SelectionDAG.cpp revision 03228089d5235f8c90477f88809139464e9c6ea5
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  FoldingSetNodeID ID;
1144  void* IP = 0;
1145  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1146    return SDValue(E, 0);
1147  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1148  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1149  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1150  CSEMap.InsertNode(N, IP);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1156  FoldingSetNodeID ID;
1157  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1158  ID.AddInteger(RegNo);
1159  void *IP = 0;
1160  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1161    return SDValue(E, 0);
1162  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1163  new (N) RegisterSDNode(RegNo, VT);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1170                                        unsigned Line, unsigned Col,
1171                                        const CompileUnitDesc *CU) {
1172  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1173  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1174  AllNodes.push_back(N);
1175  return SDValue(N, 0);
1176}
1177
1178SDValue SelectionDAG::getLabel(unsigned Opcode,
1179                               SDValue Root,
1180                               unsigned LabelID) {
1181  FoldingSetNodeID ID;
1182  SDValue Ops[] = { Root };
1183  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1184  ID.AddInteger(LabelID);
1185  void *IP = 0;
1186  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1187    return SDValue(E, 0);
1188  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1189  new (N) LabelSDNode(Opcode, Root, LabelID);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195SDValue SelectionDAG::getSrcValue(const Value *V) {
1196  assert((!V || isa<PointerType>(V->getType())) &&
1197         "SrcValue is not a pointer?");
1198
1199  FoldingSetNodeID ID;
1200  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1201  ID.AddPointer(V);
1202
1203  void *IP = 0;
1204  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1205    return SDValue(E, 0);
1206
1207  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1208  new (N) SrcValueSDNode(V);
1209  CSEMap.InsertNode(N, IP);
1210  AllNodes.push_back(N);
1211  return SDValue(N, 0);
1212}
1213
1214SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1215  const Value *v = MO.getValue();
1216  assert((!v || isa<PointerType>(v->getType())) &&
1217         "SrcValue is not a pointer?");
1218
1219  FoldingSetNodeID ID;
1220  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1221  MO.Profile(ID);
1222
1223  void *IP = 0;
1224  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225    return SDValue(E, 0);
1226
1227  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1228  new (N) MemOperandSDNode(MO);
1229  CSEMap.InsertNode(N, IP);
1230  AllNodes.push_back(N);
1231  return SDValue(N, 0);
1232}
1233
1234/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1235/// specified value type.
1236SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1237  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1238  unsigned ByteSize = VT.getSizeInBits()/8;
1239  const Type *Ty = VT.getTypeForMVT();
1240  unsigned StackAlign =
1241  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1242
1243  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1244  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1245}
1246
1247SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1248                                SDValue N2, ISD::CondCode Cond) {
1249  // These setcc operations always fold.
1250  switch (Cond) {
1251  default: break;
1252  case ISD::SETFALSE:
1253  case ISD::SETFALSE2: return getConstant(0, VT);
1254  case ISD::SETTRUE:
1255  case ISD::SETTRUE2:  return getConstant(1, VT);
1256
1257  case ISD::SETOEQ:
1258  case ISD::SETOGT:
1259  case ISD::SETOGE:
1260  case ISD::SETOLT:
1261  case ISD::SETOLE:
1262  case ISD::SETONE:
1263  case ISD::SETO:
1264  case ISD::SETUO:
1265  case ISD::SETUEQ:
1266  case ISD::SETUNE:
1267    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1268    break;
1269  }
1270
1271  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1272    const APInt &C2 = N2C->getAPIntValue();
1273    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1274      const APInt &C1 = N1C->getAPIntValue();
1275
1276      switch (Cond) {
1277      default: assert(0 && "Unknown integer setcc!");
1278      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1279      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1280      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1281      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1282      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1283      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1284      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1285      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1286      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1287      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1288      }
1289    }
1290  }
1291  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1292    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1293      // No compile time operations on this type yet.
1294      if (N1C->getValueType(0) == MVT::ppcf128)
1295        return SDValue();
1296
1297      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1298      switch (Cond) {
1299      default: break;
1300      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1301                          return getNode(ISD::UNDEF, VT);
1302                        // fall through
1303      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1304      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1305                          return getNode(ISD::UNDEF, VT);
1306                        // fall through
1307      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1308                                           R==APFloat::cmpLessThan, VT);
1309      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1310                          return getNode(ISD::UNDEF, VT);
1311                        // fall through
1312      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1313      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1314                          return getNode(ISD::UNDEF, VT);
1315                        // fall through
1316      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1317      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1318                          return getNode(ISD::UNDEF, VT);
1319                        // fall through
1320      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1321                                           R==APFloat::cmpEqual, VT);
1322      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1323                          return getNode(ISD::UNDEF, VT);
1324                        // fall through
1325      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1326                                           R==APFloat::cmpEqual, VT);
1327      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1328      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1329      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1330                                           R==APFloat::cmpEqual, VT);
1331      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1332      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1333                                           R==APFloat::cmpLessThan, VT);
1334      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1335                                           R==APFloat::cmpUnordered, VT);
1336      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1337      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1338      }
1339    } else {
1340      // Ensure that the constant occurs on the RHS.
1341      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1342    }
1343  }
1344
1345  // Could not fold it.
1346  return SDValue();
1347}
1348
1349/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1350/// use this predicate to simplify operations downstream.
1351bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1352  unsigned BitWidth = Op.getValueSizeInBits();
1353  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1354}
1355
1356/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1357/// this predicate to simplify operations downstream.  Mask is known to be zero
1358/// for bits that V cannot have.
1359bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1360                                     unsigned Depth) const {
1361  APInt KnownZero, KnownOne;
1362  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1363  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1364  return (KnownZero & Mask) == Mask;
1365}
1366
1367/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1368/// known to be either zero or one and return them in the KnownZero/KnownOne
1369/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1370/// processing.
1371void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1372                                     APInt &KnownZero, APInt &KnownOne,
1373                                     unsigned Depth) const {
1374  unsigned BitWidth = Mask.getBitWidth();
1375  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1376         "Mask size mismatches value type size!");
1377
1378  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1379  if (Depth == 6 || Mask == 0)
1380    return;  // Limit search depth.
1381
1382  APInt KnownZero2, KnownOne2;
1383
1384  switch (Op.getOpcode()) {
1385  case ISD::Constant:
1386    // We know all of the bits for a constant!
1387    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1388    KnownZero = ~KnownOne & Mask;
1389    return;
1390  case ISD::AND:
1391    // If either the LHS or the RHS are Zero, the result is zero.
1392    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1393    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1394                      KnownZero2, KnownOne2, Depth+1);
1395    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1396    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1397
1398    // Output known-1 bits are only known if set in both the LHS & RHS.
1399    KnownOne &= KnownOne2;
1400    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1401    KnownZero |= KnownZero2;
1402    return;
1403  case ISD::OR:
1404    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1405    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1406                      KnownZero2, KnownOne2, Depth+1);
1407    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410    // Output known-0 bits are only known if clear in both the LHS & RHS.
1411    KnownZero &= KnownZero2;
1412    // Output known-1 are known to be set if set in either the LHS | RHS.
1413    KnownOne |= KnownOne2;
1414    return;
1415  case ISD::XOR: {
1416    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1417    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1418    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1420
1421    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1422    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1423    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1424    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1425    KnownZero = KnownZeroOut;
1426    return;
1427  }
1428  case ISD::MUL: {
1429    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1430    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1431    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1432    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1433    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1434
1435    // If low bits are zero in either operand, output low known-0 bits.
1436    // Also compute a conserative estimate for high known-0 bits.
1437    // More trickiness is possible, but this is sufficient for the
1438    // interesting case of alignment computation.
1439    KnownOne.clear();
1440    unsigned TrailZ = KnownZero.countTrailingOnes() +
1441                      KnownZero2.countTrailingOnes();
1442    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1443                               KnownZero2.countLeadingOnes(),
1444                               BitWidth) - BitWidth;
1445
1446    TrailZ = std::min(TrailZ, BitWidth);
1447    LeadZ = std::min(LeadZ, BitWidth);
1448    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1449                APInt::getHighBitsSet(BitWidth, LeadZ);
1450    KnownZero &= Mask;
1451    return;
1452  }
1453  case ISD::UDIV: {
1454    // For the purposes of computing leading zeros we can conservatively
1455    // treat a udiv as a logical right shift by the power of 2 known to
1456    // be less than the denominator.
1457    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1458    ComputeMaskedBits(Op.getOperand(0),
1459                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1460    unsigned LeadZ = KnownZero2.countLeadingOnes();
1461
1462    KnownOne2.clear();
1463    KnownZero2.clear();
1464    ComputeMaskedBits(Op.getOperand(1),
1465                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1466    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1467    if (RHSUnknownLeadingOnes != BitWidth)
1468      LeadZ = std::min(BitWidth,
1469                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1470
1471    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1472    return;
1473  }
1474  case ISD::SELECT:
1475    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1476    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1477    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1478    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1479
1480    // Only known if known in both the LHS and RHS.
1481    KnownOne &= KnownOne2;
1482    KnownZero &= KnownZero2;
1483    return;
1484  case ISD::SELECT_CC:
1485    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1486    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1487    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1488    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1489
1490    // Only known if known in both the LHS and RHS.
1491    KnownOne &= KnownOne2;
1492    KnownZero &= KnownZero2;
1493    return;
1494  case ISD::SADDO:
1495  case ISD::UADDO:
1496    if (Op.getResNo() != 1)
1497      return;
1498    // The boolean result conforms to getBooleanContents.  Fall through.
1499  case ISD::SETCC:
1500    // If we know the result of a setcc has the top bits zero, use this info.
1501    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1502        BitWidth > 1)
1503      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1504    return;
1505  case ISD::SHL:
1506    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1507    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1508      unsigned ShAmt = SA->getZExtValue();
1509
1510      // If the shift count is an invalid immediate, don't do anything.
1511      if (ShAmt >= BitWidth)
1512        return;
1513
1514      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1515                        KnownZero, KnownOne, Depth+1);
1516      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517      KnownZero <<= ShAmt;
1518      KnownOne  <<= ShAmt;
1519      // low bits known zero.
1520      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1521    }
1522    return;
1523  case ISD::SRL:
1524    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1525    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1526      unsigned ShAmt = SA->getZExtValue();
1527
1528      // If the shift count is an invalid immediate, don't do anything.
1529      if (ShAmt >= BitWidth)
1530        return;
1531
1532      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1533                        KnownZero, KnownOne, Depth+1);
1534      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535      KnownZero = KnownZero.lshr(ShAmt);
1536      KnownOne  = KnownOne.lshr(ShAmt);
1537
1538      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1539      KnownZero |= HighBits;  // High bits known zero.
1540    }
1541    return;
1542  case ISD::SRA:
1543    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1544      unsigned ShAmt = SA->getZExtValue();
1545
1546      // If the shift count is an invalid immediate, don't do anything.
1547      if (ShAmt >= BitWidth)
1548        return;
1549
1550      APInt InDemandedMask = (Mask << ShAmt);
1551      // If any of the demanded bits are produced by the sign extension, we also
1552      // demand the input sign bit.
1553      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1554      if (HighBits.getBoolValue())
1555        InDemandedMask |= APInt::getSignBit(BitWidth);
1556
1557      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1558                        Depth+1);
1559      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560      KnownZero = KnownZero.lshr(ShAmt);
1561      KnownOne  = KnownOne.lshr(ShAmt);
1562
1563      // Handle the sign bits.
1564      APInt SignBit = APInt::getSignBit(BitWidth);
1565      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1566
1567      if (KnownZero.intersects(SignBit)) {
1568        KnownZero |= HighBits;  // New bits are known zero.
1569      } else if (KnownOne.intersects(SignBit)) {
1570        KnownOne  |= HighBits;  // New bits are known one.
1571      }
1572    }
1573    return;
1574  case ISD::SIGN_EXTEND_INREG: {
1575    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1576    unsigned EBits = EVT.getSizeInBits();
1577
1578    // Sign extension.  Compute the demanded bits in the result that are not
1579    // present in the input.
1580    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1581
1582    APInt InSignBit = APInt::getSignBit(EBits);
1583    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1584
1585    // If the sign extended bits are demanded, we know that the sign
1586    // bit is demanded.
1587    InSignBit.zext(BitWidth);
1588    if (NewBits.getBoolValue())
1589      InputDemandedBits |= InSignBit;
1590
1591    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1592                      KnownZero, KnownOne, Depth+1);
1593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594
1595    // If the sign bit of the input is known set or clear, then we know the
1596    // top bits of the result.
1597    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1598      KnownZero |= NewBits;
1599      KnownOne  &= ~NewBits;
1600    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1601      KnownOne  |= NewBits;
1602      KnownZero &= ~NewBits;
1603    } else {                              // Input sign bit unknown
1604      KnownZero &= ~NewBits;
1605      KnownOne  &= ~NewBits;
1606    }
1607    return;
1608  }
1609  case ISD::CTTZ:
1610  case ISD::CTLZ:
1611  case ISD::CTPOP: {
1612    unsigned LowBits = Log2_32(BitWidth)+1;
1613    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1614    KnownOne.clear();
1615    return;
1616  }
1617  case ISD::LOAD: {
1618    if (ISD::isZEXTLoad(Op.getNode())) {
1619      LoadSDNode *LD = cast<LoadSDNode>(Op);
1620      MVT VT = LD->getMemoryVT();
1621      unsigned MemBits = VT.getSizeInBits();
1622      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1623    }
1624    return;
1625  }
1626  case ISD::ZERO_EXTEND: {
1627    MVT InVT = Op.getOperand(0).getValueType();
1628    unsigned InBits = InVT.getSizeInBits();
1629    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1630    APInt InMask    = Mask;
1631    InMask.trunc(InBits);
1632    KnownZero.trunc(InBits);
1633    KnownOne.trunc(InBits);
1634    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1635    KnownZero.zext(BitWidth);
1636    KnownOne.zext(BitWidth);
1637    KnownZero |= NewBits;
1638    return;
1639  }
1640  case ISD::SIGN_EXTEND: {
1641    MVT InVT = Op.getOperand(0).getValueType();
1642    unsigned InBits = InVT.getSizeInBits();
1643    APInt InSignBit = APInt::getSignBit(InBits);
1644    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1645    APInt InMask = Mask;
1646    InMask.trunc(InBits);
1647
1648    // If any of the sign extended bits are demanded, we know that the sign
1649    // bit is demanded. Temporarily set this bit in the mask for our callee.
1650    if (NewBits.getBoolValue())
1651      InMask |= InSignBit;
1652
1653    KnownZero.trunc(InBits);
1654    KnownOne.trunc(InBits);
1655    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1656
1657    // Note if the sign bit is known to be zero or one.
1658    bool SignBitKnownZero = KnownZero.isNegative();
1659    bool SignBitKnownOne  = KnownOne.isNegative();
1660    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1661           "Sign bit can't be known to be both zero and one!");
1662
1663    // If the sign bit wasn't actually demanded by our caller, we don't
1664    // want it set in the KnownZero and KnownOne result values. Reset the
1665    // mask and reapply it to the result values.
1666    InMask = Mask;
1667    InMask.trunc(InBits);
1668    KnownZero &= InMask;
1669    KnownOne  &= InMask;
1670
1671    KnownZero.zext(BitWidth);
1672    KnownOne.zext(BitWidth);
1673
1674    // If the sign bit is known zero or one, the top bits match.
1675    if (SignBitKnownZero)
1676      KnownZero |= NewBits;
1677    else if (SignBitKnownOne)
1678      KnownOne  |= NewBits;
1679    return;
1680  }
1681  case ISD::ANY_EXTEND: {
1682    MVT InVT = Op.getOperand(0).getValueType();
1683    unsigned InBits = InVT.getSizeInBits();
1684    APInt InMask = Mask;
1685    InMask.trunc(InBits);
1686    KnownZero.trunc(InBits);
1687    KnownOne.trunc(InBits);
1688    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1689    KnownZero.zext(BitWidth);
1690    KnownOne.zext(BitWidth);
1691    return;
1692  }
1693  case ISD::TRUNCATE: {
1694    MVT InVT = Op.getOperand(0).getValueType();
1695    unsigned InBits = InVT.getSizeInBits();
1696    APInt InMask = Mask;
1697    InMask.zext(InBits);
1698    KnownZero.zext(InBits);
1699    KnownOne.zext(InBits);
1700    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1701    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702    KnownZero.trunc(BitWidth);
1703    KnownOne.trunc(BitWidth);
1704    break;
1705  }
1706  case ISD::AssertZext: {
1707    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1708    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1709    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1710                      KnownOne, Depth+1);
1711    KnownZero |= (~InMask) & Mask;
1712    return;
1713  }
1714  case ISD::FGETSIGN:
1715    // All bits are zero except the low bit.
1716    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1717    return;
1718
1719  case ISD::SUB: {
1720    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1721      // We know that the top bits of C-X are clear if X contains less bits
1722      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1723      // positive if we can prove that X is >= 0 and < 16.
1724      if (CLHS->getAPIntValue().isNonNegative()) {
1725        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1726        // NLZ can't be BitWidth with no sign bit
1727        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1728        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1729                          Depth+1);
1730
1731        // If all of the MaskV bits are known to be zero, then we know the
1732        // output top bits are zero, because we now know that the output is
1733        // from [0-C].
1734        if ((KnownZero2 & MaskV) == MaskV) {
1735          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1736          // Top bits known zero.
