MemoryDependenceAnalysis.cpp revision 7b929dad59785f62a66f7c58615082f98441e95e
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/MallocHelper.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/PredIteratorCache.h"
27#include "llvm/Support/Debug.h"
28using namespace llvm;
29
30STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
31STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34STATISTIC(NumCacheNonLocalPtr,
35          "Number of fully cached non-local ptr responses");
36STATISTIC(NumCacheDirtyNonLocalPtr,
37          "Number of cached, but dirty, non-local ptr responses");
38STATISTIC(NumUncacheNonLocalPtr,
39          "Number of uncached non-local ptr responses");
40STATISTIC(NumCacheCompleteNonLocalPtr,
41          "Number of block queries that were completely cached");
42
43char MemoryDependenceAnalysis::ID = 0;
44
45// Register this pass...
46static RegisterPass<MemoryDependenceAnalysis> X("memdep",
47                                     "Memory Dependence Analysis", false, true);
48
49MemoryDependenceAnalysis::MemoryDependenceAnalysis()
50: FunctionPass(&ID), PredCache(0) {
51}
52MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
53}
54
55/// Clean up memory in between runs
56void MemoryDependenceAnalysis::releaseMemory() {
57  LocalDeps.clear();
58  NonLocalDeps.clear();
59  NonLocalPointerDeps.clear();
60  ReverseLocalDeps.clear();
61  ReverseNonLocalDeps.clear();
62  ReverseNonLocalPtrDeps.clear();
63  PredCache->clear();
64}
65
66
67
68/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
69///
70void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
71  AU.setPreservesAll();
72  AU.addRequiredTransitive<AliasAnalysis>();
73}
74
75bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76  AA = &getAnalysis<AliasAnalysis>();
77  if (PredCache == 0)
78    PredCache.reset(new PredIteratorCache());
79  return false;
80}
81
82/// RemoveFromReverseMap - This is a helper function that removes Val from
83/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
84template <typename KeyTy>
85static void RemoveFromReverseMap(DenseMap<Instruction*,
86                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
87                                 Instruction *Inst, KeyTy Val) {
88  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
89  InstIt = ReverseMap.find(Inst);
90  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
91  bool Found = InstIt->second.erase(Val);
92  assert(Found && "Invalid reverse map!"); Found=Found;
93  if (InstIt->second.empty())
94    ReverseMap.erase(InstIt);
95}
96
97
98/// getCallSiteDependencyFrom - Private helper for finding the local
99/// dependencies of a call site.
100MemDepResult MemoryDependenceAnalysis::
101getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
102                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
103  // Walk backwards through the block, looking for dependencies
104  while (ScanIt != BB->begin()) {
105    Instruction *Inst = --ScanIt;
106
107    // If this inst is a memory op, get the pointer it accessed
108    Value *Pointer = 0;
109    uint64_t PointerSize = 0;
110    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
111      Pointer = S->getPointerOperand();
112      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
113    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
114      Pointer = V->getOperand(0);
115      PointerSize = AA->getTypeStoreSize(V->getType());
116    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
117      Pointer = F->getPointerOperand();
118
119      // FreeInsts erase the entire structure
120      PointerSize = ~0ULL;
121    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
122      // Debug intrinsics don't cause dependences.
123      if (isa<DbgInfoIntrinsic>(Inst)) continue;
124      CallSite InstCS = CallSite::get(Inst);
125      // If these two calls do not interfere, look past it.
126      switch (AA->getModRefInfo(CS, InstCS)) {
127      case AliasAnalysis::NoModRef:
128        // If the two calls don't interact (e.g. InstCS is readnone) keep
129        // scanning.
130        continue;
131      case AliasAnalysis::Ref:
132        // If the two calls read the same memory locations and CS is a readonly
133        // function, then we have two cases: 1) the calls may not interfere with
134        // each other at all.  2) the calls may produce the same value.  In case
135        // #1 we want to ignore the values, in case #2, we want to return Inst
136        // as a Def dependence.  This allows us to CSE in cases like:
137        //   X = strlen(P);
138        //    memchr(...);
139        //   Y = strlen(P);  // Y = X
140        if (isReadOnlyCall) {
141          if (CS.getCalledFunction() != 0 &&
142              CS.getCalledFunction() == InstCS.getCalledFunction())
143            return MemDepResult::getDef(Inst);
144          // Ignore unrelated read/read call dependences.
145          continue;
146        }
147        // FALL THROUGH
148      default:
149        return MemDepResult::getClobber(Inst);
150      }
151    } else {
152      // Non-memory instruction.
153      continue;
154    }
155
156    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
157      return MemDepResult::getClobber(Inst);
158  }
159
160  // No dependence found.  If this is the entry block of the function, it is a
161  // clobber, otherwise it is non-local.
