MemoryDependenceAnalysis.cpp revision 4012fdda13710d21b415a79475adc2bbb6628527
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/PredIteratorCache.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Target/TargetData.h"
27using namespace llvm;
28
29STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
30STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
31STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
32
33STATISTIC(NumCacheNonLocalPtr,
34          "Number of fully cached non-local ptr responses");
35STATISTIC(NumCacheDirtyNonLocalPtr,
36          "Number of cached, but dirty, non-local ptr responses");
37STATISTIC(NumUncacheNonLocalPtr,
38          "Number of uncached non-local ptr responses");
39STATISTIC(NumCacheCompleteNonLocalPtr,
40          "Number of block queries that were completely cached");
41
42char MemoryDependenceAnalysis::ID = 0;
43
44// Register this pass...
45static RegisterPass<MemoryDependenceAnalysis> X("memdep",
46                                     "Memory Dependence Analysis", false, true);
47
48MemoryDependenceAnalysis::MemoryDependenceAnalysis()
49: FunctionPass(&ID), PredCache(0) {
50}
51MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
52}
53
54/// Clean up memory in between runs
55void MemoryDependenceAnalysis::releaseMemory() {
56  LocalDeps.clear();
57  NonLocalDeps.clear();
58  NonLocalPointerDeps.clear();
59  ReverseLocalDeps.clear();
60  ReverseNonLocalDeps.clear();
61  ReverseNonLocalPtrDeps.clear();
62  PredCache->clear();
63}
64
65
66
67/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
68///
69void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
70  AU.setPreservesAll();
71  AU.addRequiredTransitive<AliasAnalysis>();
72  AU.addRequiredTransitive<TargetData>();
73}
74
75bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76  AA = &getAnalysis<AliasAnalysis>();
77  TD = &getAnalysis<TargetData>();
78  if (PredCache == 0)
79    PredCache.reset(new PredIteratorCache());
80  return false;
81}
82
83/// RemoveFromReverseMap - This is a helper function that removes Val from
84/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
85template <typename KeyTy>
86static void RemoveFromReverseMap(DenseMap<Instruction*,
87                                 SmallPtrSet<KeyTy*, 4> > &ReverseMap,
88                                 Instruction *Inst, KeyTy *Val) {
89  typename DenseMap<Instruction*, SmallPtrSet<KeyTy*, 4> >::iterator
90  InstIt = ReverseMap.find(Inst);
91  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
92  bool Found = InstIt->second.erase(Val);
93  assert(Found && "Invalid reverse map!"); Found=Found;
94  if (InstIt->second.empty())
95    ReverseMap.erase(InstIt);
96}
97
98
99/// getCallSiteDependencyFrom - Private helper for finding the local
100/// dependencies of a call site.
101MemDepResult MemoryDependenceAnalysis::
102getCallSiteDependencyFrom(CallSite CS, BasicBlock::iterator ScanIt,
103                          BasicBlock *BB) {
104  // Walk backwards through the block, looking for dependencies
105  while (ScanIt != BB->begin()) {
106    Instruction *Inst = --ScanIt;
107
108    // If this inst is a memory op, get the pointer it accessed
109    Value *Pointer = 0;
110    uint64_t PointerSize = 0;
111    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
112      Pointer = S->getPointerOperand();
113      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
114    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
115      Pointer = V->getOperand(0);
116      PointerSize = TD->getTypeStoreSize(V->getType());
117    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
118      Pointer = F->getPointerOperand();
119
120      // FreeInsts erase the entire structure
121      PointerSize = ~0ULL;
122    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
123      CallSite InstCS = CallSite::get(Inst);
124      // If these two calls do not interfere, look past it.
125      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
126        continue;
127
128      // FIXME: If this is a ref/ref result, we should ignore it!
129      //  X = strlen(P);
130      //  Y = strlen(Q);
131      //  Z = strlen(P);  // Z = X
132
133      // If they interfere, we generally return clobber.  However, if they are
134      // calls to the same read-only functions we return Def.
135      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
136          CS.getCalledFunction() != InstCS.getCalledFunction())
137        return MemDepResult::getClobber(Inst);
138      return MemDepResult::getDef(Inst);
139    } else {
140      // Non-memory instruction.
