FastISel.cpp revision bf0ca2b477e761e2c81f6c36d6c7bec055933b15
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuilder.h"
57#include "FunctionLoweringInfo.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg =
97      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
98  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
99    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100
101    if (!Reg) {
102      const APFloat &Flt = CF->getValueAPF();
103      EVT IntVT = TLI.getPointerTy();
104
105      uint64_t x[2];
106      uint32_t IntBitWidth = IntVT.getSizeInBits();
107      bool isExact;
108      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
109                                APFloat::rmTowardZero, &isExact);
110      if (isExact) {
111        APInt IntVal(IntBitWidth, 2, x);
112
113        unsigned IntegerReg =
114          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
115        if (IntegerReg != 0)
116          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117      }
118    }
119  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
120    if (!SelectOperator(CE, CE->getOpcode())) return 0;
121    Reg = LocalValueMap[CE];
122  } else if (isa<UndefValue>(V)) {
123    Reg = createResultReg(TLI.getRegClassFor(VT));
124    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
125  }
126
127  // If target-independent code couldn't handle the value, give target-specific
128  // code a try.
129  if (!Reg && isa<Constant>(V))
130    Reg = TargetMaterializeConstant(cast<Constant>(V));
131
132  // Don't cache constant materializations in the general ValueMap.
133  // To do so would require tracking what uses they dominate.
134  if (Reg != 0)
135    LocalValueMap[V] = Reg;
136  return Reg;
137}
138
139unsigned FastISel::lookUpRegForValue(Value *V) {
140  // Look up the value to see if we already have a register for it. We
141  // cache values defined by Instructions across blocks, and other values
142  // only locally. This is because Instructions already have the SSA
143  // def-dominatess-use requirement enforced.
144  if (ValueMap.count(V))
145    return ValueMap[V];
146  return LocalValueMap[V];
147}
148
149/// UpdateValueMap - Update the value map to include the new mapping for this
150/// instruction, or insert an extra copy to get the result in a previous
151/// determined register.
152/// NOTE: This is only necessary because we might select a block that uses
153/// a value before we select the block that defines the value.  It might be
154/// possible to fix this by selecting blocks in reverse postorder.
155unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
156  if (!isa<Instruction>(I)) {
157    LocalValueMap[I] = Reg;
158    return Reg;
159  }
160
161  unsigned &AssignedReg = ValueMap[I];
162  if (AssignedReg == 0)
163    AssignedReg = Reg;
164  else if (Reg != AssignedReg) {
165    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
166    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
167                     Reg, RegClass, RegClass);
168  }
169  return AssignedReg;
170}
171
172unsigned FastISel::getRegForGEPIndex(Value *Idx) {
173  unsigned IdxN = getRegForValue(Idx);
174  if (IdxN == 0)
175    // Unhandled operand. Halt "fast" selection and bail.
176    return 0;
177
178  // If the index is smaller or larger than intptr_t, truncate or extend it.
179  MVT PtrVT = TLI.getPointerTy();
180  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
181  if (IdxVT.bitsLT(PtrVT))
182    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
183  else if (IdxVT.bitsGT(PtrVT))
184    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT VT = TLI.getPointerTy();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint:
329  case Intrinsic::dbg_region_start:
330  case Intrinsic::dbg_region_end:
331  case Intrinsic::dbg_func_start:
332    // FIXME - Remove this instructions once the dust settles.
333    return true;
334  case Intrinsic::dbg_declare: {
335    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
336    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None)||!DW
337        || !DW->ShouldEmitDwarfDebug())
338      return true;
339
340    Value *Address = DI->getAddress();
341    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
342      Address = BCI->getOperand(0);
343    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
344    // Don't handle byval struct arguments or VLAs, for example.
345    if (!AI) break;
346    DenseMap<const AllocaInst*, int>::iterator SI =
347      StaticAllocaMap.find(AI);
348    if (SI == StaticAllocaMap.end()) break; // VLAs.