162  if (BB != &BB->getParent()->getEntryBlock())
163    return MemDepResult::getNonLocal();
164  return MemDepResult::getClobber(ScanIt);
165}
166
167/// getPointerDependencyFrom - Return the instruction on which a memory
168/// location depends.  If isLoad is true, this routine ignore may-aliases with
169/// read-only operations.
170MemDepResult MemoryDependenceAnalysis::
171getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
172                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
173
174  // Walk backwards through the basic block, looking for dependencies.
175  while (ScanIt != BB->begin()) {
176    Instruction *Inst = --ScanIt;
177
178    // Debug intrinsics don't cause dependences.
179    if (isa<DbgInfoIntrinsic>(Inst)) continue;
180
181    // Values depend on loads if the pointers are must aliased.  This means that
182    // a load depends on another must aliased load from the same value.
183    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
184      Value *Pointer = LI->getPointerOperand();
185      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
186
187      // If we found a pointer, check if it could be the same as our pointer.
188      AliasAnalysis::AliasResult R =
189        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
190      if (R == AliasAnalysis::NoAlias)
191        continue;
192
193      // May-alias loads don't depend on each other without a dependence.
194      if (isLoad && R == AliasAnalysis::MayAlias)
195        continue;
196      // Stores depend on may and must aliased loads, loads depend on must-alias
197      // loads.
198      return MemDepResult::getDef(Inst);
199    }
200
201    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
202      // If alias analysis can tell that this store is guaranteed to not modify
203      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
204      // the query pointer points to constant memory etc.
205      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
206        continue;
207
208      // Ok, this store might clobber the query pointer.  Check to see if it is
209      // a must alias: in this case, we want to return this as a def.
210      Value *Pointer = SI->getPointerOperand();
211      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
212
213      // If we found a pointer, check if it could be the same as our pointer.
214      AliasAnalysis::AliasResult R =
215        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
216
217      if (R == AliasAnalysis::NoAlias)
218        continue;
219      if (R == AliasAnalysis::MayAlias)
220        return MemDepResult::getClobber(Inst);
221      return MemDepResult::getDef(Inst);
222    }
223
224    // If this is an allocation, and if we know that the accessed pointer is to
225    // the allocation, return Def.  This means that there is no dependence and
226    // the access can be optimized based on that.  For example, a load could
227    // turn into undef.
228    // Note: Only determine this to be a malloc if Inst is the malloc call, not
229    // a subsequent bitcast of the malloc call result.  There can be stores to
230    // the malloced memory between the malloc call and its bitcast uses, and we
231    // need to continue scanning until the malloc call.
232    if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
233      Value *AccessPtr = MemPtr->getUnderlyingObject();
234
235      if (AccessPtr == Inst ||
236          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
237        return MemDepResult::getDef(Inst);
238      continue;
239    }
240
241    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
242    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
243    case AliasAnalysis::NoModRef:
244      // If the call has no effect on the queried pointer, just ignore it.
245      continue;
246    case AliasAnalysis::Ref:
247      // If the call is known to never store to the pointer, and if this is a
248      // load query, we can safely ignore it (scan past it).
249      if (isLoad)
250        continue;
251      // FALL THROUGH.
252    default:
253      // Otherwise, there is a potential dependence.  Return a clobber.
254      return MemDepResult::getClobber(Inst);
255    }
256  }
257
258  // No dependence found.  If this is the entry block of the function, it is a
259  // clobber, otherwise it is non-local.
260  if (BB != &BB->getParent()->getEntryBlock())
261    return MemDepResult::getNonLocal();
262  return MemDepResult::getClobber(ScanIt);
263}
264
265/// getDependency - Return the instruction on which a memory operation
266/// depends.
267MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
268  Instruction *ScanPos = QueryInst;
269
270  // Check for a cached result
271  MemDepResult &LocalCache = LocalDeps[QueryInst];
272
273  // If the cached entry is non-dirty, just return it.  Note that this depends
274  // on MemDepResult's default constructing to 'dirty'.
275  if (!LocalCache.isDirty())
276    return LocalCache;
277
278  // Otherwise, if we have a dirty entry, we know we can start the scan at that
279  // instruction, which may save us some work.
280  if (Instruction *Inst = LocalCache.getInst()) {
281    ScanPos = Inst;
282
283    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
284  }
285
286  BasicBlock *QueryParent = QueryInst->getParent();
287
288  Value *MemPtr = 0;
289  uint64_t MemSize = 0;
290
291  // Do the scan.
292  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
293    // No dependence found.  If this is the entry block of the function, it is a
294    // clobber, otherwise it is non-local.
295    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
296      LocalCache = MemDepResult::getNonLocal();
297    else
298      LocalCache = MemDepResult::getClobber(QueryInst);
299  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
300    // If this is a volatile store, don't mess around with it.  Just return the
301    // previous instruction as a clobber.
