifierRange(startSpecifier, specifierLen),
2261                       FixItHint::CreateRemoval(
2262                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
2263}
2264
2265bool
2266CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
2267                                            &FS,
2268                                          const char *startSpecifier,
2269                                          unsigned specifierLen) {
2270
2271  using namespace analyze_format_string;
2272  using namespace analyze_printf;
2273  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
2274
2275  if (FS.consumesDataArgument()) {
2276    if (atFirstArg) {
2277        atFirstArg = false;
2278        usesPositionalArgs = FS.usesPositionalArg();
2279    }
2280    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2281      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2282                                        startSpecifier, specifierLen);
2283      return false;
2284    }
2285  }
2286
2287  // First check if the field width, precision, and conversion specifier
2288  // have matching data arguments.
2289  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
2290                    startSpecifier, specifierLen)) {
2291    return false;
2292  }
2293
2294  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
2295                    startSpecifier, specifierLen)) {
2296    return false;
2297  }
2298
2299  if (!CS.consumesDataArgument()) {
2300    // FIXME: Technically specifying a precision or field width here
2301    // makes no sense.  Worth issuing a warning at some point.
2302    return true;
2303  }
2304
2305  // Consume the argument.
2306  unsigned argIndex = FS.getArgIndex();
2307  if (argIndex < NumDataArgs) {
2308    // The check to see if the argIndex is valid will come later.
2309    // We set the bit here because we may exit early from this
2310    // function if we encounter some other error.
2311    CoveredArgs.set(argIndex);
2312  }
2313
2314  // Check for using an Objective-C specific conversion specifier
2315  // in a non-ObjC literal.
2316  if (!IsObjCLiteral && CS.isObjCArg()) {
2317    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
2318                                                  specifierLen);
2319  }
2320
2321  // Check for invalid use of field width
2322  if (!FS.hasValidFieldWidth()) {
2323    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
2324        startSpecifier, specifierLen);
2325  }
2326
2327  // Check for invalid use of precision
2328  if (!FS.hasValidPrecision()) {
2329    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
2330        startSpecifier, specifierLen);
2331  }
2332
2333  // Check each flag does not conflict with any other component.
2334  if (!FS.hasValidThousandsGroupingPrefix())
2335    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
2336  if (!FS.hasValidLeadingZeros())
2337    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
2338  if (!FS.hasValidPlusPrefix())
2339    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
2340  if (!FS.hasValidSpacePrefix())
2341    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
2342  if (!FS.hasValidAlternativeForm())
2343    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
2344  if (!FS.hasValidLeftJustified())
2345    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
2346
2347  // Check that flags are not ignored by another flag
2348  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
2349    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
2350        startSpecifier, specifierLen);
2351  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
2352    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
2353            startSpecifier, specifierLen);
2354
2355  // Check the length modifier is valid with the given conversion specifier.
2356  const LengthModifier &LM = FS.getLengthModifier();
2357  if (!FS.hasValidLengthModifier())
2358    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2359                           << LM.toString() << CS.toString(),
2360                         getLocationOfByte(LM.getStart()),
2361                         /*IsStringLocation*/true,
2362                         getSpecifierRange(startSpecifier, specifierLen),
2363                         FixItHint::CreateRemoval(
2364                           getSpecifierRange(LM.getStart(),
2365                                             LM.getLength())));
2366  if (!FS.hasStandardLengthModifier())
2367    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2368  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2369    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2370  if (!FS.hasStandardLengthConversionCombination())
2371    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2372                                             specifierLen);
2373
2374  // Are we using '%n'?
2375  if (CS.getKind() == ConversionSpecifier::nArg) {
2376    // Issue a warning about this being a possible security issue.
2377    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_write_back),
2378                         getLocationOfByte(CS.getStart()),
2379                         /*IsStringLocation*/true,
2380                         getSpecifierRange(startSpecifier, specifierLen));
2381    // Continue checking the other format specifiers.
2382    return true;
2383  }
2384
2385  // The remaining checks depend on the data arguments.
2386  if (HasVAListArg)
2387    return true;
2388
2389  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2390    return false;
2391
2392  // Now type check the data expression that matches the
2393  // format specifier.
2394  const Expr *Ex = getDataArg(argIndex);
2395  const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context,
2396                                                           IsObjCLiteral);
2397  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2398    // Check if we didn't match because of an implicit cast from a 'char'
2399    // or 'short' to an 'int'.  This is done because printf is a varargs
2400    // function.
2401    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
2402      if (ICE->getType() == S.Context.IntTy ||
2403          ICE->getType() == S.Context.UnsignedIntTy) {
2404        // All further checking is done on the subexpression.
2405        Ex = ICE->getSubExpr();
2406        if (ATR.matchesType(S.Context, Ex->getType()))
2407          return true;
2408      }
2409
2410    // We may be able to offer a FixItHint if it is a supported type.
2411    PrintfSpecifier fixedFS = FS;
2412    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2413                                   S.Context, IsObjCLiteral);
2414
2415    if (success) {
2416      // Get the fix string from the fixed format specifier
2417      SmallString<128> buf;
2418      llvm::raw_svector_ostream os(buf);
2419      fixedFS.toString(os);
2420
2421      EmitFormatDiagnostic(
2422        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2423          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2424          << Ex->getSourceRange(),
2425        getLocationOfByte(CS.getStart()),
2426        /*IsStringLocation*/true,
2427        getSpecifierRange(startSpecifier, specifierLen),
2428        FixItHint::CreateReplacement(
2429          getSpecifierRange(startSpecifier, specifierLen),
2430          os.str()));
2431    }
2432    else {
2433      EmitFormatDiagnostic(
2434        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2435          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2436          << getSpecifierRange(startSpecifier, specifierLen)
2437          << Ex->getSourceRange(),
2438        getLocationOfByte(CS.getStart()),
2439        true,
2440        getSpecifierRange(startSpecifier, specifierLen));
2441    }
2442  }
2443
2444  return true;
2445}
2446
2447//===--- CHECK: Scanf format string checking ------------------------------===//
2448
2449namespace {
2450class CheckScanfHandler : public CheckFormatHandler {
2451public:
2452  CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
2453                    const Expr *origFormatExpr, unsigned firstDataArg,
2454                    unsigned numDataArgs, bool isObjCLiteral,
2455                    const char *beg, bool hasVAListArg,
2456                    Expr **Args, unsigned NumArgs,
2457                    unsigned formatIdx, bool inFunctionCall)
2458  : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
2459                       numDataArgs, isObjCLiteral, beg, hasVAListArg,
2460                       Args, NumArgs, formatIdx, inFunctionCall) {}
2461
2462  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
2463                            const char *startSpecifier,
2464                            unsigned specifierLen);
2465
2466  bool HandleInvalidScanfConversionSpecifier(
2467          const analyze_scanf::ScanfSpecifier &FS,
2468          const char *startSpecifier,
2469          unsigned specifierLen);
2470
2471  void HandleIncompleteScanList(const char *start, const char *end);
2472};
2473}
2474
2475void CheckScanfHandler::HandleIncompleteScanList(const char *start,
2476                                                 const char *end) {
2477  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
2478                       getLocationOfByte(end), /*IsStringLocation*/true,
2479                       getSpecifierRange(start, end - start));
2480}
2481
2482bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
2483                                        const analyze_scanf::ScanfSpecifier &FS,
2484                                        const char *startSpecifier,
2485                                        unsigned specifierLen) {
2486
2487  const analyze_scanf::ScanfConversionSpecifier &CS =
2488    FS.getConversionSpecifier();
2489
2490  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
2491                                          getLocationOfByte(CS.getStart()),
2492                                          startSpecifier, specifierLen,
2493                                          CS.getStart(), CS.getLength());
2494}
2495
2496bool CheckScanfHandler::HandleScanfSpecifier(
2497                                       const analyze_scanf::ScanfSpecifier &FS,
2498                                       const char *startSpecifier,
2499                                       unsigned specifierLen) {
2500
2501  using namespace analyze_scanf;
2502  using namespace analyze_format_string;
2503
2504  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
2505
2506  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
2507  // be used to decide if we are using positional arguments consistently.
2508  if (FS.consumesDataArgument()) {
2509    if (atFirstArg) {
2510      atFirstArg = false;
2511      usesPositionalArgs = FS.usesPositionalArg();
2512    }
2513    else if (usesPositionalArgs != FS.usesPositionalArg()) {
2514      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
2515                                        startSpecifier, specifierLen);
2516      return false;
2517    }
2518  }
2519
2520  // Check if the field with is non-zero.
2521  const OptionalAmount &Amt = FS.getFieldWidth();
2522  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
2523    if (Amt.getConstantAmount() == 0) {
2524      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
2525                                                   Amt.getConstantLength());
2526      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
2527                           getLocationOfByte(Amt.getStart()),
2528                           /*IsStringLocation*/true, R,
2529                           FixItHint::CreateRemoval(R));
2530    }
2531  }
2532
2533  if (!FS.consumesDataArgument()) {
2534    // FIXME: Technically specifying a precision or field width here
2535    // makes no sense.  Worth issuing a warning at some point.
2536    return true;
2537  }
2538
2539  // Consume the argument.
2540  unsigned argIndex = FS.getArgIndex();
2541  if (argIndex < NumDataArgs) {
2542      // The check to see if the argIndex is valid will come later.
2543      // We set the bit here because we may exit early from this
2544      // function if we encounter some other error.
2545    CoveredArgs.set(argIndex);
2546  }
2547
2548  // Check the length modifier is valid with the given conversion specifier.
2549  const LengthModifier &LM = FS.getLengthModifier();
2550  if (!FS.hasValidLengthModifier()) {
2551    const CharSourceRange &R = getSpecifierRange(LM.getStart(), LM.getLength());
2552    EmitFormatDiagnostic(S.PDiag(diag::warn_format_nonsensical_length)
2553                         << LM.toString() << CS.toString()
2554                         << getSpecifierRange(startSpecifier, specifierLen),
2555                         getLocationOfByte(LM.getStart()),
2556                         /*IsStringLocation*/true, R,
2557                         FixItHint::CreateRemoval(R));
2558  }
2559
2560  if (!FS.hasStandardLengthModifier())
2561    HandleNonStandardLengthModifier(LM, startSpecifier, specifierLen);
2562  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
2563    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
2564  if (!FS.hasStandardLengthConversionCombination())
2565    HandleNonStandardConversionSpecification(LM, CS, startSpecifier,
2566                                             specifierLen);
2567
2568  // The remaining checks depend on the data arguments.
2569  if (HasVAListArg)
2570    return true;
2571
2572  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
2573    return false;
2574
2575  // Check that the argument type matches the format specifier.
2576  const Expr *Ex = getDataArg(argIndex);
2577  const analyze_scanf::ScanfArgTypeResult &ATR = FS.getArgType(S.Context);
2578  if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
2579    ScanfSpecifier fixedFS = FS;
2580    bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
2581                                   S.Context);
2582
2583    if (success) {
2584      // Get the fix string from the fixed format specifier.
2585      SmallString<128> buf;
2586      llvm::raw_svector_ostream os(buf);
2587      fixedFS.toString(os);
2588
2589      EmitFormatDiagnostic(
2590        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2591          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2592          << Ex->getSourceRange(),
2593        getLocationOfByte(CS.getStart()),
2594        /*IsStringLocation*/true,
2595        getSpecifierRange(startSpecifier, specifierLen),
2596        FixItHint::CreateReplacement(
2597          getSpecifierRange(startSpecifier, specifierLen),
2598          os.str()));
2599    } else {
2600      EmitFormatDiagnostic(
2601        S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
2602          << ATR.getRepresentativeTypeName(S.Context) << Ex->getType()
2603          << Ex->getSourceRange(),
2604        getLocationOfByte(CS.getStart()),
2605        /*IsStringLocation*/true,
2606        getSpecifierRange(startSpecifier, specifierLen));
2607    }
2608  }
2609
2610  return true;
2611}
2612
2613void Sema::CheckFormatString(const StringLiteral *FExpr,
2614                             const Expr *OrigFormatExpr,
2615                             Expr **Args, unsigned NumArgs,
2616                             bool HasVAListArg, unsigned format_idx,
2617                             unsigned firstDataArg, FormatStringType Type,
2618                             bool inFunctionCall) {
2619
2620  // CHECK: is the format string a wide literal?
