SelectionDAG.cpp revision 0fe9c6e7babb3c0731d9cb864ec498ec4184760f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDOperand NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDOperand V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::DBG_LABEL)
199    return true;
200  if (N->isTargetOpcode() &&
201      N->getTargetOpcode() == TargetInstrInfo::DBG_LABEL)
202    return true;
203  return false;
204}
205
206/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
207/// when given the operation for (X op Y).
208ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
209  // To perform this operation, we just need to swap the L and G bits of the
210  // operation.
211  unsigned OldL = (Operation >> 2) & 1;
212  unsigned OldG = (Operation >> 1) & 1;
213  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
214                       (OldL << 1) |       // New G bit
215                       (OldG << 2));        // New L bit.
216}
217
218/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
219/// 'op' is a valid SetCC operation.
220ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
221  unsigned Operation = Op;
222  if (isInteger)
223    Operation ^= 7;   // Flip L, G, E bits, but not U.
224  else
225    Operation ^= 15;  // Flip all of the condition bits.
226  if (Operation > ISD::SETTRUE2)
227    Operation &= ~8;     // Don't let N and U bits get set.
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: assert(0 && "Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return TLI.getTargetMachine();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDOperand *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->Val);
329    ID.AddInteger(Ops->ResNo);
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getSDOperand().Val);
339    ID.AddInteger(Ops->getSDOperand().ResNo);
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDOperand *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351
352/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
353/// data.
354static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
355  AddNodeIDOpcode(ID, N->getOpcode());
356  // Add the return value info.
357  AddNodeIDValueTypes(ID, N->getVTList());
358  // Add the operand info.
359  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
360
361  // Handle SDNode leafs with special info.
362  switch (N->getOpcode()) {
363  default: break;  // Normal nodes don't need extra info.
364  case ISD::ARG_FLAGS:
365    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
366    break;
367  case ISD::TargetConstant:
368  case ISD::Constant:
369    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
370    break;
371  case ISD::TargetConstantFP:
372  case ISD::ConstantFP: {
373    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
374    break;
375  }
376  case ISD::TargetGlobalAddress:
377  case ISD::GlobalAddress:
378  case ISD::TargetGlobalTLSAddress:
379  case ISD::GlobalTLSAddress: {
380    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
381    ID.AddPointer(GA->getGlobal());
382    ID.AddInteger(GA->getOffset());
383    break;
384  }
385  case ISD::BasicBlock:
386    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
387    break;
388  case ISD::Register:
389    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
390    break;
391  case ISD::DBG_STOPPOINT: {
392    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
393    ID.AddInteger(DSP->getLine());
394    ID.AddInteger(DSP->getColumn());
395    ID.AddPointer(DSP->getCompileUnit());
396    break;
397  }
398  case ISD::DBG_LABEL:
399  case ISD::EH_LABEL:
400    ID.AddInteger(cast<LabelSDNode>(N)->getLabelID());
401    break;
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::MEMOPERAND: {
406    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
407    ID.AddPointer(MO.getValue());
408    ID.AddInteger(MO.getFlags());
409    ID.AddInteger(MO.getOffset());
410    ID.AddInteger(MO.getSize());
411    ID.AddInteger(MO.getAlignment());
412    break;
413  }
414  case ISD::FrameIndex:
415  case ISD::TargetFrameIndex:
416    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
417    break;
418  case ISD::JumpTable:
419  case ISD::TargetJumpTable:
420    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
421    break;
422  case ISD::ConstantPool:
423  case ISD::TargetConstantPool: {
424    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
425    ID.AddInteger(CP->getAlignment());
426    ID.AddInteger(CP->getOffset());
427    if (CP->isMachineConstantPoolEntry())
428      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
429    else
430      ID.AddPointer(CP->getConstVal());
431    break;
432  }
433  case ISD::LOAD: {
434    LoadSDNode *LD = cast<LoadSDNode>(N);
435    ID.AddInteger(LD->getAddressingMode());
436    ID.AddInteger(LD->getExtensionType());
437    ID.AddInteger(LD->getMemoryVT().getRawBits());
438    ID.AddInteger(LD->getAlignment());
439    ID.AddInteger(LD->isVolatile());
440    break;
441  }
442  case ISD::STORE: {
443    StoreSDNode *ST = cast<StoreSDNode>(N);
444    ID.AddInteger(ST->getAddressingMode());
445    ID.AddInteger(ST->isTruncatingStore());
446    ID.AddInteger(ST->getMemoryVT().getRawBits());
447    ID.AddInteger(ST->getAlignment());
448    ID.AddInteger(ST->isVolatile());
449    break;
450  }
451  case ISD::ATOMIC_CMP_SWAP:
452  case ISD::ATOMIC_LOAD_ADD:
453  case ISD::ATOMIC_SWAP:
454  case ISD::ATOMIC_LOAD_SUB:
455  case ISD::ATOMIC_LOAD_AND:
456  case ISD::ATOMIC_LOAD_OR:
457  case ISD::ATOMIC_LOAD_XOR:
458  case ISD::ATOMIC_LOAD_NAND:
459  case ISD::ATOMIC_LOAD_MIN:
460  case ISD::ATOMIC_LOAD_MAX:
461  case ISD::ATOMIC_LOAD_UMIN:
462  case ISD::ATOMIC_LOAD_UMAX: {
463    AtomicSDNode *AT = cast<AtomicSDNode>(N);
464    ID.AddInteger(AT->getAlignment());
465    ID.AddInteger(AT->isVolatile());
466    break;
467  }
468  } // end switch (N->getOpcode())
469}
470
471//===----------------------------------------------------------------------===//
472//                              SelectionDAG Class
473//===----------------------------------------------------------------------===//
474
475/// RemoveDeadNodes - This method deletes all unreachable nodes in the
476/// SelectionDAG.
477void SelectionDAG::RemoveDeadNodes() {
478  // Create a dummy node (which is not added to allnodes), that adds a reference
479  // to the root node, preventing it from being deleted.
480  HandleSDNode Dummy(getRoot());
481
482  SmallVector<SDNode*, 128> DeadNodes;
483
484  // Add all obviously-dead nodes to the DeadNodes worklist.
485  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
486    if (I->use_empty())
487      DeadNodes.push_back(I);
488
489  RemoveDeadNodes(DeadNodes);
490
491  // If the root changed (e.g. it was a dead load, update the root).
