LoopInfo.h revision 88d3ef2c744db0289223a4477669f24d542e6d97
1//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the LoopInfo class that is used to identify natural loops
11// and determine the loop depth of various nodes of the CFG.  Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function.  For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the function, the basic blocks the make up the
17// loop, the nesting depth of the loop, and the successor blocks of the loop.
18//
19// It can calculate on the fly a variety of different bits of information, such
20// as whether there is a preheader for the loop, the number of back edges to the
21// header, and whether or not a particular block branches out of the loop.
22//
23//===----------------------------------------------------------------------===//
24
25#ifndef LLVM_ANALYSIS_LOOP_INFO_H
26#define LLVM_ANALYSIS_LOOP_INFO_H
27
28#include "llvm/Pass.h"
29#include "Support/GraphTraits.h"
30#include <set>
31
32namespace llvm {
33
34class DominatorSet;
35class LoopInfo;
36class PHINode;
37class Instruction;
38
39//===----------------------------------------------------------------------===//
40/// Loop class - Instances of this class are used to represent loops that are
41/// detected in the flow graph
42///
43class Loop {
44  Loop *ParentLoop;
45  std::vector<Loop*> SubLoops;       // Loops contained entirely within this one
46  std::vector<BasicBlock*> Blocks;   // First entry is the header node
47  unsigned LoopDepth;                // Nesting depth of this loop
48
49  Loop(const Loop &);                  // DO NOT IMPLEMENT
50  const Loop &operator=(const Loop &); // DO NOT IMPLEMENT
51public:
52  /// Loop ctor - This creates an empty loop.
53  Loop() : ParentLoop(0), LoopDepth(0) {
54  }
55  ~Loop() {
56    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
57      delete SubLoops[i];
58  }
59
60  unsigned getLoopDepth() const { return LoopDepth; }
61  BasicBlock *getHeader() const { return Blocks.front(); }
62  Loop *getParentLoop() const { return ParentLoop; }
63
64  /// contains - Return true of the specified basic block is in this loop
65  ///
66  bool contains(const BasicBlock *BB) const;
67
68  /// iterator/begin/end - Return the loops contained entirely within this loop.
69  ///
70  typedef std::vector<Loop*>::const_iterator iterator;
71  iterator begin() const { return SubLoops.begin(); }
72  iterator end() const { return SubLoops.end(); }
73
74  /// getBlocks - Get a list of the basic blocks which make up this loop.
75  ///
76  const std::vector<BasicBlock*> &getBlocks() const { return Blocks; }
77
78  /// isLoopExit - True if terminator in the block can branch to another block
79  /// that is outside of the current loop.
80  ///
81  bool isLoopExit(const BasicBlock *BB) const;
82
83  /// getNumBackEdges - Calculate the number of back edges to the loop header
84  ///
85  unsigned getNumBackEdges() const;
86
87  /// isLoopInvariant - Return true if the specified value is loop invariant
88  ///
89  bool isLoopInvariant(Value *V) const;
90
91  //===--------------------------------------------------------------------===//
92  // APIs for simple analysis of the loop.
93  //
94  // Note that all of these methods can fail on general loops (ie, there may not
95  // be a preheader, etc).  For best success, the loop simplification and
96  // induction variable canonicalization pass should be used to normalize loops
97  // for easy analysis.  These methods assume canonical loops.
98
99  /// getExitBlocks - Return all of the successor blocks of this loop.  These
100  /// are the blocks _outside of the current loop_ which are branched to.
101  ///
102  void getExitBlocks(std::vector<BasicBlock*> &Blocks) const;
103
104  /// getLoopPreheader - If there is a preheader for this loop, return it.  A
105  /// loop has a preheader if there is only one edge to the header of the loop
106  /// from outside of the loop.  If this is the case, the block branching to the
107  /// header of the loop is the preheader node.
108  ///
109  /// This method returns null if there is no preheader for the loop.
110  ///
111  BasicBlock *getLoopPreheader() const;
112
113  /// getCanonicalInductionVariable - Check to see if the loop has a canonical
114  /// induction variable: an integer recurrence that starts at 0 and increments
115  /// by one each time through the loop.  If so, return the phi node that
116  /// corresponds to it.
117  ///
118  PHINode *getCanonicalInductionVariable() const;
119
120  /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
121  /// the canonical induction variable value for the "next" iteration of the
122  /// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
123  ///
124  Instruction *getCanonicalInductionVariableIncrement() const;
125
126  /// getTripCount - Return a loop-invariant LLVM value indicating the number of
127  /// times the loop will be executed.  Note that this means that the backedge
128  /// of the loop executes N-1 times.  If the trip-count cannot be determined,
129  /// this returns null.
130  ///
131  Value *getTripCount() const;
132
133  //===--------------------------------------------------------------------===//
134  // APIs for updating loop information after changing the CFG
135  //
136
137  /// addBasicBlockToLoop - This method is used by other analyses to update loop
138  /// information.  NewBB is set to be a new member of the current loop.
139  /// Because of this, it is added as a member of all parent loops, and is added
140  /// to the specified LoopInfo object as being in the current basic block.  It
141  /// is not valid to replace the loop header with this method.
142  ///
143  void addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI);
144
145  /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
146  /// the OldChild entry in our children list with NewChild, and updates the
147  /// parent pointer of OldChild to be null and the NewChild to be this loop.
148  /// This updates the loop depth of the new child.
149  void replaceChildLoopWith(Loop *OldChild, Loop *NewChild);
150
151  /// addChildLoop - Add the specified loop to be a child of this loop.  This
152  /// updates the loop depth of the new child.
