BitVector.h revision 693e3ee0c2d2a2cb6f691222694a788dd595c108
1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_BITVECTOR_H
15#define LLVM_ADT_BITVECTOR_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstdlib>
24
25namespace llvm {
26
27class BitVector {
28  typedef unsigned long BitWord;
29
30  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31
32  BitWord  *Bits;        // Actual bits.
33  unsigned Size;         // Size of bitvector in bits.
34  unsigned Capacity;     // Size of allocated memory in BitWord.
35
36public:
37  // Encapsulation of a single bit.
38  class reference {
39    friend class BitVector;
40
41    BitWord *WordRef;
42    unsigned BitPos;
43
44    reference();  // Undefined
45
46  public:
47    reference(BitVector &b, unsigned Idx) {
48      WordRef = &b.Bits[Idx / BITWORD_SIZE];
49      BitPos = Idx % BITWORD_SIZE;
50    }
51
52    ~reference() {}
53
54    reference &operator=(reference t) {
55      *this = bool(t);
56      return *this;
57    }
58
59    reference& operator=(bool t) {
60      if (t)
61        *WordRef |= 1L << BitPos;
62      else
63        *WordRef &= ~(1L << BitPos);
64      return *this;
65    }
66
67    operator bool() const {
68      return ((*WordRef) & (1L << BitPos)) ? true : false;
69    }
70  };
71
72
73  /// BitVector default ctor - Creates an empty bitvector.
74  BitVector() : Size(0), Capacity(0) {
75    Bits = 0;
76  }
77
78  /// BitVector ctor - Creates a bitvector of specified number of bits. All
79  /// bits are initialized to the specified value.
80  explicit BitVector(unsigned s, bool t = false) : Size(s) {
81    Capacity = NumBitWords(s);
82    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
83    init_words(Bits, Capacity, t);
84    if (t)
85      clear_unused_bits();
86  }
87
88  /// BitVector copy ctor.
89  BitVector(const BitVector &RHS) : Size(RHS.size()) {
90    if (Size == 0) {
91      Bits = 0;
92      Capacity = 0;
93      return;
94    }
95
96    Capacity = NumBitWords(RHS.size());
97    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
98    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
99  }
100
101#if LLVM_USE_RVALUE_REFERENCES
102  BitVector(BitVector &&RHS)
103    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
104    RHS.Bits = 0;
105  }
106#endif
107
108  ~BitVector() {
109    std::free(Bits);
110  }
111
112  /// empty - Tests whether there are no bits in this bitvector.
113  bool empty() const { return Size == 0; }
114
115  /// size - Returns the number of bits in this bitvector.
116  unsigned size() const { return Size; }
117
118  /// count - Returns the number of bits which are set.
119  unsigned count() const {
120    unsigned NumBits = 0;
121    for (unsigned i = 0; i < NumBitWords(size()); ++i)
122      if (sizeof(BitWord) == 4)
123        NumBits += CountPopulation_32((uint32_t)Bits[i]);
124      else if (sizeof(BitWord) == 8)
125        NumBits += CountPopulation_64(Bits[i]);
126      else
127        llvm_unreachable("Unsupported!");
128    return NumBits;
129  }
130
131  /// any - Returns true if any bit is set.
132  bool any() const {
133    for (unsigned i = 0; i < NumBitWords(size()); ++i)
134      if (Bits[i] != 0)
135        return true;
136    return false;
137  }
138
139  /// all - Returns true if all bits are set.
140  bool all() const {
141    // TODO: Optimize this.
142    return count() == size();
143  }
144
145  /// none - Returns true if none of the bits are set.
146  bool none() const {
147    return !any();
148  }
149
150  /// find_first - Returns the index of the first set bit, -1 if none
151  /// of the bits are set.
152  int find_first() const {
153    for (unsigned i = 0; i < NumBitWords(size()); ++i)
154      if (Bits[i] != 0) {
155        if (sizeof(BitWord) == 4)
156          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
157        if (sizeof(BitWord) == 8)
158          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
159        llvm_unreachable("Unsupported!");
160      }
161    return -1;
162  }
163
164  /// find_next - Returns the index of the next set bit following the
165  /// "Prev" bit. Returns -1 if the next set bit is not found.
166  int find_next(unsigned Prev) const {
167    ++Prev;
168    if (Prev >= Size)
169      return -1;
170
171    unsigned WordPos = Prev / BITWORD_SIZE;
172    unsigned BitPos = Prev % BITWORD_SIZE;
173    BitWord Copy = Bits[WordPos];
174    // Mask off previous bits.