492  setRoot(Dummy.getValue());
493}
494
495/// RemoveDeadNodes - This method deletes the unreachable nodes in the
496/// given list, and any nodes that become unreachable as a result.
497void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
498                                   DAGUpdateListener *UpdateListener) {
499
500  // Process the worklist, deleting the nodes and adding their uses to the
501  // worklist.
502  while (!DeadNodes.empty()) {
503    SDNode *N = DeadNodes.back();
504    DeadNodes.pop_back();
505
506    if (UpdateListener)
507      UpdateListener->NodeDeleted(N, 0);
508
509    // Take the node out of the appropriate CSE map.
510    RemoveNodeFromCSEMaps(N);
511
512    // Next, brutally remove the operand list.  This is safe to do, as there are
513    // no cycles in the graph.
514    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
515      SDNode *Operand = I->getVal();
516      Operand->removeUser(std::distance(N->op_begin(), I), N);
517
518      // Now that we removed this operand, see if there are no uses of it left.
519      if (Operand->use_empty())
520        DeadNodes.push_back(Operand);
521    }
522    if (N->OperandsNeedDelete) {
523      delete[] N->OperandList;
524    }
525    N->OperandList = 0;
526    N->NumOperands = 0;
527
528    // Finally, remove N itself.
529    AllNodes.erase(N);
530  }
531}
532
533void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
534  SmallVector<SDNode*, 16> DeadNodes;
535  DeadNodes.push_back(N);
536  RemoveDeadNodes(DeadNodes, UpdateListener);
537}
538
539void SelectionDAG::DeleteNode(SDNode *N) {
540  assert(N->use_empty() && "Cannot delete a node that is not dead!");
541
542  // First take this out of the appropriate CSE map.
543  RemoveNodeFromCSEMaps(N);
544
545  // Finally, remove uses due to operands of this node, remove from the
546  // AllNodes list, and delete the node.
547  DeleteNodeNotInCSEMaps(N);
548}
549
550void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
551
552  // Remove it from the AllNodes list.
553  AllNodes.remove(N);
554
555  // Drop all of the operands and decrement used nodes use counts.
556  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
557    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
558  if (N->OperandsNeedDelete) {
559    delete[] N->OperandList;
560  }
561  N->OperandList = 0;
562  N->NumOperands = 0;
563
564  delete N;
565}
566
567/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
568/// correspond to it.  This is useful when we're about to delete or repurpose
569/// the node.  We don't want future request for structurally identical nodes
570/// to return N anymore.
571void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
572  bool Erased = false;
573  switch (N->getOpcode()) {
574  case ISD::HANDLENODE: return;  // noop.
575  case ISD::CONDCODE:
576    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
577           "Cond code doesn't exist!");
578    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
579    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
580    break;
581  case ISD::ExternalSymbol:
582    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
583    break;
584  case ISD::TargetExternalSymbol:
585    Erased =
586      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
587    break;
588  case ISD::VALUETYPE: {
589    MVT VT = cast<VTSDNode>(N)->getVT();
590    if (VT.isExtended()) {
591      Erased = ExtendedValueTypeNodes.erase(VT);
592    } else {
593      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
594      ValueTypeNodes[VT.getSimpleVT()] = 0;
595    }
596    break;
597  }
598  default:
599    // Remove it from the CSE Map.
600    Erased = CSEMap.RemoveNode(N);
601    break;
602  }
603#ifndef NDEBUG
604  // Verify that the node was actually in one of the CSE maps, unless it has a
605  // flag result (which cannot be CSE'd) or is one of the special cases that are
606  // not subject to CSE.
607  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
608      !N->isTargetOpcode()) {
609    N->dump(this);
610    cerr << "\n";
611    assert(0 && "Node is not in map!");
612  }
613#endif
614}
615
616/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
617/// has been taken out and modified in some way.  If the specified node already
618/// exists in the CSE maps, do not modify the maps, but return the existing node
619/// instead.  If it doesn't exist, add it and return null.
620///
621SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
622  assert(N->getNumOperands() && "This is a leaf node!");
623  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624    return 0;    // Never add these nodes.
625
626  // Check that remaining values produced are not flags.
627  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628    if (N->getValueType(i) == MVT::Flag)
629      return 0;   // Never CSE anything that produces a flag.
630
631  SDNode *New = CSEMap.GetOrInsertNode(N);
632  if (New != N) return New;  // Node already existed.
633  return 0;
634}
635
636/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
637/// were replaced with those specified.  If this node is never memoized,
638/// return null, otherwise return a pointer to the slot it would take.  If a
639/// node already exists with these operands, the slot will be non-null.
640SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
641                                           void *&InsertPos) {
642  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
643    return 0;    // Never add these nodes.
644
645  // Check that remaining values produced are not flags.
646  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
647    if (N->getValueType(i) == MVT::Flag)
648      return 0;   // Never CSE anything that produces a flag.
649
650  SDOperand Ops[] = { Op };
651  FoldingSetNodeID ID;
652  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
653  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
654}
655
656/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
657/// were replaced with those specified.  If this node is never memoized,
658/// return null, otherwise return a pointer to the slot it would take.  If a
659/// node already exists with these operands, the slot will be non-null.
660SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
661                                           SDOperand Op1, SDOperand Op2,
662                                           void *&InsertPos) {
663  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
664    return 0;    // Never add these nodes.
665
666  // Check that remaining values produced are not flags.
667  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
668    if (N->getValueType(i) == MVT::Flag)
669      return 0;   // Never CSE anything that produces a flag.
670
671  SDOperand Ops[] = { Op1, Op2 };
672  FoldingSetNodeID ID;
673  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
674  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
675}
676
677
678/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
679/// were replaced with those specified.  If this node is never memoized,
680/// return null, otherwise return a pointer to the slot it would take.  If a
681/// node already exists with these operands, the slot will be non-null.
682SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
683                                           const SDOperand *Ops,unsigned NumOps,
684                                           void *&InsertPos) {
685  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
686    return 0;    // Never add these nodes.
687
688  // Check that remaining values produced are not flags.
689  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
690    if (N->getValueType(i) == MVT::Flag)
691      return 0;   // Never CSE anything that produces a flag.