302    if (SI->isVolatile())
303      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
304    else {
305      MemPtr = SI->getPointerOperand();
306      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
307    }
308  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
309    // If this is a volatile load, don't mess around with it.  Just return the
310    // previous instruction as a clobber.
311    if (LI->isVolatile())
312      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
313    else {
314      MemPtr = LI->getPointerOperand();
315      MemSize = AA->getTypeStoreSize(LI->getType());
316    }
317  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
318    CallSite QueryCS = CallSite::get(QueryInst);
319    bool isReadOnly = AA->onlyReadsMemory(QueryCS);
320    LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
321                                           QueryParent);
322  } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
323    MemPtr = FI->getPointerOperand();
324    // FreeInsts erase the entire structure, not just a field.
325    MemSize = ~0UL;
326  } else {
327    // Non-memory instruction.
328    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
329  }
330
331  // If we need to do a pointer scan, make it happen.
332  if (MemPtr)
333    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
334                                          isa<LoadInst>(QueryInst),
335                                          ScanPos, QueryParent);
336
337  // Remember the result!
338  if (Instruction *I = LocalCache.getInst())
339    ReverseLocalDeps[I].insert(QueryInst);
340
341  return LocalCache;
342}
343
344#ifndef NDEBUG
345/// AssertSorted - This method is used when -debug is specified to verify that
346/// cache arrays are properly kept sorted.
347static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
348                         int Count = -1) {
349  if (Count == -1) Count = Cache.size();
350  if (Count == 0) return;
351
352  for (unsigned i = 1; i != unsigned(Count); ++i)
353    assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
354}
355#endif
356
357/// getNonLocalCallDependency - Perform a full dependency query for the
358/// specified call, returning the set of blocks that the value is
359/// potentially live across.  The returned set of results will include a
360/// "NonLocal" result for all blocks where the value is live across.
361///
362/// This method assumes the instruction returns a "NonLocal" dependency
363/// within its own block.
364///
365/// This returns a reference to an internal data structure that may be
366/// invalidated on the next non-local query or when an instruction is
367/// removed.  Clients must copy this data if they want it around longer than
368/// that.
369const MemoryDependenceAnalysis::NonLocalDepInfo &
370MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
371  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
372 "getNonLocalCallDependency should only be used on calls with non-local deps!");
373  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
374  NonLocalDepInfo &Cache = CacheP.first;
375
376  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
377  /// the cached case, this can happen due to instructions being deleted etc. In
378  /// the uncached case, this starts out as the set of predecessors we care
379  /// about.
380  SmallVector<BasicBlock*, 32> DirtyBlocks;
381
382  if (!Cache.empty()) {
383    // Okay, we have a cache entry.  If we know it is not dirty, just return it
384    // with no computation.
385    if (!CacheP.second) {
386      NumCacheNonLocal++;
387      return Cache;
388    }
389
390    // If we already have a partially computed set of results, scan them to
391    // determine what is dirty, seeding our initial DirtyBlocks worklist.
392    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
393       I != E; ++I)
394      if (I->second.isDirty())
395        DirtyBlocks.push_back(I->first);
396
397    // Sort the cache so that we can do fast binary search lookups below.
398    std::sort(Cache.begin(), Cache.end());
399
400    ++NumCacheDirtyNonLocal;
401    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
402    //     << Cache.size() << " cached: " << *QueryInst;
403  } else {
404    // Seed DirtyBlocks with each of the preds of QueryInst's block.
405    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
406    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
407      DirtyBlocks.push_back(*PI);
408    NumUncacheNonLocal++;
409  }
410
411  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
412  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
413
414  SmallPtrSet<BasicBlock*, 64> Visited;
415
416  unsigned NumSortedEntries = Cache.size();
417  DEBUG(AssertSorted(Cache));
418
419  // Iterate while we still have blocks to update.
420  while (!DirtyBlocks.empty()) {
421    BasicBlock *DirtyBB = DirtyBlocks.back();
422    DirtyBlocks.pop_back();
423
424    // Already processed this block?
425    if (!Visited.insert(DirtyBB))
426      continue;
427
428    // Do a binary search to see if we already have an entry for this block in
429    // the cache set.  If so, find it.
430    DEBUG(AssertSorted(Cache, NumSortedEntries));
431    NonLocalDepInfo::iterator Entry =
432      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
433                       std::make_pair(DirtyBB, MemDepResult()));
434    if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
435      --Entry;
436
437    MemDepResult *ExistingResult = 0;
438    if (Entry != Cache.begin()+NumSortedEntries &&
439        Entry->first == DirtyBB) {
440      // If we already have an entry, and if it isn't already dirty, the block
441      // is done.
