LiveIntervalAnalysis.cpp revision d6c3422e3126927840683574a658a0deada903f0
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  static Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  static Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  static Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  static Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  static Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  static cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Coallesce copies (default=true)"),
60                cl::init(true));
61}
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
64  AU.addRequired<LiveVariables>();
65  AU.addPreservedID(PHIEliminationID);
66  AU.addRequiredID(PHIEliminationID);
67  AU.addRequiredID(TwoAddressInstructionPassID);
68  AU.addRequired<LoopInfo>();
69  MachineFunctionPass::getAnalysisUsage(AU);
70}
71
72void LiveIntervals::releaseMemory() {
73  mi2iMap_.clear();
74  i2miMap_.clear();
75  r2iMap_.clear();
76  r2rMap_.clear();
77}
78
79
80static bool isZeroLengthInterval(LiveInterval *li) {
81  for (LiveInterval::Ranges::const_iterator
82         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
83    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
84      return false;
85  return true;
86}
87
88
89/// runOnMachineFunction - Register allocate the whole function
90///
91bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
92  mf_ = &fn;
93  tm_ = &fn.getTarget();
94  mri_ = tm_->getRegisterInfo();
95  tii_ = tm_->getInstrInfo();
96  lv_ = &getAnalysis<LiveVariables>();
97  allocatableRegs_ = mri_->getAllocatableSet(fn);
98  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
99
100  // If this function has any live ins, insert a dummy instruction at the
101  // beginning of the function that we will pretend "defines" the values.  This
102  // is to make the interval analysis simpler by providing a number.
103  if (fn.livein_begin() != fn.livein_end()) {
104    unsigned FirstLiveIn = fn.livein_begin()->first;
105
106    // Find a reg class that contains this live in.
107    const TargetRegisterClass *RC = 0;
108    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
109           E = mri_->regclass_end(); RCI != E; ++RCI)
110      if ((*RCI)->contains(FirstLiveIn)) {
111        RC = *RCI;
112        break;
113      }
114
115    MachineInstr *OldFirstMI = fn.begin()->begin();
116    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
117                       FirstLiveIn, FirstLiveIn, RC);
118    assert(OldFirstMI != fn.begin()->begin() &&
119           "copyRetToReg didn't insert anything!");
120  }
121
122  // Number MachineInstrs and MachineBasicBlocks.
123  // Initialize MBB indexes to a sentinal.
124  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
125
126  unsigned MIIndex = 0;
127  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
128       MBB != E; ++MBB) {
129    // Set the MBB2IdxMap entry for this MBB.
130    MBB2IdxMap[MBB->getNumber()] = MIIndex;
131
132    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
133         I != E; ++I) {
134      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
135      assert(inserted && "multiple MachineInstr -> index mappings");
136      i2miMap_.push_back(I);
137      MIIndex += InstrSlots::NUM;
138    }
139  }
140
141  // Note intervals due to live-in values.
142  if (fn.livein_begin() != fn.livein_end()) {
143    MachineBasicBlock *Entry = fn.begin();
144    for (MachineFunction::livein_iterator I = fn.livein_begin(),
145           E = fn.livein_end(); I != E; ++I) {
146      handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
147                                getOrCreateInterval(I->first), 0);
148      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
149        handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
150                                  getOrCreateInterval(*AS), 0);
151    }
152  }
153
154  computeIntervals();
155
156  numIntervals += getNumIntervals();
157
158  DEBUG(std::cerr << "********** INTERVALS **********\n";
159        for (iterator I = begin(), E = end(); I != E; ++I) {
160          I->second.print(std::cerr, mri_);
161          std::cerr << "\n";
162        });
163
164  // Join (coallesce) intervals if requested.
165  if (EnableJoining) joinIntervals();
166
167  numIntervalsAfter += getNumIntervals();
168
169
170  // perform a final pass over the instructions and compute spill
171  // weights, coalesce virtual registers and remove identity moves.
172  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
173
174  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
175       mbbi != mbbe; ++mbbi) {
176    MachineBasicBlock* mbb = mbbi;
177    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
178
179    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
180         mii != mie; ) {
181      // if the move will be an identity move delete it
182      unsigned srcReg, dstReg, RegRep;
183      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
184          (RegRep = rep(srcReg)) == rep(dstReg)) {
185        // remove from def list
186        getOrCreateInterval(RegRep);
187        RemoveMachineInstrFromMaps(mii);
188        mii = mbbi->erase(mii);
189        ++numPeep;
190      }
191      else {
192        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
193          const MachineOperand &mop = mii->getOperand(i);
194          if (mop.isRegister() && mop.getReg() &&
195              MRegisterInfo::isVirtualRegister(mop.getReg())) {
196            // replace register with representative register
197            unsigned reg = rep(mop.getReg());
198            mii->getOperand(i).setReg(reg);
199
200            LiveInterval &RegInt = getInterval(reg);
201            RegInt.weight +=
202              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
203          }
204        }
205        ++mii;
206      }
207    }
208  }
209
210
211  for (iterator I = begin(), E = end(); I != E; ++I) {
212    LiveInterval &LI = I->second;
213    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
214      // If the live interval length is essentially zero, i.e. in every live
215      // range the use follows def immediately, it doesn't make sense to spill
216      // it and hope it will be easier to allocate for this li.
217      if (isZeroLengthInterval(&LI))
218        LI.weight = HUGE_VALF;
219
220      // Divide the weight of the interval by its size.  This encourages
221      // spilling of intervals that are large and have few uses, and
222      // discourages spilling of small intervals with many uses.