692
693  FoldingSetNodeID ID;
694  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
695
696  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
697    ID.AddInteger(LD->getAddressingMode());
698    ID.AddInteger(LD->getExtensionType());
699    ID.AddInteger(LD->getMemoryVT().getRawBits());
700    ID.AddInteger(LD->getAlignment());
701    ID.AddInteger(LD->isVolatile());
702  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
703    ID.AddInteger(ST->getAddressingMode());
704    ID.AddInteger(ST->isTruncatingStore());
705    ID.AddInteger(ST->getMemoryVT().getRawBits());
706    ID.AddInteger(ST->getAlignment());
707    ID.AddInteger(ST->isVolatile());
708  }
709
710  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
711}
712
713
714SelectionDAG::~SelectionDAG() {
715  while (!AllNodes.empty()) {
716    SDNode *N = AllNodes.begin();
717    N->SetNextInBucket(0);
718    if (N->OperandsNeedDelete) {
719      delete [] N->OperandList;
720    }
721    N->OperandList = 0;
722    N->NumOperands = 0;
723    AllNodes.pop_front();
724  }
725}
726
727SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
728  if (Op.getValueType() == VT) return Op;
729  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
730                                   VT.getSizeInBits());
731  return getNode(ISD::AND, Op.getValueType(), Op,
732                 getConstant(Imm, Op.getValueType()));
733}
734
735SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
736  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
737  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
738}
739
740SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
741  assert(VT.isInteger() && "Cannot create FP integer constant!");
742
743  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
744  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!VT.isVector())
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (VT.isVector()) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(VT.getVectorNumElements(), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
777  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
778
779  MVT EltVT =
780    VT.isVector() ? VT.getVectorElementType() : VT;
781
782  // Do the map lookup using the actual bit pattern for the floating point
783  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
784  // we don't have issues with SNANs.
785  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
786  FoldingSetNodeID ID;
787  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
788  ID.Add(V);
789  void *IP = 0;
790  SDNode *N = NULL;
791  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
792    if (!VT.isVector())
793      return SDOperand(N, 0);
794  if (!N) {
795    N = new ConstantFPSDNode(isTarget, V, EltVT);
796    CSEMap.InsertNode(N, IP);
797    AllNodes.push_back(N);
798  }
799
800  SDOperand Result(N, 0);
801  if (VT.isVector()) {
802    SmallVector<SDOperand, 8> Ops;
803    Ops.assign(VT.getVectorNumElements(), Result);
804    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
805  }
806  return Result;
807}
808
809SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
810  MVT EltVT =
811    VT.isVector() ? VT.getVectorElementType() : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT VT, int Offset,
820                                         bool isTargetGA) {
821  unsigned Opc;
822
823  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
824  if (!GVar) {
825    // If GV is an alias then use the aliasee for determining thread-localness.
826    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
827      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
828  }
829
830  if (GVar && GVar->isThreadLocal())
831    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
832  else
833    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
834
835  FoldingSetNodeID ID;
836  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
837  ID.AddPointer(GV);
838  ID.AddInteger(Offset);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841   return SDOperand(E, 0);
842  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
849  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
850  FoldingSetNodeID ID;
851  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
852  ID.AddInteger(FI);
853  void *IP = 0;
854  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
855    return SDOperand(E, 0);
856  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
857  CSEMap.InsertNode(N, IP);
858  AllNodes.push_back(N);
859  return SDOperand(N, 0);
860}
861
862SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
863  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
864  FoldingSetNodeID ID;
865  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
866  ID.AddInteger(JTI);
867  void *IP = 0;
868  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
869    return SDOperand(E, 0);
870  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
871  CSEMap.InsertNode(N, IP);
872  AllNodes.push_back(N);
873  return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
877                                        unsigned Alignment, int Offset,
878                                        bool isTarget) {
879  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
880  FoldingSetNodeID ID;
881  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
882  ID.AddInteger(Alignment);
883  ID.AddInteger(Offset);
884  ID.AddPointer(C);
885  void *IP = 0;
886  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
887    return SDOperand(E, 0);
888  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
889  CSEMap.InsertNode(N, IP);
890  AllNodes.push_back(N);
891  return SDOperand(N, 0);
892}
893
894
895SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
896                                        unsigned Alignment, int Offset,
897                                        bool isTarget) {
898  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
901  ID.AddInteger(Alignment);
902  ID.AddInteger(Offset);
903  C->AddSelectionDAGCSEId(ID);
904  void *IP = 0;
905  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
906    return SDOperand(E, 0);
907  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
908  CSEMap.InsertNode(N, IP);
909  AllNodes.push_back(N);
910  return SDOperand(N, 0);
911}
912
913
914SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
915  FoldingSetNodeID ID;
916  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
917  ID.AddPointer(MBB);
918  void *IP = 0;
919  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
920    return SDOperand(E, 0);
921  SDNode *N = new BasicBlockSDNode(MBB);
922  CSEMap.InsertNode(N, IP);
923  AllNodes.push_back(N);
924  return SDOperand(N, 0);
925}
926
927SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
930  ID.AddInteger(Flags.getRawBits());
931  void *IP = 0;
932  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
933    return SDOperand(E, 0);
934  SDNode *N = new ARG_FLAGSSDNode(Flags);
935  CSEMap.InsertNode(N, IP);
936  AllNodes.push_back(N);
937  return SDOperand(N, 0);
