GMRES.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_GMRES_H
12#define EIGEN_GMRES_H
13
14namespace Eigen {
15
16namespace internal {
17
18/**
19 * Generalized Minimal Residual Algorithm based on the
20 * Arnoldi algorithm implemented with Householder reflections.
21 *
22 * Parameters:
23 *  \param mat       matrix of linear system of equations
24 *  \param Rhs       right hand side vector of linear system of equations
25 *  \param x         on input: initial guess, on output: solution
26 *  \param precond   preconditioner used
27 *  \param iters     on input: maximum number of iterations to perform
28 *                   on output: number of iterations performed
29 *  \param restart   number of iterations for a restart
30 *  \param tol_error on input: residual tolerance
31 *                   on output: residuum achieved
32 *
33 * \sa IterativeMethods::bicgstab()
34 *
35 *
36 * For references, please see:
37 *
38 * Saad, Y. and Schultz, M. H.
39 * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
40 * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
41 *
42 * Saad, Y.
43 * Iterative Methods for Sparse Linear Systems.
44 * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
45 *
46 * Walker, H. F.
47 * Implementations of the GMRES method.
48 * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
49 *
50 * Walker, H. F.
51 * Implementation of the GMRES Method using Householder Transformations.
52 * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
53 *
54 */
55template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
56bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
57		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
58
59	using std::sqrt;
60	using std::abs;
61
62	typedef typename Dest::RealScalar RealScalar;
63	typedef typename Dest::Scalar Scalar;
64	typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
65	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
66	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
67
68	RealScalar tol = tol_error;
69	const int maxIters = iters;
70	iters = 0;
71
72	const int m = mat.rows();
73
74	VectorType p0 = rhs - mat*x;
75	VectorType r0 = precond.solve(p0);
76// 	RealScalar r0_sqnorm = r0.squaredNorm();
77
78	VectorType w = VectorType::Zero(restart + 1);
79
80	FMatrixType H = FMatrixType::Zero(m, restart + 1);
81	VectorType tau = VectorType::Zero(restart + 1);
82	std::vector < JacobiRotation < Scalar > > G(restart);
83
84	// generate first Householder vector
85	VectorType e;
86	RealScalar beta;
87	r0.makeHouseholder(e, tau.coeffRef(0), beta);
88	w(0)=(Scalar) beta;
89	H.bottomLeftCorner(m - 1, 1) = e;
90
91	for (int k = 1; k <= restart; ++k) {
92
93		++iters;
94
95		VectorType v = VectorType::Unit(m, k - 1), workspace(m);
96
97		// apply Householder reflections H_{1} ... H_{k-1} to v
98		for (int i = k - 1; i >= 0; --i) {
99			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
100		}
101
102		// apply matrix M to v:  v = mat * v;
103		VectorType t=mat*v;
104		v=precond.solve(t);
105
106		// apply Householder reflections H_{k-1} ... H_{1} to v
107		for (int i = 0; i < k; ++i) {
108			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
109		}
110
111		if (v.tail(m - k).norm() != 0.0) {
112
113			if (k <= restart) {
114
115				// generate new Householder vector
116                                  VectorType e(m - k - 1);
117				RealScalar beta;
118				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
119				H.col(k).tail(m - k - 1) = e;
120
121				// apply Householder reflection H_{k} to v
122				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
123
124			}
125                }
126
127                if (k > 1) {
128                        for (int i = 0; i < k - 1; ++i) {
129                                // apply old Givens rotations to v
130                                v.applyOnTheLeft(i, i + 1, G[i].adjoint());
131                        }
132                }
133
134                if (k<m && v(k) != (Scalar) 0) {
135                        // determine next Givens rotation
136                        G[k - 1].makeGivens(v(k - 1), v(k));
137
138                        // apply Givens rotation to v and w
139                        v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
140                        w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
141
142                }
143
144                // insert coefficients into upper matrix triangle
145                H.col(k - 1).head(k) = v.head(k);
146
147                bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
148
149                if (stop || k == restart) {
150
151                        // solve upper triangular system
152                        VectorType y = w.head(k);
153                        H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
154
155                        // use Horner-like scheme to calculate solution vector
156                        VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
157
158                        // apply Householder reflection H_{k} to x_new
159                        x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
160
161                        for (int i = k - 2; i >= 0; --i) {
162                                x_new += y(i) * VectorType::Unit(m, i);
163                                // apply Householder reflection H_{i} to x_new
164                                x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
165                        }
166
167                        x += x_new;
168
169                        if (stop) {
170                                return true;
171                        } else {
172                                k=0;
173
174                                // reset data for a restart  r0 = rhs - mat * x;
175                                VectorType p0=mat*x;
176                                VectorType p1=precond.solve(p0);
177                                r0 = rhs - p1;
178//                                 r0_sqnorm = r0.squaredNorm();
179                                w = VectorType::Zero(restart + 1);
180                                H = FMatrixType::Zero(m, restart + 1);
181                                tau = VectorType::Zero(restart + 1);
182
183                                // generate first Householder vector
184                                RealScalar beta;
185                                r0.makeHouseholder(e, tau.coeffRef(0), beta);
186                                w(0)=(Scalar) beta;
187                                H.bottomLeftCorner(m - 1, 1) = e;
188
189                        }
190
191                }
192
193
194
195	}
196
197	return false;
198
199}
200
201}
202
203template< typename _MatrixType,
204          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
205class GMRES;
206
207namespace internal {
208
209template< typename _MatrixType, typename _Preconditioner>
210struct traits<GMRES<_MatrixType,_Preconditioner> >
211{
212  typedef _MatrixType MatrixType;
213  typedef _Preconditioner Preconditioner;
214};
215
216}
217
218/** \ingroup IterativeLinearSolvers_Module
219  * \brief A GMRES solver for sparse square problems
220  *
221  * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
222  * residual method. The vectors x and b can be either dense or sparse.