349    int FI = SI->second;
350    if (MMI) {
351      if (MDNode *Dbg = DI->getMetadata("dbg"))
352        MMI->setVariableDbgInfo(DI->getVariable(), FI, Dbg);
353    }
354    return true;
355  }
356  case Intrinsic::eh_exception: {
357    EVT VT = TLI.getValueType(I->getType());
358    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
359    default: break;
360    case TargetLowering::Expand: {
361      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
362      unsigned Reg = TLI.getExceptionAddressRegister();
363      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
364      unsigned ResultReg = createResultReg(RC);
365      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
366                                           Reg, RC, RC);
367      assert(InsertedCopy && "Can't copy address registers!");
368      InsertedCopy = InsertedCopy;
369      UpdateValueMap(I, ResultReg);
370      return true;
371    }
372    }
373    break;
374  }
375  case Intrinsic::eh_selector: {
376    EVT VT = TLI.getValueType(I->getType());
377    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
378    default: break;
379    case TargetLowering::Expand: {
380      if (MMI) {
381        if (MBB->isLandingPad())
382          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
383        else {
384#ifndef NDEBUG
385          CatchInfoLost.insert(cast<CallInst>(I));
386#endif
387          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
388          unsigned Reg = TLI.getExceptionSelectorRegister();
389          if (Reg) MBB->addLiveIn(Reg);
390        }
391
392        unsigned Reg = TLI.getExceptionSelectorRegister();
393        EVT SrcVT = TLI.getPointerTy();
394        const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
395        unsigned ResultReg = createResultReg(RC);
396        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
397                                             RC, RC);
398        assert(InsertedCopy && "Can't copy address registers!");
399        InsertedCopy = InsertedCopy;
400
401        // Cast the register to the type of the selector.
402        if (SrcVT.bitsGT(MVT::i32))
403          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
404                                 ResultReg);
405        else if (SrcVT.bitsLT(MVT::i32))
406          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
407                                 ISD::SIGN_EXTEND, ResultReg);
408        if (ResultReg == 0)
409          // Unhandled operand. Halt "fast" selection and bail.
410          return false;
411
412        UpdateValueMap(I, ResultReg);
413      } else {
414        unsigned ResultReg =
415          getRegForValue(Constant::getNullValue(I->getType()));
416        UpdateValueMap(I, ResultReg);
417      }
418      return true;
419    }
420    }
421    break;
422  }
423  }
424  return false;
425}
426
427bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
428  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
429  EVT DstVT = TLI.getValueType(I->getType());
430
431  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
432      DstVT == MVT::Other || !DstVT.isSimple())
433    // Unhandled type. Halt "fast" selection and bail.
434    return false;
435
436  // Check if the destination type is legal. Or as a special case,
437  // it may be i1 if we're doing a truncate because that's
438  // easy and somewhat common.
439  if (!TLI.isTypeLegal(DstVT))
440    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
441      // Unhandled type. Halt "fast" selection and bail.
442      return false;
443
444  // Check if the source operand is legal. Or as a special case,
445  // it may be i1 if we're doing zero-extension because that's
446  // easy and somewhat common.
447  if (!TLI.isTypeLegal(SrcVT))
448    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
449      // Unhandled type. Halt "fast" selection and bail.
450      return false;
451
452  unsigned InputReg = getRegForValue(I->getOperand(0));
453  if (!InputReg)
454    // Unhandled operand.  Halt "fast" selection and bail.
455    return false;
456
457  // If the operand is i1, arrange for the high bits in the register to be zero.
458  if (SrcVT == MVT::i1) {
459   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
460   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
461   if (!InputReg)
462     return false;
463  }
464  // If the result is i1, truncate to the target's type for i1 first.