2621  if (!FExpr->isAscii()) {
2622    CheckFormatHandler::EmitFormatDiagnostic(
2623      *this, inFunctionCall, Args[format_idx],
2624      PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
2625      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2626    return;
2627  }
2628
2629  // Str - The format string.  NOTE: this is NOT null-terminated!
2630  StringRef StrRef = FExpr->getString();
2631  const char *Str = StrRef.data();
2632  unsigned StrLen = StrRef.size();
2633  const unsigned numDataArgs = NumArgs - firstDataArg;
2634
2635  // CHECK: empty format string?
2636  if (StrLen == 0 && numDataArgs > 0) {
2637    CheckFormatHandler::EmitFormatDiagnostic(
2638      *this, inFunctionCall, Args[format_idx],
2639      PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
2640      /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
2641    return;
2642  }
2643
2644  if (Type == FST_Printf || Type == FST_NSString) {
2645    CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2646                         numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2647                         Str, HasVAListArg, Args, NumArgs, format_idx,
2648                         inFunctionCall);
2649
2650    if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
2651                                                  getLangOpts()))
2652      H.DoneProcessing();
2653  } else if (Type == FST_Scanf) {
2654    CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
2655                        numDataArgs, isa<ObjCStringLiteral>(OrigFormatExpr),
2656                        Str, HasVAListArg, Args, NumArgs, format_idx,
2657                        inFunctionCall);
2658
2659    if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
2660                                                 getLangOpts()))
2661      H.DoneProcessing();
2662  } // TODO: handle other formats
2663}
2664
2665//===--- CHECK: Standard memory functions ---------------------------------===//
2666
2667/// \brief Determine whether the given type is a dynamic class type (e.g.,
2668/// whether it has a vtable).
2669static bool isDynamicClassType(QualType T) {
2670  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
2671    if (CXXRecordDecl *Definition = Record->getDefinition())
2672      if (Definition->isDynamicClass())
2673        return true;
2674
2675  return false;
2676}
2677
2678/// \brief If E is a sizeof expression, returns its argument expression,
2679/// otherwise returns NULL.
2680static const Expr *getSizeOfExprArg(const Expr* E) {
2681  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2682      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2683    if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
2684      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
2685
2686  return 0;
2687}
2688
2689/// \brief If E is a sizeof expression, returns its argument type.
2690static QualType getSizeOfArgType(const Expr* E) {
2691  if (const UnaryExprOrTypeTraitExpr *SizeOf =
2692      dyn_cast<UnaryExprOrTypeTraitExpr>(E))
2693    if (SizeOf->getKind() == clang::UETT_SizeOf)
2694      return SizeOf->getTypeOfArgument();
2695
2696  return QualType();
2697}
2698
2699/// \brief Check for dangerous or invalid arguments to memset().
2700///
2701/// This issues warnings on known problematic, dangerous or unspecified
2702/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
2703/// function calls.
2704///
2705/// \param Call The call expression to diagnose.
2706void Sema::CheckMemaccessArguments(const CallExpr *Call,
2707                                   unsigned BId,
2708                                   IdentifierInfo *FnName) {
2709  assert(BId != 0);
2710
2711  // It is possible to have a non-standard definition of memset.  Validate
2712  // we have enough arguments, and if not, abort further checking.
2713  unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
2714  if (Call->getNumArgs() < ExpectedNumArgs)
2715    return;
2716
2717  unsigned LastArg = (BId == Builtin::BImemset ||
2718                      BId == Builtin::BIstrndup ? 1 : 2);
2719  unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
2720  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
2721
2722  // We have special checking when the length is a sizeof expression.
2723  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
2724  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
2725  llvm::FoldingSetNodeID SizeOfArgID;
2726
2727  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
2728    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
2729    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
2730
2731    QualType DestTy = Dest->getType();
2732    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
2733      QualType PointeeTy = DestPtrTy->getPointeeType();
2734
2735      // Never warn about void type pointers. This can be used to suppress
2736      // false positives.
2737      if (PointeeTy->isVoidType())
2738        continue;
2739
2740      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
2741      // actually comparing the expressions for equality. Because computing the
2742      // expression IDs can be expensive, we only do this if the diagnostic is
2743      // enabled.
2744      if (SizeOfArg &&
2745          Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
2746                                   SizeOfArg->getExprLoc())) {
2747        // We only compute IDs for expressions if the warning is enabled, and
2748        // cache the sizeof arg's ID.
2749        if (SizeOfArgID == llvm::FoldingSetNodeID())
2750          SizeOfArg->Profile(SizeOfArgID, Context, true);
2751        llvm::FoldingSetNodeID DestID;
2752        Dest->Profile(DestID, Context, true);
2753        if (DestID == SizeOfArgID) {
2754          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
2755          //       over sizeof(src) as well.
2756          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
2757          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
2758            if (UnaryOp->getOpcode() == UO_AddrOf)
2759              ActionIdx = 1; // If its an address-of operator, just remove it.
2760          if (Context.getTypeSize(PointeeTy) == Context.getCharWidth())
2761            ActionIdx = 2; // If the pointee's size is sizeof(char),
2762                           // suggest an explicit length.
2763          unsigned DestSrcSelect =
2764            (BId == Builtin::BIstrndup ? 1 : ArgIdx);
2765          DiagRuntimeBehavior(SizeOfArg->getExprLoc(), Dest,
2766                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
2767                                << FnName << DestSrcSelect << ActionIdx
2768                                << Dest->getSourceRange()
2769                                << SizeOfArg->getSourceRange());
2770          break;
2771        }
2772      }
2773
2774      // Also check for cases where the sizeof argument is the exact same
2775      // type as the memory argument, and where it points to a user-defined
2776      // record type.
2777      if (SizeOfArgTy != QualType()) {
2778        if (PointeeTy->isRecordType() &&
2779            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
2780          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
2781                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
2782                                << FnName << SizeOfArgTy << ArgIdx
2783                                << PointeeTy << Dest->getSourceRange()
2784                                << LenExpr->getSourceRange());
2785          break;
2786        }
2787      }
2788
2789      // Always complain about dynamic classes.
2790      if (isDynamicClassType(PointeeTy)) {
2791
2792        unsigned OperationType = 0;
2793        // "overwritten" if we're warning about the destination for any call
2794        // but memcmp; otherwise a verb appropriate to the call.
2795        if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
2796          if (BId == Builtin::BImemcpy)
2797            OperationType = 1;
2798          else if(BId == Builtin::BImemmove)
2799            OperationType = 2;
2800          else if (BId == Builtin::BImemcmp)
2801            OperationType = 3;
2802        }
2803
2804        DiagRuntimeBehavior(
2805          Dest->getExprLoc(), Dest,
2806          PDiag(diag::warn_dyn_class_memaccess)
2807            << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
2808            << FnName << PointeeTy
2809            << OperationType
2810            << Call->getCallee()->getSourceRange());
2811      } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
2812               BId != Builtin::BImemset)
2813        DiagRuntimeBehavior(
2814          Dest->getExprLoc(), Dest,
2815          PDiag(diag::warn_arc_object_memaccess)
2816            << ArgIdx << FnName << PointeeTy
2817            << Call->getCallee()->getSourceRange());
2818      else
2819        continue;
2820
2821      DiagRuntimeBehavior(
2822        Dest->getExprLoc(), Dest,
2823        PDiag(diag::note_bad_memaccess_silence)
2824          << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
2825      break;
2826    }
2827  }
2828}
2829
2830// A little helper routine: ignore addition and subtraction of integer literals.
2831// This intentionally does not ignore all integer constant expressions because
2832// we don't want to remove sizeof().
2833static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
2834  Ex = Ex->IgnoreParenCasts();
2835
2836  for (;;) {
2837    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
2838    if (!BO || !BO->isAdditiveOp())
2839      break;
2840
2841    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
2842    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
2843
2844    if (isa<IntegerLiteral>(RHS))
2845      Ex = LHS;
2846    else if (isa<IntegerLiteral>(LHS))
2847      Ex = RHS;
2848    else
2849      break;
2850  }
2851
2852  return Ex;
2853}
2854
2855// Warn if the user has made the 'size' argument to strlcpy or strlcat
2856// be the size of the source, instead of the destination.
2857void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
2858                                    IdentifierInfo *FnName) {
2859
2860  // Don't crash if the user has the wrong number of arguments
2861  if (Call->getNumArgs() != 3)
2862    return;
2863
2864  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
2865  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
2866  const Expr *CompareWithSrc = NULL;
2867
2868  // Look for 'strlcpy(dst, x, sizeof(x))'
2869  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
2870    CompareWithSrc = Ex;
2871  else {
2872    // Look for 'strlcpy(dst, x, strlen(x))'
2873    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
2874      if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
2875          && SizeCall->getNumArgs() == 1)
2876        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
2877    }
2878  }
2879
2880  if (!CompareWithSrc)
2881    return;
2882
2883  // Determine if the argument to sizeof/strlen is equal to the source
2884  // argument.  In principle there's all kinds of things you could do
2885  // here, for instance creating an == expression and evaluating it with
2886  // EvaluateAsBooleanCondition, but this uses a more direct technique:
2887  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
2888  if (!SrcArgDRE)
2889    return;
2890
2891  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
2892  if (!CompareWithSrcDRE ||
2893      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
2894    return;
2895
2896  const Expr *OriginalSizeArg = Call->getArg(2);
2897  Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
2898    << OriginalSizeArg->getSourceRange() << FnName;
2899
2900  // Output a FIXIT hint if the destination is an array (rather than a
2901  // pointer to an array).  This could be enhanced to handle some
2902  // pointers if we know the actual size, like if DstArg is 'array+2'
2903  // we could say 'sizeof(array)-2'.
2904  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
2905  QualType DstArgTy = DstArg->getType();
2906
2907  // Only handle constant-sized or VLAs, but not flexible members.
2908  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
2909    // Only issue the FIXIT for arrays of size > 1.
2910    if (CAT->getSize().getSExtValue() <= 1)
2911      return;
2912  } else if (!DstArgTy->isVariableArrayType()) {
2913    return;
2914  }
2915
2916  SmallString<128> sizeString;
2917  llvm::raw_svector_ostream OS(sizeString);
2918  OS << "sizeof(";
2919  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
2920  OS << ")";
2921
2922  Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
2923    << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
2924                                    OS.str());
2925}
2926
2927/// Check if two expressions refer to the same declaration.
2928static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
2929  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
2930    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
2931      return D1->getDecl() == D2->getDecl();
2932  return false;
2933}
2934
2935static const Expr *getStrlenExprArg(const Expr *E) {
2936  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2937    const FunctionDecl *FD = CE->getDirectCallee();
2938    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
2939      return 0;
2940    return CE->getArg(0)->IgnoreParenCasts();
2941  }
2942  return 0;
2943}
2944
2945// Warn on anti-patterns as the 'size' argument to strncat.
2946// The correct size argument should look like following:
2947//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
2948void Sema::CheckStrncatArguments(const CallExpr *CE,
2949                                 IdentifierInfo *FnName) {
2950  // Don't crash if the user has the wrong number of arguments.
2951  if (CE->getNumArgs() < 3)
2952    return;
2953  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
2954  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
2955  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
2956
2957  // Identify common expressions, which are wrongly used as the size argument
2958  // to strncat and may lead to buffer overflows.
2959  unsigned PatternType = 0;
2960  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
2961    // - sizeof(dst)
2962    if (referToTheSameDecl(SizeOfArg, DstArg))
2963      PatternType = 1;
2964    // - sizeof(src)
2965    else if (referToTheSameDecl(SizeOfArg, SrcArg))
2966      PatternType = 2;
2967  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
2968    if (BE->getOpcode() == BO_Sub) {
2969      const Expr *L = BE->getLHS()->IgnoreParenCasts();
2970      const Expr *R = BE->getRHS()->IgnoreParenCasts();
2971      // - sizeof(dst) - strlen(dst)
2972      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
2973          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
2974        PatternType = 1;
2975      // - sizeof(src) - (anything)
2976      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
2977        PatternType = 2;
2978    }
2979  }
2980
2981  if (PatternType == 0)
2982    return;
2983
2984  // Generate the diagnostic.
