SelectionDAG.cpp revision 094c8fcd14a04a3bac12eb17e7e04276ce594e11
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include <iostream>
25#include <set>
26#include <cmath>
27#include <algorithm>
28using namespace llvm;
29
30// Temporary boolean for testing the dag combiner
31namespace llvm {
32  extern bool CombinerEnabled;
33}
34
35static bool isCommutativeBinOp(unsigned Opcode) {
36  switch (Opcode) {
37  case ISD::ADD:
38  case ISD::MUL:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48static bool isAssociativeBinOp(unsigned Opcode) {
49  switch (Opcode) {
50  case ISD::ADD:
51  case ISD::MUL:
52  case ISD::AND:
53  case ISD::OR:
54  case ISD::XOR: return true;
55  default: return false; // FIXME: Need associative info for user ops!
56  }
57}
58
59// isInvertibleForFree - Return true if there is no cost to emitting the logical
60// inverse of this node.
61static bool isInvertibleForFree(SDOperand N) {
62  if (isa<ConstantSDNode>(N.Val)) return true;
63  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
64    return true;
65  return false;
66}
67
68//===----------------------------------------------------------------------===//
69//                              ConstantFPSDNode Class
70//===----------------------------------------------------------------------===//
71
72/// isExactlyValue - We don't rely on operator== working on double values, as
73/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
74/// As such, this method can be used to do an exact bit-for-bit comparison of
75/// two floating point values.
76bool ConstantFPSDNode::isExactlyValue(double V) const {
77  return DoubleToBits(V) == DoubleToBits(Value);
78}
79
80//===----------------------------------------------------------------------===//
81//                              ISD Class
82//===----------------------------------------------------------------------===//
83
84/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
85/// when given the operation for (X op Y).
86ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
87  // To perform this operation, we just need to swap the L and G bits of the
88  // operation.
89  unsigned OldL = (Operation >> 2) & 1;
90  unsigned OldG = (Operation >> 1) & 1;
91  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
92                       (OldL << 1) |       // New G bit
93                       (OldG << 2));        // New L bit.
94}
95
96/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
97/// 'op' is a valid SetCC operation.
98ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
99  unsigned Operation = Op;
100  if (isInteger)
101    Operation ^= 7;   // Flip L, G, E bits, but not U.
102  else
103    Operation ^= 15;  // Flip all of the condition bits.
104  if (Operation > ISD::SETTRUE2)
105    Operation &= ~8;     // Don't let N and U bits get set.
106  return ISD::CondCode(Operation);
107}
108
109
110/// isSignedOp - For an integer comparison, return 1 if the comparison is a
111/// signed operation and 2 if the result is an unsigned comparison.  Return zero
112/// if the operation does not depend on the sign of the input (setne and seteq).
113static int isSignedOp(ISD::CondCode Opcode) {
114  switch (Opcode) {
115  default: assert(0 && "Illegal integer setcc operation!");
116  case ISD::SETEQ:
117  case ISD::SETNE: return 0;
118  case ISD::SETLT:
119  case ISD::SETLE:
120  case ISD::SETGT:
121  case ISD::SETGE: return 1;
122  case ISD::SETULT:
123  case ISD::SETULE:
124  case ISD::SETUGT:
125  case ISD::SETUGE: return 2;
126  }
127}
128
129/// getSetCCOrOperation - Return the result of a logical OR between different
130/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
131/// returns SETCC_INVALID if it is not possible to represent the resultant
132/// comparison.
133ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
134                                       bool isInteger) {
135  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
136    // Cannot fold a signed integer setcc with an unsigned integer setcc.
137    return ISD::SETCC_INVALID;
138
139  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
140
141  // If the N and U bits get set then the resultant comparison DOES suddenly
142  // care about orderedness, and is true when ordered.
143  if (Op > ISD::SETTRUE2)
144    Op &= ~16;     // Clear the N bit.
145  return ISD::CondCode(Op);
146}
147
148/// getSetCCAndOperation - Return the result of a logical AND between different
149/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
150/// function returns zero if it is not possible to represent the resultant
151/// comparison.
152ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
153                                        bool isInteger) {
154  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
155    // Cannot fold a signed setcc with an unsigned setcc.
156    return ISD::SETCC_INVALID;
157
158  // Combine all of the condition bits.
159  return ISD::CondCode(Op1 & Op2);
160}
161
162const TargetMachine &SelectionDAG::getTarget() const {
163  return TLI.getTargetMachine();
164}
165
166//===----------------------------------------------------------------------===//
167//                              SelectionDAG Class
168//===----------------------------------------------------------------------===//
169
170/// RemoveDeadNodes - This method deletes all unreachable nodes in the
171/// SelectionDAG, including nodes (like loads) that have uses of their token
172/// chain but no other uses and no side effect.  If a node is passed in as an
173/// argument, it is used as the seed for node deletion.
174void SelectionDAG::RemoveDeadNodes(SDNode *N) {
175  std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end());
176
177  // Create a dummy node (which is not added to allnodes), that adds a reference
178  // to the root node, preventing it from being deleted.
179  HandleSDNode Dummy(getRoot());
180
181  // If we have a hint to start from, use it.
182  if (N) DeleteNodeIfDead(N, &AllNodeSet);
183
184 Restart:
185  unsigned NumNodes = AllNodeSet.size();
186  for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end();
187       I != E; ++I) {
188    // Try to delete this node.
189    DeleteNodeIfDead(*I, &AllNodeSet);
190
191    // If we actually deleted any nodes, do not use invalid iterators in
192    // AllNodeSet.
193    if (AllNodeSet.size() != NumNodes)
194      goto Restart;
195  }
196
197  // Restore AllNodes.
198  if (AllNodes.size() != NumNodes)
199    AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end());
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205
206void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) {
207  if (!N->use_empty())
208    return;
209
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  while (!N->Operands.empty()) {
217    SDNode *O = N->Operands.back().Val;
218    N->Operands.pop_back();
219    O->removeUser(N);
220
221    // Now that we removed this operand, see if there are no uses of it left.
222    DeleteNodeIfDead(O, NodeSet);
223  }
224
225  // Remove the node from the nodes set and delete it.
226  std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet;
227  AllNodeSet.erase(N);
228
229  // Now that the node is gone, check to see if any of the operands of this node
230  // are dead now.
231  delete N;
232}
233
234void SelectionDAG::DeleteNode(SDNode *N) {
235  assert(N->use_empty() && "Cannot delete a node that is not dead!");
236
237  // First take this out of the appropriate CSE map.
238  RemoveNodeFromCSEMaps(N);
239
240  // Finally, remove uses due to operands of this node, remove from the
241  // AllNodes list, and delete the node.
242  DeleteNodeNotInCSEMaps(N);
243}
244
245void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
246
247  // Remove it from the AllNodes list.
248  for (std::vector<SDNode*>::iterator I = AllNodes.begin(); ; ++I) {
249    assert(I != AllNodes.end() && "Node not in AllNodes list??");
250    if (*I == N) {
251      // Erase from the vector, which is not ordered.
252      std::swap(*I, AllNodes.back());
253      AllNodes.pop_back();
254      break;
255    }
256  }
257
258  // Drop all of the operands and decrement used nodes use counts.
259  while (!N->Operands.empty()) {
260    SDNode *O = N->Operands.back().Val;
261    N->Operands.pop_back();
262    O->removeUser(N);
263  }
264
265  delete N;
266}
267
268/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
269/// correspond to it.  This is useful when we're about to delete or repurpose
270/// the node.  We don't want future request for structurally identical nodes
271/// to return N anymore.
272void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
273  bool Erased = false;
274  switch (N->getOpcode()) {
275  case ISD::HANDLENODE: return;  // noop.
276  case ISD::Constant:
277    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
278                                            N->getValueType(0)));
279    break;
280  case ISD::TargetConstant:
281    Erased = TargetConstants.erase(std::make_pair(
282                                    cast<ConstantSDNode>(N)->getValue(),
283                                                  N->getValueType(0)));
284    break;
285  case ISD::ConstantFP: {
286    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
287    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
288    break;
289  }
290  case ISD::CONDCODE:
291    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
292           "Cond code doesn't exist!");
293    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
294    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
295    break;
296  case ISD::GlobalAddress:
297    Erased = GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
298    break;
299  case ISD::TargetGlobalAddress:
300    Erased =TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal());
301    break;
302  case ISD::FrameIndex:
303    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
304    break;
305  case ISD::TargetFrameIndex:
306    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
307    break;
308  case ISD::ConstantPool:
309    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
310    break;
311  case ISD::TargetConstantPool:
312    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
313    break;
314  case ISD::BasicBlock:
315    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
316    break;
317  case ISD::ExternalSymbol:
318    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::VALUETYPE:
321    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
322    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
323    break;
324  case ISD::Register:
325    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
326                                           N->getValueType(0)));
327    break;
328  case ISD::SRCVALUE: {
329    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
330    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
331    break;
332  }
333  case ISD::LOAD:
334    Erased = Loads.erase(std::make_pair(N->getOperand(1),
335                                        std::make_pair(N->getOperand(0),
336                                                       N->getValueType(0))));
337    break;
338  default:
339    if (N->getNumValues() == 1) {
340      if (N->getNumOperands() == 0) {
341        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
342                                                 N->getValueType(0)));
343      } else if (N->getNumOperands() == 1) {
344        Erased =
345          UnaryOps.erase(std::make_pair(N->getOpcode(),
346                                        std::make_pair(N->getOperand(0),
347                                                       N->getValueType(0))));
348      } else if (N->getNumOperands() == 2) {
349        Erased =
350          BinaryOps.erase(std::make_pair(N->getOpcode(),
351                                         std::make_pair(N->getOperand(0),
352                                                        N->getOperand(1))));
353      } else {
354        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
355        Erased =
356          OneResultNodes.erase(std::make_pair(N->getOpcode(),
357                                              std::make_pair(N->getValueType(0),
358                                                             Ops)));
359      }
360    } else {
361      // Remove the node from the ArbitraryNodes map.
362      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
363      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
364      Erased =
365        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
366                                            std::make_pair(RV, Ops)));
367    }
368    break;
369  }
370#ifndef NDEBUG
371  // Verify that the node was actually in one of the CSE maps, unless it has a
372  // flag result (which cannot be CSE'd) or is one of the special cases that are
373  // not subject to CSE.
374  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
375      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
376      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
377
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::LOAD) {
392    SDNode *&L = Loads[std::make_pair(N->getOperand(1),
393                                      std::make_pair(N->getOperand(0),
394                                                     N->getValueType(0)))];
395    if (L) return L;
396    L = N;
397  } else if (N->getOpcode() == ISD::HANDLENODE) {
398    return 0;  // never add it.
