LegalizeTypes.h revision 28b77e968d2b01fc9da724762bd8ddcd80650e32
1//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DAGTypeLegalizer class.  This is a private interface
11// shared between the code that implements the SelectionDAG::LegalizeTypes
12// method.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef SELECTIONDAG_LEGALIZETYPES_H
17#define SELECTIONDAG_LEGALIZETYPES_H
18
19#define DEBUG_TYPE "legalize-types"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26
27namespace llvm {
28
29//===----------------------------------------------------------------------===//
30/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31/// on it until only value types the target machine can handle are left.  This
32/// involves promoting small sizes to large sizes or splitting up large values
33/// into small values.
34///
35class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
36  const TargetLowering &TLI;
37  SelectionDAG &DAG;
38public:
39  // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40  // about the state of the node.  The enum has all the values.
41  enum NodeIdFlags {
42    /// ReadyToProcess - All operands have been processed, so this node is ready
43    /// to be handled.
44    ReadyToProcess = 0,
45
46    /// NewNode - This is a new node, not before seen, that was created in the
47    /// process of legalizing some other node.
48    NewNode = -1,
49
50    /// Unanalyzed - This node's ID needs to be set to the number of its
51    /// unprocessed operands.
52    Unanalyzed = -2,
53
54    /// Processed - This is a node that has already been processed.
55    Processed = -3
56
57    // 1+ - This is a node which has this many unprocessed operands.
58  };
59private:
60
61  /// ValueTypeActions - This is a bitvector that contains two bits for each
62  /// simple value type, where the two bits correspond to the LegalizeAction
63  /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
64  TargetLowering::ValueTypeActionImpl ValueTypeActions;
65
66  /// getTypeAction - Return how we should legalize values of this type.
67  TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
68    return TLI.getTypeAction(*DAG.getContext(), VT);
69  }
70
71  /// isTypeLegal - Return true if this type is legal on this target.
72  bool isTypeLegal(EVT VT) const {
73    return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
74  }
75
76  /// IgnoreNodeResults - Pretend all of this node's results are legal.
77  bool IgnoreNodeResults(SDNode *N) const {
78    return N->getOpcode() == ISD::TargetConstant;
79  }
80
81  /// PromotedIntegers - For integer nodes that are below legal width, this map
82  /// indicates what promoted value to use.
83  DenseMap<SDValue, SDValue> PromotedIntegers;
84
85  /// ExpandedIntegers - For integer nodes that need to be expanded this map
86  /// indicates which operands are the expanded version of the input.
87  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
88
89  /// SoftenedFloats - For floating point nodes converted to integers of
90  /// the same size, this map indicates the converted value to use.
91  DenseMap<SDValue, SDValue> SoftenedFloats;
92
93  /// ExpandedFloats - For float nodes that need to be expanded this map
94  /// indicates which operands are the expanded version of the input.
95  DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
96
97  /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98  /// scalar value of type 'ty' to use.
99  DenseMap<SDValue, SDValue> ScalarizedVectors;
100
101  /// SplitVectors - For nodes that need to be split this map indicates
102  /// which operands are the expanded version of the input.
103  DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
104
105  /// WidenedVectors - For vector nodes that need to be widened, indicates
106  /// the widened value to use.
107  DenseMap<SDValue, SDValue> WidenedVectors;
108
109  /// ReplacedValues - For values that have been replaced with another,
110  /// indicates the replacement value to use.
111  DenseMap<SDValue, SDValue> ReplacedValues;
112
113  /// Worklist - This defines a worklist of nodes to process.  In order to be
114  /// pushed onto this worklist, all operands of a node must have already been
115  /// processed.
116  SmallVector<SDNode*, 128> Worklist;
117
118public:
119  explicit DAGTypeLegalizer(SelectionDAG &dag)
120    : TLI(dag.getTargetLoweringInfo()), DAG(dag),
121    ValueTypeActions(TLI.getValueTypeActions()) {
122    assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
123           "Too many value types for ValueTypeActions to hold!");
124  }
125
126  /// run - This is the main entry point for the type legalizer.  This does a
127  /// top-down traversal of the dag, legalizing types as it goes.  Returns
128  /// "true" if it made any changes.
