LiveIntervalAnalysis.cpp revision b1aa5e43a2976caed47e21d31823a48bf8324000
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "LiveRangeCalc.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/BlockFrequency.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include <algorithm>
40#include <cmath>
41#include <limits>
42using namespace llvm;
43
44char LiveIntervals::ID = 0;
45char &llvm::LiveIntervalsID = LiveIntervals::ID;
46INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
47                "Live Interval Analysis", false, false)
48INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
49INITIALIZE_PASS_DEPENDENCY(LiveVariables)
50INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
51INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
52INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
53                "Live Interval Analysis", false, false)
54
55#ifndef NDEBUG
56static cl::opt<bool> EnablePrecomputePhysRegs(
57  "precompute-phys-liveness", cl::Hidden,
58  cl::desc("Eagerly compute live intervals for all physreg units."));
59#else
60static bool EnablePrecomputePhysRegs = false;
61#endif // NDEBUG
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
64  AU.setPreservesCFG();
65  AU.addRequired<AliasAnalysis>();
66  AU.addPreserved<AliasAnalysis>();
67  // LiveVariables isn't really required by this analysis, it is only required
68  // here to make sure it is live during TwoAddressInstructionPass and
69  // PHIElimination. This is temporary.
70  AU.addRequired<LiveVariables>();
71  AU.addPreserved<LiveVariables>();
72  AU.addPreservedID(MachineLoopInfoID);
73  AU.addRequiredTransitiveID(MachineDominatorsID);
74  AU.addPreservedID(MachineDominatorsID);
75  AU.addPreserved<SlotIndexes>();
76  AU.addRequiredTransitive<SlotIndexes>();
77  MachineFunctionPass::getAnalysisUsage(AU);
78}
79
80LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
81  DomTree(0), LRCalc(0) {
82  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
83}
84
85LiveIntervals::~LiveIntervals() {
86  delete LRCalc;
87}
88
89void LiveIntervals::releaseMemory() {
90  // Free the live intervals themselves.
91  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
92    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
93  VirtRegIntervals.clear();
94  RegMaskSlots.clear();
95  RegMaskBits.clear();
96  RegMaskBlocks.clear();
97
98  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
99    delete RegUnitIntervals[i];
100  RegUnitIntervals.clear();
101
102  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
103  VNInfoAllocator.Reset();
104}
105
106/// runOnMachineFunction - calculates LiveIntervals
107///
108bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
109  MF = &fn;
110  MRI = &MF->getRegInfo();
111  TM = &fn.getTarget();
112  TRI = TM->getRegisterInfo();
113  TII = TM->getInstrInfo();
114  AA = &getAnalysis<AliasAnalysis>();
115  Indexes = &getAnalysis<SlotIndexes>();
116  DomTree = &getAnalysis<MachineDominatorTree>();
117  if (!LRCalc)
118    LRCalc = new LiveRangeCalc();
119
120  // Allocate space for all virtual registers.
121  VirtRegIntervals.resize(MRI->getNumVirtRegs());
122
123  computeVirtRegs();
124  computeRegMasks();
125  computeLiveInRegUnits();
126
127  if (EnablePrecomputePhysRegs) {
128    // For stress testing, precompute live ranges of all physical register
129    // units, including reserved registers.
130    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
131      getRegUnit(i);
132  }
133  DEBUG(dump());
134  return true;
135}
136
137/// print - Implement the dump method.
138void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
139  OS << "********** INTERVALS **********\n";
140
141  // Dump the regunits.
142  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
143    if (LiveInterval *LI = RegUnitIntervals[i])
144      OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
145
146  // Dump the virtregs.
147  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
148    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
149    if (hasInterval(Reg))
150      OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
151  }
152
153  OS << "RegMasks:";
154  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
155    OS << ' ' << RegMaskSlots[i];
156  OS << '\n';
157
158  printInstrs(OS);
159}
160
161void LiveIntervals::printInstrs(raw_ostream &OS) const {
162  OS << "********** MACHINEINSTRS **********\n";
163  MF->print(OS, Indexes);
164}
165
166#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
167void LiveIntervals::dumpInstrs() const {
168  printInstrs(dbgs());
169}
170#endif
171
172LiveInterval* LiveIntervals::createInterval(unsigned reg) {
173  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
174  return new LiveInterval(reg, Weight);
175}
176
177
178/// computeVirtRegInterval - Compute the live interval of a virtual register,
179/// based on defs and uses.
