SelectionDAG.cpp revision 095cc29f321382e1f7d295e262a28197f92c5491
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43/// makeVTList - Return an instance of the SDVTList struct initialized with the
44/// specified members.
45static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
46  SDVTList Res = {VTs, NumVTs};
47  return Res;
48}
49
50static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
51  switch (VT.getSimpleVT()) {
52  default: assert(0 && "Unknown FP format");
53  case MVT::f32:     return &APFloat::IEEEsingle;
54  case MVT::f64:     return &APFloat::IEEEdouble;
55  case MVT::f80:     return &APFloat::x87DoubleExtended;
56  case MVT::f128:    return &APFloat::IEEEquad;
57  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
58  }
59}
60
61SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
72  return getValueAPF().bitwiseIsEqual(V);
73}
74
75bool ConstantFPSDNode::isValueValidForType(MVT VT,
76                                           const APFloat& Val) {
77  assert(VT.isFloatingPoint() && "Can only convert between FP types");
78
79  // PPC long double cannot be converted to any other type.
80  if (VT == MVT::ppcf128 ||
81      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).getNode();
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDValue NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).getNode();
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDValue Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDValue V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDValue Zero;
199  if (N->getOpcode() == ISD::DBG_LABEL)
200    return true;
201  if (N->isMachineOpcode() &&
202      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
203    return true;
204  return false;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));        // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227  if (Operation > ISD::SETTRUE2)
228    Operation &= ~8;     // Don't let N and U bits get set.
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: assert(0 && "Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getVal());
340    ID.AddInteger(Ops->getSDValue().getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352
353/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
354/// data.
355static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
356  AddNodeIDOpcode(ID, N->getOpcode());
357  // Add the return value info.
358  AddNodeIDValueTypes(ID, N->getVTList());
359  // Add the operand info.
360  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
361
362  // Handle SDNode leafs with special info.
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::LOAD: {
427    const LoadSDNode *LD = cast<LoadSDNode>(N);
428    ID.AddInteger(LD->getAddressingMode());
429    ID.AddInteger(LD->getExtensionType());
430    ID.AddInteger(LD->getMemoryVT().getRawBits());
431    ID.AddInteger(LD->getRawFlags());
432    break;
433  }
434  case ISD::STORE: {
435    const StoreSDNode *ST = cast<StoreSDNode>(N);
436    ID.AddInteger(ST->getAddressingMode());
437    ID.AddInteger(ST->isTruncatingStore());
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawFlags());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP_8:
443  case ISD::ATOMIC_SWAP_8:
444  case ISD::ATOMIC_LOAD_ADD_8:
445  case ISD::ATOMIC_LOAD_SUB_8:
446  case ISD::ATOMIC_LOAD_AND_8:
447  case ISD::ATOMIC_LOAD_OR_8:
448  case ISD::ATOMIC_LOAD_XOR_8:
449  case ISD::ATOMIC_LOAD_NAND_8:
450  case ISD::ATOMIC_LOAD_MIN_8:
451  case ISD::ATOMIC_LOAD_MAX_8:
452  case ISD::ATOMIC_LOAD_UMIN_8:
453  case ISD::ATOMIC_LOAD_UMAX_8:
454  case ISD::ATOMIC_CMP_SWAP_16:
455  case ISD::ATOMIC_SWAP_16:
456  case ISD::ATOMIC_LOAD_ADD_16:
457  case ISD::ATOMIC_LOAD_SUB_16:
458  case ISD::ATOMIC_LOAD_AND_16:
459  case ISD::ATOMIC_LOAD_OR_16:
460  case ISD::ATOMIC_LOAD_XOR_16:
461  case ISD::ATOMIC_LOAD_NAND_16:
462  case ISD::ATOMIC_LOAD_MIN_16:
463  case ISD::ATOMIC_LOAD_MAX_16:
464  case ISD::ATOMIC_LOAD_UMIN_16:
465  case ISD::ATOMIC_LOAD_UMAX_16:
466  case ISD::ATOMIC_CMP_SWAP_32:
467  case ISD::ATOMIC_SWAP_32:
468  case ISD::ATOMIC_LOAD_ADD_32:
469  case ISD::ATOMIC_LOAD_SUB_32:
470  case ISD::ATOMIC_LOAD_AND_32:
471  case ISD::ATOMIC_LOAD_OR_32:
472  case ISD::ATOMIC_LOAD_XOR_32:
473  case ISD::ATOMIC_LOAD_NAND_32:
474  case ISD::ATOMIC_LOAD_MIN_32:
475  case ISD::ATOMIC_LOAD_MAX_32:
476  case ISD::ATOMIC_LOAD_UMIN_32:
477  case ISD::ATOMIC_LOAD_UMAX_32:
478  case ISD::ATOMIC_CMP_SWAP_64:
479  case ISD::ATOMIC_SWAP_64:
480  case ISD::ATOMIC_LOAD_ADD_64:
481  case ISD::ATOMIC_LOAD_SUB_64:
482  case ISD::ATOMIC_LOAD_AND_64:
483  case ISD::ATOMIC_LOAD_OR_64:
484  case ISD::ATOMIC_LOAD_XOR_64:
485  case ISD::ATOMIC_LOAD_NAND_64:
486  case ISD::ATOMIC_LOAD_MIN_64:
487  case ISD::ATOMIC_LOAD_MAX_64:
488  case ISD::ATOMIC_LOAD_UMIN_64:
489  case ISD::ATOMIC_LOAD_UMAX_64: {
490    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
491    ID.AddInteger(AT->getRawFlags());
492    break;
493  }
494  } // end switch (N->getOpcode())
495}
496
497/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
498/// the CSE map that carries both alignment and volatility information.
499///
500static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
501  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
502}
503
504//===----------------------------------------------------------------------===//
505//                              SelectionDAG Class
506//===----------------------------------------------------------------------===//
507
508/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509/// SelectionDAG.
510void SelectionDAG::RemoveDeadNodes() {
511  // Create a dummy node (which is not added to allnodes), that adds a reference
512  // to the root node, preventing it from being deleted.
513  HandleSDNode Dummy(getRoot());
514
515  SmallVector<SDNode*, 128> DeadNodes;
516
517  // Add all obviously-dead nodes to the DeadNodes worklist.
518  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519    if (I->use_empty())
520      DeadNodes.push_back(I);
521
522  RemoveDeadNodes(DeadNodes);
523
524  // If the root changed (e.g. it was a dead load, update the root).
525  setRoot(Dummy.getValue());
526}
527
528/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529/// given list, and any nodes that become unreachable as a result.
530void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531                                   DAGUpdateListener *UpdateListener) {
532
533  // Process the worklist, deleting the nodes and adding their uses to the
534  // worklist.
535  while (!DeadNodes.empty()) {
536    SDNode *N = DeadNodes.back();
537    DeadNodes.pop_back();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
548      SDNode *Operand = I->getVal();
549      Operand->removeUser(std::distance(N->op_begin(), I), N);
550
551      // Now that we removed this operand, see if there are no uses of it left.
552      if (Operand->use_empty())
553        DeadNodes.push_back(Operand);
554    }
555    if (N->OperandsNeedDelete) {
556      delete[] N->OperandList;
557    }
558    N->OperandList = 0;
559    N->NumOperands = 0;
560
561    // Finally, remove N itself.
562    NodeAllocator.Deallocate(AllNodes.remove(N));
563  }
564}
565
566void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
567  SmallVector<SDNode*, 16> DeadNodes(1, N);
568  RemoveDeadNodes(DeadNodes, UpdateListener);
569}
570
571void SelectionDAG::DeleteNode(SDNode *N) {
572  assert(N->use_empty() && "Cannot delete a node that is not dead!");
573
574  // First take this out of the appropriate CSE map.
575  RemoveNodeFromCSEMaps(N);
576
577  // Finally, remove uses due to operands of this node, remove from the
578  // AllNodes list, and delete the node.
579  DeleteNodeNotInCSEMaps(N);
580}
581
582void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
583
584  // Drop all of the operands and decrement used nodes use counts.
585  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
586    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  assert(N != AllNodes.begin());
591  NodeAllocator.Deallocate(AllNodes.remove(N));
592}
593
594/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
595/// correspond to it.  This is useful when we're about to delete or repurpose
596/// the node.  We don't want future request for structurally identical nodes
597/// to return N anymore.
598bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
599  bool Erased = false;
600  switch (N->getOpcode()) {
601  case ISD::EntryToken:
602    assert(0 && "EntryToken should not be in CSEMaps!");
603    return false;
604  case ISD::HANDLENODE: return false;  // noop.
605  case ISD::CONDCODE:
606    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
607           "Cond code doesn't exist!");
608    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
609    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
610    break;
611  case ISD::ExternalSymbol:
612    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
613    break;
614  case ISD::TargetExternalSymbol:
615    Erased =
616      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
617    break;
618  case ISD::VALUETYPE: {
619    MVT VT = cast<VTSDNode>(N)->getVT();
620    if (VT.isExtended()) {
621      Erased = ExtendedValueTypeNodes.erase(VT);
622    } else {
623      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
624      ValueTypeNodes[VT.getSimpleVT()] = 0;
625    }
626    break;
627  }
628  default:
629    // Remove it from the CSE Map.
630    Erased = CSEMap.RemoveNode(N);
631    break;
632  }
633#ifndef NDEBUG
634  // Verify that the node was actually in one of the CSE maps, unless it has a
635  // flag result (which cannot be CSE'd) or is one of the special cases that are
636  // not subject to CSE.
637  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
638      !N->isMachineOpcode() &&
639      N->getOpcode() != ISD::CALL &&
640      N->getOpcode() != ISD::DBG_LABEL &&
641      N->getOpcode() != ISD::DBG_STOPPOINT &&
642      N->getOpcode() != ISD::EH_LABEL &&
643      N->getOpcode() != ISD::DECLARE) {
644    N->dump(this);
645    cerr << "\n";
646    assert(0 && "Node is not in map!");
647  }
648#endif
649  return Erased;
650}
651
652/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
653/// has been taken out and modified in some way.  If the specified node already
654/// exists in the CSE maps, do not modify the maps, but return the existing node
655/// instead.  If it doesn't exist, add it and return null.
656///
657SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
658  assert(N->getNumOperands() && "This is a leaf node!");
659
660  if (N->getValueType(0) == MVT::Flag)
661    return 0;   // Never CSE anything that produces a flag.
662
663  switch (N->getOpcode()) {
664  default: break;
665  case ISD::CALL:
666  case ISD::HANDLENODE:
667  case ISD::DBG_LABEL:
668  case ISD::DBG_STOPPOINT:
669  case ISD::EH_LABEL:
670  case ISD::DECLARE:
671    return 0;    // Never add these nodes.
672  }
673
674  // Check that remaining values produced are not flags.
675  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
676    if (N->getValueType(i) == MVT::Flag)
677      return 0;   // Never CSE anything that produces a flag.
678
679  SDNode *New = CSEMap.GetOrInsertNode(N);
680  if (New != N) return New;  // Node already existed.
681  return 0;
682}
683
684/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
685/// were replaced with those specified.  If this node is never memoized,
686/// return null, otherwise return a pointer to the slot it would take.  If a
687/// node already exists with these operands, the slot will be non-null.
688SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
689                                           void *&InsertPos) {
690  if (N->getValueType(0) == MVT::Flag)
691    return 0;   // Never CSE anything that produces a flag.
692
693  switch (N->getOpcode()) {
694  default: break;
695  case ISD::HANDLENODE:
696  case ISD::DBG_LABEL:
697  case ISD::DBG_STOPPOINT:
698  case ISD::EH_LABEL:
699    return 0;    // Never add these nodes.
700  }
701
702  // Check that remaining values produced are not flags.
703  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
704    if (N->getValueType(i) == MVT::Flag)
705      return 0;   // Never CSE anything that produces a flag.
706
707  SDValue Ops[] = { Op };
708  FoldingSetNodeID ID;
709  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
710  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
711}
712
713/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
714/// were replaced with those specified.  If this node is never memoized,
715/// return null, otherwise return a pointer to the slot it would take.  If a
716/// node already exists with these operands, the slot will be non-null.
717SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
718                                           SDValue Op1, SDValue Op2,
719                                           void *&InsertPos) {
720  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
721
722  // Check that remaining values produced are not flags.
723  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
724    if (N->getValueType(i) == MVT::Flag)
725      return 0;   // Never CSE anything that produces a flag.
726
727  SDValue Ops[] = { Op1, Op2 };
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
730  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
731}
732
733
734/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
735/// were replaced with those specified.  If this node is never memoized,
736/// return null, otherwise return a pointer to the slot it would take.  If a
737/// node already exists with these operands, the slot will be non-null.
738SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
739                                           const SDValue *Ops,unsigned NumOps,
740                                           void *&InsertPos) {
741  if (N->getValueType(0) == MVT::Flag)
742    return 0;   // Never CSE anything that produces a flag.
743
744  switch (N->getOpcode()) {
745  default: break;
746  case ISD::HANDLENODE:
747  case ISD::DBG_LABEL:
748  case ISD::DBG_STOPPOINT:
749  case ISD::EH_LABEL:
750  case ISD::DECLARE:
751    return 0;    // Never add these nodes.
752  }
753
754  // Check that remaining values produced are not flags.
755  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
756    if (N->getValueType(i) == MVT::Flag)
757      return 0;   // Never CSE anything that produces a flag.
758
759  FoldingSetNodeID ID;
760  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
761
762  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
763    ID.AddInteger(LD->getAddressingMode());
764    ID.AddInteger(LD->getExtensionType());
765    ID.AddInteger(LD->getMemoryVT().getRawBits());
766    ID.AddInteger(LD->getRawFlags());
767  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
768    ID.AddInteger(ST->getAddressingMode());
769    ID.AddInteger(ST->isTruncatingStore());
770    ID.AddInteger(ST->getMemoryVT().getRawBits());
771    ID.AddInteger(ST->getRawFlags());
772  }
773
774  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
775}
776
777/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
778void SelectionDAG::VerifyNode(SDNode *N) {
779  switch (N->getOpcode()) {
780  default:
781    break;
782  case ISD::BUILD_VECTOR: {
783    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
784    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
785    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
786           "Wrong number of BUILD_VECTOR operands!");
787    MVT EltVT = N->getValueType(0).getVectorElementType();
788    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
789      assert(I->getSDValue().getValueType() == EltVT &&
790             "Wrong BUILD_VECTOR operand type!");
791    break;
792  }
793  }
794}
795
796/// getMVTAlignment - Compute the default alignment value for the
797/// given type.
798///
799unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
800  const Type *Ty = VT == MVT::iPTR ?
801                   PointerType::get(Type::Int8Ty, 0) :
802                   VT.getTypeForMVT();
803
804  return TLI.getTargetData()->getABITypeAlignment(Ty);
805}
806
807SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
808  : TLI(tli), FLI(fli),
809    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
810    Root(getEntryNode()) {
811  AllNodes.push_back(&EntryNode);
812}
813
814void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
815  MF = &mf;
816  MMI = mmi;
817}
818
819SelectionDAG::~SelectionDAG() {
820  allnodes_clear();
821}
822
823void SelectionDAG::allnodes_clear() {
824  assert(&*AllNodes.begin() == &EntryNode);
825  AllNodes.remove(AllNodes.begin());
826  while (!AllNodes.empty()) {
827    SDNode *N = AllNodes.remove(AllNodes.begin());
828    N->SetNextInBucket(0);
829    if (N->OperandsNeedDelete)
830      delete [] N->OperandList;
831    NodeAllocator.Deallocate(N);
832  }
833}
834
835void SelectionDAG::clear() {
836  allnodes_clear();
837  OperandAllocator.Reset();
838  CSEMap.clear();
839
840  ExtendedValueTypeNodes.clear();
841  ExternalSymbols.clear();
842  TargetExternalSymbols.clear();
843  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
844            static_cast<CondCodeSDNode*>(0));
845  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
846            static_cast<SDNode*>(0));
847
848  EntryNode.Uses = 0;
849  AllNodes.push_back(&EntryNode);
850  Root = getEntryNode();
851}
852
853SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
854  if (Op.getValueType() == VT) return Op;
855  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
856                                   VT.getSizeInBits());
857  return getNode(ISD::AND, Op.getValueType(), Op,
858                 getConstant(Imm, Op.getValueType()));
859}
860
861SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
862  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
864}
865
866SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
867  return getConstant(*ConstantInt::get(Val), VT, isT);
868}
869
870SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
871  assert(VT.isInteger() && "Cannot create FP integer constant!");
872
873  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
874  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
875         "APInt size does not match type size!");
876
877  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
878  FoldingSetNodeID ID;
879  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
880  ID.AddPointer(&Val);
881  void *IP = 0;
882  SDNode *N = NULL;
883  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
884    if (!VT.isVector())
885      return SDValue(N, 0);
886  if (!N) {
887    N = NodeAllocator.Allocate<ConstantSDNode>();
888    new (N) ConstantSDNode(isT, &Val, EltVT);
889    CSEMap.InsertNode(N, IP);
890    AllNodes.push_back(N);
891  }
892
893  SDValue Result(N, 0);
894  if (VT.isVector()) {
895    SmallVector<SDValue, 8> Ops;
896    Ops.assign(VT.getVectorNumElements(), Result);
897    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
898  }
899  return Result;
900}
901
902SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903  return getConstant(Val, TLI.getPointerTy(), isTarget);
904}
905
906
907SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909}
910
911SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
913
914  MVT EltVT =
915    VT.isVector() ? VT.getVectorElementType() : VT;
916
917  // Do the map lookup using the actual bit pattern for the floating point
918  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919  // we don't have issues with SNANs.
920  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923  ID.AddPointer(&V);
924  void *IP = 0;
925  SDNode *N = NULL;
926  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927    if (!VT.isVector())
928      return SDValue(N, 0);
929  if (!N) {
930    N = NodeAllocator.Allocate<ConstantFPSDNode>();
931    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932    CSEMap.InsertNode(N, IP);
933    AllNodes.push_back(N);
934  }
935
936  SDValue Result(N, 0);
937  if (VT.isVector()) {
938    SmallVector<SDValue, 8> Ops;
939    Ops.assign(VT.getVectorNumElements(), Result);
940    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
941  }
942  return Result;
943}
944
945SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
946  MVT EltVT =
947    VT.isVector() ? VT.getVectorElementType() : VT;
948  if (EltVT==MVT::f32)
949    return getConstantFP(APFloat((float)Val), VT, isTarget);
950  else
951    return getConstantFP(APFloat(Val), VT, isTarget);
952}
953
954SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955                                       MVT VT, int Offset,
956                                       bool isTargetGA) {
957  unsigned Opc;
958
959  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
960  if (!GVar) {
961    // If GV is an alias then use the aliasee for determining thread-localness.