175    Copy &= ~0L << BitPos;
176
177    if (Copy != 0) {
178      if (sizeof(BitWord) == 4)
179        return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
180      if (sizeof(BitWord) == 8)
181        return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
182      llvm_unreachable("Unsupported!");
183    }
184
185    // Check subsequent words.
186    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
187      if (Bits[i] != 0) {
188        if (sizeof(BitWord) == 4)
189          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
190        if (sizeof(BitWord) == 8)
191          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
192        llvm_unreachable("Unsupported!");
193      }
194    return -1;
195  }
196
197  /// clear - Clear all bits.
198  void clear() {
199    Size = 0;
200  }
201
202  /// resize - Grow or shrink the bitvector.
203  void resize(unsigned N, bool t = false) {
204    if (N > Capacity * BITWORD_SIZE) {
205      unsigned OldCapacity = Capacity;
206      grow(N);
207      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
208    }
209
210    // Set any old unused bits that are now included in the BitVector. This
211    // may set bits that are not included in the new vector, but we will clear
212    // them back out below.
213    if (N > Size)
214      set_unused_bits(t);
215
216    // Update the size, and clear out any bits that are now unused
217    unsigned OldSize = Size;
218    Size = N;
219    if (t || N < OldSize)
220      clear_unused_bits();
221  }
222
223  void reserve(unsigned N) {
224    if (N > Capacity * BITWORD_SIZE)
225      grow(N);
226  }
227
228  // Set, reset, flip
229  BitVector &set() {
230    init_words(Bits, Capacity, true);
231    clear_unused_bits();
232    return *this;
233  }
234
235  BitVector &set(unsigned Idx) {
236    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
237    return *this;
238  }
239
240  BitVector &reset() {
241    init_words(Bits, Capacity, false);
242    return *this;
243  }
244
245  BitVector &reset(unsigned Idx) {
246    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
247    return *this;
248  }
249
250  BitVector &flip() {
251    for (unsigned i = 0; i < NumBitWords(size()); ++i)
252      Bits[i] = ~Bits[i];
253    clear_unused_bits();
254    return *this;
255  }
256
257  BitVector &flip(unsigned Idx) {
258    Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
259    return *this;
260  }
261
262  // Indexing.
263  reference operator[](unsigned Idx) {
264    assert (Idx < Size && "Out-of-bounds Bit access.");
265    return reference(*this, Idx);
266  }
267
268  bool operator[](unsigned Idx) const {
269    assert (Idx < Size && "Out-of-bounds Bit access.");
270    BitWord Mask = 1L << (Idx % BITWORD_SIZE);
271    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
272  }
273
274  bool test(unsigned Idx) const {
275    return (*this)[Idx];
276  }
277
278  /// Test if any common bits are set.
279  bool anyCommon(const BitVector &RHS) const {
280    unsigned ThisWords = NumBitWords(size());
281    unsigned RHSWords  = NumBitWords(RHS.size());
282    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
283      if (Bits[i] & RHS.Bits[i])
284        return true;
285    return false;
286  }
287
288  // Comparison operators.
289  bool operator==(const BitVector &RHS) const {
290    unsigned ThisWords = NumBitWords(size());
291    unsigned RHSWords  = NumBitWords(RHS.size());
292    unsigned i;
293    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
294      if (Bits[i] != RHS.Bits[i])
295        return false;
296
297    // Verify that any extra words are all zeros.
298    if (i != ThisWords) {
299      for (; i != ThisWords; ++i)
300        if (Bits[i])
301          return false;
302    } else if (i != RHSWords) {
303      for (; i != RHSWords; ++i)
304        if (RHS.Bits[i])
305          return false;
306    }
307    return true;
308  }
309
310  bool operator!=(const BitVector &RHS) const {
311    return !(*this == RHS);
312  }
313
314  // Intersection, union, disjoint union.
315  BitVector &operator&=(const BitVector &RHS) {
316    unsigned ThisWords = NumBitWords(size());
317    unsigned RHSWords  = NumBitWords(RHS.size());
318    unsigned i;
319    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
320      Bits[i] &= RHS.Bits[i];
321
322    // Any bits that are just in this bitvector become zero, because they aren't
323    // in the RHS bit vector.  Any words only in RHS are ignored because they
324    // are already zero in the LHS.
325    for (; i != ThisWords; ++i)
326      Bits[i] = 0;
327
328    return *this;
329  }
330
331  // reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
332  BitVector &reset(const BitVector &RHS) {
333    unsigned ThisWords = NumBitWords(size());
334    unsigned RHSWords  = NumBitWords(RHS.size());
335    unsigned i;
336    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
337      Bits[i] &= ~RHS.Bits[i];
338    return *this;
339  }
340
341  BitVector &operator|=(const BitVector &RHS) {
342    if (size() < RHS.size())
343      resize(RHS.size());
344    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
345      Bits[i] |= RHS.Bits[i];
346    return *this;
347  }
348
349  BitVector &operator^=(const BitVector &RHS) {
350    if (size() < RHS.size())
351      resize(RHS.size());
352    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
353      Bits[i] ^= RHS.Bits[i];
354    return *this;
355  }
356
357  // Assignment operator.
