LiveIntervalAnalysis.cpp revision ef0543689ff90337af358add9dad74a1e23e9d74
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Join compatible live intervals"),
60                cl::init(true));
61};
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
64{
65  AU.addPreserved<LiveVariables>();
66  AU.addRequired<LiveVariables>();
67  AU.addPreservedID(PHIEliminationID);
68  AU.addRequiredID(PHIEliminationID);
69  AU.addRequiredID(TwoAddressInstructionPassID);
70  AU.addRequired<LoopInfo>();
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74void LiveIntervals::releaseMemory()
75{
76  mi2iMap_.clear();
77  i2miMap_.clear();
78  r2iMap_.clear();
79  r2rMap_.clear();
80}
81
82
83/// runOnMachineFunction - Register allocate the whole function
84///
85bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
86  mf_ = &fn;
87  tm_ = &fn.getTarget();
88  mri_ = tm_->getRegisterInfo();
89  lv_ = &getAnalysis<LiveVariables>();
90  allocatableRegs_ = mri_->getAllocatableSet(fn);
91  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
92
93  // number MachineInstrs
94  unsigned miIndex = 0;
95  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
96       mbb != mbbEnd; ++mbb)
97    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
98         mi != miEnd; ++mi) {
99      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
100      assert(inserted && "multiple MachineInstr -> index mappings");
101      i2miMap_.push_back(mi);
102      miIndex += InstrSlots::NUM;
103    }
104
105  computeIntervals();
106
107  numIntervals += getNumIntervals();
108
109#if 1
110  DEBUG(std::cerr << "********** INTERVALS **********\n");
111  DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
112        std::cerr << I->second << "\n");
113#endif
114
115  // join intervals if requested
116  if (EnableJoining) joinIntervals();
117
118  numIntervalsAfter += getNumIntervals();
119
120  // perform a final pass over the instructions and compute spill
121  // weights, coalesce virtual registers and remove identity moves
122  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
123  const TargetInstrInfo& tii = *tm_->getInstrInfo();
124
125  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
126       mbbi != mbbe; ++mbbi) {
127    MachineBasicBlock* mbb = mbbi;
128    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
129
130    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
131         mii != mie; ) {
132      // if the move will be an identity move delete it
133      unsigned srcReg, dstReg, RegRep;
134      if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
135          (RegRep = rep(srcReg)) == rep(dstReg)) {
136        // remove from def list
137        LiveInterval &interval = getOrCreateInterval(RegRep);
138        // remove index -> MachineInstr and
139        // MachineInstr -> index mappings
140        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
141        if (mi2i != mi2iMap_.end()) {
142          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
143          mi2iMap_.erase(mi2i);
144        }
145        mii = mbbi->erase(mii);
146        ++numPeep;
147      }
148      else {
149        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
150          const MachineOperand& mop = mii->getOperand(i);
151          if (mop.isRegister() && mop.getReg() &&
152              MRegisterInfo::isVirtualRegister(mop.getReg())) {
153            // replace register with representative register
154            unsigned reg = rep(mop.getReg());
155            mii->SetMachineOperandReg(i, reg);
156
157            LiveInterval &RegInt = getInterval(reg);
158            RegInt.weight +=
159              (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
160          }
161        }
162        ++mii;
163      }
164    }
165  }
166
167  DEBUG(dump());
168  return true;
169}
170
171/// print - Implement the dump method.