962    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
963      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
964  }
965
966  if (GVar && GVar->isThreadLocal())
967    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
968  else
969    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
970
971  FoldingSetNodeID ID;
972  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
973  ID.AddPointer(GV);
974  ID.AddInteger(Offset);
975  void *IP = 0;
976  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
977   return SDValue(E, 0);
978  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
979  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
980  CSEMap.InsertNode(N, IP);
981  AllNodes.push_back(N);
982  return SDValue(N, 0);
983}
984
985SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
986  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
987  FoldingSetNodeID ID;
988  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
989  ID.AddInteger(FI);
990  void *IP = 0;
991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
992    return SDValue(E, 0);
993  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
994  new (N) FrameIndexSDNode(FI, VT, isTarget);
995  CSEMap.InsertNode(N, IP);
996  AllNodes.push_back(N);
997  return SDValue(N, 0);
998}
999
1000SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1001  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1004  ID.AddInteger(JTI);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1009  new (N) JumpTableSDNode(JTI, VT, isTarget);
1010  CSEMap.InsertNode(N, IP);
1011  AllNodes.push_back(N);
1012  return SDValue(N, 0);
1013}
1014
1015SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1016                                      unsigned Alignment, int Offset,
1017                                      bool isTarget) {
1018  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(Alignment);
1022  ID.AddInteger(Offset);
1023  ID.AddPointer(C);
1024  void *IP = 0;
1025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026    return SDValue(E, 0);
1027  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1028  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1029  CSEMap.InsertNode(N, IP);
1030  AllNodes.push_back(N);
1031  return SDValue(N, 0);
1032}
1033
1034
1035SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1036                                      unsigned Alignment, int Offset,
1037                                      bool isTarget) {
1038  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1039  FoldingSetNodeID ID;
1040  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1041  ID.AddInteger(Alignment);
1042  ID.AddInteger(Offset);
1043  C->AddSelectionDAGCSEId(ID);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1048  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054
1055SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1058  ID.AddPointer(MBB);
1059  void *IP = 0;
1060  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1061    return SDValue(E, 0);
1062  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1063  new (N) BasicBlockSDNode(MBB);
1064  CSEMap.InsertNode(N, IP);
1065  AllNodes.push_back(N);
1066  return SDValue(N, 0);
1067}
1068
1069SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1070  FoldingSetNodeID ID;
1071  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1072  ID.AddInteger(Flags.getRawBits());
1073  void *IP = 0;
1074  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1075    return SDValue(E, 0);
1076  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1077  new (N) ARG_FLAGSSDNode(Flags);
1078  CSEMap.InsertNode(N, IP);
1079  AllNodes.push_back(N);
1080  return SDValue(N, 0);
1081}
1082
1083SDValue SelectionDAG::getValueType(MVT VT) {
1084  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1085    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1086
1087  SDNode *&N = VT.isExtended() ?
1088    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1089
1090  if (N) return SDValue(N, 0);
1091  N = NodeAllocator.Allocate<VTSDNode>();
1092  new (N) VTSDNode(VT);
1093  AllNodes.push_back(N);
1094  return SDValue(N, 0);
1095}
1096
1097SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1098  SDNode *&N = ExternalSymbols[Sym];
1099  if (N) return SDValue(N, 0);
1100  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1101  new (N) ExternalSymbolSDNode(false, Sym, VT);
1102  AllNodes.push_back(N);
1103  return SDValue(N, 0);
1104}
1105
1106SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1107  SDNode *&N = TargetExternalSymbols[Sym];
1108  if (N) return SDValue(N, 0);
1109  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1110  new (N) ExternalSymbolSDNode(true, Sym, VT);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1116  if ((unsigned)Cond >= CondCodeNodes.size())
1117    CondCodeNodes.resize(Cond+1);
1118
1119  if (CondCodeNodes[Cond] == 0) {
1120    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1121    new (N) CondCodeSDNode(Cond);
1122    CondCodeNodes[Cond] = N;
1123    AllNodes.push_back(N);
1124  }
1125  return SDValue(CondCodeNodes[Cond], 0);
1126}
1127
1128SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1129  FoldingSetNodeID ID;
1130  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1131  ID.AddInteger(RegNo);
1132  void *IP = 0;
1133  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1134    return SDValue(E, 0);
1135  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1136  new (N) RegisterSDNode(RegNo, VT);
1137  CSEMap.InsertNode(N, IP);
1138  AllNodes.push_back(N);
1139  return SDValue(N, 0);
1140}
1141
1142SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1143                                        unsigned Line, unsigned Col,
1144                                        const CompileUnitDesc *CU) {
1145  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1146  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getLabel(unsigned Opcode,
1152                               SDValue Root,
1153                               unsigned LabelID) {
1154  FoldingSetNodeID ID;
1155  SDValue Ops[] = { Root };
1156  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1157  ID.AddInteger(LabelID);
1158  void *IP = 0;
1159  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1160    return SDValue(E, 0);
1161  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1162  new (N) LabelSDNode(Opcode, Root, LabelID);
1163  CSEMap.InsertNode(N, IP);
1164  AllNodes.push_back(N);
1165  return SDValue(N, 0);
1166}
1167
1168SDValue SelectionDAG::getSrcValue(const Value *V) {
1169  assert((!V || isa<PointerType>(V->getType())) &&
1170         "SrcValue is not a pointer?");
1171
1172  FoldingSetNodeID ID;
1173  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1174  ID.AddPointer(V);
1175
1176  void *IP = 0;
1177  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1178    return SDValue(E, 0);
1179
1180  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1181  new (N) SrcValueSDNode(V);
1182  CSEMap.InsertNode(N, IP);
1183  AllNodes.push_back(N);
1184  return SDValue(N, 0);
1185}
1186
1187SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1188  const Value *v = MO.getValue();
1189  assert((!v || isa<PointerType>(v->getType())) &&
1190         "SrcValue is not a pointer?");
1191
1192  FoldingSetNodeID ID;
1193  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1194  MO.Profile(ID);
1195
1196  void *IP = 0;
1197  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1198    return SDValue(E, 0);
1199
1200  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1201  new (N) MemOperandSDNode(MO);
1202  CSEMap.InsertNode(N, IP);
1203  AllNodes.push_back(N);
1204  return SDValue(N, 0);
1205}
1206
1207/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1208/// specified value type.
1209SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1210  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1211  unsigned ByteSize = VT.getSizeInBits()/8;
1212  const Type *Ty = VT.getTypeForMVT();
1213  unsigned StackAlign =
1214  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1215
1216  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1217  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1218}
1219
1220SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1221                                SDValue N2, ISD::CondCode Cond) {
1222  // These setcc operations always fold.
1223  switch (Cond) {
1224  default: break;
1225  case ISD::SETFALSE:
1226  case ISD::SETFALSE2: return getConstant(0, VT);
1227  case ISD::SETTRUE:
1228  case ISD::SETTRUE2:  return getConstant(1, VT);
1229
1230  case ISD::SETOEQ:
1231  case ISD::SETOGT:
1232  case ISD::SETOGE:
1233  case ISD::SETOLT:
1234  case ISD::SETOLE:
1235  case ISD::SETONE:
1236  case ISD::SETO:
1237  case ISD::SETUO:
1238  case ISD::SETUEQ:
1239  case ISD::SETUNE:
1240    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1241    break;
1242  }
1243
1244  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1245    const APInt &C2 = N2C->getAPIntValue();
1246    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1247      const APInt &C1 = N1C->getAPIntValue();
1248
1249      switch (Cond) {
1250      default: assert(0 && "Unknown integer setcc!");
1251      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1252      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1253      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1254      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1255      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1256      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1257      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1258      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1259      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1260      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1261      }
1262    }
1263  }
1264  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1265    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1266      // No compile time operations on this type yet.
1267      if (N1C->getValueType(0) == MVT::ppcf128)
1268        return SDValue();
1269
1270      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1271      switch (Cond) {
1272      default: break;
1273      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1274                          return getNode(ISD::UNDEF, VT);
1275                        // fall through
1276      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1277      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1278                          return getNode(ISD::UNDEF, VT);
1279                        // fall through
1280      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1281                                           R==APFloat::cmpLessThan, VT);
1282      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1283                          return getNode(ISD::UNDEF, VT);
1284                        // fall through
1285      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1286      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1287                          return getNode(ISD::UNDEF, VT);
1288                        // fall through
1289      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1290      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1291                          return getNode(ISD::UNDEF, VT);
1292                        // fall through
1293      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1294                                           R==APFloat::cmpEqual, VT);
1295      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1299                                           R==APFloat::cmpEqual, VT);
1300      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1301      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1302      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1303                                           R==APFloat::cmpEqual, VT);
1304      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1305      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1306                                           R==APFloat::cmpLessThan, VT);
1307      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1308                                           R==APFloat::cmpUnordered, VT);
1309      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1310      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1311      }
1312    } else {
1313      // Ensure that the constant occurs on the RHS.
1314      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1315    }
1316  }
1317
1318  // Could not fold it.
1319  return SDValue();
1320}
1321
1322/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1323/// use this predicate to simplify operations downstream.
1324bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1325  unsigned BitWidth = Op.getValueSizeInBits();
1326  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1327}
1328
1329/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1330/// this predicate to simplify operations downstream.  Mask is known to be zero
1331/// for bits that V cannot have.
1332bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1333                                     unsigned Depth) const {
1334  APInt KnownZero, KnownOne;
1335  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1336  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1337  return (KnownZero & Mask) == Mask;
1338}
1339
1340/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1341/// known to be either zero or one and return them in the KnownZero/KnownOne
1342/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1343/// processing.
1344void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1345                                     APInt &KnownZero, APInt &KnownOne,
1346                                     unsigned Depth) const {
1347  unsigned BitWidth = Mask.getBitWidth();
1348  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1349         "Mask size mismatches value type size!");
1350
1351  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1352  if (Depth == 6 || Mask == 0)
1353    return;  // Limit search depth.
1354
1355  APInt KnownZero2, KnownOne2;
1356
1357  switch (Op.getOpcode()) {
1358  case ISD::Constant:
1359    // We know all of the bits for a constant!
1360    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1361    KnownZero = ~KnownOne & Mask;
1362    return;
1363  case ISD::AND:
1364    // If either the LHS or the RHS are Zero, the result is zero.
1365    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1366    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1367                      KnownZero2, KnownOne2, Depth+1);
1368    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1370
1371    // Output known-1 bits are only known if set in both the LHS & RHS.
1372    KnownOne &= KnownOne2;
1373    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1374    KnownZero |= KnownZero2;
1375    return;
1376  case ISD::OR:
1377    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1378    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1379                      KnownZero2, KnownOne2, Depth+1);
1380    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1381    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1382
1383    // Output known-0 bits are only known if clear in both the LHS & RHS.
1384    KnownZero &= KnownZero2;
1385    // Output known-1 are known to be set if set in either the LHS | RHS.
1386    KnownOne |= KnownOne2;
1387    return;
1388  case ISD::XOR: {
1389    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1390    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1391    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1392    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1393
1394    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1395    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1396    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1397    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1398    KnownZero = KnownZeroOut;
1399    return;
1400  }
1401  case ISD::MUL: {
1402    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1403    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1404    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1405    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1406    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1407
1408    // If low bits are zero in either operand, output low known-0 bits.
1409    // Also compute a conserative estimate for high known-0 bits.
1410    // More trickiness is possible, but this is sufficient for the
1411    // interesting case of alignment computation.
1412    KnownOne.clear();
1413    unsigned TrailZ = KnownZero.countTrailingOnes() +
1414                      KnownZero2.countTrailingOnes();
1415    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1416                               KnownZero2.countLeadingOnes(),
1417                               BitWidth) - BitWidth;
1418
1419    TrailZ = std::min(TrailZ, BitWidth);
1420    LeadZ = std::min(LeadZ, BitWidth);
1421    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1422                APInt::getHighBitsSet(BitWidth, LeadZ);
1423    KnownZero &= Mask;
1424    return;
1425  }
1426  case ISD::UDIV: {
1427    // For the purposes of computing leading zeros we can conservatively
1428    // treat a udiv as a logical right shift by the power of 2 known to
1429    // be less than the denominator.
1430    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1431    ComputeMaskedBits(Op.getOperand(0),
1432                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1433    unsigned LeadZ = KnownZero2.countLeadingOnes();
1434
1435    KnownOne2.clear();
1436    KnownZero2.clear();
1437    ComputeMaskedBits(Op.getOperand(1),
1438                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1439    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1440    if (RHSUnknownLeadingOnes != BitWidth)
1441      LeadZ = std::min(BitWidth,
1442                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1443
1444    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1445    return;
1446  }
1447  case ISD::SELECT:
1448    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1449    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1450    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1451    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1452
1453    // Only known if known in both the LHS and RHS.
1454    KnownOne &= KnownOne2;
1455    KnownZero &= KnownZero2;
1456    return;
1457  case ISD::SELECT_CC:
1458    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1459    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1460    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1461    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1462
1463    // Only known if known in both the LHS and RHS.
1464    KnownOne &= KnownOne2;
1465    KnownZero &= KnownZero2;
1466    return;
1467  case ISD::SETCC:
1468    // If we know the result of a setcc has the top bits zero, use this info.
1469    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1470        BitWidth > 1)
1471      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1472    return;
1473  case ISD::SHL:
1474    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1475    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1476      unsigned ShAmt = SA->getZExtValue();
1477
1478      // If the shift count is an invalid immediate, don't do anything.
1479      if (ShAmt >= BitWidth)
1480        return;
1481
1482      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1483                        KnownZero, KnownOne, Depth+1);
1484      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1485      KnownZero <<= ShAmt;
1486      KnownOne  <<= ShAmt;
1487      // low bits known zero.
1488      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1489    }
1490    return;
1491  case ISD::SRL:
1492    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1493    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1494      unsigned ShAmt = SA->getZExtValue();
1495
1496      // If the shift count is an invalid immediate, don't do anything.
1497      if (ShAmt >= BitWidth)
1498        return;
1499
1500      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1501                        KnownZero, KnownOne, Depth+1);
1502      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503      KnownZero = KnownZero.lshr(ShAmt);
1504      KnownOne  = KnownOne.lshr(ShAmt);
1505
1506      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1507      KnownZero |= HighBits;  // High bits known zero.
1508    }
1509    return;
1510  case ISD::SRA:
1511    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1512      unsigned ShAmt = SA->getZExtValue();
1513
1514      // If the shift count is an invalid immediate, don't do anything.
1515      if (ShAmt >= BitWidth)
1516        return;
1517
1518      APInt InDemandedMask = (Mask << ShAmt);
1519      // If any of the demanded bits are produced by the sign extension, we also
1520      // demand the input sign bit.
1521      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1522      if (HighBits.getBoolValue())
1523        InDemandedMask |= APInt::getSignBit(BitWidth);
1524
1525      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1526                        Depth+1);
1527      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1528      KnownZero = KnownZero.lshr(ShAmt);
1529      KnownOne  = KnownOne.lshr(ShAmt);
1530
1531      // Handle the sign bits.
1532      APInt SignBit = APInt::getSignBit(BitWidth);
1533      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1534
1535      if (KnownZero.intersects(SignBit)) {
1536        KnownZero |= HighBits;  // New bits are known zero.
1537      } else if (KnownOne.intersects(SignBit)) {
1538        KnownOne  |= HighBits;  // New bits are known one.
1539      }
1540    }
1541    return;
1542  case ISD::SIGN_EXTEND_INREG: {
1543    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1544    unsigned EBits = EVT.getSizeInBits();
1545
1546    // Sign extension.  Compute the demanded bits in the result that are not
1547    // present in the input.
1548    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1549
1550    APInt InSignBit = APInt::getSignBit(EBits);
1551    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1552
1553    // If the sign extended bits are demanded, we know that the sign
1554    // bit is demanded.
1555    InSignBit.zext(BitWidth);
1556    if (NewBits.getBoolValue())
1557      InputDemandedBits |= InSignBit;
1558
1559    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1560                      KnownZero, KnownOne, Depth+1);
1561    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1562
1563    // If the sign bit of the input is known set or clear, then we know the
1564    // top bits of the result.
1565    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1566      KnownZero |= NewBits;
1567      KnownOne  &= ~NewBits;
1568    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1569      KnownOne  |= NewBits;
1570      KnownZero &= ~NewBits;
1571    } else {                              // Input sign bit unknown
1572      KnownZero &= ~NewBits;
1573      KnownOne  &= ~NewBits;
1574    }
1575    return;
1576  }
1577  case ISD::CTTZ:
1578  case ISD::CTLZ:
1579  case ISD::CTPOP: {
1580    unsigned LowBits = Log2_32(BitWidth)+1;
1581    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1582    KnownOne.clear();
1583    return;
1584  }
1585  case ISD::LOAD: {
1586    if (ISD::isZEXTLoad(Op.getNode())) {
1587      LoadSDNode *LD = cast<LoadSDNode>(Op);
1588      MVT VT = LD->getMemoryVT();
1589      unsigned MemBits = VT.getSizeInBits();
1590      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1591    }
1592    return;
1593  }
1594  case ISD::ZERO_EXTEND: {
1595    MVT InVT = Op.getOperand(0).getValueType();
1596    unsigned InBits = InVT.getSizeInBits();
1597    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1598    APInt InMask    = Mask;
1599    InMask.trunc(InBits);
1600    KnownZero.trunc(InBits);
1601    KnownOne.trunc(InBits);
1602    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1603    KnownZero.zext(BitWidth);
1604    KnownOne.zext(BitWidth);
1605    KnownZero |= NewBits;
1606    return;
1607  }
1608  case ISD::SIGN_EXTEND: {
1609    MVT InVT = Op.getOperand(0).getValueType();
1610    unsigned InBits = InVT.getSizeInBits();
1611    APInt InSignBit = APInt::getSignBit(InBits);
1612    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1613    APInt InMask = Mask;
1614    InMask.trunc(InBits);
1615
1616    // If any of the sign extended bits are demanded, we know that the sign
1617    // bit is demanded. Temporarily set this bit in the mask for our callee.
1618    if (NewBits.getBoolValue())
1619      InMask |= InSignBit;
1620
1621    KnownZero.trunc(InBits);
1622    KnownOne.trunc(InBits);
1623    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1624
1625    // Note if the sign bit is known to be zero or one.
1626    bool SignBitKnownZero = KnownZero.isNegative();
1627    bool SignBitKnownOne  = KnownOne.isNegative();
1628    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1629           "Sign bit can't be known to be both zero and one!");
1630
1631    // If the sign bit wasn't actually demanded by our caller, we don't
1632    // want it set in the KnownZero and KnownOne result values. Reset the
1633    // mask and reapply it to the result values.
1634    InMask = Mask;
1635    InMask.trunc(InBits);
1636    KnownZero &= InMask;
1637    KnownOne  &= InMask;
1638
1639    KnownZero.zext(BitWidth);
1640    KnownOne.zext(BitWidth);
1641
1642    // If the sign bit is known zero or one, the top bits match.
1643    if (SignBitKnownZero)
1644      KnownZero |= NewBits;
1645    else if (SignBitKnownOne)
1646      KnownOne  |= NewBits;
1647    return;
1648  }
1649  case ISD::ANY_EXTEND: {
1650    MVT InVT = Op.getOperand(0).getValueType();
1651    unsigned InBits = InVT.getSizeInBits();
1652    APInt InMask = Mask;
1653    InMask.trunc(InBits);
1654    KnownZero.trunc(InBits);
1655    KnownOne.trunc(InBits);
1656    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1657    KnownZero.zext(BitWidth);
1658    KnownOne.zext(BitWidth);
1659    return;
1660  }
1661  case ISD::TRUNCATE: {
1662    MVT InVT = Op.getOperand(0).getValueType();
1663    unsigned InBits = InVT.getSizeInBits();
1664    APInt InMask = Mask;
1665    InMask.zext(InBits);
1666    KnownZero.zext(InBits);
1667    KnownOne.zext(InBits);
1668    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1669    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1670    KnownZero.trunc(BitWidth);
1671    KnownOne.trunc(BitWidth);
1672    break;
1673  }
1674  case ISD::AssertZext: {
1675    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1676    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1677    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1678                      KnownOne, Depth+1);
1679    KnownZero |= (~InMask) & Mask;
1680    return;
1681  }
1682  case ISD::FGETSIGN:
1683    // All bits are zero except the low bit.
1684    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1685    return;
1686
1687  case ISD::SUB: {
1688    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1689      // We know that the top bits of C-X are clear if X contains less bits
1690      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1691      // positive if we can prove that X is >= 0 and < 16.