2985  SourceLocation SL = LenArg->getLocStart();
2986  SourceRange SR = LenArg->getSourceRange();
2987  SourceManager &SM  = PP.getSourceManager();
2988
2989  // If the function is defined as a builtin macro, do not show macro expansion.
2990  if (SM.isMacroArgExpansion(SL)) {
2991    SL = SM.getSpellingLoc(SL);
2992    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
2993                     SM.getSpellingLoc(SR.getEnd()));
2994  }
2995
2996  if (PatternType == 1)
2997    Diag(SL, diag::warn_strncat_large_size) << SR;
2998  else
2999    Diag(SL, diag::warn_strncat_src_size) << SR;
3000
3001  // Output a FIXIT hint if the destination is an array (rather than a
3002  // pointer to an array).  This could be enhanced to handle some
3003  // pointers if we know the actual size, like if DstArg is 'array+2'
3004  // we could say 'sizeof(array)-2'.
3005  QualType DstArgTy = DstArg->getType();
3006
3007  // Only handle constant-sized or VLAs, but not flexible members.
3008  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(DstArgTy)) {
3009    // Only issue the FIXIT for arrays of size > 1.
3010    if (CAT->getSize().getSExtValue() <= 1)
3011      return;
3012  } else if (!DstArgTy->isVariableArrayType()) {
3013    return;
3014  }
3015
3016  SmallString<128> sizeString;
3017  llvm::raw_svector_ostream OS(sizeString);
3018  OS << "sizeof(";
3019  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3020  OS << ") - ";
3021  OS << "strlen(";
3022  DstArg->printPretty(OS, Context, 0, getPrintingPolicy());
3023  OS << ") - 1";
3024
3025  Diag(SL, diag::note_strncat_wrong_size)
3026    << FixItHint::CreateReplacement(SR, OS.str());
3027}
3028
3029//===--- CHECK: Return Address of Stack Variable --------------------------===//
3030
3031static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3032                     Decl *ParentDecl);
3033static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
3034                      Decl *ParentDecl);
3035
3036/// CheckReturnStackAddr - Check if a return statement returns the address
3037///   of a stack variable.
3038void
3039Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
3040                           SourceLocation ReturnLoc) {
3041
3042  Expr *stackE = 0;
3043  SmallVector<DeclRefExpr *, 8> refVars;
3044
3045  // Perform checking for returned stack addresses, local blocks,
3046  // label addresses or references to temporaries.
3047  if (lhsType->isPointerType() ||
3048      (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
3049    stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
3050  } else if (lhsType->isReferenceType()) {
3051    stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
3052  }
3053
3054  if (stackE == 0)
3055    return; // Nothing suspicious was found.
3056
3057  SourceLocation diagLoc;
3058  SourceRange diagRange;
3059  if (refVars.empty()) {
3060    diagLoc = stackE->getLocStart();
3061    diagRange = stackE->getSourceRange();
3062  } else {
3063    // We followed through a reference variable. 'stackE' contains the
3064    // problematic expression but we will warn at the return statement pointing
3065    // at the reference variable. We will later display the "trail" of
3066    // reference variables using notes.
3067    diagLoc = refVars[0]->getLocStart();
3068    diagRange = refVars[0]->getSourceRange();
3069  }
3070
3071  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
3072    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
3073                                             : diag::warn_ret_stack_addr)
3074     << DR->getDecl()->getDeclName() << diagRange;
3075  } else if (isa<BlockExpr>(stackE)) { // local block.
3076    Diag(diagLoc, diag::err_ret_local_block) << diagRange;
3077  } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
3078    Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
3079  } else { // local temporary.
3080    Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
3081                                             : diag::warn_ret_local_temp_addr)
3082     << diagRange;
3083  }
3084
3085  // Display the "trail" of reference variables that we followed until we
3086  // found the problematic expression using notes.
3087  for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
3088    VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
3089    // If this var binds to another reference var, show the range of the next
3090    // var, otherwise the var binds to the problematic expression, in which case
3091    // show the range of the expression.
3092    SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
3093                                  : stackE->getSourceRange();
3094    Diag(VD->getLocation(), diag::note_ref_var_local_bind)
3095      << VD->getDeclName() << range;
3096  }
3097}
3098
3099/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
3100///  check if the expression in a return statement evaluates to an address
3101///  to a location on the stack, a local block, an address of a label, or a
3102///  reference to local temporary. The recursion is used to traverse the
3103///  AST of the return expression, with recursion backtracking when we
3104///  encounter a subexpression that (1) clearly does not lead to one of the
3105///  above problematic expressions (2) is something we cannot determine leads to
3106///  a problematic expression based on such local checking.
3107///
3108///  Both EvalAddr and EvalVal follow through reference variables to evaluate
3109///  the expression that they point to. Such variables are added to the
3110///  'refVars' vector so that we know what the reference variable "trail" was.
3111///
3112///  EvalAddr processes expressions that are pointers that are used as
3113///  references (and not L-values).  EvalVal handles all other values.
3114///  At the base case of the recursion is a check for the above problematic
3115///  expressions.
3116///
3117///  This implementation handles:
3118///
3119///   * pointer-to-pointer casts
3120///   * implicit conversions from array references to pointers
3121///   * taking the address of fields
3122///   * arbitrary interplay between "&" and "*" operators
3123///   * pointer arithmetic from an address of a stack variable
3124///   * taking the address of an array element where the array is on the stack
3125static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3126                      Decl *ParentDecl) {
3127  if (E->isTypeDependent())
3128      return NULL;
3129
3130  // We should only be called for evaluating pointer expressions.
3131  assert((E->getType()->isAnyPointerType() ||
3132          E->getType()->isBlockPointerType() ||
3133          E->getType()->isObjCQualifiedIdType()) &&
3134         "EvalAddr only works on pointers");
3135
3136  E = E->IgnoreParens();
3137
3138  // Our "symbolic interpreter" is just a dispatch off the currently
3139  // viewed AST node.  We then recursively traverse the AST by calling
3140  // EvalAddr and EvalVal appropriately.
3141  switch (E->getStmtClass()) {
3142  case Stmt::DeclRefExprClass: {
3143    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3144
3145    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
3146      // If this is a reference variable, follow through to the expression that
3147      // it points to.
3148      if (V->hasLocalStorage() &&
3149          V->getType()->isReferenceType() && V->hasInit()) {
3150        // Add the reference variable to the "trail".
3151        refVars.push_back(DR);
3152        return EvalAddr(V->getInit(), refVars, ParentDecl);
3153      }
3154
3155    return NULL;
3156  }
3157
3158  case Stmt::UnaryOperatorClass: {
3159    // The only unary operator that make sense to handle here
3160    // is AddrOf.  All others don't make sense as pointers.
3161    UnaryOperator *U = cast<UnaryOperator>(E);
3162
3163    if (U->getOpcode() == UO_AddrOf)
3164      return EvalVal(U->getSubExpr(), refVars, ParentDecl);
3165    else
3166      return NULL;
3167  }
3168
3169  case Stmt::BinaryOperatorClass: {
3170    // Handle pointer arithmetic.  All other binary operators are not valid
3171    // in this context.
3172    BinaryOperator *B = cast<BinaryOperator>(E);
3173    BinaryOperatorKind op = B->getOpcode();
3174
3175    if (op != BO_Add && op != BO_Sub)
3176      return NULL;
3177
3178    Expr *Base = B->getLHS();
3179
3180    // Determine which argument is the real pointer base.  It could be
3181    // the RHS argument instead of the LHS.
3182    if (!Base->getType()->isPointerType()) Base = B->getRHS();
3183
3184    assert (Base->getType()->isPointerType());
3185    return EvalAddr(Base, refVars, ParentDecl);
3186  }
3187
3188  // For conditional operators we need to see if either the LHS or RHS are
3189  // valid DeclRefExpr*s.  If one of them is valid, we return it.
3190  case Stmt::ConditionalOperatorClass: {
3191    ConditionalOperator *C = cast<ConditionalOperator>(E);
3192
3193    // Handle the GNU extension for missing LHS.
3194    if (Expr *lhsExpr = C->getLHS()) {
3195    // In C++, we can have a throw-expression, which has 'void' type.
3196      if (!lhsExpr->getType()->isVoidType())
3197        if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
3198          return LHS;
3199    }
3200
3201    // In C++, we can have a throw-expression, which has 'void' type.
3202    if (C->getRHS()->getType()->isVoidType())
3203      return NULL;
3204
3205    return EvalAddr(C->getRHS(), refVars, ParentDecl);
3206  }
3207
3208  case Stmt::BlockExprClass:
3209    if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
3210      return E; // local block.
3211    return NULL;
3212
3213  case Stmt::AddrLabelExprClass:
3214    return E; // address of label.
3215
3216  case Stmt::ExprWithCleanupsClass:
3217    return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
3218                    ParentDecl);
3219
3220  // For casts, we need to handle conversions from arrays to
3221  // pointer values, and pointer-to-pointer conversions.
3222  case Stmt::ImplicitCastExprClass:
3223  case Stmt::CStyleCastExprClass:
3224  case Stmt::CXXFunctionalCastExprClass:
3225  case Stmt::ObjCBridgedCastExprClass:
3226  case Stmt::CXXStaticCastExprClass:
3227  case Stmt::CXXDynamicCastExprClass:
3228  case Stmt::CXXConstCastExprClass:
3229  case Stmt::CXXReinterpretCastExprClass: {
3230    Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
3231    switch (cast<CastExpr>(E)->getCastKind()) {
3232    case CK_BitCast:
3233    case CK_LValueToRValue:
3234    case CK_NoOp:
3235    case CK_BaseToDerived:
3236    case CK_DerivedToBase:
3237    case CK_UncheckedDerivedToBase:
3238    case CK_Dynamic:
3239    case CK_CPointerToObjCPointerCast:
3240    case CK_BlockPointerToObjCPointerCast:
3241    case CK_AnyPointerToBlockPointerCast:
3242      return EvalAddr(SubExpr, refVars, ParentDecl);
3243
3244    case CK_ArrayToPointerDecay:
3245      return EvalVal(SubExpr, refVars, ParentDecl);
3246
3247    default:
3248      return 0;
3249    }
3250  }
3251
3252  case Stmt::MaterializeTemporaryExprClass:
3253    if (Expr *Result = EvalAddr(
3254                         cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3255                                refVars, ParentDecl))
3256      return Result;
3257
3258    return E;
3259
3260  // Everything else: we simply don't reason about them.
3261  default:
3262    return NULL;
3263  }
3264}
3265
3266
3267///  EvalVal - This function is complements EvalAddr in the mutual recursion.
3268///   See the comments for EvalAddr for more details.
3269static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
3270                     Decl *ParentDecl) {
3271do {
3272  // We should only be called for evaluating non-pointer expressions, or
3273  // expressions with a pointer type that are not used as references but instead
3274  // are l-values (e.g., DeclRefExpr with a pointer type).
3275
3276  // Our "symbolic interpreter" is just a dispatch off the currently
3277  // viewed AST node.  We then recursively traverse the AST by calling
3278  // EvalAddr and EvalVal appropriately.
3279
3280  E = E->IgnoreParens();
3281  switch (E->getStmtClass()) {
3282  case Stmt::ImplicitCastExprClass: {
3283    ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
3284    if (IE->getValueKind() == VK_LValue) {
3285      E = IE->getSubExpr();
3286      continue;
3287    }
3288    return NULL;
3289  }
3290
3291  case Stmt::ExprWithCleanupsClass:
3292    return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
3293
3294  case Stmt::DeclRefExprClass: {
3295    // When we hit a DeclRefExpr we are looking at code that refers to a
3296    // variable's name. If it's not a reference variable we check if it has
3297    // local storage within the function, and if so, return the expression.
3298    DeclRefExpr *DR = cast<DeclRefExpr>(E);
3299
3300    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
3301      // Check if it refers to itself, e.g. "int& i = i;".
3302      if (V == ParentDecl)
3303        return DR;
3304
3305      if (V->hasLocalStorage()) {
3306        if (!V->getType()->isReferenceType())
3307          return DR;
3308
3309        // Reference variable, follow through to the expression that
3310        // it points to.
3311        if (V->hasInit()) {
3312          // Add the reference variable to the "trail".