172void LiveIntervals::print(std::ostream &O) const {
173  O << "********** INTERVALS **********\n";
174  for (const_iterator I = begin(), E = end(); I != E; ++I)
175    O << "  " << I->second << "\n";
176
177  O << "********** MACHINEINSTRS **********\n";
178  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
179       mbbi != mbbe; ++mbbi) {
180    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
181    for (MachineBasicBlock::iterator mii = mbbi->begin(),
182           mie = mbbi->end(); mii != mie; ++mii) {
183      O << getInstructionIndex(mii) << '\t' << *mii;
184    }
185  }
186}
187
188std::vector<LiveInterval*> LiveIntervals::
189addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
190  // since this is called after the analysis is done we don't know if
191  // LiveVariables is available
192  lv_ = getAnalysisToUpdate<LiveVariables>();
193
194  std::vector<LiveInterval*> added;
195
196  assert(li.weight != HUGE_VAL &&
197         "attempt to spill already spilled interval!");
198
199  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
200        << li << '\n');
201
202  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
203
204  for (LiveInterval::Ranges::const_iterator
205         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
206    unsigned index = getBaseIndex(i->start);
207    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
208    for (; index != end; index += InstrSlots::NUM) {
209      // skip deleted instructions
210      while (index != end && !getInstructionFromIndex(index))
211        index += InstrSlots::NUM;
212      if (index == end) break;
213
214      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
215
216    for_operand:
217      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
218        MachineOperand& mop = mi->getOperand(i);
219        if (mop.isRegister() && mop.getReg() == li.reg) {
220          // First thing, attempt to fold the memory reference into the
221          // instruction.  If we can do this, we don't need to insert spill
222          // code.
223          if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) {
224            if (lv_)
225              lv_->instructionChanged(mi, fmi);
226            vrm.virtFolded(li.reg, mi, fmi);
227            mi2iMap_.erase(mi);
228            i2miMap_[index/InstrSlots::NUM] = fmi;
229            mi2iMap_[fmi] = index;
230            MachineBasicBlock &MBB = *mi->getParent();
231            mi = MBB.insert(MBB.erase(mi), fmi);
232            ++numFolded;
233
234            // Folding the load/store can completely change the instruction in
235            // unpredictable ways, rescan it from the beginning.
236            goto for_operand;
237          } else {
238            // This is tricky. We need to add information in the interval about
239            // the spill code so we have to use our extra load/store slots.
240            //
241            // If we have a use we are going to have a load so we start the
242            // interval from the load slot onwards. Otherwise we start from the
243            // def slot.
244            unsigned start = (mop.isUse() ?
245                              getLoadIndex(index) :
246                              getDefIndex(index));
247            // If we have a def we are going to have a store right after it so
248            // we end the interval after the use of the next
249            // instruction. Otherwise we end after the use of this instruction.
250            unsigned end = 1 + (mop.isDef() ?
251                                getStoreIndex(index) :
252                                getUseIndex(index));
253
254            // create a new register for this spill
255            unsigned nReg = mf_->getSSARegMap()->createVirtualRegister(rc);
256            mi->SetMachineOperandReg(i, nReg);
257            vrm.grow();
258            vrm.assignVirt2StackSlot(nReg, slot);
259            LiveInterval& nI = getOrCreateInterval(nReg);
260            assert(nI.empty());
261
262            // the spill weight is now infinity as it
263            // cannot be spilled again
264            nI.weight = HUGE_VAL;
265            LiveRange LR(start, end, nI.getNextValue());
266            DEBUG(std::cerr << " +" << LR);
267            nI.addRange(LR);
268            added.push_back(&nI);
269
270            // update live variables if it is available
271            if (lv_)
272              lv_->addVirtualRegisterKilled(nReg, mi);
273            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
274          }
275        }
276      }
277    }
278  }
279
280  return added;
281}
282
283void LiveIntervals::printRegName(unsigned reg) const
284{
285  if (MRegisterInfo::isPhysicalRegister(reg))
286    std::cerr << mri_->getName(reg);
287  else
288    std::cerr << "%reg" << reg;
289}
290
291void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
292                                             MachineBasicBlock::iterator mi,
293                                             LiveInterval& interval)
294{
295  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
296  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
297
298  // Virtual registers may be defined multiple times (due to phi
299  // elimination and 2-addr elimination).  Much of what we do only has to be
300  // done once for the vreg.  We use an empty interval to detect the first
301  // time we see a vreg.
302  if (interval.empty()) {
303    // Get the Idx of the defining instructions.
304    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
305
306    unsigned ValNum = interval.getNextValue();
307    assert(ValNum == 0 && "First value in interval is not 0?");
308    ValNum = 0;  // Clue in the optimizer.
309
310    // Loop over all of the blocks that the vreg is defined in.  There are
311    // two cases we have to handle here.  The most common case is a vreg
312    // whose lifetime is contained within a basic block.  In this case there
313    // will be a single kill, in MBB, which comes after the definition.