223      unsigned Size = 0;
224      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
225        Size += II->end - II->start;
226
227      LI.weight /= Size;
228    }
229  }
230
231  DEBUG(dump());
232  return true;
233}
234
235/// print - Implement the dump method.
236void LiveIntervals::print(std::ostream &O, const Module* ) const {
237  O << "********** INTERVALS **********\n";
238  for (const_iterator I = begin(), E = end(); I != E; ++I) {
239    I->second.print(std::cerr, mri_);
240    std::cerr << "\n";
241  }
242
243  O << "********** MACHINEINSTRS **********\n";
244  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
245       mbbi != mbbe; ++mbbi) {
246    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
247    for (MachineBasicBlock::iterator mii = mbbi->begin(),
248           mie = mbbi->end(); mii != mie; ++mii) {
249      O << getInstructionIndex(mii) << '\t' << *mii;
250    }
251  }
252}
253
254std::vector<LiveInterval*> LiveIntervals::
255addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
256  // since this is called after the analysis is done we don't know if
257  // LiveVariables is available
258  lv_ = getAnalysisToUpdate<LiveVariables>();
259
260  std::vector<LiveInterval*> added;
261
262  assert(li.weight != HUGE_VALF &&
263         "attempt to spill already spilled interval!");
264
265  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: ";
266        li.print(std::cerr, mri_); std::cerr << '\n');
267
268  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
269
270  for (LiveInterval::Ranges::const_iterator
271         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
272    unsigned index = getBaseIndex(i->start);
273    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
274    for (; index != end; index += InstrSlots::NUM) {
275      // skip deleted instructions
276      while (index != end && !getInstructionFromIndex(index))
277        index += InstrSlots::NUM;
278      if (index == end) break;
279
280      MachineInstr *MI = getInstructionFromIndex(index);
281
282    RestartInstruction:
283      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
284        MachineOperand& mop = MI->getOperand(i);
285        if (mop.isRegister() && mop.getReg() == li.reg) {
286          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
287            // Attempt to fold the memory reference into the instruction.  If we
288            // can do this, we don't need to insert spill code.
289            if (lv_)
290              lv_->instructionChanged(MI, fmi);
291            MachineBasicBlock &MBB = *MI->getParent();
292            vrm.virtFolded(li.reg, MI, i, fmi);
293            mi2iMap_.erase(MI);
294            i2miMap_[index/InstrSlots::NUM] = fmi;
295            mi2iMap_[fmi] = index;
296            MI = MBB.insert(MBB.erase(MI), fmi);
297            ++numFolded;
298            // Folding the load/store can completely change the instruction in
299            // unpredictable ways, rescan it from the beginning.
300            goto RestartInstruction;
301          } else {
302            // Create a new virtual register for the spill interval.
303            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
304
305            // Scan all of the operands of this instruction rewriting operands
306            // to use NewVReg instead of li.reg as appropriate.  We do this for
307            // two reasons:
308            //
309            //   1. If the instr reads the same spilled vreg multiple times, we
310            //      want to reuse the NewVReg.
311            //   2. If the instr is a two-addr instruction, we are required to
312            //      keep the src/dst regs pinned.
313            //
314            // Keep track of whether we replace a use and/or def so that we can
315            // create the spill interval with the appropriate range.
316            mop.setReg(NewVReg);
317
318            bool HasUse = mop.isUse();
319            bool HasDef = mop.isDef();
320            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
321              if (MI->getOperand(j).isReg() &&
322                  MI->getOperand(j).getReg() == li.reg) {
323                MI->getOperand(j).setReg(NewVReg);
324                HasUse |= MI->getOperand(j).isUse();
325                HasDef |= MI->getOperand(j).isDef();
326              }
327            }
328
329            // create a new register for this spill
330            vrm.grow();
331            vrm.assignVirt2StackSlot(NewVReg, slot);
332            LiveInterval &nI = getOrCreateInterval(NewVReg);
333            assert(nI.empty());
334
335            // the spill weight is now infinity as it
336            // cannot be spilled again
337            nI.weight = HUGE_VALF;
338
339            if (HasUse) {
340              LiveRange LR(getLoadIndex(index), getUseIndex(index),
341                           nI.getNextValue(~0U, 0));
342              DEBUG(std::cerr << " +" << LR);
343              nI.addRange(LR);
344            }
345            if (HasDef) {
346              LiveRange LR(getDefIndex(index), getStoreIndex(index),
347                           nI.getNextValue(~0U, 0));
348              DEBUG(std::cerr << " +" << LR);
349              nI.addRange(LR);
350            }
351
352            added.push_back(&nI);
353
354            // update live variables if it is available
355            if (lv_)
356              lv_->addVirtualRegisterKilled(NewVReg, MI);
357
358            DEBUG(std::cerr << "\t\t\t\tadded new interval: ";
359                  nI.print(std::cerr, mri_); std::cerr << '\n');
360          }
361        }
362      }
363    }
364  }
365
366  return added;
367}
368
369void LiveIntervals::printRegName(unsigned reg) const {
370  if (MRegisterInfo::isPhysicalRegister(reg))
371    std::cerr << mri_->getName(reg);
372  else
373    std::cerr << "%reg" << reg;
374}
375
376/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
377/// two addr elimination.