141      continue;
142    }
143
144    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
145      return MemDepResult::getClobber(Inst);
146  }
147
148  // No dependence found.  If this is the entry block of the function, it is a
149  // clobber, otherwise it is non-local.
150  if (BB != &BB->getParent()->getEntryBlock())
151    return MemDepResult::getNonLocal();
152  return MemDepResult::getClobber(ScanIt);
153}
154
155/// getPointerDependencyFrom - Return the instruction on which a memory
156/// location depends.  If isLoad is true, this routine ignore may-aliases with
157/// read-only operations.
158MemDepResult MemoryDependenceAnalysis::
159getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
160                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
161
162  // Walk backwards through the basic block, looking for dependencies.
163  while (ScanIt != BB->begin()) {
164    Instruction *Inst = --ScanIt;
165
166    // Values depend on loads if the pointers are must aliased.  This means that
167    // a load depends on another must aliased load from the same value.
168    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
169      Value *Pointer = LI->getPointerOperand();
170      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
171
172      // If we found a pointer, check if it could be the same as our pointer.
173      AliasAnalysis::AliasResult R =
174        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
175      if (R == AliasAnalysis::NoAlias)
176        continue;
177
178      // May-alias loads don't depend on each other without a dependence.
179      if (isLoad && R == AliasAnalysis::MayAlias)
180        continue;
181      // Stores depend on may and must aliased loads, loads depend on must-alias
182      // loads.
183      return MemDepResult::getDef(Inst);
184    }
185
186    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
187      Value *Pointer = SI->getPointerOperand();
188      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
189
190      // If we found a pointer, check if it could be the same as our pointer.
191      AliasAnalysis::AliasResult R =
192        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
193
194      if (R == AliasAnalysis::NoAlias)
195        continue;
196      if (R == AliasAnalysis::MayAlias)
197        return MemDepResult::getClobber(Inst);
198      return MemDepResult::getDef(Inst);
199    }
200
201    // If this is an allocation, and if we know that the accessed pointer is to
202    // the allocation, return Def.  This means that there is no dependence and
203    // the access can be optimized based on that.  For example, a load could
204    // turn into undef.
205    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
206      Value *AccessPtr = MemPtr->getUnderlyingObject();
207
208      if (AccessPtr == AI ||
209          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
210        return MemDepResult::getDef(AI);
211      continue;
212    }
213
214    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
215    // FIXME: If this is a load, we should ignore readonly calls!
216    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
217      continue;
218
219    // Otherwise, there is a dependence.
220    return MemDepResult::getClobber(Inst);
221  }
222
223  // No dependence found.  If this is the entry block of the function, it is a
224  // clobber, otherwise it is non-local.
225  if (BB != &BB->getParent()->getEntryBlock())
226    return MemDepResult::getNonLocal();
227  return MemDepResult::getClobber(ScanIt);
228}
229
230/// getDependency - Return the instruction on which a memory operation
231/// depends.
232MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
233  Instruction *ScanPos = QueryInst;
234
235  // Check for a cached result
236  MemDepResult &LocalCache = LocalDeps[QueryInst];
237
238  // If the cached entry is non-dirty, just return it.  Note that this depends
239  // on MemDepResult's default constructing to 'dirty'.
240  if (!LocalCache.isDirty())
241    return LocalCache;
242
243  // Otherwise, if we have a dirty entry, we know we can start the scan at that
244  // instruction, which may save us some work.
245  if (Instruction *Inst = LocalCache.getInst()) {
246    ScanPos = Inst;
247
248    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
249  }
250
251  BasicBlock *QueryParent = QueryInst->getParent();
252
253  Value *MemPtr = 0;
254  uint64_t MemSize = 0;
255
256  // Do the scan.
257  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
258    // No dependence found.  If this is the entry block of the function, it is a
259    // clobber, otherwise it is non-local.
260    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
261      LocalCache = MemDepResult::getNonLocal();
262    else
263      LocalCache = MemDepResult::getClobber(QueryInst);
264  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
265    // If this is a volatile store, don't mess around with it.  Just return the
266    // previous instruction as a clobber.
267    if (SI->isVolatile())
268      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
269    else {
270      MemPtr = SI->getPointerOperand();
271      MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
272    }
273  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
274    // If this is a volatile load, don't mess around with it.  Just return the
275    // previous instruction as a clobber.
