LiveIntervalAnalysis.cpp revision 20aa474f8fbebde588edc101b90e834df28ce4ce
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36#include <algorithm>
37
38using namespace llvm;
39
40namespace {
41  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
42
43  Statistic<> numIntervals
44  ("liveintervals", "Number of original intervals");
45
46  Statistic<> numIntervalsAfter
47  ("liveintervals", "Number of intervals after coalescing");
48
49  Statistic<> numJoins
50  ("liveintervals", "Number of interval joins performed");
51
52  Statistic<> numPeep
53  ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55  Statistic<> numFolded
56  ("liveintervals", "Number of loads/stores folded into instructions");
57
58  cl::opt<bool>
59  EnableJoining("join-liveintervals",
60                cl::desc("Join compatible live intervals"),
61                cl::init(true));
62};
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
65{
66  AU.addPreserved<LiveVariables>();
67  AU.addRequired<LiveVariables>();
68  AU.addPreservedID(PHIEliminationID);
69  AU.addRequiredID(PHIEliminationID);
70  AU.addRequiredID(TwoAddressInstructionPassID);
71  AU.addRequired<LoopInfo>();
72  MachineFunctionPass::getAnalysisUsage(AU);
73}
74
75void LiveIntervals::releaseMemory()
76{
77  mi2iMap_.clear();
78  i2miMap_.clear();
79  r2iMap_.clear();
80  r2rMap_.clear();
81}
82
83
84/// runOnMachineFunction - Register allocate the whole function
85///
86bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
87  mf_ = &fn;
88  tm_ = &fn.getTarget();
89  mri_ = tm_->getRegisterInfo();
90  lv_ = &getAnalysis<LiveVariables>();
91  allocatableRegs_ = mri_->getAllocatableSet(fn);
92
93  // number MachineInstrs
94  unsigned miIndex = 0;
95  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
96       mbb != mbbEnd; ++mbb)
97    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
98         mi != miEnd; ++mi) {
99      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
100      assert(inserted && "multiple MachineInstr -> index mappings");
101      i2miMap_.push_back(mi);
102      miIndex += InstrSlots::NUM;
103    }
104
105  computeIntervals();
106
107  numIntervals += getNumIntervals();
108
109#if 1
110  DEBUG(std::cerr << "********** INTERVALS **********\n");
111  DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
112        std::cerr << I->second << "\n");
113#endif
114
115  // join intervals if requested
116  if (EnableJoining) joinIntervals();
117
118  numIntervalsAfter += getNumIntervals();
119
120  // perform a final pass over the instructions and compute spill
121  // weights, coalesce virtual registers and remove identity moves
122  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
123  const TargetInstrInfo& tii = *tm_->getInstrInfo();
124
125  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
126       mbbi != mbbe; ++mbbi) {
127    MachineBasicBlock* mbb = mbbi;
128    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
129
130    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
131         mii != mie; ) {
132      // if the move will be an identity move delete it
133      unsigned srcReg, dstReg, RegRep;
134      if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
135          (RegRep = rep(srcReg)) == rep(dstReg)) {
136        // remove from def list
137        LiveInterval &interval = getOrCreateInterval(RegRep);
138        // remove index -> MachineInstr and
139        // MachineInstr -> index mappings
140        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
141        if (mi2i != mi2iMap_.end()) {
142          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
143          mi2iMap_.erase(mi2i);
144        }
145        mii = mbbi->erase(mii);
146        ++numPeep;
147      }
148      else {
149        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
150          const MachineOperand& mop = mii->getOperand(i);
151          if (mop.isRegister() && mop.getReg() &&
152              MRegisterInfo::isVirtualRegister(mop.getReg())) {
153            // replace register with representative register
154            unsigned reg = rep(mop.getReg());
155            mii->SetMachineOperandReg(i, reg);
156
157            LiveInterval &RegInt = getInterval(reg);
158            RegInt.weight +=
159              (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
160          }
161        }
162        ++mii;
163      }
164    }
165  }
166
167  DEBUG(std::cerr << "********** INTERVALS **********\n");
168  DEBUG (for (iterator I = begin(), E = end(); I != E; ++I)
169         std::cerr << I->second << "\n");
170  DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
171  DEBUG(
172    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
173         mbbi != mbbe; ++mbbi) {
174      std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
175      for (MachineBasicBlock::iterator mii = mbbi->begin(),
