SelectionDAG.cpp revision 0bd4893a0726889b942405262e53d06cf3fe3be8
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddInteger(ST->getAlignment());
385    ID.AddInteger(ST->isVolatile());
386    break;
387  }
388  }
389}
390
391//===----------------------------------------------------------------------===//
392//                              SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398  // Create a dummy node (which is not added to allnodes), that adds a reference
399  // to the root node, preventing it from being deleted.
400  HandleSDNode Dummy(getRoot());
401
402  SmallVector<SDNode*, 128> DeadNodes;
403
404  // Add all obviously-dead nodes to the DeadNodes worklist.
405  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406    if (I->use_empty())
407      DeadNodes.push_back(I);
408
409  // Process the worklist, deleting the nodes and adding their uses to the
410  // worklist.
411  while (!DeadNodes.empty()) {
412    SDNode *N = DeadNodes.back();
413    DeadNodes.pop_back();
414
415    // Take the node out of the appropriate CSE map.
416    RemoveNodeFromCSEMaps(N);
417
418    // Next, brutally remove the operand list.  This is safe to do, as there are
419    // no cycles in the graph.
420    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421      SDNode *Operand = I->Val;
422      Operand->removeUser(N);
423
424      // Now that we removed this operand, see if there are no uses of it left.
425      if (Operand->use_empty())
426        DeadNodes.push_back(Operand);
427    }
428    if (N->OperandsNeedDelete)
429      delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    if (N->OperandsNeedDelete)
465      delete[] N->OperandList;
466    N->OperandList = 0;
467    N->NumOperands = 0;
468
469    // Finally, remove N itself.
470    Deleted.push_back(N);
471    AllNodes.erase(N);
472  }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476  assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478  // First take this out of the appropriate CSE map.
479  RemoveNodeFromCSEMaps(N);
480
481  // Finally, remove uses due to operands of this node, remove from the
482  // AllNodes list, and delete the node.
483  DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488  // Remove it from the AllNodes list.
489  AllNodes.remove(N);
490
491  // Drop all of the operands and decrement used nodes use counts.
492  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493    I->Val->removeUser(N);
494  if (N->OperandsNeedDelete)
495    delete[] N->OperandList;
496  N->OperandList = 0;
497  N->NumOperands = 0;
498
499  delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it.  This is useful when we're about to delete or repurpose
504/// the node.  We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507  bool Erased = false;
508  switch (N->getOpcode()) {
509  case ISD::HANDLENODE: return;  // noop.
510  case ISD::STRING:
511    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512    break;
513  case ISD::CONDCODE:
514    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515           "Cond code doesn't exist!");
516    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518    break;
519  case ISD::ExternalSymbol:
520    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521    break;
522  case ISD::TargetExternalSymbol:
523    Erased =
524      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::VALUETYPE: {
527    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
528    if (MVT::isExtendedVT(VT)) {
529      Erased = ExtendedValueTypeNodes.erase(VT);
530    } else {
531      Erased = ValueTypeNodes[VT] != 0;
532      ValueTypeNodes[VT] = 0;
533    }
534    break;
535  }
536  default:
537    // Remove it from the CSE Map.
538    Erased = CSEMap.RemoveNode(N);
539    break;
540  }
541#ifndef NDEBUG
542  // Verify that the node was actually in one of the CSE maps, unless it has a
543  // flag result (which cannot be CSE'd) or is one of the special cases that are
544  // not subject to CSE.
545  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
546      !N->isTargetOpcode()) {
547    N->dump(this);
548    cerr << "\n";
549    assert(0 && "Node is not in map!");
550  }
551#endif
552}
553
554/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
555/// has been taken out and modified in some way.  If the specified node already
556/// exists in the CSE maps, do not modify the maps, but return the existing node
557/// instead.  If it doesn't exist, add it and return null.
558///
559SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
560  assert(N->getNumOperands() && "This is a leaf node!");
561  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562    return 0;    // Never add these nodes.
563
564  // Check that remaining values produced are not flags.
565  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566    if (N->getValueType(i) == MVT::Flag)
567      return 0;   // Never CSE anything that produces a flag.
568
569  SDNode *New = CSEMap.GetOrInsertNode(N);
570  if (New != N) return New;  // Node already existed.
571  return 0;
572}
573
574/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
575/// were replaced with those specified.  If this node is never memoized,
576/// return null, otherwise return a pointer to the slot it would take.  If a
577/// node already exists with these operands, the slot will be non-null.
578SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
579                                           void *&InsertPos) {
580  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
581    return 0;    // Never add these nodes.
582
583  // Check that remaining values produced are not flags.
584  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
585    if (N->getValueType(i) == MVT::Flag)
586      return 0;   // Never CSE anything that produces a flag.
587
588  SDOperand Ops[] = { Op };
589  FoldingSetNodeID ID;
590  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
591  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
592}
593
594/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
595/// were replaced with those specified.  If this node is never memoized,
596/// return null, otherwise return a pointer to the slot it would take.  If a
597/// node already exists with these operands, the slot will be non-null.
598SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
599                                           SDOperand Op1, SDOperand Op2,
600                                           void *&InsertPos) {
601  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
602    return 0;    // Never add these nodes.
603
604  // Check that remaining values produced are not flags.
605  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
606    if (N->getValueType(i) == MVT::Flag)
607      return 0;   // Never CSE anything that produces a flag.
608
609  SDOperand Ops[] = { Op1, Op2 };
610  FoldingSetNodeID ID;
611  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
612  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
613}
614
615
616/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
617/// were replaced with those specified.  If this node is never memoized,
618/// return null, otherwise return a pointer to the slot it would take.  If a
619/// node already exists with these operands, the slot will be non-null.
620SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
621                                           const SDOperand *Ops,unsigned NumOps,
622                                           void *&InsertPos) {
623  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624    return 0;    // Never add these nodes.
625
626  // Check that remaining values produced are not flags.
627  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628    if (N->getValueType(i) == MVT::Flag)
629      return 0;   // Never CSE anything that produces a flag.
630
631  FoldingSetNodeID ID;
632  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
633
634  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
635    ID.AddInteger(LD->getAddressingMode());
636    ID.AddInteger(LD->getExtensionType());
637    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
638    ID.AddInteger(LD->getAlignment());
639    ID.AddInteger(LD->isVolatile());
640  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641    ID.AddInteger(ST->getAddressingMode());
642    ID.AddInteger(ST->isTruncatingStore());
643    ID.AddInteger((unsigned int)(ST->getStoredVT()));
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682
683  MVT::ValueType EltVT =
684    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
685
686  // Mask out any bits that are not valid for this constant.
687  Val &= MVT::getIntVTBitMask(EltVT);
688
689  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690  FoldingSetNodeID ID;
691  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
692  ID.AddInteger(Val);
693  void *IP = 0;
694  SDNode *N = NULL;
695  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
696    if (!MVT::isVector(VT))
697      return SDOperand(N, 0);
698  if (!N) {
699    N = new ConstantSDNode(isT, Val, EltVT);
700    CSEMap.InsertNode(N, IP);
701    AllNodes.push_back(N);
702  }
703
704  SDOperand Result(N, 0);
705  if (MVT::isVector(VT)) {
706    SmallVector<SDOperand, 8> Ops;
707    Ops.assign(MVT::getVectorNumElements(VT), Result);
708    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
709  }
710  return Result;
711}
712
713SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
714  return getConstant(Val, TLI.getPointerTy(), isTarget);
715}
716
717
718SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
719                                      bool isTarget) {
720  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
721
722  MVT::ValueType EltVT =
723    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
724
725  // Do the map lookup using the actual bit pattern for the floating point
726  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
727  // we don't have issues with SNANs.
728  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
731  ID.AddAPFloat(V);
732  void *IP = 0;
733  SDNode *N = NULL;
734  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
735    if (!MVT::isVector(VT))
736      return SDOperand(N, 0);
737  if (!N) {
738    N = new ConstantFPSDNode(isTarget, V, EltVT);
739    CSEMap.InsertNode(N, IP);
740    AllNodes.push_back(N);
741  }
742
743  SDOperand Result(N, 0);
744  if (MVT::isVector(VT)) {
745    SmallVector<SDOperand, 8> Ops;
746    Ops.assign(MVT::getVectorNumElements(VT), Result);
747    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
748  }
749  return Result;
750}
751
752SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
753                                      bool isTarget) {
754  MVT::ValueType EltVT =
755    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
756  if (EltVT==MVT::f32)
757    return getConstantFP(APFloat((float)Val), VT, isTarget);
758  else
759    return getConstantFP(APFloat(Val), VT, isTarget);
760}
761
762SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
763                                         MVT::ValueType VT, int Offset,
764                                         bool isTargetGA) {
765  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
766  unsigned Opc;
767  if (GVar && GVar->isThreadLocal())
768    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
769  else
770    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
771  FoldingSetNodeID ID;
772  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
773  ID.AddPointer(GV);
774  ID.AddInteger(Offset);
775  void *IP = 0;
776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
777   return SDOperand(E, 0);
778  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
779  CSEMap.InsertNode(N, IP);
780  AllNodes.push_back(N);
781  return SDOperand(N, 0);
782}
783
784SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
785                                      bool isTarget) {
786  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
789  ID.AddInteger(FI);
790  void *IP = 0;
791  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
792    return SDOperand(E, 0);
793  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
794  CSEMap.InsertNode(N, IP);
795  AllNodes.push_back(N);
796  return SDOperand(N, 0);
797}
798
799SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
800  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
801  FoldingSetNodeID ID;
802  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
803  ID.AddInteger(JTI);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
814                                        unsigned Alignment, int Offset,
815                                        bool isTarget) {
816  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
817  FoldingSetNodeID ID;
818  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
819  ID.AddInteger(Alignment);
820  ID.AddInteger(Offset);
821  ID.AddPointer(C);
822  void *IP = 0;
823  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
824    return SDOperand(E, 0);
825  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
826  CSEMap.InsertNode(N, IP);
827  AllNodes.push_back(N);
828  return SDOperand(N, 0);
829}
830
831
832SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
833                                        MVT::ValueType VT,
834                                        unsigned Alignment, int Offset,
835                                        bool isTarget) {
836  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
839  ID.AddInteger(Alignment);
840  ID.AddInteger(Offset);
841  C->AddSelectionDAGCSEId(ID);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851
852SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
855  ID.AddPointer(MBB);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new BasicBlockSDNode(MBB);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
866  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
867    ValueTypeNodes.resize(VT+1);
868
869  SDNode *&N = MVT::isExtendedVT(VT) ?
870    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
871
872  if (N) return SDOperand(N, 0);
873  N = new VTSDNode(VT);
874  AllNodes.push_back(N);
875  return SDOperand(N, 0);
876}
877
878SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
879  SDNode *&N = ExternalSymbols[Sym];
880  if (N) return SDOperand(N, 0);
881  N = new ExternalSymbolSDNode(false, Sym, VT);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
887                                                MVT::ValueType VT) {
888  SDNode *&N = TargetExternalSymbols[Sym];
889  if (N) return SDOperand(N, 0);
890  N = new ExternalSymbolSDNode(true, Sym, VT);
891  AllNodes.push_back(N);
892  return SDOperand(N, 0);
893}
894
895SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
896  if ((unsigned)Cond >= CondCodeNodes.size())
897    CondCodeNodes.resize(Cond+1);
898
899  if (CondCodeNodes[Cond] == 0) {
900    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
901    AllNodes.push_back(CondCodeNodes[Cond]);
902  }
903  return SDOperand(CondCodeNodes[Cond], 0);
904}
905
906SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
907  FoldingSetNodeID ID;
908  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
909  ID.AddInteger(RegNo);
910  void *IP = 0;
911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
912    return SDOperand(E, 0);
913  SDNode *N = new RegisterSDNode(RegNo, VT);
914  CSEMap.InsertNode(N, IP);
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
920  assert((!V || isa<PointerType>(V->getType())) &&
921         "SrcValue is not a pointer?");
922
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
925  ID.AddPointer(V);
926  ID.AddInteger(Offset);
927  void *IP = 0;
928  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
929    return SDOperand(E, 0);
930  SDNode *N = new SrcValueSDNode(V, Offset);
931  CSEMap.InsertNode(N, IP);
932  AllNodes.push_back(N);
933  return SDOperand(N, 0);
934}
935
936/// CreateStackTemporary - Create a stack temporary, suitable for holding the
937/// specified value type.
938SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
939  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
940  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
941  const Type *Ty = MVT::getTypeForValueType(VT);
942  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
943  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
944  return getFrameIndex(FrameIdx, TLI.getPointerTy());
945}
946
947
948SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
949                                  SDOperand N2, ISD::CondCode Cond) {
950  // These setcc operations always fold.
951  switch (Cond) {
952  default: break;
953  case ISD::SETFALSE:
954  case ISD::SETFALSE2: return getConstant(0, VT);
955  case ISD::SETTRUE:
956  case ISD::SETTRUE2:  return getConstant(1, VT);
957
958  case ISD::SETOEQ:
959  case ISD::SETOGT:
960  case ISD::SETOGE:
961  case ISD::SETOLT:
962  case ISD::SETOLE:
963  case ISD::SETONE:
964  case ISD::SETO:
965  case ISD::SETUO:
966  case ISD::SETUEQ:
967  case ISD::SETUNE:
968    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
969    break;
970  }
971
972  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
973    uint64_t C2 = N2C->getValue();
974    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
975      uint64_t C1 = N1C->getValue();
976
977      // Sign extend the operands if required
978      if (ISD::isSignedIntSetCC(Cond)) {
979        C1 = N1C->getSignExtended();
980        C2 = N2C->getSignExtended();
981      }
982
983      switch (Cond) {
984      default: assert(0 && "Unknown integer setcc!");
985      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
986      case ISD::SETNE:  return getConstant(C1 != C2, VT);
987      case ISD::SETULT: return getConstant(C1 <  C2, VT);
988      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
989      case ISD::SETULE: return getConstant(C1 <= C2, VT);
990      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
991      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
992      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
993      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
994      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
995      }
996    }
997  }
998  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
999    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1000      // No compile time operations on this type yet.
