LiveIntervalAnalysis.cpp revision 5d0d1e350a30772fd70798b5733bb060febd7b0d
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Join compatible live intervals"),
60                cl::init(true));
61};
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
64{
65  AU.addPreserved<LiveVariables>();
66  AU.addRequired<LiveVariables>();
67  AU.addPreservedID(PHIEliminationID);
68  AU.addRequiredID(PHIEliminationID);
69  AU.addRequiredID(TwoAddressInstructionPassID);
70  AU.addRequired<LoopInfo>();
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74void LiveIntervals::releaseMemory()
75{
76  mi2iMap_.clear();
77  i2miMap_.clear();
78  r2iMap_.clear();
79  r2rMap_.clear();
80}
81
82
83/// runOnMachineFunction - Register allocate the whole function
84///
85bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
86  mf_ = &fn;
87  tm_ = &fn.getTarget();
88  mri_ = tm_->getRegisterInfo();
89  lv_ = &getAnalysis<LiveVariables>();
90  allocatableRegs_ = mri_->getAllocatableSet(fn);
91
92  // number MachineInstrs
93  unsigned miIndex = 0;
94  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
95       mbb != mbbEnd; ++mbb)
96    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
97         mi != miEnd; ++mi) {
98      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
99      assert(inserted && "multiple MachineInstr -> index mappings");
100      i2miMap_.push_back(mi);
101      miIndex += InstrSlots::NUM;
102    }
103
104  computeIntervals();
105
106  numIntervals += getNumIntervals();
107
108#if 1
109  DEBUG(std::cerr << "********** INTERVALS **********\n");
110  DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
111        std::cerr << I->second << "\n");
112#endif
113
114  // join intervals if requested
115  if (EnableJoining) joinIntervals();
116
117  numIntervalsAfter += getNumIntervals();
118
119  // perform a final pass over the instructions and compute spill
120  // weights, coalesce virtual registers and remove identity moves
121  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
122  const TargetInstrInfo& tii = *tm_->getInstrInfo();
123
124  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
125       mbbi != mbbe; ++mbbi) {
126    MachineBasicBlock* mbb = mbbi;
127    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
128
129    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
130         mii != mie; ) {
131      // if the move will be an identity move delete it
132      unsigned srcReg, dstReg, RegRep;
133      if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
134          (RegRep = rep(srcReg)) == rep(dstReg)) {
135        // remove from def list
136        LiveInterval &interval = getOrCreateInterval(RegRep);
137        // remove index -> MachineInstr and
138        // MachineInstr -> index mappings
139        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
140        if (mi2i != mi2iMap_.end()) {
141          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
142          mi2iMap_.erase(mi2i);
143        }
144        mii = mbbi->erase(mii);
145        ++numPeep;
146      }
147      else {
148        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
149          const MachineOperand& mop = mii->getOperand(i);
150          if (mop.isRegister() && mop.getReg() &&
151              MRegisterInfo::isVirtualRegister(mop.getReg())) {
152            // replace register with representative register
153            unsigned reg = rep(mop.getReg());
154            mii->SetMachineOperandReg(i, reg);
155
156            LiveInterval &RegInt = getInterval(reg);
157            RegInt.weight +=
158              (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
159          }
160        }
161        ++mii;
162      }
163    }
164  }
165
166  DEBUG(std::cerr << "********** INTERVALS **********\n");
167  DEBUG (for (iterator I = begin(), E = end(); I != E; ++I)
168         std::cerr << I->second << "\n");
169  DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
170  DEBUG(
171    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
172         mbbi != mbbe; ++mbbi) {
173      std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
174      for (MachineBasicBlock::iterator mii = mbbi->begin(),
175             mie = mbbi->end(); mii != mie; ++mii) {
176        std::cerr << getInstructionIndex(mii) << '\t';
177        mii->print(std::cerr, tm_);
178      }
179    });
180
181  return true;
182}
183
184std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
185  const LiveInterval& li,
186  VirtRegMap& vrm,
187  int slot)
188{
189  // since this is called after the analysis is done we don't know if
190  // LiveVariables is available
191  lv_ = getAnalysisToUpdate<LiveVariables>();
192
193  std::vector<LiveInterval*> added;
194
195  assert(li.weight != HUGE_VAL &&
196         "attempt to spill already spilled interval!");