378static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
379                                const TargetInstrInfo *TII) {
380  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
381    MachineOperand &MO1 = MI->getOperand(i);
382    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
383      for (unsigned j = i+1; j < e; ++j) {
384        MachineOperand &MO2 = MI->getOperand(j);
385        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
386            TII->getOperandConstraint(MI->getOpcode(), j,
387                                      TargetInstrInfo::TIED_TO) == (int)i)
388          return true;
389      }
390    }
391  }
392  return false;
393}
394
395void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
396                                             MachineBasicBlock::iterator mi,
397                                             unsigned MIIdx,
398                                             LiveInterval &interval) {
399  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
400  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
401
402  // Virtual registers may be defined multiple times (due to phi
403  // elimination and 2-addr elimination).  Much of what we do only has to be
404  // done once for the vreg.  We use an empty interval to detect the first
405  // time we see a vreg.
406  if (interval.empty()) {
407    // Get the Idx of the defining instructions.
408    unsigned defIndex = getDefIndex(MIIdx);
409
410    unsigned ValNum;
411    unsigned SrcReg, DstReg;
412    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
413      ValNum = interval.getNextValue(~0U, 0);
414    else
415      ValNum = interval.getNextValue(defIndex, SrcReg);
416
417    assert(ValNum == 0 && "First value in interval is not 0?");
418    ValNum = 0;  // Clue in the optimizer.
419
420    // Loop over all of the blocks that the vreg is defined in.  There are
421    // two cases we have to handle here.  The most common case is a vreg
422    // whose lifetime is contained within a basic block.  In this case there
423    // will be a single kill, in MBB, which comes after the definition.
424    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
425      // FIXME: what about dead vars?
426      unsigned killIdx;
427      if (vi.Kills[0] != mi)
428        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
429      else
430        killIdx = defIndex+1;
431
432      // If the kill happens after the definition, we have an intra-block
433      // live range.
434      if (killIdx > defIndex) {
435        assert(vi.AliveBlocks.empty() &&
436               "Shouldn't be alive across any blocks!");
437        LiveRange LR(defIndex, killIdx, ValNum);
438        interval.addRange(LR);
439        DEBUG(std::cerr << " +" << LR << "\n");
440        return;
441      }
442    }
443
444    // The other case we handle is when a virtual register lives to the end
445    // of the defining block, potentially live across some blocks, then is
446    // live into some number of blocks, but gets killed.  Start by adding a
447    // range that goes from this definition to the end of the defining block.
448    LiveRange NewLR(defIndex,
449                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
450                    ValNum);
451    DEBUG(std::cerr << " +" << NewLR);
452    interval.addRange(NewLR);
453
454    // Iterate over all of the blocks that the variable is completely
455    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
456    // live interval.
457    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
458      if (vi.AliveBlocks[i]) {
459        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
460        if (!MBB->empty()) {
461          LiveRange LR(getMBBStartIdx(i),
462                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
463                       ValNum);
464          interval.addRange(LR);
465          DEBUG(std::cerr << " +" << LR);
466        }
467      }
468    }
469
470    // Finally, this virtual register is live from the start of any killing
471    // block to the 'use' slot of the killing instruction.
472    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
473      MachineInstr *Kill = vi.Kills[i];
474      LiveRange LR(getMBBStartIdx(Kill->getParent()),
475                   getUseIndex(getInstructionIndex(Kill))+1,
476                   ValNum);
477      interval.addRange(LR);
478      DEBUG(std::cerr << " +" << LR);
479    }
480
481  } else {
482    // If this is the second time we see a virtual register definition, it
483    // must be due to phi elimination or two addr elimination.  If this is
484    // the result of two address elimination, then the vreg is one of the
485    // def-and-use register operand.
486    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
487      // If this is a two-address definition, then we have already processed
488      // the live range.  The only problem is that we didn't realize there
489      // are actually two values in the live interval.  Because of this we
490      // need to take the LiveRegion that defines this register and split it
491      // into two values.
492      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
493      unsigned RedefIndex = getDefIndex(MIIdx);
494
495      // Delete the initial value, which should be short and continuous,
496      // because the 2-addr copy must be in the same MBB as the redef.
497      interval.removeRange(DefIndex, RedefIndex);
498
499      // Two-address vregs should always only be redefined once.  This means
500      // that at this point, there should be exactly one value number in it.
501      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
502
503      // The new value number (#1) is defined by the instruction we claimed
504      // defined value #0.
505      unsigned ValNo = interval.getNextValue(0, 0);
506      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
507
508      // Value#0 is now defined by the 2-addr instruction.
509      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
510
511      // Add the new live interval which replaces the range for the input copy.
512      LiveRange LR(DefIndex, RedefIndex, ValNo);
513      DEBUG(std::cerr << " replace range with " << LR);
514      interval.addRange(LR);
515
516      // If this redefinition is dead, we need to add a dummy unit live
517      // range covering the def slot.
518      if (lv_->RegisterDefIsDead(mi, interval.reg))
519        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
520
521      DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
522
523    } else {
524      // Otherwise, this must be because of phi elimination.  If this is the
525      // first redefinition of the vreg that we have seen, go back and change
526      // the live range in the PHI block to be a different value number.
527      if (interval.containsOneValue()) {
528        assert(vi.Kills.size() == 1 &&
529               "PHI elimination vreg should have one kill, the PHI itself!");
530
531        // Remove the old range that we now know has an incorrect number.