465  if (DstVT == MVT::i1)
466    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
467
468  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
469                                  DstVT.getSimpleVT(),
470                                  Opcode,
471                                  InputReg);
472  if (!ResultReg)
473    return false;
474
475  UpdateValueMap(I, ResultReg);
476  return true;
477}
478
479bool FastISel::SelectBitCast(User *I) {
480  // If the bitcast doesn't change the type, just use the operand value.
481  if (I->getType() == I->getOperand(0)->getType()) {
482    unsigned Reg = getRegForValue(I->getOperand(0));
483    if (Reg == 0)
484      return false;
485    UpdateValueMap(I, Reg);
486    return true;
487  }
488
489  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
490  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
491  EVT DstVT = TLI.getValueType(I->getType());
492
493  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
494      DstVT == MVT::Other || !DstVT.isSimple() ||
495      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
496    // Unhandled type. Halt "fast" selection and bail.
497    return false;
498
499  unsigned Op0 = getRegForValue(I->getOperand(0));
500  if (Op0 == 0)
501    // Unhandled operand. Halt "fast" selection and bail.
502    return false;
503
504  // First, try to perform the bitcast by inserting a reg-reg copy.
505  unsigned ResultReg = 0;
506  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
507    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
508    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
509    ResultReg = createResultReg(DstClass);
510
511    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
512                                         Op0, DstClass, SrcClass);
513    if (!InsertedCopy)
514      ResultReg = 0;
515  }
516
517  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
518  if (!ResultReg)
519    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
520                           ISD::BIT_CONVERT, Op0);
521
522  if (!ResultReg)
523    return false;
524
525  UpdateValueMap(I, ResultReg);
526  return true;
527}
528
529bool
530FastISel::SelectInstruction(Instruction *I) {
531  // First, try doing target-independent selection.
532  if (SelectOperator(I, I->getOpcode()))
533    return true;
534
535  // Next, try calling the target to attempt to handle the instruction.
536  if (TargetSelectInstruction(I))
537    return true;
538
539  return false;
540}
541
542/// FastEmitBranch - Emit an unconditional branch to the given block,
543/// unless it is the immediate (fall-through) successor, and update
544/// the CFG.
545void
546FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
547  if (MBB->isLayoutSuccessor(MSucc)) {
548    // The unconditional fall-through case, which needs no instructions.
549  } else {
550    // The unconditional branch case.
551    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
552  }
553  MBB->addSuccessor(MSucc);
554}
555
556/// SelectFNeg - Emit an FNeg operation.
557///
558bool
559FastISel::SelectFNeg(User *I) {
560  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
561  if (OpReg == 0) return false;
562
563  // If the target has ISD::FNEG, use it.
564  EVT VT = TLI.getValueType(I->getType());
565  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
566                                  ISD::FNEG, OpReg);
567  if (ResultReg != 0) {
568    UpdateValueMap(I, ResultReg);
569    return true;
570  }
571
572  // Bitcast the value to integer, twiddle the sign bit with xor,
573  // and then bitcast it back to floating-point.
574  if (VT.getSizeInBits() > 64) return false;
575  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
576  if (!TLI.isTypeLegal(IntVT))
577    return false;
578
579  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
580                               ISD::BIT_CONVERT, OpReg);
581  if (IntReg == 0)
582    return false;
583
584  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
585                                       UINT64_C(1) << (VT.getSizeInBits()-1),
586                                       IntVT.getSimpleVT());
587  if (IntResultReg == 0)
588    return false;
589
590  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
591                         ISD::BIT_CONVERT, IntResultReg);
592  if (ResultReg == 0)
593    return false;
594
595  UpdateValueMap(I, ResultReg);
596  return true;
597}
598
599bool
600FastISel::SelectOperator(User *I, unsigned Opcode) {
601  switch (Opcode) {
602  case Instruction::Add:
603    return SelectBinaryOp(I, ISD::ADD);
604  case Instruction::FAdd:
605    return SelectBinaryOp(I, ISD::FADD);
606  case Instruction::Sub:
607    return SelectBinaryOp(I, ISD::SUB);
608  case Instruction::FSub:
609    // FNeg is currently represented in LLVM IR as a special case of FSub.