276    if (LI->isVolatile())
277      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
278    else {
279      MemPtr = LI->getPointerOperand();
280      MemSize = TD->getTypeStoreSize(LI->getType());
281    }
282  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
283    LocalCache = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
284                                           QueryParent);
285  } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
286    MemPtr = FI->getPointerOperand();
287    // FreeInsts erase the entire structure, not just a field.
288    MemSize = ~0UL;
289  } else {
290    // Non-memory instruction.
291    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
292  }
293
294  // If we need to do a pointer scan, make it happen.
295  if (MemPtr)
296    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
297                                          isa<LoadInst>(QueryInst),
298                                          ScanPos, QueryParent);
299
300  // Remember the result!
301  if (Instruction *I = LocalCache.getInst())
302    ReverseLocalDeps[I].insert(QueryInst);
303
304  return LocalCache;
305}
306
307/// getNonLocalDependency - Perform a full dependency query for the
308/// specified instruction, returning the set of blocks that the value is
309/// potentially live across.  The returned set of results will include a
310/// "NonLocal" result for all blocks where the value is live across.
311///
312/// This method assumes the instruction returns a "nonlocal" dependency
313/// within its own block.
314///
315const MemoryDependenceAnalysis::NonLocalDepInfo &
316MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
317  // FIXME: Make this only be for callsites in the future.
318  assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst) ||
319         isa<LoadInst>(QueryInst) || isa<StoreInst>(QueryInst));
320  assert(getDependency(QueryInst).isNonLocal() &&
321     "getNonLocalDependency should only be used on insts with non-local deps!");
322  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
323  NonLocalDepInfo &Cache = CacheP.first;
324
325  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
326  /// the cached case, this can happen due to instructions being deleted etc. In
327  /// the uncached case, this starts out as the set of predecessors we care
328  /// about.
329  SmallVector<BasicBlock*, 32> DirtyBlocks;
330
331  if (!Cache.empty()) {
332    // Okay, we have a cache entry.  If we know it is not dirty, just return it
333    // with no computation.
334    if (!CacheP.second) {
335      NumCacheNonLocal++;
336      return Cache;
337    }
338
339    // If we already have a partially computed set of results, scan them to
340    // determine what is dirty, seeding our initial DirtyBlocks worklist.
341    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
342       I != E; ++I)
343      if (I->second.isDirty())
344        DirtyBlocks.push_back(I->first);
345
346    // Sort the cache so that we can do fast binary search lookups below.
347    std::sort(Cache.begin(), Cache.end());
348
349    ++NumCacheDirtyNonLocal;
350    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
351    //     << Cache.size() << " cached: " << *QueryInst;
352  } else {
353    // Seed DirtyBlocks with each of the preds of QueryInst's block.
354    BasicBlock *QueryBB = QueryInst->getParent();
355    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
356    NumUncacheNonLocal++;
357  }
358
359  // Visited checked first, vector in sorted order.
360  SmallPtrSet<BasicBlock*, 64> Visited;
361
362  unsigned NumSortedEntries = Cache.size();
363
364  // Iterate while we still have blocks to update.
365  while (!DirtyBlocks.empty()) {
366    BasicBlock *DirtyBB = DirtyBlocks.back();
367    DirtyBlocks.pop_back();
368
369    // Already processed this block?
370    if (!Visited.insert(DirtyBB))
371      continue;
372
373    // Do a binary search to see if we already have an entry for this block in
374    // the cache set.  If so, find it.
375    NonLocalDepInfo::iterator Entry =
376      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
377                       std::make_pair(DirtyBB, MemDepResult()));
378    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
379      --Entry;
380
381    MemDepResult *ExistingResult = 0;
382    if (Entry != Cache.begin()+NumSortedEntries &&
383        Entry->first == DirtyBB) {
384      // If we already have an entry, and if it isn't already dirty, the block
385      // is done.
386      if (!Entry->second.isDirty())
387        continue;
388
389      // Otherwise, remember this slot so we can update the value.
390      ExistingResult = &Entry->second;
391    }
392
393    // If the dirty entry has a pointer, start scanning from it so we don't have
394    // to rescan the entire block.