1692      if (CLHS->getAPIntValue().isNonNegative()) {
1693        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1694        // NLZ can't be BitWidth with no sign bit
1695        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1696        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1697                          Depth+1);
1698
1699        // If all of the MaskV bits are known to be zero, then we know the
1700        // output top bits are zero, because we now know that the output is
1701        // from [0-C].
1702        if ((KnownZero2 & MaskV) == MaskV) {
1703          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1704          // Top bits known zero.
1705          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1706        }
1707      }
1708    }
1709  }
1710  // fall through
1711  case ISD::ADD: {
1712    // Output known-0 bits are known if clear or set in both the low clear bits
1713    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1714    // low 3 bits clear.
1715    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1716    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1717    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1718    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1719
1720    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1721    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1722    KnownZeroOut = std::min(KnownZeroOut,
1723                            KnownZero2.countTrailingOnes());
1724
1725    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1726    return;
1727  }
1728  case ISD::SREM:
1729    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730      const APInt &RA = Rem->getAPIntValue();
1731      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1732        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1733        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1734        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1735
1736        // If the sign bit of the first operand is zero, the sign bit of
1737        // the result is zero. If the first operand has no one bits below
1738        // the second operand's single 1 bit, its sign will be zero.
1739        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1740          KnownZero2 |= ~LowBits;
1741
1742        KnownZero |= KnownZero2 & Mask;
1743
1744        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1745      }
1746    }
1747    return;
1748  case ISD::UREM: {
1749    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1750      const APInt &RA = Rem->getAPIntValue();
1751      if (RA.isPowerOf2()) {
1752        APInt LowBits = (RA - 1);
1753        APInt Mask2 = LowBits & Mask;
1754        KnownZero |= ~LowBits & Mask;
1755        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1756        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1757        break;
1758      }
1759    }
1760
1761    // Since the result is less than or equal to either operand, any leading
1762    // zero bits in either operand must also exist in the result.
1763    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1764    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1765                      Depth+1);
1766    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1767                      Depth+1);
1768
1769    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1770                                KnownZero2.countLeadingOnes());
1771    KnownOne.clear();
1772    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1773    return;
1774  }
1775  default:
1776    // Allow the target to implement this method for its nodes.
1777    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1778  case ISD::INTRINSIC_WO_CHAIN:
1779  case ISD::INTRINSIC_W_CHAIN:
1780  case ISD::INTRINSIC_VOID:
1781      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1782    }
1783    return;
1784  }
1785}
1786
1787/// ComputeNumSignBits - Return the number of times the sign bit of the
1788/// register is replicated into the other bits.  We know that at least 1 bit
1789/// is always equal to the sign bit (itself), but other cases can give us
1790/// information.  For example, immediately after an "SRA X, 2", we know that
1791/// the top 3 bits are all equal to each other, so we return 3.
1792unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1793  MVT VT = Op.getValueType();
1794  assert(VT.isInteger() && "Invalid VT!");
1795  unsigned VTBits = VT.getSizeInBits();
1796  unsigned Tmp, Tmp2;
1797  unsigned FirstAnswer = 1;
1798
1799  if (Depth == 6)
1800    return 1;  // Limit search depth.
1801
1802  switch (Op.getOpcode()) {
1803  default: break;
1804  case ISD::AssertSext:
1805    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1806    return VTBits-Tmp+1;
1807  case ISD::AssertZext:
1808    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1809    return VTBits-Tmp;
1810
1811  case ISD::Constant: {
1812    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1813    // If negative, return # leading ones.
1814    if (Val.isNegative())
1815      return Val.countLeadingOnes();
1816
1817    // Return # leading zeros.
1818    return Val.countLeadingZeros();
1819  }
1820
1821  case ISD::SIGN_EXTEND:
1822    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1823    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1824
1825  case ISD::SIGN_EXTEND_INREG:
1826    // Max of the input and what this extends.
1827    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1828    Tmp = VTBits-Tmp+1;
1829
1830    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1831    return std::max(Tmp, Tmp2);
1832
1833  case ISD::SRA:
1834    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1835    // SRA X, C   -> adds C sign bits.
1836    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1837      Tmp += C->getZExtValue();
1838      if (Tmp > VTBits) Tmp = VTBits;
1839    }
1840    return Tmp;
1841  case ISD::SHL:
1842    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1843      // shl destroys sign bits.
1844      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1845      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1846          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1847      return Tmp - C->getZExtValue();
1848    }
1849    break;
1850  case ISD::AND:
1851  case ISD::OR:
1852  case ISD::XOR:    // NOT is handled here.
1853    // Logical binary ops preserve the number of sign bits at the worst.
1854    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1855    if (Tmp != 1) {
1856      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1857      FirstAnswer = std::min(Tmp, Tmp2);
1858      // We computed what we know about the sign bits as our first
1859      // answer. Now proceed to the generic code that uses
1860      // ComputeMaskedBits, and pick whichever answer is better.
1861    }
1862    break;
1863
1864  case ISD::SELECT:
1865    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1866    if (Tmp == 1) return 1;  // Early out.
1867    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1868    return std::min(Tmp, Tmp2);
1869
1870  case ISD::SETCC:
1871    // If setcc returns 0/-1, all bits are sign bits.
1872    if (TLI.getSetCCResultContents() ==
1873        TargetLowering::ZeroOrNegativeOneSetCCResult)
1874      return VTBits;
1875    break;
1876  case ISD::ROTL:
1877  case ISD::ROTR:
1878    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1879      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1880
1881      // Handle rotate right by N like a rotate left by 32-N.
1882      if (Op.getOpcode() == ISD::ROTR)
1883        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1884
1885      // If we aren't rotating out all of the known-in sign bits, return the
1886      // number that are left.  This handles rotl(sext(x), 1) for example.
1887      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1888      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1889    }
1890    break;
1891  case ISD::ADD:
1892    // Add can have at most one carry bit.  Thus we know that the output
1893    // is, at worst, one more bit than the inputs.
1894    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1895    if (Tmp == 1) return 1;  // Early out.
1896
1897    // Special case decrementing a value (ADD X, -1):
1898    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1899      if (CRHS->isAllOnesValue()) {
1900        APInt KnownZero, KnownOne;
1901        APInt Mask = APInt::getAllOnesValue(VTBits);
1902        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1903
1904        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1905        // sign bits set.
1906        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1907          return VTBits;
1908
1909        // If we are subtracting one from a positive number, there is no carry
1910        // out of the result.
1911        if (KnownZero.isNegative())
1912          return Tmp;
1913      }
1914
1915    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1916    if (Tmp2 == 1) return 1;
1917      return std::min(Tmp, Tmp2)-1;
1918    break;
1919
1920  case ISD::SUB:
1921    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1922    if (Tmp2 == 1) return 1;
1923
1924    // Handle NEG.
1925    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1926      if (CLHS->isNullValue()) {
1927        APInt KnownZero, KnownOne;
1928        APInt Mask = APInt::getAllOnesValue(VTBits);
1929        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1930        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1931        // sign bits set.
1932        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1933          return VTBits;
1934
1935        // If the input is known to be positive (the sign bit is known clear),
1936        // the output of the NEG has the same number of sign bits as the input.
1937        if (KnownZero.isNegative())
1938          return Tmp2;
1939
1940        // Otherwise, we treat this like a SUB.
1941      }
1942
1943    // Sub can have at most one carry bit.  Thus we know that the output
1944    // is, at worst, one more bit than the inputs.
1945    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1946    if (Tmp == 1) return 1;  // Early out.
1947      return std::min(Tmp, Tmp2)-1;
1948    break;
1949  case ISD::TRUNCATE:
1950    // FIXME: it's tricky to do anything useful for this, but it is an important
1951    // case for targets like X86.
1952    break;
1953  }
1954
1955  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1956  if (Op.getOpcode() == ISD::LOAD) {
1957    LoadSDNode *LD = cast<LoadSDNode>(Op);
1958    unsigned ExtType = LD->getExtensionType();
1959    switch (ExtType) {
1960    default: break;
1961    case ISD::SEXTLOAD:    // '17' bits known
1962      Tmp = LD->getMemoryVT().getSizeInBits();
1963      return VTBits-Tmp+1;
1964    case ISD::ZEXTLOAD:    // '16' bits known
1965      Tmp = LD->getMemoryVT().getSizeInBits();
1966      return VTBits-Tmp;
1967    }
1968  }
1969
1970  // Allow the target to implement this method for its nodes.
1971  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1972      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1973      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1974      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1975    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1976    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1977  }
1978
1979  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1980  // use this information.
1981  APInt KnownZero, KnownOne;
1982  APInt Mask = APInt::getAllOnesValue(VTBits);
1983  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1984
1985  if (KnownZero.isNegative()) {        // sign bit is 0
1986    Mask = KnownZero;
1987  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1988    Mask = KnownOne;
1989  } else {
1990    // Nothing known.
1991    return FirstAnswer;
1992  }
1993
1994  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1995  // the number of identical bits in the top of the input value.
1996  Mask = ~Mask;
1997  Mask <<= Mask.getBitWidth()-VTBits;
1998  // Return # leading zeros.  We use 'min' here in case Val was zero before
1999  // shifting.  We don't want to return '64' as for an i32 "0".
2000  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2001}
2002
2003
2004bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2005  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2006  if (!GA) return false;
2007  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2008  if (!GV) return false;
2009  MachineModuleInfo *MMI = getMachineModuleInfo();
2010  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2011}
2012
2013
2014/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2015/// element of the result of the vector shuffle.
2016SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2017  MVT VT = N->getValueType(0);
2018  SDValue PermMask = N->getOperand(2);
2019  SDValue Idx = PermMask.getOperand(i);
2020  if (Idx.getOpcode() == ISD::UNDEF)
2021    return getNode(ISD::UNDEF, VT.getVectorElementType());
2022  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2023  unsigned NumElems = PermMask.getNumOperands();
2024  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2025  Index %= NumElems;
2026
2027  if (V.getOpcode() == ISD::BIT_CONVERT) {
2028    V = V.getOperand(0);
2029    if (V.getValueType().getVectorNumElements() != NumElems)
2030      return SDValue();
2031  }
2032  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2033    return (Index == 0) ? V.getOperand(0)
2034                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2035  if (V.getOpcode() == ISD::BUILD_VECTOR)
2036    return V.getOperand(Index);
2037  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2038    return getShuffleScalarElt(V.getNode(), Index);
2039  return SDValue();
2040}
2041
2042
2043/// getNode - Gets or creates the specified node.
2044///
2045SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2046  FoldingSetNodeID ID;
2047  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2048  void *IP = 0;
2049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2050    return SDValue(E, 0);
2051  SDNode *N = NodeAllocator.Allocate<SDNode>();
2052  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2053  CSEMap.InsertNode(N, IP);
2054
2055  AllNodes.push_back(N);
2056#ifndef NDEBUG
2057  VerifyNode(N);
2058#endif
2059  return SDValue(N, 0);
2060}
2061
2062SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2063  // Constant fold unary operations with an integer constant operand.
2064  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2065    const APInt &Val = C->getAPIntValue();
2066    unsigned BitWidth = VT.getSizeInBits();
2067    switch (Opcode) {
2068    default: break;
2069    case ISD::SIGN_EXTEND:
2070      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2071    case ISD::ANY_EXTEND:
2072    case ISD::ZERO_EXTEND:
2073    case ISD::TRUNCATE:
2074      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2075    case ISD::UINT_TO_FP:
2076    case ISD::SINT_TO_FP: {
2077      const uint64_t zero[] = {0, 0};
2078      // No compile time operations on this type.
2079      if (VT==MVT::ppcf128)
2080        break;
2081      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2082      (void)apf.convertFromAPInt(Val,
2083                                 Opcode==ISD::SINT_TO_FP,
2084                                 APFloat::rmNearestTiesToEven);
2085      return getConstantFP(apf, VT);
2086    }
2087    case ISD::BIT_CONVERT:
2088      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2089        return getConstantFP(Val.bitsToFloat(), VT);
2090      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2091        return getConstantFP(Val.bitsToDouble(), VT);
2092      break;
2093    case ISD::BSWAP:
2094      return getConstant(Val.byteSwap(), VT);
2095    case ISD::CTPOP:
2096      return getConstant(Val.countPopulation(), VT);
2097    case ISD::CTLZ:
2098      return getConstant(Val.countLeadingZeros(), VT);
2099    case ISD::CTTZ:
2100      return getConstant(Val.countTrailingZeros(), VT);
2101    }
2102  }
2103
2104  // Constant fold unary operations with a floating point constant operand.
2105  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2106    APFloat V = C->getValueAPF();    // make copy
2107    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2108      switch (Opcode) {
2109      case ISD::FNEG:
2110        V.changeSign();
2111        return getConstantFP(V, VT);
2112      case ISD::FABS:
2113        V.clearSign();
2114        return getConstantFP(V, VT);
2115      case ISD::FP_ROUND:
2116      case ISD::FP_EXTEND:
2117        // This can return overflow, underflow, or inexact; we don't care.
2118        // FIXME need to be more flexible about rounding mode.
2119        (void)V.convert(*MVTToAPFloatSemantics(VT),
2120                        APFloat::rmNearestTiesToEven);
2121        return getConstantFP(V, VT);
2122      case ISD::FP_TO_SINT:
2123      case ISD::FP_TO_UINT: {
2124        integerPart x;
2125        assert(integerPartWidth >= 64);
2126        // FIXME need to be more flexible about rounding mode.
2127        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2128                              Opcode==ISD::FP_TO_SINT,
2129                              APFloat::rmTowardZero);
2130        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2131          break;
2132        return getConstant(x, VT);
2133      }
2134      case ISD::BIT_CONVERT:
2135        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2136          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2137        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2138          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2139        break;
2140      }
2141    }
2142  }
2143
2144  unsigned OpOpcode = Operand.getNode()->getOpcode();
2145  switch (Opcode) {
2146  case ISD::TokenFactor:
2147  case ISD::CONCAT_VECTORS:
2148    return Operand;         // Factor or concat of one node?  No need.
2149  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2150  case ISD::FP_EXTEND:
2151    assert(VT.isFloatingPoint() &&
2152           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2153    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2154    if (Operand.getOpcode() == ISD::UNDEF)
2155      return getNode(ISD::UNDEF, VT);
2156    break;
2157  case ISD::SIGN_EXTEND:
2158    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2159           "Invalid SIGN_EXTEND!");
2160    if (Operand.getValueType() == VT) return Operand;   // noop extension
2161    assert(Operand.getValueType().bitsLT(VT)
2162           && "Invalid sext node, dst < src!");
2163    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2164      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2165    break;
2166  case ISD::ZERO_EXTEND:
2167    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2168           "Invalid ZERO_EXTEND!");
2169    if (Operand.getValueType() == VT) return Operand;   // noop extension
2170    assert(Operand.getValueType().bitsLT(VT)
2171           && "Invalid zext node, dst < src!");
2172    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2173      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2174    break;
2175  case ISD::ANY_EXTEND:
2176    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2177           "Invalid ANY_EXTEND!");
2178    if (Operand.getValueType() == VT) return Operand;   // noop extension
2179    assert(Operand.getValueType().bitsLT(VT)
2180           && "Invalid anyext node, dst < src!");
2181    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2182      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2183      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2184    break;
2185  case ISD::TRUNCATE:
2186    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2187           "Invalid TRUNCATE!");
2188    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2189    assert(Operand.getValueType().bitsGT(VT)
2190           && "Invalid truncate node, src < dst!");
2191    if (OpOpcode == ISD::TRUNCATE)
2192      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2193    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2194             OpOpcode == ISD::ANY_EXTEND) {
2195      // If the source is smaller than the dest, we still need an extend.
2196      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2197        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2198      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2199        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2200      else
2201        return Operand.getNode()->getOperand(0);
2202    }
2203    break;
2204  case ISD::BIT_CONVERT:
2205    // Basic sanity checking.
2206    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2207           && "Cannot BIT_CONVERT between types of different sizes!");
2208    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2209    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2210      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2211    if (OpOpcode == ISD::UNDEF)
2212      return getNode(ISD::UNDEF, VT);
2213    break;
2214  case ISD::SCALAR_TO_VECTOR:
2215    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2216           VT.getVectorElementType() == Operand.getValueType() &&
2217           "Illegal SCALAR_TO_VECTOR node!");
2218    if (OpOpcode == ISD::UNDEF)
2219      return getNode(ISD::UNDEF, VT);
2220    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2221    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2222        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2223        Operand.getConstantOperandVal(1) == 0 &&
2224        Operand.getOperand(0).getValueType() == VT)
2225      return Operand.getOperand(0);
2226    break;
2227  case ISD::FNEG:
2228    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2229      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2230                     Operand.getNode()->getOperand(0));
2231    if (OpOpcode == ISD::FNEG)  // --X -> X
2232      return Operand.getNode()->getOperand(0);
2233    break;
2234  case ISD::FABS:
2235    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2236      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2237    break;
2238  }
2239
2240  SDNode *N;
2241  SDVTList VTs = getVTList(VT);
2242  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2243    FoldingSetNodeID ID;
2244    SDValue Ops[1] = { Operand };
2245    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2246    void *IP = 0;
2247    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2248      return SDValue(E, 0);
2249    N = NodeAllocator.Allocate<UnarySDNode>();
2250    new (N) UnarySDNode(Opcode, VTs, Operand);
2251    CSEMap.InsertNode(N, IP);
2252  } else {
2253    N = NodeAllocator.Allocate<UnarySDNode>();
2254    new (N) UnarySDNode(Opcode, VTs, Operand);
2255  }
2256
2257  AllNodes.push_back(N);
2258#ifndef NDEBUG
2259  VerifyNode(N);
2260#endif
2261  return SDValue(N, 0);
2262}
2263
2264SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2265                              SDValue N1, SDValue N2) {
2266  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2267  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2268  switch (Opcode) {
2269  default: break;
2270  case ISD::TokenFactor:
2271    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2272           N2.getValueType() == MVT::Other && "Invalid token factor!");
2273    // Fold trivial token factors.
2274    if (N1.getOpcode() == ISD::EntryToken) return N2;
2275    if (N2.getOpcode() == ISD::EntryToken) return N1;
2276    break;
2277  case ISD::CONCAT_VECTORS:
2278    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2279    // one big BUILD_VECTOR.
2280    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2281        N2.getOpcode() == ISD::BUILD_VECTOR) {
2282      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2283      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2284      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2285    }
2286    break;
2287  case ISD::AND:
2288    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2289           N1.getValueType() == VT && "Binary operator types must match!");
2290    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2291    // worth handling here.
2292    if (N2C && N2C->isNullValue())
2293      return N2;
2294    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2295      return N1;
2296    break;
2297  case ISD::OR:
2298  case ISD::XOR:
2299  case ISD::ADD:
2300  case ISD::SUB:
2301    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2302           N1.getValueType() == VT && "Binary operator types must match!");
2303    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2304    // it's worth handling here.