3313          refVars.push_back(DR);
3314          return EvalVal(V->getInit(), refVars, V);
3315        }
3316      }
3317    }
3318
3319    return NULL;
3320  }
3321
3322  case Stmt::UnaryOperatorClass: {
3323    // The only unary operator that make sense to handle here
3324    // is Deref.  All others don't resolve to a "name."  This includes
3325    // handling all sorts of rvalues passed to a unary operator.
3326    UnaryOperator *U = cast<UnaryOperator>(E);
3327
3328    if (U->getOpcode() == UO_Deref)
3329      return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
3330
3331    return NULL;
3332  }
3333
3334  case Stmt::ArraySubscriptExprClass: {
3335    // Array subscripts are potential references to data on the stack.  We
3336    // retrieve the DeclRefExpr* for the array variable if it indeed
3337    // has local storage.
3338    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
3339  }
3340
3341  case Stmt::ConditionalOperatorClass: {
3342    // For conditional operators we need to see if either the LHS or RHS are
3343    // non-NULL Expr's.  If one is non-NULL, we return it.
3344    ConditionalOperator *C = cast<ConditionalOperator>(E);
3345
3346    // Handle the GNU extension for missing LHS.
3347    if (Expr *lhsExpr = C->getLHS())
3348      if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
3349        return LHS;
3350
3351    return EvalVal(C->getRHS(), refVars, ParentDecl);
3352  }
3353
3354  // Accesses to members are potential references to data on the stack.
3355  case Stmt::MemberExprClass: {
3356    MemberExpr *M = cast<MemberExpr>(E);
3357
3358    // Check for indirect access.  We only want direct field accesses.
3359    if (M->isArrow())
3360      return NULL;
3361
3362    // Check whether the member type is itself a reference, in which case
3363    // we're not going to refer to the member, but to what the member refers to.
3364    if (M->getMemberDecl()->getType()->isReferenceType())
3365      return NULL;
3366
3367    return EvalVal(M->getBase(), refVars, ParentDecl);
3368  }
3369
3370  case Stmt::MaterializeTemporaryExprClass:
3371    if (Expr *Result = EvalVal(
3372                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
3373                               refVars, ParentDecl))
3374      return Result;
3375
3376    return E;
3377
3378  default:
3379    // Check that we don't return or take the address of a reference to a
3380    // temporary. This is only useful in C++.
3381    if (!E->isTypeDependent() && E->isRValue())
3382      return E;
3383
3384    // Everything else: we simply don't reason about them.
3385    return NULL;
3386  }
3387} while (true);
3388}
3389
3390//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
3391
3392/// Check for comparisons of floating point operands using != and ==.
3393/// Issue a warning if these are no self-comparisons, as they are not likely
3394/// to do what the programmer intended.
3395void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
3396  bool EmitWarning = true;
3397
3398  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
3399  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
3400
3401  // Special case: check for x == x (which is OK).
3402  // Do not emit warnings for such cases.
3403  if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
3404    if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
3405      if (DRL->getDecl() == DRR->getDecl())
3406        EmitWarning = false;
3407
3408
3409  // Special case: check for comparisons against literals that can be exactly
3410  //  represented by APFloat.  In such cases, do not emit a warning.  This
3411  //  is a heuristic: often comparison against such literals are used to
3412  //  detect if a value in a variable has not changed.  This clearly can
3413  //  lead to false negatives.
3414  if (EmitWarning) {
3415    if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
3416      if (FLL->isExact())
3417        EmitWarning = false;
3418    } else
3419      if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
3420        if (FLR->isExact())
3421          EmitWarning = false;
3422    }
3423  }
3424
3425  // Check for comparisons with builtin types.
3426  if (EmitWarning)
3427    if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
3428      if (CL->isBuiltinCall())
3429        EmitWarning = false;
3430
3431  if (EmitWarning)
3432    if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
3433      if (CR->isBuiltinCall())
3434        EmitWarning = false;
3435
3436  // Emit the diagnostic.
3437  if (EmitWarning)
3438    Diag(Loc, diag::warn_floatingpoint_eq)
3439      << LHS->getSourceRange() << RHS->getSourceRange();
3440}
3441
3442//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
3443//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
3444
3445namespace {
3446
3447/// Structure recording the 'active' range of an integer-valued
3448/// expression.
3449struct IntRange {
3450  /// The number of bits active in the int.
3451  unsigned Width;
3452
3453  /// True if the int is known not to have negative values.
3454  bool NonNegative;
3455
3456  IntRange(unsigned Width, bool NonNegative)
3457    : Width(Width), NonNegative(NonNegative)
3458  {}
3459
3460  /// Returns the range of the bool type.
3461  static IntRange forBoolType() {
3462    return IntRange(1, true);
3463  }
3464
3465  /// Returns the range of an opaque value of the given integral type.
3466  static IntRange forValueOfType(ASTContext &C, QualType T) {
3467    return forValueOfCanonicalType(C,
3468                          T->getCanonicalTypeInternal().getTypePtr());
3469  }
3470
3471  /// Returns the range of an opaque value of a canonical integral type.
3472  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
3473    assert(T->isCanonicalUnqualified());
3474
3475    if (const VectorType *VT = dyn_cast<VectorType>(T))
3476      T = VT->getElementType().getTypePtr();
3477    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3478      T = CT->getElementType().getTypePtr();
3479
3480    // For enum types, use the known bit width of the enumerators.
3481    if (const EnumType *ET = dyn_cast<EnumType>(T)) {
3482      EnumDecl *Enum = ET->getDecl();
3483      if (!Enum->isCompleteDefinition())
3484        return IntRange(C.getIntWidth(QualType(T, 0)), false);
3485
3486      unsigned NumPositive = Enum->getNumPositiveBits();
3487      unsigned NumNegative = Enum->getNumNegativeBits();
3488
3489      return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
3490    }
3491
3492    const BuiltinType *BT = cast<BuiltinType>(T);
3493    assert(BT->isInteger());
3494
3495    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3496  }
3497
3498  /// Returns the "target" range of a canonical integral type, i.e.
3499  /// the range of values expressible in the type.
3500  ///
3501  /// This matches forValueOfCanonicalType except that enums have the
3502  /// full range of their type, not the range of their enumerators.
3503  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
3504    assert(T->isCanonicalUnqualified());
3505
3506    if (const VectorType *VT = dyn_cast<VectorType>(T))
3507      T = VT->getElementType().getTypePtr();
3508    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
3509      T = CT->getElementType().getTypePtr();
3510    if (const EnumType *ET = dyn_cast<EnumType>(T))
3511      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
3512
3513    const BuiltinType *BT = cast<BuiltinType>(T);
3514    assert(BT->isInteger());
3515
3516    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
3517  }
3518
3519  /// Returns the supremum of two ranges: i.e. their conservative merge.
3520  static IntRange join(IntRange L, IntRange R) {
3521    return IntRange(std::max(L.Width, R.Width),
3522                    L.NonNegative && R.NonNegative);
3523  }
3524
3525  /// Returns the infinum of two ranges: i.e. their aggressive merge.
3526  static IntRange meet(IntRange L, IntRange R) {
3527    return IntRange(std::min(L.Width, R.Width),
3528                    L.NonNegative || R.NonNegative);
3529  }
3530};
3531
3532static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
3533                              unsigned MaxWidth) {
3534  if (value.isSigned() && value.isNegative())
3535    return IntRange(value.getMinSignedBits(), false);
3536
3537  if (value.getBitWidth() > MaxWidth)
3538    value = value.trunc(MaxWidth);
3539
3540  // isNonNegative() just checks the sign bit without considering
3541  // signedness.
3542  return IntRange(value.getActiveBits(), true);
3543}
3544
3545static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
3546                              unsigned MaxWidth) {
3547  if (result.isInt())
3548    return GetValueRange(C, result.getInt(), MaxWidth);
3549
3550  if (result.isVector()) {
3551    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
3552    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
3553      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
3554      R = IntRange::join(R, El);
3555    }
3556    return R;
3557  }
3558
3559  if (result.isComplexInt()) {
3560    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
3561    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
3562    return IntRange::join(R, I);
3563  }
3564
3565  // This can happen with lossless casts to intptr_t of "based" lvalues.
3566  // Assume it might use arbitrary bits.
3567  // FIXME: The only reason we need to pass the type in here is to get
3568  // the sign right on this one case.  It would be nice if APValue
3569  // preserved this.
3570  assert(result.isLValue() || result.isAddrLabelDiff());
3571  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
3572}
3573
3574/// Pseudo-evaluate the given integer expression, estimating the
3575/// range of values it might take.
3576///
3577/// \param MaxWidth - the width to which the value will be truncated
3578static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
3579  E = E->IgnoreParens();
3580
3581  // Try a full evaluation first.
3582  Expr::EvalResult result;
3583  if (E->EvaluateAsRValue(result, C))
3584    return GetValueRange(C, result.Val, E->getType(), MaxWidth);
3585
3586  // I think we only want to look through implicit casts here; if the
3587  // user has an explicit widening cast, we should treat the value as
3588  // being of the new, wider type.
3589  if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
3590    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
3591      return GetExprRange(C, CE->getSubExpr(), MaxWidth);
3592
3593    IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
3594
3595    bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
3596
3597    // Assume that non-integer casts can span the full range of the type.
3598    if (!isIntegerCast)
3599      return OutputTypeRange;
3600
3601    IntRange SubRange
3602      = GetExprRange(C, CE->getSubExpr(),
3603                     std::min(MaxWidth, OutputTypeRange.Width));
3604
3605    // Bail out if the subexpr's range is as wide as the cast type.
3606    if (SubRange.Width >= OutputTypeRange.Width)
3607      return OutputTypeRange;
3608
3609    // Otherwise, we take the smaller width, and we're non-negative if
3610    // either the output type or the subexpr is.
3611    return IntRange(SubRange.Width,
3612                    SubRange.NonNegative || OutputTypeRange.NonNegative);
3613  }
3614
3615  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3616    // If we can fold the condition, just take that operand.
3617    bool CondResult;
3618    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
3619      return GetExprRange(C, CondResult ? CO->getTrueExpr()
3620                                        : CO->getFalseExpr(),
3621                          MaxWidth);
3622
3623    // Otherwise, conservatively merge.
3624    IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
3625    IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
3626    return IntRange::join(L, R);
3627  }
3628
3629  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3630    switch (BO->getOpcode()) {
3631
3632    // Boolean-valued operations are single-bit and positive.
3633    case BO_LAnd:
3634    case BO_LOr:
3635    case BO_LT:
3636    case BO_GT:
3637    case BO_LE:
3638    case BO_GE:
3639    case BO_EQ:
3640    case BO_NE:
3641      return IntRange::forBoolType();
3642
3643    // The type of the assignments is the type of the LHS, so the RHS
3644    // is not necessarily the same type.
3645    case BO_MulAssign:
3646    case BO_DivAssign:
3647    case BO_RemAssign:
3648    case BO_AddAssign:
3649    case BO_SubAssign:
3650    case BO_XorAssign:
3651    case BO_OrAssign:
3652      // TODO: bitfields?
3653      return IntRange::forValueOfType(C, E->getType());
3654
3655    // Simple assignments just pass through the RHS, which will have
3656    // been coerced to the LHS type.
3657    case BO_Assign:
3658      // TODO: bitfields?
3659      return GetExprRange(C, BO->getRHS(), MaxWidth);
3660
3661    // Operations with opaque sources are black-listed.
3662    case BO_PtrMemD:
3663    case BO_PtrMemI:
3664      return IntRange::forValueOfType(C, E->getType());
3665
3666    // Bitwise-and uses the *infinum* of the two source ranges.
3667    case BO_And:
3668    case BO_AndAssign:
3669      return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
3670                            GetExprRange(C, BO->getRHS(), MaxWidth));
3671
3672    // Left shift gets black-listed based on a judgement call.
3673    case BO_Shl:
3674      // ...except that we want to treat '1 << (blah)' as logically
3675      // positive.  It's an important idiom.
3676      if (IntegerLiteral *I
3677            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
3678        if (I->getValue() == 1) {
3679          IntRange R = IntRange::forValueOfType(C, E->getType());
3680          return IntRange(R.Width, /*NonNegative*/ true);
3681        }
3682      }
3683      // fallthrough
3684
3685    case BO_ShlAssign:
3686      return IntRange::forValueOfType(C, E->getType());
3687
3688    // Right shift by a constant can narrow its left argument.