1001      if (N1C->getValueType(0) == MVT::ppcf128)
1002        return SDOperand();
1003
1004      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1005      switch (Cond) {
1006      default: break;
1007      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1008                          return getNode(ISD::UNDEF, VT);
1009                        // fall through
1010      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1011      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1012                          return getNode(ISD::UNDEF, VT);
1013                        // fall through
1014      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1015                                           R==APFloat::cmpLessThan, VT);
1016      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1017                          return getNode(ISD::UNDEF, VT);
1018                        // fall through
1019      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1020      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1021                          return getNode(ISD::UNDEF, VT);
1022                        // fall through
1023      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1024      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1025                          return getNode(ISD::UNDEF, VT);
1026                        // fall through
1027      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1028                                           R==APFloat::cmpEqual, VT);
1029      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1030                          return getNode(ISD::UNDEF, VT);
1031                        // fall through
1032      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1033                                           R==APFloat::cmpEqual, VT);
1034      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1035      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1036      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1037                                           R==APFloat::cmpEqual, VT);
1038      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1039      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1040                                           R==APFloat::cmpLessThan, VT);
1041      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1042                                           R==APFloat::cmpUnordered, VT);
1043      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1044      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1045      }
1046    } else {
1047      // Ensure that the constant occurs on the RHS.
1048      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1049    }
1050
1051  // Could not fold it.
1052  return SDOperand();
1053}
1054
1055/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1056/// this predicate to simplify operations downstream.  Mask is known to be zero
1057/// for bits that V cannot have.
1058bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1059                                     unsigned Depth) const {
1060  // The masks are not wide enough to represent this type!  Should use APInt.
1061  if (Op.getValueType() == MVT::i128)
1062    return false;
1063
1064  uint64_t KnownZero, KnownOne;
1065  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1066  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1067  return (KnownZero & Mask) == Mask;
1068}
1069
1070/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1071/// known to be either zero or one and return them in the KnownZero/KnownOne
1072/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1073/// processing.
1074void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1075                                     uint64_t &KnownZero, uint64_t &KnownOne,
1076                                     unsigned Depth) const {
1077  KnownZero = KnownOne = 0;   // Don't know anything.
1078  if (Depth == 6 || Mask == 0)
1079    return;  // Limit search depth.
1080
1081  // The masks are not wide enough to represent this type!  Should use APInt.
1082  if (Op.getValueType() == MVT::i128)
1083    return;
1084
1085  uint64_t KnownZero2, KnownOne2;
1086
1087  switch (Op.getOpcode()) {
1088  case ISD::Constant:
1089    // We know all of the bits for a constant!
1090    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1091    KnownZero = ~KnownOne & Mask;
1092    return;
1093  case ISD::AND:
1094    // If either the LHS or the RHS are Zero, the result is zero.
1095    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1096    Mask &= ~KnownZero;
1097    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1098    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1099    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1100
1101    // Output known-1 bits are only known if set in both the LHS & RHS.
1102    KnownOne &= KnownOne2;
1103    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1104    KnownZero |= KnownZero2;
1105    return;
1106  case ISD::OR:
1107    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1108    Mask &= ~KnownOne;
1109    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1110    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1112
1113    // Output known-0 bits are only known if clear in both the LHS & RHS.
1114    KnownZero &= KnownZero2;
1115    // Output known-1 are known to be set if set in either the LHS | RHS.
1116    KnownOne |= KnownOne2;
1117    return;
1118  case ISD::XOR: {
1119    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1120    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1121    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1122    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1123
1124    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1125    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1126    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1127    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1128    KnownZero = KnownZeroOut;
1129    return;
1130  }
1131  case ISD::SELECT:
1132    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1133    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1134    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1135    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1136
1137    // Only known if known in both the LHS and RHS.
1138    KnownOne &= KnownOne2;
1139    KnownZero &= KnownZero2;
1140    return;
1141  case ISD::SELECT_CC:
1142    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1143    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1144    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1146
1147    // Only known if known in both the LHS and RHS.
1148    KnownOne &= KnownOne2;
1149    KnownZero &= KnownZero2;
1150    return;
1151  case ISD::SETCC:
1152    // If we know the result of a setcc has the top bits zero, use this info.
1153    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1154      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1155    return;
1156  case ISD::SHL:
1157    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1158    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1159      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1160                        KnownZero, KnownOne, Depth+1);
1161      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1162      KnownZero <<= SA->getValue();
1163      KnownOne  <<= SA->getValue();
1164      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1165    }
1166    return;
1167  case ISD::SRL:
1168    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1169    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      MVT::ValueType VT = Op.getValueType();
1171      unsigned ShAmt = SA->getValue();
1172
1173      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1174      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1175                        KnownZero, KnownOne, Depth+1);
1176      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1177      KnownZero &= TypeMask;
1178      KnownOne  &= TypeMask;
1179      KnownZero >>= ShAmt;
1180      KnownOne  >>= ShAmt;
1181
1182      uint64_t HighBits = (1ULL << ShAmt)-1;
1183      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1184      KnownZero |= HighBits;  // High bits known zero.
1185    }
1186    return;
1187  case ISD::SRA:
1188    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1189      MVT::ValueType VT = Op.getValueType();
1190      unsigned ShAmt = SA->getValue();
1191
1192      // Compute the new bits that are at the top now.
1193      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1194
1195      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1196      // If any of the demanded bits are produced by the sign extension, we also
1197      // demand the input sign bit.
1198      uint64_t HighBits = (1ULL << ShAmt)-1;
1199      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1200      if (HighBits & Mask)
1201        InDemandedMask |= MVT::getIntVTSignBit(VT);
1202
1203      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1204                        Depth+1);
1205      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206      KnownZero &= TypeMask;
1207      KnownOne  &= TypeMask;
1208      KnownZero >>= ShAmt;
1209      KnownOne  >>= ShAmt;
1210
1211      // Handle the sign bits.
1212      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1213      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1214
1215      if (KnownZero & SignBit) {
1216        KnownZero |= HighBits;  // New bits are known zero.
1217      } else if (KnownOne & SignBit) {
1218        KnownOne  |= HighBits;  // New bits are known one.
1219      }
1220    }
1221    return;
1222  case ISD::SIGN_EXTEND_INREG: {
1223    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1224
1225    // Sign extension.  Compute the demanded bits in the result that are not
1226    // present in the input.
1227    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1228
1229    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1230    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1231
1232    // If the sign extended bits are demanded, we know that the sign
1233    // bit is demanded.
1234    if (NewBits)
1235      InputDemandedBits |= InSignBit;
1236
1237    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1238                      KnownZero, KnownOne, Depth+1);
1239    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1240
1241    // If the sign bit of the input is known set or clear, then we know the
1242    // top bits of the result.
1243    if (KnownZero & InSignBit) {          // Input sign bit known clear
1244      KnownZero |= NewBits;
1245      KnownOne  &= ~NewBits;
1246    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1247      KnownOne  |= NewBits;
1248      KnownZero &= ~NewBits;
1249    } else {                              // Input sign bit unknown
1250      KnownZero &= ~NewBits;
1251      KnownOne  &= ~NewBits;
1252    }
1253    return;
1254  }
1255  case ISD::CTTZ:
1256  case ISD::CTLZ:
1257  case ISD::CTPOP: {
1258    MVT::ValueType VT = Op.getValueType();
1259    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1260    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1261    KnownOne  = 0;
1262    return;
1263  }
1264  case ISD::LOAD: {
1265    if (ISD::isZEXTLoad(Op.Val)) {
1266      LoadSDNode *LD = cast<LoadSDNode>(Op);
1267      MVT::ValueType VT = LD->getLoadedVT();
1268      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1269    }
1270    return;
1271  }
1272  case ISD::ZERO_EXTEND: {
1273    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1274    uint64_t NewBits = (~InMask) & Mask;
1275    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1276                      KnownOne, Depth+1);
1277    KnownZero |= NewBits & Mask;
1278    KnownOne  &= ~NewBits;
1279    return;
1280  }
1281  case ISD::SIGN_EXTEND: {
1282    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1283    unsigned InBits    = MVT::getSizeInBits(InVT);
1284    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1285    uint64_t InSignBit = 1ULL << (InBits-1);
1286    uint64_t NewBits   = (~InMask) & Mask;
1287    uint64_t InDemandedBits = Mask & InMask;
1288
1289    // If any of the sign extended bits are demanded, we know that the sign
1290    // bit is demanded.
1291    if (NewBits & Mask)
1292      InDemandedBits |= InSignBit;
1293
1294    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1295                      KnownOne, Depth+1);
1296    // If the sign bit is known zero or one, the  top bits match.
1297    if (KnownZero & InSignBit) {
1298      KnownZero |= NewBits;
1299      KnownOne  &= ~NewBits;
1300    } else if (KnownOne & InSignBit) {
1301      KnownOne  |= NewBits;
1302      KnownZero &= ~NewBits;
1303    } else {   // Otherwise, top bits aren't known.
1304      KnownOne  &= ~NewBits;
1305      KnownZero &= ~NewBits;
1306    }
1307    return;
1308  }
1309  case ISD::ANY_EXTEND: {
1310    MVT::ValueType VT = Op.getOperand(0).getValueType();
1311    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1312                      KnownZero, KnownOne, Depth+1);
1313    return;
1314  }
1315  case ISD::TRUNCATE: {
1316    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1317    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1318    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1319    KnownZero &= OutMask;
1320    KnownOne &= OutMask;
1321    break;
1322  }
1323  case ISD::AssertZext: {
1324    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1325    uint64_t InMask = MVT::getIntVTBitMask(VT);
1326    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1327                      KnownOne, Depth+1);
1328    KnownZero |= (~InMask) & Mask;
1329    return;
1330  }
1331  case ISD::FGETSIGN:
1332    // All bits are zero except the low bit.
1333    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1334    return;
1335
1336  case ISD::ADD: {
1337    // If either the LHS or the RHS are Zero, the result is zero.
1338    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1339    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1340    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1341    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1342
1343    // Output known-0 bits are known if clear or set in both the low clear bits
1344    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1345    // low 3 bits clear.
1346    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1347                                     CountTrailingZeros_64(~KnownZero2));
1348
1349    KnownZero = (1ULL << KnownZeroOut) - 1;
1350    KnownOne = 0;
1351    return;
1352  }
1353  case ISD::SUB: {
1354    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1355    if (!CLHS) return;
1356
1357    // We know that the top bits of C-X are clear if X contains less bits
1358    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1359    // positive if we can prove that X is >= 0 and < 16.
1360    MVT::ValueType VT = CLHS->getValueType(0);
1361    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1362      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1363      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1364      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1365      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1366
1367      // If all of the MaskV bits are known to be zero, then we know the output
1368      // top bits are zero, because we now know that the output is from [0-C].
1369      if ((KnownZero & MaskV) == MaskV) {
1370        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1371        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1372        KnownOne = 0;   // No one bits known.
1373      } else {
1374        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1375      }
1376    }
1377    return;
1378  }
1379  default:
1380    // Allow the target to implement this method for its nodes.
1381    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1382  case ISD::INTRINSIC_WO_CHAIN:
1383  case ISD::INTRINSIC_W_CHAIN:
1384  case ISD::INTRINSIC_VOID:
1385      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1386    }
1387    return;
1388  }
1389}
1390
1391/// ComputeNumSignBits - Return the number of times the sign bit of the
1392/// register is replicated into the other bits.  We know that at least 1 bit
1393/// is always equal to the sign bit (itself), but other cases can give us
1394/// information.  For example, immediately after an "SRA X, 2", we know that
1395/// the top 3 bits are all equal to each other, so we return 3.
1396unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1397  MVT::ValueType VT = Op.getValueType();
1398  assert(MVT::isInteger(VT) && "Invalid VT!");
1399  unsigned VTBits = MVT::getSizeInBits(VT);
1400  unsigned Tmp, Tmp2;
1401
1402  if (Depth == 6)
1403    return 1;  // Limit search depth.
1404
1405  switch (Op.getOpcode()) {
1406  default: break;
1407  case ISD::AssertSext:
1408    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1409    return VTBits-Tmp+1;
1410  case ISD::AssertZext:
1411    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1412    return VTBits-Tmp;
1413
1414  case ISD::Constant: {
1415    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1416    // If negative, invert the bits, then look at it.
1417    if (Val & MVT::getIntVTSignBit(VT))
1418      Val = ~Val;
1419
1420    // Shift the bits so they are the leading bits in the int64_t.
1421    Val <<= 64-VTBits;
1422
1423    // Return # leading zeros.  We use 'min' here in case Val was zero before
1424    // shifting.  We don't want to return '64' as for an i32 "0".
1425    return std::min(VTBits, CountLeadingZeros_64(Val));
1426  }
1427
1428  case ISD::SIGN_EXTEND:
1429    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1430    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1431
1432  case ISD::SIGN_EXTEND_INREG:
1433    // Max of the input and what this extends.
1434    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1435    Tmp = VTBits-Tmp+1;
1436
1437    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438    return std::max(Tmp, Tmp2);
1439
1440  case ISD::SRA:
1441    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1442    // SRA X, C   -> adds C sign bits.
1443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1444      Tmp += C->getValue();
1445      if (Tmp > VTBits) Tmp = VTBits;
1446    }
1447    return Tmp;
1448  case ISD::SHL:
1449    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1450      // shl destroys sign bits.
1451      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1452      if (C->getValue() >= VTBits ||      // Bad shift.
1453          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1454      return Tmp - C->getValue();
1455    }
1456    break;
1457  case ISD::AND:
1458  case ISD::OR:
1459  case ISD::XOR:    // NOT is handled here.
1460    // Logical binary ops preserve the number of sign bits.
1461    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1462    if (Tmp == 1) return 1;  // Early out.