1737          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1738        }
1739      }
1740    }
1741  }
1742  // fall through
1743  case ISD::ADD: {
1744    // Output known-0 bits are known if clear or set in both the low clear bits
1745    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1746    // low 3 bits clear.
1747    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1748    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1749    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1750    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1751
1752    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1753    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1754    KnownZeroOut = std::min(KnownZeroOut,
1755                            KnownZero2.countTrailingOnes());
1756
1757    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1758    return;
1759  }
1760  case ISD::SREM:
1761    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1762      const APInt &RA = Rem->getAPIntValue();
1763      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1764        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1765        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1766        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1767
1768        // If the sign bit of the first operand is zero, the sign bit of
1769        // the result is zero. If the first operand has no one bits below
1770        // the second operand's single 1 bit, its sign will be zero.
1771        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1772          KnownZero2 |= ~LowBits;
1773
1774        KnownZero |= KnownZero2 & Mask;
1775
1776        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1777      }
1778    }
1779    return;
1780  case ISD::UREM: {
1781    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1782      const APInt &RA = Rem->getAPIntValue();
1783      if (RA.isPowerOf2()) {
1784        APInt LowBits = (RA - 1);
1785        APInt Mask2 = LowBits & Mask;
1786        KnownZero |= ~LowBits & Mask;
1787        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1788        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1789        break;
1790      }
1791    }
1792
1793    // Since the result is less than or equal to either operand, any leading
1794    // zero bits in either operand must also exist in the result.
1795    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1796    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1797                      Depth+1);
1798    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1799                      Depth+1);
1800
1801    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1802                                KnownZero2.countLeadingOnes());
1803    KnownOne.clear();
1804    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1805    return;
1806  }
1807  default:
1808    // Allow the target to implement this method for its nodes.
1809    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1810  case ISD::INTRINSIC_WO_CHAIN:
1811  case ISD::INTRINSIC_W_CHAIN:
1812  case ISD::INTRINSIC_VOID:
1813      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1814    }
1815    return;
1816  }
1817}
1818
1819/// ComputeNumSignBits - Return the number of times the sign bit of the
1820/// register is replicated into the other bits.  We know that at least 1 bit
1821/// is always equal to the sign bit (itself), but other cases can give us
1822/// information.  For example, immediately after an "SRA X, 2", we know that
1823/// the top 3 bits are all equal to each other, so we return 3.
1824unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1825  MVT VT = Op.getValueType();
1826  assert(VT.isInteger() && "Invalid VT!");
1827  unsigned VTBits = VT.getSizeInBits();
1828  unsigned Tmp, Tmp2;
1829  unsigned FirstAnswer = 1;
1830
1831  if (Depth == 6)
1832    return 1;  // Limit search depth.
1833
1834  switch (Op.getOpcode()) {
1835  default: break;
1836  case ISD::AssertSext:
1837    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1838    return VTBits-Tmp+1;
1839  case ISD::AssertZext:
1840    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1841    return VTBits-Tmp;
1842
1843  case ISD::Constant: {
1844    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1845    // If negative, return # leading ones.
1846    if (Val.isNegative())
1847      return Val.countLeadingOnes();
1848
1849    // Return # leading zeros.
1850    return Val.countLeadingZeros();
1851  }
1852
1853  case ISD::SIGN_EXTEND:
1854    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1855    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1856
1857  case ISD::SIGN_EXTEND_INREG:
1858    // Max of the input and what this extends.
1859    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1860    Tmp = VTBits-Tmp+1;
1861
1862    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1863    return std::max(Tmp, Tmp2);
1864
1865  case ISD::SRA:
1866    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1867    // SRA X, C   -> adds C sign bits.
1868    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1869      Tmp += C->getZExtValue();
1870      if (Tmp > VTBits) Tmp = VTBits;
1871    }
1872    return Tmp;
1873  case ISD::SHL:
1874    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1875      // shl destroys sign bits.
1876      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1877      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1878          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1879      return Tmp - C->getZExtValue();
1880    }
1881    break;
1882  case ISD::AND:
1883  case ISD::OR:
1884  case ISD::XOR:    // NOT is handled here.
1885    // Logical binary ops preserve the number of sign bits at the worst.
1886    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1887    if (Tmp != 1) {
1888      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1889      FirstAnswer = std::min(Tmp, Tmp2);
1890      // We computed what we know about the sign bits as our first
1891      // answer. Now proceed to the generic code that uses
1892      // ComputeMaskedBits, and pick whichever answer is better.
1893    }
1894    break;
1895
1896  case ISD::SELECT:
1897    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1898    if (Tmp == 1) return 1;  // Early out.
1899    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1900    return std::min(Tmp, Tmp2);
1901
1902  case ISD::SADDO:
1903  case ISD::UADDO:
1904    if (Op.getResNo() != 1)
1905      break;
1906    // The boolean result conforms to getBooleanContents.  Fall through.
1907  case ISD::SETCC:
1908    // If setcc returns 0/-1, all bits are sign bits.
1909    if (TLI.getBooleanContents() ==
1910        TargetLowering::ZeroOrNegativeOneBooleanContent)
1911      return VTBits;
1912    break;
1913  case ISD::ROTL:
1914  case ISD::ROTR:
1915    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1916      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1917
1918      // Handle rotate right by N like a rotate left by 32-N.
1919      if (Op.getOpcode() == ISD::ROTR)
1920        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1921
1922      // If we aren't rotating out all of the known-in sign bits, return the
1923      // number that are left.  This handles rotl(sext(x), 1) for example.
1924      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1925      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1926    }
1927    break;
1928  case ISD::ADD:
1929    // Add can have at most one carry bit.  Thus we know that the output
1930    // is, at worst, one more bit than the inputs.
1931    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1932    if (Tmp == 1) return 1;  // Early out.
1933
1934    // Special case decrementing a value (ADD X, -1):
1935    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1936      if (CRHS->isAllOnesValue()) {
1937        APInt KnownZero, KnownOne;
1938        APInt Mask = APInt::getAllOnesValue(VTBits);
1939        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1940
1941        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1942        // sign bits set.
1943        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1944          return VTBits;
1945
1946        // If we are subtracting one from a positive number, there is no carry
1947        // out of the result.
1948        if (KnownZero.isNegative())
1949          return Tmp;
1950      }
1951
1952    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1953    if (Tmp2 == 1) return 1;
1954      return std::min(Tmp, Tmp2)-1;
1955    break;
1956
1957  case ISD::SUB:
1958    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1959    if (Tmp2 == 1) return 1;
1960
1961    // Handle NEG.
1962    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1963      if (CLHS->isNullValue()) {
1964        APInt KnownZero, KnownOne;
1965        APInt Mask = APInt::getAllOnesValue(VTBits);
1966        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1967        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1968        // sign bits set.
1969        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1970          return VTBits;
1971
1972        // If the input is known to be positive (the sign bit is known clear),
1973        // the output of the NEG has the same number of sign bits as the input.
1974        if (KnownZero.isNegative())
1975          return Tmp2;
1976
1977        // Otherwise, we treat this like a SUB.
1978      }
1979
1980    // Sub can have at most one carry bit.  Thus we know that the output
1981    // is, at worst, one more bit than the inputs.
1982    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1983    if (Tmp == 1) return 1;  // Early out.
1984      return std::min(Tmp, Tmp2)-1;
1985    break;
1986  case ISD::TRUNCATE:
1987    // FIXME: it's tricky to do anything useful for this, but it is an important
1988    // case for targets like X86.
1989    break;
1990  }
1991
1992  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1993  if (Op.getOpcode() == ISD::LOAD) {
1994    LoadSDNode *LD = cast<LoadSDNode>(Op);
1995    unsigned ExtType = LD->getExtensionType();
1996    switch (ExtType) {
1997    default: break;
1998    case ISD::SEXTLOAD:    // '17' bits known
1999      Tmp = LD->getMemoryVT().getSizeInBits();
2000      return VTBits-Tmp+1;
2001    case ISD::ZEXTLOAD:    // '16' bits known
2002      Tmp = LD->getMemoryVT().getSizeInBits();
2003      return VTBits-Tmp;
2004    }
2005  }
2006
2007  // Allow the target to implement this method for its nodes.
2008  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2009      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2010      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2011      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2012    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2013    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2014  }
2015
2016  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2017  // use this information.
2018  APInt KnownZero, KnownOne;
2019  APInt Mask = APInt::getAllOnesValue(VTBits);
2020  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2021
2022  if (KnownZero.isNegative()) {        // sign bit is 0
2023    Mask = KnownZero;
2024  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2025    Mask = KnownOne;
2026  } else {
2027    // Nothing known.
2028    return FirstAnswer;
2029  }
2030
2031  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2032  // the number of identical bits in the top of the input value.
2033  Mask = ~Mask;
2034  Mask <<= Mask.getBitWidth()-VTBits;
2035  // Return # leading zeros.  We use 'min' here in case Val was zero before
2036  // shifting.  We don't want to return '64' as for an i32 "0".
2037  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2038}
2039
2040
2041bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2042  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2043  if (!GA) return false;
2044  if (GA->getOffset() != 0) return false;
2045  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2046  if (!GV) return false;
2047  MachineModuleInfo *MMI = getMachineModuleInfo();
2048  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2049}
2050
2051
2052/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2053/// element of the result of the vector shuffle.
2054SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2055  MVT VT = N->getValueType(0);
2056  SDValue PermMask = N->getOperand(2);
2057  SDValue Idx = PermMask.getOperand(i);
2058  if (Idx.getOpcode() == ISD::UNDEF)
2059    return getNode(ISD::UNDEF, VT.getVectorElementType());
2060  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2061  unsigned NumElems = PermMask.getNumOperands();
2062  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2063  Index %= NumElems;
2064
2065  if (V.getOpcode() == ISD::BIT_CONVERT) {
2066    V = V.getOperand(0);
2067    if (V.getValueType().getVectorNumElements() != NumElems)
2068      return SDValue();
2069  }
2070  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2071    return (Index == 0) ? V.getOperand(0)
2072                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2073  if (V.getOpcode() == ISD::BUILD_VECTOR)
2074    return V.getOperand(Index);
2075  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2076    return getShuffleScalarElt(V.getNode(), Index);
2077  return SDValue();
2078}
2079
2080
2081/// getNode - Gets or creates the specified node.
2082///
2083SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2084  FoldingSetNodeID ID;
2085  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2086  void *IP = 0;
2087  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2088    return SDValue(E, 0);
2089  SDNode *N = NodeAllocator.Allocate<SDNode>();
2090  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2091  CSEMap.InsertNode(N, IP);
2092
2093  AllNodes.push_back(N);
2094#ifndef NDEBUG
2095  VerifyNode(N);
2096#endif
2097  return SDValue(N, 0);
2098}
2099
2100SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2101  // Constant fold unary operations with an integer constant operand.
2102  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2103    const APInt &Val = C->getAPIntValue();
2104    unsigned BitWidth = VT.getSizeInBits();
2105    switch (Opcode) {
2106    default: break;
2107    case ISD::SIGN_EXTEND:
2108      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2109    case ISD::ANY_EXTEND:
2110    case ISD::ZERO_EXTEND:
2111    case ISD::TRUNCATE:
2112      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2113    case ISD::UINT_TO_FP:
2114    case ISD::SINT_TO_FP: {
2115      const uint64_t zero[] = {0, 0};
2116      // No compile time operations on this type.
2117      if (VT==MVT::ppcf128)
2118        break;
2119      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2120      (void)apf.convertFromAPInt(Val,
2121                                 Opcode==ISD::SINT_TO_FP,
2122                                 APFloat::rmNearestTiesToEven);
2123      return getConstantFP(apf, VT);
2124    }
2125    case ISD::BIT_CONVERT:
2126      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2127        return getConstantFP(Val.bitsToFloat(), VT);
2128      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2129        return getConstantFP(Val.bitsToDouble(), VT);
2130      break;
2131    case ISD::BSWAP:
2132      return getConstant(Val.byteSwap(), VT);
2133    case ISD::CTPOP:
2134      return getConstant(Val.countPopulation(), VT);
2135    case ISD::CTLZ:
2136      return getConstant(Val.countLeadingZeros(), VT);
2137    case ISD::CTTZ:
2138      return getConstant(Val.countTrailingZeros(), VT);
2139    }
2140  }
2141
2142  // Constant fold unary operations with a floating point constant operand.
2143  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2144    APFloat V = C->getValueAPF();    // make copy
2145    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2146      switch (Opcode) {
2147      case ISD::FNEG:
2148        V.changeSign();
2149        return getConstantFP(V, VT);
2150      case ISD::FABS:
2151        V.clearSign();
2152        return getConstantFP(V, VT);
2153      case ISD::FP_ROUND:
2154      case ISD::FP_EXTEND: {
2155        bool ignored;
2156        // This can return overflow, underflow, or inexact; we don't care.
2157        // FIXME need to be more flexible about rounding mode.
2158        (void)V.convert(*MVTToAPFloatSemantics(VT),
2159                        APFloat::rmNearestTiesToEven, &ignored);
2160        return getConstantFP(V, VT);
2161      }
2162      case ISD::FP_TO_SINT:
2163      case ISD::FP_TO_UINT: {
2164        integerPart x;
2165        bool ignored;
2166        assert(integerPartWidth >= 64);
2167        // FIXME need to be more flexible about rounding mode.
2168        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2169                              Opcode==ISD::FP_TO_SINT,
2170                              APFloat::rmTowardZero, &ignored);
2171        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2172          break;
2173        return getConstant(x, VT);
2174      }
2175      case ISD::BIT_CONVERT:
2176        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2177          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2178        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2179          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2180        break;
2181      }
2182    }
2183  }
2184
2185  unsigned OpOpcode = Operand.getNode()->getOpcode();
2186  switch (Opcode) {
2187  case ISD::TokenFactor:
2188  case ISD::CONCAT_VECTORS:
2189    return Operand;         // Factor or concat of one node?  No need.
2190  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2191  case ISD::FP_EXTEND:
2192    assert(VT.isFloatingPoint() &&
2193           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2194    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2195    if (Operand.getOpcode() == ISD::UNDEF)
2196      return getNode(ISD::UNDEF, VT);
2197    break;
2198  case ISD::SIGN_EXTEND:
2199    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2200           "Invalid SIGN_EXTEND!");
2201    if (Operand.getValueType() == VT) return Operand;   // noop extension
2202    assert(Operand.getValueType().bitsLT(VT)
2203           && "Invalid sext node, dst < src!");
2204    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2205      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2206    break;
2207  case ISD::ZERO_EXTEND:
2208    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2209           "Invalid ZERO_EXTEND!");
2210    if (Operand.getValueType() == VT) return Operand;   // noop extension
2211    assert(Operand.getValueType().bitsLT(VT)
2212           && "Invalid zext node, dst < src!");
2213    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2214      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2215    break;
2216  case ISD::ANY_EXTEND:
2217    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2218           "Invalid ANY_EXTEND!");
2219    if (Operand.getValueType() == VT) return Operand;   // noop extension
2220    assert(Operand.getValueType().bitsLT(VT)
2221           && "Invalid anyext node, dst < src!");
2222    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2223      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2224      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2225    break;
2226  case ISD::TRUNCATE:
2227    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2228           "Invalid TRUNCATE!");
2229    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2230    assert(Operand.getValueType().bitsGT(VT)
2231           && "Invalid truncate node, src < dst!");
2232    if (OpOpcode == ISD::TRUNCATE)
2233      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2234    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2235             OpOpcode == ISD::ANY_EXTEND) {
2236      // If the source is smaller than the dest, we still need an extend.
2237      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2238        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2239      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2240        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2241      else
2242        return Operand.getNode()->getOperand(0);
2243    }
2244    break;
2245  case ISD::BIT_CONVERT:
2246    // Basic sanity checking.
2247    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2248           && "Cannot BIT_CONVERT between types of different sizes!");
2249    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2250    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2251      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2252    if (OpOpcode == ISD::UNDEF)
2253      return getNode(ISD::UNDEF, VT);
2254    break;
2255  case ISD::SCALAR_TO_VECTOR:
2256    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2257           VT.getVectorElementType() == Operand.getValueType() &&
2258           "Illegal SCALAR_TO_VECTOR node!");
2259    if (OpOpcode == ISD::UNDEF)
2260      return getNode(ISD::UNDEF, VT);
2261    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2262    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2263        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2264        Operand.getConstantOperandVal(1) == 0 &&
2265        Operand.getOperand(0).getValueType() == VT)
2266      return Operand.getOperand(0);
2267    break;
2268  case ISD::FNEG:
2269    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2270      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2271                     Operand.getNode()->getOperand(0));
2272    if (OpOpcode == ISD::FNEG)  // --X -> X
2273      return Operand.getNode()->getOperand(0);
2274    break;
2275  case ISD::FABS:
2276    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2277      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2278    break;
2279  }
2280
2281  SDNode *N;
2282  SDVTList VTs = getVTList(VT);
2283  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2284    FoldingSetNodeID ID;
2285    SDValue Ops[1] = { Operand };
2286    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2287    void *IP = 0;
2288    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2289      return SDValue(E, 0);
2290    N = NodeAllocator.Allocate<UnarySDNode>();
2291    new (N) UnarySDNode(Opcode, VTs, Operand);
2292    CSEMap.InsertNode(N, IP);
2293  } else {
2294    N = NodeAllocator.Allocate<UnarySDNode>();
2295    new (N) UnarySDNode(Opcode, VTs, Operand);
2296  }
2297
2298  AllNodes.push_back(N);
2299#ifndef NDEBUG
2300  VerifyNode(N);
2301#endif
2302  return SDValue(N, 0);
2303}
2304
2305SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2306                                             MVT VT,
2307                                             ConstantSDNode *Cst1,
2308                                             ConstantSDNode *Cst2) {
2309  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2310
2311  switch (Opcode) {
2312  case ISD::ADD:  return getConstant(C1 + C2, VT);
2313  case ISD::SUB:  return getConstant(C1 - C2, VT);
2314  case ISD::MUL:  return getConstant(C1 * C2, VT);
2315  case ISD::UDIV:
2316    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2317    break;
2318  case ISD::UREM:
2319    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2320    break;
2321  case ISD::SDIV:
2322    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2323    break;
2324  case ISD::SREM:
2325    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2326    break;
2327  case ISD::AND:  return getConstant(C1 & C2, VT);
2328  case ISD::OR:   return getConstant(C1 | C2, VT);
2329  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2330  case ISD::SHL:  return getConstant(C1 << C2, VT);
2331  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2332  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2333  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2334  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2335  default: break;
2336  }
2337
2338  return SDValue();
2339}
2340
2341SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2342                              SDValue N1, SDValue N2) {
2343  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2344  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2345  switch (Opcode) {
2346  default: break;
2347  case ISD::TokenFactor:
2348    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2349           N2.getValueType() == MVT::Other && "Invalid token factor!");
2350    // Fold trivial token factors.