532        MachineInstr *Killer = vi.Kills[0];
533        unsigned Start = getMBBStartIdx(Killer->getParent());
534        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
535        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: ";
536              interval.print(std::cerr, mri_); std::cerr << "\n");
537        interval.removeRange(Start, End);
538        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
539
540        // Replace the interval with one of a NEW value number.  Note that this
541        // value number isn't actually defined by an instruction, weird huh? :)
542        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
543        DEBUG(std::cerr << " replace range with " << LR);
544        interval.addRange(LR);
545        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
546      }
547
548      // In the case of PHI elimination, each variable definition is only
549      // live until the end of the block.  We've already taken care of the
550      // rest of the live range.
551      unsigned defIndex = getDefIndex(MIIdx);
552
553      unsigned ValNum;
554      unsigned SrcReg, DstReg;
555      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
556        ValNum = interval.getNextValue(~0U, 0);
557      else
558        ValNum = interval.getNextValue(defIndex, SrcReg);
559
560      LiveRange LR(defIndex,
561                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
562      interval.addRange(LR);
563      DEBUG(std::cerr << " +" << LR);
564    }
565  }
566
567  DEBUG(std::cerr << '\n');
568}
569
570void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
571                                              MachineBasicBlock::iterator mi,
572                                              unsigned MIIdx,
573                                              LiveInterval &interval,
574                                              unsigned SrcReg) {
575  // A physical register cannot be live across basic block, so its
576  // lifetime must end somewhere in its defining basic block.
577  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
578  typedef LiveVariables::killed_iterator KillIter;
579
580  unsigned baseIndex = MIIdx;
581  unsigned start = getDefIndex(baseIndex);
582  unsigned end = start;
583
584  // If it is not used after definition, it is considered dead at
585  // the instruction defining it. Hence its interval is:
586  // [defSlot(def), defSlot(def)+1)
587  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
588    DEBUG(std::cerr << " dead");
589    end = getDefIndex(start) + 1;
590    goto exit;
591  }
592
593  // If it is not dead on definition, it must be killed by a
594  // subsequent instruction. Hence its interval is:
595  // [defSlot(def), useSlot(kill)+1)
596  while (++mi != MBB->end()) {
597    baseIndex += InstrSlots::NUM;
598    if (lv_->KillsRegister(mi, interval.reg)) {
599      DEBUG(std::cerr << " killed");
600      end = getUseIndex(baseIndex) + 1;
601      goto exit;
602    }
603  }
604
605  // The only case we should have a dead physreg here without a killing or
606  // instruction where we know it's dead is if it is live-in to the function
607  // and never used.
608  assert(!SrcReg && "physreg was not killed in defining block!");
609  end = getDefIndex(start) + 1;  // It's dead.
610
611exit:
612  assert(start < end && "did not find end of interval?");
613
614  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
615                                                 SrcReg));
616  interval.addRange(LR);
617  DEBUG(std::cerr << " +" << LR << '\n');
618}
619
620void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
621                                      MachineBasicBlock::iterator MI,
622                                      unsigned MIIdx,
623                                      unsigned reg) {
624  if (MRegisterInfo::isVirtualRegister(reg))
625    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
626  else if (allocatableRegs_[reg]) {
627    unsigned SrcReg, DstReg;
628    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
629      SrcReg = 0;
630    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
631    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
632      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
633  }
634}
635
636/// computeIntervals - computes the live intervals for virtual
637/// registers. for some ordering of the machine instructions [1,N] a
638/// live interval is an interval [i, j) where 1 <= i <= j < N for
639/// which a variable is live
640void LiveIntervals::computeIntervals() {
641  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
642  DEBUG(std::cerr << "********** Function: "
643        << ((Value*)mf_->getFunction())->getName() << '\n');
644  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
645
646  // Track the index of the current machine instr.
647  unsigned MIIndex = 0;
648  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
649       MBBI != E; ++MBBI) {
650    MachineBasicBlock *MBB = MBBI;
651    DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
652
653    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
654    if (IgnoreFirstInstr) {
655      ++MI;
656      IgnoreFirstInstr = false;
657      MIIndex += InstrSlots::NUM;
658    }
659
660    for (; MI != miEnd; ++MI) {
661      const TargetInstrDescriptor &TID = tii_->get(MI->getOpcode());
662      DEBUG(std::cerr << MIIndex << "\t" << *MI);
663
664      // Handle implicit defs.
665      if (TID.ImplicitDefs) {
666        for (const unsigned *ImpDef = TID.ImplicitDefs; *ImpDef; ++ImpDef)
667          handleRegisterDef(MBB, MI, MIIndex, *ImpDef);
668      }
669
670      // Handle explicit defs.
671      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
672        MachineOperand &MO = MI->getOperand(i);
673        // handle register defs - build intervals
674        if (MO.isRegister() && MO.getReg() && MO.isDef())
675          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
676      }
677
678      MIIndex += InstrSlots::NUM;
679    }
680  }
681}
682
683/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
684/// being the source and IntB being the dest, thus this defines a value number
685/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
686/// see if we can merge these two pieces of B into a single value number,
687/// eliminating a copy.  For example:
688///
689///  A3 = B0
690///    ...
691///  B1 = A3      <- this copy
692///
693/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
694/// value number to be replaced with B0 (which simplifies the B liveinterval).
695///
696/// This returns true if an interval was modified.
697///
698bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
699                                         MachineInstr *CopyMI) {
700  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
701
702  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
703  // the example above.
