SelectionDAG.cpp revision 012f241987a017ea74d34d4c126997f84902ef61
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include <iostream>
27#include <set>
28#include <cmath>
29#include <algorithm>
30using namespace llvm;
31
32static bool isCommutativeBinOp(unsigned Opcode) {
33  switch (Opcode) {
34  case ISD::ADD:
35  case ISD::MUL:
36  case ISD::MULHU:
37  case ISD::MULHS:
38  case ISD::FADD:
39  case ISD::FMUL:
40  case ISD::AND:
41  case ISD::OR:
42  case ISD::XOR: return true;
43  default: return false; // FIXME: Need commutative info for user ops!
44  }
45}
46
47// isInvertibleForFree - Return true if there is no cost to emitting the logical
48// inverse of this node.
49static bool isInvertibleForFree(SDOperand N) {
50  if (isa<ConstantSDNode>(N.Val)) return true;
51  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
52    return true;
53  return false;
54}
55
56//===----------------------------------------------------------------------===//
57//                              ConstantFPSDNode Class
58//===----------------------------------------------------------------------===//
59
60/// isExactlyValue - We don't rely on operator== working on double values, as
61/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
62/// As such, this method can be used to do an exact bit-for-bit comparison of
63/// two floating point values.
64bool ConstantFPSDNode::isExactlyValue(double V) const {
65  return DoubleToBits(V) == DoubleToBits(Value);
66}
67
68//===----------------------------------------------------------------------===//
69//                              ISD Class
70//===----------------------------------------------------------------------===//
71
72/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
73/// when given the operation for (X op Y).
74ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
75  // To perform this operation, we just need to swap the L and G bits of the
76  // operation.
77  unsigned OldL = (Operation >> 2) & 1;
78  unsigned OldG = (Operation >> 1) & 1;
79  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
80                       (OldL << 1) |       // New G bit
81                       (OldG << 2));        // New L bit.
82}
83
84/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
85/// 'op' is a valid SetCC operation.
86ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
87  unsigned Operation = Op;
88  if (isInteger)
89    Operation ^= 7;   // Flip L, G, E bits, but not U.
90  else
91    Operation ^= 15;  // Flip all of the condition bits.
92  if (Operation > ISD::SETTRUE2)
93    Operation &= ~8;     // Don't let N and U bits get set.
94  return ISD::CondCode(Operation);
95}
96
97
98/// isSignedOp - For an integer comparison, return 1 if the comparison is a
99/// signed operation and 2 if the result is an unsigned comparison.  Return zero
100/// if the operation does not depend on the sign of the input (setne and seteq).
101static int isSignedOp(ISD::CondCode Opcode) {
102  switch (Opcode) {
103  default: assert(0 && "Illegal integer setcc operation!");
104  case ISD::SETEQ:
105  case ISD::SETNE: return 0;
106  case ISD::SETLT:
107  case ISD::SETLE:
108  case ISD::SETGT:
109  case ISD::SETGE: return 1;
110  case ISD::SETULT:
111  case ISD::SETULE:
112  case ISD::SETUGT:
113  case ISD::SETUGE: return 2;
114  }
115}
116
117/// getSetCCOrOperation - Return the result of a logical OR between different
118/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
119/// returns SETCC_INVALID if it is not possible to represent the resultant
120/// comparison.
121ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
122                                       bool isInteger) {
123  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
124    // Cannot fold a signed integer setcc with an unsigned integer setcc.
125    return ISD::SETCC_INVALID;
126
127  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
128
129  // If the N and U bits get set then the resultant comparison DOES suddenly
130  // care about orderedness, and is true when ordered.
131  if (Op > ISD::SETTRUE2)
132    Op &= ~16;     // Clear the N bit.
133  return ISD::CondCode(Op);
134}
135
136/// getSetCCAndOperation - Return the result of a logical AND between different
137/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
138/// function returns zero if it is not possible to represent the resultant
139/// comparison.
140ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
141                                        bool isInteger) {
142  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
143    // Cannot fold a signed setcc with an unsigned setcc.
144    return ISD::SETCC_INVALID;
145
146  // Combine all of the condition bits.
147  return ISD::CondCode(Op1 & Op2);
148}
149
150const TargetMachine &SelectionDAG::getTarget() const {
151  return TLI.getTargetMachine();
152}
153
154//===----------------------------------------------------------------------===//
155//                              SelectionDAG Class
156//===----------------------------------------------------------------------===//
157
158/// RemoveDeadNodes - This method deletes all unreachable nodes in the
159/// SelectionDAG, including nodes (like loads) that have uses of their token
160/// chain but no other uses and no side effect.  If a node is passed in as an
161/// argument, it is used as the seed for node deletion.
162void SelectionDAG::RemoveDeadNodes(SDNode *N) {
163  // Create a dummy node (which is not added to allnodes), that adds a reference
164  // to the root node, preventing it from being deleted.
165  HandleSDNode Dummy(getRoot());
166
167  bool MadeChange = false;
168
169  // If we have a hint to start from, use it.
170  if (N && N->use_empty()) {
171    DestroyDeadNode(N);
172    MadeChange = true;
173  }
174
175  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
176    if (I->use_empty() && I->getOpcode() != 65535) {
177      // Node is dead, recursively delete newly dead uses.
178      DestroyDeadNode(I);
179      MadeChange = true;
180    }
181
182  // Walk the nodes list, removing the nodes we've marked as dead.
183  if (MadeChange) {
184    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
185      SDNode *N = I++;
186      if (N->use_empty())
187        AllNodes.erase(N);
188    }
189  }
190
191  // If the root changed (e.g. it was a dead load, update the root).
192  setRoot(Dummy.getValue());
193}
194
195/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
196/// graph.  If it is the last user of any of its operands, recursively process
197/// them the same way.
198///
199void SelectionDAG::DestroyDeadNode(SDNode *N) {
200  // Okay, we really are going to delete this node.  First take this out of the
201  // appropriate CSE map.
202  RemoveNodeFromCSEMaps(N);
203
204  // Next, brutally remove the operand list.  This is safe to do, as there are
205  // no cycles in the graph.
206  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
207    SDNode *O = I->Val;
208    O->removeUser(N);
209
210    // Now that we removed this operand, see if there are no uses of it left.
211    if (O->use_empty())
212      DestroyDeadNode(O);
213  }
214  delete[] N->OperandList;
215  N->OperandList = 0;
216  N->NumOperands = 0;
217
218  // Mark the node as dead.
219  N->MorphNodeTo(65535);
220}
221
222void SelectionDAG::DeleteNode(SDNode *N) {
223  assert(N->use_empty() && "Cannot delete a node that is not dead!");
224
225  // First take this out of the appropriate CSE map.
226  RemoveNodeFromCSEMaps(N);
227
228  // Finally, remove uses due to operands of this node, remove from the
229  // AllNodes list, and delete the node.
230  DeleteNodeNotInCSEMaps(N);
231}
232
233void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
234
235  // Remove it from the AllNodes list.
236  AllNodes.remove(N);
237
238  // Drop all of the operands and decrement used nodes use counts.
239  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
240    I->Val->removeUser(N);
241  delete[] N->OperandList;
242  N->OperandList = 0;
243  N->NumOperands = 0;
244
245  delete N;
246}
247
248/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
249/// correspond to it.  This is useful when we're about to delete or repurpose
250/// the node.  We don't want future request for structurally identical nodes
251/// to return N anymore.
252void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
253  bool Erased = false;
254  switch (N->getOpcode()) {
255  case ISD::HANDLENODE: return;  // noop.
256  case ISD::Constant:
257    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
258                                            N->getValueType(0)));
259    break;
260  case ISD::TargetConstant:
261    Erased = TargetConstants.erase(std::make_pair(
262                                    cast<ConstantSDNode>(N)->getValue(),
263                                                  N->getValueType(0)));
264    break;
265  case ISD::ConstantFP: {
266    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
267    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
268    break;
269  }
270  case ISD::TargetConstantFP: {
271    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
272    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
273    break;
274  }
275  case ISD::STRING:
276    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
277    break;
278  case ISD::CONDCODE:
279    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
280           "Cond code doesn't exist!");
281    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
282    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
283    break;
284  case ISD::GlobalAddress: {
285    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
286    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
287                                               GN->getOffset()));
288    break;
289  }
290  case ISD::TargetGlobalAddress: {
291    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
292    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
293                                                    GN->getOffset()));
294    break;
295  }
296  case ISD::FrameIndex:
297    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
298    break;
299  case ISD::TargetFrameIndex:
300    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::ConstantPool:
303    Erased = ConstantPoolIndices.
304      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
305                           cast<ConstantPoolSDNode>(N)->getAlignment()));
306    break;
307  case ISD::TargetConstantPool:
308    Erased = TargetConstantPoolIndices.
309      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
310                           cast<ConstantPoolSDNode>(N)->getAlignment()));
311    break;
312  case ISD::BasicBlock:
313    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
314    break;
315  case ISD::ExternalSymbol:
316    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
317    break;
318  case ISD::TargetExternalSymbol:
319    Erased =
320      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
321    break;
322  case ISD::VALUETYPE:
323    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
324    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
325    break;
326  case ISD::Register:
327    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
328                                           N->getValueType(0)));
329    break;
330  case ISD::SRCVALUE: {
331    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
332    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
333    break;
334  }
335  case ISD::LOAD:
336    Erased = Loads.erase(std::make_pair(N->getOperand(1),
337                                        std::make_pair(N->getOperand(0),
338                                                       N->getValueType(0))));
339    break;
340  default:
341    if (N->getNumValues() == 1) {
342      if (N->getNumOperands() == 0) {
343        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
344                                                 N->getValueType(0)));
345      } else if (N->getNumOperands() == 1) {
346        Erased =
347          UnaryOps.erase(std::make_pair(N->getOpcode(),
348                                        std::make_pair(N->getOperand(0),
349                                                       N->getValueType(0))));
350      } else if (N->getNumOperands() == 2) {
351        Erased =
352          BinaryOps.erase(std::make_pair(N->getOpcode(),
353                                         std::make_pair(N->getOperand(0),
354                                                        N->getOperand(1))));
355      } else {
356        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
357        Erased =
358          OneResultNodes.erase(std::make_pair(N->getOpcode(),
359                                              std::make_pair(N->getValueType(0),
360                                                             Ops)));
361      }
362    } else {
363      // Remove the node from the ArbitraryNodes map.
364      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
365      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
366      Erased =
367        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
368                                            std::make_pair(RV, Ops)));
369    }
370    break;
371  }
372#ifndef NDEBUG
373  // Verify that the node was actually in one of the CSE maps, unless it has a
374  // flag result (which cannot be CSE'd) or is one of the special cases that are
375  // not subject to CSE.
376  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
377      !N->isTargetOpcode()) {
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
392    return 0;    // Never add these nodes.
393
394  // Check that remaining values produced are not flags.
395  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
396    if (N->getValueType(i) == MVT::Flag)
397      return 0;   // Never CSE anything that produces a flag.