2305    if (N2C && N2C->isNullValue())
2306      return N1;
2307    break;
2308  case ISD::UDIV:
2309  case ISD::UREM:
2310  case ISD::MULHU:
2311  case ISD::MULHS:
2312    assert(VT.isInteger() && "This operator does not apply to FP types!");
2313    // fall through
2314  case ISD::MUL:
2315  case ISD::SDIV:
2316  case ISD::SREM:
2317  case ISD::FADD:
2318  case ISD::FSUB:
2319  case ISD::FMUL:
2320  case ISD::FDIV:
2321  case ISD::FREM:
2322    assert(N1.getValueType() == N2.getValueType() &&
2323           N1.getValueType() == VT && "Binary operator types must match!");
2324    break;
2325  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2326    assert(N1.getValueType() == VT &&
2327           N1.getValueType().isFloatingPoint() &&
2328           N2.getValueType().isFloatingPoint() &&
2329           "Invalid FCOPYSIGN!");
2330    break;
2331  case ISD::SHL:
2332  case ISD::SRA:
2333  case ISD::SRL:
2334  case ISD::ROTL:
2335  case ISD::ROTR:
2336    assert(VT == N1.getValueType() &&
2337           "Shift operators return type must be the same as their first arg");
2338    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2339           "Shifts only work on integers");
2340
2341    // Always fold shifts of i1 values so the code generator doesn't need to
2342    // handle them.  Since we know the size of the shift has to be less than the
2343    // size of the value, the shift/rotate count is guaranteed to be zero.
2344    if (VT == MVT::i1)
2345      return N1;
2346    break;
2347  case ISD::FP_ROUND_INREG: {
2348    MVT EVT = cast<VTSDNode>(N2)->getVT();
2349    assert(VT == N1.getValueType() && "Not an inreg round!");
2350    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2351           "Cannot FP_ROUND_INREG integer types");
2352    assert(EVT.bitsLE(VT) && "Not rounding down!");
2353    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2354    break;
2355  }
2356  case ISD::FP_ROUND:
2357    assert(VT.isFloatingPoint() &&
2358           N1.getValueType().isFloatingPoint() &&
2359           VT.bitsLE(N1.getValueType()) &&
2360           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2361    if (N1.getValueType() == VT) return N1;  // noop conversion.
2362    break;
2363  case ISD::AssertSext:
2364  case ISD::AssertZext: {
2365    MVT EVT = cast<VTSDNode>(N2)->getVT();
2366    assert(VT == N1.getValueType() && "Not an inreg extend!");
2367    assert(VT.isInteger() && EVT.isInteger() &&
2368           "Cannot *_EXTEND_INREG FP types");
2369    assert(EVT.bitsLE(VT) && "Not extending!");
2370    if (VT == EVT) return N1; // noop assertion.
2371    break;
2372  }
2373  case ISD::SIGN_EXTEND_INREG: {
2374    MVT EVT = cast<VTSDNode>(N2)->getVT();
2375    assert(VT == N1.getValueType() && "Not an inreg extend!");
2376    assert(VT.isInteger() && EVT.isInteger() &&
2377           "Cannot *_EXTEND_INREG FP types");
2378    assert(EVT.bitsLE(VT) && "Not extending!");
2379    if (EVT == VT) return N1;  // Not actually extending
2380
2381    if (N1C) {
2382      APInt Val = N1C->getAPIntValue();
2383      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2384      Val <<= Val.getBitWidth()-FromBits;
2385      Val = Val.ashr(Val.getBitWidth()-FromBits);
2386      return getConstant(Val, VT);
2387    }
2388    break;
2389  }
2390  case ISD::EXTRACT_VECTOR_ELT:
2391    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2392    if (N1.getOpcode() == ISD::UNDEF)
2393      return getNode(ISD::UNDEF, VT);
2394
2395    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2396    // expanding copies of large vectors from registers.
2397    if (N2C &&
2398        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2399        N1.getNumOperands() > 0) {
2400      unsigned Factor =
2401        N1.getOperand(0).getValueType().getVectorNumElements();
2402      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2403                     N1.getOperand(N2C->getZExtValue() / Factor),
2404                     getConstant(N2C->getZExtValue() % Factor,
2405                                 N2.getValueType()));
2406    }
2407
2408    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2409    // expanding large vector constants.
2410    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2411      return N1.getOperand(N2C->getZExtValue());
2412
2413    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2414    // operations are lowered to scalars.
2415    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2416      if (N1.getOperand(2) == N2)
2417        return N1.getOperand(1);
2418      else
2419        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2420    }
2421    break;
2422  case ISD::EXTRACT_ELEMENT:
2423    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2424    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2425           (N1.getValueType().isInteger() == VT.isInteger()) &&
2426           "Wrong types for EXTRACT_ELEMENT!");
2427
2428    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2429    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2430    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2431    if (N1.getOpcode() == ISD::BUILD_PAIR)
2432      return N1.getOperand(N2C->getZExtValue());
2433
2434    // EXTRACT_ELEMENT of a constant int is also very common.
2435    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2436      unsigned ElementSize = VT.getSizeInBits();
2437      unsigned Shift = ElementSize * N2C->getZExtValue();
2438      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2439      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2440    }
2441    break;
2442  case ISD::EXTRACT_SUBVECTOR:
2443    if (N1.getValueType() == VT) // Trivial extraction.
2444      return N1;
2445    break;
2446  }
2447
2448  if (N1C) {
2449    if (N2C) {
2450      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2451      switch (Opcode) {
2452      case ISD::ADD: return getConstant(C1 + C2, VT);
2453      case ISD::SUB: return getConstant(C1 - C2, VT);
2454      case ISD::MUL: return getConstant(C1 * C2, VT);
2455      case ISD::UDIV:
2456        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2457        break;
2458      case ISD::UREM :
2459        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2460        break;
2461      case ISD::SDIV :
2462        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2463        break;
2464      case ISD::SREM :
2465        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2466        break;
2467      case ISD::AND  : return getConstant(C1 & C2, VT);
2468      case ISD::OR   : return getConstant(C1 | C2, VT);
2469      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2470      case ISD::SHL  : return getConstant(C1 << C2, VT);
2471      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2472      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2473      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2474      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2475      default: break;
2476      }
2477    } else {      // Cannonicalize constant to RHS if commutative
2478      if (isCommutativeBinOp(Opcode)) {
2479        std::swap(N1C, N2C);
2480        std::swap(N1, N2);
2481      }
2482    }
2483  }
2484
2485  // Constant fold FP operations.
2486  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2487  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2488  if (N1CFP) {
2489    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2490      // Cannonicalize constant to RHS if commutative
2491      std::swap(N1CFP, N2CFP);
2492      std::swap(N1, N2);
2493    } else if (N2CFP && VT != MVT::ppcf128) {
2494      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2495      APFloat::opStatus s;
2496      switch (Opcode) {
2497      case ISD::FADD:
2498        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2499        if (s != APFloat::opInvalidOp)
2500          return getConstantFP(V1, VT);
2501        break;
2502      case ISD::FSUB:
2503        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2504        if (s!=APFloat::opInvalidOp)
2505          return getConstantFP(V1, VT);
2506        break;
2507      case ISD::FMUL:
2508        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2509        if (s!=APFloat::opInvalidOp)
2510          return getConstantFP(V1, VT);
2511        break;
2512      case ISD::FDIV:
2513        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2514        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2515          return getConstantFP(V1, VT);
2516        break;
2517      case ISD::FREM :
2518        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2519        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2520          return getConstantFP(V1, VT);
2521        break;
2522      case ISD::FCOPYSIGN:
2523        V1.copySign(V2);
2524        return getConstantFP(V1, VT);
2525      default: break;
2526      }
2527    }
2528  }
2529
2530  // Canonicalize an UNDEF to the RHS, even over a constant.
2531  if (N1.getOpcode() == ISD::UNDEF) {
2532    if (isCommutativeBinOp(Opcode)) {
2533      std::swap(N1, N2);
2534    } else {
2535      switch (Opcode) {
2536      case ISD::FP_ROUND_INREG:
2537      case ISD::SIGN_EXTEND_INREG:
2538      case ISD::SUB:
2539      case ISD::FSUB:
2540      case ISD::FDIV:
2541      case ISD::FREM:
2542      case ISD::SRA:
2543        return N1;     // fold op(undef, arg2) -> undef
2544      case ISD::UDIV:
2545      case ISD::SDIV:
2546      case ISD::UREM:
2547      case ISD::SREM:
2548      case ISD::SRL:
2549      case ISD::SHL:
2550        if (!VT.isVector())
2551          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2552        // For vectors, we can't easily build an all zero vector, just return
2553        // the LHS.
2554        return N2;
2555      }
2556    }
2557  }
2558
2559  // Fold a bunch of operators when the RHS is undef.
2560  if (N2.getOpcode() == ISD::UNDEF) {
2561    switch (Opcode) {
2562    case ISD::XOR:
2563      if (N1.getOpcode() == ISD::UNDEF)
2564        // Handle undef ^ undef -> 0 special case. This is a common
2565        // idiom (misuse).
2566        return getConstant(0, VT);
2567      // fallthrough
2568    case ISD::ADD:
2569    case ISD::ADDC:
2570    case ISD::ADDE:
2571    case ISD::SUB:
2572    case ISD::FADD:
2573    case ISD::FSUB:
2574    case ISD::FMUL:
2575    case ISD::FDIV:
2576    case ISD::FREM:
2577    case ISD::UDIV:
2578    case ISD::SDIV:
2579    case ISD::UREM:
2580    case ISD::SREM:
2581      return N2;       // fold op(arg1, undef) -> undef
2582    case ISD::MUL:
2583    case ISD::AND:
2584    case ISD::SRL:
2585    case ISD::SHL:
2586      if (!VT.isVector())
2587        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2588      // For vectors, we can't easily build an all zero vector, just return
2589      // the LHS.
2590      return N1;
2591    case ISD::OR:
2592      if (!VT.isVector())
2593        return getConstant(VT.getIntegerVTBitMask(), VT);
2594      // For vectors, we can't easily build an all one vector, just return
2595      // the LHS.
2596      return N1;
2597    case ISD::SRA:
2598      return N1;
2599    }
2600  }
2601
2602  // Memoize this node if possible.
2603  SDNode *N;
2604  SDVTList VTs = getVTList(VT);
2605  if (VT != MVT::Flag) {
2606    SDValue Ops[] = { N1, N2 };
2607    FoldingSetNodeID ID;
2608    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2609    void *IP = 0;
2610    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2611      return SDValue(E, 0);
2612    N = NodeAllocator.Allocate<BinarySDNode>();
2613    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2614    CSEMap.InsertNode(N, IP);
2615  } else {
2616    N = NodeAllocator.Allocate<BinarySDNode>();
2617    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2618  }
2619
2620  AllNodes.push_back(N);
2621#ifndef NDEBUG
2622  VerifyNode(N);
2623#endif
2624  return SDValue(N, 0);
2625}
2626
2627SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2628                              SDValue N1, SDValue N2, SDValue N3) {
2629  // Perform various simplifications.
2630  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2631  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2632  switch (Opcode) {
2633  case ISD::CONCAT_VECTORS:
2634    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2635    // one big BUILD_VECTOR.
2636    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2637        N2.getOpcode() == ISD::BUILD_VECTOR &&
2638        N3.getOpcode() == ISD::BUILD_VECTOR) {
2639      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2640      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2641      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2642      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2643    }
2644    break;
2645  case ISD::SETCC: {
2646    // Use FoldSetCC to simplify SETCC's.
2647    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2648    if (Simp.getNode()) return Simp;
2649    break;
2650  }
2651  case ISD::SELECT:
2652    if (N1C) {
2653     if (N1C->getZExtValue())
2654        return N2;             // select true, X, Y -> X
2655      else
2656        return N3;             // select false, X, Y -> Y
2657    }
2658
2659    if (N2 == N3) return N2;   // select C, X, X -> X
2660    break;
2661  case ISD::BRCOND:
2662    if (N2C) {
2663      if (N2C->getZExtValue()) // Unconditional branch
2664        return getNode(ISD::BR, MVT::Other, N1, N3);
2665      else
2666        return N1;         // Never-taken branch
2667    }
2668    break;
2669  case ISD::VECTOR_SHUFFLE:
2670    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2671           VT.isVector() && N3.getValueType().isVector() &&
2672           N3.getOpcode() == ISD::BUILD_VECTOR &&
2673           VT.getVectorNumElements() == N3.getNumOperands() &&
2674           "Illegal VECTOR_SHUFFLE node!");
2675    break;
2676  case ISD::BIT_CONVERT:
2677    // Fold bit_convert nodes from a type to themselves.
2678    if (N1.getValueType() == VT)
2679      return N1;
2680    break;
2681  }
2682
2683  // Memoize node if it doesn't produce a flag.
2684  SDNode *N;
2685  SDVTList VTs = getVTList(VT);
2686  if (VT != MVT::Flag) {
2687    SDValue Ops[] = { N1, N2, N3 };
2688    FoldingSetNodeID ID;
2689    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2690    void *IP = 0;
2691    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2692      return SDValue(E, 0);
2693    N = NodeAllocator.Allocate<TernarySDNode>();
2694    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2695    CSEMap.InsertNode(N, IP);
2696  } else {
2697    N = NodeAllocator.Allocate<TernarySDNode>();
2698    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2699  }
2700  AllNodes.push_back(N);
2701#ifndef NDEBUG
2702  VerifyNode(N);
2703#endif
2704  return SDValue(N, 0);
2705}
2706
2707SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2708                              SDValue N1, SDValue N2, SDValue N3,
2709                              SDValue N4) {
2710  SDValue Ops[] = { N1, N2, N3, N4 };
2711  return getNode(Opcode, VT, Ops, 4);
2712}
2713
2714SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2715                              SDValue N1, SDValue N2, SDValue N3,
2716                              SDValue N4, SDValue N5) {
2717  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2718  return getNode(Opcode, VT, Ops, 5);
2719}
2720
2721/// getMemsetValue - Vectorized representation of the memset value
2722/// operand.
2723static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2724  unsigned NumBits = VT.isVector() ?
2725    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2726  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2727    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2728    unsigned Shift = 8;
2729    for (unsigned i = NumBits; i > 8; i >>= 1) {
2730      Val = (Val << Shift) | Val;
2731      Shift <<= 1;
2732    }
2733    if (VT.isInteger())
2734      return DAG.getConstant(Val, VT);
2735    return DAG.getConstantFP(APFloat(Val), VT);
2736  }
2737
2738  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2739  unsigned Shift = 8;
2740  for (unsigned i = NumBits; i > 8; i >>= 1) {
2741    Value = DAG.getNode(ISD::OR, VT,
2742                        DAG.getNode(ISD::SHL, VT, Value,
2743                                    DAG.getConstant(Shift, MVT::i8)), Value);
2744    Shift <<= 1;
2745  }
2746
2747  return Value;
2748}
2749
2750/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2751/// used when a memcpy is turned into a memset when the source is a constant
2752/// string ptr.
2753static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2754                                    const TargetLowering &TLI,
2755                                    std::string &Str, unsigned Offset) {
2756  // Handle vector with all elements zero.
2757  if (Str.empty()) {
2758    if (VT.isInteger())
2759      return DAG.getConstant(0, VT);
2760    unsigned NumElts = VT.getVectorNumElements();
2761    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2762    return DAG.getNode(ISD::BIT_CONVERT, VT,
2763                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2764  }
2765
2766  assert(!VT.isVector() && "Can't handle vector type here!");
2767  unsigned NumBits = VT.getSizeInBits();
2768  unsigned MSB = NumBits / 8;
2769  uint64_t Val = 0;
2770  if (TLI.isLittleEndian())
2771    Offset = Offset + MSB - 1;
2772  for (unsigned i = 0; i != MSB; ++i) {
2773    Val = (Val << 8) | (unsigned char)Str[Offset];
2774    Offset += TLI.isLittleEndian() ? -1 : 1;
2775  }
2776  return DAG.getConstant(Val, VT);
2777}
2778
2779/// getMemBasePlusOffset - Returns base and offset node for the
2780///
2781static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2782                                      SelectionDAG &DAG) {
2783  MVT VT = Base.getValueType();
2784  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2785}
2786
2787/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2788///
2789static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2790  unsigned SrcDelta = 0;
2791  GlobalAddressSDNode *G = NULL;
2792  if (Src.getOpcode() == ISD::GlobalAddress)
2793    G = cast<GlobalAddressSDNode>(Src);
2794  else if (Src.getOpcode() == ISD::ADD &&
2795           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2796           Src.getOperand(1).getOpcode() == ISD::Constant) {
2797    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2798    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2799  }
2800  if (!G)
2801    return false;
2802
2803  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2804  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2805    return true;
2806
2807  return false;
2808}
2809
2810/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2811/// to replace the memset / memcpy is below the threshold. It also returns the
2812/// types of the sequence of memory ops to perform memset / memcpy.
2813static
2814bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2815                              SDValue Dst, SDValue Src,
2816                              unsigned Limit, uint64_t Size, unsigned &Align,
2817                              std::string &Str, bool &isSrcStr,
2818                              SelectionDAG &DAG,
2819                              const TargetLowering &TLI) {
2820  isSrcStr = isMemSrcFromString(Src, Str);
2821  bool isSrcConst = isa<ConstantSDNode>(Src);
2822  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2823  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2824  if (VT != MVT::iAny) {
2825    unsigned NewAlign = (unsigned)
2826      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2827    // If source is a string constant, this will require an unaligned load.
2828    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2829      if (Dst.getOpcode() != ISD::FrameIndex) {
2830        // Can't change destination alignment. It requires a unaligned store.
2831        if (AllowUnalign)
2832          VT = MVT::iAny;
2833      } else {
2834        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2835        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2836        if (MFI->isFixedObjectIndex(FI)) {
2837          // Can't change destination alignment. It requires a unaligned store.
2838          if (AllowUnalign)
2839            VT = MVT::iAny;
2840        } else {
2841          // Give the stack frame object a larger alignment if needed.
2842          if (MFI->getObjectAlignment(FI) < NewAlign)
2843            MFI->setObjectAlignment(FI, NewAlign);
2844          Align = NewAlign;
2845        }
2846      }
2847    }
2848  }
2849
2850  if (VT == MVT::iAny) {
2851    if (AllowUnalign) {
2852      VT = MVT::i64;
2853    } else {
2854      switch (Align & 7) {
2855      case 0:  VT = MVT::i64; break;
2856      case 4:  VT = MVT::i32; break;
2857      case 2:  VT = MVT::i16; break;
2858      default: VT = MVT::i8;  break;
2859      }
2860    }
2861
2862    MVT LVT = MVT::i64;
2863    while (!TLI.isTypeLegal(LVT))
2864      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2865    assert(LVT.isInteger());
2866
2867    if (VT.bitsGT(LVT))
2868      VT = LVT;
2869  }
2870
2871  unsigned NumMemOps = 0;
2872  while (Size != 0) {
2873    unsigned VTSize = VT.getSizeInBits() / 8;
2874    while (VTSize > Size) {
2875      // For now, only use non-vector load / store's for the left-over pieces.
2876      if (VT.isVector()) {
2877        VT = MVT::i64;
2878        while (!TLI.isTypeLegal(VT))
2879          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2880        VTSize = VT.getSizeInBits() / 8;
2881      } else {
2882        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2883        VTSize >>= 1;
2884      }
2885    }
2886
2887    if (++NumMemOps > Limit)
2888      return false;
2889    MemOps.push_back(VT);
2890    Size -= VTSize;
2891  }
2892
2893  return true;
2894}
2895
2896static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2897                                         SDValue Chain, SDValue Dst,
2898                                         SDValue Src, uint64_t Size,
2899                                         unsigned Align, bool AlwaysInline,
2900                                         const Value *DstSV, uint64_t DstSVOff,
2901                                         const Value *SrcSV, uint64_t SrcSVOff){
2902  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2903
2904  // Expand memcpy to a series of load and store ops if the size operand falls
2905  // below a certain threshold.
2906  std::vector<MVT> MemOps;
2907  uint64_t Limit = -1;
2908  if (!AlwaysInline)
2909    Limit = TLI.getMaxStoresPerMemcpy();
2910  unsigned DstAlign = Align;  // Destination alignment can change.