3689    case BO_Shr:
3690    case BO_ShrAssign: {
3691      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3692
3693      // If the shift amount is a positive constant, drop the width by
3694      // that much.
3695      llvm::APSInt shift;
3696      if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
3697          shift.isNonNegative()) {
3698        unsigned zext = shift.getZExtValue();
3699        if (zext >= L.Width)
3700          L.Width = (L.NonNegative ? 0 : 1);
3701        else
3702          L.Width -= zext;
3703      }
3704
3705      return L;
3706    }
3707
3708    // Comma acts as its right operand.
3709    case BO_Comma:
3710      return GetExprRange(C, BO->getRHS(), MaxWidth);
3711
3712    // Black-list pointer subtractions.
3713    case BO_Sub:
3714      if (BO->getLHS()->getType()->isPointerType())
3715        return IntRange::forValueOfType(C, E->getType());
3716      break;
3717
3718    // The width of a division result is mostly determined by the size
3719    // of the LHS.
3720    case BO_Div: {
3721      // Don't 'pre-truncate' the operands.
3722      unsigned opWidth = C.getIntWidth(E->getType());
3723      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3724
3725      // If the divisor is constant, use that.
3726      llvm::APSInt divisor;
3727      if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
3728        unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
3729        if (log2 >= L.Width)
3730          L.Width = (L.NonNegative ? 0 : 1);
3731        else
3732          L.Width = std::min(L.Width - log2, MaxWidth);
3733        return L;
3734      }
3735
3736      // Otherwise, just use the LHS's width.
3737      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3738      return IntRange(L.Width, L.NonNegative && R.NonNegative);
3739    }
3740
3741    // The result of a remainder can't be larger than the result of
3742    // either side.
3743    case BO_Rem: {
3744      // Don't 'pre-truncate' the operands.
3745      unsigned opWidth = C.getIntWidth(E->getType());
3746      IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
3747      IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
3748
3749      IntRange meet = IntRange::meet(L, R);
3750      meet.Width = std::min(meet.Width, MaxWidth);
3751      return meet;
3752    }
3753
3754    // The default behavior is okay for these.
3755    case BO_Mul:
3756    case BO_Add:
3757    case BO_Xor:
3758    case BO_Or:
3759      break;
3760    }
3761
3762    // The default case is to treat the operation as if it were closed
3763    // on the narrowest type that encompasses both operands.
3764    IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
3765    IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
3766    return IntRange::join(L, R);
3767  }
3768
3769  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
3770    switch (UO->getOpcode()) {
3771    // Boolean-valued operations are white-listed.
3772    case UO_LNot:
3773      return IntRange::forBoolType();
3774
3775    // Operations with opaque sources are black-listed.
3776    case UO_Deref:
3777    case UO_AddrOf: // should be impossible
3778      return IntRange::forValueOfType(C, E->getType());
3779
3780    default:
3781      return GetExprRange(C, UO->getSubExpr(), MaxWidth);
3782    }
3783  }
3784
3785  if (dyn_cast<OffsetOfExpr>(E)) {
3786    IntRange::forValueOfType(C, E->getType());
3787  }
3788
3789  if (FieldDecl *BitField = E->getBitField())
3790    return IntRange(BitField->getBitWidthValue(C),
3791                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
3792
3793  return IntRange::forValueOfType(C, E->getType());
3794}
3795
3796static IntRange GetExprRange(ASTContext &C, Expr *E) {
3797  return GetExprRange(C, E, C.getIntWidth(E->getType()));
3798}
3799
3800/// Checks whether the given value, which currently has the given
3801/// source semantics, has the same value when coerced through the
3802/// target semantics.
3803static bool IsSameFloatAfterCast(const llvm::APFloat &value,
3804                                 const llvm::fltSemantics &Src,
3805                                 const llvm::fltSemantics &Tgt) {
3806  llvm::APFloat truncated = value;
3807
3808  bool ignored;
3809  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
3810  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
3811
3812  return truncated.bitwiseIsEqual(value);
3813}
3814
3815/// Checks whether the given value, which currently has the given
3816/// source semantics, has the same value when coerced through the
3817/// target semantics.
3818///
3819/// The value might be a vector of floats (or a complex number).
3820static bool IsSameFloatAfterCast(const APValue &value,
3821                                 const llvm::fltSemantics &Src,
3822                                 const llvm::fltSemantics &Tgt) {
3823  if (value.isFloat())
3824    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
3825
3826  if (value.isVector()) {
3827    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
3828      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
3829        return false;
3830    return true;
3831  }
3832
3833  assert(value.isComplexFloat());
3834  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
3835          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
3836}
3837
3838static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
3839
3840static bool IsZero(Sema &S, Expr *E) {
3841  // Suppress cases where we are comparing against an enum constant.
3842  if (const DeclRefExpr *DR =
3843      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
3844    if (isa<EnumConstantDecl>(DR->getDecl()))
3845      return false;
3846
3847  // Suppress cases where the '0' value is expanded from a macro.
3848  if (E->getLocStart().isMacroID())
3849    return false;
3850
3851  llvm::APSInt Value;
3852  return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
3853}
3854
3855static bool HasEnumType(Expr *E) {
3856  // Strip off implicit integral promotions.
3857  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3858    if (ICE->getCastKind() != CK_IntegralCast &&
3859        ICE->getCastKind() != CK_NoOp)
3860      break;
3861    E = ICE->getSubExpr();
3862  }
3863
3864  return E->getType()->isEnumeralType();
3865}
3866
3867static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
3868  BinaryOperatorKind op = E->getOpcode();
3869  if (E->isValueDependent())
3870    return;
3871
3872  if (op == BO_LT && IsZero(S, E->getRHS())) {
3873    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3874      << "< 0" << "false" << HasEnumType(E->getLHS())
3875      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3876  } else if (op == BO_GE && IsZero(S, E->getRHS())) {
3877    S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
3878      << ">= 0" << "true" << HasEnumType(E->getLHS())
3879      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3880  } else if (op == BO_GT && IsZero(S, E->getLHS())) {
3881    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3882      << "0 >" << "false" << HasEnumType(E->getRHS())
3883      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3884  } else if (op == BO_LE && IsZero(S, E->getLHS())) {
3885    S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
3886      << "0 <=" << "true" << HasEnumType(E->getRHS())
3887      << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
3888  }
3889}
3890
3891/// Analyze the operands of the given comparison.  Implements the
3892/// fallback case from AnalyzeComparison.
3893static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
3894  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
3895  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
3896}
3897
3898/// \brief Implements -Wsign-compare.
3899///
3900/// \param E the binary operator to check for warnings
3901static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
3902  // The type the comparison is being performed in.
3903  QualType T = E->getLHS()->getType();
3904  assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
3905         && "comparison with mismatched types");
3906
3907  // We don't do anything special if this isn't an unsigned integral
3908  // comparison:  we're only interested in integral comparisons, and
3909  // signed comparisons only happen in cases we don't care to warn about.
3910  //
3911  // We also don't care about value-dependent expressions or expressions
3912  // whose result is a constant.
3913  if (!T->hasUnsignedIntegerRepresentation()
3914      || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
3915    return AnalyzeImpConvsInComparison(S, E);
3916
3917  Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
3918  Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
3919
3920  // Check to see if one of the (unmodified) operands is of different
3921  // signedness.
3922  Expr *signedOperand, *unsignedOperand;
3923  if (LHS->getType()->hasSignedIntegerRepresentation()) {
3924    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
3925           "unsigned comparison between two signed integer expressions?");
3926    signedOperand = LHS;
3927    unsignedOperand = RHS;
3928  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
3929    signedOperand = RHS;
3930    unsignedOperand = LHS;
3931  } else {
3932    CheckTrivialUnsignedComparison(S, E);
3933    return AnalyzeImpConvsInComparison(S, E);
3934  }
3935
3936  // Otherwise, calculate the effective range of the signed operand.
3937  IntRange signedRange = GetExprRange(S.Context, signedOperand);
3938
3939  // Go ahead and analyze implicit conversions in the operands.  Note
3940  // that we skip the implicit conversions on both sides.
3941  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
3942  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
3943
3944  // If the signed range is non-negative, -Wsign-compare won't fire,
3945  // but we should still check for comparisons which are always true
3946  // or false.
3947  if (signedRange.NonNegative)
3948    return CheckTrivialUnsignedComparison(S, E);
3949
3950  // For (in)equality comparisons, if the unsigned operand is a
3951  // constant which cannot collide with a overflowed signed operand,
3952  // then reinterpreting the signed operand as unsigned will not
3953  // change the result of the comparison.
3954  if (E->isEqualityOp()) {
3955    unsigned comparisonWidth = S.Context.getIntWidth(T);
3956    IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
3957
3958    // We should never be unable to prove that the unsigned operand is
3959    // non-negative.
3960    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
3961
3962    if (unsignedRange.Width < comparisonWidth)
3963      return;
3964  }
3965
3966  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
3967    S.PDiag(diag::warn_mixed_sign_comparison)
3968      << LHS->getType() << RHS->getType()
3969      << LHS->getSourceRange() << RHS->getSourceRange());
3970}
3971
3972/// Analyzes an attempt to assign the given value to a bitfield.
3973///
3974/// Returns true if there was something fishy about the attempt.
3975static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
3976                                      SourceLocation InitLoc) {
3977  assert(Bitfield->isBitField());
3978  if (Bitfield->isInvalidDecl())
3979    return false;
3980
3981  // White-list bool bitfields.
3982  if (Bitfield->getType()->isBooleanType())
3983    return false;
3984
3985  // Ignore value- or type-dependent expressions.
3986  if (Bitfield->getBitWidth()->isValueDependent() ||
3987      Bitfield->getBitWidth()->isTypeDependent() ||
3988      Init->isValueDependent() ||
3989      Init->isTypeDependent())
3990    return false;
3991
3992  Expr *OriginalInit = Init->IgnoreParenImpCasts();
3993
3994  llvm::APSInt Value;
3995  if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
3996    return false;
3997
3998  unsigned OriginalWidth = Value.getBitWidth();
3999  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
4000
4001  if (OriginalWidth <= FieldWidth)
4002    return false;
4003
4004  // Compute the value which the bitfield will contain.
4005  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
4006  TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
4007
4008  // Check whether the stored value is equal to the original value.
4009  TruncatedValue = TruncatedValue.extend(OriginalWidth);
4010  if (Value == TruncatedValue)
4011    return false;
4012
4013  // Special-case bitfields of width 1: booleans are naturally 0/1, and
4014  // therefore don't strictly fit into a signed bitfield of width 1.
4015  if (FieldWidth == 1 && Value == 1)
4016    return false;
4017
4018  std::string PrettyValue = Value.toString(10);
4019  std::string PrettyTrunc = TruncatedValue.toString(10);
4020
4021  S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
4022    << PrettyValue << PrettyTrunc << OriginalInit->getType()
4023    << Init->getSourceRange();
4024
4025  return true;
4026}
4027
4028/// Analyze the given simple or compound assignment for warning-worthy
4029/// operations.
4030static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
4031  // Just recurse on the LHS.
4032  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
4033
4034  // We want to recurse on the RHS as normal unless we're assigning to
4035  // a bitfield.
4036  if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
4037    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
4038                                  E->getOperatorLoc())) {
4039      // Recurse, ignoring any implicit conversions on the RHS.
4040      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
4041                                        E->getOperatorLoc());
4042    }
4043  }
4044
4045  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
4046}
4047
4048/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4049static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
4050                            SourceLocation CContext, unsigned diag,
4051                            bool pruneControlFlow = false) {
4052  if (pruneControlFlow) {
4053    S.DiagRuntimeBehavior(E->getExprLoc(), E,
4054                          S.PDiag(diag)
4055                            << SourceType << T << E->getSourceRange()
4056                            << SourceRange(CContext));
4057    return;
4058  }
4059  S.Diag(E->getExprLoc(), diag)
4060    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
4061}
4062
4063/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
4064static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
4065                            SourceLocation CContext, unsigned diag,
4066                            bool pruneControlFlow = false) {
4067  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
4068}
4069
4070/// Diagnose an implicit cast from a literal expression. Does not warn when the
4071/// cast wouldn't lose information.