223  *
224  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
225  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
226  *
227  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
228  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
229  * and NumTraits<Scalar>::epsilon() for the tolerance.
230  *
231  * This class can be used as the direct solver classes. Here is a typical usage example:
232  * \code
233  * int n = 10000;
234  * VectorXd x(n), b(n);
235  * SparseMatrix<double> A(n,n);
236  * // fill A and b
237  * GMRES<SparseMatrix<double> > solver(A);
238  * x = solver.solve(b);
239  * std::cout << "#iterations:     " << solver.iterations() << std::endl;
240  * std::cout << "estimated error: " << solver.error()      << std::endl;
241  * // update b, and solve again
242  * x = solver.solve(b);
243  * \endcode
244  *
245  * By default the iterations start with x=0 as an initial guess of the solution.
246  * One can control the start using the solveWithGuess() method. Here is a step by
247  * step execution example starting with a random guess and printing the evolution
248  * of the estimated error:
249  * * \code
250  * x = VectorXd::Random(n);
251  * solver.setMaxIterations(1);
252  * int i = 0;
253  * do {
254  *   x = solver.solveWithGuess(b,x);
255  *   std::cout << i << " : " << solver.error() << std::endl;
256  *   ++i;
257  * } while (solver.info()!=Success && i<100);
258  * \endcode
259  * Note that such a step by step excution is slightly slower.
260  *
261  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
262  */
263template< typename _MatrixType, typename _Preconditioner>
264class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
265{
266  typedef IterativeSolverBase<GMRES> Base;
267  using Base::mp_matrix;
268  using Base::m_error;
269  using Base::m_iterations;
270  using Base::m_info;
271  using Base::m_isInitialized;
272
273private:
274  int m_restart;
275
276public:
277  typedef _MatrixType MatrixType;
278  typedef typename MatrixType::Scalar Scalar;
279  typedef typename MatrixType::Index Index;
280  typedef typename MatrixType::RealScalar RealScalar;
281  typedef _Preconditioner Preconditioner;
282
283public:
284
285  /** Default constructor. */
286  GMRES() : Base(), m_restart(30) {}
287
288  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
289    *
290    * This constructor is a shortcut for the default constructor followed
291    * by a call to compute().
292    *
293    * \warning this class stores a reference to the matrix A as well as some
294    * precomputed values that depend on it. Therefore, if \a A is changed
295    * this class becomes invalid. Call compute() to update it with the new
296    * matrix A, or modify a copy of A.
297    */
298  GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
299
300  ~GMRES() {}
301
302  /** Get the number of iterations after that a restart is performed.
303    */
304  int get_restart() { return m_restart; }
305
306  /** Set the number of iterations after that a restart is performed.
307    *  \param restart   number of iterations for a restarti, default is 30.
308    */
309  void set_restart(const int restart) { m_restart=restart; }
310
311  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
312    * \a x0 as an initial solution.
313    *
314    * \sa compute()
315    */
316  template<typename Rhs,typename Guess>
317  inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
318  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
319  {
320    eigen_assert(m_isInitialized && "GMRES is not initialized.");
321    eigen_assert(Base::rows()==b.rows()
322              && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
323    return internal::solve_retval_with_guess
324            <GMRES, Rhs, Guess>(*this, b.derived(), x0);
325  }
326
327  /** \internal */
328  template<typename Rhs,typename Dest>
329  void _solveWithGuess(const Rhs& b, Dest& x) const
330  {
331    bool failed = false;
332    for(int j=0; j<b.cols(); ++j)
333    {
334      m_iterations = Base::maxIterations();
335      m_error = Base::m_tolerance;
336
337      typename Dest::ColXpr xj(x,j);
338      if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
339        failed = true;
340    }
341    m_info = failed ? NumericalIssue
342           : m_error <= Base::m_tolerance ? Success
343           : NoConvergence;
344    m_isInitialized = true;
345  }
346
347  /** \internal */
348  template<typename Rhs,typename Dest>
349  void _solve(const Rhs& b, Dest& x) const
350  {
351    x.setZero();
352    _solveWithGuess(b,x);
353  }
354
355protected:
356
357};
358
359
360namespace internal {
361
362  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
363struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
364  : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
365{
366  typedef GMRES<_MatrixType, _Preconditioner> Dec;
367  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
368
369  template<typename Dest> void evalTo(Dest& dst) const
370  {
371    dec()._solve(rhs(),dst);
372  }
373};
374
375} // end namespace internal
376
377} // end namespace Eigen
378
379#endif // EIGEN_GMRES_H
380