610    if (BinaryOperator::isFNeg(I))
611      return SelectFNeg(I);
612    return SelectBinaryOp(I, ISD::FSUB);
613  case Instruction::Mul:
614    return SelectBinaryOp(I, ISD::MUL);
615  case Instruction::FMul:
616    return SelectBinaryOp(I, ISD::FMUL);
617  case Instruction::SDiv:
618    return SelectBinaryOp(I, ISD::SDIV);
619  case Instruction::UDiv:
620    return SelectBinaryOp(I, ISD::UDIV);
621  case Instruction::FDiv:
622    return SelectBinaryOp(I, ISD::FDIV);
623  case Instruction::SRem:
624    return SelectBinaryOp(I, ISD::SREM);
625  case Instruction::URem:
626    return SelectBinaryOp(I, ISD::UREM);
627  case Instruction::FRem:
628    return SelectBinaryOp(I, ISD::FREM);
629  case Instruction::Shl:
630    return SelectBinaryOp(I, ISD::SHL);
631  case Instruction::LShr:
632    return SelectBinaryOp(I, ISD::SRL);
633  case Instruction::AShr:
634    return SelectBinaryOp(I, ISD::SRA);
635  case Instruction::And:
636    return SelectBinaryOp(I, ISD::AND);
637  case Instruction::Or:
638    return SelectBinaryOp(I, ISD::OR);
639  case Instruction::Xor:
640    return SelectBinaryOp(I, ISD::XOR);
641
642  case Instruction::GetElementPtr:
643    return SelectGetElementPtr(I);
644
645  case Instruction::Br: {
646    BranchInst *BI = cast<BranchInst>(I);
647
648    if (BI->isUnconditional()) {
649      BasicBlock *LLVMSucc = BI->getSuccessor(0);
650      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
651      FastEmitBranch(MSucc);
652      return true;
653    }
654
655    // Conditional branches are not handed yet.
656    // Halt "fast" selection and bail.
657    return false;
658  }
659
660  case Instruction::Unreachable:
661    // Nothing to emit.
662    return true;
663
664  case Instruction::PHI:
665    // PHI nodes are already emitted.
666    return true;
667
668  case Instruction::Alloca:
669    // FunctionLowering has the static-sized case covered.
670    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
671      return true;
672
673    // Dynamic-sized alloca is not handled yet.
674    return false;
675
676  case Instruction::Call:
677    return SelectCall(I);
678
679  case Instruction::BitCast:
680    return SelectBitCast(I);
681
682  case Instruction::FPToSI:
683    return SelectCast(I, ISD::FP_TO_SINT);
684  case Instruction::ZExt:
685    return SelectCast(I, ISD::ZERO_EXTEND);
686  case Instruction::SExt:
687    return SelectCast(I, ISD::SIGN_EXTEND);
688  case Instruction::Trunc:
689    return SelectCast(I, ISD::TRUNCATE);
690  case Instruction::SIToFP:
691    return SelectCast(I, ISD::SINT_TO_FP);
692
693  case Instruction::IntToPtr: // Deliberate fall-through.
694  case Instruction::PtrToInt: {
695    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
696    EVT DstVT = TLI.getValueType(I->getType());
697    if (DstVT.bitsGT(SrcVT))
698      return SelectCast(I, ISD::ZERO_EXTEND);
699    if (DstVT.bitsLT(SrcVT))
700      return SelectCast(I, ISD::TRUNCATE);
701    unsigned Reg = getRegForValue(I->getOperand(0));
702    if (Reg == 0) return false;
703    UpdateValueMap(I, Reg);
704    return true;
705  }
706
707  default:
708    // Unhandled instruction. Halt "fast" selection and bail.