398
399  if (N->getNumValues() == 1) {
400    if (N->getNumOperands() == 1) {
401      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
402                                           std::make_pair(N->getOperand(0),
403                                                          N->getValueType(0)))];
404      if (U) return U;
405      U = N;
406    } else if (N->getNumOperands() == 2) {
407      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
408                                            std::make_pair(N->getOperand(0),
409                                                           N->getOperand(1)))];
410      if (B) return B;
411      B = N;
412    } else {
413      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
414      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
415                                      std::make_pair(N->getValueType(0), Ops))];
416      if (ORN) return ORN;
417      ORN = N;
418    }
419  } else {
420    if (N->getOpcode() == ISD::LOAD) {
421      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
422                                        std::make_pair(N->getOperand(0),
423                                                       N->getValueType(0)))];
424      if (L) return L;
425      L = N;
426    } else {
427      // Remove the node from the ArbitraryNodes map.
428      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
429      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
430      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
431                                                  std::make_pair(RV, Ops))];
432      if (AN) return AN;
433      AN = N;
434    }
435  }
436  return 0;
437}
438
439/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
440/// were replaced with those specified.  If this node is never memoized,
441/// return null, otherwise return a pointer to the slot it would take.  If a
442/// node already exists with these operands, the slot will be non-null.
443SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
444  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
445    return 0;    // Never add these nodes.
446
447  // Check that remaining values produced are not flags.
448  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
449    if (N->getValueType(i) == MVT::Flag)
450      return 0;   // Never CSE anything that produces a flag.
451
452  if (N->getNumValues() == 1) {
453    return &UnaryOps[std::make_pair(N->getOpcode(),
454                                    std::make_pair(Op, N->getValueType(0)))];
455  } else {
456    // Remove the node from the ArbitraryNodes map.
457    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
458    std::vector<SDOperand> Ops;
459    Ops.push_back(Op);
460    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
461                                          std::make_pair(RV, Ops))];
462  }
463  return 0;
464}
465
466/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
467/// were replaced with those specified.  If this node is never memoized,
468/// return null, otherwise return a pointer to the slot it would take.  If a
469/// node already exists with these operands, the slot will be non-null.
470SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
471                                            SDOperand Op1, SDOperand Op2) {
472  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
473    return 0;    // Never add these nodes.
474
475  // Check that remaining values produced are not flags.
476  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
477    if (N->getValueType(i) == MVT::Flag)
478      return 0;   // Never CSE anything that produces a flag.
479
480  if (N->getNumValues() == 1) {
481    return &BinaryOps[std::make_pair(N->getOpcode(),
482                                     std::make_pair(Op1, Op2))];
483  } else {
484    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
485    std::vector<SDOperand> Ops;
486    Ops.push_back(Op1);
487    Ops.push_back(Op2);
488    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
489                                          std::make_pair(RV, Ops))];
490  }
491  return 0;
492}
493
494
495/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
496/// were replaced with those specified.  If this node is never memoized,
497/// return null, otherwise return a pointer to the slot it would take.  If a
498/// node already exists with these operands, the slot will be non-null.
499SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
500                                            const std::vector<SDOperand> &Ops) {
501  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
502    return 0;    // Never add these nodes.
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return 0;   // Never CSE anything that produces a flag.
508
509  if (N->getNumValues() == 1) {
510    if (N->getNumOperands() == 1) {
511      return &UnaryOps[std::make_pair(N->getOpcode(),
512                                      std::make_pair(Ops[0],
513                                                     N->getValueType(0)))];
514    } else if (N->getNumOperands() == 2) {
515      return &BinaryOps[std::make_pair(N->getOpcode(),
516                                       std::make_pair(Ops[0], Ops[1]))];
517    } else {
518      return &OneResultNodes[std::make_pair(N->getOpcode(),
519                                            std::make_pair(N->getValueType(0),
520                                                           Ops))];
521    }
522  } else {
523    if (N->getOpcode() == ISD::LOAD) {
524      return &Loads[std::make_pair(Ops[1],
525                                   std::make_pair(Ops[0], N->getValueType(0)))];
526    } else {
527      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
528      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
529                                            std::make_pair(RV, Ops))];
530    }
531  }
532  return 0;
533}
534
535
536SelectionDAG::~SelectionDAG() {
537  while (!AllNodes.empty()) {
538    SDNode *N = AllNodes.begin();
539    delete [] N->OperandList;
540    N->OperandList = 0;
541    N->NumOperands = 0;
542    AllNodes.pop_front();
543  }
544}
545
546SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
547  if (Op.getValueType() == VT) return Op;
548  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
549  return getNode(ISD::AND, Op.getValueType(), Op,
550                 getConstant(Imm, Op.getValueType()));
551}
552
553SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
554  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
555  // Mask out any bits that are not valid for this constant.
556  if (VT != MVT::i64)
557    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
558
559  SDNode *&N = Constants[std::make_pair(Val, VT)];
560  if (N) return SDOperand(N, 0);
561  N = new ConstantSDNode(false, Val, VT);
562  AllNodes.push_back(N);
563  return SDOperand(N, 0);
564}
565
566SDOperand SelectionDAG::getString(const std::string &Val) {
567  StringSDNode *&N = StringNodes[Val];
568  if (!N) {
569    N = new StringSDNode(Val);
570    AllNodes.push_back(N);
571  }
572  return SDOperand(N, 0);
573}
574
575SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
576  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
577  // Mask out any bits that are not valid for this constant.
578  if (VT != MVT::i64)
579    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
580
581  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
582  if (N) return SDOperand(N, 0);
583  N = new ConstantSDNode(true, Val, VT);
584  AllNodes.push_back(N);
585  return SDOperand(N, 0);
586}
587
588SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
589  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
590  if (VT == MVT::f32)
591    Val = (float)Val;  // Mask out extra precision.
592
593  // Do the map lookup using the actual bit pattern for the floating point
594  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
595  // we don't have issues with SNANs.
596  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
597  if (N) return SDOperand(N, 0);
598  N = new ConstantFPSDNode(false, Val, VT);
599  AllNodes.push_back(N);
600  return SDOperand(N, 0);
601}
602
603SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
604  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
605  if (VT == MVT::f32)
606    Val = (float)Val;  // Mask out extra precision.
607
608  // Do the map lookup using the actual bit pattern for the floating point
609  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
610  // we don't have issues with SNANs.
611  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
612  if (N) return SDOperand(N, 0);
613  N = new ConstantFPSDNode(true, Val, VT);
614  AllNodes.push_back(N);
615  return SDOperand(N, 0);
616}
617
618SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
619                                         MVT::ValueType VT, int offset) {
620  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
621  if (N) return SDOperand(N, 0);
622  N = new GlobalAddressSDNode(false, GV, VT, offset);
623  AllNodes.push_back(N);
624  return SDOperand(N, 0);
625}
626
627SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
628                                               MVT::ValueType VT, int offset) {
629  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
630  if (N) return SDOperand(N, 0);
631  N = new GlobalAddressSDNode(true, GV, VT, offset);
632  AllNodes.push_back(N);
633  return SDOperand(N, 0);
634}
635
636SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
637  SDNode *&N = FrameIndices[FI];
638  if (N) return SDOperand(N, 0);
639  N = new FrameIndexSDNode(FI, VT, false);
640  AllNodes.push_back(N);
641  return SDOperand(N, 0);
642}
643
644SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
645  SDNode *&N = TargetFrameIndices[FI];
646  if (N) return SDOperand(N, 0);
647  N = new FrameIndexSDNode(FI, VT, true);
648  AllNodes.push_back(N);
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
653                                        unsigned Alignment) {
654  SDNode *&N = ConstantPoolIndices[std::make_pair(C, Alignment)];
655  if (N) return SDOperand(N, 0);
656  N = new ConstantPoolSDNode(C, VT, Alignment, false);
657  AllNodes.push_back(N);
658  return SDOperand(N, 0);
659}
660
661SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
662                                              unsigned Alignment) {
663  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C, Alignment)];
664  if (N) return SDOperand(N, 0);
665  N = new ConstantPoolSDNode(C, VT, Alignment, true);
666  AllNodes.push_back(N);
667  return SDOperand(N, 0);
668}
669
670SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
671  SDNode *&N = BBNodes[MBB];
672  if (N) return SDOperand(N, 0);
673  N = new BasicBlockSDNode(MBB);
674  AllNodes.push_back(N);
675  return SDOperand(N, 0);
676}
677
678SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
679  if ((unsigned)VT >= ValueTypeNodes.size())
680    ValueTypeNodes.resize(VT+1);
681  if (ValueTypeNodes[VT] == 0) {
682    ValueTypeNodes[VT] = new VTSDNode(VT);
683    AllNodes.push_back(ValueTypeNodes[VT]);
684  }
685
686  return SDOperand(ValueTypeNodes[VT], 0);
687}
688
689SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
690  SDNode *&N = ExternalSymbols[Sym];
691  if (N) return SDOperand(N, 0);
692  N = new ExternalSymbolSDNode(false, Sym, VT);
693  AllNodes.push_back(N);
694  return SDOperand(N, 0);
695}
696
697SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
698                                                MVT::ValueType VT) {
699  SDNode *&N = TargetExternalSymbols[Sym];
700  if (N) return SDOperand(N, 0);
701  N = new ExternalSymbolSDNode(true, Sym, VT);
702  AllNodes.push_back(N);
703  return SDOperand(N, 0);
704}
705
706SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
707  if ((unsigned)Cond >= CondCodeNodes.size())
708    CondCodeNodes.resize(Cond+1);
709
710  if (CondCodeNodes[Cond] == 0) {
711    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
712    AllNodes.push_back(CondCodeNodes[Cond]);
713  }
714  return SDOperand(CondCodeNodes[Cond], 0);
715}
716
717SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
718  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
719  if (!Reg) {
720    Reg = new RegisterSDNode(RegNo, VT);
721    AllNodes.push_back(Reg);
722  }
723  return SDOperand(Reg, 0);
724}
725
726SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
727                                      SDOperand N2, ISD::CondCode Cond) {
728  // These setcc operations always fold.
729  switch (Cond) {
730  default: break;
731  case ISD::SETFALSE:
732  case ISD::SETFALSE2: return getConstant(0, VT);
733  case ISD::SETTRUE:
734  case ISD::SETTRUE2:  return getConstant(1, VT);
735  }
736
737  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
738    uint64_t C2 = N2C->getValue();
739    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
740      uint64_t C1 = N1C->getValue();
741
742      // Sign extend the operands if required
743      if (ISD::isSignedIntSetCC(Cond)) {
744        C1 = N1C->getSignExtended();
745        C2 = N2C->getSignExtended();
746      }
747
748      switch (Cond) {
749      default: assert(0 && "Unknown integer setcc!");
750      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
751      case ISD::SETNE:  return getConstant(C1 != C2, VT);
752      case ISD::SETULT: return getConstant(C1 <  C2, VT);
753      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
754      case ISD::SETULE: return getConstant(C1 <= C2, VT);
755      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
756      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
757      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
758      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
759      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
760      }
761    } else {
762      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
763      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
764        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
765
766        // If the comparison constant has bits in the upper part, the
767        // zero-extended value could never match.
768        if (C2 & (~0ULL << InSize)) {
769          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
770          switch (Cond) {
771          case ISD::SETUGT:
772          case ISD::SETUGE:
773          case ISD::SETEQ: return getConstant(0, VT);
774          case ISD::SETULT:
775          case ISD::SETULE:
776          case ISD::SETNE: return getConstant(1, VT);
777          case ISD::SETGT:
778          case ISD::SETGE:
779            // True if the sign bit of C2 is set.
