LevenbergMarquardt.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. 3// 4// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> 5// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> 6// 7// The algorithm of this class initially comes from MINPACK whose original authors are: 8// Copyright Jorge More - Argonne National Laboratory 9// Copyright Burt Garbow - Argonne National Laboratory 10// Copyright Ken Hillstrom - Argonne National Laboratory 11// 12// This Source Code Form is subject to the terms of the Minpack license 13// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. 14// 15// This Source Code Form is subject to the terms of the Mozilla 16// Public License v. 2.0. If a copy of the MPL was not distributed 17// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 18 19#ifndef EIGEN_LEVENBERGMARQUARDT_H 20#define EIGEN_LEVENBERGMARQUARDT_H 21 22 23namespace Eigen { 24namespace LevenbergMarquardtSpace { 25 enum Status { 26 NotStarted = -2, 27 Running = -1, 28 ImproperInputParameters = 0, 29 RelativeReductionTooSmall = 1, 30 RelativeErrorTooSmall = 2, 31 RelativeErrorAndReductionTooSmall = 3, 32 CosinusTooSmall = 4, 33 TooManyFunctionEvaluation = 5, 34 FtolTooSmall = 6, 35 XtolTooSmall = 7, 36 GtolTooSmall = 8, 37 UserAsked = 9 38 }; 39} 40 41template <typename _Scalar, int NX=Dynamic, int NY=Dynamic> 42struct DenseFunctor 43{ 44 typedef _Scalar Scalar; 45 enum { 46 InputsAtCompileTime = NX, 47 ValuesAtCompileTime = NY 48 }; 49 typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; 50 typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; 51 typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; 52 typedef ColPivHouseholderQR<JacobianType> QRSolver; 53 const int m_inputs, m_values; 54 55 DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} 56 DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} 57 58 int inputs() const { return m_inputs; } 59 int values() const { return m_values; } 60 61 //int operator()(const InputType &x, ValueType& fvec) { } 62 // should be defined in derived classes 63 64 //int df(const InputType &x, JacobianType& fjac) { } 65 // should be defined in derived classes 66}; 67 68template <typename _Scalar, typename _Index> 69struct SparseFunctor 70{ 71 typedef _Scalar Scalar; 72 typedef _Index Index; 73 typedef Matrix<Scalar,Dynamic,1> InputType; 74 typedef Matrix<Scalar,Dynamic,1> ValueType; 75 typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType; 76 typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver; 77 enum { 78 InputsAtCompileTime = Dynamic, 79 ValuesAtCompileTime = Dynamic 80 }; 81 82 SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} 83 84 int inputs() const { return m_inputs; } 85 int values() const { return m_values; } 86 87 const int m_inputs, m_values; 88 //int operator()(const InputType &x, ValueType& fvec) { } 89 // to be defined in the functor 90 91 //int df(const InputType &x, JacobianType& fjac) { } 92 // to be defined in the functor if no automatic differentiation 93 94}; 95namespace internal { 96template <typename QRSolver, typename VectorType> 97void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb, 98 typename VectorType::Scalar m_delta, typename VectorType::Scalar &par, 99 VectorType &x); 100 } 101/** 102 * \ingroup NonLinearOptimization_Module 103 * \brief Performs non linear optimization over a non-linear function, 104 * using a variant of the Levenberg Marquardt algorithm. 105 * 106 * Check wikipedia for more information. 