2351    if (N1.getOpcode() == ISD::EntryToken) return N2;
2352    if (N2.getOpcode() == ISD::EntryToken) return N1;
2353    if (N1 == N2) return N1;
2354    break;
2355  case ISD::CONCAT_VECTORS:
2356    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2357    // one big BUILD_VECTOR.
2358    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2359        N2.getOpcode() == ISD::BUILD_VECTOR) {
2360      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2361      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2362      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2363    }
2364    break;
2365  case ISD::AND:
2366    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2367           N1.getValueType() == VT && "Binary operator types must match!");
2368    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2369    // worth handling here.
2370    if (N2C && N2C->isNullValue())
2371      return N2;
2372    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2373      return N1;
2374    break;
2375  case ISD::OR:
2376  case ISD::XOR:
2377  case ISD::ADD:
2378  case ISD::SUB:
2379    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2380           N1.getValueType() == VT && "Binary operator types must match!");
2381    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2382    // it's worth handling here.
2383    if (N2C && N2C->isNullValue())
2384      return N1;
2385    break;
2386  case ISD::UDIV:
2387  case ISD::UREM:
2388  case ISD::MULHU:
2389  case ISD::MULHS:
2390    assert(VT.isInteger() && "This operator does not apply to FP types!");
2391    // fall through
2392  case ISD::MUL:
2393  case ISD::SDIV:
2394  case ISD::SREM:
2395  case ISD::FADD:
2396  case ISD::FSUB:
2397  case ISD::FMUL:
2398  case ISD::FDIV:
2399  case ISD::FREM:
2400    assert(N1.getValueType() == N2.getValueType() &&
2401           N1.getValueType() == VT && "Binary operator types must match!");
2402    break;
2403  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2404    assert(N1.getValueType() == VT &&
2405           N1.getValueType().isFloatingPoint() &&
2406           N2.getValueType().isFloatingPoint() &&
2407           "Invalid FCOPYSIGN!");
2408    break;
2409  case ISD::SHL:
2410  case ISD::SRA:
2411  case ISD::SRL:
2412  case ISD::ROTL:
2413  case ISD::ROTR:
2414    assert(VT == N1.getValueType() &&
2415           "Shift operators return type must be the same as their first arg");
2416    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2417           "Shifts only work on integers");
2418    assert(N2.getValueType() == TLI.getShiftAmountTy() &&
2419           "Wrong type for shift amount");
2420
2421    // Always fold shifts of i1 values so the code generator doesn't need to
2422    // handle them.  Since we know the size of the shift has to be less than the
2423    // size of the value, the shift/rotate count is guaranteed to be zero.
2424    if (VT == MVT::i1)
2425      return N1;
2426    break;
2427  case ISD::FP_ROUND_INREG: {
2428    MVT EVT = cast<VTSDNode>(N2)->getVT();
2429    assert(VT == N1.getValueType() && "Not an inreg round!");
2430    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2431           "Cannot FP_ROUND_INREG integer types");
2432    assert(EVT.bitsLE(VT) && "Not rounding down!");
2433    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2434    break;
2435  }
2436  case ISD::FP_ROUND:
2437    assert(VT.isFloatingPoint() &&
2438           N1.getValueType().isFloatingPoint() &&
2439           VT.bitsLE(N1.getValueType()) &&
2440           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2441    if (N1.getValueType() == VT) return N1;  // noop conversion.
2442    break;
2443  case ISD::AssertSext:
2444  case ISD::AssertZext: {
2445    MVT EVT = cast<VTSDNode>(N2)->getVT();
2446    assert(VT == N1.getValueType() && "Not an inreg extend!");
2447    assert(VT.isInteger() && EVT.isInteger() &&
2448           "Cannot *_EXTEND_INREG FP types");
2449    assert(EVT.bitsLE(VT) && "Not extending!");
2450    if (VT == EVT) return N1; // noop assertion.
2451    break;
2452  }
2453  case ISD::SIGN_EXTEND_INREG: {
2454    MVT EVT = cast<VTSDNode>(N2)->getVT();
2455    assert(VT == N1.getValueType() && "Not an inreg extend!");
2456    assert(VT.isInteger() && EVT.isInteger() &&
2457           "Cannot *_EXTEND_INREG FP types");
2458    assert(EVT.bitsLE(VT) && "Not extending!");
2459    if (EVT == VT) return N1;  // Not actually extending
2460
2461    if (N1C) {
2462      APInt Val = N1C->getAPIntValue();
2463      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2464      Val <<= Val.getBitWidth()-FromBits;
2465      Val = Val.ashr(Val.getBitWidth()-FromBits);
2466      return getConstant(Val, VT);
2467    }
2468    break;
2469  }
2470  case ISD::EXTRACT_VECTOR_ELT:
2471    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2472    if (N1.getOpcode() == ISD::UNDEF)
2473      return getNode(ISD::UNDEF, VT);
2474
2475    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2476    // expanding copies of large vectors from registers.
2477    if (N2C &&
2478        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2479        N1.getNumOperands() > 0) {
2480      unsigned Factor =
2481        N1.getOperand(0).getValueType().getVectorNumElements();
2482      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2483                     N1.getOperand(N2C->getZExtValue() / Factor),
2484                     getConstant(N2C->getZExtValue() % Factor,
2485                                 N2.getValueType()));
2486    }
2487
2488    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2489    // expanding large vector constants.
2490    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2491      return N1.getOperand(N2C->getZExtValue());
2492
2493    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2494    // operations are lowered to scalars.
2495    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2496      if (N1.getOperand(2) == N2)
2497        return N1.getOperand(1);
2498      else
2499        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2500    }
2501    break;
2502  case ISD::EXTRACT_ELEMENT:
2503    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2504    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2505           (N1.getValueType().isInteger() == VT.isInteger()) &&
2506           "Wrong types for EXTRACT_ELEMENT!");
2507
2508    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2509    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2510    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2511    if (N1.getOpcode() == ISD::BUILD_PAIR)
2512      return N1.getOperand(N2C->getZExtValue());
2513
2514    // EXTRACT_ELEMENT of a constant int is also very common.
2515    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2516      unsigned ElementSize = VT.getSizeInBits();
2517      unsigned Shift = ElementSize * N2C->getZExtValue();
2518      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2519      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2520    }
2521    break;
2522  case ISD::EXTRACT_SUBVECTOR:
2523    if (N1.getValueType() == VT) // Trivial extraction.
2524      return N1;
2525    break;
2526  }
2527
2528  if (N1C) {
2529    if (N2C) {
2530      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2531      if (SV.getNode()) return SV;
2532    } else {      // Cannonicalize constant to RHS if commutative
2533      if (isCommutativeBinOp(Opcode)) {
2534        std::swap(N1C, N2C);
2535        std::swap(N1, N2);
2536      }
2537    }
2538  }
2539
2540  // Constant fold FP operations.
2541  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2542  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2543  if (N1CFP) {
2544    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2545      // Cannonicalize constant to RHS if commutative
2546      std::swap(N1CFP, N2CFP);
2547      std::swap(N1, N2);
2548    } else if (N2CFP && VT != MVT::ppcf128) {
2549      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2550      APFloat::opStatus s;
2551      switch (Opcode) {
2552      case ISD::FADD:
2553        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2554        if (s != APFloat::opInvalidOp)
2555          return getConstantFP(V1, VT);
2556        break;
2557      case ISD::FSUB:
2558        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2559        if (s!=APFloat::opInvalidOp)
2560          return getConstantFP(V1, VT);
2561        break;
2562      case ISD::FMUL:
2563        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2564        if (s!=APFloat::opInvalidOp)
2565          return getConstantFP(V1, VT);
2566        break;
2567      case ISD::FDIV:
2568        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2569        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2570          return getConstantFP(V1, VT);
2571        break;
2572      case ISD::FREM :
2573        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2574        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2575          return getConstantFP(V1, VT);
2576        break;
2577      case ISD::FCOPYSIGN:
2578        V1.copySign(V2);
2579        return getConstantFP(V1, VT);
2580      default: break;
2581      }
2582    }
2583  }
2584
2585  // Canonicalize an UNDEF to the RHS, even over a constant.
2586  if (N1.getOpcode() == ISD::UNDEF) {
2587    if (isCommutativeBinOp(Opcode)) {
2588      std::swap(N1, N2);
2589    } else {
2590      switch (Opcode) {
2591      case ISD::FP_ROUND_INREG:
2592      case ISD::SIGN_EXTEND_INREG:
2593      case ISD::SUB:
2594      case ISD::FSUB:
2595      case ISD::FDIV:
2596      case ISD::FREM:
2597      case ISD::SRA:
2598        return N1;     // fold op(undef, arg2) -> undef
2599      case ISD::UDIV:
2600      case ISD::SDIV:
2601      case ISD::UREM:
2602      case ISD::SREM:
2603      case ISD::SRL:
2604      case ISD::SHL:
2605        if (!VT.isVector())
2606          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2607        // For vectors, we can't easily build an all zero vector, just return
2608        // the LHS.
2609        return N2;
2610      }
2611    }
2612  }
2613
2614  // Fold a bunch of operators when the RHS is undef.
2615  if (N2.getOpcode() == ISD::UNDEF) {
2616    switch (Opcode) {
2617    case ISD::XOR:
2618      if (N1.getOpcode() == ISD::UNDEF)
2619        // Handle undef ^ undef -> 0 special case. This is a common
2620        // idiom (misuse).
2621        return getConstant(0, VT);
2622      // fallthrough
2623    case ISD::ADD:
2624    case ISD::ADDC:
2625    case ISD::ADDE:
2626    case ISD::SUB:
2627    case ISD::FADD:
2628    case ISD::FSUB:
2629    case ISD::FMUL:
2630    case ISD::FDIV:
2631    case ISD::FREM:
2632    case ISD::UDIV:
2633    case ISD::SDIV:
2634    case ISD::UREM:
2635    case ISD::SREM:
2636      return N2;       // fold op(arg1, undef) -> undef
2637    case ISD::MUL:
2638    case ISD::AND:
2639    case ISD::SRL:
2640    case ISD::SHL:
2641      if (!VT.isVector())
2642        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2643      // For vectors, we can't easily build an all zero vector, just return
2644      // the LHS.
2645      return N1;
2646    case ISD::OR:
2647      if (!VT.isVector())
2648        return getConstant(VT.getIntegerVTBitMask(), VT);
2649      // For vectors, we can't easily build an all one vector, just return
2650      // the LHS.
2651      return N1;
2652    case ISD::SRA:
2653      return N1;
2654    }
2655  }
2656
2657  // Memoize this node if possible.
2658  SDNode *N;
2659  SDVTList VTs = getVTList(VT);
2660  if (VT != MVT::Flag) {
2661    SDValue Ops[] = { N1, N2 };
2662    FoldingSetNodeID ID;
2663    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2664    void *IP = 0;
2665    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2666      return SDValue(E, 0);
2667    N = NodeAllocator.Allocate<BinarySDNode>();
2668    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2669    CSEMap.InsertNode(N, IP);
2670  } else {
2671    N = NodeAllocator.Allocate<BinarySDNode>();
2672    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2673  }
2674
2675  AllNodes.push_back(N);
2676#ifndef NDEBUG
2677  VerifyNode(N);
2678#endif
2679  return SDValue(N, 0);
2680}
2681
2682SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2683                              SDValue N1, SDValue N2, SDValue N3) {
2684  // Perform various simplifications.
2685  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2686  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2687  switch (Opcode) {
2688  case ISD::CONCAT_VECTORS:
2689    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2690    // one big BUILD_VECTOR.
2691    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2692        N2.getOpcode() == ISD::BUILD_VECTOR &&
2693        N3.getOpcode() == ISD::BUILD_VECTOR) {
2694      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2695      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2696      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2697      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2698    }
2699    break;
2700  case ISD::SETCC: {
2701    // Use FoldSetCC to simplify SETCC's.
2702    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2703    if (Simp.getNode()) return Simp;
2704    break;
2705  }
2706  case ISD::SELECT:
2707    if (N1C) {
2708     if (N1C->getZExtValue())
2709        return N2;             // select true, X, Y -> X
2710      else
2711        return N3;             // select false, X, Y -> Y
2712    }
2713
2714    if (N2 == N3) return N2;   // select C, X, X -> X
2715    break;
2716  case ISD::BRCOND:
2717    if (N2C) {
2718      if (N2C->getZExtValue()) // Unconditional branch
2719        return getNode(ISD::BR, MVT::Other, N1, N3);
2720      else
2721        return N1;         // Never-taken branch
2722    }
2723    break;
2724  case ISD::VECTOR_SHUFFLE:
2725    assert(N1.getValueType() == N2.getValueType() &&
2726           N1.getValueType().isVector() &&
2727           VT.isVector() && N3.getValueType().isVector() &&
2728           N3.getOpcode() == ISD::BUILD_VECTOR &&
2729           VT.getVectorNumElements() == N3.getNumOperands() &&
2730           "Illegal VECTOR_SHUFFLE node!");
2731    break;
2732  case ISD::BIT_CONVERT:
2733    // Fold bit_convert nodes from a type to themselves.
2734    if (N1.getValueType() == VT)
2735      return N1;
2736    break;
2737  }
2738
2739  // Memoize node if it doesn't produce a flag.
2740  SDNode *N;
2741  SDVTList VTs = getVTList(VT);
2742  if (VT != MVT::Flag) {
2743    SDValue Ops[] = { N1, N2, N3 };
2744    FoldingSetNodeID ID;
2745    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2746    void *IP = 0;
2747    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2748      return SDValue(E, 0);
2749    N = NodeAllocator.Allocate<TernarySDNode>();
2750    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2751    CSEMap.InsertNode(N, IP);
2752  } else {
2753    N = NodeAllocator.Allocate<TernarySDNode>();
2754    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2755  }
2756  AllNodes.push_back(N);
2757#ifndef NDEBUG
2758  VerifyNode(N);
2759#endif
2760  return SDValue(N, 0);
2761}
2762
2763SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2764                              SDValue N1, SDValue N2, SDValue N3,
2765                              SDValue N4) {
2766  SDValue Ops[] = { N1, N2, N3, N4 };
2767  return getNode(Opcode, VT, Ops, 4);
2768}
2769
2770SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2771                              SDValue N1, SDValue N2, SDValue N3,
2772                              SDValue N4, SDValue N5) {
2773  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2774  return getNode(Opcode, VT, Ops, 5);
2775}
2776
2777/// getMemsetValue - Vectorized representation of the memset value
2778/// operand.
2779static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2780  unsigned NumBits = VT.isVector() ?
2781    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2782  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2783    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2784    unsigned Shift = 8;
2785    for (unsigned i = NumBits; i > 8; i >>= 1) {
2786      Val = (Val << Shift) | Val;
2787      Shift <<= 1;
2788    }
2789    if (VT.isInteger())
2790      return DAG.getConstant(Val, VT);
2791    return DAG.getConstantFP(APFloat(Val), VT);
2792  }
2793
2794  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2795  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2796  unsigned Shift = 8;
2797  for (unsigned i = NumBits; i > 8; i >>= 1) {
2798    Value = DAG.getNode(ISD::OR, VT,
2799                        DAG.getNode(ISD::SHL, VT, Value,
2800                                    DAG.getConstant(Shift,
2801                                                    TLI.getShiftAmountTy())),
2802                        Value);
2803    Shift <<= 1;
2804  }
2805
2806  return Value;
2807}
2808
2809/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2810/// used when a memcpy is turned into a memset when the source is a constant
2811/// string ptr.
2812static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2813                                    const TargetLowering &TLI,
2814                                    std::string &Str, unsigned Offset) {
2815  // Handle vector with all elements zero.