4072void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
4073                                    SourceLocation CContext) {
4074  // Try to convert the literal exactly to an integer. If we can, don't warn.
4075  bool isExact = false;
4076  const llvm::APFloat &Value = FL->getValue();
4077  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
4078                            T->hasUnsignedIntegerRepresentation());
4079  if (Value.convertToInteger(IntegerValue,
4080                             llvm::APFloat::rmTowardZero, &isExact)
4081      == llvm::APFloat::opOK && isExact)
4082    return;
4083
4084  S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
4085    << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
4086}
4087
4088std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
4089  if (!Range.Width) return "0";
4090
4091  llvm::APSInt ValueInRange = Value;
4092  ValueInRange.setIsSigned(!Range.NonNegative);
4093  ValueInRange = ValueInRange.trunc(Range.Width);
4094  return ValueInRange.toString(10);
4095}
4096
4097void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
4098                             SourceLocation CC, bool *ICContext = 0) {
4099  if (E->isTypeDependent() || E->isValueDependent()) return;
4100
4101  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
4102  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
4103  if (Source == Target) return;
4104  if (Target->isDependentType()) return;
4105
4106  // If the conversion context location is invalid don't complain. We also
4107  // don't want to emit a warning if the issue occurs from the expansion of
4108  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
4109  // delay this check as long as possible. Once we detect we are in that
4110  // scenario, we just return.
4111  if (CC.isInvalid())
4112    return;
4113
4114  // Diagnose implicit casts to bool.
4115  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
4116    if (isa<StringLiteral>(E))
4117      // Warn on string literal to bool.  Checks for string literals in logical
4118      // expressions, for instances, assert(0 && "error here"), is prevented
4119      // by a check in AnalyzeImplicitConversions().
4120      return DiagnoseImpCast(S, E, T, CC,
4121                             diag::warn_impcast_string_literal_to_bool);
4122    if (Source->isFunctionType()) {
4123      // Warn on function to bool. Checks free functions and static member
4124      // functions. Weakly imported functions are excluded from the check,
4125      // since it's common to test their value to check whether the linker
4126      // found a definition for them.
4127      ValueDecl *D = 0;
4128      if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
4129        D = R->getDecl();
4130      } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
4131        D = M->getMemberDecl();
4132      }
4133
4134      if (D && !D->isWeak()) {
4135        if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
4136          S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
4137            << F << E->getSourceRange() << SourceRange(CC);
4138          S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
4139            << FixItHint::CreateInsertion(E->getExprLoc(), "&");
4140          QualType ReturnType;
4141          UnresolvedSet<4> NonTemplateOverloads;
4142          S.isExprCallable(*E, ReturnType, NonTemplateOverloads);
4143          if (!ReturnType.isNull()
4144              && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
4145            S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
4146              << FixItHint::CreateInsertion(
4147                 S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
4148          return;
4149        }
4150      }
4151    }
4152    return; // Other casts to bool are not checked.
4153  }
4154
4155  // Strip vector types.
4156  if (isa<VectorType>(Source)) {
4157    if (!isa<VectorType>(Target)) {
4158      if (S.SourceMgr.isInSystemMacro(CC))
4159        return;
4160      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
4161    }
4162
4163    // If the vector cast is cast between two vectors of the same size, it is
4164    // a bitcast, not a conversion.
4165    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
4166      return;
4167
4168    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
4169    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
4170  }
4171
4172  // Strip complex types.
4173  if (isa<ComplexType>(Source)) {
4174    if (!isa<ComplexType>(Target)) {
4175      if (S.SourceMgr.isInSystemMacro(CC))
4176        return;
4177
4178      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
4179    }
4180
4181    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
4182    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
4183  }
4184
4185  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
4186  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
4187
4188  // If the source is floating point...
4189  if (SourceBT && SourceBT->isFloatingPoint()) {
4190    // ...and the target is floating point...
4191    if (TargetBT && TargetBT->isFloatingPoint()) {
4192      // ...then warn if we're dropping FP rank.
4193
4194      // Builtin FP kinds are ordered by increasing FP rank.
4195      if (SourceBT->getKind() > TargetBT->getKind()) {
4196        // Don't warn about float constants that are precisely
4197        // representable in the target type.
4198        Expr::EvalResult result;
4199        if (E->EvaluateAsRValue(result, S.Context)) {
4200          // Value might be a float, a float vector, or a float complex.
4201          if (IsSameFloatAfterCast(result.Val,
4202                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
4203                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
4204            return;
4205        }
4206
4207        if (S.SourceMgr.isInSystemMacro(CC))
4208          return;
4209
4210        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
4211      }
4212      return;
4213    }
4214
4215    // If the target is integral, always warn.
4216    if ((TargetBT && TargetBT->isInteger())) {
4217      if (S.SourceMgr.isInSystemMacro(CC))
4218        return;
4219
4220      Expr *InnerE = E->IgnoreParenImpCasts();
4221      // We also want to warn on, e.g., "int i = -1.234"
4222      if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
4223        if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
4224          InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
4225
4226      if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
4227        DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
4228      } else {
4229        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
4230      }
4231    }
4232
4233    return;
4234  }
4235
4236  if (!Source->isIntegerType() || !Target->isIntegerType())
4237    return;
4238
4239  if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
4240           == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
4241    SourceLocation Loc = E->getSourceRange().getBegin();
4242    if (Loc.isMacroID())
4243      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
4244    S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
4245        << T << clang::SourceRange(CC)
4246        << FixItHint::CreateReplacement(Loc, S.getFixItZeroLiteralForType(T));
4247    return;
4248  }
4249
4250  IntRange SourceRange = GetExprRange(S.Context, E);
4251  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
4252
4253  if (SourceRange.Width > TargetRange.Width) {
4254    // If the source is a constant, use a default-on diagnostic.
4255    // TODO: this should happen for bitfield stores, too.
4256    llvm::APSInt Value(32);
4257    if (E->isIntegerConstantExpr(Value, S.Context)) {
4258      if (S.SourceMgr.isInSystemMacro(CC))
4259        return;
4260
4261      std::string PrettySourceValue = Value.toString(10);
4262      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
4263
4264      S.DiagRuntimeBehavior(E->getExprLoc(), E,
4265        S.PDiag(diag::warn_impcast_integer_precision_constant)
4266            << PrettySourceValue << PrettyTargetValue
4267            << E->getType() << T << E->getSourceRange()
4268            << clang::SourceRange(CC));
4269      return;
4270    }
4271
4272    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
4273    if (S.SourceMgr.isInSystemMacro(CC))
4274      return;
4275
4276    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
4277      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
4278                             /* pruneControlFlow */ true);
4279    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
4280  }
4281
4282  if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
4283      (!TargetRange.NonNegative && SourceRange.NonNegative &&
4284       SourceRange.Width == TargetRange.Width)) {
4285
4286    if (S.SourceMgr.isInSystemMacro(CC))
4287      return;
4288
4289    unsigned DiagID = diag::warn_impcast_integer_sign;
4290
4291    // Traditionally, gcc has warned about this under -Wsign-compare.
4292    // We also want to warn about it in -Wconversion.
4293    // So if -Wconversion is off, use a completely identical diagnostic
4294    // in the sign-compare group.
4295    // The conditional-checking code will
4296    if (ICContext) {
4297      DiagID = diag::warn_impcast_integer_sign_conditional;
4298      *ICContext = true;
4299    }
4300
4301    return DiagnoseImpCast(S, E, T, CC, DiagID);
4302  }
4303
4304  // Diagnose conversions between different enumeration types.
4305  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
4306  // type, to give us better diagnostics.
4307  QualType SourceType = E->getType();
4308  if (!S.getLangOpts().CPlusPlus) {
4309    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4310      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
4311        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
4312        SourceType = S.Context.getTypeDeclType(Enum);
4313        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
4314      }
4315  }
4316
4317  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
4318    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
4319      if ((SourceEnum->getDecl()->getIdentifier() ||
4320           SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4321          (TargetEnum->getDecl()->getIdentifier() ||
4322           TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
4323          SourceEnum != TargetEnum) {
4324        if (S.SourceMgr.isInSystemMacro(CC))
4325          return;
4326
4327        return DiagnoseImpCast(S, E, SourceType, T, CC,
4328                               diag::warn_impcast_different_enum_types);
4329      }
4330
4331  return;
4332}
4333
4334void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
4335
4336void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
4337                             SourceLocation CC, bool &ICContext) {
4338  E = E->IgnoreParenImpCasts();
4339
4340  if (isa<ConditionalOperator>(E))
4341    return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
4342
4343  AnalyzeImplicitConversions(S, E, CC);
4344  if (E->getType() != T)
4345    return CheckImplicitConversion(S, E, T, CC, &ICContext);
4346  return;
4347}
4348
4349void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
4350  SourceLocation CC = E->getQuestionLoc();
4351
4352  AnalyzeImplicitConversions(S, E->getCond(), CC);
4353
4354  bool Suspicious = false;
4355  CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
4356  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
4357
4358  // If -Wconversion would have warned about either of the candidates
4359  // for a signedness conversion to the context type...
4360  if (!Suspicious) return;
4361
4362  // ...but it's currently ignored...
4363  if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
4364                                 CC))
4365    return;
4366
4367  // ...then check whether it would have warned about either of the
4368  // candidates for a signedness conversion to the condition type.
4369  if (E->getType() == T) return;
4370
4371  Suspicious = false;
4372  CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
4373                          E->getType(), CC, &Suspicious);
4374  if (!Suspicious)
4375    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
4376                            E->getType(), CC, &Suspicious);
4377}
4378
4379/// AnalyzeImplicitConversions - Find and report any interesting
4380/// implicit conversions in the given expression.  There are a couple
4381/// of competing diagnostics here, -Wconversion and -Wsign-compare.
4382void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
4383  QualType T = OrigE->getType();
4384  Expr *E = OrigE->IgnoreParenImpCasts();
4385
4386  if (E->isTypeDependent() || E->isValueDependent())
4387    return;
4388
4389  // For conditional operators, we analyze the arguments as if they
4390  // were being fed directly into the output.
4391  if (isa<ConditionalOperator>(E)) {
4392    ConditionalOperator *CO = cast<ConditionalOperator>(E);
4393    CheckConditionalOperator(S, CO, T);
4394    return;
4395  }
4396
4397  // Go ahead and check any implicit conversions we might have skipped.
4398  // The non-canonical typecheck is just an optimization;
4399  // CheckImplicitConversion will filter out dead implicit conversions.
4400  if (E->getType() != T)
4401    CheckImplicitConversion(S, E, T, CC);
4402
4403  // Now continue drilling into this expression.
4404
4405  // Skip past explicit casts.
4406  if (isa<ExplicitCastExpr>(E)) {
4407    E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
4408    return AnalyzeImplicitConversions(S, E, CC);
4409  }
4410
4411  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4412    // Do a somewhat different check with comparison operators.
4413    if (BO->isComparisonOp())
4414      return AnalyzeComparison(S, BO);
4415
4416    // And with simple assignments.
4417    if (BO->getOpcode() == BO_Assign)
4418      return AnalyzeAssignment(S, BO);
4419  }
4420
4421  // These break the otherwise-useful invariant below.  Fortunately,
4422  // we don't really need to recurse into them, because any internal
4423  // expressions should have been analyzed already when they were
4424  // built into statements.
4425  if (isa<StmtExpr>(E)) return;
4426
4427  // Don't descend into unevaluated contexts.
4428  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
4429
4430  // Now just recurse over the expression's children.
4431  CC = E->getExprLoc();
4432  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
4433  bool IsLogicalOperator = BO && BO->isLogicalOp();
4434  for (Stmt::child_range I = E->children(); I; ++I) {
4435    Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
4436    if (!ChildExpr)
4437      continue;
4438
4439    if (IsLogicalOperator &&
4440        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
4441      // Ignore checking string literals that are in logical operators.
4442      continue;
4443    AnalyzeImplicitConversions(S, ChildExpr, CC);
4444  }
4445}
4446
4447} // end anonymous namespace
4448
4449/// Diagnoses "dangerous" implicit conversions within the given
4450/// expression (which is a full expression).  Implements -Wconversion
4451/// and -Wsign-compare.