442      if (!Entry->second.isDirty())
443        continue;
444
445      // Otherwise, remember this slot so we can update the value.
446      ExistingResult = &Entry->second;
447    }
448
449    // If the dirty entry has a pointer, start scanning from it so we don't have
450    // to rescan the entire block.
451    BasicBlock::iterator ScanPos = DirtyBB->end();
452    if (ExistingResult) {
453      if (Instruction *Inst = ExistingResult->getInst()) {
454        ScanPos = Inst;
455        // We're removing QueryInst's use of Inst.
456        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
457                             QueryCS.getInstruction());
458      }
459    }
460
461    // Find out if this block has a local dependency for QueryInst.
462    MemDepResult Dep;
463
464    if (ScanPos != DirtyBB->begin()) {
465      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
466    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
467      // No dependence found.  If this is the entry block of the function, it is
468      // a clobber, otherwise it is non-local.
469      Dep = MemDepResult::getNonLocal();
470    } else {
471      Dep = MemDepResult::getClobber(ScanPos);
472    }
473
474    // If we had a dirty entry for the block, update it.  Otherwise, just add
475    // a new entry.
476    if (ExistingResult)
477      *ExistingResult = Dep;
478    else
479      Cache.push_back(std::make_pair(DirtyBB, Dep));
480
481    // If the block has a dependency (i.e. it isn't completely transparent to
482    // the value), remember the association!
483    if (!Dep.isNonLocal()) {
484      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
485      // update this when we remove instructions.
486      if (Instruction *Inst = Dep.getInst())
487        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
488    } else {
489
490      // If the block *is* completely transparent to the load, we need to check
491      // the predecessors of this block.  Add them to our worklist.
492      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
493        DirtyBlocks.push_back(*PI);
494    }
495  }
496
497  return Cache;
498}
499
500/// getNonLocalPointerDependency - Perform a full dependency query for an
501/// access to the specified (non-volatile) memory location, returning the
502/// set of instructions that either define or clobber the value.
503///
504/// This method assumes the pointer has a "NonLocal" dependency within its
505/// own block.
506///
507void MemoryDependenceAnalysis::
508getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
509                             SmallVectorImpl<NonLocalDepEntry> &Result) {
510  assert(isa<PointerType>(Pointer->getType()) &&
511         "Can't get pointer deps of a non-pointer!");
512  Result.clear();
513
514  // We know that the pointer value is live into FromBB find the def/clobbers
515  // from presecessors.
516  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
517  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
518
519  // This is the set of blocks we've inspected, and the pointer we consider in
520  // each block.  Because of critical edges, we currently bail out if querying
521  // a block with multiple different pointers.  This can happen during PHI
522  // translation.
523  DenseMap<BasicBlock*, Value*> Visited;
524  if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
525                                   Result, Visited, true))
526    return;
527  Result.clear();
528  Result.push_back(std::make_pair(FromBB,
529                                  MemDepResult::getClobber(FromBB->begin())));
530}
531
532/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
533/// Pointer/PointeeSize using either cached information in Cache or by doing a
534/// lookup (which may use dirty cache info if available).  If we do a lookup,
535/// add the result to the cache.
536MemDepResult MemoryDependenceAnalysis::
537GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
538                        bool isLoad, BasicBlock *BB,
539                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
540
541  // Do a binary search to see if we already have an entry for this block in
542  // the cache set.  If so, find it.
543  NonLocalDepInfo::iterator Entry =
544    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
545                     std::make_pair(BB, MemDepResult()));
546  if (Entry != Cache->begin() && prior(Entry)->first == BB)
547    --Entry;
548
549  MemDepResult *ExistingResult = 0;
550  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
551    ExistingResult = &Entry->second;
552
553  // If we have a cached entry, and it is non-dirty, use it as the value for
554  // this dependency.
555  if (ExistingResult && !ExistingResult->isDirty()) {
556    ++NumCacheNonLocalPtr;
557    return *ExistingResult;
558  }
559
560  // Otherwise, we have to scan for the value.  If we have a dirty cache
561  // entry, start scanning from its position, otherwise we scan from the end
562  // of the block.
563  BasicBlock::iterator ScanPos = BB->end();
564  if (ExistingResult && ExistingResult->getInst()) {
565    assert(ExistingResult->getInst()->getParent() == BB &&
566           "Instruction invalidated?");
567    ++NumCacheDirtyNonLocalPtr;
568    ScanPos = ExistingResult->getInst();
569
570    // Eliminating the dirty entry from 'Cache', so update the reverse info.
571    ValueIsLoadPair CacheKey(Pointer, isLoad);
572    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
573  } else {
574    ++NumUncacheNonLocalPtr;
575  }
576
577  // Scan the block for the dependency.
578  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
579                                              ScanPos, BB);
580
581  // If we had a dirty entry for the block, update it.  Otherwise, just add
582  // a new entry.