1463    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1464    return std::min(Tmp, Tmp2);
1465
1466  case ISD::SELECT:
1467    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468    if (Tmp == 1) return 1;  // Early out.
1469    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1470    return std::min(Tmp, Tmp2);
1471
1472  case ISD::SETCC:
1473    // If setcc returns 0/-1, all bits are sign bits.
1474    if (TLI.getSetCCResultContents() ==
1475        TargetLowering::ZeroOrNegativeOneSetCCResult)
1476      return VTBits;
1477    break;
1478  case ISD::ROTL:
1479  case ISD::ROTR:
1480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481      unsigned RotAmt = C->getValue() & (VTBits-1);
1482
1483      // Handle rotate right by N like a rotate left by 32-N.
1484      if (Op.getOpcode() == ISD::ROTR)
1485        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1486
1487      // If we aren't rotating out all of the known-in sign bits, return the
1488      // number that are left.  This handles rotl(sext(x), 1) for example.
1489      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1490      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1491    }
1492    break;
1493  case ISD::ADD:
1494    // Add can have at most one carry bit.  Thus we know that the output
1495    // is, at worst, one more bit than the inputs.
1496    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1497    if (Tmp == 1) return 1;  // Early out.
1498
1499    // Special case decrementing a value (ADD X, -1):
1500    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1501      if (CRHS->isAllOnesValue()) {
1502        uint64_t KnownZero, KnownOne;
1503        uint64_t Mask = MVT::getIntVTBitMask(VT);
1504        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1505
1506        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1507        // sign bits set.
1508        if ((KnownZero|1) == Mask)
1509          return VTBits;
1510
1511        // If we are subtracting one from a positive number, there is no carry
1512        // out of the result.
1513        if (KnownZero & MVT::getIntVTSignBit(VT))
1514          return Tmp;
1515      }
1516
1517    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1518    if (Tmp2 == 1) return 1;
1519      return std::min(Tmp, Tmp2)-1;
1520    break;
1521
1522  case ISD::SUB:
1523    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1524    if (Tmp2 == 1) return 1;
1525
1526    // Handle NEG.
1527    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1528      if (CLHS->getValue() == 0) {
1529        uint64_t KnownZero, KnownOne;
1530        uint64_t Mask = MVT::getIntVTBitMask(VT);
1531        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1532        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1533        // sign bits set.
1534        if ((KnownZero|1) == Mask)
1535          return VTBits;
1536
1537        // If the input is known to be positive (the sign bit is known clear),
1538        // the output of the NEG has the same number of sign bits as the input.
1539        if (KnownZero & MVT::getIntVTSignBit(VT))
1540          return Tmp2;
1541
1542        // Otherwise, we treat this like a SUB.
1543      }
1544
1545    // Sub can have at most one carry bit.  Thus we know that the output
1546    // is, at worst, one more bit than the inputs.
1547    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1548    if (Tmp == 1) return 1;  // Early out.
1549      return std::min(Tmp, Tmp2)-1;
1550    break;
1551  case ISD::TRUNCATE:
1552    // FIXME: it's tricky to do anything useful for this, but it is an important
1553    // case for targets like X86.
1554    break;
1555  }
1556
1557  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1558  if (Op.getOpcode() == ISD::LOAD) {
1559    LoadSDNode *LD = cast<LoadSDNode>(Op);
1560    unsigned ExtType = LD->getExtensionType();
1561    switch (ExtType) {
1562    default: break;
1563    case ISD::SEXTLOAD:    // '17' bits known
1564      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1565      return VTBits-Tmp+1;
1566    case ISD::ZEXTLOAD:    // '16' bits known
1567      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1568      return VTBits-Tmp;
1569    }
1570  }
1571
1572  // Allow the target to implement this method for its nodes.
1573  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1574      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1575      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1576      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1577    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1578    if (NumBits > 1) return NumBits;
1579  }
1580
1581  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1582  // use this information.
1583  uint64_t KnownZero, KnownOne;
1584  uint64_t Mask = MVT::getIntVTBitMask(VT);
1585  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1586
1587  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1588  if (KnownZero & SignBit) {        // SignBit is 0
1589    Mask = KnownZero;
1590  } else if (KnownOne & SignBit) {  // SignBit is 1;
1591    Mask = KnownOne;
1592  } else {
1593    // Nothing known.
1594    return 1;
1595  }
1596
1597  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1598  // the number of identical bits in the top of the input value.
1599  Mask ^= ~0ULL;
1600  Mask <<= 64-VTBits;
1601  // Return # leading zeros.  We use 'min' here in case Val was zero before
1602  // shifting.  We don't want to return '64' as for an i32 "0".
1603  return std::min(VTBits, CountLeadingZeros_64(Mask));
1604}
1605
1606
1607/// getNode - Gets or creates the specified node.
1608///
1609SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1610  FoldingSetNodeID ID;
1611  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1612  void *IP = 0;
1613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1614    return SDOperand(E, 0);
1615  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1616  CSEMap.InsertNode(N, IP);
1617
1618  AllNodes.push_back(N);
1619  return SDOperand(N, 0);
1620}
1621
1622SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1623                                SDOperand Operand) {
1624  unsigned Tmp1;
1625  // Constant fold unary operations with an integer constant operand.
1626  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1627    uint64_t Val = C->getValue();
1628    switch (Opcode) {
1629    default: break;
1630    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1631    case ISD::ANY_EXTEND:
1632    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1633    case ISD::TRUNCATE:    return getConstant(Val, VT);
1634    case ISD::UINT_TO_FP:
1635    case ISD::SINT_TO_FP: {
1636      const uint64_t zero[] = {0, 0};
1637      // No compile time operations on this type.
1638      if (VT==MVT::ppcf128)
1639        break;
1640      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1641      (void)apf.convertFromZeroExtendedInteger(&Val,
1642                               MVT::getSizeInBits(Operand.getValueType()),
1643                               Opcode==ISD::SINT_TO_FP,
1644                               APFloat::rmNearestTiesToEven);
1645      return getConstantFP(apf, VT);
1646    }
1647    case ISD::BIT_CONVERT:
1648      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1649        return getConstantFP(BitsToFloat(Val), VT);
1650      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1651        return getConstantFP(BitsToDouble(Val), VT);
1652      break;
1653    case ISD::BSWAP:
1654      switch(VT) {
1655      default: assert(0 && "Invalid bswap!"); break;
1656      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1657      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1658      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1659      }
1660      break;
1661    case ISD::CTPOP:
1662      switch(VT) {
1663      default: assert(0 && "Invalid ctpop!"); break;
1664      case MVT::i1: return getConstant(Val != 0, VT);
1665      case MVT::i8:
1666        Tmp1 = (unsigned)Val & 0xFF;
1667        return getConstant(CountPopulation_32(Tmp1), VT);
1668      case MVT::i16:
1669        Tmp1 = (unsigned)Val & 0xFFFF;
1670        return getConstant(CountPopulation_32(Tmp1), VT);
1671      case MVT::i32:
1672        return getConstant(CountPopulation_32((unsigned)Val), VT);
1673      case MVT::i64:
1674        return getConstant(CountPopulation_64(Val), VT);
1675      }
1676    case ISD::CTLZ:
1677      switch(VT) {
1678      default: assert(0 && "Invalid ctlz!"); break;
1679      case MVT::i1: return getConstant(Val == 0, VT);
1680      case MVT::i8:
1681        Tmp1 = (unsigned)Val & 0xFF;
1682        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1683      case MVT::i16:
1684        Tmp1 = (unsigned)Val & 0xFFFF;
1685        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1686      case MVT::i32:
1687        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1688      case MVT::i64:
1689        return getConstant(CountLeadingZeros_64(Val), VT);
1690      }
1691    case ISD::CTTZ:
1692      switch(VT) {
1693      default: assert(0 && "Invalid cttz!"); break;
1694      case MVT::i1: return getConstant(Val == 0, VT);
1695      case MVT::i8:
1696        Tmp1 = (unsigned)Val | 0x100;
1697        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1698      case MVT::i16:
1699        Tmp1 = (unsigned)Val | 0x10000;
1700        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1701      case MVT::i32:
1702        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1703      case MVT::i64:
1704        return getConstant(CountTrailingZeros_64(Val), VT);
1705      }
1706    }
1707  }
1708
1709  // Constant fold unary operations with a floating point constant operand.
1710  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1711    APFloat V = C->getValueAPF();    // make copy
1712    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1713      switch (Opcode) {
1714      case ISD::FNEG:
1715        V.changeSign();
1716        return getConstantFP(V, VT);
1717      case ISD::FABS:
1718        V.clearSign();
1719        return getConstantFP(V, VT);
1720      case ISD::FP_ROUND:
1721      case ISD::FP_EXTEND:
1722        // This can return overflow, underflow, or inexact; we don't care.
1723        // FIXME need to be more flexible about rounding mode.
1724        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1725                         VT==MVT::f64 ? APFloat::IEEEdouble :
1726                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1727                         VT==MVT::f128 ? APFloat::IEEEquad :
1728                         APFloat::Bogus,
1729                         APFloat::rmNearestTiesToEven);
1730        return getConstantFP(V, VT);
1731      case ISD::FP_TO_SINT:
1732      case ISD::FP_TO_UINT: {
1733        integerPart x;
1734        assert(integerPartWidth >= 64);
1735        // FIXME need to be more flexible about rounding mode.
1736        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1737                              Opcode==ISD::FP_TO_SINT,
1738                              APFloat::rmTowardZero);
1739        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1740          break;
1741        return getConstant(x, VT);
1742      }
1743      case ISD::BIT_CONVERT:
1744        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1745          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1746        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1747          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1748        break;
1749      }
1750    }
1751  }
1752
1753  unsigned OpOpcode = Operand.Val->getOpcode();
1754  switch (Opcode) {
1755  case ISD::TokenFactor:
1756    return Operand;         // Factor of one node?  No factor.
1757  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1758  case ISD::FP_EXTEND:
1759    assert(MVT::isFloatingPoint(VT) &&
1760           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1761    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1762    break;
1763    case ISD::SIGN_EXTEND:
1764    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1765           "Invalid SIGN_EXTEND!");
1766    if (Operand.getValueType() == VT) return Operand;   // noop extension
1767    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1768           && "Invalid sext node, dst < src!");
1769    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1770      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1771    break;
1772  case ISD::ZERO_EXTEND:
1773    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1774           "Invalid ZERO_EXTEND!");
1775    if (Operand.getValueType() == VT) return Operand;   // noop extension
1776    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1777           && "Invalid zext node, dst < src!");
1778    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1779      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1780    break;
1781  case ISD::ANY_EXTEND:
1782    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1783           "Invalid ANY_EXTEND!");
1784    if (Operand.getValueType() == VT) return Operand;   // noop extension
1785    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1786           && "Invalid anyext node, dst < src!");
1787    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1788      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1789      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1790    break;
1791  case ISD::TRUNCATE:
1792    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1793           "Invalid TRUNCATE!");
1794    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1795    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1796           && "Invalid truncate node, src < dst!");
1797    if (OpOpcode == ISD::TRUNCATE)
1798      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1799    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1800             OpOpcode == ISD::ANY_EXTEND) {
1801      // If the source is smaller than the dest, we still need an extend.
1802      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1803          < MVT::getSizeInBits(VT))
1804        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1805      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1806               > MVT::getSizeInBits(VT))
1807        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1808      else
1809        return Operand.Val->getOperand(0);
1810    }
1811    break;
1812  case ISD::BIT_CONVERT:
1813    // Basic sanity checking.
1814    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1815           && "Cannot BIT_CONVERT between types of different sizes!");
1816    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1817    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1818      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1819    if (OpOpcode == ISD::UNDEF)
1820      return getNode(ISD::UNDEF, VT);
1821    break;
1822  case ISD::SCALAR_TO_VECTOR:
1823    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1824           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1825           "Illegal SCALAR_TO_VECTOR node!");
1826    break;
1827  case ISD::FNEG:
1828    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1829      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1830                     Operand.Val->getOperand(0));
1831    if (OpOpcode == ISD::FNEG)  // --X -> X
1832      return Operand.Val->getOperand(0);
1833    break;
1834  case ISD::FABS:
1835    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1836      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1837    break;
1838  }
1839
1840  SDNode *N;
1841  SDVTList VTs = getVTList(VT);
1842  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1843    FoldingSetNodeID ID;
1844    SDOperand Ops[1] = { Operand };
1845    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1846    void *IP = 0;
1847    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1848      return SDOperand(E, 0);
1849    N = new UnarySDNode(Opcode, VTs, Operand);
1850    CSEMap.InsertNode(N, IP);
1851  } else {
1852    N = new UnarySDNode(Opcode, VTs, Operand);
1853  }
1854  AllNodes.push_back(N);
1855  return SDOperand(N, 0);
1856}
1857
1858
1859
1860SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1861                                SDOperand N1, SDOperand N2) {
1862#ifndef NDEBUG
1863  switch (Opcode) {
1864  case ISD::TokenFactor:
1865    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1866           N2.getValueType() == MVT::Other && "Invalid token factor!");
1867    break;
1868  case ISD::AND:
1869  case ISD::OR:
1870  case ISD::XOR:
1871  case ISD::UDIV:
1872  case ISD::UREM:
1873  case ISD::MULHU:
1874  case ISD::MULHS:
1875    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1876    // fall through
1877  case ISD::ADD:
1878  case ISD::SUB:
1879  case ISD::MUL:
1880  case ISD::SDIV:
1881  case ISD::SREM:
1882    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1883    // fall through.