399  } else if (N->getNumOperands() == 1) {
400    SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
401                                         std::make_pair(N->getOperand(0),
402                                                        N->getValueType(0)))];
403    if (U) return U;
404    U = N;
405  } else if (N->getNumOperands() == 2) {
406    SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
407                                          std::make_pair(N->getOperand(0),
408                                                         N->getOperand(1)))];
409    if (B) return B;
410    B = N;
411  } else if (N->getNumValues() == 1) {
412    std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
413    SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
414                                  std::make_pair(N->getValueType(0), Ops))];
415    if (ORN) return ORN;
416    ORN = N;
417  } else {
418    // Remove the node from the ArbitraryNodes map.
419    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
420    std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
421    SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
422                                                std::make_pair(RV, Ops))];
423    if (AN) return AN;
424    AN = N;
425  }
426  return 0;
427
428}
429
430
431
432SelectionDAG::~SelectionDAG() {
433  for (unsigned i = 0, e = AllNodes.size(); i != e; ++i)
434    delete AllNodes[i];
435}
436
437SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
438  if (Op.getValueType() == VT) return Op;
439  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
440  return getNode(ISD::AND, Op.getValueType(), Op,
441                 getConstant(Imm, Op.getValueType()));
442}
443
444SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
445  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
446  // Mask out any bits that are not valid for this constant.
447  if (VT != MVT::i64)
448    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
449
450  SDNode *&N = Constants[std::make_pair(Val, VT)];
451  if (N) return SDOperand(N, 0);
452  N = new ConstantSDNode(false, Val, VT);
453  AllNodes.push_back(N);
454  return SDOperand(N, 0);
455}
456
457SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
458  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
459  // Mask out any bits that are not valid for this constant.
460  if (VT != MVT::i64)
461    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
462
463  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
464  if (N) return SDOperand(N, 0);
465  N = new ConstantSDNode(true, Val, VT);
466  AllNodes.push_back(N);
467  return SDOperand(N, 0);
468}
469
470SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
471  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
472  if (VT == MVT::f32)
473    Val = (float)Val;  // Mask out extra precision.
474
475  // Do the map lookup using the actual bit pattern for the floating point
476  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
477  // we don't have issues with SNANs.
478  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
479  if (N) return SDOperand(N, 0);
480  N = new ConstantFPSDNode(Val, VT);
481  AllNodes.push_back(N);
482  return SDOperand(N, 0);
483}
484
485
486
487SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
488                                         MVT::ValueType VT) {
489  SDNode *&N = GlobalValues[GV];
490  if (N) return SDOperand(N, 0);
491  N = new GlobalAddressSDNode(false, GV, VT);
492  AllNodes.push_back(N);
493  return SDOperand(N, 0);
494}
495
496SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
497                                               MVT::ValueType VT) {
498  SDNode *&N = TargetGlobalValues[GV];
499  if (N) return SDOperand(N, 0);
500  N = new GlobalAddressSDNode(true, GV, VT);
501  AllNodes.push_back(N);
502  return SDOperand(N, 0);
503}
504
505SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
506  SDNode *&N = FrameIndices[FI];
507  if (N) return SDOperand(N, 0);
508  N = new FrameIndexSDNode(FI, VT, false);
509  AllNodes.push_back(N);
510  return SDOperand(N, 0);
511}
512
513SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
514  SDNode *&N = TargetFrameIndices[FI];
515  if (N) return SDOperand(N, 0);
516  N = new FrameIndexSDNode(FI, VT, true);
517  AllNodes.push_back(N);
518  return SDOperand(N, 0);
519}
520
521SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
522  SDNode *&N = ConstantPoolIndices[C];
523  if (N) return SDOperand(N, 0);
524  N = new ConstantPoolSDNode(C, VT, false);
525  AllNodes.push_back(N);
526  return SDOperand(N, 0);
527}
528
529SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
530  SDNode *&N = TargetConstantPoolIndices[C];
531  if (N) return SDOperand(N, 0);
532  N = new ConstantPoolSDNode(C, VT, true);
533  AllNodes.push_back(N);
534  return SDOperand(N, 0);
535}
536
537SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
538  SDNode *&N = BBNodes[MBB];
539  if (N) return SDOperand(N, 0);
540  N = new BasicBlockSDNode(MBB);
541  AllNodes.push_back(N);
542  return SDOperand(N, 0);
543}
544
545SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
546  if ((unsigned)VT >= ValueTypeNodes.size())
547    ValueTypeNodes.resize(VT+1);
548  if (ValueTypeNodes[VT] == 0) {
549    ValueTypeNodes[VT] = new VTSDNode(VT);
550    AllNodes.push_back(ValueTypeNodes[VT]);
551  }
552
553  return SDOperand(ValueTypeNodes[VT], 0);
554}
555
556SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
557  SDNode *&N = ExternalSymbols[Sym];
558  if (N) return SDOperand(N, 0);
559  N = new ExternalSymbolSDNode(Sym, VT);
560  AllNodes.push_back(N);
561  return SDOperand(N, 0);
562}
563
564SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
565  if ((unsigned)Cond >= CondCodeNodes.size())
566    CondCodeNodes.resize(Cond+1);
567
568  if (CondCodeNodes[Cond] == 0) {
569    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
570    AllNodes.push_back(CondCodeNodes[Cond]);
571  }
572  return SDOperand(CondCodeNodes[Cond], 0);
573}
574
575SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
576  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
577  if (!Reg) {
578    Reg = new RegisterSDNode(RegNo, VT);
579    AllNodes.push_back(Reg);
580  }
581  return SDOperand(Reg, 0);
582}
583
584/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
585/// this predicate to simplify operations downstream.  V and Mask are known to
586/// be the same type.
587static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask,
588                              const TargetLowering &TLI) {
589  unsigned SrcBits;
590  if (Mask == 0) return true;
591
592  // If we know the result of a setcc has the top bits zero, use this info.
593  switch (Op.getOpcode()) {
594    case ISD::Constant:
595      return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
596
597    case ISD::SETCC:
598      return ((Mask & 1) == 0) &&
599      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
600
601    case ISD::ZEXTLOAD:
602      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
603      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
604    case ISD::ZERO_EXTEND:
605      SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
606      return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI);
607    case ISD::AssertZext:
608      SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
609      return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
610    case ISD::AND:
611      // (X & C1) & C2 == 0   iff   C1 & C2 == 0.
612      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
613        return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI);
614
615      // FALL THROUGH
616    case ISD::OR:
617    case ISD::XOR:
618      return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) &&
619      MaskedValueIsZero(Op.getOperand(1), Mask, TLI);
620    case ISD::SELECT:
621      return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) &&
622      MaskedValueIsZero(Op.getOperand(2), Mask, TLI);
623    case ISD::SELECT_CC:
624      return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) &&
625      MaskedValueIsZero(Op.getOperand(3), Mask, TLI);
626    case ISD::SRL:
627      // (ushr X, C1) & C2 == 0   iff  X & (C2 << C1) == 0
628      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
629        uint64_t NewVal = Mask << ShAmt->getValue();
630        SrcBits = MVT::getSizeInBits(Op.getValueType());
631        if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
632        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
633      }
634      return false;
635    case ISD::SHL:
636      // (ushl X, C1) & C2 == 0   iff  X & (C2 >> C1) == 0
637      if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
638        uint64_t NewVal = Mask >> ShAmt->getValue();
639        return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI);
640      }
641      return false;
642    case ISD::CTTZ:
643    case ISD::CTLZ:
644    case ISD::CTPOP:
645      // Bit counting instructions can not set the high bits of the result
646      // register.  The max number of bits sets depends on the input.
647      return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
648
649      // TODO we could handle some SRA cases here.
650    default: break;
651  }
652
653  return false;
654}
655
656
657
658SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
659                                      SDOperand N2, ISD::CondCode Cond) {
660  // These setcc operations always fold.
661  switch (Cond) {
662  default: break;
663  case ISD::SETFALSE:
664  case ISD::SETFALSE2: return getConstant(0, VT);
665  case ISD::SETTRUE:
666  case ISD::SETTRUE2:  return getConstant(1, VT);
667  }
668
669  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
670    uint64_t C2 = N2C->getValue();
671    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
672      uint64_t C1 = N1C->getValue();
673
674      // Sign extend the operands if required
675      if (ISD::isSignedIntSetCC(Cond)) {
676        C1 = N1C->getSignExtended();
677        C2 = N2C->getSignExtended();
678      }
679
680      switch (Cond) {
681      default: assert(0 && "Unknown integer setcc!");
682      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
683      case ISD::SETNE:  return getConstant(C1 != C2, VT);
684      case ISD::SETULT: return getConstant(C1 <  C2, VT);
685      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
686      case ISD::SETULE: return getConstant(C1 <= C2, VT);
687      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
688      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
689      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
690      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
691      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
692      }
693    } else {
694      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
695      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
696        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
697
698        // If the comparison constant has bits in the upper part, the
699        // zero-extended value could never match.
700        if (C2 & (~0ULL << InSize)) {
701          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
702          switch (Cond) {
703          case ISD::SETUGT:
704          case ISD::SETUGE:
705          case ISD::SETEQ: return getConstant(0, VT);
706          case ISD::SETULT:
707          case ISD::SETULE:
708          case ISD::SETNE: return getConstant(1, VT);
709          case ISD::SETGT:
710          case ISD::SETGE:
711            // True if the sign bit of C2 is set.
712            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
713          case ISD::SETLT:
714          case ISD::SETLE:
715            // True if the sign bit of C2 isn't set.
716            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
717          default:
718            break;
719          }
720        }
721
722        // Otherwise, we can perform the comparison with the low bits.
723        switch (Cond) {
724        case ISD::SETEQ:
725        case ISD::SETNE:
726        case ISD::SETUGT:
727        case ISD::SETUGE:
728        case ISD::SETULT:
729        case ISD::SETULE:
730          return getSetCC(VT, N1.getOperand(0),
731                          getConstant(C2, N1.getOperand(0).getValueType()),
732                          Cond);
733        default:
734          break;   // todo, be more careful with signed comparisons
735        }
736      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
737                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
738        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
739        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
740        MVT::ValueType ExtDstTy = N1.getValueType();
741        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
742
743        // If the extended part has any inconsistent bits, it cannot ever
744        // compare equal.  In other words, they have to be all ones or all
745        // zeros.
746        uint64_t ExtBits =
747          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
748        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
749          return getConstant(Cond == ISD::SETNE, VT);
750
751        // Otherwise, make this a use of a zext.