704  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
705  unsigned BValNo = BLR->ValId;
706
707  // Get the location that B is defined at.  Two options: either this value has
708  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
709  // can't process it.
710  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
711  if (BValNoDefIdx == ~0U) return false;
712  assert(BValNoDefIdx == CopyIdx &&
713         "Copy doesn't define the value?");
714
715  // AValNo is the value number in A that defines the copy, A0 in the example.
716  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
717  unsigned AValNo = AValLR->ValId;
718
719  // If AValNo is defined as a copy from IntB, we can potentially process this.
720
721  // Get the instruction that defines this value number.
722  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
723  if (!SrcReg) return false;  // Not defined by a copy.
724
725  // If the value number is not defined by a copy instruction, ignore it.
726
727  // If the source register comes from an interval other than IntB, we can't
728  // handle this.
729  if (rep(SrcReg) != IntB.reg) return false;
730
731  // Get the LiveRange in IntB that this value number starts with.
732  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
733  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
734
735  // Make sure that the end of the live range is inside the same block as
736  // CopyMI.
737  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
738  if (!ValLREndInst ||
739      ValLREndInst->getParent() != CopyMI->getParent()) return false;
740
741  // Okay, we now know that ValLR ends in the same block that the CopyMI
742  // live-range starts.  If there are no intervening live ranges between them in
743  // IntB, we can merge them.
744  if (ValLR+1 != BLR) return false;
745
746  DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_));
747
748  // We are about to delete CopyMI, so need to remove it as the 'instruction
749  // that defines this value #'.
750  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
751
752  // Okay, we can merge them.  We need to insert a new liverange:
753  // [ValLR.end, BLR.begin) of either value number, then we merge the
754  // two value numbers.
755  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
756  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
757
758  // If the IntB live range is assigned to a physical register, and if that
759  // physreg has aliases,
760  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
761    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
762      LiveInterval &AliasLI = getInterval(*AS);
763      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
764                                 AliasLI.getNextValue(~0U, 0)));
765    }
766  }
767
768  // Okay, merge "B1" into the same value number as "B0".
769  if (BValNo != ValLR->ValId)
770    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
771  DEBUG(std::cerr << "   result = "; IntB.print(std::cerr, mri_);
772        std::cerr << "\n");
773
774  // Finally, delete the copy instruction.
775  RemoveMachineInstrFromMaps(CopyMI);
776  CopyMI->eraseFromParent();
777  ++numPeep;
778  return true;
779}
780
781
782/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
783/// which are the src/dst of the copy instruction CopyMI.  This returns true
784/// if the copy was successfully coallesced away, or if it is never possible
785/// to coallesce these this copy, due to register constraints.  It returns
786/// false if it is not currently possible to coallesce this interval, but
787/// it may be possible if other things get coallesced.
788bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
789                             unsigned SrcReg, unsigned DstReg) {
790
791
792  DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI);
793
794  // Get representative registers.
795  SrcReg = rep(SrcReg);
796  DstReg = rep(DstReg);
797
798  // If they are already joined we continue.
799  if (SrcReg == DstReg) {
800    DEBUG(std::cerr << "\tCopy already coallesced.\n");
801    return true;  // Not coallescable.
802  }
803
804  // If they are both physical registers, we cannot join them.
805  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
806      MRegisterInfo::isPhysicalRegister(DstReg)) {
807    DEBUG(std::cerr << "\tCan not coallesce physregs.\n");
808    return true;  // Not coallescable.
809  }
810
811  // We only join virtual registers with allocatable physical registers.
812  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
813    DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n");
814    return true;  // Not coallescable.
815  }
816  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
817    DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n");
818    return true;  // Not coallescable.
819  }
820
821  // If they are not of the same register class, we cannot join them.
822  if (differingRegisterClasses(SrcReg, DstReg)) {
823    DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n");
824    return true;  // Not coallescable.
825  }
826
827  LiveInterval &SrcInt = getInterval(SrcReg);
828  LiveInterval &DestInt = getInterval(DstReg);
829  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
830         "Register mapping is horribly broken!");
831
832  DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_);
833        std::cerr << " and "; DestInt.print(std::cerr, mri_);
834        std::cerr << ": ");
835
836  // Okay, attempt to join these two intervals.  On failure, this returns false.
837  // Otherwise, if one of the intervals being joined is a physreg, this method
838  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
839  // been modified, so we can use this information below to update aliases.
840  if (!JoinIntervals(DestInt, SrcInt)) {
841    // Coallescing failed.
842
843    // If we can eliminate the copy without merging the live ranges, do so now.
844    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
845      return true;
846
847    // Otherwise, we are unable to join the intervals.
848    DEBUG(std::cerr << "Interference!\n");
849    return false;
850  }
851
852  bool Swapped = SrcReg == DestInt.reg;
853  if (Swapped)
854    std::swap(SrcReg, DstReg);
855  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
856         "LiveInterval::join didn't work right!");
857
858  // If we're about to merge live ranges into a physical register live range,
859  // we have to update any aliased register's live ranges to indicate that they
860  // have clobbered values for this range.
861  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
862    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
863      getInterval(*AS).MergeInClobberRanges(SrcInt);
864  }
865
866  DEBUG(std::cerr << "\n\t\tJoined.  Result = "; DestInt.print(std::cerr, mri_);
867        std::cerr << "\n");
868
869  // If the intervals were swapped by Join, swap them back so that the register
870  // mapping (in the r2i map) is correct.