1884  case ISD::FADD:
1885  case ISD::FSUB:
1886  case ISD::FMUL:
1887  case ISD::FDIV:
1888  case ISD::FREM:
1889    assert(N1.getValueType() == N2.getValueType() &&
1890           N1.getValueType() == VT && "Binary operator types must match!");
1891    break;
1892  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1893    assert(N1.getValueType() == VT &&
1894           MVT::isFloatingPoint(N1.getValueType()) &&
1895           MVT::isFloatingPoint(N2.getValueType()) &&
1896           "Invalid FCOPYSIGN!");
1897    break;
1898  case ISD::SHL:
1899  case ISD::SRA:
1900  case ISD::SRL:
1901  case ISD::ROTL:
1902  case ISD::ROTR:
1903    assert(VT == N1.getValueType() &&
1904           "Shift operators return type must be the same as their first arg");
1905    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1906           VT != MVT::i1 && "Shifts only work on integers");
1907    break;
1908  case ISD::FP_ROUND_INREG: {
1909    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1910    assert(VT == N1.getValueType() && "Not an inreg round!");
1911    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1912           "Cannot FP_ROUND_INREG integer types");
1913    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1914           "Not rounding down!");
1915    break;
1916  }
1917  case ISD::FP_ROUND:
1918    assert(MVT::isFloatingPoint(VT) &&
1919           MVT::isFloatingPoint(N1.getValueType()) &&
1920           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1921           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
1922    if (N1.getValueType() == VT) return N1;  // noop conversion.
1923    break;
1924  case ISD::AssertSext:
1925  case ISD::AssertZext:
1926  case ISD::SIGN_EXTEND_INREG: {
1927    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1928    assert(VT == N1.getValueType() && "Not an inreg extend!");
1929    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1930           "Cannot *_EXTEND_INREG FP types");
1931    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1932           "Not extending!");
1933  }
1934
1935  default: break;
1936  }
1937#endif
1938
1939  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1940  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1941  if (N1C) {
1942    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1943      int64_t Val = N1C->getValue();
1944      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1945      Val <<= 64-FromBits;
1946      Val >>= 64-FromBits;
1947      return getConstant(Val, VT);
1948    }
1949
1950    if (N2C) {
1951      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1952      switch (Opcode) {
1953      case ISD::ADD: return getConstant(C1 + C2, VT);
1954      case ISD::SUB: return getConstant(C1 - C2, VT);
1955      case ISD::MUL: return getConstant(C1 * C2, VT);
1956      case ISD::UDIV:
1957        if (C2) return getConstant(C1 / C2, VT);
1958        break;
1959      case ISD::UREM :
1960        if (C2) return getConstant(C1 % C2, VT);
1961        break;
1962      case ISD::SDIV :
1963        if (C2) return getConstant(N1C->getSignExtended() /
1964                                   N2C->getSignExtended(), VT);
1965        break;
1966      case ISD::SREM :
1967        if (C2) return getConstant(N1C->getSignExtended() %
1968                                   N2C->getSignExtended(), VT);
1969        break;
1970      case ISD::AND  : return getConstant(C1 & C2, VT);
1971      case ISD::OR   : return getConstant(C1 | C2, VT);
1972      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1973      case ISD::SHL  : return getConstant(C1 << C2, VT);
1974      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1975      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1976      case ISD::ROTL :
1977        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1978                           VT);
1979      case ISD::ROTR :
1980        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1981                           VT);
1982      default: break;
1983      }
1984    } else {      // Cannonicalize constant to RHS if commutative
1985      if (isCommutativeBinOp(Opcode)) {
1986        std::swap(N1C, N2C);
1987        std::swap(N1, N2);
1988      }
1989    }
1990  }
1991
1992  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1993  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1994  if (N1CFP) {
1995    if (N2CFP && VT!=MVT::ppcf128) {
1996      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1997      APFloat::opStatus s;
1998      switch (Opcode) {
1999      case ISD::FADD:
2000        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2001        if (s!=APFloat::opInvalidOp)
2002          return getConstantFP(V1, VT);
2003        break;
2004      case ISD::FSUB:
2005        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2006        if (s!=APFloat::opInvalidOp)
2007          return getConstantFP(V1, VT);
2008        break;
2009      case ISD::FMUL:
2010        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2011        if (s!=APFloat::opInvalidOp)
2012          return getConstantFP(V1, VT);
2013        break;
2014      case ISD::FDIV:
2015        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2016        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2017          return getConstantFP(V1, VT);
2018        break;
2019      case ISD::FREM :
2020        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2021        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2022          return getConstantFP(V1, VT);
2023        break;
2024      case ISD::FCOPYSIGN:
2025        V1.copySign(V2);
2026        return getConstantFP(V1, VT);
2027      default: break;
2028      }
2029    } else {      // Cannonicalize constant to RHS if commutative
2030      if (isCommutativeBinOp(Opcode)) {
2031        std::swap(N1CFP, N2CFP);
2032        std::swap(N1, N2);
2033      }
2034    }
2035  }
2036
2037  // Canonicalize an UNDEF to the RHS, even over a constant.
2038  if (N1.getOpcode() == ISD::UNDEF) {
2039    if (isCommutativeBinOp(Opcode)) {
2040      std::swap(N1, N2);
2041    } else {
2042      switch (Opcode) {
2043      case ISD::FP_ROUND_INREG:
2044      case ISD::SIGN_EXTEND_INREG:
2045      case ISD::SUB:
2046      case ISD::FSUB:
2047      case ISD::FDIV:
2048      case ISD::FREM:
2049      case ISD::SRA:
2050        return N1;     // fold op(undef, arg2) -> undef
2051      case ISD::UDIV:
2052      case ISD::SDIV:
2053      case ISD::UREM:
2054      case ISD::SREM:
2055      case ISD::SRL:
2056      case ISD::SHL:
2057        if (!MVT::isVector(VT))
2058          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2059        // For vectors, we can't easily build an all zero vector, just return
2060        // the LHS.
2061        return N2;
2062      }
2063    }
2064  }
2065
2066  // Fold a bunch of operators when the RHS is undef.
2067  if (N2.getOpcode() == ISD::UNDEF) {
2068    switch (Opcode) {
2069    case ISD::ADD:
2070    case ISD::ADDC:
2071    case ISD::ADDE:
2072    case ISD::SUB:
2073    case ISD::FADD:
2074    case ISD::FSUB:
2075    case ISD::FMUL:
2076    case ISD::FDIV:
2077    case ISD::FREM:
2078    case ISD::UDIV:
2079    case ISD::SDIV:
2080    case ISD::UREM:
2081    case ISD::SREM:
2082    case ISD::XOR:
2083      return N2;       // fold op(arg1, undef) -> undef
2084    case ISD::MUL:
2085    case ISD::AND:
2086    case ISD::SRL:
2087    case ISD::SHL:
2088      if (!MVT::isVector(VT))
2089        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2090      // For vectors, we can't easily build an all zero vector, just return
2091      // the LHS.
2092      return N1;
2093    case ISD::OR:
2094      if (!MVT::isVector(VT))
2095        return getConstant(MVT::getIntVTBitMask(VT), VT);
2096      // For vectors, we can't easily build an all one vector, just return
2097      // the LHS.
2098      return N1;
2099    case ISD::SRA:
2100      return N1;
2101    }
2102  }
2103
2104  // Fold operations.
2105  switch (Opcode) {
2106  case ISD::TokenFactor:
2107    // Fold trivial token factors.
2108    if (N1.getOpcode() == ISD::EntryToken) return N2;
2109    if (N2.getOpcode() == ISD::EntryToken) return N1;
2110    break;
2111
2112  case ISD::AND:
2113    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2114    // worth handling here.
2115    if (N2C && N2C->getValue() == 0)
2116      return N2;
2117    break;
2118  case ISD::OR:
2119  case ISD::XOR:
2120    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2121    // worth handling here.
2122    if (N2C && N2C->getValue() == 0)
2123      return N1;
2124    break;
2125  case ISD::FP_ROUND_INREG:
2126    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2127    break;
2128  case ISD::SIGN_EXTEND_INREG: {
2129    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2130    if (EVT == VT) return N1;  // Not actually extending
2131    break;
2132  }
2133  case ISD::EXTRACT_VECTOR_ELT:
2134    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2135
2136    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2137    // expanding copies of large vectors from registers.
2138    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2139        N1.getNumOperands() > 0) {
2140      unsigned Factor =
2141        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2142      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2143                     N1.getOperand(N2C->getValue() / Factor),
2144                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2145    }
2146
2147    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2148    // expanding large vector constants.
2149    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2150      return N1.getOperand(N2C->getValue());
2151
2152    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2153    // operations are lowered to scalars.
2154    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2155      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2156        if (IEC == N2C)
2157          return N1.getOperand(1);
2158        else
2159          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2160      }
2161    break;
2162  case ISD::EXTRACT_ELEMENT:
2163    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2164
2165    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2166    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2167    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2168    if (N1.getOpcode() == ISD::BUILD_PAIR)
2169      return N1.getOperand(N2C->getValue());
2170
2171    // EXTRACT_ELEMENT of a constant int is also very common.
2172    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2173      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2174      return getConstant(C->getValue() >> Shift, VT);
2175    }
2176    break;
2177
2178  // FIXME: figure out how to safely handle things like
2179  // int foo(int x) { return 1 << (x & 255); }
2180  // int bar() { return foo(256); }
2181#if 0
2182  case ISD::SHL:
2183  case ISD::SRL:
2184  case ISD::SRA:
2185    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2186        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2187      return getNode(Opcode, VT, N1, N2.getOperand(0));
2188    else if (N2.getOpcode() == ISD::AND)
2189      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2190        // If the and is only masking out bits that cannot effect the shift,
2191        // eliminate the and.
2192        unsigned NumBits = MVT::getSizeInBits(VT);
2193        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2194          return getNode(Opcode, VT, N1, N2.getOperand(0));
2195      }
2196    break;
2197#endif
2198  }
2199
2200  // Memoize this node if possible.
2201  SDNode *N;
2202  SDVTList VTs = getVTList(VT);
2203  if (VT != MVT::Flag) {
2204    SDOperand Ops[] = { N1, N2 };
2205    FoldingSetNodeID ID;
2206    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2207    void *IP = 0;
2208    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2209      return SDOperand(E, 0);
2210    N = new BinarySDNode(Opcode, VTs, N1, N2);
2211    CSEMap.InsertNode(N, IP);
2212  } else {
2213    N = new BinarySDNode(Opcode, VTs, N1, N2);
2214  }
2215
2216  AllNodes.push_back(N);
2217  return SDOperand(N, 0);
2218}
2219
2220SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2221                                SDOperand N1, SDOperand N2, SDOperand N3) {
2222  // Perform various simplifications.
2223  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2224  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2225  switch (Opcode) {
2226  case ISD::SETCC: {
2227    // Use FoldSetCC to simplify SETCC's.
2228    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2229    if (Simp.Val) return Simp;
2230    break;
2231  }
2232  case ISD::SELECT:
2233    if (N1C)
2234      if (N1C->getValue())
2235        return N2;             // select true, X, Y -> X
2236      else
2237        return N3;             // select false, X, Y -> Y
2238
2239    if (N2 == N3) return N2;   // select C, X, X -> X
2240    break;
2241  case ISD::BRCOND:
2242    if (N2C)
2243      if (N2C->getValue()) // Unconditional branch
2244        return getNode(ISD::BR, MVT::Other, N1, N3);
2245      else
2246        return N1;         // Never-taken branch
2247    break;
2248  case ISD::VECTOR_SHUFFLE:
2249    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2250           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2251           N3.getOpcode() == ISD::BUILD_VECTOR &&
2252           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2253           "Illegal VECTOR_SHUFFLE node!");
2254    break;
2255  case ISD::BIT_CONVERT:
2256    // Fold bit_convert nodes from a type to themselves.
2257    if (N1.getValueType() == VT)
2258      return N1;
2259    break;
2260  }
2261
2262  // Memoize node if it doesn't produce a flag.
2263  SDNode *N;
2264  SDVTList VTs = getVTList(VT);
2265  if (VT != MVT::Flag) {
2266    SDOperand Ops[] = { N1, N2, N3 };
2267    FoldingSetNodeID ID;
2268    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2269    void *IP = 0;
2270    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2271      return SDOperand(E, 0);
2272    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2273    CSEMap.InsertNode(N, IP);
2274  } else {
2275    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2276  }
2277  AllNodes.push_back(N);
2278  return SDOperand(N, 0);
2279}
2280
2281SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2282                                SDOperand N1, SDOperand N2, SDOperand N3,
2283                                SDOperand N4) {
2284  SDOperand Ops[] = { N1, N2, N3, N4 };
2285  return getNode(Opcode, VT, Ops, 4);
2286}
2287
2288SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2289                                SDOperand N1, SDOperand N2, SDOperand N3,
2290                                SDOperand N4, SDOperand N5) {
2291  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2292  return getNode(Opcode, VT, Ops, 5);
2293}
2294
2295SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2296                                  SDOperand Src, SDOperand Size,
2297                                  SDOperand Align,
2298                                  SDOperand AlwaysInline) {
2299  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2300  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2301}
2302
2303SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2304                                  SDOperand Src, SDOperand Size,
2305                                  SDOperand Align,
2306                                  SDOperand AlwaysInline) {
2307  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2308  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2309}
2310
2311SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2312                                  SDOperand Src, SDOperand Size,
2313                                  SDOperand Align,
2314                                  SDOperand AlwaysInline) {
2315  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2316  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2317}
2318
2319SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2320                                SDOperand Chain, SDOperand Ptr,
2321                                const Value *SV, int SVOffset,
2322                                bool isVolatile, unsigned Alignment) {
2323  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2324    const Type *Ty = 0;
2325    if (VT != MVT::iPTR) {
2326      Ty = MVT::getTypeForValueType(VT);
2327    } else if (SV) {
2328      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2329      assert(PT && "Value for load must be a pointer");
2330      Ty = PT->getElementType();
2331    }
2332    assert(Ty && "Could not get type information for load");
2333    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2334  }
2335  SDVTList VTs = getVTList(VT, MVT::Other);
2336  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2337  SDOperand Ops[] = { Chain, Ptr, Undef };
2338  FoldingSetNodeID ID;
2339  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2340  ID.AddInteger(ISD::UNINDEXED);
2341  ID.AddInteger(ISD::NON_EXTLOAD);
2342  ID.AddInteger((unsigned int)VT);
2343  ID.AddInteger(Alignment);
2344  ID.AddInteger(isVolatile);
2345  void *IP = 0;
2346  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2347    return SDOperand(E, 0);
2348  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2349                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2350                             isVolatile);
2351  CSEMap.InsertNode(N, IP);
2352  AllNodes.push_back(N);
2353  return SDOperand(N, 0);
2354}
2355
2356SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2357                                   SDOperand Chain, SDOperand Ptr,
2358                                   const Value *SV,
2359                                   int SVOffset, MVT::ValueType EVT,
2360                                   bool isVolatile, unsigned Alignment) {
2361  // If they are asking for an extending load from/to the same thing, return a
2362  // normal load.