2816  if (Str.empty()) {
2817    if (VT.isInteger())
2818      return DAG.getConstant(0, VT);
2819    unsigned NumElts = VT.getVectorNumElements();
2820    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2821    return DAG.getNode(ISD::BIT_CONVERT, VT,
2822                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2823  }
2824
2825  assert(!VT.isVector() && "Can't handle vector type here!");
2826  unsigned NumBits = VT.getSizeInBits();
2827  unsigned MSB = NumBits / 8;
2828  uint64_t Val = 0;
2829  if (TLI.isLittleEndian())
2830    Offset = Offset + MSB - 1;
2831  for (unsigned i = 0; i != MSB; ++i) {
2832    Val = (Val << 8) | (unsigned char)Str[Offset];
2833    Offset += TLI.isLittleEndian() ? -1 : 1;
2834  }
2835  return DAG.getConstant(Val, VT);
2836}
2837
2838/// getMemBasePlusOffset - Returns base and offset node for the
2839///
2840static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2841                                      SelectionDAG &DAG) {
2842  MVT VT = Base.getValueType();
2843  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2844}
2845
2846/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2847///
2848static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2849  unsigned SrcDelta = 0;
2850  GlobalAddressSDNode *G = NULL;
2851  if (Src.getOpcode() == ISD::GlobalAddress)
2852    G = cast<GlobalAddressSDNode>(Src);
2853  else if (Src.getOpcode() == ISD::ADD &&
2854           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2855           Src.getOperand(1).getOpcode() == ISD::Constant) {
2856    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2857    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2858  }
2859  if (!G)
2860    return false;
2861
2862  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2863  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2864    return true;
2865
2866  return false;
2867}
2868
2869/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2870/// to replace the memset / memcpy is below the threshold. It also returns the
2871/// types of the sequence of memory ops to perform memset / memcpy.
2872static
2873bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2874                              SDValue Dst, SDValue Src,
2875                              unsigned Limit, uint64_t Size, unsigned &Align,
2876                              std::string &Str, bool &isSrcStr,
2877                              SelectionDAG &DAG,
2878                              const TargetLowering &TLI) {
2879  isSrcStr = isMemSrcFromString(Src, Str);
2880  bool isSrcConst = isa<ConstantSDNode>(Src);
2881  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2882  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2883  if (VT != MVT::iAny) {
2884    unsigned NewAlign = (unsigned)
2885      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2886    // If source is a string constant, this will require an unaligned load.
2887    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2888      if (Dst.getOpcode() != ISD::FrameIndex) {
2889        // Can't change destination alignment. It requires a unaligned store.
2890        if (AllowUnalign)
2891          VT = MVT::iAny;
2892      } else {
2893        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2894        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2895        if (MFI->isFixedObjectIndex(FI)) {
2896          // Can't change destination alignment. It requires a unaligned store.
2897          if (AllowUnalign)
2898            VT = MVT::iAny;
2899        } else {
2900          // Give the stack frame object a larger alignment if needed.
2901          if (MFI->getObjectAlignment(FI) < NewAlign)
2902            MFI->setObjectAlignment(FI, NewAlign);
2903          Align = NewAlign;
2904        }
2905      }
2906    }
2907  }
2908
2909  if (VT == MVT::iAny) {
2910    if (AllowUnalign) {
2911      VT = MVT::i64;
2912    } else {
2913      switch (Align & 7) {
2914      case 0:  VT = MVT::i64; break;
2915      case 4:  VT = MVT::i32; break;
2916      case 2:  VT = MVT::i16; break;
2917      default: VT = MVT::i8;  break;
2918      }
2919    }
2920
2921    MVT LVT = MVT::i64;
2922    while (!TLI.isTypeLegal(LVT))
2923      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2924    assert(LVT.isInteger());
2925
2926    if (VT.bitsGT(LVT))
2927      VT = LVT;
2928  }
2929
2930  unsigned NumMemOps = 0;
2931  while (Size != 0) {
2932    unsigned VTSize = VT.getSizeInBits() / 8;
2933    while (VTSize > Size) {
2934      // For now, only use non-vector load / store's for the left-over pieces.
2935      if (VT.isVector()) {
2936        VT = MVT::i64;
2937        while (!TLI.isTypeLegal(VT))
2938          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2939        VTSize = VT.getSizeInBits() / 8;
2940      } else {
2941        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2942        VTSize >>= 1;
2943      }
2944    }
2945
2946    if (++NumMemOps > Limit)
2947      return false;
2948    MemOps.push_back(VT);
2949    Size -= VTSize;
2950  }
2951
2952  return true;
2953}
2954
2955static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2956                                         SDValue Chain, SDValue Dst,
2957                                         SDValue Src, uint64_t Size,
2958                                         unsigned Align, bool AlwaysInline,
2959                                         const Value *DstSV, uint64_t DstSVOff,
2960                                         const Value *SrcSV, uint64_t SrcSVOff){
2961  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2962
2963  // Expand memcpy to a series of load and store ops if the size operand falls
2964  // below a certain threshold.
2965  std::vector<MVT> MemOps;
2966  uint64_t Limit = -1ULL;
2967  if (!AlwaysInline)
2968    Limit = TLI.getMaxStoresPerMemcpy();
2969  unsigned DstAlign = Align;  // Destination alignment can change.
2970  std::string Str;
2971  bool CopyFromStr;
2972  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2973                                Str, CopyFromStr, DAG, TLI))
2974    return SDValue();
2975
2976
2977  bool isZeroStr = CopyFromStr && Str.empty();
2978  SmallVector<SDValue, 8> OutChains;
2979  unsigned NumMemOps = MemOps.size();
2980  uint64_t SrcOff = 0, DstOff = 0;
2981  for (unsigned i = 0; i < NumMemOps; i++) {
2982    MVT VT = MemOps[i];
2983    unsigned VTSize = VT.getSizeInBits() / 8;
2984    SDValue Value, Store;
2985
2986    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2987      // It's unlikely a store of a vector immediate can be done in a single
2988      // instruction. It would require a load from a constantpool first.
2989      // We also handle store a vector with all zero's.
2990      // FIXME: Handle other cases where store of vector immediate is done in
2991      // a single instruction.
2992      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2993      Store = DAG.getStore(Chain, Value,
2994                           getMemBasePlusOffset(Dst, DstOff, DAG),
2995                           DstSV, DstSVOff + DstOff, false, DstAlign);
2996    } else {
2997      Value = DAG.getLoad(VT, Chain,
2998                          getMemBasePlusOffset(Src, SrcOff, DAG),
2999                          SrcSV, SrcSVOff + SrcOff, false, Align);
3000      Store = DAG.getStore(Chain, Value,
3001                           getMemBasePlusOffset(Dst, DstOff, DAG),
3002                           DstSV, DstSVOff + DstOff, false, DstAlign);
3003    }
3004    OutChains.push_back(Store);
3005    SrcOff += VTSize;
3006    DstOff += VTSize;
3007  }
3008
3009  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3010                     &OutChains[0], OutChains.size());
3011}
3012
3013static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3014                                          SDValue Chain, SDValue Dst,
3015                                          SDValue Src, uint64_t Size,
3016                                          unsigned Align, bool AlwaysInline,
3017                                          const Value *DstSV, uint64_t DstSVOff,
3018                                          const Value *SrcSV, uint64_t SrcSVOff){
3019  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3020
3021  // Expand memmove to a series of load and store ops if the size operand falls
3022  // below a certain threshold.
3023  std::vector<MVT> MemOps;
3024  uint64_t Limit = -1ULL;
3025  if (!AlwaysInline)
3026    Limit = TLI.getMaxStoresPerMemmove();
3027  unsigned DstAlign = Align;  // Destination alignment can change.
3028  std::string Str;
3029  bool CopyFromStr;
3030  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3031                                Str, CopyFromStr, DAG, TLI))
3032    return SDValue();
3033
3034  uint64_t SrcOff = 0, DstOff = 0;
3035
3036  SmallVector<SDValue, 8> LoadValues;
3037  SmallVector<SDValue, 8> LoadChains;
3038  SmallVector<SDValue, 8> OutChains;
3039  unsigned NumMemOps = MemOps.size();
3040  for (unsigned i = 0; i < NumMemOps; i++) {
3041    MVT VT = MemOps[i];
3042    unsigned VTSize = VT.getSizeInBits() / 8;
3043    SDValue Value, Store;
3044
3045    Value = DAG.getLoad(VT, Chain,
3046                        getMemBasePlusOffset(Src, SrcOff, DAG),
3047                        SrcSV, SrcSVOff + SrcOff, false, Align);
3048    LoadValues.push_back(Value);
3049    LoadChains.push_back(Value.getValue(1));
3050    SrcOff += VTSize;
3051  }
3052  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3053                      &LoadChains[0], LoadChains.size());
3054  OutChains.clear();
3055  for (unsigned i = 0; i < NumMemOps; i++) {
3056    MVT VT = MemOps[i];
3057    unsigned VTSize = VT.getSizeInBits() / 8;
3058    SDValue Value, Store;
3059
3060    Store = DAG.getStore(Chain, LoadValues[i],
3061                         getMemBasePlusOffset(Dst, DstOff, DAG),
3062                         DstSV, DstSVOff + DstOff, false, DstAlign);
3063    OutChains.push_back(Store);
3064    DstOff += VTSize;
3065  }
3066
3067  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3068                     &OutChains[0], OutChains.size());
3069}
3070
3071static SDValue getMemsetStores(SelectionDAG &DAG,
3072                                 SDValue Chain, SDValue Dst,
3073                                 SDValue Src, uint64_t Size,
3074                                 unsigned Align,
3075                                 const Value *DstSV, uint64_t DstSVOff) {
3076  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3077
3078  // Expand memset to a series of load/store ops if the size operand
3079  // falls below a certain threshold.
3080  std::vector<MVT> MemOps;
3081  std::string Str;
3082  bool CopyFromStr;
3083  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3084                                Size, Align, Str, CopyFromStr, DAG, TLI))
3085    return SDValue();
3086
3087  SmallVector<SDValue, 8> OutChains;
3088  uint64_t DstOff = 0;
3089
3090  unsigned NumMemOps = MemOps.size();
3091  for (unsigned i = 0; i < NumMemOps; i++) {
3092    MVT VT = MemOps[i];
3093    unsigned VTSize = VT.getSizeInBits() / 8;
3094    SDValue Value = getMemsetValue(Src, VT, DAG);
3095    SDValue Store = DAG.getStore(Chain, Value,
3096                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3097                                 DstSV, DstSVOff + DstOff);
3098    OutChains.push_back(Store);
3099    DstOff += VTSize;
3100  }
3101
3102  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3103                     &OutChains[0], OutChains.size());
3104}
3105
3106SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3107                                SDValue Src, SDValue Size,
3108                                unsigned Align, bool AlwaysInline,
3109                                const Value *DstSV, uint64_t DstSVOff,
3110                                const Value *SrcSV, uint64_t SrcSVOff) {
3111
3112  // Check to see if we should lower the memcpy to loads and stores first.
3113  // For cases within the target-specified limits, this is the best choice.
3114  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3115  if (ConstantSize) {
3116    // Memcpy with size zero? Just return the original chain.
3117    if (ConstantSize->isNullValue())
3118      return Chain;
3119
3120    SDValue Result =
3121      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3122                              ConstantSize->getZExtValue(),
3123                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3124    if (Result.getNode())
3125      return Result;
3126  }
3127
3128  // Then check to see if we should lower the memcpy with target-specific
3129  // code. If the target chooses to do this, this is the next best.
3130  SDValue Result =
3131    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3132                                AlwaysInline,
3133                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3134  if (Result.getNode())
3135    return Result;
3136
3137  // If we really need inline code and the target declined to provide it,
3138  // use a (potentially long) sequence of loads and stores.
3139  if (AlwaysInline) {
3140    assert(ConstantSize && "AlwaysInline requires a constant size!");
3141    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3142                                   ConstantSize->getZExtValue(), Align, true,
3143                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3144  }
3145
3146  // Emit a library call.
3147  TargetLowering::ArgListTy Args;
3148  TargetLowering::ArgListEntry Entry;
3149  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3150  Entry.Node = Dst; Args.push_back(Entry);
3151  Entry.Node = Src; Args.push_back(Entry);
3152  Entry.Node = Size; Args.push_back(Entry);
3153  std::pair<SDValue,SDValue> CallResult =
3154    TLI.LowerCallTo(Chain, Type::VoidTy,
3155                    false, false, false, false, CallingConv::C, false,
3156                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3157                    Args, *this);
3158  return CallResult.second;
3159}
3160
3161SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3162                                 SDValue Src, SDValue Size,
3163                                 unsigned Align,
3164                                 const Value *DstSV, uint64_t DstSVOff,
3165                                 const Value *SrcSV, uint64_t SrcSVOff) {
3166
3167  // Check to see if we should lower the memmove to loads and stores first.
3168  // For cases within the target-specified limits, this is the best choice.
3169  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3170  if (ConstantSize) {
3171    // Memmove with size zero? Just return the original chain.
3172    if (ConstantSize->isNullValue())
3173      return Chain;
3174
3175    SDValue Result =
3176      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3177                               ConstantSize->getZExtValue(),
3178                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3179    if (Result.getNode())
3180      return Result;
3181  }
3182
3183  // Then check to see if we should lower the memmove with target-specific
3184  // code. If the target chooses to do this, this is the next best.
3185  SDValue Result =
3186    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3187                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3188  if (Result.getNode())
3189    return Result;
3190
3191  // Emit a library call.
3192  TargetLowering::ArgListTy Args;
3193  TargetLowering::ArgListEntry Entry;
3194  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3195  Entry.Node = Dst; Args.push_back(Entry);
3196  Entry.Node = Src; Args.push_back(Entry);
3197  Entry.Node = Size; Args.push_back(Entry);
3198  std::pair<SDValue,SDValue> CallResult =
3199    TLI.LowerCallTo(Chain, Type::VoidTy,
3200                    false, false, false, false, CallingConv::C, false,
3201                    getExternalSymbol("memmove", TLI.getPointerTy()),
3202                    Args, *this);
3203  return CallResult.second;
3204}
3205
3206SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3207                                SDValue Src, SDValue Size,
3208                                unsigned Align,
3209                                const Value *DstSV, uint64_t DstSVOff) {
3210
3211  // Check to see if we should lower the memset to stores first.
3212  // For cases within the target-specified limits, this is the best choice.
3213  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3214  if (ConstantSize) {
3215    // Memset with size zero? Just return the original chain.
3216    if (ConstantSize->isNullValue())
3217      return Chain;
3218
3219    SDValue Result =
3220      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3221                      Align, DstSV, DstSVOff);
3222    if (Result.getNode())
3223      return Result;
3224  }
3225
3226  // Then check to see if we should lower the memset with target-specific
3227  // code. If the target chooses to do this, this is the next best.
3228  SDValue Result =
3229    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3230                                DstSV, DstSVOff);
3231  if (Result.getNode())
3232    return Result;
3233
3234  // Emit a library call.
3235  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3236  TargetLowering::ArgListTy Args;
3237  TargetLowering::ArgListEntry Entry;
3238  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3239  Args.push_back(Entry);
3240  // Extend or truncate the argument to be an i32 value for the call.
3241  if (Src.getValueType().bitsGT(MVT::i32))
3242    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3243  else
3244    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3245  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3246  Args.push_back(Entry);
3247  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3248  Args.push_back(Entry);
3249  std::pair<SDValue,SDValue> CallResult =
3250    TLI.LowerCallTo(Chain, Type::VoidTy,
3251                    false, false, false, false, CallingConv::C, false,
3252                    getExternalSymbol("memset", TLI.getPointerTy()),
3253                    Args, *this);
3254  return CallResult.second;
3255}
3256
3257SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3258                                SDValue Ptr, SDValue Cmp,
3259                                SDValue Swp, const Value* PtrVal,
3260                                unsigned Alignment) {
3261  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3262          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3263          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3264          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3265  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3266
3267  MVT VT = Cmp.getValueType();
3268
3269  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3270    Alignment = getMVTAlignment(VT);
3271
3272  SDVTList VTs = getVTList(VT, MVT::Other);
3273  FoldingSetNodeID ID;
3274  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3275  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3276  void* IP = 0;
3277  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3278    return SDValue(E, 0);
3279  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3280  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3281  CSEMap.InsertNode(N, IP);
3282  AllNodes.push_back(N);
3283  return SDValue(N, 0);
3284}
3285
3286SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3287                                SDValue Ptr, SDValue Val,
3288                                const Value* PtrVal,
3289                                unsigned Alignment) {
3290  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3291          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3292          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3293          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3294          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3295          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3296          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3297          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3298          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3299          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3300          Opcode == ISD::ATOMIC_SWAP_8 ||
3301          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3302          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3303          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3304          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3305          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3306          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3307          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3308          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3309          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3310          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3311          Opcode == ISD::ATOMIC_SWAP_16 ||
3312          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3313          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3314          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3315          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3316          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3317          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3318          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3319          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3320          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3321          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3322          Opcode == ISD::ATOMIC_SWAP_32 ||
3323          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3324          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3325          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3326          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3327          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3328          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3329          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3330          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3331          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3332          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3333          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3334
3335  MVT VT = Val.getValueType();
3336
3337  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3338    Alignment = getMVTAlignment(VT);
3339
3340  SDVTList VTs = getVTList(VT, MVT::Other);
3341  FoldingSetNodeID ID;
3342  SDValue Ops[] = {Chain, Ptr, Val};
3343  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3344  void* IP = 0;
3345  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3346    return SDValue(E, 0);
3347  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3348  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3349  CSEMap.InsertNode(N, IP);
3350  AllNodes.push_back(N);
3351  return SDValue(N, 0);
3352}
3353
3354/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3355/// Allowed to return something different (and simpler) if Simplify is true.