780            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
781          case ISD::SETLT:
782          case ISD::SETLE:
783            // True if the sign bit of C2 isn't set.
784            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
785          default:
786            break;
787          }
788        }
789
790        // Otherwise, we can perform the comparison with the low bits.
791        switch (Cond) {
792        case ISD::SETEQ:
793        case ISD::SETNE:
794        case ISD::SETUGT:
795        case ISD::SETUGE:
796        case ISD::SETULT:
797        case ISD::SETULE:
798          return getSetCC(VT, N1.getOperand(0),
799                          getConstant(C2, N1.getOperand(0).getValueType()),
800                          Cond);
801        default:
802          break;   // todo, be more careful with signed comparisons
803        }
804      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
805                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
806        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
807        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
808        MVT::ValueType ExtDstTy = N1.getValueType();
809        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
810
811        // If the extended part has any inconsistent bits, it cannot ever
812        // compare equal.  In other words, they have to be all ones or all
813        // zeros.
814        uint64_t ExtBits =
815          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
816        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
817          return getConstant(Cond == ISD::SETNE, VT);
818
819        // Otherwise, make this a use of a zext.
820        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
821                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
822                        Cond);
823      }
824
825      uint64_t MinVal, MaxVal;
826      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
827      if (ISD::isSignedIntSetCC(Cond)) {
828        MinVal = 1ULL << (OperandBitSize-1);
829        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
830          MaxVal = ~0ULL >> (65-OperandBitSize);
831        else
832          MaxVal = 0;
833      } else {
834        MinVal = 0;
835        MaxVal = ~0ULL >> (64-OperandBitSize);
836      }
837
838      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
839      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
840        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
841        --C2;                                          // X >= C1 --> X > (C1-1)
842        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
843                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
844      }
845
846      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
847        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
848        ++C2;                                          // X <= C1 --> X < (C1+1)
849        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
850                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
851      }
852
853      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
854        return getConstant(0, VT);      // X < MIN --> false
855
856      // Canonicalize setgt X, Min --> setne X, Min
857      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
858        return getSetCC(VT, N1, N2, ISD::SETNE);
859
860      // If we have setult X, 1, turn it into seteq X, 0
861      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
862        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
863                        ISD::SETEQ);
864      // If we have setugt X, Max-1, turn it into seteq X, Max
865      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
866        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
867                        ISD::SETEQ);
868
869      // If we have "setcc X, C1", check to see if we can shrink the immediate
870      // by changing cc.
871
872      // SETUGT X, SINTMAX  -> SETLT X, 0
873      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
874          C2 == (~0ULL >> (65-OperandBitSize)))
875        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
876
877      // FIXME: Implement the rest of these.
878
879
880      // Fold bit comparisons when we can.
881      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
882          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
883        if (ConstantSDNode *AndRHS =
884                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
885          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
886            // Perform the xform if the AND RHS is a single bit.
887            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
888              return getNode(ISD::SRL, VT, N1,
889                             getConstant(Log2_64(AndRHS->getValue()),
890                                                   TLI.getShiftAmountTy()));
891            }
892          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
893            // (X & 8) == 8  -->  (X & 8) >> 3
894            // Perform the xform if C2 is a single bit.
895            if ((C2 & (C2-1)) == 0) {
896              return getNode(ISD::SRL, VT, N1,
897                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
898            }
899          }
900        }
901    }
902  } else if (isa<ConstantSDNode>(N1.Val)) {
903      // Ensure that the constant occurs on the RHS.
904    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
905  }
906
907  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
908    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
909      double C1 = N1C->getValue(), C2 = N2C->getValue();
910
911      switch (Cond) {
912      default: break; // FIXME: Implement the rest of these!
913      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
914      case ISD::SETNE:  return getConstant(C1 != C2, VT);
915      case ISD::SETLT:  return getConstant(C1 < C2, VT);
916      case ISD::SETGT:  return getConstant(C1 > C2, VT);
917      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
918      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
919      }
920    } else {
921      // Ensure that the constant occurs on the RHS.
922      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
923    }
924
925  // Could not fold it.
926  return SDOperand();
927}
928
929/// getNode - Gets or creates the specified node.
930///
931SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
932  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
933  if (!N) {
934    N = new SDNode(Opcode, VT);
935    AllNodes.push_back(N);
936  }
937  return SDOperand(N, 0);
938}
939
940SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
941                                SDOperand Operand) {
942  unsigned Tmp1;
943  // Constant fold unary operations with an integer constant operand.
944  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
945    uint64_t Val = C->getValue();
946    switch (Opcode) {
947    default: break;
948    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
949    case ISD::ANY_EXTEND:
950    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
951    case ISD::TRUNCATE:    return getConstant(Val, VT);
952    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
953    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
954    case ISD::BIT_CONVERT:
955      if (VT == MVT::f32) {
956        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
957        return getConstantFP(BitsToFloat(Val), VT);
958      } else if (VT == MVT::f64) {
959        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
960        return getConstantFP(BitsToDouble(Val), VT);
961      }
962      break;
963    case ISD::BSWAP:
964      switch(VT) {
965      default: assert(0 && "Invalid bswap!"); break;
966      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
967      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
968      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
969      }
970      break;
971    case ISD::CTPOP:
972      switch(VT) {
973      default: assert(0 && "Invalid ctpop!"); break;
974      case MVT::i1: return getConstant(Val != 0, VT);
975      case MVT::i8:
976        Tmp1 = (unsigned)Val & 0xFF;
977        return getConstant(CountPopulation_32(Tmp1), VT);
978      case MVT::i16:
979        Tmp1 = (unsigned)Val & 0xFFFF;
980        return getConstant(CountPopulation_32(Tmp1), VT);
981      case MVT::i32:
982        return getConstant(CountPopulation_32((unsigned)Val), VT);
983      case MVT::i64:
984        return getConstant(CountPopulation_64(Val), VT);
985      }
986    case ISD::CTLZ:
987      switch(VT) {
988      default: assert(0 && "Invalid ctlz!"); break;
989      case MVT::i1: return getConstant(Val == 0, VT);
990      case MVT::i8:
991        Tmp1 = (unsigned)Val & 0xFF;
992        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
993      case MVT::i16:
994        Tmp1 = (unsigned)Val & 0xFFFF;
995        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
996      case MVT::i32:
997        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
998      case MVT::i64:
999        return getConstant(CountLeadingZeros_64(Val), VT);
1000      }
1001    case ISD::CTTZ:
1002      switch(VT) {
1003      default: assert(0 && "Invalid cttz!"); break;
1004      case MVT::i1: return getConstant(Val == 0, VT);
1005      case MVT::i8:
1006        Tmp1 = (unsigned)Val | 0x100;
1007        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1008      case MVT::i16:
1009        Tmp1 = (unsigned)Val | 0x10000;
1010        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1011      case MVT::i32:
1012        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1013      case MVT::i64:
1014        return getConstant(CountTrailingZeros_64(Val), VT);
1015      }
1016    }
1017  }
1018
1019  // Constant fold unary operations with an floating point constant operand.
1020  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1021    switch (Opcode) {
1022    case ISD::FNEG:
1023      return getConstantFP(-C->getValue(), VT);
1024    case ISD::FABS:
1025      return getConstantFP(fabs(C->getValue()), VT);
1026    case ISD::FP_ROUND:
1027    case ISD::FP_EXTEND:
1028      return getConstantFP(C->getValue(), VT);
1029    case ISD::FP_TO_SINT:
1030      return getConstant((int64_t)C->getValue(), VT);
1031    case ISD::FP_TO_UINT:
1032      return getConstant((uint64_t)C->getValue(), VT);
1033    case ISD::BIT_CONVERT:
1034      if (VT == MVT::i32) {
1035        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1036        return getConstant(FloatToBits(C->getValue()), VT);
1037      } else if (VT == MVT::i64) {
1038        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1039        return getConstant(DoubleToBits(C->getValue()), VT);
1040      }
1041      break;
1042    }
1043
1044  unsigned OpOpcode = Operand.Val->getOpcode();
1045  switch (Opcode) {
1046  case ISD::TokenFactor:
1047    return Operand;         // Factor of one node?  No factor.
1048  case ISD::SIGN_EXTEND:
1049    if (Operand.getValueType() == VT) return Operand;   // noop extension
1050    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1051      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1052    break;
1053  case ISD::ZERO_EXTEND:
1054    if (Operand.getValueType() == VT) return Operand;   // noop extension
1055    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1056      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1057    break;
1058  case ISD::ANY_EXTEND:
1059    if (Operand.getValueType() == VT) return Operand;   // noop extension
1060    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1061      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1062      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1063    break;
1064  case ISD::TRUNCATE:
1065    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1066    if (OpOpcode == ISD::TRUNCATE)
1067      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1068    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1069             OpOpcode == ISD::ANY_EXTEND) {
1070      // If the source is smaller than the dest, we still need an extend.
1071      if (Operand.Val->getOperand(0).getValueType() < VT)
1072        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1073      else if (Operand.Val->getOperand(0).getValueType() > VT)
1074        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1075      else
1076        return Operand.Val->getOperand(0);
1077    }
1078    break;
1079  case ISD::BIT_CONVERT:
1080    // Basic sanity checking.
1081    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
1082           "Cannot BIT_CONVERT between two different types!");
1083    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1084    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1085      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1086    break;
1087  case ISD::FNEG:
1088    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1089      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1090                     Operand.Val->getOperand(0));
1091    if (OpOpcode == ISD::FNEG)  // --X -> X
1092      return Operand.Val->getOperand(0);
1093    break;
1094  case ISD::FABS:
1095    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1096      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1097    break;
1098  }
1099
1100  SDNode *N;
1101  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1102    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1103    if (E) return SDOperand(E, 0);
1104    E = N = new SDNode(Opcode, Operand);
1105  } else {
1106    N = new SDNode(Opcode, Operand);
1107  }
1108  N->setValueTypes(VT);
1109  AllNodes.push_back(N);
1110  return SDOperand(N, 0);
1111}
1112
1113
1114
1115SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1116                                SDOperand N1, SDOperand N2) {
1117#ifndef NDEBUG
1118  switch (Opcode) {
1119  case ISD::TokenFactor:
1120    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1121           N2.getValueType() == MVT::Other && "Invalid token factor!");
1122    break;
1123  case ISD::AND:
1124  case ISD::OR:
1125  case ISD::XOR:
1126  case ISD::UDIV:
1127  case ISD::UREM:
1128  case ISD::MULHU:
1129  case ISD::MULHS:
1130    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1131    // fall through
1132  case ISD::ADD:
1133  case ISD::SUB:
1134  case ISD::MUL:
1135  case ISD::SDIV:
1136  case ISD::SREM:
1137    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1138    // fall through.