180void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
181  assert(LRCalc && "LRCalc not initialized.");
182  assert(LI->empty() && "Should only compute empty intervals.");
183  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
184  LRCalc->createDeadDefs(LI);
185  LRCalc->extendToUses(LI);
186}
187
188void LiveIntervals::computeVirtRegs() {
189  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
190    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
191    if (MRI->reg_nodbg_empty(Reg))
192      continue;
193    createAndComputeVirtRegInterval(Reg);
194  }
195}
196
197void LiveIntervals::computeRegMasks() {
198  RegMaskBlocks.resize(MF->getNumBlockIDs());
199
200  // Find all instructions with regmask operands.
201  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
202       MBBI != E; ++MBBI) {
203    MachineBasicBlock *MBB = MBBI;
204    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
205    RMB.first = RegMaskSlots.size();
206    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
207         MI != ME; ++MI)
208      for (MIOperands MO(MI); MO.isValid(); ++MO) {
209        if (!MO->isRegMask())
210          continue;
211          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
212          RegMaskBits.push_back(MO->getRegMask());
213      }
214    // Compute the number of register mask instructions in this block.
215    RMB.second = RegMaskSlots.size() - RMB.first;
216  }
217}
218
219//===----------------------------------------------------------------------===//
220//                           Register Unit Liveness
221//===----------------------------------------------------------------------===//
222//
223// Fixed interference typically comes from ABI boundaries: Function arguments
224// and return values are passed in fixed registers, and so are exception
225// pointers entering landing pads. Certain instructions require values to be
226// present in specific registers. That is also represented through fixed
227// interference.
228//
229
230/// computeRegUnitInterval - Compute the live interval of a register unit, based
231/// on the uses and defs of aliasing registers.  The interval should be empty,
232/// or contain only dead phi-defs from ABI blocks.
233void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
234  unsigned Unit = LI->reg;
235
236  assert(LRCalc && "LRCalc not initialized.");
237  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
238
239  // The physregs aliasing Unit are the roots and their super-registers.
240  // Create all values as dead defs before extending to uses. Note that roots
241  // may share super-registers. That's OK because createDeadDefs() is
242  // idempotent. It is very rare for a register unit to have multiple roots, so
243  // uniquing super-registers is probably not worthwhile.
244  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
245    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
246         Supers.isValid(); ++Supers) {
247      if (!MRI->reg_empty(*Supers))
248        LRCalc->createDeadDefs(LI, *Supers);
249    }
250  }
251
252  // Now extend LI to reach all uses.
253  // Ignore uses of reserved registers. We only track defs of those.
254  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
255    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
256         Supers.isValid(); ++Supers) {
257      unsigned Reg = *Supers;
258      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
259        LRCalc->extendToUses(LI, Reg);
260    }
261  }
262}
263
264
265/// computeLiveInRegUnits - Precompute the live ranges of any register units
266/// that are live-in to an ABI block somewhere. Register values can appear
267/// without a corresponding def when entering the entry block or a landing pad.
268///
269void LiveIntervals::computeLiveInRegUnits() {
270  RegUnitIntervals.resize(TRI->getNumRegUnits());
271  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
272
273  // Keep track of the intervals allocated.
274  SmallVector<LiveInterval*, 8> NewIntvs;
275
276  // Check all basic blocks for live-ins.
277  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
278       MFI != MFE; ++MFI) {
279    const MachineBasicBlock *MBB = MFI;
280
281    // We only care about ABI blocks: Entry + landing pads.
282    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
283      continue;
284
285    // Create phi-defs at Begin for all live-in registers.
286    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
287    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
288    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
289         LIE = MBB->livein_end(); LII != LIE; ++LII) {
290      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
291        unsigned Unit = *Units;
292        LiveInterval *Intv = RegUnitIntervals[Unit];
293        if (!Intv) {
294          Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
295          NewIntvs.push_back(Intv);
296        }
297        VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
298        (void)VNI;
299        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
300      }
301    }
302    DEBUG(dbgs() << '\n');
303  }
304  DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
305
306  // Compute the 'normal' part of the intervals.
307  for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
308    computeRegUnitInterval(NewIntvs[i]);
309}
310
311
312/// shrinkToUses - After removing some uses of a register, shrink its live
313/// range to just the remaining uses. This method does not compute reaching
314/// defs for new uses, and it doesn't remove dead defs.
315bool LiveIntervals::shrinkToUses(LiveInterval *li,
316                                 SmallVectorImpl<MachineInstr*> *dead) {
317  DEBUG(dbgs() << "Shrink: " << *li << '\n');
318  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
319         && "Can only shrink virtual registers");
320  // Find all the values used, including PHI kills.
321  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
322
323  // Blocks that have already been added to WorkList as live-out.