938}
939
940SDOperand SelectionDAG::getValueType(MVT VT) {
941  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
942    ValueTypeNodes.resize(VT.getSimpleVT()+1);
943
944  SDNode *&N = VT.isExtended() ?
945    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
946
947  if (N) return SDOperand(N, 0);
948  N = new VTSDNode(VT);
949  AllNodes.push_back(N);
950  return SDOperand(N, 0);
951}
952
953SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
954  SDNode *&N = ExternalSymbols[Sym];
955  if (N) return SDOperand(N, 0);
956  N = new ExternalSymbolSDNode(false, Sym, VT);
957  AllNodes.push_back(N);
958  return SDOperand(N, 0);
959}
960
961SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
962  SDNode *&N = TargetExternalSymbols[Sym];
963  if (N) return SDOperand(N, 0);
964  N = new ExternalSymbolSDNode(true, Sym, VT);
965  AllNodes.push_back(N);
966  return SDOperand(N, 0);
967}
968
969SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
970  if ((unsigned)Cond >= CondCodeNodes.size())
971    CondCodeNodes.resize(Cond+1);
972
973  if (CondCodeNodes[Cond] == 0) {
974    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
975    AllNodes.push_back(CondCodeNodes[Cond]);
976  }
977  return SDOperand(CondCodeNodes[Cond], 0);
978}
979
980SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
981  FoldingSetNodeID ID;
982  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
983  ID.AddInteger(RegNo);
984  void *IP = 0;
985  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
986    return SDOperand(E, 0);
987  SDNode *N = new RegisterSDNode(RegNo, VT);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDOperand(N, 0);
991}
992
993SDOperand SelectionDAG::getDbgStopPoint(SDOperand Root,
994                                        unsigned Line, unsigned Col,
995                                        const CompileUnitDesc *CU) {
996  FoldingSetNodeID ID;
997  SDOperand Ops[] = { Root };
998  AddNodeIDNode(ID, ISD::DBG_STOPPOINT, getVTList(MVT::Other), &Ops[0], 1);
999  ID.AddInteger(Line);
1000  ID.AddInteger(Col);
1001  ID.AddPointer(CU);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDOperand(E, 0);
1005  SDNode *N = new DbgStopPointSDNode(Root, Line, Col, CU);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDOperand(N, 0);
1009}
1010
1011SDOperand SelectionDAG::getLabel(unsigned Opcode,
1012                                 SDOperand Root,
1013                                 unsigned LabelID) {
1014  FoldingSetNodeID ID;
1015  SDOperand Ops[] = { Root };
1016  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1017  ID.AddInteger(LabelID);
1018  void *IP = 0;
1019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1020    return SDOperand(E, 0);
1021  SDNode *N = new LabelSDNode(Opcode, Root, LabelID);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDOperand(N, 0);
1025}
1026
1027SDOperand SelectionDAG::getSrcValue(const Value *V) {
1028  assert((!V || isa<PointerType>(V->getType())) &&
1029         "SrcValue is not a pointer?");
1030
1031  FoldingSetNodeID ID;
1032  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1033  ID.AddPointer(V);
1034
1035  void *IP = 0;
1036  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1037    return SDOperand(E, 0);
1038
1039  SDNode *N = new SrcValueSDNode(V);
1040  CSEMap.InsertNode(N, IP);
1041  AllNodes.push_back(N);
1042  return SDOperand(N, 0);
1043}
1044
1045SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1046  const Value *v = MO.getValue();
1047  assert((!v || isa<PointerType>(v->getType())) &&
1048         "SrcValue is not a pointer?");
1049
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1052  ID.AddPointer(v);
1053  ID.AddInteger(MO.getFlags());
1054  ID.AddInteger(MO.getOffset());
1055  ID.AddInteger(MO.getSize());
1056  ID.AddInteger(MO.getAlignment());
1057
1058  void *IP = 0;
1059  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1060    return SDOperand(E, 0);
1061
1062  SDNode *N = new MemOperandSDNode(MO);
1063  CSEMap.InsertNode(N, IP);
1064  AllNodes.push_back(N);
1065  return SDOperand(N, 0);
1066}
1067
1068/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1069/// specified value type.
1070SDOperand SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1071  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1072  unsigned ByteSize = VT.getSizeInBits()/8;
1073  const Type *Ty = VT.getTypeForMVT();
1074  unsigned StackAlign =
1075  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1076
1077  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1078  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1079}
1080
1081SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1082                                  SDOperand N2, ISD::CondCode Cond) {
1083  // These setcc operations always fold.
1084  switch (Cond) {
1085  default: break;
1086  case ISD::SETFALSE:
1087  case ISD::SETFALSE2: return getConstant(0, VT);
1088  case ISD::SETTRUE:
1089  case ISD::SETTRUE2:  return getConstant(1, VT);
1090
1091  case ISD::SETOEQ:
1092  case ISD::SETOGT:
1093  case ISD::SETOGE:
1094  case ISD::SETOLT:
1095  case ISD::SETOLE:
1096  case ISD::SETONE:
1097  case ISD::SETO:
1098  case ISD::SETUO:
1099  case ISD::SETUEQ:
1100  case ISD::SETUNE:
1101    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1102    break;
1103  }
1104
1105  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1106    const APInt &C2 = N2C->getAPIntValue();
1107    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1108      const APInt &C1 = N1C->getAPIntValue();
1109
1110      switch (Cond) {
1111      default: assert(0 && "Unknown integer setcc!");
1112      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1113      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1114      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1115      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1116      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1117      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1118      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1119      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1120      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1121      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1122      }
1123    }
1124  }
1125  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1126    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1127      // No compile time operations on this type yet.
1128      if (N1C->getValueType(0) == MVT::ppcf128)
1129        return SDOperand();
1130
1131      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1132      switch (Cond) {
1133      default: break;
1134      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1135                          return getNode(ISD::UNDEF, VT);
1136                        // fall through
1137      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1138      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1139                          return getNode(ISD::UNDEF, VT);
1140                        // fall through
1141      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1142                                           R==APFloat::cmpLessThan, VT);
1143      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1144                          return getNode(ISD::UNDEF, VT);
1145                        // fall through
1146      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1147      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1148                          return getNode(ISD::UNDEF, VT);
1149                        // fall through
1150      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1151      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1152                          return getNode(ISD::UNDEF, VT);
1153                        // fall through
1154      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1155                                           R==APFloat::cmpEqual, VT);
1156      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1157                          return getNode(ISD::UNDEF, VT);
1158                        // fall through
1159      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1160                                           R==APFloat::cmpEqual, VT);
1161      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1162      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1163      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1164                                           R==APFloat::cmpEqual, VT);
1165      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1166      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1167                                           R==APFloat::cmpLessThan, VT);
1168      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1169                                           R==APFloat::cmpUnordered, VT);
1170      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1171      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1172      }
1173    } else {
1174      // Ensure that the constant occurs on the RHS.
1175      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1176    }
1177  }
1178
1179  // Could not fold it.
1180  return SDOperand();
1181}
1182
1183/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1184/// use this predicate to simplify operations downstream.
1185bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1186  unsigned BitWidth = Op.getValueSizeInBits();
1187  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1188}
1189
1190/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1191/// this predicate to simplify operations downstream.  Mask is known to be zero
1192/// for bits that V cannot have.
1193bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1194                                     unsigned Depth) const {
1195  APInt KnownZero, KnownOne;
1196  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1197  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1198  return (KnownZero & Mask) == Mask;
1199}
1200
1201/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1202/// known to be either zero or one and return them in the KnownZero/KnownOne
1203/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1204/// processing.
1205void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1206                                     APInt &KnownZero, APInt &KnownOne,
1207                                     unsigned Depth) const {
1208  unsigned BitWidth = Mask.getBitWidth();
1209  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1210         "Mask size mismatches value type size!");
1211
1212  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1213  if (Depth == 6 || Mask == 0)
1214    return;  // Limit search depth.