3356SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3357                                     bool Simplify) {
3358  if (Simplify && NumOps == 1)
3359    return Ops[0];
3360
3361  SmallVector<MVT, 4> VTs;
3362  VTs.reserve(NumOps);
3363  for (unsigned i = 0; i < NumOps; ++i)
3364    VTs.push_back(Ops[i].getValueType());
3365  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3366}
3367
3368SDValue
3369SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3370                                  const MVT *VTs, unsigned NumVTs,
3371                                  const SDValue *Ops, unsigned NumOps,
3372                                  MVT MemVT, const Value *srcValue, int SVOff,
3373                                  unsigned Align, bool Vol,
3374                                  bool ReadMem, bool WriteMem) {
3375  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3376                             MemVT, srcValue, SVOff, Align, Vol,
3377                             ReadMem, WriteMem);
3378}
3379
3380SDValue
3381SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3382                                  const SDValue *Ops, unsigned NumOps,
3383                                  MVT MemVT, const Value *srcValue, int SVOff,
3384                                  unsigned Align, bool Vol,
3385                                  bool ReadMem, bool WriteMem) {
3386  // Memoize the node unless it returns a flag.
3387  MemIntrinsicSDNode *N;
3388  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3389    FoldingSetNodeID ID;
3390    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3391    void *IP = 0;
3392    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3393      return SDValue(E, 0);
3394
3395    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3396    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3397                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3398    CSEMap.InsertNode(N, IP);
3399  } else {
3400    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3401    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3402                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3403  }
3404  AllNodes.push_back(N);
3405  return SDValue(N, 0);
3406}
3407
3408SDValue
3409SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3410                      bool IsInreg, SDVTList VTs,
3411                      const SDValue *Operands, unsigned NumOperands) {
3412  // Do not include isTailCall in the folding set profile.
3413  FoldingSetNodeID ID;
3414  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3415  ID.AddInteger(CallingConv);
3416  ID.AddInteger(IsVarArgs);
3417  void *IP = 0;
3418  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3419    // Instead of including isTailCall in the folding set, we just
3420    // set the flag of the existing node.
3421    if (!IsTailCall)
3422      cast<CallSDNode>(E)->setNotTailCall();
3423    return SDValue(E, 0);
3424  }
3425  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3426  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3427                     VTs, Operands, NumOperands);
3428  CSEMap.InsertNode(N, IP);
3429  AllNodes.push_back(N);
3430  return SDValue(N, 0);
3431}
3432
3433SDValue
3434SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3435                      MVT VT, SDValue Chain,
3436                      SDValue Ptr, SDValue Offset,
3437                      const Value *SV, int SVOffset, MVT EVT,
3438                      bool isVolatile, unsigned Alignment) {
3439  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3440    Alignment = getMVTAlignment(VT);
3441
3442  if (VT == EVT) {
3443    ExtType = ISD::NON_EXTLOAD;
3444  } else if (ExtType == ISD::NON_EXTLOAD) {
3445    assert(VT == EVT && "Non-extending load from different memory type!");
3446  } else {
3447    // Extending load.
3448    if (VT.isVector())
3449      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3450             "Invalid vector extload!");
3451    else
3452      assert(EVT.bitsLT(VT) &&
3453             "Should only be an extending load, not truncating!");
3454    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3455           "Cannot sign/zero extend a FP/Vector load!");
3456    assert(VT.isInteger() == EVT.isInteger() &&
3457           "Cannot convert from FP to Int or Int -> FP!");
3458  }
3459
3460  bool Indexed = AM != ISD::UNINDEXED;
3461  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3462         "Unindexed load with an offset!");
3463
3464  SDVTList VTs = Indexed ?
3465    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3466  SDValue Ops[] = { Chain, Ptr, Offset };
3467  FoldingSetNodeID ID;
3468  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3469  ID.AddInteger(AM);
3470  ID.AddInteger(ExtType);
3471  ID.AddInteger(EVT.getRawBits());
3472  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3473  void *IP = 0;
3474  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3475    return SDValue(E, 0);
3476  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3477  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3478                     Alignment, isVolatile);
3479  CSEMap.InsertNode(N, IP);
3480  AllNodes.push_back(N);
3481  return SDValue(N, 0);
3482}
3483
3484SDValue SelectionDAG::getLoad(MVT VT,
3485                              SDValue Chain, SDValue Ptr,
3486                              const Value *SV, int SVOffset,
3487                              bool isVolatile, unsigned Alignment) {
3488  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3489  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3490                 SV, SVOffset, VT, isVolatile, Alignment);
3491}
3492
3493SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3494                                 SDValue Chain, SDValue Ptr,
3495                                 const Value *SV,
3496                                 int SVOffset, MVT EVT,
3497                                 bool isVolatile, unsigned Alignment) {
3498  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3499  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3500                 SV, SVOffset, EVT, isVolatile, Alignment);
3501}
3502
3503SDValue
3504SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3505                             SDValue Offset, ISD::MemIndexedMode AM) {
3506  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3507  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3508         "Load is already a indexed load!");
3509  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3510                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3511                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3512                 LD->isVolatile(), LD->getAlignment());
3513}
3514
3515SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3516                               SDValue Ptr, const Value *SV, int SVOffset,
3517                               bool isVolatile, unsigned Alignment) {
3518  MVT VT = Val.getValueType();
3519
3520  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3521    Alignment = getMVTAlignment(VT);
3522
3523  SDVTList VTs = getVTList(MVT::Other);
3524  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3525  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3526  FoldingSetNodeID ID;
3527  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3528  ID.AddInteger(ISD::UNINDEXED);
3529  ID.AddInteger(false);
3530  ID.AddInteger(VT.getRawBits());
3531  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3532  void *IP = 0;
3533  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3534    return SDValue(E, 0);
3535  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3536  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3537                      VT, SV, SVOffset, Alignment, isVolatile);
3538  CSEMap.InsertNode(N, IP);
3539  AllNodes.push_back(N);
3540  return SDValue(N, 0);
3541}
3542
3543SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3544                                    SDValue Ptr, const Value *SV,
3545                                    int SVOffset, MVT SVT,
3546                                    bool isVolatile, unsigned Alignment) {
3547  MVT VT = Val.getValueType();
3548
3549  if (VT == SVT)
3550    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3551
3552  assert(VT.bitsGT(SVT) && "Not a truncation?");
3553  assert(VT.isInteger() == SVT.isInteger() &&
3554         "Can't do FP-INT conversion!");
3555
3556  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3557    Alignment = getMVTAlignment(VT);
3558
3559  SDVTList VTs = getVTList(MVT::Other);
3560  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3561  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3562  FoldingSetNodeID ID;
3563  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3564  ID.AddInteger(ISD::UNINDEXED);
3565  ID.AddInteger(1);
3566  ID.AddInteger(SVT.getRawBits());
3567  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3568  void *IP = 0;
3569  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3570    return SDValue(E, 0);
3571  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3572  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3573                      SVT, SV, SVOffset, Alignment, isVolatile);
3574  CSEMap.InsertNode(N, IP);
3575  AllNodes.push_back(N);
3576  return SDValue(N, 0);
3577}
3578
3579SDValue
3580SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3581                              SDValue Offset, ISD::MemIndexedMode AM) {
3582  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3583  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3584         "Store is already a indexed store!");
3585  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3586  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3587  FoldingSetNodeID ID;
3588  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3589  ID.AddInteger(AM);
3590  ID.AddInteger(ST->isTruncatingStore());
3591  ID.AddInteger(ST->getMemoryVT().getRawBits());
3592  ID.AddInteger(ST->getRawFlags());
3593  void *IP = 0;
3594  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3595    return SDValue(E, 0);
3596  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3597  new (N) StoreSDNode(Ops, VTs, AM,
3598                      ST->isTruncatingStore(), ST->getMemoryVT(),
3599                      ST->getSrcValue(), ST->getSrcValueOffset(),
3600                      ST->getAlignment(), ST->isVolatile());
3601  CSEMap.InsertNode(N, IP);
3602  AllNodes.push_back(N);
3603  return SDValue(N, 0);
3604}
3605
3606SDValue SelectionDAG::getVAArg(MVT VT,
3607                               SDValue Chain, SDValue Ptr,
3608                               SDValue SV) {
3609  SDValue Ops[] = { Chain, Ptr, SV };
3610  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3611}
3612
3613SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3614                              const SDUse *Ops, unsigned NumOps) {
3615  switch (NumOps) {
3616  case 0: return getNode(Opcode, VT);
3617  case 1: return getNode(Opcode, VT, Ops[0]);
3618  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3619  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3620  default: break;
3621  }
3622
3623  // Copy from an SDUse array into an SDValue array for use with
3624  // the regular getNode logic.
3625  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3626  return getNode(Opcode, VT, &NewOps[0], NumOps);
3627}
3628
3629SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3630                              const SDValue *Ops, unsigned NumOps) {
3631  switch (NumOps) {
3632  case 0: return getNode(Opcode, VT);
3633  case 1: return getNode(Opcode, VT, Ops[0]);
3634  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3635  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3636  default: break;
3637  }
3638
3639  switch (Opcode) {
3640  default: break;
3641  case ISD::SELECT_CC: {
3642    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3643    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3644           "LHS and RHS of condition must have same type!");
3645    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3646           "True and False arms of SelectCC must have same type!");
3647    assert(Ops[2].getValueType() == VT &&
3648           "select_cc node must be of same type as true and false value!");
3649    break;
3650  }
3651  case ISD::BR_CC: {
3652    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3653    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3654           "LHS/RHS of comparison should match types!");
3655    break;
3656  }
3657  }
3658
3659  // Memoize nodes.
3660  SDNode *N;
3661  SDVTList VTs = getVTList(VT);
3662  if (VT != MVT::Flag) {
3663    FoldingSetNodeID ID;
3664    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3665    void *IP = 0;
3666    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3667      return SDValue(E, 0);
3668    N = NodeAllocator.Allocate<SDNode>();
3669    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3670    CSEMap.InsertNode(N, IP);
3671  } else {
3672    N = NodeAllocator.Allocate<SDNode>();
3673    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3674  }
3675  AllNodes.push_back(N);
3676#ifndef NDEBUG
3677  VerifyNode(N);
3678#endif
3679  return SDValue(N, 0);
3680}
3681
3682SDValue SelectionDAG::getNode(unsigned Opcode,
3683                              const std::vector<MVT> &ResultTys,
3684                              const SDValue *Ops, unsigned NumOps) {
3685  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3686                 Ops, NumOps);
3687}
3688
3689SDValue SelectionDAG::getNode(unsigned Opcode,
3690                              const MVT *VTs, unsigned NumVTs,
3691                              const SDValue *Ops, unsigned NumOps) {
3692  if (NumVTs == 1)
3693    return getNode(Opcode, VTs[0], Ops, NumOps);
3694  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3695}
3696
3697SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3698                              const SDValue *Ops, unsigned NumOps) {
3699  if (VTList.NumVTs == 1)
3700    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3701
3702  switch (Opcode) {
3703  // FIXME: figure out how to safely handle things like
3704  // int foo(int x) { return 1 << (x & 255); }
3705  // int bar() { return foo(256); }
3706#if 0
3707  case ISD::SRA_PARTS:
3708  case ISD::SRL_PARTS:
3709  case ISD::SHL_PARTS:
3710    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3711        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3712      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3713    else if (N3.getOpcode() == ISD::AND)
3714      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3715        // If the and is only masking out bits that cannot effect the shift,
3716        // eliminate the and.
3717        unsigned NumBits = VT.getSizeInBits()*2;
3718        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3719          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3720      }
3721    break;
3722#endif
3723  }
3724
3725  // Memoize the node unless it returns a flag.
3726  SDNode *N;
3727  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3728    FoldingSetNodeID ID;
3729    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3730    void *IP = 0;
3731    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3732      return SDValue(E, 0);
3733    if (NumOps == 1) {
3734      N = NodeAllocator.Allocate<UnarySDNode>();
3735      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3736    } else if (NumOps == 2) {
3737      N = NodeAllocator.Allocate<BinarySDNode>();
3738      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3739    } else if (NumOps == 3) {
3740      N = NodeAllocator.Allocate<TernarySDNode>();
3741      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3742    } else {
3743      N = NodeAllocator.Allocate<SDNode>();
3744      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3745    }
3746    CSEMap.InsertNode(N, IP);
3747  } else {
3748    if (NumOps == 1) {
3749      N = NodeAllocator.Allocate<UnarySDNode>();
3750      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3751    } else if (NumOps == 2) {
3752      N = NodeAllocator.Allocate<BinarySDNode>();
3753      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3754    } else if (NumOps == 3) {
3755      N = NodeAllocator.Allocate<TernarySDNode>();
3756      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3757    } else {
3758      N = NodeAllocator.Allocate<SDNode>();
3759      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3760    }
3761  }
3762  AllNodes.push_back(N);
3763#ifndef NDEBUG
3764  VerifyNode(N);
3765#endif
3766  return SDValue(N, 0);
3767}
3768
3769SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3770  return getNode(Opcode, VTList, 0, 0);
3771}
3772
3773SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3774                                SDValue N1) {
3775  SDValue Ops[] = { N1 };
3776  return getNode(Opcode, VTList, Ops, 1);
3777}
3778
3779SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3780                              SDValue N1, SDValue N2) {
3781  SDValue Ops[] = { N1, N2 };
3782  return getNode(Opcode, VTList, Ops, 2);
3783}
3784
3785SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3786                              SDValue N1, SDValue N2, SDValue N3) {
3787  SDValue Ops[] = { N1, N2, N3 };
3788  return getNode(Opcode, VTList, Ops, 3);
3789}
3790
3791SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3792                              SDValue N1, SDValue N2, SDValue N3,
3793                              SDValue N4) {
3794  SDValue Ops[] = { N1, N2, N3, N4 };
3795  return getNode(Opcode, VTList, Ops, 4);
3796}
3797
3798SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3799                              SDValue N1, SDValue N2, SDValue N3,
3800                              SDValue N4, SDValue N5) {
3801  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3802  return getNode(Opcode, VTList, Ops, 5);
3803}
3804
3805SDVTList SelectionDAG::getVTList(MVT VT) {
3806  return makeVTList(SDNode::getValueTypeList(VT), 1);
3807}
3808
3809SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3810  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3811       E = VTList.rend(); I != E; ++I)
3812    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3813      return *I;
3814
3815  MVT *Array = Allocator.Allocate<MVT>(2);
3816  Array[0] = VT1;
3817  Array[1] = VT2;
3818  SDVTList Result = makeVTList(Array, 2);
3819  VTList.push_back(Result);
3820  return Result;
3821}
3822
3823SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3824  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3825       E = VTList.rend(); I != E; ++I)
3826    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3827                          I->VTs[2] == VT3)
3828      return *I;
3829
3830  MVT *Array = Allocator.Allocate<MVT>(3);
3831  Array[0] = VT1;
3832  Array[1] = VT2;
3833  Array[2] = VT3;
3834  SDVTList Result = makeVTList(Array, 3);
3835  VTList.push_back(Result);
3836  return Result;
3837}
3838
3839SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3840  switch (NumVTs) {
3841    case 0: assert(0 && "Cannot have nodes without results!");
3842    case 1: return getVTList(VTs[0]);
3843    case 2: return getVTList(VTs[0], VTs[1]);
3844    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3845    default: break;
3846  }
3847
3848  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3849       E = VTList.rend(); I != E; ++I) {
3850    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3851      continue;
3852
3853    bool NoMatch = false;
3854    for (unsigned i = 2; i != NumVTs; ++i)
3855      if (VTs[i] != I->VTs[i]) {
3856        NoMatch = true;
3857        break;
3858      }
3859    if (!NoMatch)
3860      return *I;
3861  }
3862
3863  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3864  std::copy(VTs, VTs+NumVTs, Array);
3865  SDVTList Result = makeVTList(Array, NumVTs);
3866  VTList.push_back(Result);
3867  return Result;
3868}
3869
3870
3871/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3872/// specified operands.  If the resultant node already exists in the DAG,
3873/// this does not modify the specified node, instead it returns the node that
3874/// already exists.  If the resultant node does not exist in the DAG, the
3875/// input node is returned.  As a degenerate case, if you specify the same
3876/// input operands as the node already has, the input node is returned.
3877SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3878  SDNode *N = InN.getNode();
3879  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3880
3881  // Check to see if there is no change.
3882  if (Op == N->getOperand(0)) return InN;
3883
3884  // See if the modified node already exists.
3885  void *InsertPos = 0;
3886  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3887    return SDValue(Existing, InN.getResNo());
3888
3889  // Nope it doesn't.  Remove the node from its current place in the maps.
3890  if (InsertPos)
3891    if (!RemoveNodeFromCSEMaps(N))
3892      InsertPos = 0;
3893
3894  // Now we update the operands.
3895  N->OperandList[0].getVal()->removeUser(0, N);
3896  N->OperandList[0] = Op;
3897  N->OperandList[0].setUser(N);
3898  Op.getNode()->addUser(0, N);
3899
3900  // If this gets put into a CSE map, add it.
3901  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3902  return InN;
3903}
3904
3905SDValue SelectionDAG::
3906UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3907  SDNode *N = InN.getNode();
3908  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3909
3910  // Check to see if there is no change.
3911  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3912    return InN;   // No operands changed, just return the input node.
3913
3914  // See if the modified node already exists.
3915  void *InsertPos = 0;
3916  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3917    return SDValue(Existing, InN.getResNo());
3918
3919  // Nope it doesn't.  Remove the node from its current place in the maps.
3920  if (InsertPos)
3921    if (!RemoveNodeFromCSEMaps(N))
3922      InsertPos = 0;
3923
3924  // Now we update the operands.
