CriticalAntiDepBreaker.cpp revision f152fe8d487c46873bbdd4abab43200f783e978b
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  RegClassInfo(RCI),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0),
39  KeepRegs(TRI->getNumRegs(), false) {}
40
41CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42}
43
44void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45  const unsigned BBSize = BB->size();
46  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47    // Clear out the register class data.
48    Classes[i] = static_cast<const TargetRegisterClass *>(0);
49
50    // Initialize the indices to indicate that no registers are live.
51    KillIndices[i] = ~0u;
52    DefIndices[i] = BBSize;
53  }
54
55  // Clear "do not change" set.
56  KeepRegs.reset();
57
58  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59
60  // Determine the live-out physregs for this block.
61  if (IsReturnBlock) {
62    // In a return block, examine the function live-out regs.
63    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
64         E = MRI.liveout_end(); I != E; ++I) {
65      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
66        unsigned Reg = *AI;
67        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
68        KillIndices[Reg] = BBSize;
69        DefIndices[Reg] = ~0u;
70      }
71    }
72  }
73
74  // In a non-return block, examine the live-in regs of all successors.
75  // Note a return block can have successors if the return instruction is
76  // predicated.
77  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
78         SE = BB->succ_end(); SI != SE; ++SI)
79    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
80           E = (*SI)->livein_end(); I != E; ++I) {
81      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82        unsigned Reg = *AI;
83        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84        KillIndices[Reg] = BBSize;
85        DefIndices[Reg] = ~0u;
86      }
87    }
88
89  // Mark live-out callee-saved registers. In a return block this is
90  // all callee-saved registers. In non-return this is any
91  // callee-saved register that is not saved in the prolog.
92  const MachineFrameInfo *MFI = MF.getFrameInfo();
93  BitVector Pristine = MFI->getPristineRegs(BB);
94  for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
95    if (!IsReturnBlock && !Pristine.test(*I)) continue;
96    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
97      unsigned Reg = *AI;
98      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
99      KillIndices[Reg] = BBSize;
100      DefIndices[Reg] = ~0u;
101    }
102  }
103}
104
105void CriticalAntiDepBreaker::FinishBlock() {
106  RegRefs.clear();
107  KeepRegs.reset();
108}
109
110void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
111                                     unsigned InsertPosIndex) {
112  if (MI->isDebugValue())
113    return;
114  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
115
116  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
117    if (KillIndices[Reg] != ~0u) {
118      // If Reg is currently live, then mark that it can't be renamed as
119      // we don't know the extent of its live-range anymore (now that it
120      // has been scheduled).
121      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
122      KillIndices[Reg] = Count;
123    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
124      // Any register which was defined within the previous scheduling region
125      // may have been rescheduled and its lifetime may overlap with registers
126      // in ways not reflected in our current liveness state. For each such
127      // register, adjust the liveness state to be conservatively correct.
128      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
129
130      // Move the def index to the end of the previous region, to reflect
131      // that the def could theoretically have been scheduled at the end.
132      DefIndices[Reg] = InsertPosIndex;
133    }
134  }
135
136  PrescanInstruction(MI);
137  ScanInstruction(MI, Count);
138}
139
140/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
141/// critical path.
142static const SDep *CriticalPathStep(const SUnit *SU) {
143  const SDep *Next = 0;
144  unsigned NextDepth = 0;
145  // Find the predecessor edge with the greatest depth.
146  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
147       P != PE; ++P) {
148    const SUnit *PredSU = P->getSUnit();
149    unsigned PredLatency = P->getLatency();
150    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
151    // In the case of a latency tie, prefer an anti-dependency edge over
152    // other types of edges.
153    if (NextDepth < PredTotalLatency ||
154        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
155      NextDepth = PredTotalLatency;
156      Next = &*P;
157    }
158  }
159  return Next;
160}
161
162void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
163  // It's not safe to change register allocation for source operands of
164  // that have special allocation requirements. Also assume all registers
165  // used in a call must not be changed (ABI).
166  // FIXME: The issue with predicated instruction is more complex. We are being
167  // conservative here because the kill markers cannot be trusted after
168  // if-conversion:
169  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
170  // ...