709    return false;
710  }
711}
712
713FastISel::FastISel(MachineFunction &mf,
714                   MachineModuleInfo *mmi,
715                   DwarfWriter *dw,
716                   DenseMap<const Value *, unsigned> &vm,
717                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
718                   DenseMap<const AllocaInst *, int> &am
719#ifndef NDEBUG
720                   , SmallSet<Instruction*, 8> &cil
721#endif
722                   )
723  : MBB(0),
724    ValueMap(vm),
725    MBBMap(bm),
726    StaticAllocaMap(am),
727#ifndef NDEBUG
728    CatchInfoLost(cil),
729#endif
730    MF(mf),
731    MMI(mmi),
732    DW(dw),
733    MRI(MF.getRegInfo()),
734    MFI(*MF.getFrameInfo()),
735    MCP(*MF.getConstantPool()),
736    TM(MF.getTarget()),
737    TD(*TM.getTargetData()),
738    TII(*TM.getInstrInfo()),
739    TLI(*TM.getTargetLowering()) {
740}
741
742FastISel::~FastISel() {}
743
744unsigned FastISel::FastEmit_(MVT, MVT,
745                             ISD::NodeType) {
746  return 0;
747}
748
749unsigned FastISel::FastEmit_r(MVT, MVT,
750                              ISD::NodeType, unsigned /*Op0*/) {
751  return 0;
752}
753
754unsigned FastISel::FastEmit_rr(MVT, MVT,
755                               ISD::NodeType, unsigned /*Op0*/,
756                               unsigned /*Op0*/) {
757  return 0;
758}
759
760unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
761  return 0;
762}
763
764unsigned FastISel::FastEmit_f(MVT, MVT,
765                              ISD::NodeType, ConstantFP * /*FPImm*/) {
766  return 0;
767}
768
769unsigned FastISel::FastEmit_ri(MVT, MVT,
770                               ISD::NodeType, unsigned /*Op0*/,
771                               uint64_t /*Imm*/) {
772  return 0;
773}
774
775unsigned FastISel::FastEmit_rf(MVT, MVT,
776                               ISD::NodeType, unsigned /*Op0*/,
777                               ConstantFP * /*FPImm*/) {
778  return 0;
779}
780
781unsigned FastISel::FastEmit_rri(MVT, MVT,
782                                ISD::NodeType,
783                                unsigned /*Op0*/, unsigned /*Op1*/,
784                                uint64_t /*Imm*/) {
785  return 0;
786}
787
788/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
789/// to emit an instruction with an immediate operand using FastEmit_ri.
790/// If that fails, it materializes the immediate into a register and try
791/// FastEmit_rr instead.
792unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
793                                unsigned Op0, uint64_t Imm,
794                                MVT ImmType) {
795  // First check if immediate type is legal. If not, we can't use the ri form.
796  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
797  if (ResultReg != 0)
798    return ResultReg;
799  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
800  if (MaterialReg == 0)
801    return 0;
802  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
803}
804
805/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
806/// to emit an instruction with a floating-point immediate operand using
807/// FastEmit_rf. If that fails, it materializes the immediate into a register
808/// and try FastEmit_rr instead.
809unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
810                                unsigned Op0, ConstantFP *FPImm,
811                                MVT ImmType) {
812  // First check if immediate type is legal. If not, we can't use the rf form.
813  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
814  if (ResultReg != 0)
815    return ResultReg;
816
817  // Materialize the constant in a register.
818  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
819  if (MaterialReg == 0) {
820    // If the target doesn't have a way to directly enter a floating-point
821    // value into a register, use an alternate approach.
822    // TODO: The current approach only supports floating-point constants
823    // that can be constructed by conversion from integer values. This should
824    // be replaced by code that creates a load from a constant-pool entry,
825    // which will require some target-specific work.