324  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
325
326  // Visit all instructions reading li->reg.
327  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
328       MachineInstr *UseMI = I.skipInstruction();) {
329    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
330      continue;
331    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
332    LiveRangeQuery LRQ(*li, Idx);
333    VNInfo *VNI = LRQ.valueIn();
334    if (!VNI) {
335      // This shouldn't happen: readsVirtualRegister returns true, but there is
336      // no live value. It is likely caused by a target getting <undef> flags
337      // wrong.
338      DEBUG(dbgs() << Idx << '\t' << *UseMI
339                   << "Warning: Instr claims to read non-existent value in "
340                    << *li << '\n');
341      continue;
342    }
343    // Special case: An early-clobber tied operand reads and writes the
344    // register one slot early.
345    if (VNInfo *DefVNI = LRQ.valueDefined())
346      Idx = DefVNI->def;
347
348    WorkList.push_back(std::make_pair(Idx, VNI));
349  }
350
351  // Create a new live interval with only minimal live segments per def.
352  LiveInterval NewLI(li->reg, 0);
353  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
354       I != E; ++I) {
355    VNInfo *VNI = *I;
356    if (VNI->isUnused())
357      continue;
358    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
359  }
360
361  // Keep track of the PHIs that are in use.
362  SmallPtrSet<VNInfo*, 8> UsedPHIs;
363
364  // Extend intervals to reach all uses in WorkList.
365  while (!WorkList.empty()) {
366    SlotIndex Idx = WorkList.back().first;
367    VNInfo *VNI = WorkList.back().second;
368    WorkList.pop_back();
369    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
370    SlotIndex BlockStart = getMBBStartIdx(MBB);
371
372    // Extend the live range for VNI to be live at Idx.
373    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
374      (void)ExtVNI;
375      assert(ExtVNI == VNI && "Unexpected existing value number");
376      // Is this a PHIDef we haven't seen before?
377      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
378        continue;
379      // The PHI is live, make sure the predecessors are live-out.
380      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
381           PE = MBB->pred_end(); PI != PE; ++PI) {
382        if (!LiveOut.insert(*PI))
383          continue;
384        SlotIndex Stop = getMBBEndIdx(*PI);
385        // A predecessor is not required to have a live-out value for a PHI.
386        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
387          WorkList.push_back(std::make_pair(Stop, PVNI));
388      }
389      continue;
390    }
391
392    // VNI is live-in to MBB.
393    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
394    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
395
396    // Make sure VNI is live-out from the predecessors.
397    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
398         PE = MBB->pred_end(); PI != PE; ++PI) {
399      if (!LiveOut.insert(*PI))
400        continue;
401      SlotIndex Stop = getMBBEndIdx(*PI);
402      assert(li->getVNInfoBefore(Stop) == VNI &&
403             "Wrong value out of predecessor");
404      WorkList.push_back(std::make_pair(Stop, VNI));
405    }
406  }
407
408  // Handle dead values.
409  bool CanSeparate = false;
410  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
411       I != E; ++I) {
412    VNInfo *VNI = *I;
413    if (VNI->isUnused())
414      continue;
415    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
416    assert(LII != NewLI.end() && "Missing live range for PHI");
417    if (LII->end != VNI->def.getDeadSlot())
418      continue;
419    if (VNI->isPHIDef()) {
420      // This is a dead PHI. Remove it.
421      VNI->markUnused();
422      NewLI.removeRange(*LII);
423      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
424      CanSeparate = true;
425    } else {
426      // This is a dead def. Make sure the instruction knows.
427      MachineInstr *MI = getInstructionFromIndex(VNI->def);
428      assert(MI && "No instruction defining live value");
429      MI->addRegisterDead(li->reg, TRI);
430      if (dead && MI->allDefsAreDead()) {
431        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
432        dead->push_back(MI);
433      }
434    }
435  }
436
437  // Move the trimmed ranges back.
438  li->ranges.swap(NewLI.ranges);
439  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
440  return CanSeparate;
441}
442
443void LiveIntervals::extendToIndices(LiveInterval *LI,
444                                    ArrayRef<SlotIndex> Indices) {
445  assert(LRCalc && "LRCalc not initialized.");
446  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
447  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
448    LRCalc->extend(LI, Indices[i]);
449}
450
451void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
452                               SmallVectorImpl<SlotIndex> *EndPoints) {
453  LiveRangeQuery LRQ(*LI, Kill);
454  VNInfo *VNI = LRQ.valueOut();
455  if (!VNI)
456    return;
457
458  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
459  SlotIndex MBBStart, MBBEnd;
460  tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
461
462  // If VNI isn't live out from KillMBB, the value is trivially pruned.