171  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
172  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
173  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
174  //
175  // The first R6 kill is not really a kill since it's killed by a predicated
176  // instruction which may not be executed. The second R6 def may or may not
177  // re-define R6 so it's not safe to change it since the last R6 use cannot be
178  // changed.
179  bool Special = MI->isCall() ||
180    MI->hasExtraSrcRegAllocReq() ||
181    TII->isPredicated(MI);
182
183  // Scan the register operands for this instruction and update
184  // Classes and RegRefs.
185  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
186    MachineOperand &MO = MI->getOperand(i);
187    if (!MO.isReg()) continue;
188    unsigned Reg = MO.getReg();
189    if (Reg == 0) continue;
190    const TargetRegisterClass *NewRC = 0;
191
192    if (i < MI->getDesc().getNumOperands())
193      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
194
195    // For now, only allow the register to be changed if its register
196    // class is consistent across all uses.
197    if (!Classes[Reg] && NewRC)
198      Classes[Reg] = NewRC;
199    else if (!NewRC || Classes[Reg] != NewRC)
200      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
201
202    // Now check for aliases.
203    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
204      // If an alias of the reg is used during the live range, give up.
205      // Note that this allows us to skip checking if AntiDepReg
206      // overlaps with any of the aliases, among other things.
207      unsigned AliasReg = *Alias;
208      if (Classes[AliasReg]) {
209        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
210        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
211      }
212    }
213
214    // If we're still willing to consider this register, note the reference.
215    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
216      RegRefs.insert(std::make_pair(Reg, &MO));
217
218    if (MO.isUse() && Special) {
219      if (!KeepRegs.test(Reg)) {
220        KeepRegs.set(Reg);
221        for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
222             *Subreg; ++Subreg)
223          KeepRegs.set(*Subreg);
224      }
225    }
226  }
227}
228
229void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
230                                             unsigned Count) {
231  // Update liveness.
232  // Proceding upwards, registers that are defed but not used in this
233  // instruction are now dead.
234
235  if (!TII->isPredicated(MI)) {
236    // Predicated defs are modeled as read + write, i.e. similar to two
237    // address updates.
238    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
239      MachineOperand &MO = MI->getOperand(i);
240
241      if (MO.isRegMask())
242        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
243          if (MO.clobbersPhysReg(i)) {
244            DefIndices[i] = Count;
245            KillIndices[i] = ~0u;
246            KeepRegs.reset(i);
247            Classes[i] = 0;
248            RegRefs.erase(i);
249          }
250
251      if (!MO.isReg()) continue;
252      unsigned Reg = MO.getReg();
253      if (Reg == 0) continue;
254      if (!MO.isDef()) continue;
255      // Ignore two-addr defs.
256      if (MI->isRegTiedToUseOperand(i)) continue;
257
258      DefIndices[Reg] = Count;
259      KillIndices[Reg] = ~0u;
260      assert(((KillIndices[Reg] == ~0u) !=
261              (DefIndices[Reg] == ~0u)) &&
262             "Kill and Def maps aren't consistent for Reg!");
263      KeepRegs.reset(Reg);
264      Classes[Reg] = 0;
265      RegRefs.erase(Reg);
266      // Repeat, for all subregs.
267      for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
268           *Subreg; ++Subreg) {
269        unsigned SubregReg = *Subreg;
270        DefIndices[SubregReg] = Count;
271        KillIndices[SubregReg] = ~0u;
272        KeepRegs.reset(SubregReg);
273        Classes[SubregReg] = 0;
274        RegRefs.erase(SubregReg);
275      }
276      // Conservatively mark super-registers as unusable.
277      for (const uint16_t *Super = TRI->getSuperRegisters(Reg);
278           *Super; ++Super) {
279        unsigned SuperReg = *Super;
280        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
281      }
282    }
283  }
284  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
285    MachineOperand &MO = MI->getOperand(i);
286    if (!MO.isReg()) continue;
287    unsigned Reg = MO.getReg();
288    if (Reg == 0) continue;
289    if (!MO.isUse()) continue;
290
291    const TargetRegisterClass *NewRC = 0;
292    if (i < MI->getDesc().getNumOperands())
293      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
294
295    // For now, only allow the register to be changed if its register
296    // class is consistent across all uses.