752        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
753                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
754                        Cond);
755      }
756
757      uint64_t MinVal, MaxVal;
758      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
759      if (ISD::isSignedIntSetCC(Cond)) {
760        MinVal = 1ULL << (OperandBitSize-1);
761        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
762          MaxVal = ~0ULL >> (65-OperandBitSize);
763        else
764          MaxVal = 0;
765      } else {
766        MinVal = 0;
767        MaxVal = ~0ULL >> (64-OperandBitSize);
768      }
769
770      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
771      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
772        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
773        --C2;                                          // X >= C1 --> X > (C1-1)
774        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
775                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
776      }
777
778      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
779        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
780        ++C2;                                          // X <= C1 --> X < (C1+1)
781        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
782                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
783      }
784
785      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
786        return getConstant(0, VT);      // X < MIN --> false
787
788      // Canonicalize setgt X, Min --> setne X, Min
789      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
790        return getSetCC(VT, N1, N2, ISD::SETNE);
791
792      // If we have setult X, 1, turn it into seteq X, 0
793      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
794        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
795                        ISD::SETEQ);
796      // If we have setugt X, Max-1, turn it into seteq X, Max
797      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
798        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
799                        ISD::SETEQ);
800
801      // If we have "setcc X, C1", check to see if we can shrink the immediate
802      // by changing cc.
803
804      // SETUGT X, SINTMAX  -> SETLT X, 0
805      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
806          C2 == (~0ULL >> (65-OperandBitSize)))
807        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
808
809      // FIXME: Implement the rest of these.
810
811
812      // Fold bit comparisons when we can.
813      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
814          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
815        if (ConstantSDNode *AndRHS =
816                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
817          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
818            // Perform the xform if the AND RHS is a single bit.
819            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
820              return getNode(ISD::SRL, VT, N1,
821                             getConstant(Log2_64(AndRHS->getValue()),
822                                                   TLI.getShiftAmountTy()));
823            }
824          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
825            // (X & 8) == 8  -->  (X & 8) >> 3
826            // Perform the xform if C2 is a single bit.
827            if ((C2 & (C2-1)) == 0) {
828              return getNode(ISD::SRL, VT, N1,
829                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
830            }
831          }
832        }
833    }
834  } else if (isa<ConstantSDNode>(N1.Val)) {
835      // Ensure that the constant occurs on the RHS.
836    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
837  }
838
839  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
840    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
841      double C1 = N1C->getValue(), C2 = N2C->getValue();
842
843      switch (Cond) {
844      default: break; // FIXME: Implement the rest of these!
845      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
846      case ISD::SETNE:  return getConstant(C1 != C2, VT);
847      case ISD::SETLT:  return getConstant(C1 < C2, VT);
848      case ISD::SETGT:  return getConstant(C1 > C2, VT);
849      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
850      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
851      }
852    } else {
853      // Ensure that the constant occurs on the RHS.
854      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
855    }
856
857  if (!CombinerEnabled) {
858  if (N1 == N2) {
859    // We can always fold X == Y for integer setcc's.
860    if (MVT::isInteger(N1.getValueType()))
861      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
862    unsigned UOF = ISD::getUnorderedFlavor(Cond);
863    if (UOF == 2)   // FP operators that are undefined on NaNs.
864      return getConstant(ISD::isTrueWhenEqual(Cond), VT);
865    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
866      return getConstant(UOF, VT);
867    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
868    // if it is not already.
869    ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO;
870    if (NewCond != Cond)
871      return getSetCC(VT, N1, N2, NewCond);
872  }
873
874  if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
875    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
876        N1.getOpcode() == ISD::XOR) {
877      // Simplify (X+Y) == (X+Z) -->  Y == Z
878      if (N1.getOpcode() == N2.getOpcode()) {
879        if (N1.getOperand(0) == N2.getOperand(0))
880          return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
881        if (N1.getOperand(1) == N2.getOperand(1))
882          return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond);
883        if (isCommutativeBinOp(N1.getOpcode())) {
884          // If X op Y == Y op X, try other combinations.
885          if (N1.getOperand(0) == N2.getOperand(1))
886            return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond);
887          if (N1.getOperand(1) == N2.getOperand(0))
888            return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond);
889        }
890      }
891
892      // FIXME: move this stuff to the DAG Combiner when it exists!
893
894      // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.  Common for condcodes.
895      if (N1.getOpcode() == ISD::XOR)
896        if (ConstantSDNode *XORC = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
897          if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N2)) {
898            // If we know that all of the inverted bits are zero, don't bother
899            // performing the inversion.
900            if (MaskedValueIsZero(N1.getOperand(0), ~XORC->getValue(), TLI))
901              return getSetCC(VT, N1.getOperand(0),
902                              getConstant(XORC->getValue()^RHSC->getValue(),
903                                          N1.getValueType()), Cond);
904          }
905
906      // Simplify (X+Z) == X -->  Z == 0
907      if (N1.getOperand(0) == N2)
908        return getSetCC(VT, N1.getOperand(1),
909                        getConstant(0, N1.getValueType()), Cond);
910      if (N1.getOperand(1) == N2) {
911        if (isCommutativeBinOp(N1.getOpcode()))
912          return getSetCC(VT, N1.getOperand(0),
913                          getConstant(0, N1.getValueType()), Cond);
914        else {
915          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
916          // (Z-X) == X  --> Z == X<<1
917          return getSetCC(VT, N1.getOperand(0),
918                          getNode(ISD::SHL, N2.getValueType(),
919                                  N2, getConstant(1, TLI.getShiftAmountTy())),
920                          Cond);
921        }
922      }
923    }
924
925    if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB ||
926        N2.getOpcode() == ISD::XOR) {
927      // Simplify  X == (X+Z) -->  Z == 0
928      if (N2.getOperand(0) == N1) {
929        return getSetCC(VT, N2.getOperand(1),
930                        getConstant(0, N2.getValueType()), Cond);
931      } else if (N2.getOperand(1) == N1) {
932        if (isCommutativeBinOp(N2.getOpcode())) {
933          return getSetCC(VT, N2.getOperand(0),
934                          getConstant(0, N2.getValueType()), Cond);
935        } else {
936          assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!");
937          // X == (Z-X)  --> X<<1 == Z
938          return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1,
939                                      getConstant(1, TLI.getShiftAmountTy())),
940                          N2.getOperand(0), Cond);
941        }
942      }
943    }
944  }
945
946  // Fold away ALL boolean setcc's.
947  if (N1.getValueType() == MVT::i1) {
948    switch (Cond) {
949    default: assert(0 && "Unknown integer setcc!");
950    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
951      N1 = getNode(ISD::XOR, MVT::i1,
952                   getNode(ISD::XOR, MVT::i1, N1, N2),
953                   getConstant(1, MVT::i1));
954      break;
955    case ISD::SETNE:  // X != Y   -->  (X^Y)
956      N1 = getNode(ISD::XOR, MVT::i1, N1, N2);
957      break;
958    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
959    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
960      N1 = getNode(ISD::AND, MVT::i1, N2,
961                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
962      break;
963    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
964    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
965      N1 = getNode(ISD::AND, MVT::i1, N1,
966                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
967      break;
968    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
969    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
970      N1 = getNode(ISD::OR, MVT::i1, N2,
971                   getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1)));
972      break;
973    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
974    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
975      N1 = getNode(ISD::OR, MVT::i1, N1,
976                   getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1)));
977      break;
978    }
979    if (VT != MVT::i1)
980      N1 = getNode(ISD::ZERO_EXTEND, VT, N1);
981    return N1;
982  }
983  }
984  // Could not fold it.
985  return SDOperand();
986}
987
988SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2,
989                                         SDOperand N3, SDOperand N4,
990                                         ISD::CondCode CC) {
991  MVT::ValueType VT = N3.getValueType();
992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
993  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
994  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
995  ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val);
996
997  // Check to see if we can simplify the select into an fabs node
998  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) {
999    // Allow either -0.0 or 0.0
1000    if (CFP->getValue() == 0.0) {
1001      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
1002      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
1003          N1 == N3 && N4.getOpcode() == ISD::FNEG &&
1004          N1 == N4.getOperand(0))
1005        return getNode(ISD::FABS, VT, N1);
1006
1007      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
1008      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
1009          N1 == N4 && N3.getOpcode() == ISD::FNEG &&
1010          N3.getOperand(0) == N4)
1011        return getNode(ISD::FABS, VT, N4);
1012    }
1013  }
1014
1015  // check to see if we're select_cc'ing a select_cc.
1016  // this allows us to turn:
1017  // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false ->
1018  // select_cc cc, lhs, rhs, true, false
1019  if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) ||
1020      (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) &&
1021      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1022    SDOperand SCC = N1C ? N2 : N1;
1023    ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2));
1024    ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3));
1025    if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) {
1026      if (CC == ISD::SETEQ) std::swap(N3, N4);
1027      return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0),
1028                     SCC.getOperand(1), N3, N4, SCC.getOperand(4));
1029    }
1030  }
1031
1032  // Check to see if we can perform the "gzip trick", transforming
1033  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
1034  if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() &&
1035      MVT::isInteger(N1.getValueType()) &&
1036      MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) {
1037    MVT::ValueType XType = N1.getValueType();
1038    MVT::ValueType AType = N3.getValueType();
1039    if (XType >= AType) {
1040      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
1041      // single-bit constant.  FIXME: remove once the dag combiner
1042      // exists.