3925  if (N->OperandList[0] != Op1) {
3926    N->OperandList[0].getVal()->removeUser(0, N);
3927    N->OperandList[0] = Op1;
3928    N->OperandList[0].setUser(N);
3929    Op1.getNode()->addUser(0, N);
3930  }
3931  if (N->OperandList[1] != Op2) {
3932    N->OperandList[1].getVal()->removeUser(1, N);
3933    N->OperandList[1] = Op2;
3934    N->OperandList[1].setUser(N);
3935    Op2.getNode()->addUser(1, N);
3936  }
3937
3938  // If this gets put into a CSE map, add it.
3939  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3940  return InN;
3941}
3942
3943SDValue SelectionDAG::
3944UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3945  SDValue Ops[] = { Op1, Op2, Op3 };
3946  return UpdateNodeOperands(N, Ops, 3);
3947}
3948
3949SDValue SelectionDAG::
3950UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3951                   SDValue Op3, SDValue Op4) {
3952  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3953  return UpdateNodeOperands(N, Ops, 4);
3954}
3955
3956SDValue SelectionDAG::
3957UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3958                   SDValue Op3, SDValue Op4, SDValue Op5) {
3959  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3960  return UpdateNodeOperands(N, Ops, 5);
3961}
3962
3963SDValue SelectionDAG::
3964UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3965  SDNode *N = InN.getNode();
3966  assert(N->getNumOperands() == NumOps &&
3967         "Update with wrong number of operands");
3968
3969  // Check to see if there is no change.
3970  bool AnyChange = false;
3971  for (unsigned i = 0; i != NumOps; ++i) {
3972    if (Ops[i] != N->getOperand(i)) {
3973      AnyChange = true;
3974      break;
3975    }
3976  }
3977
3978  // No operands changed, just return the input node.
3979  if (!AnyChange) return InN;
3980
3981  // See if the modified node already exists.
3982  void *InsertPos = 0;
3983  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3984    return SDValue(Existing, InN.getResNo());
3985
3986  // Nope it doesn't.  Remove the node from its current place in the maps.
3987  if (InsertPos)
3988    if (!RemoveNodeFromCSEMaps(N))
3989      InsertPos = 0;
3990
3991  // Now we update the operands.
3992  for (unsigned i = 0; i != NumOps; ++i) {
3993    if (N->OperandList[i] != Ops[i]) {
3994      N->OperandList[i].getVal()->removeUser(i, N);
3995      N->OperandList[i] = Ops[i];
3996      N->OperandList[i].setUser(N);
3997      Ops[i].getNode()->addUser(i, N);
3998    }
3999  }
4000
4001  // If this gets put into a CSE map, add it.
4002  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4003  return InN;
4004}
4005
4006/// DropOperands - Release the operands and set this node to have
4007/// zero operands.
4008void SDNode::DropOperands() {
4009  // Unlike the code in MorphNodeTo that does this, we don't need to
4010  // watch for dead nodes here.
4011  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4012    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4013
4014  NumOperands = 0;
4015}
4016
4017/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4018/// machine opcode.
4019///
4020SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4021                                   MVT VT) {
4022  SDVTList VTs = getVTList(VT);
4023  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4024}
4025
4026SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4027                                   MVT VT, SDValue Op1) {
4028  SDVTList VTs = getVTList(VT);
4029  SDValue Ops[] = { Op1 };
4030  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4031}
4032
4033SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4034                                   MVT VT, SDValue Op1,
4035                                   SDValue Op2) {
4036  SDVTList VTs = getVTList(VT);
4037  SDValue Ops[] = { Op1, Op2 };
4038  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4039}
4040
4041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4042                                   MVT VT, SDValue Op1,
4043                                   SDValue Op2, SDValue Op3) {
4044  SDVTList VTs = getVTList(VT);
4045  SDValue Ops[] = { Op1, Op2, Op3 };
4046  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4047}
4048
4049SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4050                                   MVT VT, const SDValue *Ops,
4051                                   unsigned NumOps) {
4052  SDVTList VTs = getVTList(VT);
4053  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4054}
4055
4056SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4057                                   MVT VT1, MVT VT2, const SDValue *Ops,
4058                                   unsigned NumOps) {
4059  SDVTList VTs = getVTList(VT1, VT2);
4060  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4061}
4062
4063SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4064                                   MVT VT1, MVT VT2) {
4065  SDVTList VTs = getVTList(VT1, VT2);
4066  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4067}
4068
4069SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4070                                   MVT VT1, MVT VT2, MVT VT3,
4071                                   const SDValue *Ops, unsigned NumOps) {
4072  SDVTList VTs = getVTList(VT1, VT2, VT3);
4073  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4074}
4075
4076SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4077                                   MVT VT1, MVT VT2,
4078                                   SDValue Op1) {
4079  SDVTList VTs = getVTList(VT1, VT2);
4080  SDValue Ops[] = { Op1 };
4081  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4082}
4083
4084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4085                                   MVT VT1, MVT VT2,
4086                                   SDValue Op1, SDValue Op2) {
4087  SDVTList VTs = getVTList(VT1, VT2);
4088  SDValue Ops[] = { Op1, Op2 };
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   MVT VT1, MVT VT2,
4094                                   SDValue Op1, SDValue Op2,
4095                                   SDValue Op3) {
4096  SDVTList VTs = getVTList(VT1, VT2);
4097  SDValue Ops[] = { Op1, Op2, Op3 };
4098  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4099}
4100
4101SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4102                                   SDVTList VTs, const SDValue *Ops,
4103                                   unsigned NumOps) {
4104  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4105}
4106
4107SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4108                                  MVT VT) {
4109  SDVTList VTs = getVTList(VT);
4110  return MorphNodeTo(N, Opc, VTs, 0, 0);
4111}
4112
4113SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4114                                  MVT VT, SDValue Op1) {
4115  SDVTList VTs = getVTList(VT);
4116  SDValue Ops[] = { Op1 };
4117  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4118}
4119
4120SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4121                                  MVT VT, SDValue Op1,
4122                                  SDValue Op2) {
4123  SDVTList VTs = getVTList(VT);
4124  SDValue Ops[] = { Op1, Op2 };
4125  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4126}
4127
4128SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4129                                  MVT VT, SDValue Op1,
4130                                  SDValue Op2, SDValue Op3) {
4131  SDVTList VTs = getVTList(VT);
4132  SDValue Ops[] = { Op1, Op2, Op3 };
4133  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4134}
4135
4136SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4137                                  MVT VT, const SDValue *Ops,
4138                                  unsigned NumOps) {
4139  SDVTList VTs = getVTList(VT);
4140  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4141}
4142
4143SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4144                                  MVT VT1, MVT VT2, const SDValue *Ops,
4145                                  unsigned NumOps) {
4146  SDVTList VTs = getVTList(VT1, VT2);
4147  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4148}
4149
4150SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4151                                  MVT VT1, MVT VT2) {
4152  SDVTList VTs = getVTList(VT1, VT2);
4153  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4154}
4155
4156SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4157                                  MVT VT1, MVT VT2, MVT VT3,
4158                                  const SDValue *Ops, unsigned NumOps) {
4159  SDVTList VTs = getVTList(VT1, VT2, VT3);
4160  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4161}
4162
4163SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4164                                  MVT VT1, MVT VT2,
4165                                  SDValue Op1) {
4166  SDVTList VTs = getVTList(VT1, VT2);
4167  SDValue Ops[] = { Op1 };
4168  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4169}
4170
4171SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4172                                  MVT VT1, MVT VT2,
4173                                  SDValue Op1, SDValue Op2) {
4174  SDVTList VTs = getVTList(VT1, VT2);
4175  SDValue Ops[] = { Op1, Op2 };
4176  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4177}
4178
4179SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4180                                  MVT VT1, MVT VT2,
4181                                  SDValue Op1, SDValue Op2,
4182                                  SDValue Op3) {
4183  SDVTList VTs = getVTList(VT1, VT2);
4184  SDValue Ops[] = { Op1, Op2, Op3 };
4185  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4186}
4187
4188/// MorphNodeTo - These *mutate* the specified node to have the specified
4189/// return type, opcode, and operands.
4190///
4191/// Note that MorphNodeTo returns the resultant node.  If there is already a
4192/// node of the specified opcode and operands, it returns that node instead of
4193/// the current one.
4194///
4195/// Using MorphNodeTo is faster than creating a new node and swapping it in
4196/// with ReplaceAllUsesWith both because it often avoids allocating a new
4197/// node, and because it doesn't require CSE recalculation for any of
4198/// the node's users.
4199///
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  SDVTList VTs, const SDValue *Ops,
4202                                  unsigned NumOps) {
4203  // If an identical node already exists, use it.
4204  void *IP = 0;
4205  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4206    FoldingSetNodeID ID;
4207    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4208    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4209      return ON;
4210  }
4211
4212  if (!RemoveNodeFromCSEMaps(N))
4213    IP = 0;
4214
4215  // Start the morphing.
4216  N->NodeType = Opc;
4217  N->ValueList = VTs.VTs;
4218  N->NumValues = VTs.NumVTs;
4219
4220  // Clear the operands list, updating used nodes to remove this from their
4221  // use list.  Keep track of any operands that become dead as a result.
4222  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4223  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4224       I != E; ++I) {
4225    SDNode *Used = I->getVal();
4226    Used->removeUser(std::distance(B, I), N);
4227    if (Used->use_empty())
4228      DeadNodeSet.insert(Used);
4229  }
4230
4231  // If NumOps is larger than the # of operands we currently have, reallocate
4232  // the operand list.
4233  if (NumOps > N->NumOperands) {
4234    if (N->OperandsNeedDelete)
4235      delete[] N->OperandList;
4236
4237    if (N->isMachineOpcode()) {
4238      // We're creating a final node that will live unmorphed for the
4239      // remainder of the current SelectionDAG iteration, so we can allocate
4240      // the operands directly out of a pool with no recycling metadata.
4241      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4242      N->OperandsNeedDelete = false;
4243    } else {
4244      N->OperandList = new SDUse[NumOps];
4245      N->OperandsNeedDelete = true;
4246    }
4247  }
4248
4249  // Assign the new operands.
4250  N->NumOperands = NumOps;
4251  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4252    N->OperandList[i] = Ops[i];
4253    N->OperandList[i].setUser(N);
4254    SDNode *ToUse = N->OperandList[i].getVal();
4255    ToUse->addUser(i, N);
4256  }
4257
4258  // Delete any nodes that are still dead after adding the uses for the
4259  // new operands.
4260  SmallVector<SDNode *, 16> DeadNodes;
4261  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4262       E = DeadNodeSet.end(); I != E; ++I)
4263    if ((*I)->use_empty())
4264      DeadNodes.push_back(*I);
4265  RemoveDeadNodes(DeadNodes);
4266
4267  if (IP)
4268    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4269  return N;
4270}
4271
4272
4273/// getTargetNode - These are used for target selectors to create a new node
4274/// with specified return type(s), target opcode, and operands.
4275///
4276/// Note that getTargetNode returns the resultant node.  If there is already a
4277/// node of the specified opcode and operands, it returns that node instead of
4278/// the current one.
4279SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4280  return getNode(~Opcode, VT).getNode();
4281}
4282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4283  return getNode(~Opcode, VT, Op1).getNode();
4284}
4285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4286                                    SDValue Op1, SDValue Op2) {
4287  return getNode(~Opcode, VT, Op1, Op2).getNode();
4288}
4289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4290                                    SDValue Op1, SDValue Op2,
4291                                    SDValue Op3) {
4292  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4293}
4294SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4295                                    const SDValue *Ops, unsigned NumOps) {
4296  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4297}
4298SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4299  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4300  SDValue Op;
4301  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4302}
4303SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4304                                    MVT VT2, SDValue Op1) {
4305  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4306  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4307}
4308SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4309                                    MVT VT2, SDValue Op1,
4310                                    SDValue Op2) {
4311  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4312  SDValue Ops[] = { Op1, Op2 };
4313  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4314}
4315SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4316                                    MVT VT2, SDValue Op1,
4317                                    SDValue Op2, SDValue Op3) {
4318  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4319  SDValue Ops[] = { Op1, Op2, Op3 };
4320  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4321}
4322SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4323                                    const SDValue *Ops, unsigned NumOps) {
4324  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4325  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4326}
4327SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4328                                    SDValue Op1, SDValue Op2) {
4329  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4330  SDValue Ops[] = { Op1, Op2 };
4331  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4332}
4333SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4334                                    SDValue Op1, SDValue Op2,
4335                                    SDValue Op3) {
4336  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4337  SDValue Ops[] = { Op1, Op2, Op3 };
4338  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4339}
4340SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4341                                    const SDValue *Ops, unsigned NumOps) {
4342  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4343  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4344}
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4346                                    MVT VT2, MVT VT3, MVT VT4,
4347                                    const SDValue *Ops, unsigned NumOps) {
4348  std::vector<MVT> VTList;
4349  VTList.push_back(VT1);
4350  VTList.push_back(VT2);
4351  VTList.push_back(VT3);
4352  VTList.push_back(VT4);
4353  const MVT *VTs = getNodeValueTypes(VTList);
4354  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4355}
4356SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4357                                    const std::vector<MVT> &ResultTys,
4358                                    const SDValue *Ops, unsigned NumOps) {
4359  const MVT *VTs = getNodeValueTypes(ResultTys);
4360  return getNode(~Opcode, VTs, ResultTys.size(),
4361                 Ops, NumOps).getNode();
4362}
4363
4364/// getNodeIfExists - Get the specified node if it's already available, or
4365/// else return NULL.
4366SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4367                                      const SDValue *Ops, unsigned NumOps) {
4368  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4369    FoldingSetNodeID ID;
4370    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4371    void *IP = 0;
4372    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4373      return E;
4374  }
4375  return NULL;
4376}
4377
4378
4379/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4380/// This can cause recursive merging of nodes in the DAG.
4381///
4382/// This version assumes From has a single result value.
4383///
4384void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4385                                      DAGUpdateListener *UpdateListener) {
4386  SDNode *From = FromN.getNode();
4387  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4388         "Cannot replace with this method!");
4389  assert(From != To.getNode() && "Cannot replace uses of with self");
4390
4391  while (!From->use_empty()) {
4392    SDNode::use_iterator UI = From->use_begin();
4393    SDNode *U = *UI;
4394
4395    // This node is about to morph, remove its old self from the CSE maps.
4396    RemoveNodeFromCSEMaps(U);
4397    int operandNum = 0;
4398    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4399         I != E; ++I, ++operandNum)
4400      if (I->getVal() == From) {
4401        From->removeUser(operandNum, U);
4402        *I = To;
4403        I->setUser(U);
4404        To.getNode()->addUser(operandNum, U);
4405      }
4406
4407    // Now that we have modified U, add it back to the CSE maps.  If it already
4408    // exists there, recursively merge the results together.
4409    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4410      ReplaceAllUsesWith(U, Existing, UpdateListener);
4411      // U is now dead.  Inform the listener if it exists and delete it.
4412      if (UpdateListener)
4413        UpdateListener->NodeDeleted(U, Existing);
4414      DeleteNodeNotInCSEMaps(U);
4415    } else {
4416      // If the node doesn't already exist, we updated it.  Inform a listener if
4417      // it exists.
4418      if (UpdateListener)
4419        UpdateListener->NodeUpdated(U);
4420    }
4421  }
4422}
4423
4424/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4425/// This can cause recursive merging of nodes in the DAG.
4426///
4427/// This version assumes From/To have matching types and numbers of result
4428/// values.
4429///
4430void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4431                                      DAGUpdateListener *UpdateListener) {
4432  assert(From->getVTList().VTs == To->getVTList().VTs &&
4433         From->getNumValues() == To->getNumValues() &&
4434         "Cannot use this version of ReplaceAllUsesWith!");
4435
4436  // Handle the trivial case.
4437  if (From == To)
4438    return;
4439
4440  while (!From->use_empty()) {
4441    SDNode::use_iterator UI = From->use_begin();
4442    SDNode *U = *UI;
4443
4444    // This node is about to morph, remove its old self from the CSE maps.
4445    RemoveNodeFromCSEMaps(U);
4446    int operandNum = 0;
4447    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4448         I != E; ++I, ++operandNum)
4449      if (I->getVal() == From) {
4450        From->removeUser(operandNum, U);
4451        I->getSDValue().setNode(To);
4452        To->addUser(operandNum, U);
4453      }
4454
4455    // Now that we have modified U, add it back to the CSE maps.  If it already
4456    // exists there, recursively merge the results together.
4457    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4458      ReplaceAllUsesWith(U, Existing, UpdateListener);
4459      // U is now dead.  Inform the listener if it exists and delete it.
4460      if (UpdateListener)
4461        UpdateListener->NodeDeleted(U, Existing);
4462      DeleteNodeNotInCSEMaps(U);
4463    } else {
4464      // If the node doesn't already exist, we updated it.  Inform a listener if
4465      // it exists.
4466      if (UpdateListener)
4467        UpdateListener->NodeUpdated(U);
4468    }
4469  }
4470}
4471
4472/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4473/// This can cause recursive merging of nodes in the DAG.
4474///
4475/// This version can replace From with any result values.  To must match the
4476/// number and types of values returned by From.
4477void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4478                                      const SDValue *To,
4479                                      DAGUpdateListener *UpdateListener) {
4480  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4481    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4482
4483  while (!From->use_empty()) {
4484    SDNode::use_iterator UI = From->use_begin();
4485    SDNode *U = *UI;
4486
4487    // This node is about to morph, remove its old self from the CSE maps.