463  if (LRQ.endPoint() < MBBEnd) {
464    LI->removeRange(Kill, LRQ.endPoint());
465    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
466    return;
467  }
468
469  // VNI is live out of KillMBB.
470  LI->removeRange(Kill, MBBEnd);
471  if (EndPoints) EndPoints->push_back(MBBEnd);
472
473  // Find all blocks that are reachable from KillMBB without leaving VNI's live
474  // range. It is possible that KillMBB itself is reachable, so start a DFS
475  // from each successor.
476  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
477  VisitedTy Visited;
478  for (MachineBasicBlock::succ_iterator
479       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
480       SuccI != SuccE; ++SuccI) {
481    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
482         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
483         I != E;) {
484      MachineBasicBlock *MBB = *I;
485
486      // Check if VNI is live in to MBB.
487      tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
488      LiveRangeQuery LRQ(*LI, MBBStart);
489      if (LRQ.valueIn() != VNI) {
490        // This block isn't part of the VNI live range. Prune the search.
491        I.skipChildren();
492        continue;
493      }
494
495      // Prune the search if VNI is killed in MBB.
496      if (LRQ.endPoint() < MBBEnd) {
497        LI->removeRange(MBBStart, LRQ.endPoint());
498        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
499        I.skipChildren();
500        continue;
501      }
502
503      // VNI is live through MBB.
504      LI->removeRange(MBBStart, MBBEnd);
505      if (EndPoints) EndPoints->push_back(MBBEnd);
506      ++I;
507    }
508  }
509}
510
511//===----------------------------------------------------------------------===//
512// Register allocator hooks.
513//
514
515void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
516  // Keep track of regunit ranges.
517  SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
518
519  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
520    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
521    if (MRI->reg_nodbg_empty(Reg))
522      continue;
523    LiveInterval *LI = &getInterval(Reg);
524    if (LI->empty())
525      continue;
526
527    // Find the regunit intervals for the assigned register. They may overlap
528    // the virtual register live range, cancelling any kills.
529    RU.clear();
530    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
531         ++Units) {
532      LiveInterval *RUInt = &getRegUnit(*Units);
533      if (RUInt->empty())
534        continue;
535      RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
536    }
537
538    // Every instruction that kills Reg corresponds to a live range end point.
539    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
540         ++RI) {
541      // A block index indicates an MBB edge.
542      if (RI->end.isBlock())
543        continue;
544      MachineInstr *MI = getInstructionFromIndex(RI->end);
545      if (!MI)
546        continue;
547
548      // Check if any of the regunits are live beyond the end of RI. That could
549      // happen when a physreg is defined as a copy of a virtreg:
550      //
551      //   %EAX = COPY %vreg5
552      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
553      //   BAR %EAX<kill>
554      //
555      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
556      bool CancelKill = false;
557      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
558        LiveInterval *RInt = RU[u].first;
559        LiveInterval::iterator &I = RU[u].second;
560        if (I == RInt->end())
561          continue;
562        I = RInt->advanceTo(I, RI->end);
563        if (I == RInt->end() || I->start >= RI->end)
564          continue;
565        // I is overlapping RI.
566        CancelKill = true;
567        break;
568      }
569      if (CancelKill)
570        MI->clearRegisterKills(Reg, NULL);
571      else
572        MI->addRegisterKilled(Reg, NULL);
573    }
574  }
575}
576
577MachineBasicBlock*
578LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
579  // A local live range must be fully contained inside the block, meaning it is
580  // defined and killed at instructions, not at block boundaries. It is not
581  // live in or or out of any block.
582  //
583  // It is technically possible to have a PHI-defined live range identical to a
584  // single block, but we are going to return false in that case.
585
586  SlotIndex Start = LI.beginIndex();
587  if (Start.isBlock())
588    return NULL;
589
590  SlotIndex Stop = LI.endIndex();
591  if (Stop.isBlock())
592    return NULL;
593
594  // getMBBFromIndex doesn't need to search the MBB table when both indexes
595  // belong to proper instructions.
596  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
597  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
598  return MBB1 == MBB2 ? MBB1 : NULL;
599}
600
601bool
602LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
603  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
604       I != E; ++I) {
605    const VNInfo *PHI = *I;
606    if (PHI->isUnused() || !PHI->isPHIDef())
607      continue;
608    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
609    // Conservatively return true instead of scanning huge predecessor lists.