1043      if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) {
1044        unsigned ShCtV = Log2_64(N3C->getValue());
1045        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
1046        SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy());
1047        SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt);
1048        if (XType > AType)
1049          Shift = getNode(ISD::TRUNCATE, AType, Shift);
1050        return getNode(ISD::AND, AType, Shift, N3);
1051      }
1052      SDOperand Shift = getNode(ISD::SRA, XType, N1,
1053                                getConstant(MVT::getSizeInBits(XType)-1,
1054                                            TLI.getShiftAmountTy()));
1055      if (XType > AType)
1056        Shift = getNode(ISD::TRUNCATE, AType, Shift);
1057      return getNode(ISD::AND, AType, Shift, N3);
1058    }
1059  }
1060
1061  // Check to see if this is the equivalent of setcc
1062  if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) {
1063    MVT::ValueType XType = N1.getValueType();
1064    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
1065      SDOperand Res = getSetCC(TLI.getSetCCResultTy(), N1, N2, CC);
1066      if (Res.getValueType() != VT)
1067        Res = getNode(ISD::ZERO_EXTEND, VT, Res);
1068      return Res;
1069    }
1070
1071    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
1072    if (N2C && N2C->isNullValue() && CC == ISD::SETEQ &&
1073        TLI.isOperationLegal(ISD::CTLZ, XType)) {
1074      SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1);
1075      return getNode(ISD::SRL, XType, Ctlz,
1076                     getConstant(Log2_32(MVT::getSizeInBits(XType)),
1077                                 TLI.getShiftAmountTy()));
1078    }
1079    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
1080    if (N2C && N2C->isNullValue() && CC == ISD::SETGT) {
1081      SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1);
1082      SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType));
1083      return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1),
1084                     getConstant(MVT::getSizeInBits(XType)-1,
1085                                 TLI.getShiftAmountTy()));
1086    }
1087    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
1088    if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) {
1089      SDOperand Sign = getNode(ISD::SRL, XType, N1,
1090                               getConstant(MVT::getSizeInBits(XType)-1,
1091                                           TLI.getShiftAmountTy()));
1092      return getNode(ISD::XOR, XType, Sign, getConstant(1, XType));
1093    }
1094  }
1095
1096  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
1097  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
1098  if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
1099      N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) {
1100    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
1101      MVT::ValueType XType = N1.getValueType();
1102      if (SubC->isNullValue() && MVT::isInteger(XType)) {
1103        SDOperand Shift = getNode(ISD::SRA, XType, N1,
1104                                  getConstant(MVT::getSizeInBits(XType)-1,
1105                                              TLI.getShiftAmountTy()));
1106        return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift),
1107                       Shift);
1108      }
1109    }
1110  }
1111
1112  // Could not fold it.
1113  return SDOperand();
1114}
1115
1116/// getNode - Gets or creates the specified node.
1117///
1118SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1119  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1120  if (!N) {
1121    N = new SDNode(Opcode, VT);
1122    AllNodes.push_back(N);
1123  }
1124  return SDOperand(N, 0);
1125}
1126
1127SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1128                                SDOperand Operand) {
1129  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1130    uint64_t Val = C->getValue();
1131    switch (Opcode) {
1132    default: break;
1133    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1134    case ISD::ANY_EXTEND:
1135    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1136    case ISD::TRUNCATE:    return getConstant(Val, VT);
1137    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1138    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1139    }
1140  }
1141
1142  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1143    switch (Opcode) {
1144    case ISD::FNEG:
1145      return getConstantFP(-C->getValue(), VT);
1146    case ISD::FP_ROUND:
1147    case ISD::FP_EXTEND:
1148      return getConstantFP(C->getValue(), VT);
1149    case ISD::FP_TO_SINT:
1150      return getConstant((int64_t)C->getValue(), VT);
1151    case ISD::FP_TO_UINT:
1152      return getConstant((uint64_t)C->getValue(), VT);
1153    }
1154
1155  unsigned OpOpcode = Operand.Val->getOpcode();
1156  switch (Opcode) {
1157  case ISD::TokenFactor:
1158    return Operand;         // Factor of one node?  No factor.
1159  case ISD::SIGN_EXTEND:
1160    if (Operand.getValueType() == VT) return Operand;   // noop extension
1161    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1162      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1163    break;
1164  case ISD::ZERO_EXTEND:
1165    if (Operand.getValueType() == VT) return Operand;   // noop extension
1166    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1167      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1168    break;
1169  case ISD::ANY_EXTEND:
1170    if (Operand.getValueType() == VT) return Operand;   // noop extension
1171    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1172      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1173      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1174    break;
1175  case ISD::TRUNCATE:
1176    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1177    if (OpOpcode == ISD::TRUNCATE)
1178      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1179    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1180             OpOpcode == ISD::ANY_EXTEND) {
1181      // If the source is smaller than the dest, we still need an extend.
1182      if (Operand.Val->getOperand(0).getValueType() < VT)
1183        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1184      else if (Operand.Val->getOperand(0).getValueType() > VT)
1185        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1186      else
1187        return Operand.Val->getOperand(0);
1188    }
1189    break;
1190  case ISD::FNEG:
1191    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1192      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1193                     Operand.Val->getOperand(0));
1194    if (OpOpcode == ISD::FNEG)  // --X -> X
1195      return Operand.Val->getOperand(0);
1196    break;
1197  case ISD::FABS:
1198    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1199      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1200    break;
1201  }
1202
1203  SDNode *N;
1204  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1205    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1206    if (E) return SDOperand(E, 0);
1207    E = N = new SDNode(Opcode, Operand);
1208  } else {
1209    N = new SDNode(Opcode, Operand);
1210  }
1211  N->setValueTypes(VT);
1212  AllNodes.push_back(N);
1213  return SDOperand(N, 0);
1214}
1215
1216
1217
1218SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1219                                SDOperand N1, SDOperand N2) {
1220#ifndef NDEBUG
1221  switch (Opcode) {
1222  case ISD::TokenFactor:
1223    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1224           N2.getValueType() == MVT::Other && "Invalid token factor!");
1225    break;
1226  case ISD::AND:
1227  case ISD::OR:
1228  case ISD::XOR:
1229  case ISD::UDIV:
1230  case ISD::UREM:
1231  case ISD::MULHU:
1232  case ISD::MULHS:
1233    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1234    // fall through
1235  case ISD::ADD:
1236  case ISD::SUB:
1237  case ISD::MUL:
1238  case ISD::SDIV:
1239  case ISD::SREM:
1240    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1241    // fall through.
1242  case ISD::FADD:
1243  case ISD::FSUB:
1244  case ISD::FMUL:
1245  case ISD::FDIV:
1246  case ISD::FREM:
1247    assert(N1.getValueType() == N2.getValueType() &&
1248           N1.getValueType() == VT && "Binary operator types must match!");
1249    break;
1250
1251  case ISD::SHL:
1252  case ISD::SRA:
1253  case ISD::SRL:
1254    assert(VT == N1.getValueType() &&
1255           "Shift operators return type must be the same as their first arg");
1256    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1257           VT != MVT::i1 && "Shifts only work on integers");
1258    break;
1259  case ISD::FP_ROUND_INREG: {
1260    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1261    assert(VT == N1.getValueType() && "Not an inreg round!");
1262    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1263           "Cannot FP_ROUND_INREG integer types");
1264    assert(EVT <= VT && "Not rounding down!");
1265    break;
1266  }
1267  case ISD::AssertSext:
1268  case ISD::AssertZext:
1269  case ISD::SIGN_EXTEND_INREG: {
1270    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1271    assert(VT == N1.getValueType() && "Not an inreg extend!");
1272    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1273           "Cannot *_EXTEND_INREG FP types");
1274    assert(EVT <= VT && "Not extending!");
1275  }
1276
1277  default: break;
1278  }
1279#endif
1280
1281  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1282  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1283  if (N1C) {
1284    if (N2C) {
1285      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1286      switch (Opcode) {
1287      case ISD::ADD: return getConstant(C1 + C2, VT);
1288      case ISD::SUB: return getConstant(C1 - C2, VT);
1289      case ISD::MUL: return getConstant(C1 * C2, VT);
1290      case ISD::UDIV:
1291        if (C2) return getConstant(C1 / C2, VT);
1292        break;
1293      case ISD::UREM :
1294        if (C2) return getConstant(C1 % C2, VT);
1295        break;
1296      case ISD::SDIV :
1297        if (C2) return getConstant(N1C->getSignExtended() /
1298                                   N2C->getSignExtended(), VT);
1299        break;
1300      case ISD::SREM :
1301        if (C2) return getConstant(N1C->getSignExtended() %
1302                                   N2C->getSignExtended(), VT);
1303        break;
1304      case ISD::AND  : return getConstant(C1 & C2, VT);
1305      case ISD::OR   : return getConstant(C1 | C2, VT);
1306      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1307      case ISD::SHL  : return getConstant(C1 << C2, VT);
1308      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1309      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1310      default: break;
1311      }
1312    } else {      // Cannonicalize constant to RHS if commutative
1313      if (isCommutativeBinOp(Opcode)) {
1314        std::swap(N1C, N2C);
1315        std::swap(N1, N2);
1316      }
1317    }
1318
1319    if (!CombinerEnabled) {
1320    switch (Opcode) {
1321    default: break;
1322    case ISD::SHL:    // shl  0, X -> 0
1323      if (N1C->isNullValue()) return N1;
1324      break;
1325    case ISD::SRL:    // srl  0, X -> 0
1326      if (N1C->isNullValue()) return N1;
1327      break;
1328    case ISD::SRA:    // sra -1, X -> -1
1329      if (N1C->isAllOnesValue()) return N1;
1330      break;
1331    case ISD::SIGN_EXTEND_INREG:  // SIGN_EXTEND_INREG N1C, EVT
1332      // Extending a constant?  Just return the extended constant.
1333      SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1);
1334      return getNode(ISD::SIGN_EXTEND, VT, Tmp);
1335    }
1336    }
1337  }
1338
1339  if (!CombinerEnabled) {
1340  if (N2C) {
1341    uint64_t C2 = N2C->getValue();
1342
1343    switch (Opcode) {
1344    case ISD::ADD:
1345      if (!C2) return N1;         // add X, 0 -> X
1346      break;
1347    case ISD::SUB:
1348      if (!C2) return N1;         // sub X, 0 -> X
1349      return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT));
1350    case ISD::MUL:
1351      if (!C2) return N2;         // mul X, 0 -> 0
1352      if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X
1353        return getNode(ISD::SUB, VT, getConstant(0, VT), N1);
1354
1355      // FIXME: Move this to the DAG combiner when it exists.
1356      if ((C2 & C2-1) == 0) {
1357        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1358        return getNode(ISD::SHL, VT, N1, ShAmt);
1359      }
1360      break;
1361
1362    case ISD::MULHU:
1363    case ISD::MULHS:
1364      if (!C2) return N2;         // mul X, 0 -> 0
1365
1366      if (C2 == 1)                // 0X*01 -> 0X  hi(0X) == 0
1367        return getConstant(0, VT);
1368
1369      // Many others could be handled here, including -1, powers of 2, etc.
1370      break;
1371
1372    case ISD::UDIV:
1373      // FIXME: Move this to the DAG combiner when it exists.
1374      if ((C2 & C2-1) == 0 && C2) {
1375        SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy());
1376        return getNode(ISD::SRL, VT, N1, ShAmt);
1377      }
1378      break;
1379
1380    case ISD::SHL:
1381    case ISD::SRL:
1382    case ISD::SRA:
1383      // If the shift amount is bigger than the size of the data, then all the
1384      // bits are shifted out.  Simplify to undef.