197
198  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
199        << li << '\n');
200
201  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
202
203  for (LiveInterval::Ranges::const_iterator
204         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
205    unsigned index = getBaseIndex(i->start);
206    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
207    for (; index != end; index += InstrSlots::NUM) {
208      // skip deleted instructions
209      while (index != end && !getInstructionFromIndex(index))
210        index += InstrSlots::NUM;
211      if (index == end) break;
212
213      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
214
215    for_operand:
216      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
217        MachineOperand& mop = mi->getOperand(i);
218        if (mop.isRegister() && mop.getReg() == li.reg) {
219          if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) {
220            if (lv_)
221              lv_->instructionChanged(mi, fmi);
222            vrm.virtFolded(li.reg, mi, fmi);
223            mi2iMap_.erase(mi);
224            i2miMap_[index/InstrSlots::NUM] = fmi;
225            mi2iMap_[fmi] = index;
226            MachineBasicBlock& mbb = *mi->getParent();
227            mi = mbb.insert(mbb.erase(mi), fmi);
228            ++numFolded;
229            goto for_operand;
230          }
231          else {
232            // This is tricky. We need to add information in
233            // the interval about the spill code so we have to
234            // use our extra load/store slots.
235            //
236            // If we have a use we are going to have a load so
237            // we start the interval from the load slot
238            // onwards. Otherwise we start from the def slot.
239            unsigned start = (mop.isUse() ?
240                              getLoadIndex(index) :
241                              getDefIndex(index));
242            // If we have a def we are going to have a store
243            // right after it so we end the interval after the
244            // use of the next instruction. Otherwise we end
245            // after the use of this instruction.
246            unsigned end = 1 + (mop.isDef() ?
247                                getStoreIndex(index) :
248                                getUseIndex(index));
249
250            // create a new register for this spill
251            unsigned nReg = mf_->getSSARegMap()->createVirtualRegister(rc);
252            mi->SetMachineOperandReg(i, nReg);
253            vrm.grow();
254            vrm.assignVirt2StackSlot(nReg, slot);
255            LiveInterval& nI = getOrCreateInterval(nReg);
256            assert(nI.empty());
257            // the spill weight is now infinity as it
258            // cannot be spilled again
259            nI.weight = HUGE_VAL;
260            LiveRange LR(start, end, nI.getNextValue());
261            DEBUG(std::cerr << " +" << LR);
262            nI.addRange(LR);
263            added.push_back(&nI);
264            // update live variables if it is available
265            if (lv_)
266              lv_->addVirtualRegisterKilled(nReg, mi);
267            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
268          }
269        }
270      }
271    }
272  }
273
274  return added;
275}
276
277void LiveIntervals::printRegName(unsigned reg) const
278{
279  if (MRegisterInfo::isPhysicalRegister(reg))
280    std::cerr << mri_->getName(reg);
281  else
282    std::cerr << "%reg" << reg;
283}
284
285void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
286                                             MachineBasicBlock::iterator mi,
287                                             LiveInterval& interval)
288{
289  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
290  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
291
292  // Virtual registers may be defined multiple times (due to phi
293  // elimination and 2-addr elimination).  Much of what we do only has to be
294  // done once for the vreg.  We use an empty interval to detect the first
295  // time we see a vreg.
296  if (interval.empty()) {
297    // Get the Idx of the defining instructions.
298    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
299
300    unsigned ValNum = interval.getNextValue();
301    assert(ValNum == 0 && "First value in interval is not 0?");
302    ValNum = 0;  // Clue in the optimizer.
303
304    // Loop over all of the blocks that the vreg is defined in.  There are
305    // two cases we have to handle here.  The most common case is a vreg
306    // whose lifetime is contained within a basic block.  In this case there
307    // will be a single kill, in MBB, which comes after the definition.
308    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
309      // FIXME: what about dead vars?