153  ///
154  void addChildLoop(Loop *NewChild);
155
156  /// removeChildLoop - This removes the specified child from being a subloop of
157  /// this loop.  The loop is not deleted, as it will presumably be inserted
158  /// into another loop.
159  Loop *removeChildLoop(iterator OldChild);
160
161  /// addBlockEntry - This adds a basic block directly to the basic block list.
162  /// This should only be used by transformations that create new loops.  Other
163  /// transformations should use addBasicBlockToLoop.
164  void addBlockEntry(BasicBlock *BB) {
165    Blocks.push_back(BB);
166  }
167
168  /// removeBlockFromLoop - This removes the specified basic block from the
169  /// current loop, updating the Blocks as appropriate.  This does not update
170  /// the mapping in the LoopInfo class.
171  void removeBlockFromLoop(BasicBlock *BB);
172
173  void print(std::ostream &O, unsigned Depth = 0) const;
174  void dump() const;
175private:
176  friend class LoopInfo;
177  Loop(BasicBlock *BB) : ParentLoop(0) {
178    Blocks.push_back(BB); LoopDepth = 0;
179  }
180  void setLoopDepth(unsigned Level) {
181    LoopDepth = Level;
182    for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
183      SubLoops[i]->setLoopDepth(Level+1);
184  }
185};
186
187
188
189//===----------------------------------------------------------------------===//
190/// LoopInfo - This class builds and contains all of the top level loop
191/// structures in the specified function.
192///
193class LoopInfo : public FunctionPass {
194  // BBMap - Mapping of basic blocks to the inner most loop they occur in
195  std::map<BasicBlock*, Loop*> BBMap;
196  std::vector<Loop*> TopLevelLoops;
197  friend class Loop;
198public:
199  ~LoopInfo() { releaseMemory(); }
200
201  /// iterator/begin/end - The interface to the top-level loops in the current
202  /// function.
203  ///
204  typedef std::vector<Loop*>::const_iterator iterator;
205  iterator begin() const { return TopLevelLoops.begin(); }
206  iterator end() const { return TopLevelLoops.end(); }
207
208  /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
209  /// block is in no loop (for example the entry node), null is returned.
210  ///
211  const Loop *getLoopFor(const BasicBlock *BB) const {
212    std::map<BasicBlock *, Loop*>::const_iterator I=BBMap.find((BasicBlock*)BB);
213    return I != BBMap.end() ? I->second : 0;
214  }
215
216  /// operator[] - same as getLoopFor...
217  ///
218  inline const Loop *operator[](const BasicBlock *BB) const {
219    return getLoopFor(BB);
220  }
221
222  /// getLoopDepth - Return the loop nesting level of the specified block...
223  ///
224  unsigned getLoopDepth(const BasicBlock *BB) const {
225    const Loop *L = getLoopFor(BB);
226    return L ? L->getLoopDepth() : 0;
227  }
228
229  // isLoopHeader - True if the block is a loop header node
230  bool isLoopHeader(BasicBlock *BB) const {
231    return getLoopFor(BB)->getHeader() == BB;
232  }
233
234  /// runOnFunction - Calculate the natural loop information.
235  ///
236  virtual bool runOnFunction(Function &F);
237
238  virtual void releaseMemory();
239  void print(std::ostream &O) const;
240
241  /// getAnalysisUsage - Requires dominator sets
242  ///
243  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
244
245  /// removeLoop - This removes the specified top-level loop from this loop info
246  /// object.  The loop is not deleted, as it will presumably be inserted into
247  /// another loop.
248  Loop *removeLoop(iterator I);
249
250  /// changeLoopFor - Change the top-level loop that contains BB to the
251  /// specified loop.  This should be used by transformations that restructure
252  /// the loop hierarchy tree.
253  void changeLoopFor(BasicBlock *BB, Loop *L);
254
255  /// changeTopLevelLoop - Replace the specified loop in the top-level loops
256  /// list with the indicated loop.
257  void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop);
258
259  /// removeBlock - This method completely removes BB from all data structures,
260  /// including all of the Loop objects it is nested in and our mapping from
261  /// BasicBlocks to loops.
262  void removeBlock(BasicBlock *BB);
263
264  static void stub();  // Noop
265private:
266  void Calculate(const DominatorSet &DS);
267  Loop *ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS);
268  void MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent);
269  void InsertLoopInto(Loop *L, Loop *Parent);
270};
271
272
273// Make sure that any clients of this file link in LoopInfo.cpp
274static IncludeFile
275LOOP_INFO_INCLUDE_FILE((void*)&LoopInfo::stub);
276
277// Allow clients to walk the list of nested loops...
278template <> struct GraphTraits<const Loop*> {
279  typedef const Loop NodeType;
280  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
281
282  static NodeType *getEntryNode(const Loop *L) { return L; }
283  static inline ChildIteratorType child_begin(NodeType *N) {
284    return N->begin();
285  }
286  static inline ChildIteratorType child_end(NodeType *N) {
287    return N->end();
288  }
289};
290
291template <> struct GraphTraits<Loop*> {
292  typedef Loop NodeType;
293  typedef std::vector<Loop*>::const_iterator ChildIteratorType;
294
295  static NodeType *getEntryNode(Loop *L) { return L; }
296  static inline ChildIteratorType child_begin(NodeType *N) {
297    return N->begin();
298  }
299  static inline ChildIteratorType child_end(NodeType *N) {
300    return N->end();
301  }
302};
303
304} // End llvm namespace
305
306#endif
307