583  if (ExistingResult)
584    *ExistingResult = Dep;
585  else
586    Cache->push_back(std::make_pair(BB, Dep));
587
588  // If the block has a dependency (i.e. it isn't completely transparent to
589  // the value), remember the reverse association because we just added it
590  // to Cache!
591  if (Dep.isNonLocal())
592    return Dep;
593
594  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
595  // update MemDep when we remove instructions.
596  Instruction *Inst = Dep.getInst();
597  assert(Inst && "Didn't depend on anything?");
598  ValueIsLoadPair CacheKey(Pointer, isLoad);
599  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
600  return Dep;
601}
602
603/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
604/// number of elements in the array that are already properly ordered.  This is
605/// optimized for the case when only a few entries are added.
606static void
607SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
608                         unsigned NumSortedEntries) {
609  switch (Cache.size() - NumSortedEntries) {
610  case 0:
611    // done, no new entries.
612    break;
613  case 2: {
614    // Two new entries, insert the last one into place.
615    MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
616    Cache.pop_back();
617    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
618      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
619    Cache.insert(Entry, Val);
620    // FALL THROUGH.
621  }
622  case 1:
623    // One new entry, Just insert the new value at the appropriate position.
624    if (Cache.size() != 1) {
625      MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
626      Cache.pop_back();
627      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
628        std::upper_bound(Cache.begin(), Cache.end(), Val);
629      Cache.insert(Entry, Val);
630    }
631    break;
632  default:
633    // Added many values, do a full scale sort.
634    std::sort(Cache.begin(), Cache.end());
635    break;
636  }
637}
638
639
640/// getNonLocalPointerDepFromBB - Perform a dependency query based on
641/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
642/// results to the results vector and keep track of which blocks are visited in
643/// 'Visited'.
644///
645/// This has special behavior for the first block queries (when SkipFirstBlock
646/// is true).  In this special case, it ignores the contents of the specified
647/// block and starts returning dependence info for its predecessors.
648///
649/// This function returns false on success, or true to indicate that it could
650/// not compute dependence information for some reason.  This should be treated
651/// as a clobber dependence on the first instruction in the predecessor block.
652bool MemoryDependenceAnalysis::
653getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
654                            bool isLoad, BasicBlock *StartBB,
655                            SmallVectorImpl<NonLocalDepEntry> &Result,
656                            DenseMap<BasicBlock*, Value*> &Visited,
657                            bool SkipFirstBlock) {
658
659  // Look up the cached info for Pointer.
660  ValueIsLoadPair CacheKey(Pointer, isLoad);
661
662  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
663    &NonLocalPointerDeps[CacheKey];
664  NonLocalDepInfo *Cache = &CacheInfo->second;
665
666  // If we have valid cached information for exactly the block we are
667  // investigating, just return it with no recomputation.
668  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
669    // We have a fully cached result for this query then we can just return the
670    // cached results and populate the visited set.  However, we have to verify
671    // that we don't already have conflicting results for these blocks.  Check
672    // to ensure that if a block in the results set is in the visited set that
673    // it was for the same pointer query.
674    if (!Visited.empty()) {
675      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
676           I != E; ++I) {
677        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
678        if (VI == Visited.end() || VI->second == Pointer) continue;
679
680        // We have a pointer mismatch in a block.  Just return clobber, saying
681        // that something was clobbered in this result.  We could also do a
682        // non-fully cached query, but there is little point in doing this.
683        return true;
684      }
685    }
686
687    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
688         I != E; ++I) {
689      Visited.insert(std::make_pair(I->first, Pointer));
690      if (!I->second.isNonLocal())
691        Result.push_back(*I);
692    }
693    ++NumCacheCompleteNonLocalPtr;
694    return false;
695  }
696
697  // Otherwise, either this is a new block, a block with an invalid cache
698  // pointer or one that we're about to invalidate by putting more info into it
699  // than its valid cache info.  If empty, the result will be valid cache info,
700  // otherwise it isn't.
701  if (Cache->empty())
702    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
703  else
704    CacheInfo->first = BBSkipFirstBlockPair();
705
706  SmallVector<BasicBlock*, 32> Worklist;
707  Worklist.push_back(StartBB);
708
709  // Keep track of the entries that we know are sorted.  Previously cached
710  // entries will all be sorted.  The entries we add we only sort on demand (we
711  // don't insert every element into its sorted position).  We know that we
712  // won't get any reuse from currently inserted values, because we don't
713  // revisit blocks after we insert info for them.
714  unsigned NumSortedEntries = Cache->size();
715  DEBUG(AssertSorted(*Cache));
716
717  while (!Worklist.empty()) {
718    BasicBlock *BB = Worklist.pop_back_val();
719
720    // Skip the first block if we have it.