1139  case ISD::FADD:
1140  case ISD::FSUB:
1141  case ISD::FMUL:
1142  case ISD::FDIV:
1143  case ISD::FREM:
1144    assert(N1.getValueType() == N2.getValueType() &&
1145           N1.getValueType() == VT && "Binary operator types must match!");
1146    break;
1147
1148  case ISD::SHL:
1149  case ISD::SRA:
1150  case ISD::SRL:
1151  case ISD::ROTL:
1152  case ISD::ROTR:
1153    assert(VT == N1.getValueType() &&
1154           "Shift operators return type must be the same as their first arg");
1155    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1156           VT != MVT::i1 && "Shifts only work on integers");
1157    break;
1158  case ISD::FP_ROUND_INREG: {
1159    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1160    assert(VT == N1.getValueType() && "Not an inreg round!");
1161    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1162           "Cannot FP_ROUND_INREG integer types");
1163    assert(EVT <= VT && "Not rounding down!");
1164    break;
1165  }
1166  case ISD::AssertSext:
1167  case ISD::AssertZext:
1168  case ISD::SIGN_EXTEND_INREG: {
1169    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1170    assert(VT == N1.getValueType() && "Not an inreg extend!");
1171    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1172           "Cannot *_EXTEND_INREG FP types");
1173    assert(EVT <= VT && "Not extending!");
1174  }
1175
1176  default: break;
1177  }
1178#endif
1179
1180  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1181  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1182  if (N1C) {
1183    if (N2C) {
1184      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1185      switch (Opcode) {
1186      case ISD::ADD: return getConstant(C1 + C2, VT);
1187      case ISD::SUB: return getConstant(C1 - C2, VT);
1188      case ISD::MUL: return getConstant(C1 * C2, VT);
1189      case ISD::UDIV:
1190        if (C2) return getConstant(C1 / C2, VT);
1191        break;
1192      case ISD::UREM :
1193        if (C2) return getConstant(C1 % C2, VT);
1194        break;
1195      case ISD::SDIV :
1196        if (C2) return getConstant(N1C->getSignExtended() /
1197                                   N2C->getSignExtended(), VT);
1198        break;
1199      case ISD::SREM :
1200        if (C2) return getConstant(N1C->getSignExtended() %
1201                                   N2C->getSignExtended(), VT);
1202        break;
1203      case ISD::AND  : return getConstant(C1 & C2, VT);
1204      case ISD::OR   : return getConstant(C1 | C2, VT);
1205      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1206      case ISD::SHL  : return getConstant(C1 << C2, VT);
1207      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1208      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1209      case ISD::ROTL :
1210        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1211                           VT);
1212      case ISD::ROTR :
1213        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1214                           VT);
1215      default: break;
1216      }
1217    } else {      // Cannonicalize constant to RHS if commutative
1218      if (isCommutativeBinOp(Opcode)) {
1219        std::swap(N1C, N2C);
1220        std::swap(N1, N2);
1221      }
1222    }
1223  }
1224
1225  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1226  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1227  if (N1CFP) {
1228    if (N2CFP) {
1229      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1230      switch (Opcode) {
1231      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1232      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1233      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1234      case ISD::FDIV:
1235        if (C2) return getConstantFP(C1 / C2, VT);
1236        break;
1237      case ISD::FREM :
1238        if (C2) return getConstantFP(fmod(C1, C2), VT);
1239        break;
1240      default: break;
1241      }
1242    } else {      // Cannonicalize constant to RHS if commutative
1243      if (isCommutativeBinOp(Opcode)) {
1244        std::swap(N1CFP, N2CFP);
1245        std::swap(N1, N2);
1246      }
1247    }
1248  }
1249
1250  // Finally, fold operations that do not require constants.
1251  switch (Opcode) {
1252  case ISD::FP_ROUND_INREG:
1253    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1254    break;
1255  case ISD::SIGN_EXTEND_INREG: {
1256    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1257    if (EVT == VT) return N1;  // Not actually extending
1258    break;
1259  }
1260
1261  // FIXME: figure out how to safely handle things like
1262  // int foo(int x) { return 1 << (x & 255); }
1263  // int bar() { return foo(256); }
1264#if 0
1265  case ISD::SHL:
1266  case ISD::SRL:
1267  case ISD::SRA:
1268    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1269        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1270      return getNode(Opcode, VT, N1, N2.getOperand(0));
1271    else if (N2.getOpcode() == ISD::AND)
1272      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1273        // If the and is only masking out bits that cannot effect the shift,
1274        // eliminate the and.
1275        unsigned NumBits = MVT::getSizeInBits(VT);
1276        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1277          return getNode(Opcode, VT, N1, N2.getOperand(0));
1278      }
1279    break;
1280#endif
1281  }
1282
1283  // Memoize this node if possible.
1284  SDNode *N;
1285  if (VT != MVT::Flag) {
1286    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1287    if (BON) return SDOperand(BON, 0);
1288
1289    BON = N = new SDNode(Opcode, N1, N2);
1290  } else {
1291    N = new SDNode(Opcode, N1, N2);
1292  }
1293
1294  N->setValueTypes(VT);
1295  AllNodes.push_back(N);
1296  return SDOperand(N, 0);
1297}
1298
1299SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1300                                SDOperand N1, SDOperand N2, SDOperand N3) {
1301  // Perform various simplifications.
1302  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1303  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1304  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1305  switch (Opcode) {
1306  case ISD::SETCC: {
1307    // Use SimplifySetCC  to simplify SETCC's.
1308    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1309    if (Simp.Val) return Simp;
1310    break;
1311  }
1312  case ISD::SELECT:
1313    if (N1C)
1314      if (N1C->getValue())
1315        return N2;             // select true, X, Y -> X
1316      else
1317        return N3;             // select false, X, Y -> Y
1318
1319    if (N2 == N3) return N2;   // select C, X, X -> X
1320    break;
1321  case ISD::BRCOND:
1322    if (N2C)
1323      if (N2C->getValue()) // Unconditional branch
1324        return getNode(ISD::BR, MVT::Other, N1, N3);
1325      else
1326        return N1;         // Never-taken branch
1327    break;
1328  }
1329
1330  std::vector<SDOperand> Ops;
1331  Ops.reserve(3);
1332  Ops.push_back(N1);
1333  Ops.push_back(N2);
1334  Ops.push_back(N3);
1335
1336  // Memoize node if it doesn't produce a flag.
1337  SDNode *N;
1338  if (VT != MVT::Flag) {
1339    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1340    if (E) return SDOperand(E, 0);
1341    E = N = new SDNode(Opcode, N1, N2, N3);
1342  } else {
1343    N = new SDNode(Opcode, N1, N2, N3);
1344  }
1345  N->setValueTypes(VT);
1346  AllNodes.push_back(N);
1347  return SDOperand(N, 0);
1348}
1349
1350SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1351                                SDOperand N1, SDOperand N2, SDOperand N3,
1352                                SDOperand N4) {
1353  std::vector<SDOperand> Ops;
1354  Ops.reserve(4);
1355  Ops.push_back(N1);
1356  Ops.push_back(N2);
1357  Ops.push_back(N3);
1358  Ops.push_back(N4);
1359  return getNode(Opcode, VT, Ops);
1360}
1361
1362SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1363                                SDOperand N1, SDOperand N2, SDOperand N3,
1364                                SDOperand N4, SDOperand N5) {
1365  std::vector<SDOperand> Ops;
1366  Ops.reserve(5);
1367  Ops.push_back(N1);
1368  Ops.push_back(N2);
1369  Ops.push_back(N3);
1370  Ops.push_back(N4);
1371  Ops.push_back(N5);
1372  return getNode(Opcode, VT, Ops);
1373}
1374
1375SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1376                                SDOperand Chain, SDOperand Ptr,
1377                                SDOperand SV) {
1378  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1379  if (N) return SDOperand(N, 0);
1380  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1381
1382  // Loads have a token chain.
1383  setNodeValueTypes(N, VT, MVT::Other);
1384  AllNodes.push_back(N);
1385  return SDOperand(N, 0);
1386}
1387
1388SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1389                                   SDOperand Chain, SDOperand Ptr,
1390                                   SDOperand SV) {
1391  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1392  if (N) return SDOperand(N, 0);
1393  std::vector<SDOperand> Ops;
1394  Ops.reserve(5);
1395  Ops.push_back(Chain);
1396  Ops.push_back(Ptr);
1397  Ops.push_back(getConstant(Count, MVT::i32));
1398  Ops.push_back(getValueType(EVT));
1399  Ops.push_back(SV);
1400  std::vector<MVT::ValueType> VTs;
1401  VTs.reserve(2);
1402  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1403  return getNode(ISD::VLOAD, VTs, Ops);
1404}
1405
1406SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1407                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1408                                   MVT::ValueType EVT) {
1409  std::vector<SDOperand> Ops;
1410  Ops.reserve(4);
1411  Ops.push_back(Chain);
1412  Ops.push_back(Ptr);
1413  Ops.push_back(SV);
1414  Ops.push_back(getValueType(EVT));
1415  std::vector<MVT::ValueType> VTs;
1416  VTs.reserve(2);
1417  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1418  return getNode(Opcode, VTs, Ops);
1419}
1420
1421SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1422  assert((!V || isa<PointerType>(V->getType())) &&
1423         "SrcValue is not a pointer?");
1424  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1425  if (N) return SDOperand(N, 0);
1426
1427  N = new SrcValueSDNode(V, Offset);
1428  AllNodes.push_back(N);
1429  return SDOperand(N, 0);
1430}
1431
1432SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1433                                 SDOperand Chain, SDOperand Ptr,
1434                                 SDOperand SV) {
1435  std::vector<SDOperand> Ops;
1436  Ops.reserve(3);
1437  Ops.push_back(Chain);
1438  Ops.push_back(Ptr);
1439  Ops.push_back(SV);
1440  std::vector<MVT::ValueType> VTs;
1441  VTs.reserve(2);
1442  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1443  return getNode(ISD::VAARG, VTs, Ops);
1444}
1445
1446SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1447                                std::vector<SDOperand> &Ops) {
1448  switch (Ops.size()) {
1449  case 0: return getNode(Opcode, VT);
1450  case 1: return getNode(Opcode, VT, Ops[0]);
1451  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1452  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1453  default: break;
1454  }
1455
1456  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1457  switch (Opcode) {
1458  default: break;
1459  case ISD::BRCONDTWOWAY:
1460    if (N1C)
1461      if (N1C->getValue()) // Unconditional branch to true dest.
1462        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1463      else                 // Unconditional branch to false dest.
1464        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1465    break;
1466  case ISD::BRTWOWAY_CC:
1467    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1468    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1469           "LHS and RHS of comparison must have same type!");
1470    break;
1471  case ISD::TRUNCSTORE: {
1472    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1473    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1474#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1475    // If this is a truncating store of a constant, convert to the desired type
1476    // and store it instead.
1477    if (isa<Constant>(Ops[0])) {
1478      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1479      if (isa<Constant>(Op))
1480        N1 = Op;
1481    }
1482    // Also for ConstantFP?
1483#endif
1484    if (Ops[0].getValueType() == EVT)       // Normal store?
1485      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1486    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1487    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1488           "Can't do FP-INT conversion!");
1489    break;
1490  }
1491  case ISD::SELECT_CC: {
1492    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1493    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1494           "LHS and RHS of condition must have same type!");
1495    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1496           "True and False arms of SelectCC must have same type!");
1497    assert(Ops[2].getValueType() == VT &&
1498           "select_cc node must be of same type as true and false value!");
1499    break;
1500  }
1501  case ISD::BR_CC: {
1502    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1503    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1504           "LHS/RHS of comparison should match types!");
1505    break;
1506  }
1507  }
1508
1509  // Memoize nodes.