1215
1216  APInt KnownZero2, KnownOne2;
1217
1218  switch (Op.getOpcode()) {
1219  case ISD::Constant:
1220    // We know all of the bits for a constant!
1221    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1222    KnownZero = ~KnownOne & Mask;
1223    return;
1224  case ISD::AND:
1225    // If either the LHS or the RHS are Zero, the result is zero.
1226    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1227    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1228                      KnownZero2, KnownOne2, Depth+1);
1229    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1230    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1231
1232    // Output known-1 bits are only known if set in both the LHS & RHS.
1233    KnownOne &= KnownOne2;
1234    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1235    KnownZero |= KnownZero2;
1236    return;
1237  case ISD::OR:
1238    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1239    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1240                      KnownZero2, KnownOne2, Depth+1);
1241    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1242    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1243
1244    // Output known-0 bits are only known if clear in both the LHS & RHS.
1245    KnownZero &= KnownZero2;
1246    // Output known-1 are known to be set if set in either the LHS | RHS.
1247    KnownOne |= KnownOne2;
1248    return;
1249  case ISD::XOR: {
1250    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1251    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1252    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1253    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1254
1255    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1256    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1257    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1258    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1259    KnownZero = KnownZeroOut;
1260    return;
1261  }
1262  case ISD::MUL: {
1263    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1264    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1265    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1266    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1267    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1268
1269    // If low bits are zero in either operand, output low known-0 bits.
1270    // Also compute a conserative estimate for high known-0 bits.
1271    // More trickiness is possible, but this is sufficient for the
1272    // interesting case of alignment computation.
1273    KnownOne.clear();
1274    unsigned TrailZ = KnownZero.countTrailingOnes() +
1275                      KnownZero2.countTrailingOnes();
1276    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1277                               KnownZero2.countLeadingOnes(),
1278                               BitWidth) - BitWidth;
1279
1280    TrailZ = std::min(TrailZ, BitWidth);
1281    LeadZ = std::min(LeadZ, BitWidth);
1282    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1283                APInt::getHighBitsSet(BitWidth, LeadZ);
1284    KnownZero &= Mask;
1285    return;
1286  }
1287  case ISD::UDIV: {
1288    // For the purposes of computing leading zeros we can conservatively
1289    // treat a udiv as a logical right shift by the power of 2 known to
1290    // be less than the denominator.
1291    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1292    ComputeMaskedBits(Op.getOperand(0),
1293                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1294    unsigned LeadZ = KnownZero2.countLeadingOnes();
1295
1296    KnownOne2.clear();
1297    KnownZero2.clear();
1298    ComputeMaskedBits(Op.getOperand(1),
1299                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1300    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1301    if (RHSUnknownLeadingOnes != BitWidth)
1302      LeadZ = std::min(BitWidth,
1303                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1304
1305    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1306    return;
1307  }
1308  case ISD::SELECT:
1309    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1310    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1311    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1313
1314    // Only known if known in both the LHS and RHS.
1315    KnownOne &= KnownOne2;
1316    KnownZero &= KnownZero2;
1317    return;
1318  case ISD::SELECT_CC:
1319    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1320    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1321    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1322    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1323
1324    // Only known if known in both the LHS and RHS.
1325    KnownOne &= KnownOne2;
1326    KnownZero &= KnownZero2;
1327    return;
1328  case ISD::SETCC:
1329    // If we know the result of a setcc has the top bits zero, use this info.
1330    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1331        BitWidth > 1)
1332      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1333    return;
1334  case ISD::SHL:
1335    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1336    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1337      unsigned ShAmt = SA->getValue();
1338
1339      // If the shift count is an invalid immediate, don't do anything.
1340      if (ShAmt >= BitWidth)
1341        return;
1342
1343      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1344                        KnownZero, KnownOne, Depth+1);
1345      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1346      KnownZero <<= ShAmt;
1347      KnownOne  <<= ShAmt;
1348      // low bits known zero.
1349      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1350    }
1351    return;
1352  case ISD::SRL:
1353    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1354    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1355      unsigned ShAmt = SA->getValue();
1356
1357      // If the shift count is an invalid immediate, don't do anything.
1358      if (ShAmt >= BitWidth)
1359        return;
1360
1361      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1362                        KnownZero, KnownOne, Depth+1);
1363      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1364      KnownZero = KnownZero.lshr(ShAmt);
1365      KnownOne  = KnownOne.lshr(ShAmt);
1366
1367      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1368      KnownZero |= HighBits;  // High bits known zero.
1369    }
1370    return;
1371  case ISD::SRA:
1372    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1373      unsigned ShAmt = SA->getValue();
1374
1375      // If the shift count is an invalid immediate, don't do anything.
1376      if (ShAmt >= BitWidth)
1377        return;
1378
1379      APInt InDemandedMask = (Mask << ShAmt);
1380      // If any of the demanded bits are produced by the sign extension, we also
1381      // demand the input sign bit.
1382      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1383      if (HighBits.getBoolValue())
1384        InDemandedMask |= APInt::getSignBit(BitWidth);
1385
1386      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1387                        Depth+1);
1388      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389      KnownZero = KnownZero.lshr(ShAmt);
1390      KnownOne  = KnownOne.lshr(ShAmt);
1391
1392      // Handle the sign bits.
1393      APInt SignBit = APInt::getSignBit(BitWidth);
1394      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1395
1396      if (KnownZero.intersects(SignBit)) {
1397        KnownZero |= HighBits;  // New bits are known zero.
1398      } else if (KnownOne.intersects(SignBit)) {
1399        KnownOne  |= HighBits;  // New bits are known one.
1400      }
1401    }
1402    return;
1403  case ISD::SIGN_EXTEND_INREG: {
1404    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1405    unsigned EBits = EVT.getSizeInBits();
1406
1407    // Sign extension.  Compute the demanded bits in the result that are not
1408    // present in the input.
1409    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1410
1411    APInt InSignBit = APInt::getSignBit(EBits);
1412    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1413
1414    // If the sign extended bits are demanded, we know that the sign
1415    // bit is demanded.
1416    InSignBit.zext(BitWidth);
1417    if (NewBits.getBoolValue())
1418      InputDemandedBits |= InSignBit;
1419
1420    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1421                      KnownZero, KnownOne, Depth+1);
1422    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1423
1424    // If the sign bit of the input is known set or clear, then we know the
1425    // top bits of the result.