395    BasicBlock::iterator ScanPos = DirtyBB->end();
396    if (ExistingResult) {
397      if (Instruction *Inst = ExistingResult->getInst()) {
398        ScanPos = Inst;
399        // We're removing QueryInst's use of Inst.
400        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, QueryInst);
401      }
402    }
403
404    // Find out if this block has a local dependency for QueryInst.
405    MemDepResult Dep;
406
407    Value *MemPtr = 0;
408    uint64_t MemSize = 0;
409
410    if (ScanPos == DirtyBB->begin()) {
411      // No dependence found.  If this is the entry block of the function, it is a
412      // clobber, otherwise it is non-local.
413      if (DirtyBB != &DirtyBB->getParent()->getEntryBlock())
414        Dep = MemDepResult::getNonLocal();
415      else
416        Dep = MemDepResult::getClobber(ScanPos);
417    } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
418      // If this is a volatile store, don't mess around with it.  Just return the
419      // previous instruction as a clobber.
420      if (SI->isVolatile())
421        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
422      else {
423        MemPtr = SI->getPointerOperand();
424        MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
425      }
426    } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
427      // If this is a volatile load, don't mess around with it.  Just return the
428      // previous instruction as a clobber.
429      if (LI->isVolatile())
430        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
431      else {
432        MemPtr = LI->getPointerOperand();
433        MemSize = TD->getTypeStoreSize(LI->getType());
434      }
435    } else {
436      assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst));
437      Dep = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
438                                      DirtyBB);
439    }
440
441    if (MemPtr)
442      Dep = getPointerDependencyFrom(MemPtr, MemSize, isa<LoadInst>(QueryInst),
443                                     ScanPos, DirtyBB);
444
445    // If we had a dirty entry for the block, update it.  Otherwise, just add
446    // a new entry.
447    if (ExistingResult)
448      *ExistingResult = Dep;
449    else
450      Cache.push_back(std::make_pair(DirtyBB, Dep));
451
452    // If the block has a dependency (i.e. it isn't completely transparent to
453    // the value), remember the association!
454    if (!Dep.isNonLocal()) {
455      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
456      // update this when we remove instructions.
457      if (Instruction *Inst = Dep.getInst())
458        ReverseNonLocalDeps[Inst].insert(QueryInst);
459    } else {
460
461      // If the block *is* completely transparent to the load, we need to check
462      // the predecessors of this block.  Add them to our worklist.
463      DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
464    }
465  }
466
467  return Cache;
468}
469
470/// getNonLocalPointerDependency - Perform a full dependency query for an
471/// access to the specified (non-volatile) memory location, returning the
472/// set of instructions that either define or clobber the value.
473///
474/// This method assumes the pointer has a "NonLocal" dependency within its
475/// own block.
476///
477void MemoryDependenceAnalysis::
478getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
479                             SmallVectorImpl<NonLocalDepEntry> &Result) {
480  assert(isa<PointerType>(Pointer->getType()) &&
481         "Can't get pointer deps of a non-pointer!");
482  Result.clear();
483
484  // We know that the pointer value is live into FromBB find the def/clobbers
485  // from presecessors.
486  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
487  uint64_t PointeeSize = TD->getTypeStoreSize(EltTy);
488
489  // While we have blocks to analyze, get their values.
490  SmallPtrSet<BasicBlock*, 64> Visited;
491
492  for (BasicBlock **PI = PredCache->GetPreds(FromBB); *PI; ++PI) {
493    // TODO: PHI TRANSLATE.
494    getNonLocalPointerDepInternal(Pointer, PointeeSize, isLoad, *PI,
495                                  Result, Visited);
496  }
497}
498
499void MemoryDependenceAnalysis::
500getNonLocalPointerDepInternal(Value *Pointer, uint64_t PointeeSize,
501                              bool isLoad, BasicBlock *StartBB,
502                              SmallVectorImpl<NonLocalDepEntry> &Result,
503                              SmallPtrSet<BasicBlock*, 64> &Visited) {
504  // Look up the cached info for Pointer.
505  ValueIsLoadPair CacheKey(Pointer, isLoad);
506
507  std::pair<BasicBlock*, NonLocalDepInfo> &CacheInfo =
508    NonLocalPointerDeps[CacheKey];
509  NonLocalDepInfo *Cache = &CacheInfo.second;
510
511  // If we have valid cached information for exactly the block we are
512  // investigating, just return it with no recomputation.