297    if (!Classes[Reg] && NewRC)
298      Classes[Reg] = NewRC;
299    else if (!NewRC || Classes[Reg] != NewRC)
300      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
301
302    RegRefs.insert(std::make_pair(Reg, &MO));
303
304    // It wasn't previously live but now it is, this is a kill.
305    if (KillIndices[Reg] == ~0u) {
306      KillIndices[Reg] = Count;
307      DefIndices[Reg] = ~0u;
308          assert(((KillIndices[Reg] == ~0u) !=
309                  (DefIndices[Reg] == ~0u)) &&
310               "Kill and Def maps aren't consistent for Reg!");
311    }
312    // Repeat, for all aliases.
313    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
314      unsigned AliasReg = *Alias;
315      if (KillIndices[AliasReg] == ~0u) {
316        KillIndices[AliasReg] = Count;
317        DefIndices[AliasReg] = ~0u;
318      }
319    }
320  }
321}
322
323// Check all machine operands that reference the antidependent register and must
324// be replaced by NewReg. Return true if any of their parent instructions may
325// clobber the new register.
326//
327// Note: AntiDepReg may be referenced by a two-address instruction such that
328// it's use operand is tied to a def operand. We guard against the case in which
329// the two-address instruction also defines NewReg, as may happen with
330// pre/postincrement loads. In this case, both the use and def operands are in
331// RegRefs because the def is inserted by PrescanInstruction and not erased
332// during ScanInstruction. So checking for an instructions with definitions of
333// both NewReg and AntiDepReg covers it.
334bool
335CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
336                                                RegRefIter RegRefEnd,
337                                                unsigned NewReg)
338{
339  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
340    MachineOperand *RefOper = I->second;
341
342    // Don't allow the instruction defining AntiDepReg to earlyclobber its
343    // operands, in case they may be assigned to NewReg. In this case antidep
344    // breaking must fail, but it's too rare to bother optimizing.
345    if (RefOper->isDef() && RefOper->isEarlyClobber())
346      return true;
347
348    // Handle cases in which this instructions defines NewReg.
349    MachineInstr *MI = RefOper->getParent();
350    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
351      const MachineOperand &CheckOper = MI->getOperand(i);
352
353      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
354        return true;
355
356      if (!CheckOper.isReg() || !CheckOper.isDef() ||
357          CheckOper.getReg() != NewReg)
358        continue;
359
360      // Don't allow the instruction to define NewReg and AntiDepReg.
361      // When AntiDepReg is renamed it will be an illegal op.
362      if (RefOper->isDef())
363        return true;
364
365      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
366      // NewReg
367      if (CheckOper.isEarlyClobber())
368        return true;
369
370      // Don't allow inline asm to define NewReg at all. Who know what it's
371      // doing with it.
372      if (MI->isInlineAsm())
373        return true;
374    }
375  }
376  return false;
377}
378
379unsigned
380CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
381                                                 RegRefIter RegRefEnd,
382                                                 unsigned AntiDepReg,
383                                                 unsigned LastNewReg,
384                                                 const TargetRegisterClass *RC)
385{
386  ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
387  for (unsigned i = 0; i != Order.size(); ++i) {
388    unsigned NewReg = Order[i];
389    // Don't replace a register with itself.
390    if (NewReg == AntiDepReg) continue;
391    // Don't replace a register with one that was recently used to repair
392    // an anti-dependence with this AntiDepReg, because that would
393    // re-introduce that anti-dependence.
394    if (NewReg == LastNewReg) continue;
395    // If any instructions that define AntiDepReg also define the NewReg, it's
396    // not suitable.  For example, Instruction with multiple definitions can
397    // result in this condition.
398    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
399    // If NewReg is dead and NewReg's most recent def is not before
400    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
401    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
402           && "Kill and Def maps aren't consistent for AntiDepReg!");
403    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
404           && "Kill and Def maps aren't consistent for NewReg!");
405    if (KillIndices[NewReg] != ~0u ||
406        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
407        KillIndices[AntiDepReg] > DefIndices[NewReg])
408      continue;
409    return NewReg;
410  }
411
412  // No registers are free and available!
413  return 0;
414}
415
416unsigned CriticalAntiDepBreaker::
417BreakAntiDependencies(const std::vector<SUnit>& SUnits,
418                      MachineBasicBlock::iterator Begin,
419                      MachineBasicBlock::iterator End,
420                      unsigned InsertPosIndex,
421                      DbgValueVector &DbgValues) {
422  // The code below assumes that there is at least one instruction,
423  // so just duck out immediately if the block is empty.