2363  if (VT == EVT)
2364    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2365
2366  if (MVT::isVector(VT))
2367    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2368  else
2369    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2370           "Should only be an extending load, not truncating!");
2371  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2372         "Cannot sign/zero extend a FP/Vector load!");
2373  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2374         "Cannot convert from FP to Int or Int -> FP!");
2375
2376  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2377    const Type *Ty = 0;
2378    if (VT != MVT::iPTR) {
2379      Ty = MVT::getTypeForValueType(VT);
2380    } else if (SV) {
2381      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2382      assert(PT && "Value for load must be a pointer");
2383      Ty = PT->getElementType();
2384    }
2385    assert(Ty && "Could not get type information for load");
2386    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2387  }
2388  SDVTList VTs = getVTList(VT, MVT::Other);
2389  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2390  SDOperand Ops[] = { Chain, Ptr, Undef };
2391  FoldingSetNodeID ID;
2392  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2393  ID.AddInteger(ISD::UNINDEXED);
2394  ID.AddInteger(ExtType);
2395  ID.AddInteger((unsigned int)EVT);
2396  ID.AddInteger(Alignment);
2397  ID.AddInteger(isVolatile);
2398  void *IP = 0;
2399  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2400    return SDOperand(E, 0);
2401  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2402                             SV, SVOffset, Alignment, isVolatile);
2403  CSEMap.InsertNode(N, IP);
2404  AllNodes.push_back(N);
2405  return SDOperand(N, 0);
2406}
2407
2408SDOperand
2409SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2410                             SDOperand Offset, ISD::MemIndexedMode AM) {
2411  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2412  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2413         "Load is already a indexed load!");
2414  MVT::ValueType VT = OrigLoad.getValueType();
2415  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2416  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2417  FoldingSetNodeID ID;
2418  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2419  ID.AddInteger(AM);
2420  ID.AddInteger(LD->getExtensionType());
2421  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2422  ID.AddInteger(LD->getAlignment());
2423  ID.AddInteger(LD->isVolatile());
2424  void *IP = 0;
2425  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2426    return SDOperand(E, 0);
2427  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2428                             LD->getExtensionType(), LD->getLoadedVT(),
2429                             LD->getSrcValue(), LD->getSrcValueOffset(),
2430                             LD->getAlignment(), LD->isVolatile());
2431  CSEMap.InsertNode(N, IP);
2432  AllNodes.push_back(N);
2433  return SDOperand(N, 0);
2434}
2435
2436SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2437                                 SDOperand Ptr, const Value *SV, int SVOffset,
2438                                 bool isVolatile, unsigned Alignment) {
2439  MVT::ValueType VT = Val.getValueType();
2440
2441  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2442    const Type *Ty = 0;
2443    if (VT != MVT::iPTR) {
2444      Ty = MVT::getTypeForValueType(VT);
2445    } else if (SV) {
2446      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2447      assert(PT && "Value for store must be a pointer");
2448      Ty = PT->getElementType();
2449    }
2450    assert(Ty && "Could not get type information for store");
2451    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2452  }
2453  SDVTList VTs = getVTList(MVT::Other);
2454  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2455  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2456  FoldingSetNodeID ID;
2457  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2458  ID.AddInteger(ISD::UNINDEXED);
2459  ID.AddInteger(false);
2460  ID.AddInteger((unsigned int)VT);
2461  ID.AddInteger(Alignment);
2462  ID.AddInteger(isVolatile);
2463  void *IP = 0;
2464  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2465    return SDOperand(E, 0);
2466  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2467                              VT, SV, SVOffset, Alignment, isVolatile);
2468  CSEMap.InsertNode(N, IP);
2469  AllNodes.push_back(N);
2470  return SDOperand(N, 0);
2471}
2472
2473SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2474                                      SDOperand Ptr, const Value *SV,
2475                                      int SVOffset, MVT::ValueType SVT,
2476                                      bool isVolatile, unsigned Alignment) {
2477  MVT::ValueType VT = Val.getValueType();
2478
2479  if (VT == SVT)
2480    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2481
2482  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2483         "Not a truncation?");
2484  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2485         "Can't do FP-INT conversion!");
2486
2487  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2488    const Type *Ty = 0;
2489    if (VT != MVT::iPTR) {
2490      Ty = MVT::getTypeForValueType(VT);
2491    } else if (SV) {
2492      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2493      assert(PT && "Value for store must be a pointer");
2494      Ty = PT->getElementType();
2495    }
2496    assert(Ty && "Could not get type information for store");
2497    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2498  }
2499  SDVTList VTs = getVTList(MVT::Other);
2500  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2501  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2502  FoldingSetNodeID ID;
2503  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2504  ID.AddInteger(ISD::UNINDEXED);
2505  ID.AddInteger(1);
2506  ID.AddInteger((unsigned int)SVT);
2507  ID.AddInteger(Alignment);
2508  ID.AddInteger(isVolatile);
2509  void *IP = 0;
2510  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2511    return SDOperand(E, 0);
2512  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2513                              SVT, SV, SVOffset, Alignment, isVolatile);
2514  CSEMap.InsertNode(N, IP);
2515  AllNodes.push_back(N);
2516  return SDOperand(N, 0);
2517}
2518
2519SDOperand
2520SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2521                              SDOperand Offset, ISD::MemIndexedMode AM) {
2522  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2523  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2524         "Store is already a indexed store!");
2525  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2526  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2527  FoldingSetNodeID ID;
2528  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2529  ID.AddInteger(AM);
2530  ID.AddInteger(ST->isTruncatingStore());
2531  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2532  ID.AddInteger(ST->getAlignment());
2533  ID.AddInteger(ST->isVolatile());
2534  void *IP = 0;
2535  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2536    return SDOperand(E, 0);
2537  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2538                              ST->isTruncatingStore(), ST->getStoredVT(),
2539                              ST->getSrcValue(), ST->getSrcValueOffset(),
2540                              ST->getAlignment(), ST->isVolatile());
2541  CSEMap.InsertNode(N, IP);
2542  AllNodes.push_back(N);
2543  return SDOperand(N, 0);
2544}
2545
2546SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2547                                 SDOperand Chain, SDOperand Ptr,
2548                                 SDOperand SV) {
2549  SDOperand Ops[] = { Chain, Ptr, SV };
2550  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2551}
2552
2553SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2554                                const SDOperand *Ops, unsigned NumOps) {
2555  switch (NumOps) {
2556  case 0: return getNode(Opcode, VT);
2557  case 1: return getNode(Opcode, VT, Ops[0]);
2558  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2559  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2560  default: break;
2561  }
2562
2563  switch (Opcode) {
2564  default: break;
2565  case ISD::SELECT_CC: {
2566    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2567    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2568           "LHS and RHS of condition must have same type!");
2569    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2570           "True and False arms of SelectCC must have same type!");
2571    assert(Ops[2].getValueType() == VT &&
2572           "select_cc node must be of same type as true and false value!");
2573    break;
2574  }
2575  case ISD::BR_CC: {
2576    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2577    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2578           "LHS/RHS of comparison should match types!");
2579    break;
2580  }
2581  }
2582
2583  // Memoize nodes.
2584  SDNode *N;
2585  SDVTList VTs = getVTList(VT);
2586  if (VT != MVT::Flag) {
2587    FoldingSetNodeID ID;
2588    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2589    void *IP = 0;
2590    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2591      return SDOperand(E, 0);
2592    N = new SDNode(Opcode, VTs, Ops, NumOps);
2593    CSEMap.InsertNode(N, IP);
2594  } else {
2595    N = new SDNode(Opcode, VTs, Ops, NumOps);
2596  }
2597  AllNodes.push_back(N);
2598  return SDOperand(N, 0);
2599}
2600
2601SDOperand SelectionDAG::getNode(unsigned Opcode,
2602                                std::vector<MVT::ValueType> &ResultTys,
2603                                const SDOperand *Ops, unsigned NumOps) {
2604  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2605                 Ops, NumOps);
2606}
2607
2608SDOperand SelectionDAG::getNode(unsigned Opcode,
2609                                const MVT::ValueType *VTs, unsigned NumVTs,
2610                                const SDOperand *Ops, unsigned NumOps) {
2611  if (NumVTs == 1)
2612    return getNode(Opcode, VTs[0], Ops, NumOps);
2613  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2614}
2615
2616SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2617                                const SDOperand *Ops, unsigned NumOps) {
2618  if (VTList.NumVTs == 1)
2619    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2620
2621  switch (Opcode) {
2622  // FIXME: figure out how to safely handle things like
2623  // int foo(int x) { return 1 << (x & 255); }
2624  // int bar() { return foo(256); }
2625#if 0
2626  case ISD::SRA_PARTS:
2627  case ISD::SRL_PARTS:
2628  case ISD::SHL_PARTS:
2629    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2630        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2631      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2632    else if (N3.getOpcode() == ISD::AND)
2633      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2634        // If the and is only masking out bits that cannot effect the shift,
2635        // eliminate the and.
2636        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2637        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2638          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2639      }
2640    break;
2641#endif
2642  }
2643
2644  // Memoize the node unless it returns a flag.
2645  SDNode *N;
2646  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2647    FoldingSetNodeID ID;
2648    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2649    void *IP = 0;
2650    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2651      return SDOperand(E, 0);
2652    if (NumOps == 1)
2653      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2654    else if (NumOps == 2)
2655      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2656    else if (NumOps == 3)
2657      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2658    else
2659      N = new SDNode(Opcode, VTList, Ops, NumOps);
2660    CSEMap.InsertNode(N, IP);
2661  } else {
2662    if (NumOps == 1)
2663      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2664    else if (NumOps == 2)
2665      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2666    else if (NumOps == 3)
2667      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2668    else
2669      N = new SDNode(Opcode, VTList, Ops, NumOps);
2670  }
2671  AllNodes.push_back(N);
2672  return SDOperand(N, 0);
2673}
2674
2675SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2676  return getNode(Opcode, VTList, 0, 0);
2677}
2678
2679SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2680                                SDOperand N1) {
2681  SDOperand Ops[] = { N1 };
2682  return getNode(Opcode, VTList, Ops, 1);
2683}
2684
2685SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2686                                SDOperand N1, SDOperand N2) {
2687  SDOperand Ops[] = { N1, N2 };
2688  return getNode(Opcode, VTList, Ops, 2);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2692                                SDOperand N1, SDOperand N2, SDOperand N3) {
2693  SDOperand Ops[] = { N1, N2, N3 };
2694  return getNode(Opcode, VTList, Ops, 3);
2695}
2696
2697SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2698                                SDOperand N1, SDOperand N2, SDOperand N3,
2699                                SDOperand N4) {
2700  SDOperand Ops[] = { N1, N2, N3, N4 };
2701  return getNode(Opcode, VTList, Ops, 4);
2702}
2703
2704SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2705                                SDOperand N1, SDOperand N2, SDOperand N3,
2706                                SDOperand N4, SDOperand N5) {
2707  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2708  return getNode(Opcode, VTList, Ops, 5);
2709}
2710
2711SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2712  return makeVTList(SDNode::getValueTypeList(VT), 1);
2713}
2714
2715SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2716  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2717       E = VTList.end(); I != E; ++I) {
2718    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2719      return makeVTList(&(*I)[0], 2);
2720  }
2721  std::vector<MVT::ValueType> V;
2722  V.push_back(VT1);
2723  V.push_back(VT2);
2724  VTList.push_front(V);
2725  return makeVTList(&(*VTList.begin())[0], 2);
2726}
2727SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2728                                 MVT::ValueType VT3) {
2729  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2730       E = VTList.end(); I != E; ++I) {
2731    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2732        (*I)[2] == VT3)
2733      return makeVTList(&(*I)[0], 3);
2734  }
2735  std::vector<MVT::ValueType> V;
2736  V.push_back(VT1);
2737  V.push_back(VT2);
2738  V.push_back(VT3);
2739  VTList.push_front(V);
2740  return makeVTList(&(*VTList.begin())[0], 3);
2741}
2742
2743SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2744  switch (NumVTs) {
2745    case 0: assert(0 && "Cannot have nodes without results!");
2746    case 1: return getVTList(VTs[0]);
2747    case 2: return getVTList(VTs[0], VTs[1]);
2748    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2749    default: break;
2750  }
2751
2752  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2753       E = VTList.end(); I != E; ++I) {
2754    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2755
2756    bool NoMatch = false;
2757    for (unsigned i = 2; i != NumVTs; ++i)
2758      if (VTs[i] != (*I)[i]) {
2759        NoMatch = true;
2760        break;
2761      }
2762    if (!NoMatch)
2763      return makeVTList(&*I->begin(), NumVTs);
2764  }
2765
2766  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2767  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2768}
2769
2770
2771/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2772/// specified operands.  If the resultant node already exists in the DAG,
2773/// this does not modify the specified node, instead it returns the node that
2774/// already exists.  If the resultant node does not exist in the DAG, the
2775/// input node is returned.  As a degenerate case, if you specify the same
2776/// input operands as the node already has, the input node is returned.
2777SDOperand SelectionDAG::
2778UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2779  SDNode *N = InN.Val;
2780  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2781
2782  // Check to see if there is no change.