610    if (PHIMBB->pred_size() > 100)
611      return true;
612    for (MachineBasicBlock::const_pred_iterator
613         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
614      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
615        return true;
616  }
617  return false;
618}
619
620float
621LiveIntervals::getSpillWeight(bool isDef, bool isUse, BlockFrequency freq) {
622  const float Scale = 1.0f / BlockFrequency::getEntryFrequency();
623  return (isDef + isUse) * (freq.getFrequency() * Scale);
624}
625
626LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
627                                                  MachineInstr* startInst) {
628  LiveInterval& Interval = createEmptyInterval(reg);
629  VNInfo* VN = Interval.getNextValue(
630    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
631    getVNInfoAllocator());
632  LiveRange LR(
633     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
634     getMBBEndIdx(startInst->getParent()), VN);
635  Interval.addRange(LR);
636
637  return LR;
638}
639
640
641//===----------------------------------------------------------------------===//
642//                          Register mask functions
643//===----------------------------------------------------------------------===//
644
645bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
646                                             BitVector &UsableRegs) {
647  if (LI.empty())
648    return false;
649  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
650
651  // Use a smaller arrays for local live ranges.
652  ArrayRef<SlotIndex> Slots;
653  ArrayRef<const uint32_t*> Bits;
654  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
655    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
656    Bits = getRegMaskBitsInBlock(MBB->getNumber());
657  } else {
658    Slots = getRegMaskSlots();
659    Bits = getRegMaskBits();
660  }
661
662  // We are going to enumerate all the register mask slots contained in LI.
663  // Start with a binary search of RegMaskSlots to find a starting point.
664  ArrayRef<SlotIndex>::iterator SlotI =
665    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
666  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
667
668  // No slots in range, LI begins after the last call.
669  if (SlotI == SlotE)
670    return false;
671
672  bool Found = false;
673  for (;;) {
674    assert(*SlotI >= LiveI->start);
675    // Loop over all slots overlapping this segment.
676    while (*SlotI < LiveI->end) {
677      // *SlotI overlaps LI. Collect mask bits.
678      if (!Found) {
679        // This is the first overlap. Initialize UsableRegs to all ones.
680        UsableRegs.clear();
681        UsableRegs.resize(TRI->getNumRegs(), true);
682        Found = true;
683      }
684      // Remove usable registers clobbered by this mask.
685      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
686      if (++SlotI == SlotE)
687        return Found;
688    }
689    // *SlotI is beyond the current LI segment.
690    LiveI = LI.advanceTo(LiveI, *SlotI);
691    if (LiveI == LiveE)
692      return Found;
693    // Advance SlotI until it overlaps.
694    while (*SlotI < LiveI->start)
695      if (++SlotI == SlotE)
696        return Found;
697  }
698}
699
700//===----------------------------------------------------------------------===//
701//                         IntervalUpdate class.
702//===----------------------------------------------------------------------===//
703
704// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
705class LiveIntervals::HMEditor {
706private:
707  LiveIntervals& LIS;
708  const MachineRegisterInfo& MRI;
709  const TargetRegisterInfo& TRI;
710  SlotIndex OldIdx;
711  SlotIndex NewIdx;
712  SmallPtrSet<LiveInterval*, 8> Updated;
713  bool UpdateFlags;
714
715public:
716  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
717           const TargetRegisterInfo& TRI,
718           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
719    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
720      UpdateFlags(UpdateFlags) {}
721
722  // FIXME: UpdateFlags is a workaround that creates live intervals for all
723  // physregs, even those that aren't needed for regalloc, in order to update
724  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
725  // flags, and postRA passes will use a live register utility instead.
726  LiveInterval *getRegUnitLI(unsigned Unit) {
727    if (UpdateFlags)
728      return &LIS.getRegUnit(Unit);
729    return LIS.getCachedRegUnit(Unit);
730  }
731
732  /// Update all live ranges touched by MI, assuming a move from OldIdx to
733  /// NewIdx.
734  void updateAllRanges(MachineInstr *MI) {
735    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
736    bool hasRegMask = false;
737    for (MIOperands MO(MI); MO.isValid(); ++MO) {
738      if (MO->isRegMask())
739        hasRegMask = true;
740      if (!MO->isReg())
741        continue;
742      // Aggressively clear all kill flags.
743      // They are reinserted by VirtRegRewriter.
744      if (MO->isUse())
745        MO->setIsKill(false);
746
747      unsigned Reg = MO->getReg();
748      if (!Reg)
749        continue;
750      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
751        updateRange(LIS.getInterval(Reg));
752        continue;
753      }
754
755      // For physregs, only update the regunits that actually have a
756      // precomputed live range.