314    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
315      // FIXME: what about dead vars?
316      unsigned killIdx;
317      if (vi.Kills[0] != mi)
318        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
319      else
320        killIdx = defIndex+1;
321
322      // If the kill happens after the definition, we have an intra-block
323      // live range.
324      if (killIdx > defIndex) {
325        assert(vi.AliveBlocks.empty() &&
326               "Shouldn't be alive across any blocks!");
327        LiveRange LR(defIndex, killIdx, ValNum);
328        interval.addRange(LR);
329        DEBUG(std::cerr << " +" << LR << "\n");
330        return;
331      }
332    }
333
334    // The other case we handle is when a virtual register lives to the end
335    // of the defining block, potentially live across some blocks, then is
336    // live into some number of blocks, but gets killed.  Start by adding a
337    // range that goes from this definition to the end of the defining block.
338    LiveRange NewLR(defIndex,
339                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
340                    ValNum);
341    DEBUG(std::cerr << " +" << NewLR);
342    interval.addRange(NewLR);
343
344    // Iterate over all of the blocks that the variable is completely
345    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
346    // live interval.
347    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
348      if (vi.AliveBlocks[i]) {
349        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
350        if (!mbb->empty()) {
351          LiveRange LR(getInstructionIndex(&mbb->front()),
352                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
353                       ValNum);
354          interval.addRange(LR);
355          DEBUG(std::cerr << " +" << LR);
356        }
357      }
358    }
359
360    // Finally, this virtual register is live from the start of any killing
361    // block to the 'use' slot of the killing instruction.
362    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
363      MachineInstr *Kill = vi.Kills[i];
364      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
365                   getUseIndex(getInstructionIndex(Kill))+1,
366                   ValNum);
367      interval.addRange(LR);
368      DEBUG(std::cerr << " +" << LR);
369    }
370
371  } else {
372    // If this is the second time we see a virtual register definition, it
373    // must be due to phi elimination or two addr elimination.  If this is
374    // the result of two address elimination, then the vreg is the first
375    // operand, and is a def-and-use.
376    if (mi->getOperand(0).isRegister() &&
377        mi->getOperand(0).getReg() == interval.reg &&
378        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
379      // If this is a two-address definition, then we have already processed
380      // the live range.  The only problem is that we didn't realize there
381      // are actually two values in the live interval.  Because of this we
382      // need to take the LiveRegion that defines this register and split it
383      // into two values.
384      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
385      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
386
387      // Delete the initial value, which should be short and continuous,
388      // becuase the 2-addr copy must be in the same MBB as the redef.
389      interval.removeRange(DefIndex, RedefIndex);
390
391      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
392      DEBUG(std::cerr << " replace range with " << LR);
393      interval.addRange(LR);
394
395      // If this redefinition is dead, we need to add a dummy unit live
396      // range covering the def slot.
397      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
398             E = lv_->dead_end(mi); KI != E; ++KI)
399        if (KI->second == interval.reg) {
400          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
401          break;
402        }
403
404      DEBUG(std::cerr << "RESULT: " << interval);
405
406    } else {
407      // Otherwise, this must be because of phi elimination.  If this is the
408      // first redefinition of the vreg that we have seen, go back and change
409      // the live range in the PHI block to be a different value number.
410      if (interval.containsOneValue()) {
411        assert(vi.Kills.size() == 1 &&
412               "PHI elimination vreg should have one kill, the PHI itself!");
413
414        // Remove the old range that we now know has an incorrect number.
415        MachineInstr *Killer = vi.Kills[0];
416        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
417        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
418        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
419              << interval << "\n");
420        interval.removeRange(Start, End);
421        DEBUG(std::cerr << "RESULT: " << interval);
422
423        // Replace the interval with one of a NEW value number.
424        LiveRange LR(Start, End, interval.getNextValue());
425        DEBUG(std::cerr << " replace range with " << LR);
426        interval.addRange(LR);
427        DEBUG(std::cerr << "RESULT: " << interval);
428      }
429
430      // In the case of PHI elimination, each variable definition is only
431      // live until the end of the block.  We've already taken care of the
432      // rest of the live range.