721    if (!SkipFirstBlock) {
722      // Analyze the dependency of *Pointer in FromBB.  See if we already have
723      // been here.
724      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
725
726      // Get the dependency info for Pointer in BB.  If we have cached
727      // information, we will use it, otherwise we compute it.
728      DEBUG(AssertSorted(*Cache, NumSortedEntries));
729      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
730                                                 BB, Cache, NumSortedEntries);
731
732      // If we got a Def or Clobber, add this to the list of results.
733      if (!Dep.isNonLocal()) {
734        Result.push_back(NonLocalDepEntry(BB, Dep));
735        continue;
736      }
737    }
738
739    // If 'Pointer' is an instruction defined in this block, then we need to do
740    // phi translation to change it into a value live in the predecessor block.
741    // If phi translation fails, then we can't continue dependence analysis.
742    Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
743    bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
744
745    // If no PHI translation is needed, just add all the predecessors of this
746    // block to scan them as well.
747    if (!NeedsPHITranslation) {
748      SkipFirstBlock = false;
749      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
750        // Verify that we haven't looked at this block yet.
751        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
752          InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
753        if (InsertRes.second) {
754          // First time we've looked at *PI.
755          Worklist.push_back(*PI);
756          continue;
757        }
758
759        // If we have seen this block before, but it was with a different
760        // pointer then we have a phi translation failure and we have to treat
761        // this as a clobber.
762        if (InsertRes.first->second != Pointer)
763          goto PredTranslationFailure;
764      }
765      continue;
766    }
767
768    // If we do need to do phi translation, then there are a bunch of different
769    // cases, because we have to find a Value* live in the predecessor block. We
770    // know that PtrInst is defined in this block at least.
771
772    // We may have added values to the cache list before this PHI translation.
773    // If so, we haven't done anything to ensure that the cache remains sorted.
774    // Sort it now (if needed) so that recursive invocations of
775    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
776    // value will only see properly sorted cache arrays.
777    if (Cache && NumSortedEntries != Cache->size()) {
778      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
779      NumSortedEntries = Cache->size();
780    }
781
782    // If this is directly a PHI node, just use the incoming values for each
783    // pred as the phi translated version.
784    if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
785      Cache = 0;
786
787      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
788        BasicBlock *Pred = *PI;
789        Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
790
791        // Check to see if we have already visited this pred block with another
792        // pointer.  If so, we can't do this lookup.  This failure can occur
793        // with PHI translation when a critical edge exists and the PHI node in
794        // the successor translates to a pointer value different than the
795        // pointer the block was first analyzed with.
796        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
797          InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
798
799        if (!InsertRes.second) {
800          // If the predecessor was visited with PredPtr, then we already did
801          // the analysis and can ignore it.
802          if (InsertRes.first->second == PredPtr)
803            continue;
804
805          // Otherwise, the block was previously analyzed with a different
806          // pointer.  We can't represent the result of this case, so we just
807          // treat this as a phi translation failure.
808          goto PredTranslationFailure;
809        }
810
811        // FIXME: it is entirely possible that PHI translating will end up with
812        // the same value.  Consider PHI translating something like:
813        // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
814        // to recurse here, pedantically speaking.
815
816        // If we have a problem phi translating, fall through to the code below
817        // to handle the failure condition.
818        if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
819                                        Result, Visited))
820          goto PredTranslationFailure;
821      }
822
823      // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
824      CacheInfo = &NonLocalPointerDeps[CacheKey];
825      Cache = &CacheInfo->second;
826      NumSortedEntries = Cache->size();
827
828      // Since we did phi translation, the "Cache" set won't contain all of the
829      // results for the query.  This is ok (we can still use it to accelerate
830      // specific block queries) but we can't do the fastpath "return all
831      // results from the set"  Clear out the indicator for this.
832      CacheInfo->first = BBSkipFirstBlockPair();
833      SkipFirstBlock = false;
834      continue;
835    }
836
837    // TODO: BITCAST, GEP.
838
839    //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
840    //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
841    //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
842  PredTranslationFailure:
843
844    if (Cache == 0) {
845      // Refresh the CacheInfo/Cache pointer if it got invalidated.
846      CacheInfo = &NonLocalPointerDeps[CacheKey];
847      Cache = &CacheInfo->second;
848      NumSortedEntries = Cache->size();
849    }
850
851    // Since we did phi translation, the "Cache" set won't contain all of the
852    // results for the query.  This is ok (we can still use it to accelerate
853    // specific block queries) but we can't do the fastpath "return all
854    // results from the set"  Clear out the indicator for this.
855    CacheInfo->first = BBSkipFirstBlockPair();
856
857    // If *nothing* works, mark the pointer as being clobbered by the first
858    // instruction in this block.