310      unsigned killIdx;
311      if (vi.Kills[0] != mi)
312        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
313      else
314        killIdx = defIndex+1;
315
316      // If the kill happens after the definition, we have an intra-block
317      // live range.
318      if (killIdx > defIndex) {
319        assert(vi.AliveBlocks.empty() &&
320               "Shouldn't be alive across any blocks!");
321        LiveRange LR(defIndex, killIdx, ValNum);
322        interval.addRange(LR);
323        DEBUG(std::cerr << " +" << LR << "\n");
324        return;
325      }
326    }
327
328    // The other case we handle is when a virtual register lives to the end
329    // of the defining block, potentially live across some blocks, then is
330    // live into some number of blocks, but gets killed.  Start by adding a
331    // range that goes from this definition to the end of the defining block.
332    LiveRange NewLR(defIndex,
333                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
334                    ValNum);
335    DEBUG(std::cerr << " +" << NewLR);
336    interval.addRange(NewLR);
337
338    // Iterate over all of the blocks that the variable is completely
339    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
340    // live interval.
341    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
342      if (vi.AliveBlocks[i]) {
343        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
344        if (!mbb->empty()) {
345          LiveRange LR(getInstructionIndex(&mbb->front()),
346                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
347                       ValNum);
348          interval.addRange(LR);
349          DEBUG(std::cerr << " +" << LR);
350        }
351      }
352    }
353
354    // Finally, this virtual register is live from the start of any killing
355    // block to the 'use' slot of the killing instruction.
356    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
357      MachineInstr *Kill = vi.Kills[i];
358      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
359                   getUseIndex(getInstructionIndex(Kill))+1,
360                   ValNum);
361      interval.addRange(LR);
362      DEBUG(std::cerr << " +" << LR);
363    }
364
365  } else {
366    // If this is the second time we see a virtual register definition, it
367    // must be due to phi elimination or two addr elimination.  If this is
368    // the result of two address elimination, then the vreg is the first
369    // operand, and is a def-and-use.
370    if (mi->getOperand(0).isRegister() &&
371        mi->getOperand(0).getReg() == interval.reg &&
372        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
373      // If this is a two-address definition, then we have already processed
374      // the live range.  The only problem is that we didn't realize there
375      // are actually two values in the live interval.  Because of this we
376      // need to take the LiveRegion that defines this register and split it
377      // into two values.
378      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
379      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
380
381      // Delete the initial value, which should be short and continuous,
382      // becuase the 2-addr copy must be in the same MBB as the redef.
383      interval.removeRange(DefIndex, RedefIndex);
384
385      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
386      DEBUG(std::cerr << " replace range with " << LR);
387      interval.addRange(LR);
388
389      // If this redefinition is dead, we need to add a dummy unit live
390      // range covering the def slot.
391      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
392             E = lv_->dead_end(mi); KI != E; ++KI)
393        if (KI->second == interval.reg) {
394          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
395          break;
396        }
397
398      DEBUG(std::cerr << "RESULT: " << interval);
399
400    } else {
401      // Otherwise, this must be because of phi elimination.  If this is the
402      // first redefinition of the vreg that we have seen, go back and change
403      // the live range in the PHI block to be a different value number.
404      if (interval.containsOneValue()) {
405        assert(vi.Kills.size() == 1 &&
406               "PHI elimination vreg should have one kill, the PHI itself!");
407
408        // Remove the old range that we now know has an incorrect number.
409        MachineInstr *Killer = vi.Kills[0];
410        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
411        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
412        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
413              << interval << "\n");
414        interval.removeRange(Start, End);
415        DEBUG(std::cerr << "RESULT: " << interval);
416
417        // Replace the interval with one of a NEW value number.
418        LiveRange LR(Start, End, interval.getNextValue());
419        DEBUG(std::cerr << " replace range with " << LR);
420        interval.addRange(LR);
421        DEBUG(std::cerr << "RESULT: " << interval);
422      }
423
424      // In the case of PHI elimination, each variable definition is only
425      // live until the end of the block.  We've already taken care of the
426      // rest of the live range.