358  const BitVector &operator=(const BitVector &RHS) {
359    if (this == &RHS) return *this;
360
361    Size = RHS.size();
362    unsigned RHSWords = NumBitWords(Size);
363    if (Size <= Capacity * BITWORD_SIZE) {
364      if (Size)
365        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
366      clear_unused_bits();
367      return *this;
368    }
369
370    // Grow the bitvector to have enough elements.
371    Capacity = RHSWords;
372    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
373    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
374
375    // Destroy the old bits.
376    std::free(Bits);
377    Bits = NewBits;
378
379    return *this;
380  }
381
382#if LLVM_USE_RVALUE_REFERENCES
383  const BitVector &operator=(BitVector &&RHS) {
384    if (this == &RHS) return *this;
385
386    std::free(Bits);
387    Bits = RHS.Bits;
388    Size = RHS.Size;
389    Capacity = RHS.Capacity;
390
391    RHS.Bits = 0;
392
393    return *this;
394  }
395#endif
396
397  void swap(BitVector &RHS) {
398    std::swap(Bits, RHS.Bits);
399    std::swap(Size, RHS.Size);
400    std::swap(Capacity, RHS.Capacity);
401  }
402
403  //===--------------------------------------------------------------------===//
404  // Portable bit mask operations.
405  //===--------------------------------------------------------------------===//
406  //
407  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
408  // fixed word size makes it easier to work with literal bit vector constants
409  // in portable code.
410  //
411  // The LSB in each word is the lowest numbered bit.  The size of a portable
412  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
413  // given, the bit mask is assumed to cover the entire BitVector.
414
415  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
416  /// This computes "*this |= Mask".
417  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
418    applyMask<true, false>(Mask, MaskWords);
419  }
420
421  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
422  /// Don't resize. This computes "*this &= ~Mask".
423  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
424    applyMask<false, false>(Mask, MaskWords);
425  }
426
427  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
428  /// Don't resize.  This computes "*this |= ~Mask".
429  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
430    applyMask<true, true>(Mask, MaskWords);
431  }
432
433  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
434  /// Don't resize.  This computes "*this &= Mask".
435  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
436    applyMask<false, true>(Mask, MaskWords);
437  }
438
439private:
440  unsigned NumBitWords(unsigned S) const {
441    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
442  }
443
444  // Set the unused bits in the high words.
445  void set_unused_bits(bool t = true) {
446    //  Set high words first.
447    unsigned UsedWords = NumBitWords(Size);
448    if (Capacity > UsedWords)
449      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
450
451    //  Then set any stray high bits of the last used word.
452    unsigned ExtraBits = Size % BITWORD_SIZE;
453    if (ExtraBits) {
454      Bits[UsedWords-1] &= ~(~0L << ExtraBits);
455      Bits[UsedWords-1] |= (0 - (BitWord)t) << ExtraBits;
456    }
457  }
458
459  // Clear the unused bits in the high words.
460  void clear_unused_bits() {
461    set_unused_bits(false);
462  }
463
464  void grow(unsigned NewSize) {
465    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
466    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
467
468    clear_unused_bits();
469  }
470
471  void init_words(BitWord *B, unsigned NumWords, bool t) {
472    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
473  }
474
475  template<bool AddBits, bool InvertMask>
476  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
477    assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
478    MaskWords = std::min(MaskWords, (size() + 31) / 32);
479    const unsigned Scale = BITWORD_SIZE / 32;
480    unsigned i;
481    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
482      BitWord BW = Bits[i];
483      // This inner loop should unroll completely when BITWORD_SIZE > 32.
484      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
485        uint32_t M = *Mask++;
486        if (InvertMask) M = ~M;
487        if (AddBits) BW |=   BitWord(M) << b;
488        else         BW &= ~(BitWord(M) << b);
489      }
490      Bits[i] = BW;
491    }
492    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
493      uint32_t M = *Mask++;
494      if (InvertMask) M = ~M;
495      if (AddBits) Bits[i] |=   BitWord(M) << b;
496      else         Bits[i] &= ~(BitWord(M) << b);
497    }
498    if (AddBits)
499      clear_unused_bits();
500  }
501};
502
503} // End llvm namespace
504
505namespace std {
506  /// Implement std::swap in terms of BitVector swap.
507  inline void
508  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
509    LHS.swap(RHS);
510  }
511}
512
513#endif
514