2911  std::string Str;
2912  bool CopyFromStr;
2913  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2914                                Str, CopyFromStr, DAG, TLI))
2915    return SDValue();
2916
2917
2918  bool isZeroStr = CopyFromStr && Str.empty();
2919  SmallVector<SDValue, 8> OutChains;
2920  unsigned NumMemOps = MemOps.size();
2921  uint64_t SrcOff = 0, DstOff = 0;
2922  for (unsigned i = 0; i < NumMemOps; i++) {
2923    MVT VT = MemOps[i];
2924    unsigned VTSize = VT.getSizeInBits() / 8;
2925    SDValue Value, Store;
2926
2927    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2928      // It's unlikely a store of a vector immediate can be done in a single
2929      // instruction. It would require a load from a constantpool first.
2930      // We also handle store a vector with all zero's.
2931      // FIXME: Handle other cases where store of vector immediate is done in
2932      // a single instruction.
2933      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2934      Store = DAG.getStore(Chain, Value,
2935                           getMemBasePlusOffset(Dst, DstOff, DAG),
2936                           DstSV, DstSVOff + DstOff, false, DstAlign);
2937    } else {
2938      Value = DAG.getLoad(VT, Chain,
2939                          getMemBasePlusOffset(Src, SrcOff, DAG),
2940                          SrcSV, SrcSVOff + SrcOff, false, Align);
2941      Store = DAG.getStore(Chain, Value,
2942                           getMemBasePlusOffset(Dst, DstOff, DAG),
2943                           DstSV, DstSVOff + DstOff, false, DstAlign);
2944    }
2945    OutChains.push_back(Store);
2946    SrcOff += VTSize;
2947    DstOff += VTSize;
2948  }
2949
2950  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2951                     &OutChains[0], OutChains.size());
2952}
2953
2954static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2955                                          SDValue Chain, SDValue Dst,
2956                                          SDValue Src, uint64_t Size,
2957                                          unsigned Align, bool AlwaysInline,
2958                                          const Value *DstSV, uint64_t DstSVOff,
2959                                          const Value *SrcSV, uint64_t SrcSVOff){
2960  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2961
2962  // Expand memmove to a series of load and store ops if the size operand falls
2963  // below a certain threshold.
2964  std::vector<MVT> MemOps;
2965  uint64_t Limit = -1;
2966  if (!AlwaysInline)
2967    Limit = TLI.getMaxStoresPerMemmove();
2968  unsigned DstAlign = Align;  // Destination alignment can change.
2969  std::string Str;
2970  bool CopyFromStr;
2971  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2972                                Str, CopyFromStr, DAG, TLI))
2973    return SDValue();
2974
2975  uint64_t SrcOff = 0, DstOff = 0;
2976
2977  SmallVector<SDValue, 8> LoadValues;
2978  SmallVector<SDValue, 8> LoadChains;
2979  SmallVector<SDValue, 8> OutChains;
2980  unsigned NumMemOps = MemOps.size();
2981  for (unsigned i = 0; i < NumMemOps; i++) {
2982    MVT VT = MemOps[i];
2983    unsigned VTSize = VT.getSizeInBits() / 8;
2984    SDValue Value, Store;
2985
2986    Value = DAG.getLoad(VT, Chain,
2987                        getMemBasePlusOffset(Src, SrcOff, DAG),
2988                        SrcSV, SrcSVOff + SrcOff, false, Align);
2989    LoadValues.push_back(Value);
2990    LoadChains.push_back(Value.getValue(1));
2991    SrcOff += VTSize;
2992  }
2993  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2994                      &LoadChains[0], LoadChains.size());
2995  OutChains.clear();
2996  for (unsigned i = 0; i < NumMemOps; i++) {
2997    MVT VT = MemOps[i];
2998    unsigned VTSize = VT.getSizeInBits() / 8;
2999    SDValue Value, Store;
3000
3001    Store = DAG.getStore(Chain, LoadValues[i],
3002                         getMemBasePlusOffset(Dst, DstOff, DAG),
3003                         DstSV, DstSVOff + DstOff, false, DstAlign);
3004    OutChains.push_back(Store);
3005    DstOff += VTSize;
3006  }
3007
3008  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3009                     &OutChains[0], OutChains.size());
3010}
3011
3012static SDValue getMemsetStores(SelectionDAG &DAG,
3013                                 SDValue Chain, SDValue Dst,
3014                                 SDValue Src, uint64_t Size,
3015                                 unsigned Align,
3016                                 const Value *DstSV, uint64_t DstSVOff) {
3017  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3018
3019  // Expand memset to a series of load/store ops if the size operand
3020  // falls below a certain threshold.
3021  std::vector<MVT> MemOps;
3022  std::string Str;
3023  bool CopyFromStr;
3024  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3025                                Size, Align, Str, CopyFromStr, DAG, TLI))
3026    return SDValue();
3027
3028  SmallVector<SDValue, 8> OutChains;
3029  uint64_t DstOff = 0;
3030
3031  unsigned NumMemOps = MemOps.size();
3032  for (unsigned i = 0; i < NumMemOps; i++) {
3033    MVT VT = MemOps[i];
3034    unsigned VTSize = VT.getSizeInBits() / 8;
3035    SDValue Value = getMemsetValue(Src, VT, DAG);
3036    SDValue Store = DAG.getStore(Chain, Value,
3037                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3038                                   DstSV, DstSVOff + DstOff);
3039    OutChains.push_back(Store);
3040    DstOff += VTSize;
3041  }
3042
3043  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3044                     &OutChains[0], OutChains.size());
3045}
3046
3047SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3048                                SDValue Src, SDValue Size,
3049                                unsigned Align, bool AlwaysInline,
3050                                const Value *DstSV, uint64_t DstSVOff,
3051                                const Value *SrcSV, uint64_t SrcSVOff) {
3052
3053  // Check to see if we should lower the memcpy to loads and stores first.
3054  // For cases within the target-specified limits, this is the best choice.
3055  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3056  if (ConstantSize) {
3057    // Memcpy with size zero? Just return the original chain.
3058    if (ConstantSize->isNullValue())
3059      return Chain;
3060
3061    SDValue Result =
3062      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3063                              ConstantSize->getZExtValue(),
3064                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3065    if (Result.getNode())
3066      return Result;
3067  }
3068
3069  // Then check to see if we should lower the memcpy with target-specific
3070  // code. If the target chooses to do this, this is the next best.
3071  SDValue Result =
3072    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3073                                AlwaysInline,
3074                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3075  if (Result.getNode())
3076    return Result;
3077
3078  // If we really need inline code and the target declined to provide it,
3079  // use a (potentially long) sequence of loads and stores.
3080  if (AlwaysInline) {
3081    assert(ConstantSize && "AlwaysInline requires a constant size!");
3082    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3083                                   ConstantSize->getZExtValue(), Align, true,
3084                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3085  }
3086
3087  // Emit a library call.
3088  TargetLowering::ArgListTy Args;
3089  TargetLowering::ArgListEntry Entry;
3090  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3091  Entry.Node = Dst; Args.push_back(Entry);
3092  Entry.Node = Src; Args.push_back(Entry);
3093  Entry.Node = Size; Args.push_back(Entry);
3094  std::pair<SDValue,SDValue> CallResult =
3095    TLI.LowerCallTo(Chain, Type::VoidTy,
3096                    false, false, false, CallingConv::C, false,
3097                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3098                    Args, *this);
3099  return CallResult.second;
3100}
3101
3102SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3103                                 SDValue Src, SDValue Size,
3104                                 unsigned Align,
3105                                 const Value *DstSV, uint64_t DstSVOff,
3106                                 const Value *SrcSV, uint64_t SrcSVOff) {
3107
3108  // Check to see if we should lower the memmove to loads and stores first.
3109  // For cases within the target-specified limits, this is the best choice.
3110  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3111  if (ConstantSize) {
3112    // Memmove with size zero? Just return the original chain.
3113    if (ConstantSize->isNullValue())
3114      return Chain;
3115
3116    SDValue Result =
3117      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3118                               ConstantSize->getZExtValue(),
3119                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3120    if (Result.getNode())
3121      return Result;
3122  }
3123
3124  // Then check to see if we should lower the memmove with target-specific
3125  // code. If the target chooses to do this, this is the next best.
3126  SDValue Result =
3127    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3128                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3129  if (Result.getNode())
3130    return Result;
3131
3132  // Emit a library call.
3133  TargetLowering::ArgListTy Args;
3134  TargetLowering::ArgListEntry Entry;
3135  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3136  Entry.Node = Dst; Args.push_back(Entry);
3137  Entry.Node = Src; Args.push_back(Entry);
3138  Entry.Node = Size; Args.push_back(Entry);
3139  std::pair<SDValue,SDValue> CallResult =
3140    TLI.LowerCallTo(Chain, Type::VoidTy,
3141                    false, false, false, CallingConv::C, false,
3142                    getExternalSymbol("memmove", TLI.getPointerTy()),
3143                    Args, *this);
3144  return CallResult.second;
3145}
3146
3147SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3148                                SDValue Src, SDValue Size,
3149                                unsigned Align,
3150                                const Value *DstSV, uint64_t DstSVOff) {
3151
3152  // Check to see if we should lower the memset to stores first.
3153  // For cases within the target-specified limits, this is the best choice.
3154  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3155  if (ConstantSize) {
3156    // Memset with size zero? Just return the original chain.
3157    if (ConstantSize->isNullValue())
3158      return Chain;
3159
3160    SDValue Result =
3161      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3162                      Align, DstSV, DstSVOff);
3163    if (Result.getNode())
3164      return Result;
3165  }
3166
3167  // Then check to see if we should lower the memset with target-specific
3168  // code. If the target chooses to do this, this is the next best.
3169  SDValue Result =
3170    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3171                                DstSV, DstSVOff);
3172  if (Result.getNode())
3173    return Result;
3174
3175  // Emit a library call.
3176  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3177  TargetLowering::ArgListTy Args;
3178  TargetLowering::ArgListEntry Entry;
3179  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3180  Args.push_back(Entry);
3181  // Extend or truncate the argument to be an i32 value for the call.
3182  if (Src.getValueType().bitsGT(MVT::i32))
3183    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3184  else
3185    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3186  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3187  Args.push_back(Entry);
3188  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3189  Args.push_back(Entry);
3190  std::pair<SDValue,SDValue> CallResult =
3191    TLI.LowerCallTo(Chain, Type::VoidTy,
3192                    false, false, false, CallingConv::C, false,
3193                    getExternalSymbol("memset", TLI.getPointerTy()),
3194                    Args, *this);
3195  return CallResult.second;
3196}
3197
3198SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3199                                SDValue Ptr, SDValue Cmp,
3200                                SDValue Swp, const Value* PtrVal,
3201                                unsigned Alignment) {
3202  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3203          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3204          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3205          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3206  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3207
3208  MVT VT = Cmp.getValueType();
3209
3210  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3211    Alignment = getMVTAlignment(VT);
3212
3213  SDVTList VTs = getVTList(VT, MVT::Other);
3214  FoldingSetNodeID ID;
3215  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3216  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3217  void* IP = 0;
3218  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3219    return SDValue(E, 0);
3220  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3221  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3222  CSEMap.InsertNode(N, IP);
3223  AllNodes.push_back(N);
3224  return SDValue(N, 0);
3225}
3226
3227SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3228                                SDValue Ptr, SDValue Val,
3229                                const Value* PtrVal,
3230                                unsigned Alignment) {
3231  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3232          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3233          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3234          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3235          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3236          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3237          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3238          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3239          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3240          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3241          Opcode == ISD::ATOMIC_SWAP_8 ||
3242          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3243          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3244          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3245          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3246          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3247          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3248          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3249          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3250          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3251          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3252          Opcode == ISD::ATOMIC_SWAP_16 ||
3253          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3254          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3255          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3256          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3257          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3258          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3259          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3260          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3261          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3262          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3263          Opcode == ISD::ATOMIC_SWAP_32 ||
3264          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3265          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3266          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3267          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3268          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3269          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3270          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3271          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3272          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3273          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3274          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3275
3276  MVT VT = Val.getValueType();
3277
3278  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3279    Alignment = getMVTAlignment(VT);
3280
3281  SDVTList VTs = getVTList(VT, MVT::Other);
3282  FoldingSetNodeID ID;
3283  SDValue Ops[] = {Chain, Ptr, Val};
3284  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3285  void* IP = 0;
3286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3287    return SDValue(E, 0);
3288  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3289  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3290  CSEMap.InsertNode(N, IP);
3291  AllNodes.push_back(N);
3292  return SDValue(N, 0);
3293}
3294
3295/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3296/// Allowed to return something different (and simpler) if Simplify is true.
3297SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3298                                     bool Simplify) {
3299  if (Simplify && NumOps == 1)
3300    return Ops[0];
3301
3302  SmallVector<MVT, 4> VTs;
3303  VTs.reserve(NumOps);
3304  for (unsigned i = 0; i < NumOps; ++i)
3305    VTs.push_back(Ops[i].getValueType());
3306  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3307}
3308
3309SDValue
3310SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3311                      SDVTList VTs,
3312                      const SDValue *Operands, unsigned NumOperands) {
3313  // Do not CSE calls. Note that in addition to being a compile-time
3314  // optimization (since attempting CSE of calls is unlikely to be
3315  // meaningful), we actually depend on this behavior. CallSDNode can
3316  // be mutated, which is only safe if calls are not CSE'd.
3317  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3318  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall,
3319                     VTs, Operands, NumOperands);
3320  AllNodes.push_back(N);
3321  return SDValue(N, 0);
3322}
3323
3324SDValue
3325SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3326                      MVT VT, SDValue Chain,
3327                      SDValue Ptr, SDValue Offset,
3328                      const Value *SV, int SVOffset, MVT EVT,
3329                      bool isVolatile, unsigned Alignment) {
3330  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3331    Alignment = getMVTAlignment(VT);
3332
3333  if (VT == EVT) {
3334    ExtType = ISD::NON_EXTLOAD;
3335  } else if (ExtType == ISD::NON_EXTLOAD) {
3336    assert(VT == EVT && "Non-extending load from different memory type!");
3337  } else {
3338    // Extending load.
3339    if (VT.isVector())
3340      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3341             "Invalid vector extload!");
3342    else
3343      assert(EVT.bitsLT(VT) &&
3344             "Should only be an extending load, not truncating!");
3345    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3346           "Cannot sign/zero extend a FP/Vector load!");
3347    assert(VT.isInteger() == EVT.isInteger() &&
3348           "Cannot convert from FP to Int or Int -> FP!");
3349  }
3350
3351  bool Indexed = AM != ISD::UNINDEXED;
3352  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3353         "Unindexed load with an offset!");
3354
3355  SDVTList VTs = Indexed ?
3356    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3357  SDValue Ops[] = { Chain, Ptr, Offset };
3358  FoldingSetNodeID ID;
3359  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3360  ID.AddInteger(AM);
3361  ID.AddInteger(ExtType);
3362  ID.AddInteger(EVT.getRawBits());
3363  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3364  void *IP = 0;
3365  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3366    return SDValue(E, 0);
3367  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3368  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3369                     Alignment, isVolatile);
3370  CSEMap.InsertNode(N, IP);
3371  AllNodes.push_back(N);
3372  return SDValue(N, 0);
3373}
3374
3375SDValue SelectionDAG::getLoad(MVT VT,
3376                              SDValue Chain, SDValue Ptr,
3377                              const Value *SV, int SVOffset,
3378                              bool isVolatile, unsigned Alignment) {
3379  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3380  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3381                 SV, SVOffset, VT, isVolatile, Alignment);
3382}
3383
3384SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3385                                 SDValue Chain, SDValue Ptr,
3386                                 const Value *SV,
3387                                 int SVOffset, MVT EVT,
3388                                 bool isVolatile, unsigned Alignment) {
3389  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3390  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3391                 SV, SVOffset, EVT, isVolatile, Alignment);
3392}
3393
3394SDValue
3395SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3396                             SDValue Offset, ISD::MemIndexedMode AM) {
3397  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3398  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3399         "Load is already a indexed load!");
3400  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3401                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3402                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3403                 LD->isVolatile(), LD->getAlignment());
3404}
3405
3406SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3407                               SDValue Ptr, const Value *SV, int SVOffset,
3408                               bool isVolatile, unsigned Alignment) {
3409  MVT VT = Val.getValueType();
3410
3411  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3412    Alignment = getMVTAlignment(VT);
3413
3414  SDVTList VTs = getVTList(MVT::Other);
3415  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3416  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3417  FoldingSetNodeID ID;
3418  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3419  ID.AddInteger(ISD::UNINDEXED);
3420  ID.AddInteger(false);
3421  ID.AddInteger(VT.getRawBits());
3422  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3423  void *IP = 0;
3424  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3425    return SDValue(E, 0);
3426  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3427  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3428                      VT, SV, SVOffset, Alignment, isVolatile);
3429  CSEMap.InsertNode(N, IP);
3430  AllNodes.push_back(N);
3431  return SDValue(N, 0);
3432}
3433
3434SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3435                                    SDValue Ptr, const Value *SV,
3436                                    int SVOffset, MVT SVT,
3437                                    bool isVolatile, unsigned Alignment) {
3438  MVT VT = Val.getValueType();
3439
3440  if (VT == SVT)
3441    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3442
3443  assert(VT.bitsGT(SVT) && "Not a truncation?");
3444  assert(VT.isInteger() == SVT.isInteger() &&
3445         "Can't do FP-INT conversion!");
3446
3447  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3448    Alignment = getMVTAlignment(VT);
3449
3450  SDVTList VTs = getVTList(MVT::Other);
3451  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3452  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3453  FoldingSetNodeID ID;
3454  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3455  ID.AddInteger(ISD::UNINDEXED);
3456  ID.AddInteger(1);
3457  ID.AddInteger(SVT.getRawBits());
3458  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3459  void *IP = 0;
3460  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3461    return SDValue(E, 0);
3462  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3463  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3464                      SVT, SV, SVOffset, Alignment, isVolatile);
3465  CSEMap.InsertNode(N, IP);
3466  AllNodes.push_back(N);
3467  return SDValue(N, 0);
3468}
3469
3470SDValue
3471SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3472                              SDValue Offset, ISD::MemIndexedMode AM) {
3473  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3474  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3475         "Store is already a indexed store!");
3476  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3477  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3478  FoldingSetNodeID ID;
3479  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3480  ID.AddInteger(AM);
3481  ID.AddInteger(ST->isTruncatingStore());
3482  ID.AddInteger(ST->getMemoryVT().getRawBits());
3483  ID.AddInteger(ST->getRawFlags());
3484  void *IP = 0;
3485  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3486    return SDValue(E, 0);
3487  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3488  new (N) StoreSDNode(Ops, VTs, AM,
3489                      ST->isTruncatingStore(), ST->getMemoryVT(),
3490                      ST->getSrcValue(), ST->getSrcValueOffset(),
3491                      ST->getAlignment(), ST->isVolatile());
3492  CSEMap.InsertNode(N, IP);
3493  AllNodes.push_back(N);
3494  return SDValue(N, 0);
3495}
3496
3497SDValue SelectionDAG::getVAArg(MVT VT,
3498                               SDValue Chain, SDValue Ptr,
3499                               SDValue SV) {
3500  SDValue Ops[] = { Chain, Ptr, SV };
3501  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3502}
3503
3504SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3505                              const SDUse *Ops, unsigned NumOps) {
3506  switch (NumOps) {
3507  case 0: return getNode(Opcode, VT);
3508  case 1: return getNode(Opcode, VT, Ops[0]);
3509  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3510  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3511  default: break;
3512  }
3513
3514  // Copy from an SDUse array into an SDValue array for use with
3515  // the regular getNode logic.