757      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
758        if (LiveInterval *LI = getRegUnitLI(*Units))
759          updateRange(*LI);
760    }
761    if (hasRegMask)
762      updateRegMaskSlots();
763  }
764
765private:
766  /// Update a single live range, assuming an instruction has been moved from
767  /// OldIdx to NewIdx.
768  void updateRange(LiveInterval &LI) {
769    if (!Updated.insert(&LI))
770      return;
771    DEBUG({
772      dbgs() << "     ";
773      if (TargetRegisterInfo::isVirtualRegister(LI.reg))
774        dbgs() << PrintReg(LI.reg);
775      else
776        dbgs() << PrintRegUnit(LI.reg, &TRI);
777      dbgs() << ":\t" << LI << '\n';
778    });
779    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
780      handleMoveDown(LI);
781    else
782      handleMoveUp(LI);
783    DEBUG(dbgs() << "        -->\t" << LI << '\n');
784    LI.verify();
785  }
786
787  /// Update LI to reflect an instruction has been moved downwards from OldIdx
788  /// to NewIdx.
789  ///
790  /// 1. Live def at OldIdx:
791  ///    Move def to NewIdx, assert endpoint after NewIdx.
792  ///
793  /// 2. Live def at OldIdx, killed at NewIdx:
794  ///    Change to dead def at NewIdx.
795  ///    (Happens when bundling def+kill together).
796  ///
797  /// 3. Dead def at OldIdx:
798  ///    Move def to NewIdx, possibly across another live value.
799  ///
800  /// 4. Def at OldIdx AND at NewIdx:
801  ///    Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
802  ///    (Happens when bundling multiple defs together).
803  ///
804  /// 5. Value read at OldIdx, killed before NewIdx:
805  ///    Extend kill to NewIdx.
806  ///
807  void handleMoveDown(LiveInterval &LI) {
808    // First look for a kill at OldIdx.
809    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
810    LiveInterval::iterator E = LI.end();
811    // Is LI even live at OldIdx?
812    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
813      return;
814
815    // Handle a live-in value.
816    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
817      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
818      // If the live-in value already extends to NewIdx, there is nothing to do.
819      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
820        return;
821      // Aggressively remove all kill flags from the old kill point.
822      // Kill flags shouldn't be used while live intervals exist, they will be
823      // reinserted by VirtRegRewriter.
824      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
825        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
826          if (MO->isReg() && MO->isUse())
827            MO->setIsKill(false);
828      // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
829      // overlapping ranges. Case 5 above.
830      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
831      // If this was a kill, there may also be a def. Otherwise we're done.
832      if (!isKill)
833        return;
834      ++I;
835    }
836
837    // Check for a def at OldIdx.
838    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
839      return;
840    // We have a def at OldIdx.
841    VNInfo *DefVNI = I->valno;
842    assert(DefVNI->def == I->start && "Inconsistent def");
843    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
844    // If the defined value extends beyond NewIdx, just move the def down.
845    // This is case 1 above.
846    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
847      I->start = DefVNI->def;
848      return;
849    }
850    // The remaining possibilities are now:
851    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
852    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
853    // In either case, it is possible that there is an existing def at NewIdx.
854    assert((I->end == OldIdx.getDeadSlot() ||
855            SlotIndex::isSameInstr(I->end, NewIdx)) &&
856            "Cannot move def below kill");
857    LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
858    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
859      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
860      // coalesced into that value.
861      assert(NewI->valno != DefVNI && "Multiple defs of value?");
862      LI.removeValNo(DefVNI);
863      return;
864    }
865    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
866    // If the def at OldIdx was dead, we allow it to be moved across other LI
867    // values. The new range should be placed immediately before NewI, move any
868    // intermediate ranges up.
869    assert(NewI != I && "Inconsistent iterators");
870    std::copy(llvm::next(I), NewI, I);
871    *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
872  }
873
874  /// Update LI to reflect an instruction has been moved upwards from OldIdx
875  /// to NewIdx.
876  ///
877  /// 1. Live def at OldIdx:
878  ///    Hoist def to NewIdx.
879  ///
880  /// 2. Dead def at OldIdx:
881  ///    Hoist def+end to NewIdx, possibly move across other values.
882  ///
883  /// 3. Dead def at OldIdx AND existing def at NewIdx:
884  ///    Remove value defined at OldIdx, coalescing it with existing value.
885  ///
886  /// 4. Live def at OldIdx AND existing def at NewIdx:
887  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
888  ///    (Happens when bundling multiple defs together).
889  ///
890  /// 5. Value killed at OldIdx:
891  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
892  ///    OldIdx.
893  ///
894  void handleMoveUp(LiveInterval &LI) {
895    // First look for a kill at OldIdx.