1385      if (C2 >= MVT::getSizeInBits(N1.getValueType())) {
1386        return getNode(ISD::UNDEF, N1.getValueType());
1387      }
1388      if (C2 == 0) return N1;
1389
1390      if (Opcode == ISD::SRA) {
1391        // If the sign bit is known to be zero, switch this to a SRL.
1392        if (MaskedValueIsZero(N1,
1393                              1ULL << (MVT::getSizeInBits(N1.getValueType())-1),
1394                              TLI))
1395          return getNode(ISD::SRL, N1.getValueType(), N1, N2);
1396      } else {
1397        // If the part left over is known to be zero, the whole thing is zero.
1398        uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType()));
1399        if (Opcode == ISD::SRL) {
1400          if (MaskedValueIsZero(N1, TypeMask << C2, TLI))
1401            return getConstant(0, N1.getValueType());
1402        } else if (Opcode == ISD::SHL) {
1403          if (MaskedValueIsZero(N1, TypeMask >> C2, TLI))
1404            return getConstant(0, N1.getValueType());
1405        }
1406      }
1407
1408      if (Opcode == ISD::SHL && N1.getNumOperands() == 2)
1409        if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1410          unsigned OpSAC = OpSA->getValue();
1411          if (N1.getOpcode() == ISD::SHL) {
1412            if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType()))
1413              return getConstant(0, N1.getValueType());
1414            return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0),
1415                           getConstant(C2+OpSAC, N2.getValueType()));
1416          } else if (N1.getOpcode() == ISD::SRL) {
1417            // (X >> C1) << C2:  if C2 > C1, ((X & ~0<<C1) << C2-C1)
1418            SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0),
1419                                     getConstant(~0ULL << OpSAC, VT));
1420            if (C2 > OpSAC) {
1421              return getNode(ISD::SHL, VT, Mask,
1422                             getConstant(C2-OpSAC, N2.getValueType()));
1423            } else {
1424              // (X >> C1) << C2:  if C2 <= C1, ((X & ~0<<C1) >> C1-C2)
1425              return getNode(ISD::SRL, VT, Mask,
1426                             getConstant(OpSAC-C2, N2.getValueType()));
1427            }
1428          } else if (N1.getOpcode() == ISD::SRA) {
1429            // if C1 == C2, just mask out low bits.
1430            if (C2 == OpSAC)
1431              return getNode(ISD::AND, VT, N1.getOperand(0),
1432                             getConstant(~0ULL << C2, VT));
1433          }
1434        }
1435      break;
1436
1437    case ISD::AND:
1438      if (!C2) return N2;         // X and 0 -> 0
1439      if (N2C->isAllOnesValue())
1440        return N1;                // X and -1 -> X
1441
1442      if (MaskedValueIsZero(N1, C2, TLI))  // X and 0 -> 0
1443        return getConstant(0, VT);
1444
1445      {
1446        uint64_t NotC2 = ~C2;
1447        if (VT != MVT::i64)
1448          NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1;
1449
1450        if (MaskedValueIsZero(N1, NotC2, TLI))
1451          return N1;                // if (X & ~C2) -> 0, the and is redundant
1452      }
1453
1454      // FIXME: Should add a corresponding version of this for
1455      // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which
1456      // we don't have yet.
1457      // FIXME: NOW WE DO, add this.
1458
1459      // and (sign_extend_inreg x:16:32), 1 -> and x, 1
1460      if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1461        // If we are masking out the part of our input that was extended, just
1462        // mask the input to the extension directly.
1463        unsigned ExtendBits =
1464          MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT());
1465        if ((C2 & (~0ULL << ExtendBits)) == 0)
1466          return getNode(ISD::AND, VT, N1.getOperand(0), N2);
1467      } else if (N1.getOpcode() == ISD::OR) {
1468        if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
1469          if ((ORI->getValue() & C2) == C2) {
1470            // If the 'or' is setting all of the bits that we are masking for,
1471            // we know the result of the AND will be the AND mask itself.
1472            return N2;
1473          }
1474      }
1475      break;
1476    case ISD::OR:
1477      if (!C2)return N1;          // X or 0 -> X
1478      if (N2C->isAllOnesValue())
1479        return N2;                // X or -1 -> -1
1480      break;
1481    case ISD::XOR:
1482      if (!C2) return N1;        // X xor 0 -> X
1483      if (N2C->getValue() == 1 && N1.Val->getOpcode() == ISD::SETCC) {
1484          SDNode *SetCC = N1.Val;
1485          // !(X op Y) -> (X !op Y)
1486          bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType());
1487          ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
1488          return getSetCC(SetCC->getValueType(0),
1489                          SetCC->getOperand(0), SetCC->getOperand(1),
1490                          ISD::getSetCCInverse(CC, isInteger));
1491      } else if (N2C->isAllOnesValue()) {
1492        if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) {
1493          SDNode *Op = N1.Val;
1494          // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible
1495          // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible
1496          SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1);
1497          if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) {
1498            LHS = getNode(ISD::XOR, VT, LHS, N2);  // RHS = ~LHS
1499            RHS = getNode(ISD::XOR, VT, RHS, N2);  // RHS = ~RHS
1500            if (Op->getOpcode() == ISD::AND)
1501              return getNode(ISD::OR, VT, LHS, RHS);
1502            return getNode(ISD::AND, VT, LHS, RHS);
1503          }
1504        }
1505        // X xor -1 -> not(x)  ?
1506      }
1507      break;
1508    }
1509
1510    // Reassociate ((X op C1) op C2) if possible.
1511    if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode))
1512      if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1)))
1513        return getNode(Opcode, VT, N1.Val->getOperand(0),
1514                       getNode(Opcode, VT, N2, N1.Val->getOperand(1)));
1515  }
1516  }
1517
1518  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1519  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1520  if (N1CFP) {
1521    if (N2CFP) {
1522      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1523      switch (Opcode) {
1524      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1525      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1526      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1527      case ISD::FDIV:
1528        if (C2) return getConstantFP(C1 / C2, VT);
1529        break;
1530      case ISD::FREM :
1531        if (C2) return getConstantFP(fmod(C1, C2), VT);
1532        break;
1533      default: break;
1534      }
1535    } else {      // Cannonicalize constant to RHS if commutative
1536      if (isCommutativeBinOp(Opcode)) {
1537        std::swap(N1CFP, N2CFP);
1538        std::swap(N1, N2);
1539      }
1540    }
1541
1542    if (!CombinerEnabled) {
1543    if (Opcode == ISD::FP_ROUND_INREG)
1544      return getNode(ISD::FP_EXTEND, VT,
1545                     getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1));
1546    }
1547  }
1548
1549  // Finally, fold operations that do not require constants.
1550  switch (Opcode) {
1551  case ISD::TokenFactor:
1552    if (!CombinerEnabled) {
1553    if (N1.getOpcode() == ISD::EntryToken)
1554      return N2;
1555    if (N2.getOpcode() == ISD::EntryToken)
1556      return N1;
1557    }
1558    break;
1559  case ISD::SDIV: {
1560    if (CombinerEnabled) break;
1561
1562    // If we know the sign bits of both operands are zero, strength reduce to a
1563    // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1564    uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1565    if (MaskedValueIsZero(N2, SignBit, TLI) &&
1566        MaskedValueIsZero(N1, SignBit, TLI))
1567      return getNode(ISD::UDIV, VT, N1, N2);
1568    break;
1569  }
1570
1571  case ISD::AND:
1572  case ISD::OR:
1573    if (!CombinerEnabled) {
1574    if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){
1575      SDNode *LHS = N1.Val, *RHS = N2.Val;
1576      SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0);
1577      SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1);
1578      ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get();
1579      ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get();
1580
1581      if (LR == RR && isa<ConstantSDNode>(LR) &&
1582          Op2 == Op1 && MVT::isInteger(LL.getValueType())) {
1583        // (X != 0) | (Y != 0) -> (X|Y != 0)
1584        // (X == 0) & (Y == 0) -> (X|Y == 0)
1585        // (X <  0) | (Y <  0) -> (X|Y < 0)
1586        if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1587            ((Op2 == ISD::SETEQ && Opcode == ISD::AND) ||
1588             (Op2 == ISD::SETNE && Opcode == ISD::OR) ||
1589             (Op2 == ISD::SETLT && Opcode == ISD::OR)))
1590          return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR,
1591                          Op2);
1592
1593        if (cast<ConstantSDNode>(LR)->isAllOnesValue()) {
1594          // (X == -1) & (Y == -1) -> (X&Y == -1)
1595          // (X != -1) | (Y != -1) -> (X&Y != -1)
1596          // (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1597          if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) ||
1598              (Opcode == ISD::OR  && Op2 == ISD::SETNE) ||
1599              (Opcode == ISD::OR  && Op2 == ISD::SETGT))
1600            return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL),
1601                            LR, Op2);
1602          // (X >  -1) & (Y >  -1) -> (X|Y > -1)
1603          if (Opcode == ISD::AND && Op2 == ISD::SETGT)
1604            return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL),
1605                            LR, Op2);
1606        }
1607      }
1608
1609      // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y)
1610      if (LL == RR && LR == RL) {
1611        Op2 = ISD::getSetCCSwappedOperands(Op2);
1612        goto MatchedBackwards;
1613      }
1614
1615      if (LL == RL && LR == RR) {
1616      MatchedBackwards:
1617        ISD::CondCode Result;
1618        bool isInteger = MVT::isInteger(LL.getValueType());
1619        if (Opcode == ISD::OR)
1620          Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger);
1621        else
1622          Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger);
1623
1624        if (Result != ISD::SETCC_INVALID)
1625          return getSetCC(LHS->getValueType(0), LL, LR, Result);
1626      }
1627    }
1628
1629    // and/or zext(a), zext(b) -> zext(and/or a, b)
1630    if (N1.getOpcode() == ISD::ZERO_EXTEND &&
1631        N2.getOpcode() == ISD::ZERO_EXTEND &&
1632        N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType())
1633      return getNode(ISD::ZERO_EXTEND, VT,
1634                     getNode(Opcode, N1.getOperand(0).getValueType(),
1635                             N1.getOperand(0), N2.getOperand(0)));
1636    }
1637    break;
1638  case ISD::XOR:
1639    if (!CombinerEnabled) {
1640    if (N1 == N2) return getConstant(0, VT);  // xor X, Y -> 0
1641    }
1642    break;
1643  case ISD::ADD:
1644    if (!CombinerEnabled) {
1645    if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1646        cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0)
1647      return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A
1648    if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) &&
1649        cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0)
1650      return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B
1651    if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1))
1652      return N2.Val->getOperand(0); // A+(B-A) -> B
1653    }
1654    break;
1655  case ISD::FADD:
1656    if (!CombinerEnabled) {
1657    if (N2.getOpcode() == ISD::FNEG)          // (A+ (-B) -> A-B
1658      return getNode(ISD::FSUB, VT, N1, N2.getOperand(0));
1659    if (N1.getOpcode() == ISD::FNEG)          // ((-A)+B) -> B-A
1660      return getNode(ISD::FSUB, VT, N2, N1.getOperand(0));
1661    }
1662    break;
1663
1664  case ISD::SUB:
1665    if (!CombinerEnabled) {
1666    if (N1.getOpcode() == ISD::ADD) {
1667      if (N1.Val->getOperand(0) == N2)
1668        return N1.Val->getOperand(1);         // (A+B)-A == B
1669      if (N1.Val->getOperand(1) == N2)
1670        return N1.Val->getOperand(0);         // (A+B)-B == A
1671    }
1672    }
1673    break;
1674  case ISD::FSUB:
1675    if (!CombinerEnabled) {
1676    if (N2.getOpcode() == ISD::FNEG)          // (A- (-B) -> A+B
1677      return getNode(ISD::FADD, VT, N1, N2.getOperand(0));
1678    }
1679    break;
1680  case ISD::FP_ROUND_INREG:
1681    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1682    break;
1683  case ISD::SIGN_EXTEND_INREG: {
1684    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1685    if (EVT == VT) return N1;  // Not actually extending
1686    if (!CombinerEnabled) {
1687    // If we are sign extending an extension, use the original source.