1426    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1427      KnownZero |= NewBits;
1428      KnownOne  &= ~NewBits;
1429    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1430      KnownOne  |= NewBits;
1431      KnownZero &= ~NewBits;
1432    } else {                              // Input sign bit unknown
1433      KnownZero &= ~NewBits;
1434      KnownOne  &= ~NewBits;
1435    }
1436    return;
1437  }
1438  case ISD::CTTZ:
1439  case ISD::CTLZ:
1440  case ISD::CTPOP: {
1441    unsigned LowBits = Log2_32(BitWidth)+1;
1442    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1443    KnownOne.clear();
1444    return;
1445  }
1446  case ISD::LOAD: {
1447    if (ISD::isZEXTLoad(Op.Val)) {
1448      LoadSDNode *LD = cast<LoadSDNode>(Op);
1449      MVT VT = LD->getMemoryVT();
1450      unsigned MemBits = VT.getSizeInBits();
1451      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1452    }
1453    return;
1454  }
1455  case ISD::ZERO_EXTEND: {
1456    MVT InVT = Op.getOperand(0).getValueType();
1457    unsigned InBits = InVT.getSizeInBits();
1458    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1459    APInt InMask    = Mask;
1460    InMask.trunc(InBits);
1461    KnownZero.trunc(InBits);
1462    KnownOne.trunc(InBits);
1463    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1464    KnownZero.zext(BitWidth);
1465    KnownOne.zext(BitWidth);
1466    KnownZero |= NewBits;
1467    return;
1468  }
1469  case ISD::SIGN_EXTEND: {
1470    MVT InVT = Op.getOperand(0).getValueType();
1471    unsigned InBits = InVT.getSizeInBits();
1472    APInt InSignBit = APInt::getSignBit(InBits);
1473    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1474    APInt InMask = Mask;
1475    InMask.trunc(InBits);
1476
1477    // If any of the sign extended bits are demanded, we know that the sign
1478    // bit is demanded. Temporarily set this bit in the mask for our callee.
1479    if (NewBits.getBoolValue())
1480      InMask |= InSignBit;
1481
1482    KnownZero.trunc(InBits);
1483    KnownOne.trunc(InBits);
1484    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1485
1486    // Note if the sign bit is known to be zero or one.
1487    bool SignBitKnownZero = KnownZero.isNegative();
1488    bool SignBitKnownOne  = KnownOne.isNegative();
1489    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1490           "Sign bit can't be known to be both zero and one!");
1491
1492    // If the sign bit wasn't actually demanded by our caller, we don't
1493    // want it set in the KnownZero and KnownOne result values. Reset the
1494    // mask and reapply it to the result values.
1495    InMask = Mask;
1496    InMask.trunc(InBits);
1497    KnownZero &= InMask;
1498    KnownOne  &= InMask;
1499
1500    KnownZero.zext(BitWidth);
1501    KnownOne.zext(BitWidth);
1502
1503    // If the sign bit is known zero or one, the top bits match.
1504    if (SignBitKnownZero)
1505      KnownZero |= NewBits;
1506    else if (SignBitKnownOne)
1507      KnownOne  |= NewBits;
1508    return;
1509  }
1510  case ISD::ANY_EXTEND: {
1511    MVT InVT = Op.getOperand(0).getValueType();
1512    unsigned InBits = InVT.getSizeInBits();
1513    APInt InMask = Mask;
1514    InMask.trunc(InBits);
1515    KnownZero.trunc(InBits);
1516    KnownOne.trunc(InBits);
1517    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1518    KnownZero.zext(BitWidth);
1519    KnownOne.zext(BitWidth);
1520    return;
1521  }
1522  case ISD::TRUNCATE: {
1523    MVT InVT = Op.getOperand(0).getValueType();
1524    unsigned InBits = InVT.getSizeInBits();
1525    APInt InMask = Mask;
1526    InMask.zext(InBits);
1527    KnownZero.zext(InBits);
1528    KnownOne.zext(InBits);
1529    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1530    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531    KnownZero.trunc(BitWidth);
1532    KnownOne.trunc(BitWidth);
1533    break;
1534  }
1535  case ISD::AssertZext: {
1536    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1537    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1538    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1539                      KnownOne, Depth+1);
1540    KnownZero |= (~InMask) & Mask;
1541    return;
1542  }
1543  case ISD::FGETSIGN:
1544    // All bits are zero except the low bit.
1545    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1546    return;
1547
1548  case ISD::SUB: {
1549    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1550      // We know that the top bits of C-X are clear if X contains less bits
1551      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1552      // positive if we can prove that X is >= 0 and < 16.
1553      if (CLHS->getAPIntValue().isNonNegative()) {
1554        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1555        // NLZ can't be BitWidth with no sign bit
1556        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1557        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1558                          Depth+1);
1559
1560        // If all of the MaskV bits are known to be zero, then we know the
1561        // output top bits are zero, because we now know that the output is
1562        // from [0-C].
1563        if ((KnownZero2 & MaskV) == MaskV) {
1564          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1565          // Top bits known zero.
1566          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1567        }
1568      }
1569    }
1570  }
1571  // fall through
1572  case ISD::ADD: {
1573    // Output known-0 bits are known if clear or set in both the low clear bits
1574    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1575    // low 3 bits clear.
1576    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1577    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1580
1581    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1582    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1583    KnownZeroOut = std::min(KnownZeroOut,
1584                            KnownZero2.countTrailingOnes());
1585
1586    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1587    return;
1588  }
1589  case ISD::SREM:
1590    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1591      const APInt &RA = Rem->getAPIntValue();
1592      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1593        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1594        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1595        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1596
1597        // The sign of a remainder is equal to the sign of the first
1598        // operand (zero being positive).
1599        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1600          KnownZero2 |= ~LowBits;
1601        else if (KnownOne2[BitWidth-1])
1602          KnownOne2 |= ~LowBits;
1603
1604        KnownZero |= KnownZero2 & Mask;
1605        KnownOne |= KnownOne2 & Mask;
1606
1607        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1608      }
1609    }
1610    return;
1611  case ISD::UREM: {
1612    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1613      const APInt &RA = Rem->getAPIntValue();
1614      if (RA.isPowerOf2()) {
1615        APInt LowBits = (RA - 1);
1616        APInt Mask2 = LowBits & Mask;
1617        KnownZero |= ~LowBits & Mask;
1618        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1619        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1620        break;
1621      }
1622    }
1623
1624    // Since the result is less than or equal to either operand, any leading
1625    // zero bits in either operand must also exist in the result.