826    const APFloat &Flt = FPImm->getValueAPF();
827    EVT IntVT = TLI.getPointerTy();
828
829    uint64_t x[2];
830    uint32_t IntBitWidth = IntVT.getSizeInBits();
831    bool isExact;
832    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
833                             APFloat::rmTowardZero, &isExact);
834    if (!isExact)
835      return 0;
836    APInt IntVal(IntBitWidth, 2, x);
837
838    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
839                                     ISD::Constant, IntVal.getZExtValue());
840    if (IntegerReg == 0)
841      return 0;
842    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
843                             ISD::SINT_TO_FP, IntegerReg);
844    if (MaterialReg == 0)
845      return 0;
846  }
847  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
848}
849
850unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
851  return MRI.createVirtualRegister(RC);
852}
853
854unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
855                                 const TargetRegisterClass* RC) {
856  unsigned ResultReg = createResultReg(RC);
857  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
858
859  BuildMI(MBB, DL, II, ResultReg);
860  return ResultReg;
861}
862
863unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
864                                  const TargetRegisterClass *RC,
865                                  unsigned Op0) {
866  unsigned ResultReg = createResultReg(RC);
867  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
868
869  if (II.getNumDefs() >= 1)
870    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
871  else {
872    BuildMI(MBB, DL, II).addReg(Op0);
873    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
874                                         II.ImplicitDefs[0], RC, RC);
875    if (!InsertedCopy)
876      ResultReg = 0;
877  }
878
879  return ResultReg;
880}
881
882unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
883                                   const TargetRegisterClass *RC,
884                                   unsigned Op0, unsigned Op1) {
885  unsigned ResultReg = createResultReg(RC);
886  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
887
888  if (II.getNumDefs() >= 1)
889    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
890  else {
891    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
892    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
893                                         II.ImplicitDefs[0], RC, RC);
894    if (!InsertedCopy)
895      ResultReg = 0;
896  }
897  return ResultReg;
898}
899
900unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
901                                   const TargetRegisterClass *RC,
902                                   unsigned Op0, uint64_t Imm) {
903  unsigned ResultReg = createResultReg(RC);
904  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
905
906  if (II.getNumDefs() >= 1)
907    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
908  else {
909    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
910    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
911                                         II.ImplicitDefs[0], RC, RC);
912    if (!InsertedCopy)
913      ResultReg = 0;
914  }
915  return ResultReg;
916}
917
918unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
919                                   const TargetRegisterClass *RC,
920                                   unsigned Op0, ConstantFP *FPImm) {
921  unsigned ResultReg = createResultReg(RC);
922  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
923
924  if (II.getNumDefs() >= 1)
925    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
926  else {
927    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
928    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
929                                         II.ImplicitDefs[0], RC, RC);
930    if (!InsertedCopy)
931      ResultReg = 0;
932  }
933  return ResultReg;
934}
935
936unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
937                                    const TargetRegisterClass *RC,
938                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
939  unsigned ResultReg = createResultReg(RC);
940  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
941
942  if (II.getNumDefs() >= 1)
943    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
944  else {
945    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
946    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
947                                         II.ImplicitDefs[0], RC, RC);
948    if (!InsertedCopy)
949      ResultReg = 0;
950  }
951  return ResultReg;
952}
953
954unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
955                                  const TargetRegisterClass *RC,
956                                  uint64_t Imm) {
957  unsigned ResultReg = createResultReg(RC);
958  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
959
960  if (II.getNumDefs() >= 1)
961    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
962  else {
963    BuildMI(MBB, DL, II).addImm(Imm);
964    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
965                                         II.ImplicitDefs[0], RC, RC);
966    if (!InsertedCopy)
967      ResultReg = 0;
968  }
969  return ResultReg;
970}
971
972unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
973                                              unsigned Op0, uint32_t Idx) {
974  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
975
976  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
977  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
978
979  if (II.getNumDefs() >= 1)
980    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
981  else {
982    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
983    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
984                                         II.ImplicitDefs[0], RC, RC);
985    if (!InsertedCopy)
986      ResultReg = 0;
987  }
988  return ResultReg;
989}
990
991/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
992/// with all but the least significant bit set to zero.
993unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
994  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
995}
996