1688    if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG ||
1689        N1.getOpcode() == ISD::AssertSext)
1690      if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT)
1691        return N1;
1692
1693    // If we are sign extending a sextload, return just the load.
1694    if (N1.getOpcode() == ISD::SEXTLOAD)
1695      if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT)
1696        return N1;
1697
1698    // If we are extending the result of a setcc, and we already know the
1699    // contents of the top bits, eliminate the extension.
1700    if (N1.getOpcode() == ISD::SETCC &&
1701        TLI.getSetCCResultContents() ==
1702                        TargetLowering::ZeroOrNegativeOneSetCCResult)
1703      return N1;
1704
1705    // If we are sign extending the result of an (and X, C) operation, and we
1706    // know the extended bits are zeros already, don't do the extend.
1707    if (N1.getOpcode() == ISD::AND)
1708      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1709        uint64_t Mask = N1C->getValue();
1710        unsigned NumBits = MVT::getSizeInBits(EVT);
1711        if ((Mask & (~0ULL << (NumBits-1))) == 0)
1712          return N1;
1713      }
1714    }
1715    break;
1716  }
1717
1718  // FIXME: figure out how to safely handle things like
1719  // int foo(int x) { return 1 << (x & 255); }
1720  // int bar() { return foo(256); }
1721#if 0
1722  case ISD::SHL:
1723  case ISD::SRL:
1724  case ISD::SRA:
1725    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1726        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1727      return getNode(Opcode, VT, N1, N2.getOperand(0));
1728    else if (N2.getOpcode() == ISD::AND)
1729      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1730        // If the and is only masking out bits that cannot effect the shift,
1731        // eliminate the and.
1732        unsigned NumBits = MVT::getSizeInBits(VT);
1733        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1734          return getNode(Opcode, VT, N1, N2.getOperand(0));
1735      }
1736    break;
1737#endif
1738  }
1739
1740  // Memoize this node if possible.
1741  SDNode *N;
1742  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1743      VT != MVT::Flag) {
1744    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1745    if (BON) return SDOperand(BON, 0);
1746
1747    BON = N = new SDNode(Opcode, N1, N2);
1748  } else {
1749    N = new SDNode(Opcode, N1, N2);
1750  }
1751
1752  N->setValueTypes(VT);
1753  AllNodes.push_back(N);
1754  return SDOperand(N, 0);
1755}
1756
1757// setAdjCallChain - This method changes the token chain of an
1758// CALLSEQ_START/END node to be the specified operand.
1759void SDNode::setAdjCallChain(SDOperand N) {
1760  assert(N.getValueType() == MVT::Other);
1761  assert((getOpcode() == ISD::CALLSEQ_START ||
1762          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1763
1764  Operands[0].Val->removeUser(this);
1765  Operands[0] = N;
1766  N.Val->Uses.push_back(this);
1767}
1768
1769
1770
1771SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1772                                SDOperand Chain, SDOperand Ptr,
1773                                SDOperand SV) {
1774  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1775  if (N) return SDOperand(N, 0);
1776  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1777
1778  // Loads have a token chain.
1779  N->setValueTypes(VT, MVT::Other);
1780  AllNodes.push_back(N);
1781  return SDOperand(N, 0);
1782}
1783
1784
1785SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1786                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1787                                   MVT::ValueType EVT) {
1788  std::vector<SDOperand> Ops;
1789  Ops.reserve(4);
1790  Ops.push_back(Chain);
1791  Ops.push_back(Ptr);
1792  Ops.push_back(SV);
1793  Ops.push_back(getValueType(EVT));
1794  std::vector<MVT::ValueType> VTs;
1795  VTs.reserve(2);
1796  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1797  return getNode(Opcode, VTs, Ops);
1798}
1799
1800SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1801                                SDOperand N1, SDOperand N2, SDOperand N3) {
1802  // Perform various simplifications.
1803  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1804  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1805  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1806  switch (Opcode) {
1807  case ISD::SETCC: {
1808    // Use SimplifySetCC  to simplify SETCC's.
1809    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1810    if (Simp.Val) return Simp;
1811    break;
1812  }
1813  case ISD::SELECT:
1814    if (N1C)
1815      if (N1C->getValue())
1816        return N2;             // select true, X, Y -> X
1817      else
1818        return N3;             // select false, X, Y -> Y
1819
1820    if (N2 == N3) return N2;   // select C, X, X -> X
1821
1822    if (!CombinerEnabled) {
1823    if (VT == MVT::i1) {  // Boolean SELECT
1824      if (N2C) {
1825        if (N2C->getValue())   // select C, 1, X -> C | X
1826          return getNode(ISD::OR, VT, N1, N3);
1827        else                   // select C, 0, X -> ~C & X
1828          return getNode(ISD::AND, VT,
1829                         getNode(ISD::XOR, N1.getValueType(), N1,
1830                                 getConstant(1, N1.getValueType())), N3);
1831      } else if (N3C) {
1832        if (N3C->getValue())   // select C, X, 1 -> ~C | X
1833          return getNode(ISD::OR, VT,
1834                         getNode(ISD::XOR, N1.getValueType(), N1,
1835                                 getConstant(1, N1.getValueType())), N2);
1836        else                   // select C, X, 0 -> C & X
1837          return getNode(ISD::AND, VT, N1, N2);
1838      }
1839
1840      if (N1 == N2)   // X ? X : Y --> X ? 1 : Y --> X | Y
1841        return getNode(ISD::OR, VT, N1, N3);
1842      if (N1 == N3)   // X ? Y : X --> X ? Y : 0 --> X & Y
1843        return getNode(ISD::AND, VT, N1, N2);
1844    }
1845    if (N1.getOpcode() == ISD::SETCC) {
1846      SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2,
1847                             N3, cast<CondCodeSDNode>(N1.getOperand(2))->get());
1848      if (Simp.Val) return Simp;
1849    }
1850    }
1851    break;
1852  case ISD::BRCOND:
1853    if (N2C)
1854      if (N2C->getValue()) // Unconditional branch
1855        return getNode(ISD::BR, MVT::Other, N1, N3);
1856      else
1857        return N1;         // Never-taken branch
1858    break;
1859  }
1860
1861  std::vector<SDOperand> Ops;
1862  Ops.reserve(3);
1863  Ops.push_back(N1);
1864  Ops.push_back(N2);
1865  Ops.push_back(N3);
1866
1867  // Memoize node if it doesn't produce a flag.
1868  SDNode *N;
1869  if (VT != MVT::Flag) {
1870    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1871    if (E) return SDOperand(E, 0);
1872    E = N = new SDNode(Opcode, N1, N2, N3);
1873  } else {
1874    N = new SDNode(Opcode, N1, N2, N3);
1875  }
1876  N->setValueTypes(VT);
1877  AllNodes.push_back(N);
1878  return SDOperand(N, 0);
1879}
1880
1881SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1882                                SDOperand N1, SDOperand N2, SDOperand N3,
1883                                SDOperand N4) {
1884  std::vector<SDOperand> Ops;
1885  Ops.reserve(4);
1886  Ops.push_back(N1);
1887  Ops.push_back(N2);
1888  Ops.push_back(N3);
1889  Ops.push_back(N4);
1890  return getNode(Opcode, VT, Ops);
1891}
1892
1893SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1894                                SDOperand N1, SDOperand N2, SDOperand N3,
1895                                SDOperand N4, SDOperand N5) {
1896  std::vector<SDOperand> Ops;
1897  Ops.reserve(5);
1898  Ops.push_back(N1);
1899  Ops.push_back(N2);
1900  Ops.push_back(N3);
1901  Ops.push_back(N4);
1902  Ops.push_back(N5);
1903  return getNode(Opcode, VT, Ops);
1904}
1905
1906
1907SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1908  assert((!V || isa<PointerType>(V->getType())) &&
1909         "SrcValue is not a pointer?");
1910  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1911  if (N) return SDOperand(N, 0);
1912
1913  N = new SrcValueSDNode(V, Offset);
1914  AllNodes.push_back(N);
1915  return SDOperand(N, 0);
1916}
1917
1918SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1919                                std::vector<SDOperand> &Ops) {
1920  switch (Ops.size()) {
1921  case 0: return getNode(Opcode, VT);
1922  case 1: return getNode(Opcode, VT, Ops[0]);
1923  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1924  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1925  default: break;
1926  }
1927
1928  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1929  switch (Opcode) {
1930  default: break;
1931  case ISD::BRCONDTWOWAY:
1932    if (N1C)
1933      if (N1C->getValue()) // Unconditional branch to true dest.
1934        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1935      else                 // Unconditional branch to false dest.
1936        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1937    break;
1938  case ISD::BRTWOWAY_CC:
1939    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1940    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1941           "LHS and RHS of comparison must have same type!");
1942    break;
1943  case ISD::TRUNCSTORE: {
1944    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1945    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1946#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1947    // If this is a truncating store of a constant, convert to the desired type
1948    // and store it instead.
1949    if (isa<Constant>(Ops[0])) {
1950      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1951      if (isa<Constant>(Op))
1952        N1 = Op;
1953    }
1954    // Also for ConstantFP?
1955#endif
1956    if (Ops[0].getValueType() == EVT)       // Normal store?