427      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
428      LiveRange LR(defIndex,
429                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
430                   interval.getNextValue());
431      interval.addRange(LR);
432      DEBUG(std::cerr << " +" << LR);
433    }
434  }
435
436  DEBUG(std::cerr << '\n');
437}
438
439void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
440                                              MachineBasicBlock::iterator mi,
441                                              LiveInterval& interval)
442{
443  // A physical register cannot be live across basic block, so its
444  // lifetime must end somewhere in its defining basic block.
445  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
446  typedef LiveVariables::killed_iterator KillIter;
447
448  unsigned baseIndex = getInstructionIndex(mi);
449  unsigned start = getDefIndex(baseIndex);
450  unsigned end = start;
451
452  // If it is not used after definition, it is considered dead at
453  // the instruction defining it. Hence its interval is:
454  // [defSlot(def), defSlot(def)+1)
455  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
456       ki != ke; ++ki) {
457    if (interval.reg == ki->second) {
458      DEBUG(std::cerr << " dead");
459      end = getDefIndex(start) + 1;
460      goto exit;
461    }
462  }
463
464  // If it is not dead on definition, it must be killed by a
465  // subsequent instruction. Hence its interval is:
466  // [defSlot(def), useSlot(kill)+1)
467  while (true) {
468    ++mi;
469    assert(mi != MBB->end() && "physreg was not killed in defining block!");
470    baseIndex += InstrSlots::NUM;
471    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
472         ki != ke; ++ki) {
473      if (interval.reg == ki->second) {
474        DEBUG(std::cerr << " killed");
475        end = getUseIndex(baseIndex) + 1;
476        goto exit;
477      }
478    }
479  }
480
481exit:
482  assert(start < end && "did not find end of interval?");
483  LiveRange LR(start, end, interval.getNextValue());
484  interval.addRange(LR);
485  DEBUG(std::cerr << " +" << LR << '\n');
486}
487
488void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
489                                      MachineBasicBlock::iterator MI,
490                                      unsigned reg) {
491  if (MRegisterInfo::isVirtualRegister(reg))
492    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
493  else if (allocatableRegs_[reg]) {
494    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
495    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
496      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
497  }
498}
499
500/// computeIntervals - computes the live intervals for virtual
501/// registers. for some ordering of the machine instructions [1,N] a
502/// live interval is an interval [i, j) where 1 <= i <= j < N for
503/// which a variable is live
504void LiveIntervals::computeIntervals()
505{
506  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
507  DEBUG(std::cerr << "********** Function: "
508        << ((Value*)mf_->getFunction())->getName() << '\n');
509
510  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
511       I != E; ++I) {
512    MachineBasicBlock* mbb = I;
513    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
514
515    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
516         mi != miEnd; ++mi) {
517      const TargetInstrDescriptor& tid =
518        tm_->getInstrInfo()->get(mi->getOpcode());
519      DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
520            mi->print(std::cerr, tm_));
521
522      // handle implicit defs
523      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
524        handleRegisterDef(mbb, mi, *id);
525
526      // handle explicit defs
527      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
528        MachineOperand& mop = mi->getOperand(i);
529        // handle register defs - build intervals
530        if (mop.isRegister() && mop.getReg() && mop.isDef())
531          handleRegisterDef(mbb, mi, mop.getReg());
532      }
533    }
534  }
535}
536
537void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
538  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
539  const TargetInstrInfo &TII = *tm_->getInstrInfo();
540
541  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
542       mi != mie; ++mi) {
543    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
544
545    // we only join virtual registers with allocatable
546    // physical registers since we do not have liveness information
547    // on not allocatable physical registers
548    unsigned regA, regB;
549    if (TII.isMoveInstr(*mi, regA, regB) &&
550        (MRegisterInfo::isVirtualRegister(regA) || allocatableRegs_[regA]) &&
551        (MRegisterInfo::isVirtualRegister(regB) || allocatableRegs_[regB])) {
552
553      // Get representative registers.
554      regA = rep(regA);
555      regB = rep(regB);
556
557      // If they are already joined we continue.
558      if (regA == regB)
559        continue;
560
561      // If they are both physical registers, we cannot join them.