871  if (Swapped) SrcInt.swap(DestInt);
872  r2iMap_.erase(SrcReg);
873  r2rMap_[SrcReg] = DstReg;
874
875  // Finally, delete the copy instruction.
876  RemoveMachineInstrFromMaps(CopyMI);
877  CopyMI->eraseFromParent();
878  ++numPeep;
879  ++numJoins;
880  return true;
881}
882
883/// ComputeUltimateVN - Assuming we are going to join two live intervals,
884/// compute what the resultant value numbers for each value in the input two
885/// ranges will be.  This is complicated by copies between the two which can
886/// and will commonly cause multiple value numbers to be merged into one.
887///
888/// VN is the value number that we're trying to resolve.  InstDefiningValue
889/// keeps track of the new InstDefiningValue assignment for the result
890/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
891/// whether a value in this or other is a copy from the opposite set.
892/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
893/// already been assigned.
894///
895/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
896/// contains the value number the copy is from.
897///
898static unsigned ComputeUltimateVN(unsigned VN,
899                                  SmallVector<std::pair<unsigned,
900                                                unsigned>, 16> &ValueNumberInfo,
901                                  SmallVector<int, 16> &ThisFromOther,
902                                  SmallVector<int, 16> &OtherFromThis,
903                                  SmallVector<int, 16> &ThisValNoAssignments,
904                                  SmallVector<int, 16> &OtherValNoAssignments,
905                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
906  // If the VN has already been computed, just return it.
907  if (ThisValNoAssignments[VN] >= 0)
908    return ThisValNoAssignments[VN];
909//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
910
911  // If this val is not a copy from the other val, then it must be a new value
912  // number in the destination.
913  int OtherValNo = ThisFromOther[VN];
914  if (OtherValNo == -1) {
915    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
916    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
917  }
918
919  // Otherwise, this *is* a copy from the RHS.  If the other side has already
920  // been computed, return it.
921  if (OtherValNoAssignments[OtherValNo] >= 0)
922    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
923
924  // Mark this value number as currently being computed, then ask what the
925  // ultimate value # of the other value is.
926  ThisValNoAssignments[VN] = -2;
927  unsigned UltimateVN =
928    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
929                      OtherFromThis, ThisFromOther,
930                      OtherValNoAssignments, ThisValNoAssignments,
931                      OtherLI, ThisLI);
932  return ThisValNoAssignments[VN] = UltimateVN;
933}
934
935static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
936  return std::find(V.begin(), V.end(), Val) != V.end();
937}
938
939/// SimpleJoin - Attempt to joint the specified interval into this one. The
940/// caller of this method must guarantee that the RHS only contains a single
941/// value number and that the RHS is not defined by a copy from this
942/// interval.  This returns false if the intervals are not joinable, or it
943/// joins them and returns true.
944bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
945  assert(RHS.containsOneValue());
946
947  // Some number (potentially more than one) value numbers in the current
948  // interval may be defined as copies from the RHS.  Scan the overlapping
949  // portions of the LHS and RHS, keeping track of this and looking for
950  // overlapping live ranges that are NOT defined as copies.  If these exist, we
951  // cannot coallesce.
952
953  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
954  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
955
956  if (LHSIt->start < RHSIt->start) {
957    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
958    if (LHSIt != LHS.begin()) --LHSIt;
959  } else if (RHSIt->start < LHSIt->start) {
960    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
961    if (RHSIt != RHS.begin()) --RHSIt;
962  }
963
964  SmallVector<unsigned, 8> EliminatedLHSVals;
965
966  while (1) {
967    // Determine if these live intervals overlap.
968    bool Overlaps = false;
969    if (LHSIt->start <= RHSIt->start)
970      Overlaps = LHSIt->end > RHSIt->start;
971    else
972      Overlaps = RHSIt->end > LHSIt->start;
973
974    // If the live intervals overlap, there are two interesting cases: if the
975    // LHS interval is defined by a copy from the RHS, it's ok and we record
976    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
977    // coallesce these live ranges and we bail out.
978    if (Overlaps) {
979      // If we haven't already recorded that this value # is safe, check it.
980      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
981        // Copy from the RHS?
982        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
983        if (rep(SrcReg) != RHS.reg)
984          return false;    // Nope, bail out.
985
986        EliminatedLHSVals.push_back(LHSIt->ValId);
987      }
988
989      // We know this entire LHS live range is okay, so skip it now.
990      if (++LHSIt == LHSEnd) break;
991      continue;
992    }
993
994    if (LHSIt->end < RHSIt->end) {
995      if (++LHSIt == LHSEnd) break;
996    } else {
997      // One interesting case to check here.  It's possible that we have
998      // something like "X3 = Y" which defines a new value number in the LHS,
999      // and is the last use of this liverange of the RHS.  In this case, we
1000      // want to notice this copy (so that it gets coallesced away) even though
1001      // the live ranges don't actually overlap.
1002      if (LHSIt->start == RHSIt->end) {
1003        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1004          // We already know that this value number is going to be merged in
1005          // if coallescing succeeds.  Just skip the liverange.
1006          if (++LHSIt == LHSEnd) break;
1007        } else {
1008          // Otherwise, if this is a copy from the RHS, mark it as being merged
1009          // in.
1010          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1011            EliminatedLHSVals.push_back(LHSIt->ValId);
1012
1013            // We know this entire LHS live range is okay, so skip it now.