129  bool run();
130
131  void NoteDeletion(SDNode *Old, SDNode *New) {
132    ExpungeNode(Old);
133    ExpungeNode(New);
134    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
135      ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
136  }
137
138private:
139  SDNode *AnalyzeNewNode(SDNode *N);
140  void AnalyzeNewValue(SDValue &Val);
141  void ExpungeNode(SDNode *N);
142  void PerformExpensiveChecks();
143  void RemapValue(SDValue &N);
144
145  // Common routines.
146  SDValue BitConvertToInteger(SDValue Op);
147  SDValue BitConvertVectorToIntegerVector(SDValue Op);
148  SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
149  bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
150  bool CustomWidenLowerNode(SDNode *N, EVT VT);
151
152  // DecomposeMERGE_VALUES takes a SDNode and returns the first
153  // illegal value. All other results are replaced with the
154  // corresponding input operand.
155  SDValue DecomposeMERGE_VALUES(SDNode *N);
156
157  SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
158  SDValue JoinIntegers(SDValue Lo, SDValue Hi);
159  SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
160  SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
161                      const SDValue *Ops, unsigned NumOps, bool isSigned,
162                      DebugLoc dl);
163
164  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
165                                                 SDNode *Node, bool isSigned);
166  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
167
168  SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
169  void ReplaceValueWith(SDValue From, SDValue To);
170  void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
171  void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
172                    SDValue &Lo, SDValue &Hi);
173
174  //===--------------------------------------------------------------------===//
175  // Integer Promotion Support: LegalizeIntegerTypes.cpp
176  //===--------------------------------------------------------------------===//
177
178  /// GetPromotedInteger - Given a processed operand Op which was promoted to a
179  /// larger integer type, this returns the promoted value.  The low bits of the
180  /// promoted value corresponding to the original type are exactly equal to Op.
181  /// The extra bits contain rubbish, so the promoted value may need to be zero-
182  /// or sign-extended from the original type before it is usable (the helpers
183  /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
184  /// For example, if Op is an i16 and was promoted to an i32, then this method
185  /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
186  /// 16 bits of which contain rubbish.
187  SDValue GetPromotedInteger(SDValue Op) {
188    SDValue &PromotedOp = PromotedIntegers[Op];
189    RemapValue(PromotedOp);
190    assert(PromotedOp.getNode() && "Operand wasn't promoted?");
191    return PromotedOp;
192  }
193  void SetPromotedInteger(SDValue Op, SDValue Result);
194
195  /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
196  /// final size.
197  SDValue SExtPromotedInteger(SDValue Op) {
198    EVT OldVT = Op.getValueType();
199    DebugLoc dl = Op.getDebugLoc();
200    Op = GetPromotedInteger(Op);
201    return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
202                       DAG.getValueType(OldVT));
203  }
204
205  /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
206  /// final size.
207  SDValue ZExtPromotedInteger(SDValue Op) {
208    EVT OldVT = Op.getValueType();
209    DebugLoc dl = Op.getDebugLoc();
210    Op = GetPromotedInteger(Op);
211    return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
212  }
213
214  // Integer Result Promotion.
215  void PromoteIntegerResult(SDNode *N, unsigned ResNo);
216  SDValue PromoteIntRes_MERGE_VALUES(SDNode *N);
217  SDValue PromoteIntRes_AssertSext(SDNode *N);
218  SDValue PromoteIntRes_AssertZext(SDNode *N);
219  SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
220  SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
221  SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
222  SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
223  SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
224  SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
225  SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
226  SDValue PromoteIntRes_BITCAST(SDNode *N);
227  SDValue PromoteIntRes_BSWAP(SDNode *N);
228  SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
229  SDValue PromoteIntRes_Constant(SDNode *N);
230  SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
231  SDValue PromoteIntRes_CTLZ(SDNode *N);
232  SDValue PromoteIntRes_CTPOP(SDNode *N);
233  SDValue PromoteIntRes_CTTZ(SDNode *N);
234  SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
235  SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
236  SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
237  SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
238  SDValue PromoteIntRes_LOAD(LoadSDNode *N);
239  SDValue PromoteIntRes_Overflow(SDNode *N);
240  SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
241  SDValue PromoteIntRes_SDIV(SDNode *N);
242  SDValue PromoteIntRes_SELECT(SDNode *N);
243  SDValue PromoteIntRes_SELECT_CC(SDNode *N);
244  SDValue PromoteIntRes_SETCC(SDNode *N);
245  SDValue PromoteIntRes_SHL(SDNode *N);
246  SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
247  SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
248  SDValue PromoteIntRes_SRA(SDNode *N);
249  SDValue PromoteIntRes_SRL(SDNode *N);
250  SDValue PromoteIntRes_TRUNCATE(SDNode *N);
251  SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
252  SDValue PromoteIntRes_UDIV(SDNode *N);
253  SDValue PromoteIntRes_UNDEF(SDNode *N);
254  SDValue PromoteIntRes_VAARG(SDNode *N);
255  SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
256
257  // Integer Operand Promotion.