4488    RemoveNodeFromCSEMaps(U);
4489    int operandNum = 0;
4490    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4491         I != E; ++I, ++operandNum)
4492      if (I->getVal() == From) {
4493        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4494        From->removeUser(operandNum, U);
4495        *I = ToOp;
4496        I->setUser(U);
4497        ToOp.getNode()->addUser(operandNum, U);
4498      }
4499
4500    // Now that we have modified U, add it back to the CSE maps.  If it already
4501    // exists there, recursively merge the results together.
4502    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4503      ReplaceAllUsesWith(U, Existing, UpdateListener);
4504      // U is now dead.  Inform the listener if it exists and delete it.
4505      if (UpdateListener)
4506        UpdateListener->NodeDeleted(U, Existing);
4507      DeleteNodeNotInCSEMaps(U);
4508    } else {
4509      // If the node doesn't already exist, we updated it.  Inform a listener if
4510      // it exists.
4511      if (UpdateListener)
4512        UpdateListener->NodeUpdated(U);
4513    }
4514  }
4515}
4516
4517/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4518/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4519/// handled the same way as for ReplaceAllUsesWith.
4520void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4521                                             DAGUpdateListener *UpdateListener){
4522  // Handle the really simple, really trivial case efficiently.
4523  if (From == To) return;
4524
4525  // Handle the simple, trivial, case efficiently.
4526  if (From.getNode()->getNumValues() == 1) {
4527    ReplaceAllUsesWith(From, To, UpdateListener);
4528    return;
4529  }
4530
4531  // Get all of the users of From.getNode().  We want these in a nice,
4532  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4533  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4534
4535  while (!Users.empty()) {
4536    // We know that this user uses some value of From.  If it is the right
4537    // value, update it.
4538    SDNode *User = Users.back();
4539    Users.pop_back();
4540
4541    // Scan for an operand that matches From.
4542    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4543    for (; Op != E; ++Op)
4544      if (*Op == From) break;
4545
4546    // If there are no matches, the user must use some other result of From.
4547    if (Op == E) continue;
4548
4549    // Okay, we know this user needs to be updated.  Remove its old self
4550    // from the CSE maps.
4551    RemoveNodeFromCSEMaps(User);
4552
4553    // Update all operands that match "From" in case there are multiple uses.
4554    for (; Op != E; ++Op) {
4555      if (*Op == From) {
4556        From.getNode()->removeUser(Op-User->op_begin(), User);
4557        *Op = To;
4558        Op->setUser(User);
4559        To.getNode()->addUser(Op-User->op_begin(), User);
4560      }
4561    }
4562
4563    // Now that we have modified User, add it back to the CSE maps.  If it
4564    // already exists there, recursively merge the results together.
4565    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4566    if (!Existing) {
4567      if (UpdateListener) UpdateListener->NodeUpdated(User);
4568      continue;  // Continue on to next user.
4569    }
4570
4571    // If there was already an existing matching node, use ReplaceAllUsesWith
4572    // to replace the dead one with the existing one.  This can cause
4573    // recursive merging of other unrelated nodes down the line.
4574    ReplaceAllUsesWith(User, Existing, UpdateListener);
4575
4576    // User is now dead.  Notify a listener if present.
4577    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4578    DeleteNodeNotInCSEMaps(User);
4579  }
4580}
4581
4582/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4583/// uses of other values produced by From.getVal() alone.  The same value may
4584/// appear in both the From and To list.  The Deleted vector is
4585/// handled the same way as for ReplaceAllUsesWith.
4586void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4587                                              const SDValue *To,
4588                                              unsigned Num,
4589                                              DAGUpdateListener *UpdateListener){
4590  // Handle the simple, trivial case efficiently.
4591  if (Num == 1)
4592    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4593
4594  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4595  for (unsigned i = 0; i != Num; ++i)
4596    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4597         E = From[i].getNode()->use_end(); UI != E; ++UI)
4598      Users.push_back(std::make_pair(*UI, i));
4599
4600  while (!Users.empty()) {
4601    // We know that this user uses some value of From.  If it is the right
4602    // value, update it.
4603    SDNode *User = Users.back().first;
4604    unsigned i = Users.back().second;
4605    Users.pop_back();
4606
4607    // Scan for an operand that matches From.
4608    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4609    for (; Op != E; ++Op)
4610      if (*Op == From[i]) break;
4611
4612    // If there are no matches, the user must use some other result of From.
4613    if (Op == E) continue;
4614
4615    // Okay, we know this user needs to be updated.  Remove its old self
4616    // from the CSE maps.
4617    RemoveNodeFromCSEMaps(User);
4618
4619    // Update all operands that match "From" in case there are multiple uses.
4620    for (; Op != E; ++Op) {
4621      if (*Op == From[i]) {
4622        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4623        *Op = To[i];
4624        Op->setUser(User);
4625        To[i].getNode()->addUser(Op-User->op_begin(), User);
4626      }
4627    }
4628
4629    // Now that we have modified User, add it back to the CSE maps.  If it
4630    // already exists there, recursively merge the results together.
4631    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4632    if (!Existing) {
4633      if (UpdateListener) UpdateListener->NodeUpdated(User);
4634      continue;  // Continue on to next user.
4635    }
4636
4637    // If there was already an existing matching node, use ReplaceAllUsesWith
4638    // to replace the dead one with the existing one.  This can cause
4639    // recursive merging of other unrelated nodes down the line.
4640    ReplaceAllUsesWith(User, Existing, UpdateListener);
4641
4642    // User is now dead.  Notify a listener if present.
4643    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4644    DeleteNodeNotInCSEMaps(User);
4645  }
4646}
4647
4648/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4649/// based on their topological order. It returns the maximum id and a vector
4650/// of the SDNodes* in assigned order by reference.
4651unsigned SelectionDAG::AssignTopologicalOrder() {
4652
4653  unsigned DAGSize = 0;
4654
4655  // SortedPos tracks the progress of the algorithm. Nodes before it are
4656  // sorted, nodes after it are unsorted. When the algorithm completes
4657  // it is at the end of the list.
4658  allnodes_iterator SortedPos = allnodes_begin();
4659
4660  // Visit all the nodes. Move nodes with no operands to the front of
4661  // the list immediately. Annotate nodes that do have operands with their
4662  // operand count. Before we do this, the Node Id fields of the nodes
4663  // may contain arbitrary values. After, the Node Id fields for nodes
4664  // before SortedPos will contain the topological sort index, and the
4665  // Node Id fields for nodes At SortedPos and after will contain the
4666  // count of outstanding operands.
4667  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4668    SDNode *N = I++;
4669    unsigned Degree = N->getNumOperands();
4670    if (Degree == 0) {
4671      // A node with no uses, add it to the result array immediately.
4672      N->setNodeId(DAGSize++);
4673      allnodes_iterator Q = N;
4674      if (Q != SortedPos)
4675        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4676      ++SortedPos;
4677    } else {
4678      // Temporarily use the Node Id as scratch space for the degree count.
4679      N->setNodeId(Degree);
4680    }
4681  }
4682
4683  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4684  // such that by the time the end is reached all nodes will be sorted.
4685  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4686    SDNode *N = I;
4687    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4688         UI != UE; ++UI) {
4689      SDNode *P = *UI;
4690      unsigned Degree = P->getNodeId();
4691      --Degree;
4692      if (Degree == 0) {
4693        // All of P's operands are sorted, so P may sorted now.
4694        P->setNodeId(DAGSize++);
4695        if (P != SortedPos)
4696          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4697        ++SortedPos;
4698      } else {
4699        // Update P's outstanding operand count.
4700        P->setNodeId(Degree);
4701      }
4702    }
4703  }
4704
4705  assert(SortedPos == AllNodes.end() &&
4706         "Topological sort incomplete!");
4707  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4708         "First node in topological sort is not the entry token!");
4709  assert(AllNodes.front().getNodeId() == 0 &&
4710         "First node in topological sort has non-zero id!");
4711  assert(AllNodes.front().getNumOperands() == 0 &&
4712         "First node in topological sort has operands!");
4713  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4714         "Last node in topologic sort has unexpected id!");
4715  assert(AllNodes.back().use_empty() &&
4716         "Last node in topologic sort has users!");
4717  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4718  return DAGSize;
4719}
4720
4721
4722
4723//===----------------------------------------------------------------------===//
4724//                              SDNode Class
4725//===----------------------------------------------------------------------===//
4726
4727// Out-of-line virtual method to give class a home.
4728void SDNode::ANCHOR() {}
4729void UnarySDNode::ANCHOR() {}
4730void BinarySDNode::ANCHOR() {}
4731void TernarySDNode::ANCHOR() {}
4732void HandleSDNode::ANCHOR() {}
4733void ConstantSDNode::ANCHOR() {}
4734void ConstantFPSDNode::ANCHOR() {}
4735void GlobalAddressSDNode::ANCHOR() {}
4736void FrameIndexSDNode::ANCHOR() {}
4737void JumpTableSDNode::ANCHOR() {}
4738void ConstantPoolSDNode::ANCHOR() {}
4739void BasicBlockSDNode::ANCHOR() {}
4740void SrcValueSDNode::ANCHOR() {}
4741void MemOperandSDNode::ANCHOR() {}
4742void RegisterSDNode::ANCHOR() {}
4743void DbgStopPointSDNode::ANCHOR() {}
4744void LabelSDNode::ANCHOR() {}
4745void ExternalSymbolSDNode::ANCHOR() {}
4746void CondCodeSDNode::ANCHOR() {}
4747void ARG_FLAGSSDNode::ANCHOR() {}
4748void VTSDNode::ANCHOR() {}
4749void MemSDNode::ANCHOR() {}
4750void LoadSDNode::ANCHOR() {}
4751void StoreSDNode::ANCHOR() {}
4752void AtomicSDNode::ANCHOR() {}
4753void MemIntrinsicSDNode::ANCHOR() {}
4754void CallSDNode::ANCHOR() {}
4755void CvtRndSatSDNode::ANCHOR() {}
4756
4757HandleSDNode::~HandleSDNode() {
4758  DropOperands();
4759}
4760
4761GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4762                                         MVT VT, int64_t o)
4763  : SDNode(isa<GlobalVariable>(GA) &&
4764           cast<GlobalVariable>(GA)->isThreadLocal() ?
4765           // Thread Local
4766           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4767           // Non Thread Local
4768           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4769           getSDVTList(VT)), Offset(o) {
4770  TheGlobal = const_cast<GlobalValue*>(GA);
4771}
4772
4773MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4774                     const Value *srcValue, int SVO,
4775                     unsigned alignment, bool vol)
4776 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4777   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4778
4779  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4780  assert(getAlignment() == alignment && "Alignment representation error!");
4781  assert(isVolatile() == vol && "Volatile representation error!");
4782}
4783
4784MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4785                     unsigned NumOps, MVT memvt, const Value *srcValue,
4786                     int SVO, unsigned alignment, bool vol)
4787   : SDNode(Opc, VTs, Ops, NumOps),
4788     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4789     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4790  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4791  assert(getAlignment() == alignment && "Alignment representation error!");
4792  assert(isVolatile() == vol && "Volatile representation error!");
4793}
4794
4795/// getMemOperand - Return a MachineMemOperand object describing the memory
4796/// reference performed by this memory reference.
4797MachineMemOperand MemSDNode::getMemOperand() const {
4798  int Flags = 0;
4799  if (isa<LoadSDNode>(this))
4800    Flags = MachineMemOperand::MOLoad;
4801  else if (isa<StoreSDNode>(this))
4802    Flags = MachineMemOperand::MOStore;
4803  else if (isa<AtomicSDNode>(this)) {
4804    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4805  }
4806  else {
4807    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4808    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4809    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4810    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4811  }
4812
4813  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4814  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4815
4816  // Check if the memory reference references a frame index
4817  const FrameIndexSDNode *FI =
4818  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4819  if (!getSrcValue() && FI)
4820    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4821                             Flags, 0, Size, getAlignment());
4822  else
4823    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4824                             Size, getAlignment());
4825}
4826
4827/// Profile - Gather unique data for the node.
4828///
4829void SDNode::Profile(FoldingSetNodeID &ID) const {
4830  AddNodeIDNode(ID, this);
4831}
4832
4833/// getValueTypeList - Return a pointer to the specified value type.
4834///
4835const MVT *SDNode::getValueTypeList(MVT VT) {
4836  if (VT.isExtended()) {
4837    static std::set<MVT, MVT::compareRawBits> EVTs;
4838    return &(*EVTs.insert(VT).first);
4839  } else {
4840    static MVT VTs[MVT::LAST_VALUETYPE];
4841    VTs[VT.getSimpleVT()] = VT;
4842    return &VTs[VT.getSimpleVT()];
4843  }
4844}
4845
4846/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4847/// indicated value.  This method ignores uses of other values defined by this
4848/// operation.
4849bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4850  assert(Value < getNumValues() && "Bad value!");
4851
4852  // TODO: Only iterate over uses of a given value of the node
4853  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4854    if (UI.getUse().getSDValue().getResNo() == Value) {
4855      if (NUses == 0)
4856        return false;
4857      --NUses;
4858    }
4859  }
4860
4861  // Found exactly the right number of uses?
4862  return NUses == 0;
4863}
4864
4865
4866/// hasAnyUseOfValue - Return true if there are any use of the indicated
4867/// value. This method ignores uses of other values defined by this operation.
4868bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4869  assert(Value < getNumValues() && "Bad value!");
4870
4871  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4872    if (UI.getUse().getSDValue().getResNo() == Value)
4873      return true;
4874
4875  return false;
4876}
4877
4878
4879/// isOnlyUserOf - Return true if this node is the only use of N.
4880///
4881bool SDNode::isOnlyUserOf(SDNode *N) const {
4882  bool Seen = false;
4883  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4884    SDNode *User = *I;
4885    if (User == this)
4886      Seen = true;
4887    else
4888      return false;
4889  }
4890
4891  return Seen;
4892}
4893
4894/// isOperand - Return true if this node is an operand of N.
4895///
4896bool SDValue::isOperandOf(SDNode *N) const {
4897  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4898    if (*this == N->getOperand(i))
4899      return true;
4900  return false;
4901}
4902
4903bool SDNode::isOperandOf(SDNode *N) const {
4904  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4905    if (this == N->OperandList[i].getVal())
4906      return true;
4907  return false;
4908}
4909
4910/// reachesChainWithoutSideEffects - Return true if this operand (which must
4911/// be a chain) reaches the specified operand without crossing any
4912/// side-effecting instructions.  In practice, this looks through token
4913/// factors and non-volatile loads.  In order to remain efficient, this only
4914/// looks a couple of nodes in, it does not do an exhaustive search.
4915bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4916                                               unsigned Depth) const {
4917  if (*this == Dest) return true;
4918
4919  // Don't search too deeply, we just want to be able to see through
4920  // TokenFactor's etc.
4921  if (Depth == 0) return false;
4922
4923  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4924  // of the operands of the TF reach dest, then we can do the xform.
4925  if (getOpcode() == ISD::TokenFactor) {
4926    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4927      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4928        return true;
4929    return false;
4930  }
4931
4932  // Loads don't have side effects, look through them.
4933  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4934    if (!Ld->isVolatile())
4935      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4936  }
4937  return false;
4938}
4939
4940
4941static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4942                            SmallPtrSet<SDNode *, 32> &Visited) {
4943  if (found || !Visited.insert(N))
4944    return;
4945
4946  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4947    SDNode *Op = N->getOperand(i).getNode();
4948    if (Op == P) {
4949      found = true;
4950      return;
4951    }
4952    findPredecessor(Op, P, found, Visited);
4953  }
4954}
4955
4956/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4957/// is either an operand of N or it can be reached by recursively traversing
4958/// up the operands.
4959/// NOTE: this is an expensive method. Use it carefully.