424  if (SUnits.empty()) return 0;
425
426  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
427  // This is used for updating debug information.
428  //
429  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
430  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
431
432  // Find the node at the bottom of the critical path.
433  const SUnit *Max = 0;
434  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
435    const SUnit *SU = &SUnits[i];
436    MISUnitMap[SU->getInstr()] = SU;
437    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
438      Max = SU;
439  }
440
441#ifndef NDEBUG
442  {
443    DEBUG(dbgs() << "Critical path has total latency "
444          << (Max->getDepth() + Max->Latency) << "\n");
445    DEBUG(dbgs() << "Available regs:");
446    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
447      if (KillIndices[Reg] == ~0u)
448        DEBUG(dbgs() << " " << TRI->getName(Reg));
449    }
450    DEBUG(dbgs() << '\n');
451  }
452#endif
453
454  // Track progress along the critical path through the SUnit graph as we walk
455  // the instructions.
456  const SUnit *CriticalPathSU = Max;
457  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
458
459  // Consider this pattern:
460  //   A = ...
461  //   ... = A
462  //   A = ...
463  //   ... = A
464  //   A = ...
465  //   ... = A
466  //   A = ...
467  //   ... = A
468  // There are three anti-dependencies here, and without special care,
469  // we'd break all of them using the same register:
470  //   A = ...
471  //   ... = A
472  //   B = ...
473  //   ... = B
474  //   B = ...
475  //   ... = B
476  //   B = ...
477  //   ... = B
478  // because at each anti-dependence, B is the first register that
479  // isn't A which is free.  This re-introduces anti-dependencies
480  // at all but one of the original anti-dependencies that we were
481  // trying to break.  To avoid this, keep track of the most recent
482  // register that each register was replaced with, avoid
483  // using it to repair an anti-dependence on the same register.
484  // This lets us produce this:
485  //   A = ...
486  //   ... = A
487  //   B = ...
488  //   ... = B
489  //   C = ...
490  //   ... = C
491  //   B = ...
492  //   ... = B
493  // This still has an anti-dependence on B, but at least it isn't on the
494  // original critical path.
495  //
496  // TODO: If we tracked more than one register here, we could potentially
497  // fix that remaining critical edge too. This is a little more involved,
498  // because unlike the most recent register, less recent registers should
499  // still be considered, though only if no other registers are available.
500  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
501
502  // Attempt to break anti-dependence edges on the critical path. Walk the
503  // instructions from the bottom up, tracking information about liveness
504  // as we go to help determine which registers are available.
505  unsigned Broken = 0;
506  unsigned Count = InsertPosIndex - 1;
507  for (MachineBasicBlock::iterator I = End, E = Begin;
508       I != E; --Count) {
509    MachineInstr *MI = --I;
510    if (MI->isDebugValue())
511      continue;
512
513    // Check if this instruction has a dependence on the critical path that
514    // is an anti-dependence that we may be able to break. If it is, set
515    // AntiDepReg to the non-zero register associated with the anti-dependence.
516    //
517    // We limit our attention to the critical path as a heuristic to avoid
518    // breaking anti-dependence edges that aren't going to significantly
519    // impact the overall schedule. There are a limited number of registers
520    // and we want to save them for the important edges.
521    //
522    // TODO: Instructions with multiple defs could have multiple
523    // anti-dependencies. The current code here only knows how to break one
524    // edge per instruction. Note that we'd have to be able to break all of
525    // the anti-dependencies in an instruction in order to be effective.
526    unsigned AntiDepReg = 0;
527    if (MI == CriticalPathMI) {
528      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
529        const SUnit *NextSU = Edge->getSUnit();
530
531        // Only consider anti-dependence edges.
532        if (Edge->getKind() == SDep::Anti) {
533          AntiDepReg = Edge->getReg();
534          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
535          if (!RegClassInfo.isAllocatable(AntiDepReg))
536            // Don't break anti-dependencies on non-allocatable registers.
537            AntiDepReg = 0;
538          else if (KeepRegs.test(AntiDepReg))
539            // Don't break anti-dependencies if an use down below requires
540            // this exact register.