562      if (MRegisterInfo::isPhysicalRegister(regA) &&
563          MRegisterInfo::isPhysicalRegister(regB))
564        continue;
565
566      // If they are not of the same register class, we cannot join them.
567      if (differingRegisterClasses(regA, regB))
568        continue;
569
570      LiveInterval &IntA = getInterval(regA);
571      LiveInterval &IntB = getInterval(regB);
572      assert(IntA.reg == regA && IntB.reg == regB &&
573             "Register mapping is horribly broken!");
574
575      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
576
577      // If two intervals contain a single value and are joined by a copy, it
578      // does not matter if the intervals overlap, they can always be joined.
579      bool TriviallyJoinable =
580        IntA.containsOneValue() && IntB.containsOneValue();
581
582      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
583      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
584          !overlapsAliases(&IntA, &IntB)) {
585        IntB.join(IntA, MIDefIdx);
586
587        if (!MRegisterInfo::isPhysicalRegister(regA)) {
588          r2iMap_.erase(regA);
589          r2rMap_[regA] = regB;
590        } else {
591          // Otherwise merge the data structures the other way so we don't lose
592          // the physreg information.
593          r2rMap_[regB] = regA;
594          IntB.reg = regA;
595          IntA.swap(IntB);
596          r2iMap_.erase(regB);
597        }
598        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
599        ++numJoins;
600      } else {
601        DEBUG(std::cerr << "Interference!\n");
602      }
603    }
604  }
605}
606
607namespace {
608  // DepthMBBCompare - Comparison predicate that sort first based on the loop
609  // depth of the basic block (the unsigned), and then on the MBB number.
610  struct DepthMBBCompare {
611    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
612    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
613      if (LHS.first > RHS.first) return true;   // Deeper loops first
614      return LHS.first == RHS.first &&
615        LHS.second->getNumber() < RHS.second->getNumber();
616    }
617  };
618}
619
620void LiveIntervals::joinIntervals() {
621  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
622  // reserve space for the reg2reg map
623  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
624
625  const LoopInfo &LI = getAnalysis<LoopInfo>();
626  if (LI.begin() == LI.end()) {
627    // If there are no loops in the function, join intervals in function order.
628    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
629         I != E; ++I)
630      joinIntervalsInMachineBB(I);
631  } else {
632    // Otherwise, join intervals in inner loops before other intervals.
633    // Unfortunately we can't just iterate over loop hierarchy here because
634    // there may be more MBB's than BB's.  Collect MBB's for sorting.
635    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
636    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
637         I != E; ++I)
638      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
639
640    // Sort by loop depth.
641    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
642
643    // Finally, join intervals in loop nest order.
644    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
645      joinIntervalsInMachineBB(MBBs[i].second);
646  }
647
648  DEBUG(std::cerr << "*** Register mapping ***\n");
649  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
650          if (r2rMap_[i])
651             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
652}
653
654/// Return true if the two specified registers belong to different register
655/// classes.  The registers may be either phys or virt regs.
656bool LiveIntervals::differingRegisterClasses(unsigned RegA,
657                                             unsigned RegB) const {
658  const TargetRegisterClass *RegClass;
659
660  // Get the register classes for the first reg.
661  if (MRegisterInfo::isVirtualRegister(RegA))
662    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
663  else
664    RegClass = mri_->getRegClass(RegA);
665
666  // Compare against the regclass for the second reg.
667  if (MRegisterInfo::isVirtualRegister(RegB))
668    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
669  else
670    return !RegClass->contains(RegB);
671}
672
673bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
674                                    const LiveInterval *RHS) const {
675  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
676    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
677      return false;   // vreg-vreg merge has no aliases!
678    std::swap(LHS, RHS);
679  }
680
681  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
682         MRegisterInfo::isVirtualRegister(RHS->reg) &&
683         "first interval must describe a physical register");
684
685  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
686    if (RHS->overlaps(getInterval(*AS)))
687      return true;
688
689  return false;
690}
691
692LiveInterval LiveIntervals::createInterval(unsigned reg) {
693  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
694  return LiveInterval(reg, Weight);
695}
696