896    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
897    LiveInterval::iterator E = LI.end();
898    // Is LI even live at OldIdx?
899    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
900      return;
901
902    // Handle a live-in value.
903    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
904      // If the live-in value isn't killed here, there is nothing to do.
905      if (!SlotIndex::isSameInstr(OldIdx, I->end))
906        return;
907      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
908      // another use, we need to search for that use. Case 5 above.
909      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
910      ++I;
911      // If OldIdx also defines a value, there couldn't have been another use.
912      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
913        // No def, search for the new kill.
914        // This can never be an early clobber kill since there is no def.
915        llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
916        return;
917      }
918    }
919
920    // Now deal with the def at OldIdx.
921    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
922    VNInfo *DefVNI = I->valno;
923    assert(DefVNI->def == I->start && "Inconsistent def");
924    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
925
926    // Check for an existing def at NewIdx.
927    LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
928    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
929      assert(NewI->valno != DefVNI && "Same value defined more than once?");
930      // There is an existing def at NewIdx.
931      if (I->end.isDead()) {
932        // Case 3: Remove the dead def at OldIdx.
933        LI.removeValNo(DefVNI);
934        return;
935      }
936      // Case 4: Replace def at NewIdx with live def at OldIdx.
937      I->start = DefVNI->def;
938      LI.removeValNo(NewI->valno);
939      return;
940    }
941
942    // There is no existing def at NewIdx. Hoist DefVNI.
943    if (!I->end.isDead()) {
944      // Leave the end point of a live def.
945      I->start = DefVNI->def;
946      return;
947    }
948
949    // DefVNI is a dead def. It may have been moved across other values in LI,
950    // so move I up to NewI. Slide [NewI;I) down one position.
951    std::copy_backward(NewI, I, llvm::next(I));
952    *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
953  }
954
955  void updateRegMaskSlots() {
956    SmallVectorImpl<SlotIndex>::iterator RI =
957      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
958                       OldIdx);
959    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
960           "No RegMask at OldIdx.");
961    *RI = NewIdx.getRegSlot();
962    assert((RI == LIS.RegMaskSlots.begin() ||
963            SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
964            "Cannot move regmask instruction above another call");
965    assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
966            SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
967            "Cannot move regmask instruction below another call");
968  }
969
970  // Return the last use of reg between NewIdx and OldIdx.
971  SlotIndex findLastUseBefore(unsigned Reg) {
972
973    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
974      SlotIndex LastUse = NewIdx;
975      for (MachineRegisterInfo::use_nodbg_iterator
976             UI = MRI.use_nodbg_begin(Reg),
977             UE = MRI.use_nodbg_end();
978           UI != UE; UI.skipInstruction()) {
979        const MachineInstr* MI = &*UI;
980        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
981        if (InstSlot > LastUse && InstSlot < OldIdx)
982          LastUse = InstSlot;
983      }
984      return LastUse;
985    }
986
987    // This is a regunit interval, so scanning the use list could be very
988    // expensive. Scan upwards from OldIdx instead.
989    assert(NewIdx < OldIdx && "Expected upwards move");
990    SlotIndexes *Indexes = LIS.getSlotIndexes();
991    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
992
993    // OldIdx may not correspond to an instruction any longer, so set MII to
994    // point to the next instruction after OldIdx, or MBB->end().
995    MachineBasicBlock::iterator MII = MBB->end();
996    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
997                           Indexes->getNextNonNullIndex(OldIdx)))
998      if (MI->getParent() == MBB)
999        MII = MI;
1000
1001    MachineBasicBlock::iterator Begin = MBB->begin();
1002    while (MII != Begin) {
1003      if ((--MII)->isDebugValue())
1004        continue;
1005      SlotIndex Idx = Indexes->getInstructionIndex(MII);
1006
1007      // Stop searching when NewIdx is reached.
1008      if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1009        return NewIdx;
1010
1011      // Check if MII uses Reg.
1012      for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1013        if (MO->isReg() &&
1014            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1015            TRI.hasRegUnit(MO->getReg(), Reg))
1016          return Idx;
1017    }
1018    // Didn't reach NewIdx. It must be the first instruction in the block.