4452///
4453/// \param CC the "context" location of the implicit conversion, i.e.
4454///   the most location of the syntactic entity requiring the implicit
4455///   conversion
4456void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
4457  // Don't diagnose in unevaluated contexts.
4458  if (ExprEvalContexts.back().Context == Sema::Unevaluated)
4459    return;
4460
4461  // Don't diagnose for value- or type-dependent expressions.
4462  if (E->isTypeDependent() || E->isValueDependent())
4463    return;
4464
4465  // Check for array bounds violations in cases where the check isn't triggered
4466  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
4467  // ArraySubscriptExpr is on the RHS of a variable initialization.
4468  CheckArrayAccess(E);
4469
4470  // This is not the right CC for (e.g.) a variable initialization.
4471  AnalyzeImplicitConversions(*this, E, CC);
4472}
4473
4474void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
4475                                       FieldDecl *BitField,
4476                                       Expr *Init) {
4477  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
4478}
4479
4480/// CheckParmsForFunctionDef - Check that the parameters of the given
4481/// function are appropriate for the definition of a function. This
4482/// takes care of any checks that cannot be performed on the
4483/// declaration itself, e.g., that the types of each of the function
4484/// parameters are complete.
4485bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
4486                                    bool CheckParameterNames) {
4487  bool HasInvalidParm = false;
4488  for (; P != PEnd; ++P) {
4489    ParmVarDecl *Param = *P;
4490
4491    // C99 6.7.5.3p4: the parameters in a parameter type list in a
4492    // function declarator that is part of a function definition of
4493    // that function shall not have incomplete type.
4494    //
4495    // This is also C++ [dcl.fct]p6.
4496    if (!Param->isInvalidDecl() &&
4497        RequireCompleteType(Param->getLocation(), Param->getType(),
4498                            diag::err_typecheck_decl_incomplete_type)) {
4499      Param->setInvalidDecl();
4500      HasInvalidParm = true;
4501    }
4502
4503    // C99 6.9.1p5: If the declarator includes a parameter type list, the
4504    // declaration of each parameter shall include an identifier.
4505    if (CheckParameterNames &&
4506        Param->getIdentifier() == 0 &&
4507        !Param->isImplicit() &&
4508        !getLangOpts().CPlusPlus)
4509      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
4510
4511    // C99 6.7.5.3p12:
4512    //   If the function declarator is not part of a definition of that
4513    //   function, parameters may have incomplete type and may use the [*]
4514    //   notation in their sequences of declarator specifiers to specify
4515    //   variable length array types.
4516    QualType PType = Param->getOriginalType();
4517    if (const ArrayType *AT = Context.getAsArrayType(PType)) {
4518      if (AT->getSizeModifier() == ArrayType::Star) {
4519        // FIXME: This diagnosic should point the the '[*]' if source-location
4520        // information is added for it.
4521        Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
4522      }
4523    }
4524  }
4525
4526  return HasInvalidParm;
4527}
4528
4529/// CheckCastAlign - Implements -Wcast-align, which warns when a
4530/// pointer cast increases the alignment requirements.
4531void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
4532  // This is actually a lot of work to potentially be doing on every
4533  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
4534  if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
4535                                          TRange.getBegin())
4536        == DiagnosticsEngine::Ignored)
4537    return;
4538
4539  // Ignore dependent types.
4540  if (T->isDependentType() || Op->getType()->isDependentType())
4541    return;
4542
4543  // Require that the destination be a pointer type.
4544  const PointerType *DestPtr = T->getAs<PointerType>();
4545  if (!DestPtr) return;
4546
4547  // If the destination has alignment 1, we're done.
4548  QualType DestPointee = DestPtr->getPointeeType();
4549  if (DestPointee->isIncompleteType()) return;
4550  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
4551  if (DestAlign.isOne()) return;
4552
4553  // Require that the source be a pointer type.
4554  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
4555  if (!SrcPtr) return;
4556  QualType SrcPointee = SrcPtr->getPointeeType();
4557
4558  // Whitelist casts from cv void*.  We already implicitly
4559  // whitelisted casts to cv void*, since they have alignment 1.
4560  // Also whitelist casts involving incomplete types, which implicitly
4561  // includes 'void'.
4562  if (SrcPointee->isIncompleteType()) return;
4563
4564  CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
4565  if (SrcAlign >= DestAlign) return;
4566
4567  Diag(TRange.getBegin(), diag::warn_cast_align)
4568    << Op->getType() << T
4569    << static_cast<unsigned>(SrcAlign.getQuantity())
4570    << static_cast<unsigned>(DestAlign.getQuantity())
4571    << TRange << Op->getSourceRange();
4572}
4573
4574static const Type* getElementType(const Expr *BaseExpr) {
4575  const Type* EltType = BaseExpr->getType().getTypePtr();
4576  if (EltType->isAnyPointerType())
4577    return EltType->getPointeeType().getTypePtr();
4578  else if (EltType->isArrayType())
4579    return EltType->getBaseElementTypeUnsafe();
4580  return EltType;
4581}
4582
4583/// \brief Check whether this array fits the idiom of a size-one tail padded
4584/// array member of a struct.
4585///
4586/// We avoid emitting out-of-bounds access warnings for such arrays as they are
4587/// commonly used to emulate flexible arrays in C89 code.
4588static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
4589                                    const NamedDecl *ND) {
4590  if (Size != 1 || !ND) return false;
4591
4592  const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
4593  if (!FD) return false;
4594
4595  // Don't consider sizes resulting from macro expansions or template argument
4596  // substitution to form C89 tail-padded arrays.
4597
4598  TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4599  while (TInfo) {
4600    TypeLoc TL = TInfo->getTypeLoc();
4601    // Look through typedefs.
4602    const TypedefTypeLoc *TTL = dyn_cast<TypedefTypeLoc>(&TL);
4603    if (TTL) {
4604      const TypedefNameDecl *TDL = TTL->getTypedefNameDecl();
4605      TInfo = TDL->getTypeSourceInfo();
4606      continue;
4607    }
4608    ConstantArrayTypeLoc CTL = cast<ConstantArrayTypeLoc>(TL);
4609    const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
4610    if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
4611      return false;
4612    break;
4613  }
4614
4615  const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
4616  if (!RD) return false;
4617  if (RD->isUnion()) return false;
4618  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
4619    if (!CRD->isStandardLayout()) return false;
4620  }
4621
4622  // See if this is the last field decl in the record.
4623  const Decl *D = FD;
4624  while ((D = D->getNextDeclInContext()))
4625    if (isa<FieldDecl>(D))
4626      return false;
4627  return true;
4628}
4629
4630void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
4631                            const ArraySubscriptExpr *ASE,
4632                            bool AllowOnePastEnd, bool IndexNegated) {
4633  IndexExpr = IndexExpr->IgnoreParenImpCasts();
4634  if (IndexExpr->isValueDependent())
4635    return;
4636
4637  const Type *EffectiveType = getElementType(BaseExpr);
4638  BaseExpr = BaseExpr->IgnoreParenCasts();
4639  const ConstantArrayType *ArrayTy =
4640    Context.getAsConstantArrayType(BaseExpr->getType());
4641  if (!ArrayTy)
4642    return;
4643
4644  llvm::APSInt index;
4645  if (!IndexExpr->EvaluateAsInt(index, Context))
4646    return;
4647  if (IndexNegated)
4648    index = -index;
4649
4650  const NamedDecl *ND = NULL;
4651  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4652    ND = dyn_cast<NamedDecl>(DRE->getDecl());
4653  if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4654    ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4655
4656  if (index.isUnsigned() || !index.isNegative()) {
4657    llvm::APInt size = ArrayTy->getSize();
4658    if (!size.isStrictlyPositive())
4659      return;
4660
4661    const Type* BaseType = getElementType(BaseExpr);
4662    if (BaseType != EffectiveType) {
4663      // Make sure we're comparing apples to apples when comparing index to size
4664      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
4665      uint64_t array_typesize = Context.getTypeSize(BaseType);
4666      // Handle ptrarith_typesize being zero, such as when casting to void*
4667      if (!ptrarith_typesize) ptrarith_typesize = 1;
4668      if (ptrarith_typesize != array_typesize) {
4669        // There's a cast to a different size type involved
4670        uint64_t ratio = array_typesize / ptrarith_typesize;
4671        // TODO: Be smarter about handling cases where array_typesize is not a
4672        // multiple of ptrarith_typesize
4673        if (ptrarith_typesize * ratio == array_typesize)
4674          size *= llvm::APInt(size.getBitWidth(), ratio);
4675      }
4676    }
4677
4678    if (size.getBitWidth() > index.getBitWidth())
4679      index = index.zext(size.getBitWidth());
4680    else if (size.getBitWidth() < index.getBitWidth())
4681      size = size.zext(index.getBitWidth());
4682
4683    // For array subscripting the index must be less than size, but for pointer
4684    // arithmetic also allow the index (offset) to be equal to size since
4685    // computing the next address after the end of the array is legal and
4686    // commonly done e.g. in C++ iterators and range-based for loops.
4687    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
4688      return;
4689
4690    // Also don't warn for arrays of size 1 which are members of some
4691    // structure. These are often used to approximate flexible arrays in C89
4692    // code.
4693    if (IsTailPaddedMemberArray(*this, size, ND))
4694      return;
4695
4696    // Suppress the warning if the subscript expression (as identified by the
4697    // ']' location) and the index expression are both from macro expansions
4698    // within a system header.
4699    if (ASE) {
4700      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
4701          ASE->getRBracketLoc());
4702      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
4703        SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
4704            IndexExpr->getLocStart());
4705        if (SourceMgr.isFromSameFile(RBracketLoc, IndexLoc))
4706          return;
4707      }
4708    }
4709
4710    unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
4711    if (ASE)
4712      DiagID = diag::warn_array_index_exceeds_bounds;
4713
4714    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4715                        PDiag(DiagID) << index.toString(10, true)
4716                          << size.toString(10, true)
4717                          << (unsigned)size.getLimitedValue(~0U)
4718                          << IndexExpr->getSourceRange());
4719  } else {
4720    unsigned DiagID = diag::warn_array_index_precedes_bounds;
4721    if (!ASE) {
4722      DiagID = diag::warn_ptr_arith_precedes_bounds;
4723      if (index.isNegative()) index = -index;
4724    }
4725
4726    DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
4727                        PDiag(DiagID) << index.toString(10, true)
4728                          << IndexExpr->getSourceRange());
4729  }
4730
4731  if (!ND) {
4732    // Try harder to find a NamedDecl to point at in the note.
4733    while (const ArraySubscriptExpr *ASE =
4734           dyn_cast<ArraySubscriptExpr>(BaseExpr))
4735      BaseExpr = ASE->getBase()->IgnoreParenCasts();
4736    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
4737      ND = dyn_cast<NamedDecl>(DRE->getDecl());
4738    if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
4739      ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
4740  }
4741
4742  if (ND)
4743    DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
4744                        PDiag(diag::note_array_index_out_of_bounds)
4745                          << ND->getDeclName());
4746}
4747
4748void Sema::CheckArrayAccess(const Expr *expr) {
4749  int AllowOnePastEnd = 0;
4750  while (expr) {
4751    expr = expr->IgnoreParenImpCasts();
4752    switch (expr->getStmtClass()) {
4753      case Stmt::ArraySubscriptExprClass: {
4754        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
4755        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
4756                         AllowOnePastEnd > 0);
4757        return;
4758      }
4759      case Stmt::UnaryOperatorClass: {
4760        // Only unwrap the * and & unary operators
4761        const UnaryOperator *UO = cast<UnaryOperator>(expr);
4762        expr = UO->getSubExpr();
4763        switch (UO->getOpcode()) {
4764          case UO_AddrOf:
4765            AllowOnePastEnd++;
4766            break;
4767          case UO_Deref:
4768            AllowOnePastEnd--;
4769            break;
4770          default:
4771            return;
4772        }
4773        break;
4774      }
4775      case Stmt::ConditionalOperatorClass: {
4776        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
4777        if (const Expr *lhs = cond->getLHS())
4778          CheckArrayAccess(lhs);
4779        if (const Expr *rhs = cond->getRHS())
4780          CheckArrayAccess(rhs);
4781        return;
4782      }
4783      default:
4784        return;
4785    }
4786  }
4787}
4788
4789//===--- CHECK: Objective-C retain cycles ----------------------------------//
4790
4791namespace {
4792  struct RetainCycleOwner {
4793    RetainCycleOwner() : Variable(0), Indirect(false) {}
4794    VarDecl *Variable;
4795    SourceRange Range;
4796    SourceLocation Loc;
4797    bool Indirect;
4798
4799    void setLocsFrom(Expr *e) {
4800      Loc = e->getExprLoc();
4801      Range = e->getSourceRange();
4802    }
4803  };
4804}
4805
4806/// Consider whether capturing the given variable can possibly lead to
4807/// a retain cycle.