3516  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3517  return getNode(Opcode, VT, &NewOps[0], NumOps);
3518}
3519
3520SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3521                              const SDValue *Ops, unsigned NumOps) {
3522  switch (NumOps) {
3523  case 0: return getNode(Opcode, VT);
3524  case 1: return getNode(Opcode, VT, Ops[0]);
3525  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3526  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3527  default: break;
3528  }
3529
3530  switch (Opcode) {
3531  default: break;
3532  case ISD::SELECT_CC: {
3533    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3534    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3535           "LHS and RHS of condition must have same type!");
3536    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3537           "True and False arms of SelectCC must have same type!");
3538    assert(Ops[2].getValueType() == VT &&
3539           "select_cc node must be of same type as true and false value!");
3540    break;
3541  }
3542  case ISD::BR_CC: {
3543    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3544    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3545           "LHS/RHS of comparison should match types!");
3546    break;
3547  }
3548  }
3549
3550  // Memoize nodes.
3551  SDNode *N;
3552  SDVTList VTs = getVTList(VT);
3553  if (VT != MVT::Flag) {
3554    FoldingSetNodeID ID;
3555    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3556    void *IP = 0;
3557    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3558      return SDValue(E, 0);
3559    N = NodeAllocator.Allocate<SDNode>();
3560    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3561    CSEMap.InsertNode(N, IP);
3562  } else {
3563    N = NodeAllocator.Allocate<SDNode>();
3564    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3565  }
3566  AllNodes.push_back(N);
3567#ifndef NDEBUG
3568  VerifyNode(N);
3569#endif
3570  return SDValue(N, 0);
3571}
3572
3573SDValue SelectionDAG::getNode(unsigned Opcode,
3574                              const std::vector<MVT> &ResultTys,
3575                              const SDValue *Ops, unsigned NumOps) {
3576  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3577                 Ops, NumOps);
3578}
3579
3580SDValue SelectionDAG::getNode(unsigned Opcode,
3581                              const MVT *VTs, unsigned NumVTs,
3582                              const SDValue *Ops, unsigned NumOps) {
3583  if (NumVTs == 1)
3584    return getNode(Opcode, VTs[0], Ops, NumOps);
3585  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3586}
3587
3588SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3589                              const SDValue *Ops, unsigned NumOps) {
3590  if (VTList.NumVTs == 1)
3591    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3592
3593  switch (Opcode) {
3594  // FIXME: figure out how to safely handle things like
3595  // int foo(int x) { return 1 << (x & 255); }
3596  // int bar() { return foo(256); }
3597#if 0
3598  case ISD::SRA_PARTS:
3599  case ISD::SRL_PARTS:
3600  case ISD::SHL_PARTS:
3601    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3602        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3603      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3604    else if (N3.getOpcode() == ISD::AND)
3605      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3606        // If the and is only masking out bits that cannot effect the shift,
3607        // eliminate the and.
3608        unsigned NumBits = VT.getSizeInBits()*2;
3609        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3610          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3611      }
3612    break;
3613#endif
3614  }
3615
3616  // Memoize the node unless it returns a flag.
3617  SDNode *N;
3618  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3619    FoldingSetNodeID ID;
3620    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3621    void *IP = 0;
3622    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3623      return SDValue(E, 0);
3624    if (NumOps == 1) {
3625      N = NodeAllocator.Allocate<UnarySDNode>();
3626      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3627    } else if (NumOps == 2) {
3628      N = NodeAllocator.Allocate<BinarySDNode>();
3629      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3630    } else if (NumOps == 3) {
3631      N = NodeAllocator.Allocate<TernarySDNode>();
3632      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3633    } else {
3634      N = NodeAllocator.Allocate<SDNode>();
3635      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3636    }
3637    CSEMap.InsertNode(N, IP);
3638  } else {
3639    if (NumOps == 1) {
3640      N = NodeAllocator.Allocate<UnarySDNode>();
3641      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3642    } else if (NumOps == 2) {
3643      N = NodeAllocator.Allocate<BinarySDNode>();
3644      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3645    } else if (NumOps == 3) {
3646      N = NodeAllocator.Allocate<TernarySDNode>();
3647      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3648    } else {
3649      N = NodeAllocator.Allocate<SDNode>();
3650      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3651    }
3652  }
3653  AllNodes.push_back(N);
3654#ifndef NDEBUG
3655  VerifyNode(N);
3656#endif
3657  return SDValue(N, 0);
3658}
3659
3660SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3661  return getNode(Opcode, VTList, 0, 0);
3662}
3663
3664SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3665                                SDValue N1) {
3666  SDValue Ops[] = { N1 };
3667  return getNode(Opcode, VTList, Ops, 1);
3668}
3669
3670SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3671                              SDValue N1, SDValue N2) {
3672  SDValue Ops[] = { N1, N2 };
3673  return getNode(Opcode, VTList, Ops, 2);
3674}
3675
3676SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3677                              SDValue N1, SDValue N2, SDValue N3) {
3678  SDValue Ops[] = { N1, N2, N3 };
3679  return getNode(Opcode, VTList, Ops, 3);
3680}
3681
3682SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3683                              SDValue N1, SDValue N2, SDValue N3,
3684                              SDValue N4) {
3685  SDValue Ops[] = { N1, N2, N3, N4 };
3686  return getNode(Opcode, VTList, Ops, 4);
3687}
3688
3689SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3690                              SDValue N1, SDValue N2, SDValue N3,
3691                              SDValue N4, SDValue N5) {
3692  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3693  return getNode(Opcode, VTList, Ops, 5);
3694}
3695
3696SDVTList SelectionDAG::getVTList(MVT VT) {
3697  return makeVTList(SDNode::getValueTypeList(VT), 1);
3698}
3699
3700SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3701  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3702       E = VTList.rend(); I != E; ++I)
3703    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3704      return *I;
3705
3706  MVT *Array = Allocator.Allocate<MVT>(2);
3707  Array[0] = VT1;
3708  Array[1] = VT2;
3709  SDVTList Result = makeVTList(Array, 2);
3710  VTList.push_back(Result);
3711  return Result;
3712}
3713
3714SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3715  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3716       E = VTList.rend(); I != E; ++I)
3717    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3718                          I->VTs[2] == VT3)
3719      return *I;
3720
3721  MVT *Array = Allocator.Allocate<MVT>(3);
3722  Array[0] = VT1;
3723  Array[1] = VT2;
3724  Array[2] = VT3;
3725  SDVTList Result = makeVTList(Array, 3);
3726  VTList.push_back(Result);
3727  return Result;
3728}
3729
3730SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3731  switch (NumVTs) {
3732    case 0: assert(0 && "Cannot have nodes without results!");
3733    case 1: return getVTList(VTs[0]);
3734    case 2: return getVTList(VTs[0], VTs[1]);
3735    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3736    default: break;
3737  }
3738
3739  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3740       E = VTList.rend(); I != E; ++I) {
3741    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3742      continue;
3743
3744    bool NoMatch = false;
3745    for (unsigned i = 2; i != NumVTs; ++i)
3746      if (VTs[i] != I->VTs[i]) {
3747        NoMatch = true;
3748        break;
3749      }
3750    if (!NoMatch)
3751      return *I;
3752  }
3753
3754  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3755  std::copy(VTs, VTs+NumVTs, Array);
3756  SDVTList Result = makeVTList(Array, NumVTs);
3757  VTList.push_back(Result);
3758  return Result;
3759}
3760
3761
3762/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3763/// specified operands.  If the resultant node already exists in the DAG,
3764/// this does not modify the specified node, instead it returns the node that
3765/// already exists.  If the resultant node does not exist in the DAG, the
3766/// input node is returned.  As a degenerate case, if you specify the same
3767/// input operands as the node already has, the input node is returned.
3768SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3769  SDNode *N = InN.getNode();
3770  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3771
3772  // Check to see if there is no change.
3773  if (Op == N->getOperand(0)) return InN;
3774
3775  // See if the modified node already exists.
3776  void *InsertPos = 0;
3777  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3778    return SDValue(Existing, InN.getResNo());
3779
3780  // Nope it doesn't.  Remove the node from its current place in the maps.
3781  if (InsertPos)
3782    if (!RemoveNodeFromCSEMaps(N))
3783      InsertPos = 0;
3784
3785  // Now we update the operands.
3786  N->OperandList[0].getVal()->removeUser(0, N);
3787  N->OperandList[0] = Op;
3788  N->OperandList[0].setUser(N);
3789  Op.getNode()->addUser(0, N);
3790
3791  // If this gets put into a CSE map, add it.
3792  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3793  return InN;
3794}
3795
3796SDValue SelectionDAG::
3797UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3798  SDNode *N = InN.getNode();
3799  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3800
3801  // Check to see if there is no change.
3802  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3803    return InN;   // No operands changed, just return the input node.
3804
3805  // See if the modified node already exists.
3806  void *InsertPos = 0;
3807  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3808    return SDValue(Existing, InN.getResNo());
3809
3810  // Nope it doesn't.  Remove the node from its current place in the maps.
3811  if (InsertPos)
3812    if (!RemoveNodeFromCSEMaps(N))
3813      InsertPos = 0;
3814
3815  // Now we update the operands.
3816  if (N->OperandList[0] != Op1) {
3817    N->OperandList[0].getVal()->removeUser(0, N);
3818    N->OperandList[0] = Op1;
3819    N->OperandList[0].setUser(N);
3820    Op1.getNode()->addUser(0, N);
3821  }
3822  if (N->OperandList[1] != Op2) {
3823    N->OperandList[1].getVal()->removeUser(1, N);
3824    N->OperandList[1] = Op2;
3825    N->OperandList[1].setUser(N);
3826    Op2.getNode()->addUser(1, N);
3827  }
3828
3829  // If this gets put into a CSE map, add it.
3830  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3831  return InN;
3832}
3833
3834SDValue SelectionDAG::
3835UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3836  SDValue Ops[] = { Op1, Op2, Op3 };
3837  return UpdateNodeOperands(N, Ops, 3);
3838}
3839
3840SDValue SelectionDAG::
3841UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3842                   SDValue Op3, SDValue Op4) {
3843  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3844  return UpdateNodeOperands(N, Ops, 4);
3845}
3846
3847SDValue SelectionDAG::
3848UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3849                   SDValue Op3, SDValue Op4, SDValue Op5) {
3850  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3851  return UpdateNodeOperands(N, Ops, 5);
3852}
3853
3854SDValue SelectionDAG::
3855UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3856  SDNode *N = InN.getNode();
3857  assert(N->getNumOperands() == NumOps &&
3858         "Update with wrong number of operands");
3859
3860  // Check to see if there is no change.
3861  bool AnyChange = false;
3862  for (unsigned i = 0; i != NumOps; ++i) {
3863    if (Ops[i] != N->getOperand(i)) {
3864      AnyChange = true;
3865      break;
3866    }
3867  }
3868
3869  // No operands changed, just return the input node.
3870  if (!AnyChange) return InN;
3871
3872  // See if the modified node already exists.
3873  void *InsertPos = 0;
3874  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3875    return SDValue(Existing, InN.getResNo());
3876
3877  // Nope it doesn't.  Remove the node from its current place in the maps.
3878  if (InsertPos)
3879    if (!RemoveNodeFromCSEMaps(N))
3880      InsertPos = 0;
3881
3882  // Now we update the operands.
3883  for (unsigned i = 0; i != NumOps; ++i) {
3884    if (N->OperandList[i] != Ops[i]) {
3885      N->OperandList[i].getVal()->removeUser(i, N);
3886      N->OperandList[i] = Ops[i];
3887      N->OperandList[i].setUser(N);
3888      Ops[i].getNode()->addUser(i, N);
3889    }
3890  }
3891
3892  // If this gets put into a CSE map, add it.
3893  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3894  return InN;
3895}
3896
3897/// DropOperands - Release the operands and set this node to have
3898/// zero operands.
3899void SDNode::DropOperands() {
3900  // Unlike the code in MorphNodeTo that does this, we don't need to
3901  // watch for dead nodes here.
3902  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3903    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3904
3905  NumOperands = 0;
3906}
3907
3908/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3909/// machine opcode.
3910///
3911SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3912                                   MVT VT) {
3913  SDVTList VTs = getVTList(VT);
3914  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3915}
3916
3917SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3918                                   MVT VT, SDValue Op1) {
3919  SDVTList VTs = getVTList(VT);
3920  SDValue Ops[] = { Op1 };
3921  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3922}
3923
3924SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3925                                   MVT VT, SDValue Op1,
3926                                   SDValue Op2) {
3927  SDVTList VTs = getVTList(VT);
3928  SDValue Ops[] = { Op1, Op2 };
3929  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3930}
3931
3932SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3933                                   MVT VT, SDValue Op1,
3934                                   SDValue Op2, SDValue Op3) {
3935  SDVTList VTs = getVTList(VT);
3936  SDValue Ops[] = { Op1, Op2, Op3 };
3937  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3938}
3939
3940SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3941                                   MVT VT, const SDValue *Ops,
3942                                   unsigned NumOps) {
3943  SDVTList VTs = getVTList(VT);
3944  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3945}
3946
3947SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3948                                   MVT VT1, MVT VT2, const SDValue *Ops,
3949                                   unsigned NumOps) {
3950  SDVTList VTs = getVTList(VT1, VT2);
3951  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3952}
3953
3954SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3955                                   MVT VT1, MVT VT2) {
3956  SDVTList VTs = getVTList(VT1, VT2);
3957  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3958}
3959
3960SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3961                                   MVT VT1, MVT VT2, MVT VT3,
3962                                   const SDValue *Ops, unsigned NumOps) {
3963  SDVTList VTs = getVTList(VT1, VT2, VT3);
3964  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3965}
3966
3967SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3968                                   MVT VT1, MVT VT2,
3969                                   SDValue Op1) {
3970  SDVTList VTs = getVTList(VT1, VT2);
3971  SDValue Ops[] = { Op1 };
3972  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3973}
3974
3975SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3976                                   MVT VT1, MVT VT2,
3977                                   SDValue Op1, SDValue Op2) {
3978  SDVTList VTs = getVTList(VT1, VT2);
3979  SDValue Ops[] = { Op1, Op2 };
3980  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3981}
3982
3983SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3984                                   MVT VT1, MVT VT2,
3985                                   SDValue Op1, SDValue Op2,
3986                                   SDValue Op3) {
3987  SDVTList VTs = getVTList(VT1, VT2);
3988  SDValue Ops[] = { Op1, Op2, Op3 };
3989  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3990}
3991
3992SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3993                                   SDVTList VTs, const SDValue *Ops,
3994                                   unsigned NumOps) {
3995  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
3996}
3997
3998SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3999                                  MVT VT) {
4000  SDVTList VTs = getVTList(VT);
4001  return MorphNodeTo(N, Opc, VTs, 0, 0);
4002}
4003
4004SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4005                                  MVT VT, SDValue Op1) {
4006  SDVTList VTs = getVTList(VT);
4007  SDValue Ops[] = { Op1 };
4008  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4009}
4010
4011SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4012                                  MVT VT, SDValue Op1,
4013                                  SDValue Op2) {
4014  SDVTList VTs = getVTList(VT);
4015  SDValue Ops[] = { Op1, Op2 };
4016  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4017}
4018
4019SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4020                                  MVT VT, SDValue Op1,
4021                                  SDValue Op2, SDValue Op3) {
4022  SDVTList VTs = getVTList(VT);
4023  SDValue Ops[] = { Op1, Op2, Op3 };
4024  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4025}
4026
4027SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4028                                  MVT VT, const SDValue *Ops,
4029                                  unsigned NumOps) {
4030  SDVTList VTs = getVTList(VT);
4031  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4032}
4033
4034SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4035                                  MVT VT1, MVT VT2, const SDValue *Ops,
4036                                  unsigned NumOps) {
4037  SDVTList VTs = getVTList(VT1, VT2);
4038  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4039}
4040
4041SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4042                                  MVT VT1, MVT VT2) {
4043  SDVTList VTs = getVTList(VT1, VT2);
4044  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4045}
4046
4047SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4048                                  MVT VT1, MVT VT2, MVT VT3,
4049                                  const SDValue *Ops, unsigned NumOps) {
4050  SDVTList VTs = getVTList(VT1, VT2, VT3);
4051  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4052}
4053
4054SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4055                                  MVT VT1, MVT VT2,
4056                                  SDValue Op1) {
4057  SDVTList VTs = getVTList(VT1, VT2);
4058  SDValue Ops[] = { Op1 };
4059  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4060}
4061
4062SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4063                                  MVT VT1, MVT VT2,
4064                                  SDValue Op1, SDValue Op2) {
4065  SDVTList VTs = getVTList(VT1, VT2);
4066  SDValue Ops[] = { Op1, Op2 };
4067  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4068}
4069
4070SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4071                                  MVT VT1, MVT VT2,
4072                                  SDValue Op1, SDValue Op2,
4073                                  SDValue Op3) {
4074  SDVTList VTs = getVTList(VT1, VT2);
4075  SDValue Ops[] = { Op1, Op2, Op3 };
4076  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4077}
4078
4079/// MorphNodeTo - These *mutate* the specified node to have the specified
4080/// return type, opcode, and operands.
4081///
4082/// Note that MorphNodeTo returns the resultant node.  If there is already a
4083/// node of the specified opcode and operands, it returns that node instead of
4084/// the current one.
4085///
4086/// Using MorphNodeTo is faster than creating a new node and swapping it in
4087/// with ReplaceAllUsesWith both because it often avoids allocating a new
4088/// node, and because it doesn't require CSE recalculation for any of
4089/// the node's users.
4090///
4091SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4092                                  SDVTList VTs, const SDValue *Ops,
4093                                  unsigned NumOps) {
4094  // If an identical node already exists, use it.
4095  void *IP = 0;
4096  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4097    FoldingSetNodeID ID;
4098    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4099    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4100      return ON;
4101  }
4102
4103  if (!RemoveNodeFromCSEMaps(N))
4104    IP = 0;
4105
4106  // Start the morphing.
4107  N->NodeType = Opc;
4108  N->ValueList = VTs.VTs;
4109  N->NumValues = VTs.NumVTs;
4110
4111  // Clear the operands list, updating used nodes to remove this from their
4112  // use list.  Keep track of any operands that become dead as a result.
4113  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4114  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4115       I != E; ++I) {
4116    SDNode *Used = I->getVal();
4117    Used->removeUser(std::distance(B, I), N);
4118    if (Used->use_empty())
4119      DeadNodeSet.insert(Used);
4120  }
4121
4122  // If NumOps is larger than the # of operands we currently have, reallocate
4123  // the operand list.
4124  if (NumOps > N->NumOperands) {
4125    if (N->OperandsNeedDelete)
4126      delete[] N->OperandList;
4127    if (N->isMachineOpcode()) {
4128      // We're creating a final node that will live unmorphed for the
4129      // remainder of the current SelectionDAG iteration, so we can allocate
4130      // the operands directly out of a pool with no recycling metadata.
4131      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4132      N->OperandsNeedDelete = false;
4133    } else {
4134      N->OperandList = new SDUse[NumOps];
4135      N->OperandsNeedDelete = true;
4136    }
4137  }
4138
4139  // Assign the new operands.
4140  N->NumOperands = NumOps;
4141  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4142    N->OperandList[i] = Ops[i];
4143    N->OperandList[i].setUser(N);
4144    SDNode *ToUse = N->OperandList[i].getVal();
4145    ToUse->addUser(i, N);
4146  }
4147
4148  // Delete any nodes that are still dead after adding the uses for the
4149  // new operands.