1626    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1627    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1628                      Depth+1);
1629    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1630                      Depth+1);
1631
1632    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1633                                KnownZero2.countLeadingOnes());
1634    KnownOne.clear();
1635    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1636    return;
1637  }
1638  default:
1639    // Allow the target to implement this method for its nodes.
1640    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1641  case ISD::INTRINSIC_WO_CHAIN:
1642  case ISD::INTRINSIC_W_CHAIN:
1643  case ISD::INTRINSIC_VOID:
1644      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1645    }
1646    return;
1647  }
1648}
1649
1650/// ComputeNumSignBits - Return the number of times the sign bit of the
1651/// register is replicated into the other bits.  We know that at least 1 bit
1652/// is always equal to the sign bit (itself), but other cases can give us
1653/// information.  For example, immediately after an "SRA X, 2", we know that
1654/// the top 3 bits are all equal to each other, so we return 3.
1655unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1656  MVT VT = Op.getValueType();
1657  assert(VT.isInteger() && "Invalid VT!");
1658  unsigned VTBits = VT.getSizeInBits();
1659  unsigned Tmp, Tmp2;
1660  unsigned FirstAnswer = 1;
1661
1662  if (Depth == 6)
1663    return 1;  // Limit search depth.
1664
1665  switch (Op.getOpcode()) {
1666  default: break;
1667  case ISD::AssertSext:
1668    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1669    return VTBits-Tmp+1;
1670  case ISD::AssertZext:
1671    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1672    return VTBits-Tmp;
1673
1674  case ISD::Constant: {
1675    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1676    // If negative, return # leading ones.
1677    if (Val.isNegative())
1678      return Val.countLeadingOnes();
1679
1680    // Return # leading zeros.
1681    return Val.countLeadingZeros();
1682  }
1683
1684  case ISD::SIGN_EXTEND:
1685    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1686    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1687
1688  case ISD::SIGN_EXTEND_INREG:
1689    // Max of the input and what this extends.
1690    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1691    Tmp = VTBits-Tmp+1;
1692
1693    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1694    return std::max(Tmp, Tmp2);
1695
1696  case ISD::SRA:
1697    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1698    // SRA X, C   -> adds C sign bits.
1699    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1700      Tmp += C->getValue();
1701      if (Tmp > VTBits) Tmp = VTBits;
1702    }
1703    return Tmp;
1704  case ISD::SHL:
1705    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1706      // shl destroys sign bits.
1707      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1708      if (C->getValue() >= VTBits ||      // Bad shift.
1709          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1710      return Tmp - C->getValue();
1711    }
1712    break;
1713  case ISD::AND:
1714  case ISD::OR:
1715  case ISD::XOR:    // NOT is handled here.
1716    // Logical binary ops preserve the number of sign bits at the worst.
1717    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1718    if (Tmp != 1) {
1719      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1720      FirstAnswer = std::min(Tmp, Tmp2);
1721      // We computed what we know about the sign bits as our first
1722      // answer. Now proceed to the generic code that uses
1723      // ComputeMaskedBits, and pick whichever answer is better.
1724    }
1725    break;
1726
1727  case ISD::SELECT:
1728    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1729    if (Tmp == 1) return 1;  // Early out.
1730    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1731    return std::min(Tmp, Tmp2);
1732
1733  case ISD::SETCC:
1734    // If setcc returns 0/-1, all bits are sign bits.
1735    if (TLI.getSetCCResultContents() ==
1736        TargetLowering::ZeroOrNegativeOneSetCCResult)
1737      return VTBits;
1738    break;
1739  case ISD::ROTL:
1740  case ISD::ROTR:
1741    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1742      unsigned RotAmt = C->getValue() & (VTBits-1);
1743
1744      // Handle rotate right by N like a rotate left by 32-N.
1745      if (Op.getOpcode() == ISD::ROTR)
1746        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1747
1748      // If we aren't rotating out all of the known-in sign bits, return the
1749      // number that are left.  This handles rotl(sext(x), 1) for example.
1750      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1751      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1752    }
1753    break;
1754  case ISD::ADD:
1755    // Add can have at most one carry bit.  Thus we know that the output
1756    // is, at worst, one more bit than the inputs.
1757    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1758    if (Tmp == 1) return 1;  // Early out.
1759
1760    // Special case decrementing a value (ADD X, -1):
1761    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1762      if (CRHS->isAllOnesValue()) {
1763        APInt KnownZero, KnownOne;
1764        APInt Mask = APInt::getAllOnesValue(VTBits);
1765        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1766
1767        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1768        // sign bits set.
1769        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1770          return VTBits;
1771
1772        // If we are subtracting one from a positive number, there is no carry
1773        // out of the result.
1774        if (KnownZero.isNegative())
1775          return Tmp;
1776      }
1777
1778    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1779    if (Tmp2 == 1) return 1;
1780      return std::min(Tmp, Tmp2)-1;
1781    break;
1782
1783  case ISD::SUB:
1784    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1785    if (Tmp2 == 1) return 1;
1786
1787    // Handle NEG.
1788    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1789      if (CLHS->isNullValue()) {
1790        APInt KnownZero, KnownOne;
1791        APInt Mask = APInt::getAllOnesValue(VTBits);
1792        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1793        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1794        // sign bits set.
1795        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1796          return VTBits;
1797
1798        // If the input is known to be positive (the sign bit is known clear),
1799        // the output of the NEG has the same number of sign bits as the input.
1800        if (KnownZero.isNegative())
1801          return Tmp2;
1802
1803        // Otherwise, we treat this like a SUB.
1804      }
1805
1806    // Sub can have at most one carry bit.  Thus we know that the output
1807    // is, at worst, one more bit than the inputs.
1808    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1809    if (Tmp == 1) return 1;  // Early out.
1810      return std::min(Tmp, Tmp2)-1;
1811    break;
1812  case ISD::TRUNCATE:
1813    // FIXME: it's tricky to do anything useful for this, but it is an important
1814    // case for targets like X86.