4808static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
4809  // In ARC, it's captured strongly iff the variable has __strong
4810  // lifetime.  In MRR, it's captured strongly if the variable is
4811  // __block and has an appropriate type.
4812  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4813    return false;
4814
4815  owner.Variable = var;
4816  owner.setLocsFrom(ref);
4817  return true;
4818}
4819
4820static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
4821  while (true) {
4822    e = e->IgnoreParens();
4823    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
4824      switch (cast->getCastKind()) {
4825      case CK_BitCast:
4826      case CK_LValueBitCast:
4827      case CK_LValueToRValue:
4828      case CK_ARCReclaimReturnedObject:
4829        e = cast->getSubExpr();
4830        continue;
4831
4832      default:
4833        return false;
4834      }
4835    }
4836
4837    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
4838      ObjCIvarDecl *ivar = ref->getDecl();
4839      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
4840        return false;
4841
4842      // Try to find a retain cycle in the base.
4843      if (!findRetainCycleOwner(S, ref->getBase(), owner))
4844        return false;
4845
4846      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
4847      owner.Indirect = true;
4848      return true;
4849    }
4850
4851    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
4852      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
4853      if (!var) return false;
4854      return considerVariable(var, ref, owner);
4855    }
4856
4857    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
4858      if (member->isArrow()) return false;
4859
4860      // Don't count this as an indirect ownership.
4861      e = member->getBase();
4862      continue;
4863    }
4864
4865    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
4866      // Only pay attention to pseudo-objects on property references.
4867      ObjCPropertyRefExpr *pre
4868        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
4869                                              ->IgnoreParens());
4870      if (!pre) return false;
4871      if (pre->isImplicitProperty()) return false;
4872      ObjCPropertyDecl *property = pre->getExplicitProperty();
4873      if (!property->isRetaining() &&
4874          !(property->getPropertyIvarDecl() &&
4875            property->getPropertyIvarDecl()->getType()
4876              .getObjCLifetime() == Qualifiers::OCL_Strong))
4877          return false;
4878
4879      owner.Indirect = true;
4880      if (pre->isSuperReceiver()) {
4881        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
4882        if (!owner.Variable)
4883          return false;
4884        owner.Loc = pre->getLocation();
4885        owner.Range = pre->getSourceRange();
4886        return true;
4887      }
4888      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
4889                              ->getSourceExpr());
4890      continue;
4891    }
4892
4893    // Array ivars?
4894
4895    return false;
4896  }
4897}
4898
4899namespace {
4900  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
4901    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
4902      : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
4903        Variable(variable), Capturer(0) {}
4904
4905    VarDecl *Variable;
4906    Expr *Capturer;
4907
4908    void VisitDeclRefExpr(DeclRefExpr *ref) {
4909      if (ref->getDecl() == Variable && !Capturer)
4910        Capturer = ref;
4911    }
4912
4913    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
4914      if (Capturer) return;
4915      Visit(ref->getBase());
4916      if (Capturer && ref->isFreeIvar())
4917        Capturer = ref;
4918    }
4919
4920    void VisitBlockExpr(BlockExpr *block) {
4921      // Look inside nested blocks
4922      if (block->getBlockDecl()->capturesVariable(Variable))
4923        Visit(block->getBlockDecl()->getBody());
4924    }
4925  };
4926}
4927
4928/// Check whether the given argument is a block which captures a
4929/// variable.
4930static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
4931  assert(owner.Variable && owner.Loc.isValid());
4932
4933  e = e->IgnoreParenCasts();
4934  BlockExpr *block = dyn_cast<BlockExpr>(e);
4935  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
4936    return 0;
4937
4938  FindCaptureVisitor visitor(S.Context, owner.Variable);
4939  visitor.Visit(block->getBlockDecl()->getBody());
4940  return visitor.Capturer;
4941}
4942
4943static void diagnoseRetainCycle(Sema &S, Expr *capturer,
4944                                RetainCycleOwner &owner) {
4945  assert(capturer);
4946  assert(owner.Variable && owner.Loc.isValid());
4947
4948  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
4949    << owner.Variable << capturer->getSourceRange();
4950  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
4951    << owner.Indirect << owner.Range;
4952}
4953
4954/// Check for a keyword selector that starts with the word 'add' or
4955/// 'set'.
4956static bool isSetterLikeSelector(Selector sel) {
4957  if (sel.isUnarySelector()) return false;
4958
4959  StringRef str = sel.getNameForSlot(0);
4960  while (!str.empty() && str.front() == '_') str = str.substr(1);
4961  if (str.startswith("set"))
4962    str = str.substr(3);
4963  else if (str.startswith("add")) {
4964    // Specially whitelist 'addOperationWithBlock:'.
4965    if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
4966      return false;
4967    str = str.substr(3);
4968  }
4969  else
4970    return false;
4971
4972  if (str.empty()) return true;
4973  return !islower(str.front());
4974}
4975
4976/// Check a message send to see if it's likely to cause a retain cycle.
4977void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
4978  // Only check instance methods whose selector looks like a setter.
4979  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
4980    return;
4981
4982  // Try to find a variable that the receiver is strongly owned by.
4983  RetainCycleOwner owner;
4984  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
4985    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
4986      return;
4987  } else {
4988    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
4989    owner.Variable = getCurMethodDecl()->getSelfDecl();
4990    owner.Loc = msg->getSuperLoc();
4991    owner.Range = msg->getSuperLoc();
4992  }
4993
4994  // Check whether the receiver is captured by any of the arguments.
4995  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
4996    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
4997      return diagnoseRetainCycle(*this, capturer, owner);
4998}
4999
5000/// Check a property assign to see if it's likely to cause a retain cycle.
5001void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
5002  RetainCycleOwner owner;
5003  if (!findRetainCycleOwner(*this, receiver, owner))
5004    return;
5005
5006  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
5007    diagnoseRetainCycle(*this, capturer, owner);
5008}
5009
5010bool Sema::checkUnsafeAssigns(SourceLocation Loc,
5011                              QualType LHS, Expr *RHS) {
5012  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
5013  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
5014    return false;
5015  // strip off any implicit cast added to get to the one arc-specific
5016  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5017    if (cast->getCastKind() == CK_ARCConsumeObject) {
5018      Diag(Loc, diag::warn_arc_retained_assign)
5019        << (LT == Qualifiers::OCL_ExplicitNone)
5020        << RHS->getSourceRange();
5021      return true;
5022    }
5023    RHS = cast->getSubExpr();
5024  }
5025  return false;
5026}
5027
5028void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
5029                              Expr *LHS, Expr *RHS) {
5030  QualType LHSType;
5031  // PropertyRef on LHS type need be directly obtained from
5032  // its declaration as it has a PsuedoType.
5033  ObjCPropertyRefExpr *PRE
5034    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
5035  if (PRE && !PRE->isImplicitProperty()) {
5036    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5037    if (PD)
5038      LHSType = PD->getType();
5039  }
5040
5041  if (LHSType.isNull())
5042    LHSType = LHS->getType();
5043  if (checkUnsafeAssigns(Loc, LHSType, RHS))
5044    return;
5045  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
5046  // FIXME. Check for other life times.
5047  if (LT != Qualifiers::OCL_None)
5048    return;
5049
5050  if (PRE) {
5051    if (PRE->isImplicitProperty())
5052      return;
5053    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
5054    if (!PD)
5055      return;
5056
5057    unsigned Attributes = PD->getPropertyAttributes();
5058    if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
5059      // when 'assign' attribute was not explicitly specified
5060      // by user, ignore it and rely on property type itself
5061      // for lifetime info.
5062      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
5063      if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
5064          LHSType->isObjCRetainableType())
5065        return;
5066
5067      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
5068        if (cast->getCastKind() == CK_ARCConsumeObject) {
5069          Diag(Loc, diag::warn_arc_retained_property_assign)
5070          << RHS->getSourceRange();
5071          return;
5072        }
5073        RHS = cast->getSubExpr();
5074      }
5075    }
5076  }
5077}
5078
5079//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
5080
5081namespace {
5082bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
5083                                 SourceLocation StmtLoc,
5084                                 const NullStmt *Body) {
5085  // Do not warn if the body is a macro that expands to nothing, e.g:
5086  //
5087  // #define CALL(x)
5088  // if (condition)
5089  //   CALL(0);
5090  //
5091  if (Body->hasLeadingEmptyMacro())
5092    return false;
5093
5094  // Get line numbers of statement and body.
5095  bool StmtLineInvalid;
5096  unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
5097                                                      &StmtLineInvalid);
5098  if (StmtLineInvalid)
5099    return false;
5100
5101  bool BodyLineInvalid;
5102  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
5103                                                      &BodyLineInvalid);
5104  if (BodyLineInvalid)
5105    return false;
5106
5107  // Warn if null statement and body are on the same line.
5108  if (StmtLine != BodyLine)
5109    return false;
5110
5111  return true;
5112}
5113} // Unnamed namespace
5114
5115void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
5116                                 const Stmt *Body,
5117                                 unsigned DiagID) {
5118  // Since this is a syntactic check, don't emit diagnostic for template
5119  // instantiations, this just adds noise.
5120  if (CurrentInstantiationScope)
5121    return;
5122
5123  // The body should be a null statement.
5124  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5125  if (!NBody)
5126    return;
5127
5128  // Do the usual checks.
5129  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5130    return;
5131
5132  Diag(NBody->getSemiLoc(), DiagID);
5133  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5134}
5135
5136void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
5137                                 const Stmt *PossibleBody) {
5138  assert(!CurrentInstantiationScope); // Ensured by caller
5139
5140  SourceLocation StmtLoc;
5141  const Stmt *Body;
5142  unsigned DiagID;
5143  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
5144    StmtLoc = FS->getRParenLoc();
5145    Body = FS->getBody();
5146    DiagID = diag::warn_empty_for_body;
5147  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
5148    StmtLoc = WS->getCond()->getSourceRange().getEnd();
5149    Body = WS->getBody();
5150    DiagID = diag::warn_empty_while_body;
5151  } else
5152    return; // Neither `for' nor `while'.
5153
5154  // The body should be a null statement.
5155  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
5156  if (!NBody)
5157    return;
5158
5159  // Skip expensive checks if diagnostic is disabled.
5160  if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
5161          DiagnosticsEngine::Ignored)
5162    return;
5163
5164  // Do the usual checks.
5165  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
5166    return;
5167
5168  // `for(...);' and `while(...);' are popular idioms, so in order to keep
5169  // noise level low, emit diagnostics only if for/while is followed by a
5170  // CompoundStmt, e.g.:
5171  //    for (int i = 0; i < n; i++);
5172  //    {
5173  //      a(i);
5174  //    }
5175  // or if for/while is followed by a statement with more indentation
5176  // than for/while itself:
5177  //    for (int i = 0; i < n; i++);
5178  //      a(i);
5179  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
5180  if (!ProbableTypo) {
5181    bool BodyColInvalid;
5182    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
5183                             PossibleBody->getLocStart(),
5184                             &BodyColInvalid);
5185    if (BodyColInvalid)
5186      return;
5187
5188    bool StmtColInvalid;
5189    unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
5190                             S->getLocStart(),
5191                             &StmtColInvalid);
5192    if (StmtColInvalid)
5193      return;
5194
5195    if (BodyCol > StmtCol)
5196      ProbableTypo = true;
5197  }
5198
5199  if (ProbableTypo) {
5200    Diag(NBody->getSemiLoc(), DiagID);
5201    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
5202  }
5203}
5204