107 * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm 108 */ 109template<typename _FunctorType> 110class LevenbergMarquardt : internal::no_assignment_operator 111{ 112 public: 113 typedef _FunctorType FunctorType; 114 typedef typename FunctorType::QRSolver QRSolver; 115 typedef typename FunctorType::JacobianType JacobianType; 116 typedef typename JacobianType::Scalar Scalar; 117 typedef typename JacobianType::RealScalar RealScalar; 118 typedef typename JacobianType::Index Index; 119 typedef typename QRSolver::Index PermIndex; 120 typedef Matrix<Scalar,Dynamic,1> FVectorType; 121 typedef PermutationMatrix<Dynamic,Dynamic> PermutationType; 122 public: 123 LevenbergMarquardt(FunctorType& functor) 124 : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0), 125 m_isInitialized(false),m_info(InvalidInput) 126 { 127 resetParameters(); 128 m_useExternalScaling=false; 129 } 130 131 LevenbergMarquardtSpace::Status minimize(FVectorType &x); 132 LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x); 133 LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x); 134 LevenbergMarquardtSpace::Status lmder1( 135 FVectorType &x, 136 const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) 137 ); 138 static LevenbergMarquardtSpace::Status lmdif1( 139 FunctorType &functor, 140 FVectorType &x, 141 Index *nfev, 142 const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) 143 ); 144 145 /** Sets the default parameters */ 146 void resetParameters() 147 { 148 m_factor = 100.; 149 m_maxfev = 400; 150 m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon()); 151 m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon()); 152 m_gtol = 0. ; 153 m_epsfcn = 0. ; 154 } 155 156 /** Sets the tolerance for the norm of the solution vector*/ 157 void setXtol(RealScalar xtol) { m_xtol = xtol; } 158 159 /** Sets the tolerance for the norm of the vector function*/ 160 void setFtol(RealScalar ftol) { m_ftol = ftol; } 161 162 /** Sets the tolerance for the norm of the gradient of the error vector*/ 163 void setGtol(RealScalar gtol) { m_gtol = gtol; } 164 165 /** Sets the step bound for the diagonal shift */ 166 void setFactor(RealScalar factor) { m_factor = factor; } 167 168 /** Sets the error precision */ 169 void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; } 170 171 /** Sets the maximum number of function evaluation */ 172 void setMaxfev(Index maxfev) {m_maxfev = maxfev; } 173 174 /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */ 175 void setExternalScaling(bool value) {m_useExternalScaling = value; } 176 177 /** \returns a reference to the diagonal of the jacobian */ 178 FVectorType& diag() {return m_diag; } 179 180 /** \returns the number of iterations performed */ 181 Index iterations() { return m_iter; } 182 183 /** \returns the number of functions evaluation */ 184 Index nfev() { return m_nfev; } 185 186 /** \returns the number of jacobian evaluation */ 187 Index njev() { return m_njev; } 188 189 /** \returns the norm of current vector function */ 190 RealScalar fnorm() {return m_fnorm; } 191 192 /** \returns the norm of the gradient of the error */ 193 RealScalar gnorm() {return m_gnorm; } 194 195 /** \returns the LevenbergMarquardt parameter */ 196 RealScalar lm_param(void) { return m_par; } 197 198 /** \returns a reference to the current vector function 199 */ 200 FVectorType& fvec() {return m_fvec; } 201 202 /** \returns a reference to the matrix where the current Jacobian matrix is stored 203 */ 204 JacobianType& jacobian() {return m_fjac; } 205 206 /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix. 207 * \sa jacobian() 208 */ 209 JacobianType& matrixR() {return m_rfactor; } 210 211 /** the permutation used in the QR factorization 212 */ 213 PermutationType permutation() {return m_permutation; } 214 215 /** 216 * \brief Reports whether the minimization was successful 217 * \returns \c Success if the minimization was succesful, 218 * \c NumericalIssue if a numerical problem arises during the 219 * minimization process, for exemple during the QR factorization 220 * \c NoConvergence if the minimization did not converge after 221 * the maximum number of function evaluation allowed 222 * \c InvalidInput if the input matrix is invalid 223 */ 224 ComputationInfo info() const 225 { 226 227 return m_info; 228 } 229 private: 230 JacobianType m_fjac; 231 JacobianType m_rfactor; // The triangular matrix R from the QR of the jacobian matrix m_fjac 232 FunctorType &m_functor; 233 FVectorType m_fvec, m_qtf, m_diag; 234 Index n; 235 Index m; 236 Index m_nfev; 237 Index m_njev; 238 RealScalar m_fnorm; // Norm of the current vector