176             mie = mbbi->end(); mii != mie; ++mii) {
177        std::cerr << getInstructionIndex(mii) << '\t';
178        mii->print(std::cerr, tm_);
179      }
180    });
181
182  return true;
183}
184
185std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
186  const LiveInterval& li,
187  VirtRegMap& vrm,
188  int slot)
189{
190  // since this is called after the analysis is done we don't know if
191  // LiveVariables is available
192  lv_ = getAnalysisToUpdate<LiveVariables>();
193
194  std::vector<LiveInterval*> added;
195
196  assert(li.weight != HUGE_VAL &&
197         "attempt to spill already spilled interval!");
198
199  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
200        << li << '\n');
201
202  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
203
204  for (LiveInterval::Ranges::const_iterator
205         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
206    unsigned index = getBaseIndex(i->start);
207    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
208    for (; index != end; index += InstrSlots::NUM) {
209      // skip deleted instructions
210      while (index != end && !getInstructionFromIndex(index))
211        index += InstrSlots::NUM;
212      if (index == end) break;
213
214      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
215
216    for_operand:
217      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
218        MachineOperand& mop = mi->getOperand(i);
219        if (mop.isRegister() && mop.getReg() == li.reg) {
220          if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) {
221            if (lv_)
222              lv_->instructionChanged(mi, fmi);
223            vrm.virtFolded(li.reg, mi, fmi);
224            mi2iMap_.erase(mi);
225            i2miMap_[index/InstrSlots::NUM] = fmi;
226            mi2iMap_[fmi] = index;
227            MachineBasicBlock& mbb = *mi->getParent();
228            mi = mbb.insert(mbb.erase(mi), fmi);
229            ++numFolded;
230            goto for_operand;
231          }
232          else {
233            // This is tricky. We need to add information in
234            // the interval about the spill code so we have to
235            // use our extra load/store slots.
236            //
237            // If we have a use we are going to have a load so
238            // we start the interval from the load slot
239            // onwards. Otherwise we start from the def slot.
240            unsigned start = (mop.isUse() ?
241                              getLoadIndex(index) :
242                              getDefIndex(index));
243            // If we have a def we are going to have a store
244            // right after it so we end the interval after the
245            // use of the next instruction. Otherwise we end
246            // after the use of this instruction.
247            unsigned end = 1 + (mop.isDef() ?
248                                getStoreIndex(index) :
249                                getUseIndex(index));
250
251            // create a new register for this spill
252            unsigned nReg = mf_->getSSARegMap()->createVirtualRegister(rc);
253            mi->SetMachineOperandReg(i, nReg);
254            vrm.grow();
255            vrm.assignVirt2StackSlot(nReg, slot);
256            LiveInterval& nI = getOrCreateInterval(nReg);
257            assert(nI.empty());
258            // the spill weight is now infinity as it
259            // cannot be spilled again
260            nI.weight = HUGE_VAL;
261            LiveRange LR(start, end, nI.getNextValue());
262            DEBUG(std::cerr << " +" << LR);
263            nI.addRange(LR);
264            added.push_back(&nI);
265            // update live variables if it is available
266            if (lv_)
267              lv_->addVirtualRegisterKilled(nReg, mi);
268            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
269          }
270        }
271      }
272    }
273  }
274
275  return added;
276}
277
278void LiveIntervals::printRegName(unsigned reg) const
279{
280  if (MRegisterInfo::isPhysicalRegister(reg))
281    std::cerr << mri_->getName(reg);
282  else
283    std::cerr << "%reg" << reg;
284}
285
286void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
287                                             MachineBasicBlock::iterator mi,
288                                             LiveInterval& interval)
289{
290  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
291  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
292
293  // Virtual registers may be defined multiple times (due to phi
294  // elimination and 2-addr elimination).  Much of what we do only has to be
295  // done once for the vreg.  We use an empty interval to detect the first
296  // time we see a vreg.
297  if (interval.empty()) {
298    // Get the Idx of the defining instructions.