1510  SDNode *N;
1511  if (VT != MVT::Flag) {
1512    SDNode *&E =
1513      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1514    if (E) return SDOperand(E, 0);
1515    E = N = new SDNode(Opcode, Ops);
1516  } else {
1517    N = new SDNode(Opcode, Ops);
1518  }
1519  N->setValueTypes(VT);
1520  AllNodes.push_back(N);
1521  return SDOperand(N, 0);
1522}
1523
1524SDOperand SelectionDAG::getNode(unsigned Opcode,
1525                                std::vector<MVT::ValueType> &ResultTys,
1526                                std::vector<SDOperand> &Ops) {
1527  if (ResultTys.size() == 1)
1528    return getNode(Opcode, ResultTys[0], Ops);
1529
1530  switch (Opcode) {
1531  case ISD::EXTLOAD:
1532  case ISD::SEXTLOAD:
1533  case ISD::ZEXTLOAD: {
1534    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1535    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1536    // If they are asking for an extending load from/to the same thing, return a
1537    // normal load.
1538    if (ResultTys[0] == EVT)
1539      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1540    assert(EVT < ResultTys[0] &&
1541           "Should only be an extending load, not truncating!");
1542    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1543           "Cannot sign/zero extend a FP load!");
1544    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1545           "Cannot convert from FP to Int or Int -> FP!");
1546    break;
1547  }
1548
1549  // FIXME: figure out how to safely handle things like
1550  // int foo(int x) { return 1 << (x & 255); }
1551  // int bar() { return foo(256); }
1552#if 0
1553  case ISD::SRA_PARTS:
1554  case ISD::SRL_PARTS:
1555  case ISD::SHL_PARTS:
1556    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1557        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1558      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1559    else if (N3.getOpcode() == ISD::AND)
1560      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1561        // If the and is only masking out bits that cannot effect the shift,
1562        // eliminate the and.
1563        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1564        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1565          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1566      }
1567    break;
1568#endif
1569  }
1570
1571  // Memoize the node unless it returns a flag.
1572  SDNode *N;
1573  if (ResultTys.back() != MVT::Flag) {
1574    SDNode *&E =
1575      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1576    if (E) return SDOperand(E, 0);
1577    E = N = new SDNode(Opcode, Ops);
1578  } else {
1579    N = new SDNode(Opcode, Ops);
1580  }
1581  setNodeValueTypes(N, ResultTys);
1582  AllNodes.push_back(N);
1583  return SDOperand(N, 0);
1584}
1585
1586void SelectionDAG::setNodeValueTypes(SDNode *N,
1587                                     std::vector<MVT::ValueType> &RetVals) {
1588  switch (RetVals.size()) {
1589  case 0: return;
1590  case 1: N->setValueTypes(RetVals[0]); return;
1591  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1592  default: break;
1593  }
1594
1595  std::list<std::vector<MVT::ValueType> >::iterator I =
1596    std::find(VTList.begin(), VTList.end(), RetVals);
1597  if (I == VTList.end()) {
1598    VTList.push_front(RetVals);
1599    I = VTList.begin();
1600  }
1601
1602  N->setValueTypes(&(*I)[0], I->size());
1603}
1604
1605void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1606                                     MVT::ValueType VT2) {
1607  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1608       E = VTList.end(); I != E; ++I) {
1609    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1610      N->setValueTypes(&(*I)[0], 2);
1611      return;
1612    }
1613  }
1614  std::vector<MVT::ValueType> V;
1615  V.push_back(VT1);
1616  V.push_back(VT2);
1617  VTList.push_front(V);
1618  N->setValueTypes(&(*VTList.begin())[0], 2);
1619}
1620
1621/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1622/// specified operands.  If the resultant node already exists in the DAG,
1623/// this does not modify the specified node, instead it returns the node that
1624/// already exists.  If the resultant node does not exist in the DAG, the
1625/// input node is returned.  As a degenerate case, if you specify the same
1626/// input operands as the node already has, the input node is returned.
1627SDOperand SelectionDAG::
1628UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1629  SDNode *N = InN.Val;
1630  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1631
1632  // Check to see if there is no change.
1633  if (Op == N->getOperand(0)) return InN;
1634
1635  // See if the modified node already exists.
1636  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1637  if (NewSlot && *NewSlot)
1638    return SDOperand(*NewSlot, InN.ResNo);
1639
1640  // Nope it doesn't.  Remove the node from it's current place in the maps.
1641  if (NewSlot)
1642    RemoveNodeFromCSEMaps(N);
1643
1644  // Now we update the operands.
1645  N->OperandList[0].Val->removeUser(N);
1646  Op.Val->addUser(N);
1647  N->OperandList[0] = Op;
1648
1649  // If this gets put into a CSE map, add it.
1650  if (NewSlot) *NewSlot = N;
1651  return InN;
1652}
1653
1654SDOperand SelectionDAG::
1655UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1656  SDNode *N = InN.Val;
1657  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1658
1659  // Check to see if there is no change.
1660  bool AnyChange = false;
1661  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1662    return InN;   // No operands changed, just return the input node.
1663
1664  // See if the modified node already exists.
1665  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1666  if (NewSlot && *NewSlot)
1667    return SDOperand(*NewSlot, InN.ResNo);
1668
1669  // Nope it doesn't.  Remove the node from it's current place in the maps.
1670  if (NewSlot)
1671    RemoveNodeFromCSEMaps(N);
1672
1673  // Now we update the operands.
1674  if (N->OperandList[0] != Op1) {
1675    N->OperandList[0].Val->removeUser(N);
1676    Op1.Val->addUser(N);
1677    N->OperandList[0] = Op1;
1678  }
1679  if (N->OperandList[1] != Op2) {
1680    N->OperandList[1].Val->removeUser(N);
1681    Op2.Val->addUser(N);
1682    N->OperandList[1] = Op2;
1683  }
1684
1685  // If this gets put into a CSE map, add it.
1686  if (NewSlot) *NewSlot = N;
1687  return InN;
1688}
1689
1690SDOperand SelectionDAG::
1691UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1692  std::vector<SDOperand> Ops;
1693  Ops.push_back(Op1);
1694  Ops.push_back(Op2);
1695  Ops.push_back(Op3);
1696  return UpdateNodeOperands(N, Ops);
1697}
1698
1699SDOperand SelectionDAG::
1700UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1701                   SDOperand Op3, SDOperand Op4) {
1702  std::vector<SDOperand> Ops;
1703  Ops.push_back(Op1);
1704  Ops.push_back(Op2);
1705  Ops.push_back(Op3);
1706  Ops.push_back(Op4);
1707  return UpdateNodeOperands(N, Ops);
1708}
1709
1710SDOperand SelectionDAG::
1711UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1712                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1713  std::vector<SDOperand> Ops;
1714  Ops.push_back(Op1);
1715  Ops.push_back(Op2);
1716  Ops.push_back(Op3);
1717  Ops.push_back(Op4);
1718  Ops.push_back(Op5);
1719  return UpdateNodeOperands(N, Ops);
1720}
1721
1722
1723SDOperand SelectionDAG::
1724UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1725  SDNode *N = InN.Val;
1726  assert(N->getNumOperands() == Ops.size() &&
1727         "Update with wrong number of operands");
1728
1729  // Check to see if there is no change.
1730  unsigned NumOps = Ops.size();
1731  bool AnyChange = false;
1732  for (unsigned i = 0; i != NumOps; ++i) {
1733    if (Ops[i] != N->getOperand(i)) {
1734      AnyChange = true;
1735      break;
1736    }
1737  }
1738
1739  // No operands changed, just return the input node.
1740  if (!AnyChange) return InN;
1741
1742  // See if the modified node already exists.
1743  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1744  if (NewSlot && *NewSlot)
1745    return SDOperand(*NewSlot, InN.ResNo);
1746
1747  // Nope it doesn't.  Remove the node from it's current place in the maps.
1748  if (NewSlot)
1749    RemoveNodeFromCSEMaps(N);
1750
1751  // Now we update the operands.
1752  for (unsigned i = 0; i != NumOps; ++i) {
1753    if (N->OperandList[i] != Ops[i]) {
1754      N->OperandList[i].Val->removeUser(N);
1755      Ops[i].Val->addUser(N);
1756      N->OperandList[i] = Ops[i];
1757    }
1758  }
1759
1760  // If this gets put into a CSE map, add it.
1761  if (NewSlot) *NewSlot = N;
1762  return InN;
1763}
1764
1765
1766
1767
1768/// SelectNodeTo - These are used for target selectors to *mutate* the
1769/// specified node to have the specified return type, Target opcode, and
1770/// operands.  Note that target opcodes are stored as
1771/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1772///
1773/// Note that SelectNodeTo returns the resultant node.  If there is already a
1774/// node of the specified opcode and operands, it returns that node instead of
1775/// the current one.
1776SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1777                                     MVT::ValueType VT) {
1778  // If an identical node already exists, use it.
1779  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1780  if (ON) return SDOperand(ON, 0);
1781
1782  RemoveNodeFromCSEMaps(N);
1783
1784  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1785  N->setValueTypes(VT);
1786
1787  ON = N;   // Memoize the new node.
1788  return SDOperand(N, 0);
1789}
1790
1791SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1792                                     MVT::ValueType VT, SDOperand Op1) {
1793  // If an identical node already exists, use it.
1794  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1795                                        std::make_pair(Op1, VT))];
1796  if (ON) return SDOperand(ON, 0);
1797
1798  RemoveNodeFromCSEMaps(N);
1799  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1800  N->setValueTypes(VT);
1801  N->setOperands(Op1);
1802
1803  ON = N;   // Memoize the new node.
1804  return SDOperand(N, 0);
1805}
1806
1807SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1808                                     MVT::ValueType VT, SDOperand Op1,
1809                                     SDOperand Op2) {
1810  // If an identical node already exists, use it.
1811  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1812                                         std::make_pair(Op1, Op2))];
1813  if (ON) return SDOperand(ON, 0);
1814
1815  RemoveNodeFromCSEMaps(N);
1816  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1817  N->setValueTypes(VT);
1818  N->setOperands(Op1, Op2);
1819
1820  ON = N;   // Memoize the new node.
1821  return SDOperand(N, 0);
1822}
1823
1824SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1825                                     MVT::ValueType VT, SDOperand Op1,
1826                                     SDOperand Op2, SDOperand Op3) {
1827  // If an identical node already exists, use it.
1828  std::vector<SDOperand> OpList;
1829  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1830  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1831                                              std::make_pair(VT, OpList))];
1832  if (ON) return SDOperand(ON, 0);
1833
1834  RemoveNodeFromCSEMaps(N);
1835  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1836  N->setValueTypes(VT);
1837  N->setOperands(Op1, Op2, Op3);
1838
1839  ON = N;   // Memoize the new node.
1840  return SDOperand(N, 0);
1841}
1842
1843SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1844                                     MVT::ValueType VT, SDOperand Op1,
1845                                     SDOperand Op2, SDOperand Op3,
1846                                     SDOperand Op4) {
1847  // If an identical node already exists, use it.