258  bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
259  SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
260  SDValue PromoteIntOp_BITCAST(SDNode *N);
261  SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
262  SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
263  SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
264  SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
265  SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
266  SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
267  SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
268  SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
269  SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
270  SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
271  SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
272  SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
273  SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
274  SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
275  SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo);
276  SDValue PromoteIntOp_Shift(SDNode *N);
277  SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
278  SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
279  SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
280  SDValue PromoteIntOp_TRUNCATE(SDNode *N);
281  SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
282  SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
283
284  void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
285
286  //===--------------------------------------------------------------------===//
287  // Integer Expansion Support: LegalizeIntegerTypes.cpp
288  //===--------------------------------------------------------------------===//
289
290  /// GetExpandedInteger - Given a processed operand Op which was expanded into
291  /// two integers of half the size, this returns the two halves.  The low bits
292  /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
293  /// For example, if Op is an i64 which was expanded into two i32's, then this
294  /// method returns the two i32's, with Lo being equal to the lower 32 bits of
295  /// Op, and Hi being equal to the upper 32 bits.
296  void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
297  void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
298
299  // Integer Result Expansion.
300  void ExpandIntegerResult(SDNode *N, unsigned ResNo);
301  void ExpandIntRes_MERGE_VALUES      (SDNode *N, SDValue &Lo, SDValue &Hi);
302  void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
303  void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
304  void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
305  void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
306  void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
307  void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
308  void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
309  void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
310  void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
311  void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
312  void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
313  void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
314  void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
315  void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
316
317  void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
318  void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
319  void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
320  void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
321  void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
322  void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
323  void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
324  void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
325  void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
326  void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
327  void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
328
329  void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
330  void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
331  void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
332
333  void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
334
335  void ExpandShiftByConstant(SDNode *N, unsigned Amt,
336                             SDValue &Lo, SDValue &Hi);
337  bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
338  bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
339
340  // Integer Operand Expansion.
341  bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
342  SDValue ExpandIntOp_BITCAST(SDNode *N);
343  SDValue ExpandIntOp_BR_CC(SDNode *N);
344  SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
345  SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
346  SDValue ExpandIntOp_SELECT_CC(SDNode *N);
347  SDValue ExpandIntOp_SETCC(SDNode *N);
348  SDValue ExpandIntOp_Shift(SDNode *N);
349  SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
350  SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
351  SDValue ExpandIntOp_TRUNCATE(SDNode *N);
352  SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
353  SDValue ExpandIntOp_RETURNADDR(SDNode *N);
354  SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
355
356  void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
357                                  ISD::CondCode &CCCode, DebugLoc dl);
358
359  //===--------------------------------------------------------------------===//
360  // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
361  //===--------------------------------------------------------------------===//
362
363  /// GetSoftenedFloat - Given a processed operand Op which was converted to an
364  /// integer of the same size, this returns the integer.  The integer contains
365  /// exactly the same bits as Op - only the type changed.  For example, if Op
366  /// is an f32 which was softened to an i32, then this method returns an i32,
367  /// the bits of which coincide with those of Op.
368  SDValue GetSoftenedFloat(SDValue Op) {
369    SDValue &SoftenedOp = SoftenedFloats[Op];
370    RemapValue(SoftenedOp);
371    assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
372    return SoftenedOp;
373  }
374  void SetSoftenedFloat(SDValue Op, SDValue Result);
375
376  // Result Float to Integer Conversion.