1957      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1958    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1959    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1960           "Can't do FP-INT conversion!");
1961    break;
1962  }
1963  case ISD::SELECT_CC: {
1964    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1965    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1966           "LHS and RHS of condition must have same type!");
1967    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1968           "True and False arms of SelectCC must have same type!");
1969    assert(Ops[2].getValueType() == VT &&
1970           "select_cc node must be of same type as true and false value!");
1971    SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3],
1972                                      cast<CondCodeSDNode>(Ops[4])->get());
1973    if (Simp.Val) return Simp;
1974    break;
1975  }
1976  case ISD::BR_CC: {
1977    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1978    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1979           "LHS/RHS of comparison should match types!");
1980
1981    if (CombinerEnabled) break;  // xforms moved to dag combine.
1982
1983    // Use SimplifySetCC  to simplify SETCC's.
1984    SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3],
1985                                   cast<CondCodeSDNode>(Ops[1])->get());
1986    if (Simp.Val) {
1987      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) {
1988        if (C->getValue() & 1) // Unconditional branch
1989          return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]);
1990        else
1991          return Ops[0];          // Unconditional Fall through
1992      } else if (Simp.Val->getOpcode() == ISD::SETCC) {
1993        Ops[2] = Simp.getOperand(0);
1994        Ops[3] = Simp.getOperand(1);
1995        Ops[1] = Simp.getOperand(2);
1996      }
1997    }
1998    break;
1999  }
2000  }
2001
2002  // Memoize nodes.
2003  SDNode *N;
2004  if (VT != MVT::Flag) {
2005    SDNode *&E =
2006      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
2007    if (E) return SDOperand(E, 0);
2008    E = N = new SDNode(Opcode, Ops);
2009  } else {
2010    N = new SDNode(Opcode, Ops);
2011  }
2012  N->setValueTypes(VT);
2013  AllNodes.push_back(N);
2014  return SDOperand(N, 0);
2015}
2016
2017SDOperand SelectionDAG::getNode(unsigned Opcode,
2018                                std::vector<MVT::ValueType> &ResultTys,
2019                                std::vector<SDOperand> &Ops) {
2020  if (ResultTys.size() == 1)
2021    return getNode(Opcode, ResultTys[0], Ops);
2022
2023  switch (Opcode) {
2024  case ISD::EXTLOAD:
2025  case ISD::SEXTLOAD:
2026  case ISD::ZEXTLOAD: {
2027    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
2028    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
2029    // If they are asking for an extending load from/to the same thing, return a
2030    // normal load.
2031    if (ResultTys[0] == EVT)
2032      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
2033    assert(EVT < ResultTys[0] &&
2034           "Should only be an extending load, not truncating!");
2035    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
2036           "Cannot sign/zero extend a FP load!");
2037    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
2038           "Cannot convert from FP to Int or Int -> FP!");
2039    break;
2040  }
2041
2042  // FIXME: figure out how to safely handle things like
2043  // int foo(int x) { return 1 << (x & 255); }
2044  // int bar() { return foo(256); }
2045#if 0
2046  case ISD::SRA_PARTS:
2047  case ISD::SRL_PARTS:
2048  case ISD::SHL_PARTS:
2049    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2050        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2051      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2052    else if (N3.getOpcode() == ISD::AND)
2053      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2054        // If the and is only masking out bits that cannot effect the shift,
2055        // eliminate the and.
2056        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2057        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2058          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2059      }
2060    break;
2061#endif
2062  }
2063
2064  // Memoize the node unless it returns a flag.
2065  SDNode *N;
2066  if (ResultTys.back() != MVT::Flag) {
2067    SDNode *&E =
2068      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
2069    if (E) return SDOperand(E, 0);
2070    E = N = new SDNode(Opcode, Ops);
2071  } else {
2072    N = new SDNode(Opcode, Ops);
2073  }
2074  N->setValueTypes(ResultTys);
2075  AllNodes.push_back(N);
2076  return SDOperand(N, 0);
2077}
2078
2079
2080/// SelectNodeTo - These are used for target selectors to *mutate* the
2081/// specified node to have the specified return type, Target opcode, and
2082/// operands.  Note that target opcodes are stored as
2083/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2084void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2085                                MVT::ValueType VT) {
2086  RemoveNodeFromCSEMaps(N);
2087  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2088  N->setValueTypes(VT);
2089}
2090void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2091                                MVT::ValueType VT, SDOperand Op1) {
2092  RemoveNodeFromCSEMaps(N);
2093  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2094  N->setValueTypes(VT);
2095  N->setOperands(Op1);
2096}
2097void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2098                                MVT::ValueType VT, SDOperand Op1,
2099                                SDOperand Op2) {
2100  RemoveNodeFromCSEMaps(N);
2101  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2102  N->setValueTypes(VT);
2103  N->setOperands(Op1, Op2);
2104}
2105void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2106                                MVT::ValueType VT1, MVT::ValueType VT2,
2107                                SDOperand Op1, SDOperand Op2) {
2108  RemoveNodeFromCSEMaps(N);
2109  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2110  N->setValueTypes(VT1, VT2);
2111  N->setOperands(Op1, Op2);
2112}
2113void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2114                                MVT::ValueType VT, SDOperand Op1,
2115                                SDOperand Op2, SDOperand Op3) {
2116  RemoveNodeFromCSEMaps(N);
2117  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2118  N->setValueTypes(VT);
2119  N->setOperands(Op1, Op2, Op3);
2120}
2121void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2122                                MVT::ValueType VT1, MVT::ValueType VT2,
2123                                SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2124  RemoveNodeFromCSEMaps(N);
2125  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2126  N->setValueTypes(VT1, VT2);
2127  N->setOperands(Op1, Op2, Op3);
2128}
2129
2130void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2131                                MVT::ValueType VT, SDOperand Op1,
2132                                SDOperand Op2, SDOperand Op3, SDOperand Op4) {
2133  RemoveNodeFromCSEMaps(N);
2134  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2135  N->setValueTypes(VT);
2136  N->setOperands(Op1, Op2, Op3, Op4);
2137}
2138void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2139                                MVT::ValueType VT, SDOperand Op1,
2140                                SDOperand Op2, SDOperand Op3, SDOperand Op4,
2141                                SDOperand Op5) {
2142  RemoveNodeFromCSEMaps(N);
2143  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2144  N->setValueTypes(VT);
2145  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2146}
2147
2148/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2149/// This can cause recursive merging of nodes in the DAG.
2150///
2151/// This version assumes From/To have a single result value.
2152///
2153void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2154                                      std::vector<SDNode*> *Deleted) {
2155  SDNode *From = FromN.Val, *To = ToN.Val;
2156  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2157         "Cannot replace with this method!");
2158  assert(From != To && "Cannot replace uses of with self");
2159
2160  while (!From->use_empty()) {
2161    // Process users until they are all gone.
2162    SDNode *U = *From->use_begin();
2163
2164    // This node is about to morph, remove its old self from the CSE maps.
2165    RemoveNodeFromCSEMaps(U);
2166
2167    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2168      if (U->getOperand(i).Val == From) {
2169        From->removeUser(U);
2170        U->Operands[i].Val = To;
2171        To->addUser(U);
2172      }
2173
2174    // Now that we have modified U, add it back to the CSE maps.  If it already
2175    // exists there, recursively merge the results together.
2176    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2177      ReplaceAllUsesWith(U, Existing, Deleted);
2178      // U is now dead.
2179      if (Deleted) Deleted->push_back(U);
2180      DeleteNodeNotInCSEMaps(U);
2181    }
2182  }
2183}
2184
2185/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2186/// This can cause recursive merging of nodes in the DAG.
2187///
2188/// This version assumes From/To have matching types and numbers of result
2189/// values.
2190///
2191void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2192                                      std::vector<SDNode*> *Deleted) {
2193  assert(From != To && "Cannot replace uses of with self");
2194  assert(From->getNumValues() == To->getNumValues() &&
2195         "Cannot use this version of ReplaceAllUsesWith!");
2196  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2197    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2198    return;
2199  }
2200
2201  while (!From->use_empty()) {
2202    // Process users until they are all gone.
2203    SDNode *U = *From->use_begin();
2204
2205    // This node is about to morph, remove its old self from the CSE maps.
2206    RemoveNodeFromCSEMaps(U);
2207
2208    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2209      if (U->getOperand(i).Val == From) {
2210        From->removeUser(U);
2211        U->Operands[i].Val = To;
2212        To->addUser(U);
2213      }
2214
2215    // Now that we have modified U, add it back to the CSE maps.  If it already
2216    // exists there, recursively merge the results together.
2217    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2218      ReplaceAllUsesWith(U, Existing, Deleted);
2219      // U is now dead.
2220      if (Deleted) Deleted->push_back(U);
2221      DeleteNodeNotInCSEMaps(U);
2222    }
2223  }
2224}
2225
2226/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2227/// This can cause recursive merging of nodes in the DAG.
2228///
2229/// This version can replace From with any result values.  To must match the
2230/// number and types of values returned by From.
2231void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2232                                      const std::vector<SDOperand> &To,
2233                                      std::vector<SDNode*> *Deleted) {
2234  assert(From->getNumValues() == To.size() &&
2235         "Incorrect number of values to replace with!");
2236  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2237    // Degenerate case handled above.
2238    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2239    return;
2240  }
2241
2242  while (!From->use_empty()) {
2243    // Process users until they are all gone.
2244    SDNode *U = *From->use_begin();
2245
2246    // This node is about to morph, remove its old self from the CSE maps.
2247    RemoveNodeFromCSEMaps(U);
2248
2249    for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i)
2250      if (U->getOperand(i).Val == From) {
2251        const SDOperand &ToOp = To[U->getOperand(i).ResNo];
2252        From->removeUser(U);
2253        U->Operands[i] = ToOp;
2254        ToOp.Val->addUser(U);
2255      }
2256
2257    // Now that we have modified U, add it back to the CSE maps.  If it already
2258    // exists there, recursively merge the results together.
2259    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2260      ReplaceAllUsesWith(U, Existing, Deleted);
2261      // U is now dead.
2262      if (Deleted) Deleted->push_back(U);
2263      DeleteNodeNotInCSEMaps(U);
2264    }
2265  }
2266}
2267
2268
2269//===----------------------------------------------------------------------===//
2270//                              SDNode Class
2271//===----------------------------------------------------------------------===//
2272
2273/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2274/// indicated value.  This method ignores uses of other values defined by this
2275/// operation.
2276bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2277  assert(Value < getNumValues() && "Bad value!");
2278
2279  // If there is only one value, this is easy.