4150  SmallVector<SDNode *, 16> DeadNodes;
4151  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4152       E = DeadNodeSet.end(); I != E; ++I)
4153    if ((*I)->use_empty())
4154      DeadNodes.push_back(*I);
4155  RemoveDeadNodes(DeadNodes);
4156
4157  if (IP)
4158    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4159  return N;
4160}
4161
4162
4163/// getTargetNode - These are used for target selectors to create a new node
4164/// with specified return type(s), target opcode, and operands.
4165///
4166/// Note that getTargetNode returns the resultant node.  If there is already a
4167/// node of the specified opcode and operands, it returns that node instead of
4168/// the current one.
4169SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4170  return getNode(~Opcode, VT).getNode();
4171}
4172SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4173  return getNode(~Opcode, VT, Op1).getNode();
4174}
4175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4176                                    SDValue Op1, SDValue Op2) {
4177  return getNode(~Opcode, VT, Op1, Op2).getNode();
4178}
4179SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4180                                    SDValue Op1, SDValue Op2,
4181                                    SDValue Op3) {
4182  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4183}
4184SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4185                                    const SDValue *Ops, unsigned NumOps) {
4186  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4187}
4188SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4189  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4190  SDValue Op;
4191  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4192}
4193SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4194                                    MVT VT2, SDValue Op1) {
4195  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4196  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4197}
4198SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4199                                    MVT VT2, SDValue Op1,
4200                                    SDValue Op2) {
4201  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4202  SDValue Ops[] = { Op1, Op2 };
4203  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4204}
4205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4206                                    MVT VT2, SDValue Op1,
4207                                    SDValue Op2, SDValue Op3) {
4208  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4209  SDValue Ops[] = { Op1, Op2, Op3 };
4210  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4211}
4212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4213                                    const SDValue *Ops, unsigned NumOps) {
4214  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4215  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4216}
4217SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4218                                    SDValue Op1, SDValue Op2) {
4219  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4220  SDValue Ops[] = { Op1, Op2 };
4221  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4222}
4223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4224                                    SDValue Op1, SDValue Op2,
4225                                    SDValue Op3) {
4226  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4227  SDValue Ops[] = { Op1, Op2, Op3 };
4228  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4229}
4230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4231                                    const SDValue *Ops, unsigned NumOps) {
4232  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4233  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4234}
4235SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4236                                    MVT VT2, MVT VT3, MVT VT4,
4237                                    const SDValue *Ops, unsigned NumOps) {
4238  std::vector<MVT> VTList;
4239  VTList.push_back(VT1);
4240  VTList.push_back(VT2);
4241  VTList.push_back(VT3);
4242  VTList.push_back(VT4);
4243  const MVT *VTs = getNodeValueTypes(VTList);
4244  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4245}
4246SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4247                                    const std::vector<MVT> &ResultTys,
4248                                    const SDValue *Ops, unsigned NumOps) {
4249  const MVT *VTs = getNodeValueTypes(ResultTys);
4250  return getNode(~Opcode, VTs, ResultTys.size(),
4251                 Ops, NumOps).getNode();
4252}
4253
4254/// getNodeIfExists - Get the specified node if it's already available, or
4255/// else return NULL.
4256SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4257                                      const SDValue *Ops, unsigned NumOps) {
4258  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4259    FoldingSetNodeID ID;
4260    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4261    void *IP = 0;
4262    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4263      return E;
4264  }
4265  return NULL;
4266}
4267
4268
4269/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4270/// This can cause recursive merging of nodes in the DAG.
4271///
4272/// This version assumes From has a single result value.
4273///
4274void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4275                                      DAGUpdateListener *UpdateListener) {
4276  SDNode *From = FromN.getNode();
4277  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4278         "Cannot replace with this method!");
4279  assert(From != To.getNode() && "Cannot replace uses of with self");
4280
4281  while (!From->use_empty()) {
4282    SDNode::use_iterator UI = From->use_begin();
4283    SDNode *U = *UI;
4284
4285    // This node is about to morph, remove its old self from the CSE maps.
4286    RemoveNodeFromCSEMaps(U);
4287    int operandNum = 0;
4288    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4289         I != E; ++I, ++operandNum)
4290      if (I->getVal() == From) {
4291        From->removeUser(operandNum, U);
4292        *I = To;
4293        I->setUser(U);
4294        To.getNode()->addUser(operandNum, U);
4295      }
4296
4297    // Now that we have modified U, add it back to the CSE maps.  If it already
4298    // exists there, recursively merge the results together.
4299    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4300      ReplaceAllUsesWith(U, Existing, UpdateListener);
4301      // U is now dead.  Inform the listener if it exists and delete it.
4302      if (UpdateListener)
4303        UpdateListener->NodeDeleted(U, Existing);
4304      DeleteNodeNotInCSEMaps(U);
4305    } else {
4306      // If the node doesn't already exist, we updated it.  Inform a listener if
4307      // it exists.
4308      if (UpdateListener)
4309        UpdateListener->NodeUpdated(U);
4310    }
4311  }
4312}
4313
4314/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4315/// This can cause recursive merging of nodes in the DAG.
4316///
4317/// This version assumes From/To have matching types and numbers of result
4318/// values.
4319///
4320void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4321                                      DAGUpdateListener *UpdateListener) {
4322  assert(From->getVTList().VTs == To->getVTList().VTs &&
4323         From->getNumValues() == To->getNumValues() &&
4324         "Cannot use this version of ReplaceAllUsesWith!");
4325
4326  // Handle the trivial case.
4327  if (From == To)
4328    return;
4329
4330  while (!From->use_empty()) {
4331    SDNode::use_iterator UI = From->use_begin();
4332    SDNode *U = *UI;
4333
4334    // This node is about to morph, remove its old self from the CSE maps.
4335    RemoveNodeFromCSEMaps(U);
4336    int operandNum = 0;
4337    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4338         I != E; ++I, ++operandNum)
4339      if (I->getVal() == From) {
4340        From->removeUser(operandNum, U);
4341        I->getSDValue().setNode(To);
4342        To->addUser(operandNum, U);
4343      }
4344
4345    // Now that we have modified U, add it back to the CSE maps.  If it already
4346    // exists there, recursively merge the results together.
4347    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4348      ReplaceAllUsesWith(U, Existing, UpdateListener);
4349      // U is now dead.  Inform the listener if it exists and delete it.
4350      if (UpdateListener)
4351        UpdateListener->NodeDeleted(U, Existing);
4352      DeleteNodeNotInCSEMaps(U);
4353    } else {
4354      // If the node doesn't already exist, we updated it.  Inform a listener if
4355      // it exists.
4356      if (UpdateListener)
4357        UpdateListener->NodeUpdated(U);
4358    }
4359  }
4360}
4361
4362/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4363/// This can cause recursive merging of nodes in the DAG.
4364///
4365/// This version can replace From with any result values.  To must match the
4366/// number and types of values returned by From.
4367void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4368                                      const SDValue *To,
4369                                      DAGUpdateListener *UpdateListener) {
4370  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4371    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4372
4373  while (!From->use_empty()) {
4374    SDNode::use_iterator UI = From->use_begin();
4375    SDNode *U = *UI;
4376
4377    // This node is about to morph, remove its old self from the CSE maps.
4378    RemoveNodeFromCSEMaps(U);
4379    int operandNum = 0;
4380    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4381         I != E; ++I, ++operandNum)
4382      if (I->getVal() == From) {
4383        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4384        From->removeUser(operandNum, U);
4385        *I = ToOp;
4386        I->setUser(U);
4387        ToOp.getNode()->addUser(operandNum, U);
4388      }
4389
4390    // Now that we have modified U, add it back to the CSE maps.  If it already
4391    // exists there, recursively merge the results together.
4392    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4393      ReplaceAllUsesWith(U, Existing, UpdateListener);
4394      // U is now dead.  Inform the listener if it exists and delete it.
4395      if (UpdateListener)
4396        UpdateListener->NodeDeleted(U, Existing);
4397      DeleteNodeNotInCSEMaps(U);
4398    } else {
4399      // If the node doesn't already exist, we updated it.  Inform a listener if
4400      // it exists.
4401      if (UpdateListener)
4402        UpdateListener->NodeUpdated(U);
4403    }
4404  }
4405}
4406
4407/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4408/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4409/// handled the same way as for ReplaceAllUsesWith.
4410void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4411                                             DAGUpdateListener *UpdateListener){
4412  // Handle the really simple, really trivial case efficiently.
4413  if (From == To) return;
4414
4415  // Handle the simple, trivial, case efficiently.
4416  if (From.getNode()->getNumValues() == 1) {
4417    ReplaceAllUsesWith(From, To, UpdateListener);
4418    return;
4419  }
4420
4421  // Get all of the users of From.getNode().  We want these in a nice,
4422  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4423  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4424
4425  while (!Users.empty()) {
4426    // We know that this user uses some value of From.  If it is the right
4427    // value, update it.
4428    SDNode *User = Users.back();
4429    Users.pop_back();
4430
4431    // Scan for an operand that matches From.
4432    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4433    for (; Op != E; ++Op)
4434      if (*Op == From) break;
4435
4436    // If there are no matches, the user must use some other result of From.
4437    if (Op == E) continue;
4438
4439    // Okay, we know this user needs to be updated.  Remove its old self
4440    // from the CSE maps.
4441    RemoveNodeFromCSEMaps(User);
4442
4443    // Update all operands that match "From" in case there are multiple uses.
4444    for (; Op != E; ++Op) {
4445      if (*Op == From) {
4446        From.getNode()->removeUser(Op-User->op_begin(), User);
4447        *Op = To;
4448        Op->setUser(User);
4449        To.getNode()->addUser(Op-User->op_begin(), User);
4450      }
4451    }
4452
4453    // Now that we have modified User, add it back to the CSE maps.  If it
4454    // already exists there, recursively merge the results together.
4455    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4456    if (!Existing) {
4457      if (UpdateListener) UpdateListener->NodeUpdated(User);
4458      continue;  // Continue on to next user.
4459    }
4460
4461    // If there was already an existing matching node, use ReplaceAllUsesWith
4462    // to replace the dead one with the existing one.  This can cause
4463    // recursive merging of other unrelated nodes down the line.
4464    ReplaceAllUsesWith(User, Existing, UpdateListener);
4465
4466    // User is now dead.  Notify a listener if present.
4467    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4468    DeleteNodeNotInCSEMaps(User);
4469  }
4470}
4471
4472/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4473/// uses of other values produced by From.getVal() alone.  The same value may
4474/// appear in both the From and To list.  The Deleted vector is
4475/// handled the same way as for ReplaceAllUsesWith.
4476void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4477                                              const SDValue *To,
4478                                              unsigned Num,
4479                                              DAGUpdateListener *UpdateListener){
4480  // Handle the simple, trivial case efficiently.
4481  if (Num == 1)
4482    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4483
4484  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4485  for (unsigned i = 0; i != Num; ++i)
4486    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4487         E = From[i].getNode()->use_end(); UI != E; ++UI)
4488      Users.push_back(std::make_pair(*UI, i));
4489
4490  while (!Users.empty()) {
4491    // We know that this user uses some value of From.  If it is the right
4492    // value, update it.
4493    SDNode *User = Users.back().first;
4494    unsigned i = Users.back().second;
4495    Users.pop_back();
4496
4497    // Scan for an operand that matches From.
4498    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4499    for (; Op != E; ++Op)
4500      if (*Op == From[i]) break;
4501
4502    // If there are no matches, the user must use some other result of From.
4503    if (Op == E) continue;
4504
4505    // Okay, we know this user needs to be updated.  Remove its old self
4506    // from the CSE maps.
4507    RemoveNodeFromCSEMaps(User);
4508
4509    // Update all operands that match "From" in case there are multiple uses.
4510    for (; Op != E; ++Op) {
4511      if (*Op == From[i]) {
4512        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4513        *Op = To[i];
4514        Op->setUser(User);
4515        To[i].getNode()->addUser(Op-User->op_begin(), User);
4516      }
4517    }
4518
4519    // Now that we have modified User, add it back to the CSE maps.  If it
4520    // already exists there, recursively merge the results together.
4521    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4522    if (!Existing) {
4523      if (UpdateListener) UpdateListener->NodeUpdated(User);
4524      continue;  // Continue on to next user.
4525    }
4526
4527    // If there was already an existing matching node, use ReplaceAllUsesWith
4528    // to replace the dead one with the existing one.  This can cause
4529    // recursive merging of other unrelated nodes down the line.
4530    ReplaceAllUsesWith(User, Existing, UpdateListener);
4531
4532    // User is now dead.  Notify a listener if present.
4533    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4534    DeleteNodeNotInCSEMaps(User);
4535  }
4536}
4537
4538/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4539/// based on their topological order. It returns the maximum id and a vector
4540/// of the SDNodes* in assigned order by reference.
4541unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4542  unsigned DAGSize = AllNodes.size();
4543  std::vector<SDNode*> Sources;
4544
4545  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4546    SDNode *N = I;
4547    unsigned Degree = N->use_size();
4548    // Temporarily use the Node Id as scratch space for the degree count.
4549    N->setNodeId(Degree);
4550    if (Degree == 0)
4551      Sources.push_back(N);
4552  }
4553
4554  TopOrder.clear();
4555  TopOrder.reserve(DAGSize);
4556  int Id = 0;
4557  while (!Sources.empty()) {
4558    SDNode *N = Sources.back();
4559    Sources.pop_back();
4560    TopOrder.push_back(N);
4561    N->setNodeId(Id++);
4562    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4563      SDNode *P = I->getVal();
4564      unsigned Degree = P->getNodeId();
4565      --Degree;
4566      P->setNodeId(Degree);
4567      if (Degree == 0)
4568        Sources.push_back(P);
4569    }
4570  }
4571
4572  return Id;
4573}
4574
4575
4576
4577//===----------------------------------------------------------------------===//
4578//                              SDNode Class
4579//===----------------------------------------------------------------------===//
4580
4581// Out-of-line virtual method to give class a home.
4582void SDNode::ANCHOR() {}
4583void UnarySDNode::ANCHOR() {}
4584void BinarySDNode::ANCHOR() {}
4585void TernarySDNode::ANCHOR() {}
4586void HandleSDNode::ANCHOR() {}
4587void ConstantSDNode::ANCHOR() {}
4588void ConstantFPSDNode::ANCHOR() {}
4589void GlobalAddressSDNode::ANCHOR() {}
4590void FrameIndexSDNode::ANCHOR() {}
4591void JumpTableSDNode::ANCHOR() {}
4592void ConstantPoolSDNode::ANCHOR() {}
4593void BasicBlockSDNode::ANCHOR() {}
4594void SrcValueSDNode::ANCHOR() {}
4595void MemOperandSDNode::ANCHOR() {}
4596void RegisterSDNode::ANCHOR() {}
4597void DbgStopPointSDNode::ANCHOR() {}
4598void LabelSDNode::ANCHOR() {}
4599void ExternalSymbolSDNode::ANCHOR() {}
4600void CondCodeSDNode::ANCHOR() {}
4601void ARG_FLAGSSDNode::ANCHOR() {}
4602void VTSDNode::ANCHOR() {}
4603void MemSDNode::ANCHOR() {}
4604void LoadSDNode::ANCHOR() {}
4605void StoreSDNode::ANCHOR() {}
4606void AtomicSDNode::ANCHOR() {}
4607void CallSDNode::ANCHOR() {}
4608
4609HandleSDNode::~HandleSDNode() {
4610  DropOperands();
4611}
4612
4613GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4614                                         MVT VT, int o)
4615  : SDNode(isa<GlobalVariable>(GA) &&
4616           cast<GlobalVariable>(GA)->isThreadLocal() ?
4617           // Thread Local
4618           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4619           // Non Thread Local
4620           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4621           getSDVTList(VT)), Offset(o) {
4622  TheGlobal = const_cast<GlobalValue*>(GA);
4623}
4624
4625MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4626                     const Value *srcValue, int SVO,
4627                     unsigned alignment, bool vol)
4628 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4629   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4630
4631  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4632  assert(getAlignment() == alignment && "Alignment representation error!");
4633  assert(isVolatile() == vol && "Volatile representation error!");
4634}
4635
4636/// getMemOperand - Return a MachineMemOperand object describing the memory
4637/// reference performed by this memory reference.
4638MachineMemOperand MemSDNode::getMemOperand() const {
4639  int Flags;
4640  if (isa<LoadSDNode>(this))
4641    Flags = MachineMemOperand::MOLoad;
4642  else if (isa<StoreSDNode>(this))
4643    Flags = MachineMemOperand::MOStore;
4644  else {
4645    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4646    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4647  }
4648
4649  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4650  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4651
4652  // Check if the memory reference references a frame index
4653  const FrameIndexSDNode *FI =
4654  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4655  if (!getSrcValue() && FI)
4656    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4657                             Flags, 0, Size, getAlignment());
4658  else
4659    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4660                             Size, getAlignment());
4661}
4662
4663/// Profile - Gather unique data for the node.
4664///
4665void SDNode::Profile(FoldingSetNodeID &ID) const {
4666  AddNodeIDNode(ID, this);
4667}
4668
4669/// getValueTypeList - Return a pointer to the specified value type.
4670///
4671const MVT *SDNode::getValueTypeList(MVT VT) {
4672  if (VT.isExtended()) {
4673    static std::set<MVT, MVT::compareRawBits> EVTs;
4674    return &(*EVTs.insert(VT).first);
4675  } else {
4676    static MVT VTs[MVT::LAST_VALUETYPE];
4677    VTs[VT.getSimpleVT()] = VT;
4678    return &VTs[VT.getSimpleVT()];
4679  }
4680}
4681
4682/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4683/// indicated value.  This method ignores uses of other values defined by this
4684/// operation.
4685bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4686  assert(Value < getNumValues() && "Bad value!");
4687
4688  // TODO: Only iterate over uses of a given value of the node
4689  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4690    if (UI.getUse().getSDValue().getResNo() == Value) {
4691      if (NUses == 0)
4692        return false;
4693      --NUses;
4694    }
4695  }
4696
4697  // Found exactly the right number of uses?
4698  return NUses == 0;
4699}
4700
4701
4702/// hasAnyUseOfValue - Return true if there are any use of the indicated
4703/// value. This method ignores uses of other values defined by this operation.
4704bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4705  assert(Value < getNumValues() && "Bad value!");
4706
4707  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4708    if (UI.getUse().getSDValue().getResNo() == Value)
4709      return true;
4710
4711  return false;
4712}
4713
4714
4715/// isOnlyUserOf - Return true if this node is the only use of N.
4716///
4717bool SDNode::isOnlyUserOf(SDNode *N) const {
4718  bool Seen = false;
4719  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4720    SDNode *User = *I;
4721    if (User == this)
4722      Seen = true;
4723    else
4724      return false;
4725  }
4726
4727  return Seen;
4728}
4729
4730/// isOperand - Return true if this node is an operand of N.
4731///
4732bool SDValue::isOperandOf(SDNode *N) const {
4733  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4734    if (*this == N->getOperand(i))
4735      return true;
4736  return false;
4737}
4738
4739bool SDNode::isOperandOf(SDNode *N) const {
4740  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4741    if (this == N->OperandList[i].getVal())
4742      return true;
4743  return false;
4744}
4745
4746/// reachesChainWithoutSideEffects - Return true if this operand (which must
4747/// be a chain) reaches the specified operand without crossing any
4748/// side-effecting instructions.  In practice, this looks through token
4749/// factors and non-volatile loads.  In order to remain efficient, this only
4750/// looks a couple of nodes in, it does not do an exhaustive search.