513  if (CacheInfo.first == StartBB) {
514    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
515         I != E; ++I)
516      if (!I->second.isNonLocal())
517        Result.push_back(*I);
518    ++NumCacheCompleteNonLocalPtr;
519    return;
520  }
521
522  // Otherwise, either this is a new block, a block with an invalid cache
523  // pointer or one that we're about to invalidate by putting more info into it
524  // than its valid cache info.  If empty, the result will be valid cache info,
525  // otherwise it isn't.
526  CacheInfo.first = Cache->empty() ? StartBB : 0;
527
528  SmallVector<BasicBlock*, 32> Worklist;
529  Worklist.push_back(StartBB);
530
531  // Keep track of the entries that we know are sorted.  Previously cached
532  // entries will all be sorted.  The entries we add we only sort on demand (we
533  // don't insert every element into its sorted position).  We know that we
534  // won't get any reuse from currently inserted values, because we don't
535  // revisit blocks after we insert info for them.
536  unsigned NumSortedEntries = Cache->size();
537
538  while (!Worklist.empty()) {
539    BasicBlock *BB = Worklist.pop_back_val();
540
541    // Analyze the dependency of *Pointer in FromBB.  See if we already have
542    // been here.
543    if (!Visited.insert(BB))
544      continue;
545
546    // Get the dependency info for Pointer in BB.  If we have cached
547    // information, we will use it, otherwise we compute it.
548
549    // Do a binary search to see if we already have an entry for this block in
550    // the cache set.  If so, find it.
551    NonLocalDepInfo::iterator Entry =
552      std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
553                       std::make_pair(BB, MemDepResult()));
554    if (Entry != Cache->begin() && (&*Entry)[-1].first == BB)
555      --Entry;
556
557    MemDepResult *ExistingResult = 0;
558    if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
559      ExistingResult = &Entry->second;
560
561    // If we have a cached entry, and it is non-dirty, use it as the value for
562    // this dependency.
563    MemDepResult Dep;
564    if (ExistingResult && !ExistingResult->isDirty()) {
565      Dep = *ExistingResult;
566      ++NumCacheNonLocalPtr;
567    } else {
568      // Otherwise, we have to scan for the value.  If we have a dirty cache
569      // entry, start scanning from its position, otherwise we scan from the end
570      // of the block.
571      BasicBlock::iterator ScanPos = BB->end();
572      if (ExistingResult && ExistingResult->getInst()) {
573        assert(ExistingResult->getInst()->getParent() == BB &&
574               "Instruction invalidated?");
575        ++NumCacheDirtyNonLocalPtr;
576        ScanPos = ExistingResult->getInst();
577
578        // Eliminating the dirty entry from 'Cache', so update the reverse info.
579        RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos,
580                             CacheKey.getOpaqueValue());
581      } else {
582        ++NumUncacheNonLocalPtr;
583      }
584
585      // Scan the block for the dependency.
586      Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, ScanPos, BB);
587
588      // If we had a dirty entry for the block, update it.  Otherwise, just add
589      // a new entry.
590      if (ExistingResult)
591        *ExistingResult = Dep;
592      else
593        Cache->push_back(std::make_pair(BB, Dep));
594
595      // If the block has a dependency (i.e. it isn't completely transparent to
596      // the value), remember the reverse association because we just added it
597      // to Cache!
598      if (!Dep.isNonLocal()) {
599        // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
600        // update MemDep when we remove instructions.
601        Instruction *Inst = Dep.getInst();
602        assert(Inst && "Didn't depend on anything?");
603        ReverseNonLocalPtrDeps[Inst].insert(CacheKey.getOpaqueValue());
604      }
605    }
606
607    // If we got a Def or Clobber, add this to the list of results.
608    if (!Dep.isNonLocal()) {
609      Result.push_back(NonLocalDepEntry(BB, Dep));
610      continue;
611    }
612
613    // Otherwise, we have to process all the predecessors of this block to scan
614    // them as well.
615    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
616      // TODO: PHI TRANSLATE.
617      Worklist.push_back(*PI);
618    }
619  }
620
621  // If we computed new values, re-sort Cache.