2783  if (Op == N->getOperand(0)) return InN;
2784
2785  // See if the modified node already exists.
2786  void *InsertPos = 0;
2787  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2788    return SDOperand(Existing, InN.ResNo);
2789
2790  // Nope it doesn't.  Remove the node from it's current place in the maps.
2791  if (InsertPos)
2792    RemoveNodeFromCSEMaps(N);
2793
2794  // Now we update the operands.
2795  N->OperandList[0].Val->removeUser(N);
2796  Op.Val->addUser(N);
2797  N->OperandList[0] = Op;
2798
2799  // If this gets put into a CSE map, add it.
2800  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2801  return InN;
2802}
2803
2804SDOperand SelectionDAG::
2805UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2806  SDNode *N = InN.Val;
2807  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2808
2809  // Check to see if there is no change.
2810  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2811    return InN;   // No operands changed, just return the input node.
2812
2813  // See if the modified node already exists.
2814  void *InsertPos = 0;
2815  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2816    return SDOperand(Existing, InN.ResNo);
2817
2818  // Nope it doesn't.  Remove the node from it's current place in the maps.
2819  if (InsertPos)
2820    RemoveNodeFromCSEMaps(N);
2821
2822  // Now we update the operands.
2823  if (N->OperandList[0] != Op1) {
2824    N->OperandList[0].Val->removeUser(N);
2825    Op1.Val->addUser(N);
2826    N->OperandList[0] = Op1;
2827  }
2828  if (N->OperandList[1] != Op2) {
2829    N->OperandList[1].Val->removeUser(N);
2830    Op2.Val->addUser(N);
2831    N->OperandList[1] = Op2;
2832  }
2833
2834  // If this gets put into a CSE map, add it.
2835  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2836  return InN;
2837}
2838
2839SDOperand SelectionDAG::
2840UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2841  SDOperand Ops[] = { Op1, Op2, Op3 };
2842  return UpdateNodeOperands(N, Ops, 3);
2843}
2844
2845SDOperand SelectionDAG::
2846UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2847                   SDOperand Op3, SDOperand Op4) {
2848  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2849  return UpdateNodeOperands(N, Ops, 4);
2850}
2851
2852SDOperand SelectionDAG::
2853UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2854                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2855  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2856  return UpdateNodeOperands(N, Ops, 5);
2857}
2858
2859
2860SDOperand SelectionDAG::
2861UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2862  SDNode *N = InN.Val;
2863  assert(N->getNumOperands() == NumOps &&
2864         "Update with wrong number of operands");
2865
2866  // Check to see if there is no change.
2867  bool AnyChange = false;
2868  for (unsigned i = 0; i != NumOps; ++i) {
2869    if (Ops[i] != N->getOperand(i)) {
2870      AnyChange = true;
2871      break;
2872    }
2873  }
2874
2875  // No operands changed, just return the input node.
2876  if (!AnyChange) return InN;
2877
2878  // See if the modified node already exists.
2879  void *InsertPos = 0;
2880  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2881    return SDOperand(Existing, InN.ResNo);
2882
2883  // Nope it doesn't.  Remove the node from it's current place in the maps.
2884  if (InsertPos)
2885    RemoveNodeFromCSEMaps(N);
2886
2887  // Now we update the operands.
2888  for (unsigned i = 0; i != NumOps; ++i) {
2889    if (N->OperandList[i] != Ops[i]) {
2890      N->OperandList[i].Val->removeUser(N);
2891      Ops[i].Val->addUser(N);
2892      N->OperandList[i] = Ops[i];
2893    }
2894  }
2895
2896  // If this gets put into a CSE map, add it.
2897  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2898  return InN;
2899}
2900
2901
2902/// MorphNodeTo - This frees the operands of the current node, resets the
2903/// opcode, types, and operands to the specified value.  This should only be
2904/// used by the SelectionDAG class.
2905void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2906                         const SDOperand *Ops, unsigned NumOps) {
2907  NodeType = Opc;
2908  ValueList = L.VTs;
2909  NumValues = L.NumVTs;
2910
2911  // Clear the operands list, updating used nodes to remove this from their
2912  // use list.
2913  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2914    I->Val->removeUser(this);
2915
2916  // If NumOps is larger than the # of operands we currently have, reallocate
2917  // the operand list.
2918  if (NumOps > NumOperands) {
2919    if (OperandsNeedDelete)
2920      delete [] OperandList;
2921    OperandList = new SDOperand[NumOps];
2922    OperandsNeedDelete = true;
2923  }
2924
2925  // Assign the new operands.
2926  NumOperands = NumOps;
2927
2928  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2929    OperandList[i] = Ops[i];
2930    SDNode *N = OperandList[i].Val;
2931    N->Uses.push_back(this);
2932  }
2933}
2934
2935/// SelectNodeTo - These are used for target selectors to *mutate* the
2936/// specified node to have the specified return type, Target opcode, and
2937/// operands.  Note that target opcodes are stored as
2938/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2939///
2940/// Note that SelectNodeTo returns the resultant node.  If there is already a
2941/// node of the specified opcode and operands, it returns that node instead of
2942/// the current one.
2943SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2944                                   MVT::ValueType VT) {
2945  SDVTList VTs = getVTList(VT);
2946  FoldingSetNodeID ID;
2947  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2948  void *IP = 0;
2949  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2950    return ON;
2951
2952  RemoveNodeFromCSEMaps(N);
2953
2954  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2955
2956  CSEMap.InsertNode(N, IP);
2957  return N;
2958}
2959
2960SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2961                                   MVT::ValueType VT, SDOperand Op1) {
2962  // If an identical node already exists, use it.
2963  SDVTList VTs = getVTList(VT);
2964  SDOperand Ops[] = { Op1 };
2965
2966  FoldingSetNodeID ID;
2967  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2968  void *IP = 0;
2969  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2970    return ON;
2971
2972  RemoveNodeFromCSEMaps(N);
2973  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2974  CSEMap.InsertNode(N, IP);
2975  return N;
2976}
2977
2978SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2979                                   MVT::ValueType VT, SDOperand Op1,
2980                                   SDOperand Op2) {
2981  // If an identical node already exists, use it.
2982  SDVTList VTs = getVTList(VT);
2983  SDOperand Ops[] = { Op1, Op2 };
2984
2985  FoldingSetNodeID ID;
2986  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2987  void *IP = 0;
2988  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2989    return ON;
2990
2991  RemoveNodeFromCSEMaps(N);
2992
2993  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2994
2995  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2996  return N;
2997}
2998
2999SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3000                                   MVT::ValueType VT, SDOperand Op1,
3001                                   SDOperand Op2, SDOperand Op3) {
3002  // If an identical node already exists, use it.
3003  SDVTList VTs = getVTList(VT);
3004  SDOperand Ops[] = { Op1, Op2, Op3 };
3005  FoldingSetNodeID ID;
3006  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3007  void *IP = 0;
3008  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3009    return ON;
3010
3011  RemoveNodeFromCSEMaps(N);
3012
3013  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3014
3015  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3016  return N;
3017}
3018
3019SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3020                                   MVT::ValueType VT, const SDOperand *Ops,
3021                                   unsigned NumOps) {
3022  // If an identical node already exists, use it.
3023  SDVTList VTs = getVTList(VT);
3024  FoldingSetNodeID ID;
3025  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3026  void *IP = 0;
3027  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3028    return ON;
3029
3030  RemoveNodeFromCSEMaps(N);
3031  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3032
3033  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3034  return N;
3035}
3036
3037SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3038                                   MVT::ValueType VT1, MVT::ValueType VT2,
3039                                   SDOperand Op1, SDOperand Op2) {
3040  SDVTList VTs = getVTList(VT1, VT2);
3041  FoldingSetNodeID ID;
3042  SDOperand Ops[] = { Op1, Op2 };
3043  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3044  void *IP = 0;
3045  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3046    return ON;
3047
3048  RemoveNodeFromCSEMaps(N);
3049  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3050  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3051  return N;
3052}
3053
3054SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3055                                   MVT::ValueType VT1, MVT::ValueType VT2,
3056                                   SDOperand Op1, SDOperand Op2,
3057                                   SDOperand Op3) {
3058  // If an identical node already exists, use it.
3059  SDVTList VTs = getVTList(VT1, VT2);
3060  SDOperand Ops[] = { Op1, Op2, Op3 };
3061  FoldingSetNodeID ID;
3062  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3063  void *IP = 0;
3064  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3065    return ON;
3066
3067  RemoveNodeFromCSEMaps(N);
3068
3069  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3070  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3071  return N;
3072}
3073
3074
3075/// getTargetNode - These are used for target selectors to create a new node
3076/// with specified return type(s), target opcode, and operands.
3077///
3078/// Note that getTargetNode returns the resultant node.  If there is already a
3079/// node of the specified opcode and operands, it returns that node instead of
3080/// the current one.
3081SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3082  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3083}
3084SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3085                                    SDOperand Op1) {
3086  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3087}
3088SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3089                                    SDOperand Op1, SDOperand Op2) {
3090  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3091}
3092SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3093                                    SDOperand Op1, SDOperand Op2,
3094                                    SDOperand Op3) {
3095  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3096}
3097SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3098                                    const SDOperand *Ops, unsigned NumOps) {
3099  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3100}
3101SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3102                                    MVT::ValueType VT2) {
3103  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3104  SDOperand Op;
3105  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3106}
3107SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3108                                    MVT::ValueType VT2, SDOperand Op1) {
3109  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3110  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3111}
3112SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3113                                    MVT::ValueType VT2, SDOperand Op1,
3114                                    SDOperand Op2) {
3115  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3116  SDOperand Ops[] = { Op1, Op2 };
3117  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3118}
3119SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3120                                    MVT::ValueType VT2, SDOperand Op1,
3121                                    SDOperand Op2, SDOperand Op3) {
3122  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3123  SDOperand Ops[] = { Op1, Op2, Op3 };
3124  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3125}
3126SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3127                                    MVT::ValueType VT2,
3128                                    const SDOperand *Ops, unsigned NumOps) {
3129  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3130  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3131}
3132SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3133                                    MVT::ValueType VT2, MVT::ValueType VT3,
3134                                    SDOperand Op1, SDOperand Op2) {
3135  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3136  SDOperand Ops[] = { Op1, Op2 };
3137  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3138}
3139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3140                                    MVT::ValueType VT2, MVT::ValueType VT3,
3141                                    SDOperand Op1, SDOperand Op2,
3142                                    SDOperand Op3) {
3143  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3144  SDOperand Ops[] = { Op1, Op2, Op3 };
3145  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3146}
3147SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3148                                    MVT::ValueType VT2, MVT::ValueType VT3,
3149                                    const SDOperand *Ops, unsigned NumOps) {
3150  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3151  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3152}
3153SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3154                                    MVT::ValueType VT2, MVT::ValueType VT3,
3155                                    MVT::ValueType VT4,
3156                                    const SDOperand *Ops, unsigned NumOps) {
3157  std::vector<MVT::ValueType> VTList;
3158  VTList.push_back(VT1);
3159  VTList.push_back(VT2);
3160  VTList.push_back(VT3);
3161  VTList.push_back(VT4);
3162  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3163  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3164}
3165SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3166                                    std::vector<MVT::ValueType> &ResultTys,
3167                                    const SDOperand *Ops, unsigned NumOps) {
3168  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3169  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3170                 Ops, NumOps).Val;
3171}
3172
3173/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3174/// This can cause recursive merging of nodes in the DAG.
3175///
3176/// This version assumes From/To have a single result value.
3177///
3178void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3179                                      std::vector<SDNode*> *Deleted) {
3180  SDNode *From = FromN.Val, *To = ToN.Val;
3181  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3182         "Cannot replace with this method!");
3183  assert(From != To && "Cannot replace uses of with self");
3184
3185  while (!From->use_empty()) {
3186    // Process users until they are all gone.
3187    SDNode *U = *From->use_begin();
3188
3189    // This node is about to morph, remove its old self from the CSE maps.
3190    RemoveNodeFromCSEMaps(U);
3191
3192    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3193         I != E; ++I)
3194      if (I->Val == From) {
3195        From->removeUser(U);
3196        I->Val = To;
3197        To->addUser(U);
3198      }
3199
3200    // Now that we have modified U, add it back to the CSE maps.  If it already
3201    // exists there, recursively merge the results together.
3202    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3203      ReplaceAllUsesWith(U, Existing, Deleted);
3204      // U is now dead.
3205      if (Deleted) Deleted->push_back(U);
3206      DeleteNodeNotInCSEMaps(U);
3207    }
3208  }
3209}
3210
3211/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3212/// This can cause recursive merging of nodes in the DAG.
3213///
3214/// This version assumes From/To have matching types and numbers of result
3215/// values.
3216///
3217void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3218                                      std::vector<SDNode*> *Deleted) {
3219  assert(From != To && "Cannot replace uses of with self");
3220  assert(From->getNumValues() == To->getNumValues() &&
3221         "Cannot use this version of ReplaceAllUsesWith!");
3222  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3223    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3224    return;
3225  }
3226
3227  while (!From->use_empty()) {
3228    // Process users until they are all gone.
3229    SDNode *U = *From->use_begin();
3230
3231    // This node is about to morph, remove its old self from the CSE maps.
3232    RemoveNodeFromCSEMaps(U);
3233
3234    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3235         I != E; ++I)
3236      if (I->Val == From) {
3237        From->removeUser(U);
3238        I->Val = To;
3239        To->addUser(U);
3240      }
3241
3242    // Now that we have modified U, add it back to the CSE maps.  If it already
3243    // exists there, recursively merge the results together.
3244    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3245      ReplaceAllUsesWith(U, Existing, Deleted);
3246      // U is now dead.
3247      if (Deleted) Deleted->push_back(U);
3248      DeleteNodeNotInCSEMaps(U);
3249    }
3250  }
3251}
3252
3253/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3254/// This can cause recursive merging of nodes in the DAG.