859    //
860    // If this is the magic first block, return this as a clobber of the whole
861    // incoming value.  Since we can't phi translate to one of the predecessors,
862    // we have to bail out.
863    if (SkipFirstBlock)
864      return true;
865
866    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
867      assert(I != Cache->rend() && "Didn't find current block??");
868      if (I->first != BB)
869        continue;
870
871      assert(I->second.isNonLocal() &&
872             "Should only be here with transparent block");
873      I->second = MemDepResult::getClobber(BB->begin());
874      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
875      Result.push_back(*I);
876      break;
877    }
878  }
879
880  // Okay, we're done now.  If we added new values to the cache, re-sort it.
881  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
882  DEBUG(AssertSorted(*Cache));
883  return false;
884}
885
886/// RemoveCachedNonLocalPointerDependencies - If P exists in
887/// CachedNonLocalPointerInfo, remove it.
888void MemoryDependenceAnalysis::
889RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
890  CachedNonLocalPointerInfo::iterator It =
891    NonLocalPointerDeps.find(P);
892  if (It == NonLocalPointerDeps.end()) return;
893
894  // Remove all of the entries in the BB->val map.  This involves removing
895  // instructions from the reverse map.
896  NonLocalDepInfo &PInfo = It->second.second;
897
898  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
899    Instruction *Target = PInfo[i].second.getInst();
900    if (Target == 0) continue;  // Ignore non-local dep results.
901    assert(Target->getParent() == PInfo[i].first);
902
903    // Eliminating the dirty entry from 'Cache', so update the reverse info.
904    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
905  }
906
907  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
908  NonLocalPointerDeps.erase(It);
909}
910
911
912/// invalidateCachedPointerInfo - This method is used to invalidate cached
913/// information about the specified pointer, because it may be too
914/// conservative in memdep.  This is an optional call that can be used when
915/// the client detects an equivalence between the pointer and some other
916/// value and replaces the other value with ptr. This can make Ptr available
917/// in more places that cached info does not necessarily keep.
918void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
919  // If Ptr isn't really a pointer, just ignore it.
920  if (!isa<PointerType>(Ptr->getType())) return;
921  // Flush store info for the pointer.
922  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
923  // Flush load info for the pointer.
924  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
925}
926
927/// removeInstruction - Remove an instruction from the dependence analysis,
928/// updating the dependence of instructions that previously depended on it.
929/// This method attempts to keep the cache coherent using the reverse map.
930void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
931  // Walk through the Non-local dependencies, removing this one as the value
932  // for any cached queries.
933  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
934  if (NLDI != NonLocalDeps.end()) {
935    NonLocalDepInfo &BlockMap = NLDI->second.first;
936    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
937         DI != DE; ++DI)
938      if (Instruction *Inst = DI->second.getInst())
939        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
940    NonLocalDeps.erase(NLDI);
941  }
942
943  // If we have a cached local dependence query for this instruction, remove it.
944  //
945  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
946  if (LocalDepEntry != LocalDeps.end()) {
947    // Remove us from DepInst's reverse set now that the local dep info is gone.
948    if (Instruction *Inst = LocalDepEntry->second.getInst())
949      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
950
951    // Remove this local dependency info.
952    LocalDeps.erase(LocalDepEntry);
953  }
954
955  // If we have any cached pointer dependencies on this instruction, remove
956  // them.  If the instruction has non-pointer type, then it can't be a pointer
957  // base.
958
959  // Remove it from both the load info and the store info.  The instruction
960  // can't be in either of these maps if it is non-pointer.
961  if (isa<PointerType>(RemInst->getType())) {
962    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
963    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
964  }
965
966  // Loop over all of the things that depend on the instruction we're removing.
967  //
968  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
969
970  // If we find RemInst as a clobber or Def in any of the maps for other values,
971  // we need to replace its entry with a dirty version of the instruction after
972  // it.  If RemInst is a terminator, we use a null dirty value.
973  //
974  // Using a dirty version of the instruction after RemInst saves having to scan
975  // the entire block to get to this point.
976  MemDepResult NewDirtyVal;
977  if (!RemInst->isTerminator())
978    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
979
980  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
981  if (ReverseDepIt != ReverseLocalDeps.end()) {
982    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
983    // RemInst can't be the terminator if it has local stuff depending on it.
984    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
985           "Nothing can locally depend on a terminator");
986
987    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
988         E = ReverseDeps.end(); I != E; ++I) {
989      Instruction *InstDependingOnRemInst = *I;
990      assert(InstDependingOnRemInst != RemInst &&
991             "Already removed our local dep info");
992
993      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
994
995      // Make sure to remember that new things depend on NewDepInst.