433      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
434      LiveRange LR(defIndex,
435                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
436                   interval.getNextValue());
437      interval.addRange(LR);
438      DEBUG(std::cerr << " +" << LR);
439    }
440  }
441
442  DEBUG(std::cerr << '\n');
443}
444
445void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
446                                              MachineBasicBlock::iterator mi,
447                                              LiveInterval& interval)
448{
449  // A physical register cannot be live across basic block, so its
450  // lifetime must end somewhere in its defining basic block.
451  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
452  typedef LiveVariables::killed_iterator KillIter;
453
454  unsigned baseIndex = getInstructionIndex(mi);
455  unsigned start = getDefIndex(baseIndex);
456  unsigned end = start;
457
458  // If it is not used after definition, it is considered dead at
459  // the instruction defining it. Hence its interval is:
460  // [defSlot(def), defSlot(def)+1)
461  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
462       ki != ke; ++ki) {
463    if (interval.reg == ki->second) {
464      DEBUG(std::cerr << " dead");
465      end = getDefIndex(start) + 1;
466      goto exit;
467    }
468  }
469
470  // If it is not dead on definition, it must be killed by a
471  // subsequent instruction. Hence its interval is:
472  // [defSlot(def), useSlot(kill)+1)
473  while (true) {
474    ++mi;
475    assert(mi != MBB->end() && "physreg was not killed in defining block!");
476    baseIndex += InstrSlots::NUM;
477    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
478         ki != ke; ++ki) {
479      if (interval.reg == ki->second) {
480        DEBUG(std::cerr << " killed");
481        end = getUseIndex(baseIndex) + 1;
482        goto exit;
483      }
484    }
485  }
486
487exit:
488  assert(start < end && "did not find end of interval?");
489  LiveRange LR(start, end, interval.getNextValue());
490  interval.addRange(LR);
491  DEBUG(std::cerr << " +" << LR << '\n');
492}
493
494void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
495                                      MachineBasicBlock::iterator MI,
496                                      unsigned reg) {
497  if (MRegisterInfo::isVirtualRegister(reg))
498    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
499  else if (allocatableRegs_[reg]) {
500    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
501    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
502      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
503  }
504}
505
506/// computeIntervals - computes the live intervals for virtual
507/// registers. for some ordering of the machine instructions [1,N] a
508/// live interval is an interval [i, j) where 1 <= i <= j < N for
509/// which a variable is live
510void LiveIntervals::computeIntervals()
511{
512  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
513  DEBUG(std::cerr << "********** Function: "
514        << ((Value*)mf_->getFunction())->getName() << '\n');
515
516  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
517       I != E; ++I) {
518    MachineBasicBlock* mbb = I;
519    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
520
521    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
522         mi != miEnd; ++mi) {
523      const TargetInstrDescriptor& tid =
524        tm_->getInstrInfo()->get(mi->getOpcode());
525      DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
526
527      // handle implicit defs
528      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
529        handleRegisterDef(mbb, mi, *id);
530
531      // handle explicit defs
532      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
533        MachineOperand& mop = mi->getOperand(i);
534        // handle register defs - build intervals
535        if (mop.isRegister() && mop.getReg() && mop.isDef())
536          handleRegisterDef(mbb, mi, mop.getReg());
537      }
538    }
539  }
540}
541
542void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
543  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
544  const TargetInstrInfo &TII = *tm_->getInstrInfo();
545
546  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
547       mi != mie; ++mi) {
548    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
549
550    // we only join virtual registers with allocatable
551    // physical registers since we do not have liveness information
552    // on not allocatable physical registers
553    unsigned regA, regB;
554    if (TII.isMoveInstr(*mi, regA, regB) &&
555        (MRegisterInfo::isVirtualRegister(regA) || allocatableRegs_[regA]) &&
556        (MRegisterInfo::isVirtualRegister(regB) || allocatableRegs_[regB])) {
557
558      // Get representative registers.
559      regA = rep(regA);
560      regB = rep(regB);
561
562      // If they are already joined we continue.