622  if (NumSortedEntries != Cache->size())
623    std::sort(Cache->begin(), Cache->end());
624}
625
626/// RemoveCachedNonLocalPointerDependencies - If P exists in
627/// CachedNonLocalPointerInfo, remove it.
628void MemoryDependenceAnalysis::
629RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
630  CachedNonLocalPointerInfo::iterator It =
631    NonLocalPointerDeps.find(P);
632  if (It == NonLocalPointerDeps.end()) return;
633
634  // Remove all of the entries in the BB->val map.  This involves removing
635  // instructions from the reverse map.
636  NonLocalDepInfo &PInfo = It->second.second;
637
638  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
639    Instruction *Target = PInfo[i].second.getInst();
640    if (Target == 0) continue;  // Ignore non-local dep results.
641    assert(Target->getParent() == PInfo[i].first && Target != P.getPointer());
642
643    // Eliminating the dirty entry from 'Cache', so update the reverse info.
644    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P.getOpaqueValue());
645  }
646
647  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
648  NonLocalPointerDeps.erase(It);
649}
650
651
652/// removeInstruction - Remove an instruction from the dependence analysis,
653/// updating the dependence of instructions that previously depended on it.
654/// This method attempts to keep the cache coherent using the reverse map.
655void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
656  // Walk through the Non-local dependencies, removing this one as the value
657  // for any cached queries.
658  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
659  if (NLDI != NonLocalDeps.end()) {
660    NonLocalDepInfo &BlockMap = NLDI->second.first;
661    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
662         DI != DE; ++DI)
663      if (Instruction *Inst = DI->second.getInst())
664        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
665    NonLocalDeps.erase(NLDI);
666  }
667
668  // If we have a cached local dependence query for this instruction, remove it.
669  //
670  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
671  if (LocalDepEntry != LocalDeps.end()) {
672    // Remove us from DepInst's reverse set now that the local dep info is gone.
673    if (Instruction *Inst = LocalDepEntry->second.getInst())
674      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
675
676    // Remove this local dependency info.
677    LocalDeps.erase(LocalDepEntry);
678  }
679
680  // If we have any cached pointer dependencies on this instruction, remove
681  // them.  If the instruction has non-pointer type, then it can't be a pointer
682  // base.
683
684  // Remove it from both the load info and the store info.  The instruction
685  // can't be in either of these maps if it is non-pointer.
686  if (isa<PointerType>(RemInst->getType())) {
687    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
688    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
689  }
690
691  // Loop over all of the things that depend on the instruction we're removing.
692  //
693  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
694
695  // If we find RemInst as a clobber or Def in any of the maps for other values,
696  // we need to replace its entry with a dirty version of the instruction after
697  // it.  If RemInst is a terminator, we use a null dirty value.
698  //
699  // Using a dirty version of the instruction after RemInst saves having to scan
700  // the entire block to get to this point.
701  MemDepResult NewDirtyVal;
702  if (!RemInst->isTerminator())
703    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
704
705  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
706  if (ReverseDepIt != ReverseLocalDeps.end()) {
707    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
708    // RemInst can't be the terminator if it has local stuff depending on it.
709    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
710           "Nothing can locally depend on a terminator");
711
712    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
713         E = ReverseDeps.end(); I != E; ++I) {
714      Instruction *InstDependingOnRemInst = *I;
715      assert(InstDependingOnRemInst != RemInst &&
716             "Already removed our local dep info");
717
718      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
719
720      // Make sure to remember that new things depend on NewDepInst.
721      assert(NewDirtyVal.getInst() && "There is no way something else can have "
722             "a local dep on this if it is a terminator!");
723      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
724                                                InstDependingOnRemInst));
725    }
726
727    ReverseLocalDeps.erase(ReverseDepIt);
728
729    // Add new reverse deps after scanning the set, to avoid invalidating the
730    // 'ReverseDeps' reference.
731    while (!ReverseDepsToAdd.empty()) {
732      ReverseLocalDeps[ReverseDepsToAdd.back().first]
733        .insert(ReverseDepsToAdd.back().second);
734      ReverseDepsToAdd.pop_back();
735    }
736  }
737
738  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
739  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
740    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
741    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
742         I != E; ++I) {
743      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
744
745      PerInstNLInfo &INLD = NonLocalDeps[*I];
746      // The information is now dirty!