377  void SoftenFloatResult(SDNode *N, unsigned OpNo);
378  SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N);
379  SDValue SoftenFloatRes_BITCAST(SDNode *N);
380  SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
381  SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
382  SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
383  SDValue SoftenFloatRes_FABS(SDNode *N);
384  SDValue SoftenFloatRes_FADD(SDNode *N);
385  SDValue SoftenFloatRes_FCEIL(SDNode *N);
386  SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
387  SDValue SoftenFloatRes_FCOS(SDNode *N);
388  SDValue SoftenFloatRes_FDIV(SDNode *N);
389  SDValue SoftenFloatRes_FEXP(SDNode *N);
390  SDValue SoftenFloatRes_FEXP2(SDNode *N);
391  SDValue SoftenFloatRes_FFLOOR(SDNode *N);
392  SDValue SoftenFloatRes_FLOG(SDNode *N);
393  SDValue SoftenFloatRes_FLOG2(SDNode *N);
394  SDValue SoftenFloatRes_FLOG10(SDNode *N);
395  SDValue SoftenFloatRes_FMA(SDNode *N);
396  SDValue SoftenFloatRes_FMUL(SDNode *N);
397  SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
398  SDValue SoftenFloatRes_FNEG(SDNode *N);
399  SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
400  SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
401  SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
402  SDValue SoftenFloatRes_FPOW(SDNode *N);
403  SDValue SoftenFloatRes_FPOWI(SDNode *N);
404  SDValue SoftenFloatRes_FREM(SDNode *N);
405  SDValue SoftenFloatRes_FRINT(SDNode *N);
406  SDValue SoftenFloatRes_FSIN(SDNode *N);
407  SDValue SoftenFloatRes_FSQRT(SDNode *N);
408  SDValue SoftenFloatRes_FSUB(SDNode *N);
409  SDValue SoftenFloatRes_FTRUNC(SDNode *N);
410  SDValue SoftenFloatRes_LOAD(SDNode *N);
411  SDValue SoftenFloatRes_SELECT(SDNode *N);
412  SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
413  SDValue SoftenFloatRes_UNDEF(SDNode *N);
414  SDValue SoftenFloatRes_VAARG(SDNode *N);
415  SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
416
417  // Operand Float to Integer Conversion.
418  bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
419  SDValue SoftenFloatOp_BITCAST(SDNode *N);
420  SDValue SoftenFloatOp_BR_CC(SDNode *N);
421  SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
422  SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
423  SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
424  SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
425  SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
426  SDValue SoftenFloatOp_SETCC(SDNode *N);
427  SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
428
429  void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
430                           ISD::CondCode &CCCode, DebugLoc dl);
431
432  //===--------------------------------------------------------------------===//
433  // Float Expansion Support: LegalizeFloatTypes.cpp
434  //===--------------------------------------------------------------------===//
435
436  /// GetExpandedFloat - Given a processed operand Op which was expanded into
437  /// two floating point values of half the size, this returns the two halves.
438  /// The low bits of Op are exactly equal to the bits of Lo; the high bits
439  /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
440  /// into two f64's, then this method returns the two f64's, with Lo being
441  /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
442  void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
443  void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
444
445  // Float Result Expansion.
446  void ExpandFloatResult(SDNode *N, unsigned ResNo);
447  void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
448  void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
449  void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
450  void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
451  void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
452  void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
453  void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
454  void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
455  void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
456  void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
457  void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
458  void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
459  void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
460  void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
461  void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
462  void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
463  void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
464  void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
465  void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
466  void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
467  void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
468  void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
469  void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
470  void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
471  void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
472  void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
473  void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
474
475  // Float Operand Expansion.
476  bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
477  SDValue ExpandFloatOp_BR_CC(SDNode *N);
478  SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
479  SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
480  SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
481  SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
482  SDValue ExpandFloatOp_SETCC(SDNode *N);
483  SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
484
485  void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
486                                ISD::CondCode &CCCode, DebugLoc dl);
487
488  //===--------------------------------------------------------------------===//
489  // Scalarization Support: LegalizeVectorTypes.cpp
490  //===--------------------------------------------------------------------===//
491
492  /// GetScalarizedVector - Given a processed one-element vector Op which was
493  /// scalarized to its element type, this returns the element.  For example,
494  /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
495  SDValue GetScalarizedVector(SDValue Op) {
496    SDValue &ScalarizedOp = ScalarizedVectors[Op];
497    RemapValue(ScalarizedOp);
498    assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
499    return ScalarizedOp;
500  }
501  void SetScalarizedVector(SDValue Op, SDValue Result);
502
503  // Vector Result Scalarization: <1 x ty> -> ty.