3255///
3256/// This version can replace From with any result values.  To must match the
3257/// number and types of values returned by From.
3258void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3259                                      const SDOperand *To,
3260                                      std::vector<SDNode*> *Deleted) {
3261  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3262    // Degenerate case handled above.
3263    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3264    return;
3265  }
3266
3267  while (!From->use_empty()) {
3268    // Process users until they are all gone.
3269    SDNode *U = *From->use_begin();
3270
3271    // This node is about to morph, remove its old self from the CSE maps.
3272    RemoveNodeFromCSEMaps(U);
3273
3274    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3275         I != E; ++I)
3276      if (I->Val == From) {
3277        const SDOperand &ToOp = To[I->ResNo];
3278        From->removeUser(U);
3279        *I = ToOp;
3280        ToOp.Val->addUser(U);
3281      }
3282
3283    // Now that we have modified U, add it back to the CSE maps.  If it already
3284    // exists there, recursively merge the results together.
3285    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3286      ReplaceAllUsesWith(U, Existing, Deleted);
3287      // U is now dead.
3288      if (Deleted) Deleted->push_back(U);
3289      DeleteNodeNotInCSEMaps(U);
3290    }
3291  }
3292}
3293
3294/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3295/// uses of other values produced by From.Val alone.  The Deleted vector is
3296/// handled the same was as for ReplaceAllUsesWith.
3297void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3298                                             std::vector<SDNode*> *Deleted) {
3299  assert(From != To && "Cannot replace a value with itself");
3300  // Handle the simple, trivial, case efficiently.
3301  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3302    ReplaceAllUsesWith(From, To, Deleted);
3303    return;
3304  }
3305
3306  // Get all of the users of From.Val.  We want these in a nice,
3307  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3308  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3309
3310  std::vector<SDNode*> LocalDeletionVector;
3311
3312  // Pick a deletion vector to use.  If the user specified one, use theirs,
3313  // otherwise use a local one.
3314  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3315  while (!Users.empty()) {
3316    // We know that this user uses some value of From.  If it is the right
3317    // value, update it.
3318    SDNode *User = Users.back();
3319    Users.pop_back();
3320
3321    // Scan for an operand that matches From.
3322    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3323    for (; Op != E; ++Op)
3324      if (*Op == From) break;
3325
3326    // If there are no matches, the user must use some other result of From.
3327    if (Op == E) continue;
3328
3329    // Okay, we know this user needs to be updated.  Remove its old self
3330    // from the CSE maps.
3331    RemoveNodeFromCSEMaps(User);
3332
3333    // Update all operands that match "From".
3334    for (; Op != E; ++Op) {
3335      if (*Op == From) {
3336        From.Val->removeUser(User);
3337        *Op = To;
3338        To.Val->addUser(User);
3339      }
3340    }
3341
3342    // Now that we have modified User, add it back to the CSE maps.  If it
3343    // already exists there, recursively merge the results together.
3344    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3345    if (!Existing) continue;  // Continue on to next user.
3346
3347    // If there was already an existing matching node, use ReplaceAllUsesWith
3348    // to replace the dead one with the existing one.  However, this can cause
3349    // recursive merging of other unrelated nodes down the line.  The merging
3350    // can cause deletion of nodes that used the old value.  In this case,
3351    // we have to be certain to remove them from the Users set.
3352    unsigned NumDeleted = DeleteVector->size();
3353    ReplaceAllUsesWith(User, Existing, DeleteVector);
3354
3355    // User is now dead.
3356    DeleteVector->push_back(User);
3357    DeleteNodeNotInCSEMaps(User);
3358
3359    // We have to be careful here, because ReplaceAllUsesWith could have
3360    // deleted a user of From, which means there may be dangling pointers
3361    // in the "Users" setvector.  Scan over the deleted node pointers and
3362    // remove them from the setvector.
3363    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3364      Users.remove((*DeleteVector)[i]);
3365
3366    // If the user doesn't need the set of deleted elements, don't retain them
3367    // to the next loop iteration.
3368    if (Deleted == 0)
3369      LocalDeletionVector.clear();
3370  }
3371}
3372
3373
3374/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3375/// their allnodes order. It returns the maximum id.
3376unsigned SelectionDAG::AssignNodeIds() {
3377  unsigned Id = 0;
3378  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3379    SDNode *N = I;
3380    N->setNodeId(Id++);
3381  }
3382  return Id;
3383}
3384
3385/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3386/// based on their topological order. It returns the maximum id and a vector
3387/// of the SDNodes* in assigned order by reference.
3388unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3389  unsigned DAGSize = AllNodes.size();
3390  std::vector<unsigned> InDegree(DAGSize);
3391  std::vector<SDNode*> Sources;
3392
3393  // Use a two pass approach to avoid using a std::map which is slow.
3394  unsigned Id = 0;
3395  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3396    SDNode *N = I;
3397    N->setNodeId(Id++);
3398    unsigned Degree = N->use_size();
3399    InDegree[N->getNodeId()] = Degree;
3400    if (Degree == 0)
3401      Sources.push_back(N);
3402  }
3403
3404  TopOrder.clear();
3405  while (!Sources.empty()) {
3406    SDNode *N = Sources.back();
3407    Sources.pop_back();
3408    TopOrder.push_back(N);
3409    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3410      SDNode *P = I->Val;
3411      unsigned Degree = --InDegree[P->getNodeId()];
3412      if (Degree == 0)
3413        Sources.push_back(P);
3414    }
3415  }
3416
3417  // Second pass, assign the actual topological order as node ids.
3418  Id = 0;
3419  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3420       TI != TE; ++TI)
3421    (*TI)->setNodeId(Id++);
3422
3423  return Id;
3424}
3425
3426
3427
3428//===----------------------------------------------------------------------===//
3429//                              SDNode Class
3430//===----------------------------------------------------------------------===//
3431
3432// Out-of-line virtual method to give class a home.
3433void SDNode::ANCHOR() {}
3434void UnarySDNode::ANCHOR() {}
3435void BinarySDNode::ANCHOR() {}
3436void TernarySDNode::ANCHOR() {}
3437void HandleSDNode::ANCHOR() {}
3438void StringSDNode::ANCHOR() {}
3439void ConstantSDNode::ANCHOR() {}
3440void ConstantFPSDNode::ANCHOR() {}
3441void GlobalAddressSDNode::ANCHOR() {}
3442void FrameIndexSDNode::ANCHOR() {}
3443void JumpTableSDNode::ANCHOR() {}
3444void ConstantPoolSDNode::ANCHOR() {}
3445void BasicBlockSDNode::ANCHOR() {}
3446void SrcValueSDNode::ANCHOR() {}
3447void RegisterSDNode::ANCHOR() {}
3448void ExternalSymbolSDNode::ANCHOR() {}
3449void CondCodeSDNode::ANCHOR() {}
3450void VTSDNode::ANCHOR() {}
3451void LoadSDNode::ANCHOR() {}
3452void StoreSDNode::ANCHOR() {}
3453
3454HandleSDNode::~HandleSDNode() {
3455  SDVTList VTs = { 0, 0 };
3456  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3457}
3458
3459GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3460                                         MVT::ValueType VT, int o)
3461  : SDNode(isa<GlobalVariable>(GA) &&
3462           cast<GlobalVariable>(GA)->isThreadLocal() ?
3463           // Thread Local
3464           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3465           // Non Thread Local
3466           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3467           getSDVTList(VT)), Offset(o) {
3468  TheGlobal = const_cast<GlobalValue*>(GA);
3469}
3470
3471/// Profile - Gather unique data for the node.
3472///
3473void SDNode::Profile(FoldingSetNodeID &ID) {
3474  AddNodeIDNode(ID, this);
3475}
3476
3477/// getValueTypeList - Return a pointer to the specified value type.
3478///
3479MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3480  if (MVT::isExtendedVT(VT)) {
3481    static std::set<MVT::ValueType> EVTs;
3482    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3483  } else {
3484    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3485    VTs[VT] = VT;
3486    return &VTs[VT];
3487  }
3488}
3489
3490/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3491/// indicated value.  This method ignores uses of other values defined by this
3492/// operation.
3493bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3494  assert(Value < getNumValues() && "Bad value!");
3495
3496  // If there is only one value, this is easy.
3497  if (getNumValues() == 1)
3498    return use_size() == NUses;
3499  if (use_size() < NUses) return false;
3500
3501  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3502
3503  SmallPtrSet<SDNode*, 32> UsersHandled;
3504
3505  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3506    SDNode *User = *UI;
3507    if (User->getNumOperands() == 1 ||
3508        UsersHandled.insert(User))     // First time we've seen this?
3509      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3510        if (User->getOperand(i) == TheValue) {
3511          if (NUses == 0)
3512            return false;   // too many uses
3513          --NUses;
3514        }
3515  }
3516
3517  // Found exactly the right number of uses?
3518  return NUses == 0;
3519}
3520
3521
3522/// hasAnyUseOfValue - Return true if there are any use of the indicated
3523/// value. This method ignores uses of other values defined by this operation.
3524bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3525  assert(Value < getNumValues() && "Bad value!");
3526
3527  if (use_size() == 0) return false;
3528
3529  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3530
3531  SmallPtrSet<SDNode*, 32> UsersHandled;
3532
3533  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3534    SDNode *User = *UI;
3535    if (User->getNumOperands() == 1 ||
3536        UsersHandled.insert(User))     // First time we've seen this?
3537      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3538        if (User->getOperand(i) == TheValue) {
3539          return true;
3540        }
3541  }
3542
3543  return false;
3544}
3545
3546
3547/// isOnlyUse - Return true if this node is the only use of N.
3548///
3549bool SDNode::isOnlyUse(SDNode *N) const {
3550  bool Seen = false;
3551  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3552    SDNode *User = *I;
3553    if (User == this)
3554      Seen = true;
3555    else
3556      return false;
3557  }
3558
3559  return Seen;
3560}
3561
3562/// isOperand - Return true if this node is an operand of N.
3563///
3564bool SDOperand::isOperand(SDNode *N) const {
3565  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3566    if (*this == N->getOperand(i))
3567      return true;
3568  return false;
3569}
3570
3571bool SDNode::isOperand(SDNode *N) const {
3572  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3573    if (this == N->OperandList[i].Val)
3574      return true;
3575  return false;
3576}
3577
3578/// reachesChainWithoutSideEffects - Return true if this operand (which must
3579/// be a chain) reaches the specified operand without crossing any
3580/// side-effecting instructions.  In practice, this looks through token
3581/// factors and non-volatile loads.  In order to remain efficient, this only
3582/// looks a couple of nodes in, it does not do an exhaustive search.
3583bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3584                                               unsigned Depth) const {
3585  if (*this == Dest) return true;
3586
3587  // Don't search too deeply, we just want to be able to see through
3588  // TokenFactor's etc.
3589  if (Depth == 0) return false;
3590
3591  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3592  // of the operands of the TF reach dest, then we can do the xform.
3593  if (getOpcode() == ISD::TokenFactor) {
3594    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3595      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3596        return true;
3597    return false;
3598  }
3599
3600  // Loads don't have side effects, look through them.
3601  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3602    if (!Ld->isVolatile())
3603      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3604  }
3605  return false;
3606}
3607
3608
3609static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3610                            SmallPtrSet<SDNode *, 32> &Visited) {
3611  if (found || !Visited.insert(N))
3612    return;
3613
3614  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3615    SDNode *Op = N->getOperand(i).Val;
3616    if (Op == P) {
3617      found = true;
3618      return;
3619    }
3620    findPredecessor(Op, P, found, Visited);
3621  }
3622}
3623
3624/// isPredecessor - Return true if this node is a predecessor of N. This node
3625/// is either an operand of N or it can be reached by recursively traversing
3626/// up the operands.
3627/// NOTE: this is an expensive method. Use it carefully.