1848  std::vector<SDOperand> OpList;
1849  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1850  OpList.push_back(Op4);
1851  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1852                                              std::make_pair(VT, OpList))];
1853  if (ON) return SDOperand(ON, 0);
1854
1855  RemoveNodeFromCSEMaps(N);
1856  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1857  N->setValueTypes(VT);
1858  N->setOperands(Op1, Op2, Op3, Op4);
1859
1860  ON = N;   // Memoize the new node.
1861  return SDOperand(N, 0);
1862}
1863
1864SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1865                                     MVT::ValueType VT, SDOperand Op1,
1866                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1867                                     SDOperand Op5) {
1868  // If an identical node already exists, use it.
1869  std::vector<SDOperand> OpList;
1870  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1871  OpList.push_back(Op4); OpList.push_back(Op5);
1872  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1873                                              std::make_pair(VT, OpList))];
1874  if (ON) return SDOperand(ON, 0);
1875
1876  RemoveNodeFromCSEMaps(N);
1877  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1878  N->setValueTypes(VT);
1879  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1880
1881  ON = N;   // Memoize the new node.
1882  return SDOperand(N, 0);
1883}
1884
1885SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1886                                     MVT::ValueType VT, SDOperand Op1,
1887                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1888                                     SDOperand Op5, SDOperand Op6) {
1889  // If an identical node already exists, use it.
1890  std::vector<SDOperand> OpList;
1891  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1892  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1893  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1894                                              std::make_pair(VT, OpList))];
1895  if (ON) return SDOperand(ON, 0);
1896
1897  RemoveNodeFromCSEMaps(N);
1898  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1899  N->setValueTypes(VT);
1900  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1901
1902  ON = N;   // Memoize the new node.
1903  return SDOperand(N, 0);
1904}
1905
1906SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1907                                     MVT::ValueType VT, SDOperand Op1,
1908                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1909                                     SDOperand Op5, SDOperand Op6,
1910				     SDOperand Op7) {
1911  // If an identical node already exists, use it.
1912  std::vector<SDOperand> OpList;
1913  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1914  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1915  OpList.push_back(Op7);
1916  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1917                                              std::make_pair(VT, OpList))];
1918  if (ON) return SDOperand(ON, 0);
1919
1920  RemoveNodeFromCSEMaps(N);
1921  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1922  N->setValueTypes(VT);
1923  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1924
1925  ON = N;   // Memoize the new node.
1926  return SDOperand(N, 0);
1927}
1928SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1929                                     MVT::ValueType VT, SDOperand Op1,
1930                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1931                                     SDOperand Op5, SDOperand Op6,
1932				     SDOperand Op7, SDOperand Op8) {
1933  // If an identical node already exists, use it.
1934  std::vector<SDOperand> OpList;
1935  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1936  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1937  OpList.push_back(Op7); OpList.push_back(Op8);
1938  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1939                                              std::make_pair(VT, OpList))];
1940  if (ON) return SDOperand(ON, 0);
1941
1942  RemoveNodeFromCSEMaps(N);
1943  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1944  N->setValueTypes(VT);
1945  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1946
1947  ON = N;   // Memoize the new node.
1948  return SDOperand(N, 0);
1949}
1950
1951SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1952                                     MVT::ValueType VT1, MVT::ValueType VT2,
1953                                     SDOperand Op1, SDOperand Op2) {
1954  // If an identical node already exists, use it.
1955  std::vector<SDOperand> OpList;
1956  OpList.push_back(Op1); OpList.push_back(Op2);
1957  std::vector<MVT::ValueType> VTList;
1958  VTList.push_back(VT1); VTList.push_back(VT2);
1959  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1960                                              std::make_pair(VTList, OpList))];
1961  if (ON) return SDOperand(ON, 0);
1962
1963  RemoveNodeFromCSEMaps(N);
1964  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1965  setNodeValueTypes(N, VT1, VT2);
1966  N->setOperands(Op1, Op2);
1967
1968  ON = N;   // Memoize the new node.
1969  return SDOperand(N, 0);
1970}
1971
1972SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1973                                     MVT::ValueType VT1, MVT::ValueType VT2,
1974                                     SDOperand Op1, SDOperand Op2,
1975                                     SDOperand Op3) {
1976  // If an identical node already exists, use it.
1977  std::vector<SDOperand> OpList;
1978  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1979  std::vector<MVT::ValueType> VTList;
1980  VTList.push_back(VT1); VTList.push_back(VT2);
1981  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1982                                              std::make_pair(VTList, OpList))];
1983  if (ON) return SDOperand(ON, 0);
1984
1985  RemoveNodeFromCSEMaps(N);
1986  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1987  setNodeValueTypes(N, VT1, VT2);
1988  N->setOperands(Op1, Op2, Op3);
1989
1990  ON = N;   // Memoize the new node.
1991  return SDOperand(N, 0);
1992}
1993
1994SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1995                                     MVT::ValueType VT1, MVT::ValueType VT2,
1996                                     SDOperand Op1, SDOperand Op2,
1997                                     SDOperand Op3, SDOperand Op4) {
1998  // If an identical node already exists, use it.
1999  std::vector<SDOperand> OpList;
2000  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2001  OpList.push_back(Op4);
2002  std::vector<MVT::ValueType> VTList;
2003  VTList.push_back(VT1); VTList.push_back(VT2);
2004  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2005                                              std::make_pair(VTList, OpList))];
2006  if (ON) return SDOperand(ON, 0);
2007
2008  RemoveNodeFromCSEMaps(N);
2009  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2010  setNodeValueTypes(N, VT1, VT2);
2011  N->setOperands(Op1, Op2, Op3, Op4);
2012
2013  ON = N;   // Memoize the new node.
2014  return SDOperand(N, 0);
2015}
2016
2017SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2018                                     MVT::ValueType VT1, MVT::ValueType VT2,
2019                                     SDOperand Op1, SDOperand Op2,
2020                                     SDOperand Op3, SDOperand Op4,
2021                                     SDOperand Op5) {
2022  // If an identical node already exists, use it.
2023  std::vector<SDOperand> OpList;
2024  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2025  OpList.push_back(Op4); OpList.push_back(Op5);
2026  std::vector<MVT::ValueType> VTList;
2027  VTList.push_back(VT1); VTList.push_back(VT2);
2028  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2029                                              std::make_pair(VTList, OpList))];
2030  if (ON) return SDOperand(ON, 0);
2031
2032  RemoveNodeFromCSEMaps(N);
2033  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2034  setNodeValueTypes(N, VT1, VT2);
2035  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2036
2037  ON = N;   // Memoize the new node.
2038  return SDOperand(N, 0);
2039}
2040
2041/// getTargetNode - These are used for target selectors to create a new node
2042/// with specified return type(s), target opcode, and operands.
2043///
2044/// Note that getTargetNode returns the resultant node.  If there is already a
2045/// node of the specified opcode and operands, it returns that node instead of
2046/// the current one.
2047SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2048  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2049}
2050SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2051                                    SDOperand Op1) {
2052  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2053}
2054SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2055                                    SDOperand Op1, SDOperand Op2) {
2056  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2057}
2058SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2059                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2060  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2061}
2062SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2063                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2064                                    SDOperand Op4) {
2065  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2066}
2067SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2068                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2069                                    SDOperand Op4, SDOperand Op5) {
2070  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2071}
2072SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2073                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2074                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2075  std::vector<SDOperand> Ops;
2076  Ops.reserve(6);
2077  Ops.push_back(Op1);
2078  Ops.push_back(Op2);
2079  Ops.push_back(Op3);
2080  Ops.push_back(Op4);
2081  Ops.push_back(Op5);
2082  Ops.push_back(Op6);
2083  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2084}
2085SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2086                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2087                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2088                                    SDOperand Op7) {
2089  std::vector<SDOperand> Ops;
2090  Ops.reserve(7);
2091  Ops.push_back(Op1);
2092  Ops.push_back(Op2);
2093  Ops.push_back(Op3);
2094  Ops.push_back(Op4);
2095  Ops.push_back(Op5);
2096  Ops.push_back(Op6);
2097  Ops.push_back(Op7);
2098  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2099}
2100SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2101                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2102                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2103                                    SDOperand Op7, SDOperand Op8) {
2104  std::vector<SDOperand> Ops;
2105  Ops.reserve(8);
2106  Ops.push_back(Op1);
2107  Ops.push_back(Op2);
2108  Ops.push_back(Op3);
2109  Ops.push_back(Op4);
2110  Ops.push_back(Op5);
2111  Ops.push_back(Op6);
2112  Ops.push_back(Op7);
2113  Ops.push_back(Op8);
2114  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2115}
2116SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2117                                    std::vector<SDOperand> &Ops) {
2118  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2119}
2120SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2121                                    MVT::ValueType VT2, SDOperand Op1) {
2122  std::vector<MVT::ValueType> ResultTys;
2123  ResultTys.push_back(VT1);
2124  ResultTys.push_back(VT2);
2125  std::vector<SDOperand> Ops;
2126  Ops.push_back(Op1);
2127  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2128}
2129SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2130                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2131  std::vector<MVT::ValueType> ResultTys;
2132  ResultTys.push_back(VT1);
2133  ResultTys.push_back(VT2);
2134  std::vector<SDOperand> Ops;
2135  Ops.push_back(Op1);
2136  Ops.push_back(Op2);
2137  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2138}
2139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2140                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2141                                    SDOperand Op3) {
2142  std::vector<MVT::ValueType> ResultTys;
2143  ResultTys.push_back(VT1);
2144  ResultTys.push_back(VT2);
2145  std::vector<SDOperand> Ops;
2146  Ops.push_back(Op1);
2147  Ops.push_back(Op2);
2148  Ops.push_back(Op3);
2149  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2150}
2151SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2152                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2153                                    SDOperand Op3, SDOperand Op4) {
2154  std::vector<MVT::ValueType> ResultTys;
2155  ResultTys.push_back(VT1);
2156  ResultTys.push_back(VT2);
2157  std::vector<SDOperand> Ops;
2158  Ops.push_back(Op1);
2159  Ops.push_back(Op2);
2160  Ops.push_back(Op3);
2161  Ops.push_back(Op4);
2162  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2163}
2164SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2165                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2166                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2167  std::vector<MVT::ValueType> ResultTys;
2168  ResultTys.push_back(VT1);
2169  ResultTys.push_back(VT2);
2170  std::vector<SDOperand> Ops;
2171  Ops.push_back(Op1);
2172  Ops.push_back(Op2);
2173  Ops.push_back(Op3);
2174  Ops.push_back(Op4);
2175  Ops.push_back(Op5);
2176  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2177}
2178SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2179                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2180                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2181                                    SDOperand Op6) {
2182  std::vector<MVT::ValueType> ResultTys;
2183  ResultTys.push_back(VT1);
2184  ResultTys.push_back(VT2);
2185  std::vector<SDOperand> Ops;
2186  Ops.push_back(Op1);
2187  Ops.push_back(Op2);
2188  Ops.push_back(Op3);
2189  Ops.push_back(Op4);
2190  Ops.push_back(Op5);
2191  Ops.push_back(Op6);
2192  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2193}
2194SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2195                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2196                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2197                                    SDOperand Op6, SDOperand Op7) {
2198  std::vector<MVT::ValueType> ResultTys;
2199  ResultTys.push_back(VT1);
2200  ResultTys.push_back(VT2);
2201  std::vector<SDOperand> Ops;
2202  Ops.push_back(Op1);
2203  Ops.push_back(Op2);
2204  Ops.push_back(Op3);
2205  Ops.push_back(Op4);
2206  Ops.push_back(Op5);
2207  Ops.push_back(Op6);
2208  Ops.push_back(Op7);
2209  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2210}
2211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2212                                    MVT::ValueType VT2, MVT::ValueType VT3,
2213                                    SDOperand Op1, SDOperand Op2) {
2214  std::vector<MVT::ValueType> ResultTys;
2215  ResultTys.push_back(VT1);
2216  ResultTys.push_back(VT2);
2217  ResultTys.push_back(VT3);
2218  std::vector<SDOperand> Ops;
2219  Ops.push_back(Op1);
2220  Ops.push_back(Op2);
2221  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2222}
2223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2224                                    MVT::ValueType VT2, MVT::ValueType VT3,
2225                                    SDOperand Op1, SDOperand Op2,
2226                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2227  std::vector<MVT::ValueType> ResultTys;
2228  ResultTys.push_back(VT1);
2229  ResultTys.push_back(VT2);
2230  ResultTys.push_back(VT3);
2231  std::vector<SDOperand> Ops;
2232  Ops.push_back(Op1);
2233  Ops.push_back(Op2);
2234  Ops.push_back(Op3);
2235  Ops.push_back(Op4);
2236  Ops.push_back(Op5);
2237  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2238}
2239SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2240                                    MVT::ValueType VT2, MVT::ValueType VT3,
2241                                    SDOperand Op1, SDOperand Op2,
2242                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2243                                    SDOperand Op6) {
2244  std::vector<MVT::ValueType> ResultTys;
2245  ResultTys.push_back(VT1);
2246  ResultTys.push_back(VT2);
2247  ResultTys.push_back(VT3);
2248  std::vector<SDOperand> Ops;
2249  Ops.push_back(Op1);
2250  Ops.push_back(Op2);
2251  Ops.push_back(Op3);
2252  Ops.push_back(Op4);
2253  Ops.push_back(Op5);
2254  Ops.push_back(Op6);
2255  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2256}
2257SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2258                                    MVT::ValueType VT2, MVT::ValueType VT3,
2259                                    SDOperand Op1, SDOperand Op2,
2260                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2261                                    SDOperand Op6, SDOperand Op7) {
2262  std::vector<MVT::ValueType> ResultTys;
2263  ResultTys.push_back(VT1);
2264  ResultTys.push_back(VT2);
2265  ResultTys.push_back(VT3);
2266  std::vector<SDOperand> Ops;
2267  Ops.push_back(Op1);
2268  Ops.push_back(Op2);
2269  Ops.push_back(Op3);
2270  Ops.push_back(Op4);
2271  Ops.push_back(Op5);
2272  Ops.push_back(Op6);
2273  Ops.push_back(Op7);
2274  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2275}
2276SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2277                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2278  std::vector<MVT::ValueType> ResultTys;
2279  ResultTys.push_back(VT1);
2280  ResultTys.push_back(VT2);
2281  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2282}
2283
2284// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2285/// This can cause recursive merging of nodes in the DAG.