1019    return NewIdx;
1020  }
1021};
1022
1023void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1024  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1025  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1026  Indexes->removeMachineInstrFromMaps(MI);
1027  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1028  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1029         OldIndex < getMBBEndIdx(MI->getParent()) &&
1030         "Cannot handle moves across basic block boundaries.");
1031
1032  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1033  HME.updateAllRanges(MI);
1034}
1035
1036void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1037                                         MachineInstr* BundleStart,
1038                                         bool UpdateFlags) {
1039  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1040  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1041  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1042  HME.updateAllRanges(MI);
1043}
1044
1045void
1046LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1047                                      MachineBasicBlock::iterator Begin,
1048                                      MachineBasicBlock::iterator End,
1049                                      ArrayRef<unsigned> OrigRegs) {
1050  // Find anchor points, which are at the beginning/end of blocks or at
1051  // instructions that already have indexes.
1052  while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1053    --Begin;
1054  while (End != MBB->end() && !Indexes->hasIndex(End))
1055    ++End;
1056
1057  SlotIndex endIdx;
1058  if (End == MBB->end())
1059    endIdx = getMBBEndIdx(MBB).getPrevSlot();
1060  else
1061    endIdx = getInstructionIndex(End);
1062
1063  Indexes->repairIndexesInRange(MBB, Begin, End);
1064
1065  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1066    --I;
1067    MachineInstr *MI = I;
1068    if (MI->isDebugValue())
1069      continue;
1070    for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1071         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1072      if (MOI->isReg() &&
1073          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1074          !hasInterval(MOI->getReg())) {
1075        createAndComputeVirtRegInterval(MOI->getReg());
1076      }
1077    }
1078  }
1079
1080  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1081    unsigned Reg = OrigRegs[i];
1082    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1083      continue;
1084
1085    LiveInterval &LI = getInterval(Reg);
1086    // FIXME: Should we support undefs that gain defs?
1087    if (!LI.hasAtLeastOneValue())
1088      continue;
1089
1090    LiveInterval::iterator LII = LI.find(endIdx);
1091    SlotIndex lastUseIdx;
1092    if (LII != LI.end() && LII->start < endIdx)
1093      lastUseIdx = LII->end;
1094    else
1095      --LII;
1096
1097    for (MachineBasicBlock::iterator I = End; I != Begin;) {
1098      --I;
1099      MachineInstr *MI = I;
1100      if (MI->isDebugValue())
1101        continue;
1102
1103      SlotIndex instrIdx = getInstructionIndex(MI);
1104      bool isStartValid = getInstructionFromIndex(LII->start);
1105      bool isEndValid = getInstructionFromIndex(LII->end);
1106
1107      // FIXME: This doesn't currently handle early-clobber or multiple removed
1108      // defs inside of the region to repair.
1109      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1110           OE = MI->operands_end(); OI != OE; ++OI) {
1111        const MachineOperand &MO = *OI;
1112        if (!MO.isReg() || MO.getReg() != Reg)
1113          continue;
1114
1115        if (MO.isDef()) {
1116          if (!isStartValid) {
1117            if (LII->end.isDead()) {
1118              SlotIndex prevStart;
1119              if (LII != LI.begin())
1120                prevStart = llvm::prior(LII)->start;
1121
1122              // FIXME: This could be more efficient if there was a removeRange
1123              // method that returned an iterator.
1124              LI.removeRange(*LII, true);
1125              if (prevStart.isValid())
1126                LII = LI.find(prevStart);
1127              else
1128                LII = LI.begin();
1129            } else {
1130              LII->start = instrIdx.getRegSlot();
1131              LII->valno->def = instrIdx.getRegSlot();
1132              if (MO.getSubReg() && !MO.isUndef())
1133                lastUseIdx = instrIdx.getRegSlot();
1134              else
1135                lastUseIdx = SlotIndex();
1136              continue;
1137            }
1138          }
1139
1140          if (!lastUseIdx.isValid()) {
1141            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1142                                          VNInfoAllocator);
1143            LiveRange LR(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI);
1144            LII = LI.addRange(LR);
1145          } else if (LII->start != instrIdx.getRegSlot()) {
1146            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1147                                          VNInfoAllocator);
1148            LiveRange LR(instrIdx.getRegSlot(), lastUseIdx, VNI);
1149            LII = LI.addRange(LR);
1150          }
1151
1152          if (MO.getSubReg() && !MO.isUndef())
1153            lastUseIdx = instrIdx.getRegSlot();
1154          else
1155            lastUseIdx = SlotIndex();
1156        } else if (MO.isUse()) {
1157          // FIXME: This should probably be handled outside of this branch,
1158          // either as part of the def case (for defs inside of the region) or
1159          // after the loop over the region.
1160          if (!isEndValid && !LII->end.isBlock())
1161            LII->end = instrIdx.getRegSlot();
1162          if (!lastUseIdx.isValid())
1163            lastUseIdx = instrIdx.getRegSlot();
1164        }
1165      }
1166    }
1167  }
1168}
1169