2280  if (getNumValues() == 1)
2281    return use_size() == NUses;
2282  if (Uses.size() < NUses) return false;
2283
2284  SDOperand TheValue(this, Value);
2285
2286  std::set<SDNode*> UsersHandled;
2287
2288  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2289       UI != E; ++UI) {
2290    SDNode *User = *UI;
2291    if (User->getNumOperands() == 1 ||
2292        UsersHandled.insert(User).second)     // First time we've seen this?
2293      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2294        if (User->getOperand(i) == TheValue) {
2295          if (NUses == 0)
2296            return false;   // too many uses
2297          --NUses;
2298        }
2299  }
2300
2301  // Found exactly the right number of uses?
2302  return NUses == 0;
2303}
2304
2305
2306const char *SDNode::getOperationName(const SelectionDAG *G) const {
2307  switch (getOpcode()) {
2308  default:
2309    if (getOpcode() < ISD::BUILTIN_OP_END)
2310      return "<<Unknown DAG Node>>";
2311    else {
2312      if (G)
2313        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2314          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2315            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2316      return "<<Unknown Target Node>>";
2317    }
2318
2319  case ISD::PCMARKER:      return "PCMarker";
2320  case ISD::SRCVALUE:      return "SrcValue";
2321  case ISD::VALUETYPE:     return "ValueType";
2322  case ISD::EntryToken:    return "EntryToken";
2323  case ISD::TokenFactor:   return "TokenFactor";
2324  case ISD::AssertSext:    return "AssertSext";
2325  case ISD::AssertZext:    return "AssertZext";
2326  case ISD::Constant:      return "Constant";
2327  case ISD::TargetConstant: return "TargetConstant";
2328  case ISD::ConstantFP:    return "ConstantFP";
2329  case ISD::GlobalAddress: return "GlobalAddress";
2330  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2331  case ISD::FrameIndex:    return "FrameIndex";
2332  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2333  case ISD::BasicBlock:    return "BasicBlock";
2334  case ISD::Register:      return "Register";
2335  case ISD::ExternalSymbol: return "ExternalSymbol";
2336  case ISD::ConstantPool:  return "ConstantPool";
2337  case ISD::TargetConstantPool:  return "TargetConstantPool";
2338  case ISD::CopyToReg:     return "CopyToReg";
2339  case ISD::CopyFromReg:   return "CopyFromReg";
2340  case ISD::ImplicitDef:   return "ImplicitDef";
2341  case ISD::UNDEF:         return "undef";
2342
2343  // Unary operators
2344  case ISD::FABS:   return "fabs";
2345  case ISD::FNEG:   return "fneg";
2346  case ISD::FSQRT:  return "fsqrt";
2347  case ISD::FSIN:   return "fsin";
2348  case ISD::FCOS:   return "fcos";
2349
2350  // Binary operators
2351  case ISD::ADD:    return "add";
2352  case ISD::SUB:    return "sub";
2353  case ISD::MUL:    return "mul";
2354  case ISD::MULHU:  return "mulhu";
2355  case ISD::MULHS:  return "mulhs";
2356  case ISD::SDIV:   return "sdiv";
2357  case ISD::UDIV:   return "udiv";
2358  case ISD::SREM:   return "srem";
2359  case ISD::UREM:   return "urem";
2360  case ISD::AND:    return "and";
2361  case ISD::OR:     return "or";
2362  case ISD::XOR:    return "xor";
2363  case ISD::SHL:    return "shl";
2364  case ISD::SRA:    return "sra";
2365  case ISD::SRL:    return "srl";
2366  case ISD::FADD:   return "fadd";
2367  case ISD::FSUB:   return "fsub";
2368  case ISD::FMUL:   return "fmul";
2369  case ISD::FDIV:   return "fdiv";
2370  case ISD::FREM:   return "frem";
2371
2372  case ISD::SETCC:       return "setcc";
2373  case ISD::SELECT:      return "select";
2374  case ISD::SELECT_CC:   return "select_cc";
2375  case ISD::ADD_PARTS:   return "add_parts";
2376  case ISD::SUB_PARTS:   return "sub_parts";
2377  case ISD::SHL_PARTS:   return "shl_parts";
2378  case ISD::SRA_PARTS:   return "sra_parts";
2379  case ISD::SRL_PARTS:   return "srl_parts";
2380
2381  // Conversion operators.
2382  case ISD::SIGN_EXTEND: return "sign_extend";
2383  case ISD::ZERO_EXTEND: return "zero_extend";
2384  case ISD::ANY_EXTEND:  return "any_extend";
2385  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2386  case ISD::TRUNCATE:    return "truncate";
2387  case ISD::FP_ROUND:    return "fp_round";
2388  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2389  case ISD::FP_EXTEND:   return "fp_extend";
2390
2391  case ISD::SINT_TO_FP:  return "sint_to_fp";
2392  case ISD::UINT_TO_FP:  return "uint_to_fp";
2393  case ISD::FP_TO_SINT:  return "fp_to_sint";
2394  case ISD::FP_TO_UINT:  return "fp_to_uint";
2395
2396    // Control flow instructions
2397  case ISD::BR:      return "br";
2398  case ISD::BRCOND:  return "brcond";
2399  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2400  case ISD::BR_CC:  return "br_cc";
2401  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2402  case ISD::RET:     return "ret";
2403  case ISD::CALL:    return "call";
2404  case ISD::TAILCALL:return "tailcall";
2405  case ISD::CALLSEQ_START:  return "callseq_start";
2406  case ISD::CALLSEQ_END:    return "callseq_end";
2407
2408    // Other operators
2409  case ISD::LOAD:    return "load";
2410  case ISD::STORE:   return "store";
2411  case ISD::EXTLOAD:    return "extload";
2412  case ISD::SEXTLOAD:   return "sextload";
2413  case ISD::ZEXTLOAD:   return "zextload";
2414  case ISD::TRUNCSTORE: return "truncstore";
2415
2416  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2417  case ISD::EXTRACT_ELEMENT: return "extract_element";
2418  case ISD::BUILD_PAIR: return "build_pair";
2419  case ISD::MEMSET:  return "memset";
2420  case ISD::MEMCPY:  return "memcpy";
2421  case ISD::MEMMOVE: return "memmove";
2422
2423  // Bit counting
2424  case ISD::CTPOP:   return "ctpop";
2425  case ISD::CTTZ:    return "cttz";
2426  case ISD::CTLZ:    return "ctlz";
2427
2428  // IO Intrinsics
2429  case ISD::READPORT: return "readport";
2430  case ISD::WRITEPORT: return "writeport";
2431  case ISD::READIO: return "readio";
2432  case ISD::WRITEIO: return "writeio";
2433
2434  case ISD::CONDCODE:
2435    switch (cast<CondCodeSDNode>(this)->get()) {
2436    default: assert(0 && "Unknown setcc condition!");
2437    case ISD::SETOEQ:  return "setoeq";
2438    case ISD::SETOGT:  return "setogt";
2439    case ISD::SETOGE:  return "setoge";
2440    case ISD::SETOLT:  return "setolt";
2441    case ISD::SETOLE:  return "setole";
2442    case ISD::SETONE:  return "setone";
2443
2444    case ISD::SETO:    return "seto";
2445    case ISD::SETUO:   return "setuo";
2446    case ISD::SETUEQ:  return "setue";
2447    case ISD::SETUGT:  return "setugt";
2448    case ISD::SETUGE:  return "setuge";
2449    case ISD::SETULT:  return "setult";
2450    case ISD::SETULE:  return "setule";
2451    case ISD::SETUNE:  return "setune";
2452
2453    case ISD::SETEQ:   return "seteq";
2454    case ISD::SETGT:   return "setgt";
2455    case ISD::SETGE:   return "setge";
2456    case ISD::SETLT:   return "setlt";
2457    case ISD::SETLE:   return "setle";
2458    case ISD::SETNE:   return "setne";
2459    }
2460  }
2461}
2462
2463void SDNode::dump() const { dump(0); }
2464void SDNode::dump(const SelectionDAG *G) const {
2465  std::cerr << (void*)this << ": ";
2466
2467  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2468    if (i) std::cerr << ",";
2469    if (getValueType(i) == MVT::Other)
2470      std::cerr << "ch";
2471    else
2472      std::cerr << MVT::getValueTypeString(getValueType(i));
2473  }
2474  std::cerr << " = " << getOperationName(G);
2475
2476  std::cerr << " ";
2477  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2478    if (i) std::cerr << ", ";
2479    std::cerr << (void*)getOperand(i).Val;
2480    if (unsigned RN = getOperand(i).ResNo)
2481      std::cerr << ":" << RN;
2482  }
2483
2484  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2485    std::cerr << "<" << CSDN->getValue() << ">";
2486  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2487    std::cerr << "<" << CSDN->getValue() << ">";
2488  } else if (const GlobalAddressSDNode *GADN =
2489             dyn_cast<GlobalAddressSDNode>(this)) {
2490    std::cerr << "<";
2491    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2492  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2493    std::cerr << "<" << FIDN->getIndex() << ">";
2494  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2495    std::cerr << "<" << *CP->get() << ">";
2496  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2497    std::cerr << "<";
2498    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2499    if (LBB)
2500      std::cerr << LBB->getName() << " ";
2501    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2502  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2503    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2504      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2505    } else {
2506      std::cerr << " #" << R->getReg();
2507    }
2508  } else if (const ExternalSymbolSDNode *ES =
2509             dyn_cast<ExternalSymbolSDNode>(this)) {
2510    std::cerr << "'" << ES->getSymbol() << "'";
2511  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2512    if (M->getValue())
2513      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2514    else
2515      std::cerr << "<null:" << M->getOffset() << ">";
2516  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2517    std::cerr << ":" << getValueTypeString(N->getVT());
2518  }
2519}
2520
2521static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) {
2522  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2523    if (N->getOperand(i).Val->hasOneUse())
2524      DumpNodes(N->getOperand(i).Val, indent+2, G);
2525    else
2526      std::cerr << "\n" << std::string(indent+2, ' ')
2527                << (void*)N->getOperand(i).Val << ": <multiple use>";
2528
2529
2530  std::cerr << "\n" << std::string(indent, ' ');
2531  N->dump(G);
2532}
2533
2534void SelectionDAG::dump() const {
2535  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2536  std::vector<SDNode*> Nodes(AllNodes);
2537  std::sort(Nodes.begin(), Nodes.end());
2538
2539  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2540    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2541      DumpNodes(Nodes[i], 2, this);
2542  }
2543
2544  DumpNodes(getRoot().Val, 2, this);
2545
2546  std::cerr << "\n\n";
2547}
2548
2549