541            AntiDepReg = 0;
542          else {
543            // If the SUnit has other dependencies on the SUnit that it
544            // anti-depends on, don't bother breaking the anti-dependency
545            // since those edges would prevent such units from being
546            // scheduled past each other regardless.
547            //
548            // Also, if there are dependencies on other SUnits with the
549            // same register as the anti-dependency, don't attempt to
550            // break it.
551            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
552                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
553              if (P->getSUnit() == NextSU ?
554                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
555                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
556                AntiDepReg = 0;
557                break;
558              }
559          }
560        }
561        CriticalPathSU = NextSU;
562        CriticalPathMI = CriticalPathSU->getInstr();
563      } else {
564        // We've reached the end of the critical path.
565        CriticalPathSU = 0;
566        CriticalPathMI = 0;
567      }
568    }
569
570    PrescanInstruction(MI);
571
572    // If MI's defs have a special allocation requirement, don't allow
573    // any def registers to be changed. Also assume all registers
574    // defined in a call must not be changed (ABI).
575    if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
576        TII->isPredicated(MI))
577      // If this instruction's defs have special allocation requirement, don't
578      // break this anti-dependency.
579      AntiDepReg = 0;
580    else if (AntiDepReg) {
581      // If this instruction has a use of AntiDepReg, breaking it
582      // is invalid.
583      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
584        MachineOperand &MO = MI->getOperand(i);
585        if (!MO.isReg()) continue;
586        unsigned Reg = MO.getReg();
587        if (Reg == 0) continue;
588        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
589          AntiDepReg = 0;
590          break;
591        }
592      }
593    }
594
595    // Determine AntiDepReg's register class, if it is live and is
596    // consistently used within a single class.
597    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
598    assert((AntiDepReg == 0 || RC != NULL) &&
599           "Register should be live if it's causing an anti-dependence!");
600    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
601      AntiDepReg = 0;
602
603    // Look for a suitable register to use to break the anti-depenence.
604    //
605    // TODO: Instead of picking the first free register, consider which might
606    // be the best.
607    if (AntiDepReg != 0) {
608      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
609                std::multimap<unsigned, MachineOperand *>::iterator>
610        Range = RegRefs.equal_range(AntiDepReg);
611      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
612                                                     AntiDepReg,
613                                                     LastNewReg[AntiDepReg],
614                                                     RC)) {
615        DEBUG(dbgs() << "Breaking anti-dependence edge on "
616              << TRI->getName(AntiDepReg)
617              << " with " << RegRefs.count(AntiDepReg) << " references"
618              << " using " << TRI->getName(NewReg) << "!\n");
619
620        // Update the references to the old register to refer to the new
621        // register.
622        for (std::multimap<unsigned, MachineOperand *>::iterator
623             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
624          Q->second->setReg(NewReg);
625          // If the SU for the instruction being updated has debug information
626          // related to the anti-dependency register, make sure to update that
627          // as well.
628          const SUnit *SU = MISUnitMap[Q->second->getParent()];
629          if (!SU) continue;
630          for (DbgValueVector::iterator DVI = DbgValues.begin(),
631                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
632            if (DVI->second == Q->second->getParent())
633              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
634        }
635
636        // We just went back in time and modified history; the
637        // liveness information for the anti-dependence reg is now
638        // inconsistent. Set the state as if it were dead.
639        Classes[NewReg] = Classes[AntiDepReg];
640        DefIndices[NewReg] = DefIndices[AntiDepReg];
641        KillIndices[NewReg] = KillIndices[AntiDepReg];
642        assert(((KillIndices[NewReg] == ~0u) !=
643                (DefIndices[NewReg] == ~0u)) &&
644             "Kill and Def maps aren't consistent for NewReg!");
645
646        Classes[AntiDepReg] = 0;
647        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
648        KillIndices[AntiDepReg] = ~0u;
649        assert(((KillIndices[AntiDepReg] == ~0u) !=
650                (DefIndices[AntiDepReg] == ~0u)) &&
651             "Kill and Def maps aren't consistent for AntiDepReg!");
652
653        RegRefs.erase(AntiDepReg);
654        LastNewReg[AntiDepReg] = NewReg;
655        ++Broken;
656      }
657    }
658
659    ScanInstruction(MI, Count);
660  }
661
662  return Broken;
663}
664