299    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
300
301    unsigned ValNum = interval.getNextValue();
302    assert(ValNum == 0 && "First value in interval is not 0?");
303    ValNum = 0;  // Clue in the optimizer.
304
305    // Loop over all of the blocks that the vreg is defined in.  There are
306    // two cases we have to handle here.  The most common case is a vreg
307    // whose lifetime is contained within a basic block.  In this case there
308    // will be a single kill, in MBB, which comes after the definition.
309    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
310      // FIXME: what about dead vars?
311      unsigned killIdx;
312      if (vi.Kills[0] != mi)
313        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
314      else
315        killIdx = defIndex+1;
316
317      // If the kill happens after the definition, we have an intra-block
318      // live range.
319      if (killIdx > defIndex) {
320        assert(vi.AliveBlocks.empty() &&
321               "Shouldn't be alive across any blocks!");
322        LiveRange LR(defIndex, killIdx, ValNum);
323        interval.addRange(LR);
324        DEBUG(std::cerr << " +" << LR << "\n");
325        return;
326      }
327    }
328
329    // The other case we handle is when a virtual register lives to the end
330    // of the defining block, potentially live across some blocks, then is
331    // live into some number of blocks, but gets killed.  Start by adding a
332    // range that goes from this definition to the end of the defining block.
333    LiveRange NewLR(defIndex,
334                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
335                    ValNum);
336    DEBUG(std::cerr << " +" << NewLR);
337    interval.addRange(NewLR);
338
339    // Iterate over all of the blocks that the variable is completely
340    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
341    // live interval.
342    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
343      if (vi.AliveBlocks[i]) {
344        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
345        if (!mbb->empty()) {
346          LiveRange LR(getInstructionIndex(&mbb->front()),
347                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
348                       ValNum);
349          interval.addRange(LR);
350          DEBUG(std::cerr << " +" << LR);
351        }
352      }
353    }
354
355    // Finally, this virtual register is live from the start of any killing
356    // block to the 'use' slot of the killing instruction.
357    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
358      MachineInstr *Kill = vi.Kills[i];
359      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
360                   getUseIndex(getInstructionIndex(Kill))+1,
361                   ValNum);
362      interval.addRange(LR);
363      DEBUG(std::cerr << " +" << LR);
364    }
365
366  } else {
367    // If this is the second time we see a virtual register definition, it
368    // must be due to phi elimination or two addr elimination.  If this is
369    // the result of two address elimination, then the vreg is the first
370    // operand, and is a def-and-use.
371    if (mi->getOperand(0).isRegister() &&
372        mi->getOperand(0).getReg() == interval.reg &&
373        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
374      // If this is a two-address definition, then we have already processed
375      // the live range.  The only problem is that we didn't realize there
376      // are actually two values in the live interval.  Because of this we
377      // need to take the LiveRegion that defines this register and split it
378      // into two values.
379      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
380      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
381
382      // Delete the initial value, which should be short and continuous,
383      // becuase the 2-addr copy must be in the same MBB as the redef.
384      interval.removeRange(DefIndex, RedefIndex);
385
386      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
387      DEBUG(std::cerr << " replace range with " << LR);
388      interval.addRange(LR);
389
390      // If this redefinition is dead, we need to add a dummy unit live
391      // range covering the def slot.
392      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
393             E = lv_->dead_end(mi); KI != E; ++KI)
394        if (KI->second == interval.reg) {
395          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
396          break;
397        }
398
399      DEBUG(std::cerr << "RESULT: " << interval);
400
401    } else {
402      // Otherwise, this must be because of phi elimination.  If this is the
403      // first redefinition of the vreg that we have seen, go back and change
404      // the live range in the PHI block to be a different value number.
405      if (interval.containsOneValue()) {
406        assert(vi.Kills.size() == 1 &&
407               "PHI elimination vreg should have one kill, the PHI itself!");
408
409        // Remove the old range that we now know has an incorrect number.
410        MachineInstr *Killer = vi.Kills[0];
411        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
412        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
413        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
414              << interval << "\n");
415        interval.removeRange(Start, End);
416        DEBUG(std::cerr << "RESULT: " << interval);
417
418        // Replace the interval with one of a NEW value number.
419        LiveRange LR(Start, End, interval.getNextValue());
420        DEBUG(std::cerr << " replace range with " << LR);
421        interval.addRange(LR);
422        DEBUG(std::cerr << "RESULT: " << interval);
423      }
424
425      // In the case of PHI elimination, each variable definition is only
426      // live until the end of the block.  We've already taken care of the
427      // rest of the live range.