563      if (regA == regB)
564        continue;
565
566      // If they are both physical registers, we cannot join them.
567      if (MRegisterInfo::isPhysicalRegister(regA) &&
568          MRegisterInfo::isPhysicalRegister(regB))
569        continue;
570
571      // If they are not of the same register class, we cannot join them.
572      if (differingRegisterClasses(regA, regB))
573        continue;
574
575      LiveInterval &IntA = getInterval(regA);
576      LiveInterval &IntB = getInterval(regB);
577      assert(IntA.reg == regA && IntB.reg == regB &&
578             "Register mapping is horribly broken!");
579
580      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
581
582      // If two intervals contain a single value and are joined by a copy, it
583      // does not matter if the intervals overlap, they can always be joined.
584      bool TriviallyJoinable =
585        IntA.containsOneValue() && IntB.containsOneValue();
586
587      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
588      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
589          !overlapsAliases(&IntA, &IntB)) {
590        IntB.join(IntA, MIDefIdx);
591
592        if (!MRegisterInfo::isPhysicalRegister(regA)) {
593          r2iMap_.erase(regA);
594          r2rMap_[regA] = regB;
595        } else {
596          // Otherwise merge the data structures the other way so we don't lose
597          // the physreg information.
598          r2rMap_[regB] = regA;
599          IntB.reg = regA;
600          IntA.swap(IntB);
601          r2iMap_.erase(regB);
602        }
603        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
604        ++numJoins;
605      } else {
606        DEBUG(std::cerr << "Interference!\n");
607      }
608    }
609  }
610}
611
612namespace {
613  // DepthMBBCompare - Comparison predicate that sort first based on the loop
614  // depth of the basic block (the unsigned), and then on the MBB number.
615  struct DepthMBBCompare {
616    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
617    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
618      if (LHS.first > RHS.first) return true;   // Deeper loops first
619      return LHS.first == RHS.first &&
620        LHS.second->getNumber() < RHS.second->getNumber();
621    }
622  };
623}
624
625void LiveIntervals::joinIntervals() {
626  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
627
628  const LoopInfo &LI = getAnalysis<LoopInfo>();
629  if (LI.begin() == LI.end()) {
630    // If there are no loops in the function, join intervals in function order.
631    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
632         I != E; ++I)
633      joinIntervalsInMachineBB(I);
634  } else {
635    // Otherwise, join intervals in inner loops before other intervals.
636    // Unfortunately we can't just iterate over loop hierarchy here because
637    // there may be more MBB's than BB's.  Collect MBB's for sorting.
638    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
639    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
640         I != E; ++I)
641      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
642
643    // Sort by loop depth.
644    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
645
646    // Finally, join intervals in loop nest order.
647    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
648      joinIntervalsInMachineBB(MBBs[i].second);
649  }
650
651  DEBUG(std::cerr << "*** Register mapping ***\n");
652  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
653          if (r2rMap_[i])
654             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
655}
656
657/// Return true if the two specified registers belong to different register
658/// classes.  The registers may be either phys or virt regs.
659bool LiveIntervals::differingRegisterClasses(unsigned RegA,
660                                             unsigned RegB) const {
661  const TargetRegisterClass *RegClass;
662
663  // Get the register classes for the first reg.
664  if (MRegisterInfo::isVirtualRegister(RegA))
665    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
666  else
667    RegClass = mri_->getRegClass(RegA);
668
669  // Compare against the regclass for the second reg.
670  if (MRegisterInfo::isVirtualRegister(RegB))
671    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
672  else
673    return !RegClass->contains(RegB);
674}
675
676bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
677                                    const LiveInterval *RHS) const {
678  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
679    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
680      return false;   // vreg-vreg merge has no aliases!
681    std::swap(LHS, RHS);
682  }
683
684  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
685         MRegisterInfo::isVirtualRegister(RHS->reg) &&
686         "first interval must describe a physical register");
687
688  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
689    if (RHS->overlaps(getInterval(*AS)))
690      return true;
691
692  return false;
693}
694
695LiveInterval LiveIntervals::createInterval(unsigned reg) {
696  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
697  return LiveInterval(reg, Weight);
698}
699