function 239 RealScalar m_gnorm; //Norm of the gradient of the error 240 RealScalar m_factor; // 241 Index m_maxfev; // Maximum number of function evaluation 242 RealScalar m_ftol; //Tolerance in the norm of the vector function 243 RealScalar m_xtol; // 244 RealScalar m_gtol; //tolerance of the norm of the error gradient 245 RealScalar m_epsfcn; // 246 Index m_iter; // Number of iterations performed 247 RealScalar m_delta; 248 bool m_useExternalScaling; 249 PermutationType m_permutation; 250 FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors 251 RealScalar m_par; 252 bool m_isInitialized; // Check whether the minimization step has been called 253 ComputationInfo m_info; 254}; 255 256template<typename FunctorType> 257LevenbergMarquardtSpace::Status 258LevenbergMarquardt<FunctorType>::minimize(FVectorType &x) 259{ 260 LevenbergMarquardtSpace::Status status = minimizeInit(x); 261 if (status==LevenbergMarquardtSpace::ImproperInputParameters) { 262 m_isInitialized = true; 263 return status; 264 } 265 do { 266// std::cout << " uv " << x.transpose() << "\n"; 267 status = minimizeOneStep(x); 268 } while (status==LevenbergMarquardtSpace::Running); 269 m_isInitialized = true; 270 return status; 271} 272 273template<typename FunctorType> 274LevenbergMarquardtSpace::Status 275LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x) 276{ 277 n = x.size(); 278 m = m_functor.values(); 279 280 m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n); 281 m_wa4.resize(m); 282 m_fvec.resize(m); 283 //FIXME Sparse Case : Allocate space for the jacobian 284 m_fjac.resize(m, n); 285// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative 286 if (!m_useExternalScaling) 287 m_diag.resize(n); 288 eigen_assert( (!m_useExternalScaling || m_diag.size()==n) || "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'"); 289 m_qtf.resize(n); 290 291 /* Function Body */ 292 m_nfev = 0; 293 m_njev = 0; 294 295 /* check the input parameters for errors. */ 296 if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.){ 297 m_info = InvalidInput; 298 return LevenbergMarquardtSpace::ImproperInputParameters; 299 } 300 301 if (m_useExternalScaling) 302 for (Index j = 0; j < n; ++j) 303 if (m_diag[j] <= 0.) 304 { 305 m_info = InvalidInput; 306 return LevenbergMarquardtSpace::ImproperInputParameters; 307 } 308 309 /* evaluate the function at the starting point */ 310 /* and calculate its norm. */ 311 m_nfev = 1; 312 if ( m_functor(x, m_fvec) < 0) 313 return LevenbergMarquardtSpace::UserAsked; 314 m_fnorm = m_fvec.stableNorm(); 315 316 /* initialize levenberg-marquardt parameter and iteration counter. */ 317 m_par = 0.; 318 m_iter = 1; 319 320 return LevenbergMarquardtSpace::NotStarted; 321} 322 323template<typename FunctorType> 324LevenbergMarquardtSpace::Status 325LevenbergMarquardt<FunctorType>::lmder1( 326 FVectorType &x, 327 const Scalar tol 328 ) 329{ 330 n = x.size(); 331 m = m_functor.values(); 332 333 /* check the input parameters for errors. */ 334 if (n <= 0 || m < n || tol < 0.) 335 return LevenbergMarquardtSpace::ImproperInputParameters; 336 337 resetParameters(); 338 m_ftol = tol; 339 m_xtol = tol; 340 m_maxfev = 100*(n+1); 341 342 return minimize(x); 343} 344 345 346template<typename FunctorType> 347LevenbergMarquardtSpace::Status 348LevenbergMarquardt<FunctorType>::lmdif1( 349 FunctorType &functor, 350 FVectorType &x, 351 Index *nfev, 352 const Scalar tol 353 ) 354{ 355 Index n = x.size(); 356 Index m = functor.values(); 357 358 /* check the input parameters for errors. */ 359 if (n <= 0 || m < n || tol < 0.) 360 return LevenbergMarquardtSpace::ImproperInputParameters; 361 362 NumericalDiff<FunctorType> numDiff(functor); 363 // embedded LevenbergMarquardt 364 LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff); 365 lm.setFtol(tol); 366 lm.setXtol(tol); 367 lm.setMaxfev(200*(n+1)); 368 369 LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); 370 if (nfev) 371 * nfev = lm.nfev(); 372 return info; 373} 374 375} // end namespace Eigen 376 377#endif // EIGEN_LEVENBERGMARQUARDT_H 378