1014            if (++LHSIt == LHSEnd) break;
1015          }
1016        }
1017      }
1018
1019      if (++RHSIt == RHSEnd) break;
1020    }
1021  }
1022
1023  // If we got here, we know that the coallescing will be successful and that
1024  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1025  // the most common case is that EliminatedLHSVals has a single number, we
1026  // optimize for it: if there is more than one value, we merge them all into
1027  // the lowest numbered one, then handle the interval as if we were merging
1028  // with one value number.
1029  unsigned LHSValNo;
1030  if (EliminatedLHSVals.size() > 1) {
1031    // Loop through all the equal value numbers merging them into the smallest
1032    // one.
1033    unsigned Smallest = EliminatedLHSVals[0];
1034    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1035      if (EliminatedLHSVals[i] < Smallest) {
1036        // Merge the current notion of the smallest into the smaller one.
1037        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1038        Smallest = EliminatedLHSVals[i];
1039      } else {
1040        // Merge into the smallest.
1041        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1042      }
1043    }
1044    LHSValNo = Smallest;
1045  } else {
1046    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1047    LHSValNo = EliminatedLHSVals[0];
1048  }
1049
1050  // Okay, now that there is a single LHS value number that we're merging the
1051  // RHS into, update the value number info for the LHS to indicate that the
1052  // value number is defined where the RHS value number was.
1053  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1054
1055  // Okay, the final step is to loop over the RHS live intervals, adding them to
1056  // the LHS.
1057  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1058  LHS.weight += RHS.weight;
1059
1060  return true;
1061}
1062
1063/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1064/// returns false.  Otherwise, if one of the intervals being joined is a
1065/// physreg, this method always canonicalizes LHS to be it.  The output
1066/// "RHS" will not have been modified, so we can use this information
1067/// below to update aliases.
1068bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1069  // Compute the final value assignment, assuming that the live ranges can be
1070  // coallesced.
1071  SmallVector<int, 16> LHSValNoAssignments;
1072  SmallVector<int, 16> RHSValNoAssignments;
1073  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1074
1075  // Compute ultimate value numbers for the LHS and RHS values.
1076  if (RHS.containsOneValue()) {
1077    // Copies from a liveinterval with a single value are simple to handle and
1078    // very common, handle the special case here.  This is important, because
1079    // often RHS is small and LHS is large (e.g. a physreg).
1080
1081    // Find out if the RHS is defined as a copy from some value in the LHS.
1082    int RHSValID = -1;
1083    std::pair<unsigned,unsigned> RHSValNoInfo;
1084    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1085    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1086      // If RHS is not defined as a copy from the LHS, we can use simpler and
1087      // faster checks to see if the live ranges are coallescable.  This joiner
1088      // can't swap the LHS/RHS intervals though.
1089      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1090        return SimpleJoin(LHS, RHS);
1091      } else {
1092        RHSValNoInfo = RHS.getValNumInfo(0);
1093      }
1094    } else {
1095      // It was defined as a copy from the LHS, find out what value # it is.
1096      unsigned ValInst = RHS.getInstForValNum(0);
1097      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1098      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1099    }
1100
1101    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1102    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1103    ValueNumberInfo.resize(LHS.getNumValNums());
1104
1105    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1106    // should now get updated.
1107    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1108      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1109        if (rep(LHSSrcReg) != RHS.reg) {
1110          // If this is not a copy from the RHS, its value number will be
1111          // unmodified by the coallescing.
1112          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1113          LHSValNoAssignments[VN] = VN;
1114        } else if (RHSValID == -1) {
1115          // Otherwise, it is a copy from the RHS, and we don't already have a
1116          // value# for it.  Keep the current value number, but remember it.
1117          LHSValNoAssignments[VN] = RHSValID = VN;
1118          ValueNumberInfo[VN] = RHSValNoInfo;
1119        } else {
1120          // Otherwise, use the specified value #.
1121          LHSValNoAssignments[VN] = RHSValID;
1122          if (VN != (unsigned)RHSValID)
1123            ValueNumberInfo[VN].first = ~1U;
1124          else
1125            ValueNumberInfo[VN] = RHSValNoInfo;
1126        }
1127      } else {
1128        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1129        LHSValNoAssignments[VN] = VN;
1130      }
1131    }
1132
1133    assert(RHSValID != -1 && "Didn't find value #?");
1134    RHSValNoAssignments[0] = RHSValID;
1135
1136  } else {
1137    // Loop over the value numbers of the LHS, seeing if any are defined from
1138    // the RHS.
1139    SmallVector<int, 16> LHSValsDefinedFromRHS;
1140    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1141    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1142      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1143      if (ValSrcReg == 0)  // Src not defined by a copy?
1144        continue;
1145
1146      // DstReg is known to be a register in the LHS interval.  If the src is
1147      // from the RHS interval, we can use its value #.
1148      if (rep(ValSrcReg) != RHS.reg)
1149        continue;
1150
1151      // Figure out the value # from the RHS.
1152      unsigned ValInst = LHS.getInstForValNum(VN);
1153      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1154    }
1155
1156    // Loop over the value numbers of the RHS, seeing if any are defined from
1157    // the LHS.
1158    SmallVector<int, 16> RHSValsDefinedFromLHS;
1159    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1160    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1161      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1162      if (ValSrcReg == 0)  // Src not defined by a copy?
1163        continue;
1164
1165      // DstReg is known to be a register in the RHS interval.  If the src is
1166      // from the LHS interval, we can use its value #.