2286///
2287/// This version assumes From/To have a single result value.
2288///
2289void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2290                                      std::vector<SDNode*> *Deleted) {
2291  SDNode *From = FromN.Val, *To = ToN.Val;
2292  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2293         "Cannot replace with this method!");
2294  assert(From != To && "Cannot replace uses of with self");
2295
2296  while (!From->use_empty()) {
2297    // Process users until they are all gone.
2298    SDNode *U = *From->use_begin();
2299
2300    // This node is about to morph, remove its old self from the CSE maps.
2301    RemoveNodeFromCSEMaps(U);
2302
2303    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2304         I != E; ++I)
2305      if (I->Val == From) {
2306        From->removeUser(U);
2307        I->Val = To;
2308        To->addUser(U);
2309      }
2310
2311    // Now that we have modified U, add it back to the CSE maps.  If it already
2312    // exists there, recursively merge the results together.
2313    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2314      ReplaceAllUsesWith(U, Existing, Deleted);
2315      // U is now dead.
2316      if (Deleted) Deleted->push_back(U);
2317      DeleteNodeNotInCSEMaps(U);
2318    }
2319  }
2320}
2321
2322/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2323/// This can cause recursive merging of nodes in the DAG.
2324///
2325/// This version assumes From/To have matching types and numbers of result
2326/// values.
2327///
2328void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2329                                      std::vector<SDNode*> *Deleted) {
2330  assert(From != To && "Cannot replace uses of with self");
2331  assert(From->getNumValues() == To->getNumValues() &&
2332         "Cannot use this version of ReplaceAllUsesWith!");
2333  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2334    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2335    return;
2336  }
2337
2338  while (!From->use_empty()) {
2339    // Process users until they are all gone.
2340    SDNode *U = *From->use_begin();
2341
2342    // This node is about to morph, remove its old self from the CSE maps.
2343    RemoveNodeFromCSEMaps(U);
2344
2345    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2346         I != E; ++I)
2347      if (I->Val == From) {
2348        From->removeUser(U);
2349        I->Val = To;
2350        To->addUser(U);
2351      }
2352
2353    // Now that we have modified U, add it back to the CSE maps.  If it already
2354    // exists there, recursively merge the results together.
2355    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2356      ReplaceAllUsesWith(U, Existing, Deleted);
2357      // U is now dead.
2358      if (Deleted) Deleted->push_back(U);
2359      DeleteNodeNotInCSEMaps(U);
2360    }
2361  }
2362}
2363
2364/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2365/// This can cause recursive merging of nodes in the DAG.
2366///
2367/// This version can replace From with any result values.  To must match the
2368/// number and types of values returned by From.
2369void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2370                                      const std::vector<SDOperand> &To,
2371                                      std::vector<SDNode*> *Deleted) {
2372  assert(From->getNumValues() == To.size() &&
2373         "Incorrect number of values to replace with!");
2374  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2375    // Degenerate case handled above.
2376    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2377    return;
2378  }
2379
2380  while (!From->use_empty()) {
2381    // Process users until they are all gone.
2382    SDNode *U = *From->use_begin();
2383
2384    // This node is about to morph, remove its old self from the CSE maps.
2385    RemoveNodeFromCSEMaps(U);
2386
2387    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2388         I != E; ++I)
2389      if (I->Val == From) {
2390        const SDOperand &ToOp = To[I->ResNo];
2391        From->removeUser(U);
2392        *I = ToOp;
2393        ToOp.Val->addUser(U);
2394      }
2395
2396    // Now that we have modified U, add it back to the CSE maps.  If it already
2397    // exists there, recursively merge the results together.
2398    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2399      ReplaceAllUsesWith(U, Existing, Deleted);
2400      // U is now dead.
2401      if (Deleted) Deleted->push_back(U);
2402      DeleteNodeNotInCSEMaps(U);
2403    }
2404  }
2405}
2406
2407/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2408/// uses of other values produced by From.Val alone.  The Deleted vector is
2409/// handled the same was as for ReplaceAllUsesWith.
2410void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2411                                             std::vector<SDNode*> &Deleted) {
2412  assert(From != To && "Cannot replace a value with itself");
2413  // Handle the simple, trivial, case efficiently.
2414  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2415    ReplaceAllUsesWith(From, To, &Deleted);
2416    return;
2417  }
2418
2419  // Get all of the users in a nice, deterministically ordered, uniqued set.
2420  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2421
2422  while (!Users.empty()) {
2423    // We know that this user uses some value of From.  If it is the right
2424    // value, update it.
2425    SDNode *User = Users.back();
2426    Users.pop_back();
2427
2428    for (SDOperand *Op = User->OperandList,
2429         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2430      if (*Op == From) {
2431        // Okay, we know this user needs to be updated.  Remove its old self
2432        // from the CSE maps.
2433        RemoveNodeFromCSEMaps(User);
2434
2435        // Update all operands that match "From".
2436        for (; Op != E; ++Op) {
2437          if (*Op == From) {
2438            From.Val->removeUser(User);
2439            *Op = To;
2440            To.Val->addUser(User);
2441          }
2442        }
2443
2444        // Now that we have modified User, add it back to the CSE maps.  If it
2445        // already exists there, recursively merge the results together.
2446        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2447          unsigned NumDeleted = Deleted.size();
2448          ReplaceAllUsesWith(User, Existing, &Deleted);
2449
2450          // User is now dead.
2451          Deleted.push_back(User);
2452          DeleteNodeNotInCSEMaps(User);
2453
2454          // We have to be careful here, because ReplaceAllUsesWith could have
2455          // deleted a user of From, which means there may be dangling pointers
2456          // in the "Users" setvector.  Scan over the deleted node pointers and
2457          // remove them from the setvector.
2458          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2459            Users.remove(Deleted[i]);
2460        }
2461        break;   // Exit the operand scanning loop.
2462      }
2463    }
2464  }
2465}
2466
2467
2468//===----------------------------------------------------------------------===//
2469//                              SDNode Class
2470//===----------------------------------------------------------------------===//
2471
2472
2473/// getValueTypeList - Return a pointer to the specified value type.
2474///
2475MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2476  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2477  VTs[VT] = VT;
2478  return &VTs[VT];
2479}
2480
2481/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2482/// indicated value.  This method ignores uses of other values defined by this
2483/// operation.
2484bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2485  assert(Value < getNumValues() && "Bad value!");
2486
2487  // If there is only one value, this is easy.
2488  if (getNumValues() == 1)
2489    return use_size() == NUses;
2490  if (Uses.size() < NUses) return false;
2491
2492  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2493
2494  std::set<SDNode*> UsersHandled;
2495
2496  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2497       UI != E; ++UI) {
2498    SDNode *User = *UI;
2499    if (User->getNumOperands() == 1 ||
2500        UsersHandled.insert(User).second)     // First time we've seen this?
2501      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2502        if (User->getOperand(i) == TheValue) {
2503          if (NUses == 0)
2504            return false;   // too many uses
2505          --NUses;
2506        }
2507  }
2508
2509  // Found exactly the right number of uses?
2510  return NUses == 0;
2511}
2512
2513
2514// isOnlyUse - Return true if this node is the only use of N.