504  void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
505  SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N);
506  SDValue ScalarizeVecRes_BinOp(SDNode *N);
507  SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
508  SDValue ScalarizeVecRes_InregOp(SDNode *N);
509
510  SDValue ScalarizeVecRes_BITCAST(SDNode *N);
511  SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
512  SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
513  SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
514  SDValue ScalarizeVecRes_FPOWI(SDNode *N);
515  SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
516  SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
517  SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
518  SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
519  SDValue ScalarizeVecRes_SELECT(SDNode *N);
520  SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
521  SDValue ScalarizeVecRes_SETCC(SDNode *N);
522  SDValue ScalarizeVecRes_UNDEF(SDNode *N);
523  SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
524  SDValue ScalarizeVecRes_VSETCC(SDNode *N);
525
526  // Vector Operand Scalarization: <1 x ty> -> ty.
527  bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
528  SDValue ScalarizeVecOp_BITCAST(SDNode *N);
529  SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
530  SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
531  SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
532
533  //===--------------------------------------------------------------------===//
534  // Vector Splitting Support: LegalizeVectorTypes.cpp
535  //===--------------------------------------------------------------------===//
536
537  /// GetSplitVector - Given a processed vector Op which was split into vectors
538  /// of half the size, this method returns the halves.  The first elements of
539  /// Op coincide with the elements of Lo; the remaining elements of Op coincide
540  /// with the elements of Hi: Op is what you would get by concatenating Lo and
541  /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
542  /// this method returns the two v4i32's, with Lo corresponding to the first 4
543  /// elements of Op, and Hi to the last 4 elements.
544  void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
545  void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
546
547  // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
548  void SplitVectorResult(SDNode *N, unsigned OpNo);
549  void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
550  void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
551  void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
552
553  void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
554  void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
555  void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
556  void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
557  void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
558  void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
559  void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
560  void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
561  void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
562  void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
563  void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
564  void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
565  void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
566                                  SDValue &Hi);
567
568  // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
569  bool SplitVectorOperand(SDNode *N, unsigned OpNo);
570  SDValue SplitVecOp_UnaryOp(SDNode *N);
571
572  SDValue SplitVecOp_BITCAST(SDNode *N);
573  SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
574  SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
575  SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
576  SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
577  SDValue SplitVecOp_VSETCC(SDNode *N);
578  SDValue SplitVecOp_FP_ROUND(SDNode *N);
579
580  //===--------------------------------------------------------------------===//
581  // Vector Widening Support: LegalizeVectorTypes.cpp
582  //===--------------------------------------------------------------------===//
583
584  /// GetWidenedVector - Given a processed vector Op which was widened into a
585  /// larger vector, this method returns the larger vector.  The elements of
586  /// the returned vector consist of the elements of Op followed by elements
587  /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
588  /// v4i32, then this method returns a v4i32 for which the first two elements
589  /// are the same as those of Op, while the last two elements contain rubbish.
590  SDValue GetWidenedVector(SDValue Op) {
591    SDValue &WidenedOp = WidenedVectors[Op];
592    RemapValue(WidenedOp);
593    assert(WidenedOp.getNode() && "Operand wasn't widened?");
594    return WidenedOp;
595  }
596  void SetWidenedVector(SDValue Op, SDValue Result);
597
598  // Widen Vector Result Promotion.
599  void WidenVectorResult(SDNode *N, unsigned ResNo);
600  SDValue WidenVecRes_MERGE_VALUES(SDNode* N);
601  SDValue WidenVecRes_BITCAST(SDNode* N);
602  SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
603  SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
604  SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
605  SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
606  SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
607  SDValue WidenVecRes_LOAD(SDNode* N);
608  SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
609  SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
610  SDValue WidenVecRes_SELECT(SDNode* N);
611  SDValue WidenVecRes_SELECT_CC(SDNode* N);
612  SDValue WidenVecRes_SETCC(SDNode* N);
613  SDValue WidenVecRes_UNDEF(SDNode *N);
614  SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
615  SDValue WidenVecRes_VSETCC(SDNode* N);
616
617  SDValue WidenVecRes_Binary(SDNode *N);
618  SDValue WidenVecRes_Convert(SDNode *N);
619  SDValue WidenVecRes_POWI(SDNode *N);
620  SDValue WidenVecRes_Shift(SDNode *N);
621  SDValue WidenVecRes_Unary(SDNode *N);
622  SDValue WidenVecRes_InregOp(SDNode *N);
623
624  // Widen Vector Operand.