4751bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4752                                               unsigned Depth) const {
4753  if (*this == Dest) return true;
4754
4755  // Don't search too deeply, we just want to be able to see through
4756  // TokenFactor's etc.
4757  if (Depth == 0) return false;
4758
4759  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4760  // of the operands of the TF reach dest, then we can do the xform.
4761  if (getOpcode() == ISD::TokenFactor) {
4762    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4763      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4764        return true;
4765    return false;
4766  }
4767
4768  // Loads don't have side effects, look through them.
4769  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4770    if (!Ld->isVolatile())
4771      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4772  }
4773  return false;
4774}
4775
4776
4777static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4778                            SmallPtrSet<SDNode *, 32> &Visited) {
4779  if (found || !Visited.insert(N))
4780    return;
4781
4782  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4783    SDNode *Op = N->getOperand(i).getNode();
4784    if (Op == P) {
4785      found = true;
4786      return;
4787    }
4788    findPredecessor(Op, P, found, Visited);
4789  }
4790}
4791
4792/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4793/// is either an operand of N or it can be reached by recursively traversing
4794/// up the operands.
4795/// NOTE: this is an expensive method. Use it carefully.
4796bool SDNode::isPredecessorOf(SDNode *N) const {
4797  SmallPtrSet<SDNode *, 32> Visited;
4798  bool found = false;
4799  findPredecessor(N, this, found, Visited);
4800  return found;
4801}
4802
4803uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4804  assert(Num < NumOperands && "Invalid child # of SDNode!");
4805  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4806}
4807
4808std::string SDNode::getOperationName(const SelectionDAG *G) const {
4809  switch (getOpcode()) {
4810  default:
4811    if (getOpcode() < ISD::BUILTIN_OP_END)
4812      return "<<Unknown DAG Node>>";
4813    if (isMachineOpcode()) {
4814      if (G)
4815        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4816          if (getMachineOpcode() < TII->getNumOpcodes())
4817            return TII->get(getMachineOpcode()).getName();
4818      return "<<Unknown Machine Node>>";
4819    }
4820    if (G) {
4821      TargetLowering &TLI = G->getTargetLoweringInfo();
4822      const char *Name = TLI.getTargetNodeName(getOpcode());
4823      if (Name) return Name;
4824      return "<<Unknown Target Node>>";
4825    }
4826    return "<<Unknown Node>>";
4827
4828#ifndef NDEBUG
4829  case ISD::DELETED_NODE:
4830    return "<<Deleted Node!>>";
4831#endif
4832  case ISD::PREFETCH:      return "Prefetch";
4833  case ISD::MEMBARRIER:    return "MemBarrier";
4834  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4835  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4836  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4837  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4838  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4839  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4840  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4841  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4842  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4843  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4844  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4845  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4846  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4847  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4848  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4849  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4850  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4851  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4852  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4853  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4854  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4855  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4856  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4857  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4858  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4859  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4860  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4861  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4862  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4863  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4864  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4865  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4866  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4867  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4868  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4869  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4870  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4871  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4872  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4873  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4874  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4875  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4876  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4877  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4878  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4879  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4880  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4881  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4882  case ISD::PCMARKER:      return "PCMarker";
4883  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4884  case ISD::SRCVALUE:      return "SrcValue";
4885  case ISD::MEMOPERAND:    return "MemOperand";
4886  case ISD::EntryToken:    return "EntryToken";
4887  case ISD::TokenFactor:   return "TokenFactor";
4888  case ISD::AssertSext:    return "AssertSext";
4889  case ISD::AssertZext:    return "AssertZext";
4890
4891  case ISD::BasicBlock:    return "BasicBlock";
4892  case ISD::ARG_FLAGS:     return "ArgFlags";
4893  case ISD::VALUETYPE:     return "ValueType";
4894  case ISD::Register:      return "Register";
4895
4896  case ISD::Constant:      return "Constant";
4897  case ISD::ConstantFP:    return "ConstantFP";
4898  case ISD::GlobalAddress: return "GlobalAddress";
4899  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4900  case ISD::FrameIndex:    return "FrameIndex";
4901  case ISD::JumpTable:     return "JumpTable";
4902  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4903  case ISD::RETURNADDR: return "RETURNADDR";
4904  case ISD::FRAMEADDR: return "FRAMEADDR";
4905  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4906  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4907  case ISD::EHSELECTION: return "EHSELECTION";
4908  case ISD::EH_RETURN: return "EH_RETURN";
4909  case ISD::ConstantPool:  return "ConstantPool";
4910  case ISD::ExternalSymbol: return "ExternalSymbol";
4911  case ISD::INTRINSIC_WO_CHAIN: {
4912    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4913    return Intrinsic::getName((Intrinsic::ID)IID);
4914  }
4915  case ISD::INTRINSIC_VOID:
4916  case ISD::INTRINSIC_W_CHAIN: {
4917    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4918    return Intrinsic::getName((Intrinsic::ID)IID);
4919  }
4920
4921  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4922  case ISD::TargetConstant: return "TargetConstant";
4923  case ISD::TargetConstantFP:return "TargetConstantFP";
4924  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4925  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4926  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4927  case ISD::TargetJumpTable:  return "TargetJumpTable";
4928  case ISD::TargetConstantPool:  return "TargetConstantPool";
4929  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4930
4931  case ISD::CopyToReg:     return "CopyToReg";
4932  case ISD::CopyFromReg:   return "CopyFromReg";
4933  case ISD::UNDEF:         return "undef";
4934  case ISD::MERGE_VALUES:  return "merge_values";
4935  case ISD::INLINEASM:     return "inlineasm";
4936  case ISD::DBG_LABEL:     return "dbg_label";
4937  case ISD::EH_LABEL:      return "eh_label";
4938  case ISD::DECLARE:       return "declare";
4939  case ISD::HANDLENODE:    return "handlenode";
4940  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4941  case ISD::CALL:          return "call";
4942
4943  // Unary operators
4944  case ISD::FABS:   return "fabs";
4945  case ISD::FNEG:   return "fneg";
4946  case ISD::FSQRT:  return "fsqrt";
4947  case ISD::FSIN:   return "fsin";
4948  case ISD::FCOS:   return "fcos";
4949  case ISD::FPOWI:  return "fpowi";
4950  case ISD::FPOW:   return "fpow";
4951  case ISD::FTRUNC: return "ftrunc";
4952  case ISD::FFLOOR: return "ffloor";
4953  case ISD::FCEIL:  return "fceil";
4954  case ISD::FRINT:  return "frint";
4955  case ISD::FNEARBYINT: return "fnearbyint";
4956
4957  // Binary operators
4958  case ISD::ADD:    return "add";
4959  case ISD::SUB:    return "sub";
4960  case ISD::MUL:    return "mul";
4961  case ISD::MULHU:  return "mulhu";
4962  case ISD::MULHS:  return "mulhs";
4963  case ISD::SDIV:   return "sdiv";
4964  case ISD::UDIV:   return "udiv";
4965  case ISD::SREM:   return "srem";
4966  case ISD::UREM:   return "urem";
4967  case ISD::SMUL_LOHI:  return "smul_lohi";
4968  case ISD::UMUL_LOHI:  return "umul_lohi";
4969  case ISD::SDIVREM:    return "sdivrem";
4970  case ISD::UDIVREM:    return "udivrem";
4971  case ISD::AND:    return "and";
4972  case ISD::OR:     return "or";
4973  case ISD::XOR:    return "xor";
4974  case ISD::SHL:    return "shl";
4975  case ISD::SRA:    return "sra";
4976  case ISD::SRL:    return "srl";
4977  case ISD::ROTL:   return "rotl";
4978  case ISD::ROTR:   return "rotr";
4979  case ISD::FADD:   return "fadd";
4980  case ISD::FSUB:   return "fsub";
4981  case ISD::FMUL:   return "fmul";
4982  case ISD::FDIV:   return "fdiv";
4983  case ISD::FREM:   return "frem";
4984  case ISD::FCOPYSIGN: return "fcopysign";
4985  case ISD::FGETSIGN:  return "fgetsign";
4986
4987  case ISD::SETCC:       return "setcc";
4988  case ISD::VSETCC:      return "vsetcc";
4989  case ISD::SELECT:      return "select";
4990  case ISD::SELECT_CC:   return "select_cc";
4991  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4992  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4993  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4994  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4995  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4996  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4997  case ISD::CARRY_FALSE:         return "carry_false";
4998  case ISD::ADDC:        return "addc";
4999  case ISD::ADDE:        return "adde";
5000  case ISD::SUBC:        return "subc";
5001  case ISD::SUBE:        return "sube";
5002  case ISD::SHL_PARTS:   return "shl_parts";
5003  case ISD::SRA_PARTS:   return "sra_parts";
5004  case ISD::SRL_PARTS:   return "srl_parts";
5005
5006  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5007  case ISD::INSERT_SUBREG:      return "insert_subreg";
5008
5009  // Conversion operators.
5010  case ISD::SIGN_EXTEND: return "sign_extend";
5011  case ISD::ZERO_EXTEND: return "zero_extend";
5012  case ISD::ANY_EXTEND:  return "any_extend";
5013  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5014  case ISD::TRUNCATE:    return "truncate";
5015  case ISD::FP_ROUND:    return "fp_round";
5016  case ISD::FLT_ROUNDS_: return "flt_rounds";
5017  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5018  case ISD::FP_EXTEND:   return "fp_extend";
5019
5020  case ISD::SINT_TO_FP:  return "sint_to_fp";
5021  case ISD::UINT_TO_FP:  return "uint_to_fp";
5022  case ISD::FP_TO_SINT:  return "fp_to_sint";
5023  case ISD::FP_TO_UINT:  return "fp_to_uint";
5024  case ISD::BIT_CONVERT: return "bit_convert";
5025
5026    // Control flow instructions
5027  case ISD::BR:      return "br";
5028  case ISD::BRIND:   return "brind";
5029  case ISD::BR_JT:   return "br_jt";
5030  case ISD::BRCOND:  return "brcond";
5031  case ISD::BR_CC:   return "br_cc";
5032  case ISD::RET:     return "ret";
5033  case ISD::CALLSEQ_START:  return "callseq_start";
5034  case ISD::CALLSEQ_END:    return "callseq_end";
5035
5036    // Other operators
5037  case ISD::LOAD:               return "load";
5038  case ISD::STORE:              return "store";
5039  case ISD::VAARG:              return "vaarg";
5040  case ISD::VACOPY:             return "vacopy";
5041  case ISD::VAEND:              return "vaend";
5042  case ISD::VASTART:            return "vastart";
5043  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5044  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5045  case ISD::BUILD_PAIR:         return "build_pair";
5046  case ISD::STACKSAVE:          return "stacksave";
5047  case ISD::STACKRESTORE:       return "stackrestore";
5048  case ISD::TRAP:               return "trap";
5049
5050  // Bit manipulation
5051  case ISD::BSWAP:   return "bswap";
5052  case ISD::CTPOP:   return "ctpop";
5053  case ISD::CTTZ:    return "cttz";
5054  case ISD::CTLZ:    return "ctlz";
5055
5056  // Debug info
5057  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5058  case ISD::DEBUG_LOC: return "debug_loc";
5059
5060  // Trampolines
5061  case ISD::TRAMPOLINE: return "trampoline";
5062
5063  case ISD::CONDCODE:
5064    switch (cast<CondCodeSDNode>(this)->get()) {
5065    default: assert(0 && "Unknown setcc condition!");
5066    case ISD::SETOEQ:  return "setoeq";
5067    case ISD::SETOGT:  return "setogt";
5068    case ISD::SETOGE:  return "setoge";
5069    case ISD::SETOLT:  return "setolt";
5070    case ISD::SETOLE:  return "setole";
5071    case ISD::SETONE:  return "setone";
5072
5073    case ISD::SETO:    return "seto";
5074    case ISD::SETUO:   return "setuo";
5075    case ISD::SETUEQ:  return "setue";
5076    case ISD::SETUGT:  return "setugt";
5077    case ISD::SETUGE:  return "setuge";
5078    case ISD::SETULT:  return "setult";
5079    case ISD::SETULE:  return "setule";
5080    case ISD::SETUNE:  return "setune";
5081
5082    case ISD::SETEQ:   return "seteq";
5083    case ISD::SETGT:   return "setgt";
5084    case ISD::SETGE:   return "setge";
5085    case ISD::SETLT:   return "setlt";
5086    case ISD::SETLE:   return "setle";
5087    case ISD::SETNE:   return "setne";
5088    }
5089  }
5090}
5091
5092const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5093  switch (AM) {
5094  default:
5095    return "";
5096  case ISD::PRE_INC:
5097    return "<pre-inc>";
5098  case ISD::PRE_DEC:
5099    return "<pre-dec>";
5100  case ISD::POST_INC:
5101    return "<post-inc>";
5102  case ISD::POST_DEC:
5103    return "<post-dec>";
5104  }
5105}
5106
5107std::string ISD::ArgFlagsTy::getArgFlagsString() {
5108  std::string S = "< ";
5109
5110  if (isZExt())
5111    S += "zext ";
5112  if (isSExt())
5113    S += "sext ";
5114  if (isInReg())
5115    S += "inreg ";
5116  if (isSRet())
5117    S += "sret ";
5118  if (isByVal())
5119    S += "byval ";
5120  if (isNest())
5121    S += "nest ";
5122  if (getByValAlign())
5123    S += "byval-align:" + utostr(getByValAlign()) + " ";
5124  if (getOrigAlign())
5125    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5126  if (getByValSize())
5127    S += "byval-size:" + utostr(getByValSize()) + " ";
5128  return S + ">";
5129}
5130
5131void SDNode::dump() const { dump(0); }
5132void SDNode::dump(const SelectionDAG *G) const {
5133  print(errs(), G);
5134  errs().flush();
5135}
5136
5137void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5138  OS << (void*)this << ": ";
5139
5140  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5141    if (i) OS << ",";
5142    if (getValueType(i) == MVT::Other)
5143      OS << "ch";
5144    else
5145      OS << getValueType(i).getMVTString();
5146  }
5147  OS << " = " << getOperationName(G);
5148
5149  OS << " ";
5150  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5151    if (i) OS << ", ";
5152    OS << (void*)getOperand(i).getNode();
5153    if (unsigned RN = getOperand(i).getResNo())
5154      OS << ":" << RN;
5155  }
5156
5157  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5158    SDNode *Mask = getOperand(2).getNode();
5159    OS << "<";
5160    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5161      if (i) OS << ",";
5162      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5163        OS << "u";
5164      else
5165        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5166    }
5167    OS << ">";
5168  }
5169
5170  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5171    OS << '<' << CSDN->getAPIntValue() << '>';
5172  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5173    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5174      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5175    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5176      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5177    else {
5178      OS << "<APFloat(";
5179      CSDN->getValueAPF().convertToAPInt().dump();
5180      OS << ")>";
5181    }
5182  } else if (const GlobalAddressSDNode *GADN =
5183             dyn_cast<GlobalAddressSDNode>(this)) {
5184    int offset = GADN->getOffset();
5185    OS << '<';
5186    WriteAsOperand(OS, GADN->getGlobal());
5187    OS << '>';
5188    if (offset > 0)
5189      OS << " + " << offset;
5190    else
5191      OS << " " << offset;
5192  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5193    OS << "<" << FIDN->getIndex() << ">";
5194  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5195    OS << "<" << JTDN->getIndex() << ">";
5196  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5197    int offset = CP->getOffset();
5198    if (CP->isMachineConstantPoolEntry())
5199      OS << "<" << *CP->getMachineCPVal() << ">";
5200    else
5201      OS << "<" << *CP->getConstVal() << ">";
5202    if (offset > 0)
5203      OS << " + " << offset;
5204    else
5205      OS << " " << offset;
5206  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5207    OS << "<";
5208    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5209    if (LBB)
5210      OS << LBB->getName() << " ";
5211    OS << (const void*)BBDN->getBasicBlock() << ">";
5212  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5213    if (G && R->getReg() &&
5214        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5215      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5216    } else {
5217      OS << " #" << R->getReg();
5218    }
5219  } else if (const ExternalSymbolSDNode *ES =
5220             dyn_cast<ExternalSymbolSDNode>(this)) {
5221    OS << "'" << ES->getSymbol() << "'";
5222  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5223    if (M->getValue())
5224      OS << "<" << M->getValue() << ">";
5225    else
5226      OS << "<null>";
5227  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5228    if (M->MO.getValue())
5229      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5230    else
5231      OS << "<null:" << M->MO.getOffset() << ">";
5232  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5233    OS << N->getArgFlags().getArgFlagsString();
5234  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5235    OS << ":" << N->getVT().getMVTString();
5236  }
5237  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5238    const Value *SrcValue = LD->getSrcValue();
5239    int SrcOffset = LD->getSrcValueOffset();
5240    OS << " <";
5241    if (SrcValue)
5242      OS << SrcValue;
5243    else
5244      OS << "null";
5245    OS << ":" << SrcOffset << ">";
5246
5247    bool doExt = true;
5248    switch (LD->getExtensionType()) {
5249    default: doExt = false; break;
5250    case ISD::EXTLOAD: OS << " <anyext "; break;
5251    case ISD::SEXTLOAD: OS << " <sext "; break;
5252    case ISD::ZEXTLOAD: OS << " <zext "; break;
5253    }
5254    if (doExt)
5255      OS << LD->getMemoryVT().getMVTString() << ">";
5256
5257    const char *AM = getIndexedModeName(LD->getAddressingMode());
5258    if (*AM)
5259      OS << " " << AM;
5260    if (LD->isVolatile())
5261      OS << " <volatile>";
5262    OS << " alignment=" << LD->getAlignment();
5263  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5264    const Value *SrcValue = ST->getSrcValue();
5265    int SrcOffset = ST->getSrcValueOffset();
5266    OS << " <";
5267    if (SrcValue)
5268      OS << SrcValue;
5269    else
5270      OS << "null";
5271    OS << ":" << SrcOffset << ">";
5272
5273    if (ST->isTruncatingStore())
5274      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5275
5276    const char *AM = getIndexedModeName(ST->getAddressingMode());
5277    if (*AM)
5278      OS << " " << AM;
5279    if (ST->isVolatile())
5280      OS << " <volatile>";
5281    OS << " alignment=" << ST->getAlignment();
5282  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5283    const Value *SrcValue = AT->getSrcValue();
5284    int SrcOffset = AT->getSrcValueOffset();
5285    OS << " <";
5286    if (SrcValue)
5287      OS << SrcValue;
5288    else
5289      OS << "null";
5290    OS << ":" << SrcOffset << ">";
5291    if (AT->isVolatile())
5292      OS << " <volatile>";
5293    OS << " alignment=" << AT->getAlignment();
5294  }
5295}
5296
5297static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5298  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5299    if (N->getOperand(i).getNode()->hasOneUse())
5300      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5301    else
5302      cerr << "\n" << std::string(indent+2, ' ')
5303           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5304
5305
5306  cerr << "\n" << std::string(indent, ' ');
5307  N->dump(G);
5308}
5309
5310void SelectionDAG::dump() const {
5311  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5312
5313  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5314       I != E; ++I) {
5315    const SDNode *N = I;
5316    if (!N->hasOneUse() && N != getRoot().getNode())
5317      DumpNodes(N, 2, this);
5318  }
5319
5320  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5321
5322  cerr << "\n\n";
5323}
5324
5325const Type *ConstantPoolSDNode::getType() const {
5326  if (isMachineConstantPoolEntry())
5327    return Val.MachineCPVal->getType();
5328  return Val.ConstVal->getType();
5329}
5330