747      INLD.second = true;
748
749      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
750           DE = INLD.first.end(); DI != DE; ++DI) {
751        if (DI->second.getInst() != RemInst) continue;
752
753        // Convert to a dirty entry for the subsequent instruction.
754        DI->second = NewDirtyVal;
755
756        if (Instruction *NextI = NewDirtyVal.getInst())
757          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
758      }
759    }
760
761    ReverseNonLocalDeps.erase(ReverseDepIt);
762
763    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
764    while (!ReverseDepsToAdd.empty()) {
765      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
766        .insert(ReverseDepsToAdd.back().second);
767      ReverseDepsToAdd.pop_back();
768    }
769  }
770
771  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
772  // value in the NonLocalPointerDeps info.
773  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
774    ReverseNonLocalPtrDeps.find(RemInst);
775  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
776    SmallPtrSet<void*, 4> &Set = ReversePtrDepIt->second;
777    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
778
779    for (SmallPtrSet<void*, 4>::iterator I = Set.begin(), E = Set.end();
780         I != E; ++I) {
781      ValueIsLoadPair P;
782      P.setFromOpaqueValue(*I);
783      assert(P.getPointer() != RemInst &&
784             "Already removed NonLocalPointerDeps info for RemInst");
785
786      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
787
788      // The cache is not valid for any specific block anymore.
789      NonLocalPointerDeps[P].first = 0;
790
791      // Update any entries for RemInst to use the instruction after it.
792      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
793           DI != DE; ++DI) {
794        if (DI->second.getInst() != RemInst) continue;
795
796        // Convert to a dirty entry for the subsequent instruction.
797        DI->second = NewDirtyVal;
798
799        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
800          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
801      }
802    }
803
804    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
805
806    while (!ReversePtrDepsToAdd.empty()) {
807      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
808        .insert(ReversePtrDepsToAdd.back().second.getOpaqueValue());
809      ReversePtrDepsToAdd.pop_back();
810    }
811  }
812
813
814  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
815  AA->deleteValue(RemInst);
816  DEBUG(verifyRemoved(RemInst));
817}
818
819/// verifyRemoved - Verify that the specified instruction does not occur
820/// in our internal data structures.
821void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
822  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
823       E = LocalDeps.end(); I != E; ++I) {
824    assert(I->first != D && "Inst occurs in data structures");
825    assert(I->second.getInst() != D &&
826           "Inst occurs in data structures");
827  }
828
829  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
830       E = NonLocalPointerDeps.end(); I != E; ++I) {
831    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
832    const NonLocalDepInfo &Val = I->second.second;
833    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
834         II != E; ++II)
835      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
836  }
837
838  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
839       E = NonLocalDeps.end(); I != E; ++I) {
840    assert(I->first != D && "Inst occurs in data structures");
841    const PerInstNLInfo &INLD = I->second;
842    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
843         EE = INLD.first.end(); II  != EE; ++II)
844      assert(II->second.getInst() != D && "Inst occurs in data structures");
845  }
846
847  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
848       E = ReverseLocalDeps.end(); I != E; ++I) {
849    assert(I->first != D && "Inst occurs in data structures");
850    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
851         EE = I->second.end(); II != EE; ++II)
852      assert(*II != D && "Inst occurs in data structures");
853  }
854
855  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
856       E = ReverseNonLocalDeps.end();
857       I != E; ++I) {
858    assert(I->first != D && "Inst occurs in data structures");
859    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
860         EE = I->second.end(); II != EE; ++II)
861      assert(*II != D && "Inst occurs in data structures");
862  }
863
864  for (ReverseNonLocalPtrDepTy::const_iterator
865       I = ReverseNonLocalPtrDeps.begin(),
866       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
867    assert(I->first != D && "Inst occurs in rev NLPD map");
868
869    for (SmallPtrSet<void*, 4>::const_iterator II = I->second.begin(),
870         E = I->second.end(); II != E; ++II)
871      assert(*II != ValueIsLoadPair(D, false).getOpaqueValue() &&
872             *II != ValueIsLoadPair(D, true).getOpaqueValue() &&
873             "Inst occurs in ReverseNonLocalPtrDeps map");
874  }
875
876}
877