1167      if (rep(ValSrcReg) != LHS.reg)
1168        continue;
1169
1170      // Figure out the value # from the LHS.
1171      unsigned ValInst = RHS.getInstForValNum(VN);
1172      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1173    }
1174
1175    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1176    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1177    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1178
1179    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1180      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1181        continue;
1182      ComputeUltimateVN(VN, ValueNumberInfo,
1183                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1184                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1185    }
1186    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1187      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1188        continue;
1189      // If this value number isn't a copy from the LHS, it's a new number.
1190      if (RHSValsDefinedFromLHS[VN] == -1) {
1191        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1192        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1193        continue;
1194      }
1195
1196      ComputeUltimateVN(VN, ValueNumberInfo,
1197                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1198                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1199    }
1200  }
1201
1202  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1203  // interval lists to see if these intervals are coallescable.
1204  LiveInterval::const_iterator I = LHS.begin();
1205  LiveInterval::const_iterator IE = LHS.end();
1206  LiveInterval::const_iterator J = RHS.begin();
1207  LiveInterval::const_iterator JE = RHS.end();
1208
1209  // Skip ahead until the first place of potential sharing.
1210  if (I->start < J->start) {
1211    I = std::upper_bound(I, IE, J->start);
1212    if (I != LHS.begin()) --I;
1213  } else if (J->start < I->start) {
1214    J = std::upper_bound(J, JE, I->start);
1215    if (J != RHS.begin()) --J;
1216  }
1217
1218  while (1) {
1219    // Determine if these two live ranges overlap.
1220    bool Overlaps;
1221    if (I->start < J->start) {
1222      Overlaps = I->end > J->start;
1223    } else {
1224      Overlaps = J->end > I->start;
1225    }
1226
1227    // If so, check value # info to determine if they are really different.
1228    if (Overlaps) {
1229      // If the live range overlap will map to the same value number in the
1230      // result liverange, we can still coallesce them.  If not, we can't.
1231      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1232        return false;
1233    }
1234
1235    if (I->end < J->end) {
1236      ++I;
1237      if (I == IE) break;
1238    } else {
1239      ++J;
1240      if (J == JE) break;
1241    }
1242  }
1243
1244  // If we get here, we know that we can coallesce the live ranges.  Ask the
1245  // intervals to coallesce themselves now.
1246  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1247           ValueNumberInfo);
1248  return true;
1249}
1250
1251
1252namespace {
1253  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1254  // depth of the basic block (the unsigned), and then on the MBB number.
1255  struct DepthMBBCompare {
1256    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1257    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1258      if (LHS.first > RHS.first) return true;   // Deeper loops first
1259      return LHS.first == RHS.first &&
1260        LHS.second->getNumber() < RHS.second->getNumber();
1261    }
1262  };
1263}
1264
1265
1266void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1267                                       std::vector<CopyRec> &TryAgain) {
1268  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
1269
1270  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1271       MII != E;) {
1272    MachineInstr *Inst = MII++;
1273
1274    // If this isn't a copy, we can't join intervals.
1275    unsigned SrcReg, DstReg;
1276    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1277
1278    if (!JoinCopy(Inst, SrcReg, DstReg))
1279      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1280  }
1281}
1282
1283
1284void LiveIntervals::joinIntervals() {
1285  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
1286
1287  std::vector<CopyRec> TryAgainList;
1288
1289  const LoopInfo &LI = getAnalysis<LoopInfo>();
1290  if (LI.begin() == LI.end()) {
1291    // If there are no loops in the function, join intervals in function order.
1292    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1293         I != E; ++I)
1294      CopyCoallesceInMBB(I, TryAgainList);
1295  } else {
1296    // Otherwise, join intervals in inner loops before other intervals.
1297    // Unfortunately we can't just iterate over loop hierarchy here because
1298    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1299    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1300    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1301         I != E; ++I)
1302      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1303
1304    // Sort by loop depth.
1305    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1306
1307    // Finally, join intervals in loop nest order.
1308    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1309      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1310  }
1311
1312  // Joining intervals can allow other intervals to be joined.  Iteratively join
1313  // until we make no progress.
1314  bool ProgressMade = true;
1315  while (ProgressMade) {
1316    ProgressMade = false;
1317
1318    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1319      CopyRec &TheCopy = TryAgainList[i];
1320      if (TheCopy.MI &&
1321          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1322        TheCopy.MI = 0;   // Mark this one as done.
1323        ProgressMade = true;
1324      }
1325    }
1326  }
1327
1328  DEBUG(std::cerr << "*** Register mapping ***\n");
1329  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1330          if (r2rMap_[i]) {
1331            std::cerr << "  reg " << i << " -> ";
1332            printRegName(r2rMap_[i]);
1333            std::cerr << "\n";
1334          });
1335}
1336
1337/// Return true if the two specified registers belong to different register
1338/// classes.  The registers may be either phys or virt regs.
1339bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1340                                             unsigned RegB) const {
1341
1342  // Get the register classes for the first reg.
1343  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1344    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1345           "Shouldn't consider two physregs!");
1346    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1347  }
1348
1349  // Compare against the regclass for the second reg.
1350  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1351  if (MRegisterInfo::isVirtualRegister(RegB))
1352    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1353  else
1354    return !RegClass->contains(RegB);
1355}
1356
1357LiveInterval LiveIntervals::createInterval(unsigned reg) {
1358  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1359                       HUGE_VALF : 0.0F;
1360  return LiveInterval(reg, Weight);
1361}
1362