4960bool SDNode::isPredecessorOf(SDNode *N) const {
4961  SmallPtrSet<SDNode *, 32> Visited;
4962  bool found = false;
4963  findPredecessor(N, this, found, Visited);
4964  return found;
4965}
4966
4967uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4968  assert(Num < NumOperands && "Invalid child # of SDNode!");
4969  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4970}
4971
4972std::string SDNode::getOperationName(const SelectionDAG *G) const {
4973  switch (getOpcode()) {
4974  default:
4975    if (getOpcode() < ISD::BUILTIN_OP_END)
4976      return "<<Unknown DAG Node>>";
4977    if (isMachineOpcode()) {
4978      if (G)
4979        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4980          if (getMachineOpcode() < TII->getNumOpcodes())
4981            return TII->get(getMachineOpcode()).getName();
4982      return "<<Unknown Machine Node>>";
4983    }
4984    if (G) {
4985      TargetLowering &TLI = G->getTargetLoweringInfo();
4986      const char *Name = TLI.getTargetNodeName(getOpcode());
4987      if (Name) return Name;
4988      return "<<Unknown Target Node>>";
4989    }
4990    return "<<Unknown Node>>";
4991
4992#ifndef NDEBUG
4993  case ISD::DELETED_NODE:
4994    return "<<Deleted Node!>>";
4995#endif
4996  case ISD::PREFETCH:      return "Prefetch";
4997  case ISD::MEMBARRIER:    return "MemBarrier";
4998  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4999  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
5000  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
5001  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
5002  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
5003  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
5004  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
5005  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
5006  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
5007  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
5008  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
5009  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
5010  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
5011  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5012  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5013  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5014  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5015  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5016  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5017  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5018  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5019  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5020  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5021  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5022  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5023  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5024  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5025  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5026  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5027  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5028  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5029  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5030  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5031  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5032  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5033  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5034  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5035  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5036  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5037  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5038  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5039  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5040  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5041  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5042  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5043  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5044  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5045  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5046  case ISD::PCMARKER:      return "PCMarker";
5047  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5048  case ISD::SRCVALUE:      return "SrcValue";
5049  case ISD::MEMOPERAND:    return "MemOperand";
5050  case ISD::EntryToken:    return "EntryToken";
5051  case ISD::TokenFactor:   return "TokenFactor";
5052  case ISD::AssertSext:    return "AssertSext";
5053  case ISD::AssertZext:    return "AssertZext";
5054
5055  case ISD::BasicBlock:    return "BasicBlock";
5056  case ISD::ARG_FLAGS:     return "ArgFlags";
5057  case ISD::VALUETYPE:     return "ValueType";
5058  case ISD::Register:      return "Register";
5059
5060  case ISD::Constant:      return "Constant";
5061  case ISD::ConstantFP:    return "ConstantFP";
5062  case ISD::GlobalAddress: return "GlobalAddress";
5063  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5064  case ISD::FrameIndex:    return "FrameIndex";
5065  case ISD::JumpTable:     return "JumpTable";
5066  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5067  case ISD::RETURNADDR: return "RETURNADDR";
5068  case ISD::FRAMEADDR: return "FRAMEADDR";
5069  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5070  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5071  case ISD::EHSELECTION: return "EHSELECTION";
5072  case ISD::EH_RETURN: return "EH_RETURN";
5073  case ISD::ConstantPool:  return "ConstantPool";
5074  case ISD::ExternalSymbol: return "ExternalSymbol";
5075  case ISD::INTRINSIC_WO_CHAIN: {
5076    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5077    return Intrinsic::getName((Intrinsic::ID)IID);
5078  }
5079  case ISD::INTRINSIC_VOID:
5080  case ISD::INTRINSIC_W_CHAIN: {
5081    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5082    return Intrinsic::getName((Intrinsic::ID)IID);
5083  }
5084
5085  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5086  case ISD::TargetConstant: return "TargetConstant";
5087  case ISD::TargetConstantFP:return "TargetConstantFP";
5088  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5089  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5090  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5091  case ISD::TargetJumpTable:  return "TargetJumpTable";
5092  case ISD::TargetConstantPool:  return "TargetConstantPool";
5093  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5094
5095  case ISD::CopyToReg:     return "CopyToReg";
5096  case ISD::CopyFromReg:   return "CopyFromReg";
5097  case ISD::UNDEF:         return "undef";
5098  case ISD::MERGE_VALUES:  return "merge_values";
5099  case ISD::INLINEASM:     return "inlineasm";
5100  case ISD::DBG_LABEL:     return "dbg_label";
5101  case ISD::EH_LABEL:      return "eh_label";
5102  case ISD::DECLARE:       return "declare";
5103  case ISD::HANDLENODE:    return "handlenode";
5104  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5105  case ISD::CALL:          return "call";
5106
5107  // Unary operators
5108  case ISD::FABS:   return "fabs";
5109  case ISD::FNEG:   return "fneg";
5110  case ISD::FSQRT:  return "fsqrt";
5111  case ISD::FSIN:   return "fsin";
5112  case ISD::FCOS:   return "fcos";
5113  case ISD::FPOWI:  return "fpowi";
5114  case ISD::FPOW:   return "fpow";
5115  case ISD::FTRUNC: return "ftrunc";
5116  case ISD::FFLOOR: return "ffloor";
5117  case ISD::FCEIL:  return "fceil";
5118  case ISD::FRINT:  return "frint";
5119  case ISD::FNEARBYINT: return "fnearbyint";
5120
5121  // Binary operators
5122  case ISD::ADD:    return "add";
5123  case ISD::SUB:    return "sub";
5124  case ISD::MUL:    return "mul";
5125  case ISD::MULHU:  return "mulhu";
5126  case ISD::MULHS:  return "mulhs";
5127  case ISD::SDIV:   return "sdiv";
5128  case ISD::UDIV:   return "udiv";
5129  case ISD::SREM:   return "srem";
5130  case ISD::UREM:   return "urem";
5131  case ISD::SMUL_LOHI:  return "smul_lohi";
5132  case ISD::UMUL_LOHI:  return "umul_lohi";
5133  case ISD::SDIVREM:    return "sdivrem";
5134  case ISD::UDIVREM:    return "udivrem";
5135  case ISD::AND:    return "and";
5136  case ISD::OR:     return "or";
5137  case ISD::XOR:    return "xor";
5138  case ISD::SHL:    return "shl";
5139  case ISD::SRA:    return "sra";
5140  case ISD::SRL:    return "srl";
5141  case ISD::ROTL:   return "rotl";
5142  case ISD::ROTR:   return "rotr";
5143  case ISD::FADD:   return "fadd";
5144  case ISD::FSUB:   return "fsub";
5145  case ISD::FMUL:   return "fmul";
5146  case ISD::FDIV:   return "fdiv";
5147  case ISD::FREM:   return "frem";
5148  case ISD::FCOPYSIGN: return "fcopysign";
5149  case ISD::FGETSIGN:  return "fgetsign";
5150
5151  case ISD::SETCC:       return "setcc";
5152  case ISD::VSETCC:      return "vsetcc";
5153  case ISD::SELECT:      return "select";
5154  case ISD::SELECT_CC:   return "select_cc";
5155  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5156  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5157  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5158  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5159  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5160  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5161  case ISD::CARRY_FALSE:         return "carry_false";
5162  case ISD::ADDC:        return "addc";
5163  case ISD::ADDE:        return "adde";
5164  case ISD::SADDO:       return "saddo";
5165  case ISD::UADDO:       return "uaddo";
5166  case ISD::SUBC:        return "subc";
5167  case ISD::SUBE:        return "sube";
5168  case ISD::SHL_PARTS:   return "shl_parts";
5169  case ISD::SRA_PARTS:   return "sra_parts";
5170  case ISD::SRL_PARTS:   return "srl_parts";
5171
5172  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5173  case ISD::INSERT_SUBREG:      return "insert_subreg";
5174
5175  // Conversion operators.
5176  case ISD::SIGN_EXTEND: return "sign_extend";
5177  case ISD::ZERO_EXTEND: return "zero_extend";
5178  case ISD::ANY_EXTEND:  return "any_extend";
5179  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5180  case ISD::TRUNCATE:    return "truncate";
5181  case ISD::FP_ROUND:    return "fp_round";
5182  case ISD::FLT_ROUNDS_: return "flt_rounds";
5183  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5184  case ISD::FP_EXTEND:   return "fp_extend";
5185
5186  case ISD::SINT_TO_FP:  return "sint_to_fp";
5187  case ISD::UINT_TO_FP:  return "uint_to_fp";
5188  case ISD::FP_TO_SINT:  return "fp_to_sint";
5189  case ISD::FP_TO_UINT:  return "fp_to_uint";
5190  case ISD::BIT_CONVERT: return "bit_convert";
5191
5192  case ISD::CONVERT_RNDSAT: {
5193    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5194    default: assert(0 && "Unknown cvt code!");
5195    case ISD::CVT_FF:  return "cvt_ff";
5196    case ISD::CVT_FS:  return "cvt_fs";
5197    case ISD::CVT_FU:  return "cvt_fu";
5198    case ISD::CVT_SF:  return "cvt_sf";
5199    case ISD::CVT_UF:  return "cvt_uf";
5200    case ISD::CVT_SS:  return "cvt_ss";
5201    case ISD::CVT_SU:  return "cvt_su";
5202    case ISD::CVT_US:  return "cvt_us";
5203    case ISD::CVT_UU:  return "cvt_uu";
5204    }
5205  }
5206
5207    // Control flow instructions
5208  case ISD::BR:      return "br";
5209  case ISD::BRIND:   return "brind";
5210  case ISD::BR_JT:   return "br_jt";
5211  case ISD::BRCOND:  return "brcond";
5212  case ISD::BR_CC:   return "br_cc";
5213  case ISD::RET:     return "ret";
5214  case ISD::CALLSEQ_START:  return "callseq_start";
5215  case ISD::CALLSEQ_END:    return "callseq_end";
5216
5217    // Other operators
5218  case ISD::LOAD:               return "load";
5219  case ISD::STORE:              return "store";
5220  case ISD::VAARG:              return "vaarg";
5221  case ISD::VACOPY:             return "vacopy";
5222  case ISD::VAEND:              return "vaend";
5223  case ISD::VASTART:            return "vastart";
5224  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5225  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5226  case ISD::BUILD_PAIR:         return "build_pair";
5227  case ISD::STACKSAVE:          return "stacksave";
5228  case ISD::STACKRESTORE:       return "stackrestore";
5229  case ISD::TRAP:               return "trap";
5230
5231  // Bit manipulation
5232  case ISD::BSWAP:   return "bswap";
5233  case ISD::CTPOP:   return "ctpop";
5234  case ISD::CTTZ:    return "cttz";
5235  case ISD::CTLZ:    return "ctlz";
5236
5237  // Debug info
5238  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5239  case ISD::DEBUG_LOC: return "debug_loc";
5240
5241  // Trampolines
5242  case ISD::TRAMPOLINE: return "trampoline";
5243
5244  case ISD::CONDCODE:
5245    switch (cast<CondCodeSDNode>(this)->get()) {
5246    default: assert(0 && "Unknown setcc condition!");
5247    case ISD::SETOEQ:  return "setoeq";
5248    case ISD::SETOGT:  return "setogt";
5249    case ISD::SETOGE:  return "setoge";
5250    case ISD::SETOLT:  return "setolt";
5251    case ISD::SETOLE:  return "setole";
5252    case ISD::SETONE:  return "setone";
5253
5254    case ISD::SETO:    return "seto";
5255    case ISD::SETUO:   return "setuo";
5256    case ISD::SETUEQ:  return "setue";
5257    case ISD::SETUGT:  return "setugt";
5258    case ISD::SETUGE:  return "setuge";
5259    case ISD::SETULT:  return "setult";
5260    case ISD::SETULE:  return "setule";
5261    case ISD::SETUNE:  return "setune";
5262
5263    case ISD::SETEQ:   return "seteq";
5264    case ISD::SETGT:   return "setgt";
5265    case ISD::SETGE:   return "setge";
5266    case ISD::SETLT:   return "setlt";
5267    case ISD::SETLE:   return "setle";
5268    case ISD::SETNE:   return "setne";
5269    }
5270  }
5271}
5272
5273const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5274  switch (AM) {
5275  default:
5276    return "";
5277  case ISD::PRE_INC:
5278    return "<pre-inc>";
5279  case ISD::PRE_DEC:
5280    return "<pre-dec>";
5281  case ISD::POST_INC:
5282    return "<post-inc>";
5283  case ISD::POST_DEC:
5284    return "<post-dec>";
5285  }
5286}
5287
5288std::string ISD::ArgFlagsTy::getArgFlagsString() {
5289  std::string S = "< ";
5290
5291  if (isZExt())
5292    S += "zext ";
5293  if (isSExt())
5294    S += "sext ";
5295  if (isInReg())
5296    S += "inreg ";
5297  if (isSRet())
5298    S += "sret ";
5299  if (isByVal())
5300    S += "byval ";
5301  if (isNest())
5302    S += "nest ";
5303  if (getByValAlign())
5304    S += "byval-align:" + utostr(getByValAlign()) + " ";
5305  if (getOrigAlign())
5306    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5307  if (getByValSize())
5308    S += "byval-size:" + utostr(getByValSize()) + " ";
5309  return S + ">";
5310}
5311
5312void SDNode::dump() const { dump(0); }
5313void SDNode::dump(const SelectionDAG *G) const {
5314  print(errs(), G);
5315  errs().flush();
5316}
5317
5318void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5319  OS << (void*)this << ": ";
5320
5321  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5322    if (i) OS << ",";
5323    if (getValueType(i) == MVT::Other)
5324      OS << "ch";
5325    else
5326      OS << getValueType(i).getMVTString();
5327  }
5328  OS << " = " << getOperationName(G);
5329
5330  OS << " ";
5331  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5332    if (i) OS << ", ";
5333    OS << (void*)getOperand(i).getNode();
5334    if (unsigned RN = getOperand(i).getResNo())
5335      OS << ":" << RN;
5336  }
5337
5338  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5339    SDNode *Mask = getOperand(2).getNode();
5340    OS << "<";
5341    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5342      if (i) OS << ",";
5343      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5344        OS << "u";
5345      else
5346        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5347    }
5348    OS << ">";
5349  }
5350
5351  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5352    OS << '<' << CSDN->getAPIntValue() << '>';
5353  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5354    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5355      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5356    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5357      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5358    else {
5359      OS << "<APFloat(";
5360      CSDN->getValueAPF().bitcastToAPInt().dump();
5361      OS << ")>";
5362    }
5363  } else if (const GlobalAddressSDNode *GADN =
5364             dyn_cast<GlobalAddressSDNode>(this)) {
5365    int64_t offset = GADN->getOffset();
5366    OS << '<';
5367    WriteAsOperand(OS, GADN->getGlobal());
5368    OS << '>';
5369    if (offset > 0)
5370      OS << " + " << offset;
5371    else
5372      OS << " " << offset;
5373  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5374    OS << "<" << FIDN->getIndex() << ">";
5375  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5376    OS << "<" << JTDN->getIndex() << ">";
5377  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5378    int offset = CP->getOffset();
5379    if (CP->isMachineConstantPoolEntry())
5380      OS << "<" << *CP->getMachineCPVal() << ">";
5381    else
5382      OS << "<" << *CP->getConstVal() << ">";
5383    if (offset > 0)
5384      OS << " + " << offset;
5385    else
5386      OS << " " << offset;
5387  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5388    OS << "<";
5389    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5390    if (LBB)
5391      OS << LBB->getName() << " ";
5392    OS << (const void*)BBDN->getBasicBlock() << ">";
5393  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5394    if (G && R->getReg() &&
5395        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5396      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5397    } else {
5398      OS << " #" << R->getReg();
5399    }
5400  } else if (const ExternalSymbolSDNode *ES =
5401             dyn_cast<ExternalSymbolSDNode>(this)) {
5402    OS << "'" << ES->getSymbol() << "'";
5403  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5404    if (M->getValue())
5405      OS << "<" << M->getValue() << ">";
5406    else
5407      OS << "<null>";
5408  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5409    if (M->MO.getValue())
5410      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5411    else
5412      OS << "<null:" << M->MO.getOffset() << ">";
5413  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5414    OS << N->getArgFlags().getArgFlagsString();
5415  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5416    OS << ":" << N->getVT().getMVTString();
5417  }
5418  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5419    const Value *SrcValue = LD->getSrcValue();
5420    int SrcOffset = LD->getSrcValueOffset();
5421    OS << " <";
5422    if (SrcValue)
5423      OS << SrcValue;
5424    else
5425      OS << "null";
5426    OS << ":" << SrcOffset << ">";
5427
5428    bool doExt = true;
5429    switch (LD->getExtensionType()) {
5430    default: doExt = false; break;
5431    case ISD::EXTLOAD: OS << " <anyext "; break;
5432    case ISD::SEXTLOAD: OS << " <sext "; break;
5433    case ISD::ZEXTLOAD: OS << " <zext "; break;
5434    }
5435    if (doExt)
5436      OS << LD->getMemoryVT().getMVTString() << ">";
5437
5438    const char *AM = getIndexedModeName(LD->getAddressingMode());
5439    if (*AM)
5440      OS << " " << AM;
5441    if (LD->isVolatile())
5442      OS << " <volatile>";
5443    OS << " alignment=" << LD->getAlignment();
5444  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5445    const Value *SrcValue = ST->getSrcValue();
5446    int SrcOffset = ST->getSrcValueOffset();
5447    OS << " <";
5448    if (SrcValue)
5449      OS << SrcValue;
5450    else
5451      OS << "null";
5452    OS << ":" << SrcOffset << ">";
5453
5454    if (ST->isTruncatingStore())
5455      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5456
5457    const char *AM = getIndexedModeName(ST->getAddressingMode());
5458    if (*AM)
5459      OS << " " << AM;
5460    if (ST->isVolatile())
5461      OS << " <volatile>";
5462    OS << " alignment=" << ST->getAlignment();
5463  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5464    const Value *SrcValue = AT->getSrcValue();
5465    int SrcOffset = AT->getSrcValueOffset();
5466    OS << " <";
5467    if (SrcValue)
5468      OS << SrcValue;
5469    else
5470      OS << "null";
5471    OS << ":" << SrcOffset << ">";
5472    if (AT->isVolatile())
5473      OS << " <volatile>";
5474    OS << " alignment=" << AT->getAlignment();
5475  }
5476}
5477
5478static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5479  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5480    if (N->getOperand(i).getNode()->hasOneUse())
5481      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5482    else
5483      cerr << "\n" << std::string(indent+2, ' ')
5484           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5485
5486
5487  cerr << "\n" << std::string(indent, ' ');
5488  N->dump(G);
5489}
5490
5491void SelectionDAG::dump() const {
5492  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5493
5494  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5495       I != E; ++I) {
5496    const SDNode *N = I;
5497    if (!N->hasOneUse() && N != getRoot().getNode())
5498      DumpNodes(N, 2, this);
5499  }
5500
5501  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5502
5503  cerr << "\n\n";
5504}
5505
5506const Type *ConstantPoolSDNode::getType() const {
5507  if (isMachineConstantPoolEntry())
5508    return Val.MachineCPVal->getType();
5509  return Val.ConstVal->getType();
5510}
5511