2515bool SDNode::isOnlyUse(SDNode *N) const {
2516  bool Seen = false;
2517  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2518    SDNode *User = *I;
2519    if (User == this)
2520      Seen = true;
2521    else
2522      return false;
2523  }
2524
2525  return Seen;
2526}
2527
2528
2529const char *SDNode::getOperationName(const SelectionDAG *G) const {
2530  switch (getOpcode()) {
2531  default:
2532    if (getOpcode() < ISD::BUILTIN_OP_END)
2533      return "<<Unknown DAG Node>>";
2534    else {
2535      if (G) {
2536        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2537          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2538            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2539
2540        TargetLowering &TLI = G->getTargetLoweringInfo();
2541        const char *Name =
2542          TLI.getTargetNodeName(getOpcode());
2543        if (Name) return Name;
2544      }
2545
2546      return "<<Unknown Target Node>>";
2547    }
2548
2549  case ISD::PCMARKER:      return "PCMarker";
2550  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2551  case ISD::SRCVALUE:      return "SrcValue";
2552  case ISD::VALUETYPE:     return "ValueType";
2553  case ISD::STRING:        return "String";
2554  case ISD::EntryToken:    return "EntryToken";
2555  case ISD::TokenFactor:   return "TokenFactor";
2556  case ISD::AssertSext:    return "AssertSext";
2557  case ISD::AssertZext:    return "AssertZext";
2558  case ISD::Constant:      return "Constant";
2559  case ISD::TargetConstant: return "TargetConstant";
2560  case ISD::ConstantFP:    return "ConstantFP";
2561  case ISD::ConstantVec:   return "ConstantVec";
2562  case ISD::GlobalAddress: return "GlobalAddress";
2563  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2564  case ISD::FrameIndex:    return "FrameIndex";
2565  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2566  case ISD::BasicBlock:    return "BasicBlock";
2567  case ISD::Register:      return "Register";
2568  case ISD::ExternalSymbol: return "ExternalSymbol";
2569  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2570  case ISD::ConstantPool:  return "ConstantPool";
2571  case ISD::TargetConstantPool:  return "TargetConstantPool";
2572  case ISD::CopyToReg:     return "CopyToReg";
2573  case ISD::CopyFromReg:   return "CopyFromReg";
2574  case ISD::UNDEF:         return "undef";
2575  case ISD::MERGE_VALUES:  return "mergevalues";
2576  case ISD::INLINEASM:     return "inlineasm";
2577  case ISD::HANDLENODE:    return "handlenode";
2578
2579  // Unary operators
2580  case ISD::FABS:   return "fabs";
2581  case ISD::FNEG:   return "fneg";
2582  case ISD::FSQRT:  return "fsqrt";
2583  case ISD::FSIN:   return "fsin";
2584  case ISD::FCOS:   return "fcos";
2585
2586  // Binary operators
2587  case ISD::ADD:    return "add";
2588  case ISD::SUB:    return "sub";
2589  case ISD::MUL:    return "mul";
2590  case ISD::MULHU:  return "mulhu";
2591  case ISD::MULHS:  return "mulhs";
2592  case ISD::SDIV:   return "sdiv";
2593  case ISD::UDIV:   return "udiv";
2594  case ISD::SREM:   return "srem";
2595  case ISD::UREM:   return "urem";
2596  case ISD::AND:    return "and";
2597  case ISD::OR:     return "or";
2598  case ISD::XOR:    return "xor";
2599  case ISD::SHL:    return "shl";
2600  case ISD::SRA:    return "sra";
2601  case ISD::SRL:    return "srl";
2602  case ISD::ROTL:   return "rotl";
2603  case ISD::ROTR:   return "rotr";
2604  case ISD::FADD:   return "fadd";
2605  case ISD::FSUB:   return "fsub";
2606  case ISD::FMUL:   return "fmul";
2607  case ISD::FDIV:   return "fdiv";
2608  case ISD::FREM:   return "frem";
2609  case ISD::VADD:   return "vadd";
2610  case ISD::VSUB:   return "vsub";
2611  case ISD::VMUL:   return "vmul";
2612
2613  case ISD::SETCC:       return "setcc";
2614  case ISD::SELECT:      return "select";
2615  case ISD::SELECT_CC:   return "select_cc";
2616  case ISD::ADDC:        return "addc";
2617  case ISD::ADDE:        return "adde";
2618  case ISD::SUBC:        return "subc";
2619  case ISD::SUBE:        return "sube";
2620  case ISD::SHL_PARTS:   return "shl_parts";
2621  case ISD::SRA_PARTS:   return "sra_parts";
2622  case ISD::SRL_PARTS:   return "srl_parts";
2623
2624  // Conversion operators.
2625  case ISD::SIGN_EXTEND: return "sign_extend";
2626  case ISD::ZERO_EXTEND: return "zero_extend";
2627  case ISD::ANY_EXTEND:  return "any_extend";
2628  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2629  case ISD::TRUNCATE:    return "truncate";
2630  case ISD::FP_ROUND:    return "fp_round";
2631  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2632  case ISD::FP_EXTEND:   return "fp_extend";
2633
2634  case ISD::SINT_TO_FP:  return "sint_to_fp";
2635  case ISD::UINT_TO_FP:  return "uint_to_fp";
2636  case ISD::FP_TO_SINT:  return "fp_to_sint";
2637  case ISD::FP_TO_UINT:  return "fp_to_uint";
2638  case ISD::BIT_CONVERT: return "bit_convert";
2639
2640    // Control flow instructions
2641  case ISD::BR:      return "br";
2642  case ISD::BRCOND:  return "brcond";
2643  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2644  case ISD::BR_CC:  return "br_cc";
2645  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2646  case ISD::RET:     return "ret";
2647  case ISD::CALLSEQ_START:  return "callseq_start";
2648  case ISD::CALLSEQ_END:    return "callseq_end";
2649
2650    // Other operators
2651  case ISD::LOAD:               return "load";
2652  case ISD::STORE:              return "store";
2653  case ISD::VLOAD:              return "vload";
2654  case ISD::EXTLOAD:            return "extload";
2655  case ISD::SEXTLOAD:           return "sextload";
2656  case ISD::ZEXTLOAD:           return "zextload";
2657  case ISD::TRUNCSTORE:         return "truncstore";
2658  case ISD::VAARG:              return "vaarg";
2659  case ISD::VACOPY:             return "vacopy";
2660  case ISD::VAEND:              return "vaend";
2661  case ISD::VASTART:            return "vastart";
2662  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2663  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2664  case ISD::BUILD_PAIR:         return "build_pair";
2665  case ISD::STACKSAVE:          return "stacksave";
2666  case ISD::STACKRESTORE:       return "stackrestore";
2667
2668  // Block memory operations.
2669  case ISD::MEMSET:  return "memset";
2670  case ISD::MEMCPY:  return "memcpy";
2671  case ISD::MEMMOVE: return "memmove";
2672
2673  // Bit manipulation
2674  case ISD::BSWAP:   return "bswap";
2675  case ISD::CTPOP:   return "ctpop";
2676  case ISD::CTTZ:    return "cttz";
2677  case ISD::CTLZ:    return "ctlz";
2678
2679  // IO Intrinsics
2680  case ISD::READPORT: return "readport";
2681  case ISD::WRITEPORT: return "writeport";
2682  case ISD::READIO: return "readio";
2683  case ISD::WRITEIO: return "writeio";
2684
2685  // Debug info
2686  case ISD::LOCATION: return "location";
2687  case ISD::DEBUG_LOC: return "debug_loc";
2688  case ISD::DEBUG_LABEL: return "debug_label";
2689
2690  case ISD::CONDCODE:
2691    switch (cast<CondCodeSDNode>(this)->get()) {
2692    default: assert(0 && "Unknown setcc condition!");
2693    case ISD::SETOEQ:  return "setoeq";
2694    case ISD::SETOGT:  return "setogt";
2695    case ISD::SETOGE:  return "setoge";
2696    case ISD::SETOLT:  return "setolt";
2697    case ISD::SETOLE:  return "setole";
2698    case ISD::SETONE:  return "setone";
2699
2700    case ISD::SETO:    return "seto";
2701    case ISD::SETUO:   return "setuo";
2702    case ISD::SETUEQ:  return "setue";
2703    case ISD::SETUGT:  return "setugt";
2704    case ISD::SETUGE:  return "setuge";
2705    case ISD::SETULT:  return "setult";
2706    case ISD::SETULE:  return "setule";
2707    case ISD::SETUNE:  return "setune";
2708
2709    case ISD::SETEQ:   return "seteq";
2710    case ISD::SETGT:   return "setgt";
2711    case ISD::SETGE:   return "setge";
2712    case ISD::SETLT:   return "setlt";
2713    case ISD::SETLE:   return "setle";
2714    case ISD::SETNE:   return "setne";
2715    }
2716  }
2717}
2718
2719void SDNode::dump() const { dump(0); }
2720void SDNode::dump(const SelectionDAG *G) const {
2721  std::cerr << (void*)this << ": ";
2722
2723  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2724    if (i) std::cerr << ",";
2725    if (getValueType(i) == MVT::Other)
2726      std::cerr << "ch";
2727    else
2728      std::cerr << MVT::getValueTypeString(getValueType(i));
2729  }
2730  std::cerr << " = " << getOperationName(G);
2731
2732  std::cerr << " ";
2733  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2734    if (i) std::cerr << ", ";
2735    std::cerr << (void*)getOperand(i).Val;
2736    if (unsigned RN = getOperand(i).ResNo)
2737      std::cerr << ":" << RN;
2738  }
2739
2740  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2741    std::cerr << "<" << CSDN->getValue() << ">";
2742  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2743    std::cerr << "<" << CSDN->getValue() << ">";
2744  } else if (const GlobalAddressSDNode *GADN =
2745             dyn_cast<GlobalAddressSDNode>(this)) {
2746    int offset = GADN->getOffset();
2747    std::cerr << "<";
2748    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2749    if (offset > 0)
2750      std::cerr << " + " << offset;
2751    else
2752      std::cerr << " " << offset;
2753  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2754    std::cerr << "<" << FIDN->getIndex() << ">";
2755  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2756    std::cerr << "<" << *CP->get() << ">";
2757  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2758    std::cerr << "<";
2759    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2760    if (LBB)
2761      std::cerr << LBB->getName() << " ";
2762    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2763  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2764    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2765      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2766    } else {
2767      std::cerr << " #" << R->getReg();
2768    }
2769  } else if (const ExternalSymbolSDNode *ES =
2770             dyn_cast<ExternalSymbolSDNode>(this)) {
2771    std::cerr << "'" << ES->getSymbol() << "'";
2772  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2773    if (M->getValue())
2774      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2775    else
2776      std::cerr << "<null:" << M->getOffset() << ">";
2777  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2778    std::cerr << ":" << getValueTypeString(N->getVT());
2779  }
2780}
2781
2782static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2783  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2784    if (N->getOperand(i).Val->hasOneUse())
2785      DumpNodes(N->getOperand(i).Val, indent+2, G);
2786    else
2787      std::cerr << "\n" << std::string(indent+2, ' ')
2788                << (void*)N->getOperand(i).Val << ": <multiple use>";
2789
2790
2791  std::cerr << "\n" << std::string(indent, ' ');
2792  N->dump(G);
2793}
2794
2795void SelectionDAG::dump() const {
2796  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2797  std::vector<const SDNode*> Nodes;
2798  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2799       I != E; ++I)
2800    Nodes.push_back(I);
2801
2802  std::sort(Nodes.begin(), Nodes.end());
2803
2804  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2805    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2806      DumpNodes(Nodes[i], 2, this);
2807  }
2808
2809  DumpNodes(getRoot().Val, 2, this);
2810
2811  std::cerr << "\n\n";
2812}
2813
2814/// InsertISelMapEntry - A helper function to insert a key / element pair
2815/// into a SDOperand to SDOperand map. This is added to avoid the map
2816/// insertion operator from being inlined.
2817void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2818                                      SDNode *Key, unsigned KeyResNo,
2819                                      SDNode *Element, unsigned ElementResNo) {
2820  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2821                            SDOperand(Element, ElementResNo)));
2822}
2823