428      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
429      LiveRange LR(defIndex,
430                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
431                   interval.getNextValue());
432      interval.addRange(LR);
433      DEBUG(std::cerr << " +" << LR);
434    }
435  }
436
437  DEBUG(std::cerr << '\n');
438}
439
440void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
441                                              MachineBasicBlock::iterator mi,
442                                              LiveInterval& interval)
443{
444  // A physical register cannot be live across basic block, so its
445  // lifetime must end somewhere in its defining basic block.
446  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
447  typedef LiveVariables::killed_iterator KillIter;
448
449  unsigned baseIndex = getInstructionIndex(mi);
450  unsigned start = getDefIndex(baseIndex);
451  unsigned end = start;
452
453  // If it is not used after definition, it is considered dead at
454  // the instruction defining it. Hence its interval is:
455  // [defSlot(def), defSlot(def)+1)
456  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
457       ki != ke; ++ki) {
458    if (interval.reg == ki->second) {
459      DEBUG(std::cerr << " dead");
460      end = getDefIndex(start) + 1;
461      goto exit;
462    }
463  }
464
465  // If it is not dead on definition, it must be killed by a
466  // subsequent instruction. Hence its interval is:
467  // [defSlot(def), useSlot(kill)+1)
468  while (true) {
469    ++mi;
470    assert(mi != MBB->end() && "physreg was not killed in defining block!");
471    baseIndex += InstrSlots::NUM;
472    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
473         ki != ke; ++ki) {
474      if (interval.reg == ki->second) {
475        DEBUG(std::cerr << " killed");
476        end = getUseIndex(baseIndex) + 1;
477        goto exit;
478      }
479    }
480  }
481
482exit:
483  assert(start < end && "did not find end of interval?");
484  LiveRange LR(start, end, interval.getNextValue());
485  interval.addRange(LR);
486  DEBUG(std::cerr << " +" << LR << '\n');
487}
488
489void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
490                                      MachineBasicBlock::iterator MI,
491                                      unsigned reg) {
492  if (MRegisterInfo::isVirtualRegister(reg))
493    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
494  else if (allocatableRegs_[reg]) {
495    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
496    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
497      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
498  }
499}
500
501/// computeIntervals - computes the live intervals for virtual
502/// registers. for some ordering of the machine instructions [1,N] a
503/// live interval is an interval [i, j) where 1 <= i <= j < N for
504/// which a variable is live
505void LiveIntervals::computeIntervals()
506{
507  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
508  DEBUG(std::cerr << "********** Function: "
509        << ((Value*)mf_->getFunction())->getName() << '\n');
510
511  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
512       I != E; ++I) {
513    MachineBasicBlock* mbb = I;
514    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
515
516    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
517         mi != miEnd; ++mi) {
518      const TargetInstrDescriptor& tid =
519        tm_->getInstrInfo()->get(mi->getOpcode());
520      DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
521            mi->print(std::cerr, tm_));
522
523      // handle implicit defs
524      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
525        handleRegisterDef(mbb, mi, *id);
526
527      // handle explicit defs
528      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
529        MachineOperand& mop = mi->getOperand(i);
530        // handle register defs - build intervals
531        if (mop.isRegister() && mop.getReg() && mop.isDef())
532          handleRegisterDef(mbb, mi, mop.getReg());
533      }
534    }
535  }
536}
537
538void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
539  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
540  const TargetInstrInfo &TII = *tm_->getInstrInfo();
541
542  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
543       mi != mie; ++mi) {
544    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
545
546    // we only join virtual registers with allocatable
547    // physical registers since we do not have liveness information
548    // on not allocatable physical registers
549    unsigned regA, regB;
550    if (TII.isMoveInstr(*mi, regA, regB) &&
551        (MRegisterInfo::isVirtualRegister(regA) || allocatableRegs_[regA]) &&
552        (MRegisterInfo::isVirtualRegister(regB) || allocatableRegs_[regB])) {
553
554      // Get representative registers.
555      regA = rep(regA);
556      regB = rep(regB);
557
558      // If they are already joined we continue.
559      if (regA == regB)
560        continue;
561
562      // If they are both physical registers, we cannot join them.