996      assert(NewDirtyVal.getInst() && "There is no way something else can have "
997             "a local dep on this if it is a terminator!");
998      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
999                                                InstDependingOnRemInst));
1000    }
1001
1002    ReverseLocalDeps.erase(ReverseDepIt);
1003
1004    // Add new reverse deps after scanning the set, to avoid invalidating the
1005    // 'ReverseDeps' reference.
1006    while (!ReverseDepsToAdd.empty()) {
1007      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1008        .insert(ReverseDepsToAdd.back().second);
1009      ReverseDepsToAdd.pop_back();
1010    }
1011  }
1012
1013  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1014  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1015    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1016    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1017         I != E; ++I) {
1018      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1019
1020      PerInstNLInfo &INLD = NonLocalDeps[*I];
1021      // The information is now dirty!
1022      INLD.second = true;
1023
1024      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1025           DE = INLD.first.end(); DI != DE; ++DI) {
1026        if (DI->second.getInst() != RemInst) continue;
1027
1028        // Convert to a dirty entry for the subsequent instruction.
1029        DI->second = NewDirtyVal;
1030
1031        if (Instruction *NextI = NewDirtyVal.getInst())
1032          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1033      }
1034    }
1035
1036    ReverseNonLocalDeps.erase(ReverseDepIt);
1037
1038    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1039    while (!ReverseDepsToAdd.empty()) {
1040      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1041        .insert(ReverseDepsToAdd.back().second);
1042      ReverseDepsToAdd.pop_back();
1043    }
1044  }
1045
1046  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1047  // value in the NonLocalPointerDeps info.
1048  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1049    ReverseNonLocalPtrDeps.find(RemInst);
1050  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1051    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1052    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1053
1054    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1055         E = Set.end(); I != E; ++I) {
1056      ValueIsLoadPair P = *I;
1057      assert(P.getPointer() != RemInst &&
1058             "Already removed NonLocalPointerDeps info for RemInst");
1059
1060      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1061
1062      // The cache is not valid for any specific block anymore.
1063      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1064
1065      // Update any entries for RemInst to use the instruction after it.
1066      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1067           DI != DE; ++DI) {
1068        if (DI->second.getInst() != RemInst) continue;
1069
1070        // Convert to a dirty entry for the subsequent instruction.
1071        DI->second = NewDirtyVal;
1072
1073        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1074          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1075      }
1076
1077      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1078      // subsequent value may invalidate the sortedness.
1079      std::sort(NLPDI.begin(), NLPDI.end());
1080    }
1081
1082    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1083
1084    while (!ReversePtrDepsToAdd.empty()) {
1085      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1086        .insert(ReversePtrDepsToAdd.back().second);
1087      ReversePtrDepsToAdd.pop_back();
1088    }
1089  }
1090
1091
1092  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1093  AA->deleteValue(RemInst);
1094  DEBUG(verifyRemoved(RemInst));
1095}
1096/// verifyRemoved - Verify that the specified instruction does not occur
1097/// in our internal data structures.
1098void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1099  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1100       E = LocalDeps.end(); I != E; ++I) {
1101    assert(I->first != D && "Inst occurs in data structures");
1102    assert(I->second.getInst() != D &&
1103           "Inst occurs in data structures");
1104  }
1105
1106  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1107       E = NonLocalPointerDeps.end(); I != E; ++I) {
1108    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1109    const NonLocalDepInfo &Val = I->second.second;
1110    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1111         II != E; ++II)
1112      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1113  }
1114
1115  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1116       E = NonLocalDeps.end(); I != E; ++I) {
1117    assert(I->first != D && "Inst occurs in data structures");
1118    const PerInstNLInfo &INLD = I->second;
1119    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1120         EE = INLD.first.end(); II  != EE; ++II)
1121      assert(II->second.getInst() != D && "Inst occurs in data structures");
1122  }
1123
1124  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1125       E = ReverseLocalDeps.end(); I != E; ++I) {
1126    assert(I->first != D && "Inst occurs in data structures");
1127    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1128         EE = I->second.end(); II != EE; ++II)
1129      assert(*II != D && "Inst occurs in data structures");
1130  }
1131
1132  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1133       E = ReverseNonLocalDeps.end();
1134       I != E; ++I) {
1135    assert(I->first != D && "Inst occurs in data structures");
1136    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1137         EE = I->second.end(); II != EE; ++II)
1138      assert(*II != D && "Inst occurs in data structures");
1139  }
1140
1141  for (ReverseNonLocalPtrDepTy::const_iterator
1142       I = ReverseNonLocalPtrDeps.begin(),
1143       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1144    assert(I->first != D && "Inst occurs in rev NLPD map");
1145
1146    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1147         E = I->second.end(); II != E; ++II)
1148      assert(*II != ValueIsLoadPair(D, false) &&
1149             *II != ValueIsLoadPair(D, true) &&
1150             "Inst occurs in ReverseNonLocalPtrDeps map");
1151  }
1152
1153}
1154