3628bool SDNode::isPredecessor(SDNode *N) const {
3629  SmallPtrSet<SDNode *, 32> Visited;
3630  bool found = false;
3631  findPredecessor(N, this, found, Visited);
3632  return found;
3633}
3634
3635uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3636  assert(Num < NumOperands && "Invalid child # of SDNode!");
3637  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3638}
3639
3640std::string SDNode::getOperationName(const SelectionDAG *G) const {
3641  switch (getOpcode()) {
3642  default:
3643    if (getOpcode() < ISD::BUILTIN_OP_END)
3644      return "<<Unknown DAG Node>>";
3645    else {
3646      if (G) {
3647        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3648          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3649            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3650
3651        TargetLowering &TLI = G->getTargetLoweringInfo();
3652        const char *Name =
3653          TLI.getTargetNodeName(getOpcode());
3654        if (Name) return Name;
3655      }
3656
3657      return "<<Unknown Target Node>>";
3658    }
3659
3660  case ISD::PCMARKER:      return "PCMarker";
3661  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3662  case ISD::SRCVALUE:      return "SrcValue";
3663  case ISD::EntryToken:    return "EntryToken";
3664  case ISD::TokenFactor:   return "TokenFactor";
3665  case ISD::AssertSext:    return "AssertSext";
3666  case ISD::AssertZext:    return "AssertZext";
3667
3668  case ISD::STRING:        return "String";
3669  case ISD::BasicBlock:    return "BasicBlock";
3670  case ISD::VALUETYPE:     return "ValueType";
3671  case ISD::Register:      return "Register";
3672
3673  case ISD::Constant:      return "Constant";
3674  case ISD::ConstantFP:    return "ConstantFP";
3675  case ISD::GlobalAddress: return "GlobalAddress";
3676  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3677  case ISD::FrameIndex:    return "FrameIndex";
3678  case ISD::JumpTable:     return "JumpTable";
3679  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3680  case ISD::RETURNADDR: return "RETURNADDR";
3681  case ISD::FRAMEADDR: return "FRAMEADDR";
3682  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3683  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3684  case ISD::EHSELECTION: return "EHSELECTION";
3685  case ISD::EH_RETURN: return "EH_RETURN";
3686  case ISD::ConstantPool:  return "ConstantPool";
3687  case ISD::ExternalSymbol: return "ExternalSymbol";
3688  case ISD::INTRINSIC_WO_CHAIN: {
3689    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3690    return Intrinsic::getName((Intrinsic::ID)IID);
3691  }
3692  case ISD::INTRINSIC_VOID:
3693  case ISD::INTRINSIC_W_CHAIN: {
3694    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3695    return Intrinsic::getName((Intrinsic::ID)IID);
3696  }
3697
3698  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3699  case ISD::TargetConstant: return "TargetConstant";
3700  case ISD::TargetConstantFP:return "TargetConstantFP";
3701  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3702  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3703  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3704  case ISD::TargetJumpTable:  return "TargetJumpTable";
3705  case ISD::TargetConstantPool:  return "TargetConstantPool";
3706  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3707
3708  case ISD::CopyToReg:     return "CopyToReg";
3709  case ISD::CopyFromReg:   return "CopyFromReg";
3710  case ISD::UNDEF:         return "undef";
3711  case ISD::MERGE_VALUES:  return "merge_values";
3712  case ISD::INLINEASM:     return "inlineasm";
3713  case ISD::LABEL:         return "label";
3714  case ISD::HANDLENODE:    return "handlenode";
3715  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3716  case ISD::CALL:          return "call";
3717
3718  // Unary operators
3719  case ISD::FABS:   return "fabs";
3720  case ISD::FNEG:   return "fneg";
3721  case ISD::FSQRT:  return "fsqrt";
3722  case ISD::FSIN:   return "fsin";
3723  case ISD::FCOS:   return "fcos";
3724  case ISD::FPOWI:  return "fpowi";
3725  case ISD::FPOW:   return "fpow";
3726
3727  // Binary operators
3728  case ISD::ADD:    return "add";
3729  case ISD::SUB:    return "sub";
3730  case ISD::MUL:    return "mul";
3731  case ISD::MULHU:  return "mulhu";
3732  case ISD::MULHS:  return "mulhs";
3733  case ISD::SDIV:   return "sdiv";
3734  case ISD::UDIV:   return "udiv";
3735  case ISD::SREM:   return "srem";
3736  case ISD::UREM:   return "urem";
3737  case ISD::SMUL_LOHI:  return "smul_lohi";
3738  case ISD::UMUL_LOHI:  return "umul_lohi";
3739  case ISD::SDIVREM:    return "sdivrem";
3740  case ISD::UDIVREM:    return "divrem";
3741  case ISD::AND:    return "and";
3742  case ISD::OR:     return "or";
3743  case ISD::XOR:    return "xor";
3744  case ISD::SHL:    return "shl";
3745  case ISD::SRA:    return "sra";
3746  case ISD::SRL:    return "srl";
3747  case ISD::ROTL:   return "rotl";
3748  case ISD::ROTR:   return "rotr";
3749  case ISD::FADD:   return "fadd";
3750  case ISD::FSUB:   return "fsub";
3751  case ISD::FMUL:   return "fmul";
3752  case ISD::FDIV:   return "fdiv";
3753  case ISD::FREM:   return "frem";
3754  case ISD::FCOPYSIGN: return "fcopysign";
3755  case ISD::FGETSIGN:  return "fgetsign";
3756
3757  case ISD::SETCC:       return "setcc";
3758  case ISD::SELECT:      return "select";
3759  case ISD::SELECT_CC:   return "select_cc";
3760  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3761  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3762  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3763  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3764  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3765  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3766  case ISD::CARRY_FALSE:         return "carry_false";
3767  case ISD::ADDC:        return "addc";
3768  case ISD::ADDE:        return "adde";
3769  case ISD::SUBC:        return "subc";
3770  case ISD::SUBE:        return "sube";
3771  case ISD::SHL_PARTS:   return "shl_parts";
3772  case ISD::SRA_PARTS:   return "sra_parts";
3773  case ISD::SRL_PARTS:   return "srl_parts";
3774
3775  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3776  case ISD::INSERT_SUBREG:      return "insert_subreg";
3777
3778  // Conversion operators.
3779  case ISD::SIGN_EXTEND: return "sign_extend";
3780  case ISD::ZERO_EXTEND: return "zero_extend";
3781  case ISD::ANY_EXTEND:  return "any_extend";
3782  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3783  case ISD::TRUNCATE:    return "truncate";
3784  case ISD::FP_ROUND:    return "fp_round";
3785  case ISD::FLT_ROUNDS:  return "flt_rounds";
3786  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3787  case ISD::FP_EXTEND:   return "fp_extend";
3788
3789  case ISD::SINT_TO_FP:  return "sint_to_fp";
3790  case ISD::UINT_TO_FP:  return "uint_to_fp";
3791  case ISD::FP_TO_SINT:  return "fp_to_sint";
3792  case ISD::FP_TO_UINT:  return "fp_to_uint";
3793  case ISD::BIT_CONVERT: return "bit_convert";
3794
3795    // Control flow instructions
3796  case ISD::BR:      return "br";
3797  case ISD::BRIND:   return "brind";
3798  case ISD::BR_JT:   return "br_jt";
3799  case ISD::BRCOND:  return "brcond";
3800  case ISD::BR_CC:   return "br_cc";
3801  case ISD::RET:     return "ret";
3802  case ISD::CALLSEQ_START:  return "callseq_start";
3803  case ISD::CALLSEQ_END:    return "callseq_end";
3804
3805    // Other operators
3806  case ISD::LOAD:               return "load";
3807  case ISD::STORE:              return "store";
3808  case ISD::VAARG:              return "vaarg";
3809  case ISD::VACOPY:             return "vacopy";
3810  case ISD::VAEND:              return "vaend";
3811  case ISD::VASTART:            return "vastart";
3812  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3813  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3814  case ISD::BUILD_PAIR:         return "build_pair";
3815  case ISD::STACKSAVE:          return "stacksave";
3816  case ISD::STACKRESTORE:       return "stackrestore";
3817  case ISD::TRAP:               return "trap";
3818
3819  // Block memory operations.
3820  case ISD::MEMSET:  return "memset";
3821  case ISD::MEMCPY:  return "memcpy";
3822  case ISD::MEMMOVE: return "memmove";
3823
3824  // Bit manipulation
3825  case ISD::BSWAP:   return "bswap";
3826  case ISD::CTPOP:   return "ctpop";
3827  case ISD::CTTZ:    return "cttz";
3828  case ISD::CTLZ:    return "ctlz";
3829
3830  // Debug info
3831  case ISD::LOCATION: return "location";
3832  case ISD::DEBUG_LOC: return "debug_loc";
3833
3834  // Trampolines
3835  case ISD::TRAMPOLINE: return "trampoline";
3836
3837  case ISD::CONDCODE:
3838    switch (cast<CondCodeSDNode>(this)->get()) {
3839    default: assert(0 && "Unknown setcc condition!");
3840    case ISD::SETOEQ:  return "setoeq";
3841    case ISD::SETOGT:  return "setogt";
3842    case ISD::SETOGE:  return "setoge";
3843    case ISD::SETOLT:  return "setolt";
3844    case ISD::SETOLE:  return "setole";
3845    case ISD::SETONE:  return "setone";
3846
3847    case ISD::SETO:    return "seto";
3848    case ISD::SETUO:   return "setuo";
3849    case ISD::SETUEQ:  return "setue";
3850    case ISD::SETUGT:  return "setugt";
3851    case ISD::SETUGE:  return "setuge";
3852    case ISD::SETULT:  return "setult";
3853    case ISD::SETULE:  return "setule";
3854    case ISD::SETUNE:  return "setune";
3855
3856    case ISD::SETEQ:   return "seteq";
3857    case ISD::SETGT:   return "setgt";
3858    case ISD::SETGE:   return "setge";
3859    case ISD::SETLT:   return "setlt";
3860    case ISD::SETLE:   return "setle";
3861    case ISD::SETNE:   return "setne";
3862    }
3863  }
3864}
3865
3866const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3867  switch (AM) {
3868  default:
3869    return "";
3870  case ISD::PRE_INC:
3871    return "<pre-inc>";
3872  case ISD::PRE_DEC:
3873    return "<pre-dec>";
3874  case ISD::POST_INC:
3875    return "<post-inc>";
3876  case ISD::POST_DEC:
3877    return "<post-dec>";
3878  }
3879}
3880
3881void SDNode::dump() const { dump(0); }
3882void SDNode::dump(const SelectionDAG *G) const {
3883  cerr << (void*)this << ": ";
3884
3885  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3886    if (i) cerr << ",";
3887    if (getValueType(i) == MVT::Other)
3888      cerr << "ch";
3889    else
3890      cerr << MVT::getValueTypeString(getValueType(i));
3891  }
3892  cerr << " = " << getOperationName(G);
3893
3894  cerr << " ";
3895  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3896    if (i) cerr << ", ";
3897    cerr << (void*)getOperand(i).Val;
3898    if (unsigned RN = getOperand(i).ResNo)
3899      cerr << ":" << RN;
3900  }
3901
3902  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3903    SDNode *Mask = getOperand(2).Val;
3904    cerr << "<";
3905    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3906      if (i) cerr << ",";
3907      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3908        cerr << "u";
3909      else
3910        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3911    }
3912    cerr << ">";
3913  }
3914
3915  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3916    cerr << "<" << CSDN->getValue() << ">";
3917  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3918    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3919      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3920    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3921      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3922    else {
3923      cerr << "<APFloat(";
3924      CSDN->getValueAPF().convertToAPInt().dump();
3925      cerr << ")>";
3926    }
3927  } else if (const GlobalAddressSDNode *GADN =
3928             dyn_cast<GlobalAddressSDNode>(this)) {
3929    int offset = GADN->getOffset();
3930    cerr << "<";
3931    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3932    if (offset > 0)
3933      cerr << " + " << offset;
3934    else
3935      cerr << " " << offset;
3936  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3937    cerr << "<" << FIDN->getIndex() << ">";
3938  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3939    cerr << "<" << JTDN->getIndex() << ">";
3940  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3941    int offset = CP->getOffset();
3942    if (CP->isMachineConstantPoolEntry())
3943      cerr << "<" << *CP->getMachineCPVal() << ">";
3944    else
3945      cerr << "<" << *CP->getConstVal() << ">";
3946    if (offset > 0)
3947      cerr << " + " << offset;
3948    else
3949      cerr << " " << offset;
3950  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3951    cerr << "<";
3952    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3953    if (LBB)
3954      cerr << LBB->getName() << " ";
3955    cerr << (const void*)BBDN->getBasicBlock() << ">";
3956  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3957    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3958      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3959    } else {
3960      cerr << " #" << R->getReg();
3961    }
3962  } else if (const ExternalSymbolSDNode *ES =
3963             dyn_cast<ExternalSymbolSDNode>(this)) {
3964    cerr << "'" << ES->getSymbol() << "'";
3965  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3966    if (M->getValue())
3967      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3968    else
3969      cerr << "<null:" << M->getOffset() << ">";
3970  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3971    cerr << ":" << MVT::getValueTypeString(N->getVT());
3972  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3973    const Value *SrcValue = LD->getSrcValue();
3974    int SrcOffset = LD->getSrcValueOffset();
3975    cerr << " <";
3976    if (SrcValue)
3977      cerr << SrcValue;
3978    else
3979      cerr << "null";
3980    cerr << ":" << SrcOffset << ">";
3981
3982    bool doExt = true;
3983    switch (LD->getExtensionType()) {
3984    default: doExt = false; break;
3985    case ISD::EXTLOAD:
3986      cerr << " <anyext ";
3987      break;
3988    case ISD::SEXTLOAD:
3989      cerr << " <sext ";
3990      break;
3991    case ISD::ZEXTLOAD:
3992      cerr << " <zext ";
3993      break;
3994    }
3995    if (doExt)
3996      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3997
3998    const char *AM = getIndexedModeName(LD->getAddressingMode());
3999    if (*AM)
4000      cerr << " " << AM;
4001    if (LD->isVolatile())
4002      cerr << " <volatile>";
4003    cerr << " alignment=" << LD->getAlignment();
4004  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4005    const Value *SrcValue = ST->getSrcValue();
4006    int SrcOffset = ST->getSrcValueOffset();
4007    cerr << " <";
4008    if (SrcValue)
4009      cerr << SrcValue;
4010    else
4011      cerr << "null";
4012    cerr << ":" << SrcOffset << ">";
4013
4014    if (ST->isTruncatingStore())
4015      cerr << " <trunc "
4016           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
4017
4018    const char *AM = getIndexedModeName(ST->getAddressingMode());
4019    if (*AM)
4020      cerr << " " << AM;
4021    if (ST->isVolatile())
4022      cerr << " <volatile>";
4023    cerr << " alignment=" << ST->getAlignment();
4024  }
4025}
4026
4027static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4028  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4029    if (N->getOperand(i).Val->hasOneUse())
4030      DumpNodes(N->getOperand(i).Val, indent+2, G);
4031    else
4032      cerr << "\n" << std::string(indent+2, ' ')
4033           << (void*)N->getOperand(i).Val << ": <multiple use>";
4034
4035
4036  cerr << "\n" << std::string(indent, ' ');
4037  N->dump(G);
4038}
4039
4040void SelectionDAG::dump() const {
4041  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4042  std::vector<const SDNode*> Nodes;
4043  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4044       I != E; ++I)
4045    Nodes.push_back(I);
4046
4047  std::sort(Nodes.begin(), Nodes.end());
4048
4049  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4050    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4051      DumpNodes(Nodes[i], 2, this);
4052  }
4053
4054  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4055
4056  cerr << "\n\n";
4057}
4058
4059const Type *ConstantPoolSDNode::getType() const {
4060  if (isMachineConstantPoolEntry())
4061    return Val.MachineCPVal->getType();
4062  return Val.ConstVal->getType();
4063}
4064