563      if (MRegisterInfo::isPhysicalRegister(regA) &&
564          MRegisterInfo::isPhysicalRegister(regB))
565        continue;
566
567      // If they are not of the same register class, we cannot join them.
568      if (differingRegisterClasses(regA, regB))
569        continue;
570
571      LiveInterval &IntA = getInterval(regA);
572      LiveInterval &IntB = getInterval(regB);
573      assert(IntA.reg == regA && IntB.reg == regB &&
574             "Register mapping is horribly broken!");
575
576      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
577
578      // If two intervals contain a single value and are joined by a copy, it
579      // does not matter if the intervals overlap, they can always be joined.
580      bool TriviallyJoinable =
581        IntA.containsOneValue() && IntB.containsOneValue();
582
583      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
584      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
585          !overlapsAliases(&IntA, &IntB)) {
586        IntB.join(IntA, MIDefIdx);
587
588        if (!MRegisterInfo::isPhysicalRegister(regA)) {
589          r2iMap_.erase(regA);
590          r2rMap_[regA] = regB;
591        } else {
592          // Otherwise merge the data structures the other way so we don't lose
593          // the physreg information.
594          r2rMap_[regB] = regA;
595          IntB.reg = regA;
596          IntA.swap(IntB);
597          r2iMap_.erase(regB);
598        }
599        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
600        ++numJoins;
601      } else {
602        DEBUG(std::cerr << "Interference!\n");
603      }
604    }
605  }
606}
607
608namespace {
609  // DepthMBBCompare - Comparison predicate that sort first based on the loop
610  // depth of the basic block (the unsigned), and then on the MBB number.
611  struct DepthMBBCompare {
612    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
613    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
614      if (LHS.first > RHS.first) return true;   // Deeper loops first
615      return LHS.first == RHS.first &&
616        LHS.second->getNumber() < RHS.second->getNumber();
617    }
618  };
619}
620
621void LiveIntervals::joinIntervals() {
622  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
623
624  const LoopInfo &LI = getAnalysis<LoopInfo>();
625  if (LI.begin() == LI.end()) {
626    // If there are no loops in the function, join intervals in function order.
627    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
628         I != E; ++I)
629      joinIntervalsInMachineBB(I);
630  } else {
631    // Otherwise, join intervals in inner loops before other intervals.
632    // Unfortunately we can't just iterate over loop hierarchy here because
633    // there may be more MBB's than BB's.  Collect MBB's for sorting.
634    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
635    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
636         I != E; ++I)
637      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
638
639    // Sort by loop depth.
640    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
641
642    // Finally, join intervals in loop nest order.
643    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
644      joinIntervalsInMachineBB(MBBs[i].second);
645  }
646
647  DEBUG(std::cerr << "*** Register mapping ***\n");
648  DEBUG(for (std::map<unsigned, unsigned>::iterator I = r2rMap_.begin(),
649               E = r2rMap_.end(); I != E; ++I)
650        std::cerr << "  reg " << I->first << " -> reg " << I->second << "\n";);
651}
652
653/// Return true if the two specified registers belong to different register
654/// classes.  The registers may be either phys or virt regs.
655bool LiveIntervals::differingRegisterClasses(unsigned RegA,
656                                             unsigned RegB) const {
657  const TargetRegisterClass *RegClass;
658
659  // Get the register classes for the first reg.
660  if (MRegisterInfo::isVirtualRegister(RegA))
661    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
662  else
663    RegClass = mri_->getRegClass(RegA);
664
665  // Compare against the regclass for the second reg.
666  if (MRegisterInfo::isVirtualRegister(RegB))
667    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
668  else
669    return !RegClass->contains(RegB);
670}
671
672bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
673                                    const LiveInterval *RHS) const {
674  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
675    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
676      return false;   // vreg-vreg merge has no aliases!
677    std::swap(LHS, RHS);
678  }
679
680  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
681         MRegisterInfo::isVirtualRegister(RHS->reg) &&
682         "first interval must describe a physical register");
683
684  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
685    if (RHS->overlaps(getInterval(*AS)))
686      return true;
687
688  return false;
689}
690
691LiveInterval LiveIntervals::createInterval(unsigned reg) {
692  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
693  return LiveInterval(reg, Weight);
694}
695