625  bool WidenVectorOperand(SDNode *N, unsigned ResNo);
626  SDValue WidenVecOp_BITCAST(SDNode *N);
627  SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
628  SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
629  SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
630  SDValue WidenVecOp_STORE(SDNode* N);
631
632  SDValue WidenVecOp_Convert(SDNode *N);
633
634  //===--------------------------------------------------------------------===//
635  // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
636  //===--------------------------------------------------------------------===//
637
638  /// Helper GenWidenVectorLoads - Helper function to generate a set of
639  /// loads to load a vector with a resulting wider type. It takes
640  ///   LdChain: list of chains for the load to be generated.
641  ///   Ld:      load to widen
642  SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
643                              LoadSDNode *LD);
644
645  /// GenWidenVectorExtLoads - Helper function to generate a set of extension
646  /// loads to load a ector with a resulting wider type.  It takes
647  ///   LdChain: list of chains for the load to be generated.
648  ///   Ld:      load to widen
649  ///   ExtType: extension element type
650  SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
651                                 LoadSDNode *LD, ISD::LoadExtType ExtType);
652
653  /// Helper genWidenVectorStores - Helper function to generate a set of
654  /// stores to store a widen vector into non widen memory
655  ///   StChain: list of chains for the stores we have generated
656  ///   ST:      store of a widen value
657  void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
658
659  /// Helper genWidenVectorTruncStores - Helper function to generate a set of
660  /// stores to store a truncate widen vector into non widen memory
661  ///   StChain: list of chains for the stores we have generated
662  ///   ST:      store of a widen value
663  void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
664                                 StoreSDNode *ST);
665
666  /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
667  /// input vector must have the same element type as NVT.
668  SDValue ModifyToType(SDValue InOp, EVT WidenVT);
669
670
671  //===--------------------------------------------------------------------===//
672  // Generic Splitting: LegalizeTypesGeneric.cpp
673  //===--------------------------------------------------------------------===//
674
675  // Legalization methods which only use that the illegal type is split into two
676  // not necessarily identical types.  As such they can be used for splitting
677  // vectors and expanding integers and floats.
678
679  void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
680    if (Op.getValueType().isVector())
681      GetSplitVector(Op, Lo, Hi);
682    else if (Op.getValueType().isInteger())
683      GetExpandedInteger(Op, Lo, Hi);
684    else
685      GetExpandedFloat(Op, Lo, Hi);
686  }
687
688  /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
689  /// which is split (or expanded) into two not necessarily identical pieces.
690  void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
691
692  /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
693  /// high parts of the given value.
694  void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
695
696  // Generic Result Splitting.
697  void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
698  void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
699  void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
700  void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
701
702  //===--------------------------------------------------------------------===//
703  // Generic Expansion: LegalizeTypesGeneric.cpp
704  //===--------------------------------------------------------------------===//
705
706  // Legalization methods which only use that the illegal type is split into two
707  // identical types of half the size, and that the Lo/Hi part is stored first
708  // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
709  // such they can be used for expanding integers and floats.
710
711  void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
712    if (Op.getValueType().isInteger())
713      GetExpandedInteger(Op, Lo, Hi);
714    else
715      GetExpandedFloat(Op, Lo, Hi);
716  }
717
718  // Generic Result Expansion.
719  void ExpandRes_MERGE_VALUES      (SDNode *N, SDValue &Lo, SDValue &Hi);
720  void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
721  void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
722  void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
723  void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
724  void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
725  void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
726
727  // Generic Operand Expansion.
728  SDValue ExpandOp_BITCAST          (SDNode *N);
729  SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
730  SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
731  SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
732  SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
733  SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
734};
735
736} // end namespace llvm.
737
738#endif
739