1815    break;
1816  }
1817
1818  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1819  if (Op.getOpcode() == ISD::LOAD) {
1820    LoadSDNode *LD = cast<LoadSDNode>(Op);
1821    unsigned ExtType = LD->getExtensionType();
1822    switch (ExtType) {
1823    default: break;
1824    case ISD::SEXTLOAD:    // '17' bits known
1825      Tmp = LD->getMemoryVT().getSizeInBits();
1826      return VTBits-Tmp+1;
1827    case ISD::ZEXTLOAD:    // '16' bits known
1828      Tmp = LD->getMemoryVT().getSizeInBits();
1829      return VTBits-Tmp;
1830    }
1831  }
1832
1833  // Allow the target to implement this method for its nodes.
1834  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1835      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1836      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1837      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1838    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1839    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1840  }
1841
1842  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1843  // use this information.
1844  APInt KnownZero, KnownOne;
1845  APInt Mask = APInt::getAllOnesValue(VTBits);
1846  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1847
1848  if (KnownZero.isNegative()) {        // sign bit is 0
1849    Mask = KnownZero;
1850  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1851    Mask = KnownOne;
1852  } else {
1853    // Nothing known.
1854    return FirstAnswer;
1855  }
1856
1857  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1858  // the number of identical bits in the top of the input value.
1859  Mask = ~Mask;
1860  Mask <<= Mask.getBitWidth()-VTBits;
1861  // Return # leading zeros.  We use 'min' here in case Val was zero before
1862  // shifting.  We don't want to return '64' as for an i32 "0".
1863  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1864}
1865
1866
1867bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1868  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1869  if (!GA) return false;
1870  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1871  if (!GV) return false;
1872  MachineModuleInfo *MMI = getMachineModuleInfo();
1873  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1874}
1875
1876
1877/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1878/// element of the result of the vector shuffle.
1879SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1880  MVT VT = N->getValueType(0);
1881  SDOperand PermMask = N->getOperand(2);
1882  SDOperand Idx = PermMask.getOperand(i);
1883  if (Idx.getOpcode() == ISD::UNDEF)
1884    return getNode(ISD::UNDEF, VT.getVectorElementType());
1885  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1886  unsigned NumElems = PermMask.getNumOperands();
1887  SDOperand V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1888  Index %= NumElems;
1889
1890  if (V.getOpcode() == ISD::BIT_CONVERT) {
1891    V = V.getOperand(0);
1892    if (V.getValueType().getVectorNumElements() != NumElems)
1893      return SDOperand();
1894  }
1895  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1896    return (Index == 0) ? V.getOperand(0)
1897                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1898  if (V.getOpcode() == ISD::BUILD_VECTOR)
1899    return V.getOperand(Index);
1900  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1901    return getShuffleScalarElt(V.Val, Index);
1902  return SDOperand();
1903}
1904
1905
1906/// getNode - Gets or creates the specified node.
1907///
1908SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1909  FoldingSetNodeID ID;
1910  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1911  void *IP = 0;
1912  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1913    return SDOperand(E, 0);
1914  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1915  CSEMap.InsertNode(N, IP);
1916
1917  AllNodes.push_back(N);
1918  return SDOperand(N, 0);
1919}
1920
1921SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1922  // Constant fold unary operations with an integer constant operand.
1923  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1924    const APInt &Val = C->getAPIntValue();
1925    unsigned BitWidth = VT.getSizeInBits();
1926    switch (Opcode) {
1927    default: break;
1928    case ISD::SIGN_EXTEND:
1929      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1930    case ISD::ANY_EXTEND:
1931    case ISD::ZERO_EXTEND:
1932    case ISD::TRUNCATE:
1933      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1934    case ISD::UINT_TO_FP:
1935    case ISD::SINT_TO_FP: {
1936      const uint64_t zero[] = {0, 0};
1937      // No compile time operations on this type.
1938      if (VT==MVT::ppcf128)
1939        break;
1940      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1941      (void)apf.convertFromAPInt(Val,
1942                                 Opcode==ISD::SINT_TO_FP,
1943                                 APFloat::rmNearestTiesToEven);
1944      return getConstantFP(apf, VT);
1945    }
1946    case ISD::BIT_CONVERT:
1947      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1948        return getConstantFP(Val.bitsToFloat(), VT);
1949      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1950        return getConstantFP(Val.bitsToDouble(), VT);
1951      break;
1952    case ISD::BSWAP:
1953      return getConstant(Val.byteSwap(), VT);
1954    case ISD::CTPOP:
1955      return getConstant(Val.countPopulation(), VT);
1956    case ISD::CTLZ:
1957      return getConstant(Val.countLeadingZeros(), VT);
1958    case ISD::CTTZ:
1959      return getConstant(Val.countTrailingZeros(), VT);
1960    }
1961  }
1962
1963  // Constant fold unary operations with a floating point constant operand.
1964  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1965    APFloat V = C->getValueAPF();    // make copy
1966    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1967      switch (Opcode) {
1968      case ISD::FNEG:
1969        V.changeSign();
1970        return getConstantFP(V, VT);
1971      case ISD::FABS:
1972        V.clearSign();
1973        return getConstantFP(V, VT);
1974      case ISD::FP_ROUND:
1975      case ISD::FP_EXTEND:
1976        // This can return overflow, underflow, or inexact; we don't care.
1977        // FIXME need to be more flexible about rounding mode.
1978        (void)V.convert(*MVTToAPFloatSemantics(VT),
1979                        APFloat::rmNearestTiesToEven);
1980        return getConstantFP(V, VT);
1981      case ISD::FP_TO_SINT:
1982      case ISD::FP_TO_UINT: {
1983        integerPart x;
1984        assert(integerPartWidth >= 64);
1985        // FIXME need to be more flexible about rounding mode.
1986        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1987                              Opcode==ISD::FP_TO_SINT,
1988                              APFloat::rmTowardZero);
1989        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1990          break;
1991        return getConstant(x, VT);
1992      }
1993      case ISD::BIT_CONVERT:
1994        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1995          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1996        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1997          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1998        break;
1999      }
2000    }
2001  }
2002
2003  unsigned OpOpcode = Operand.Val->getOpcode();
2004  switch (Opcode) {
2005  case ISD::TokenFactor:
2006    return Operand;         // Factor of one node?  No need.
2007  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2008  case ISD::FP_EXTEND:
2009    assert(VT.isFloatingPoint() &&
2010           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2011    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2012    if (Operand.getOpcode() == ISD::UNDEF)
2013      return getNode(ISD::UNDEF, VT);
2014    break;
2015  case ISD::SIGN_EXTEND:
2016    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2017           "Invalid SIGN_EXTEND!");
2018    if (Operand.getValueType() == VT) return Operand;   // noop extension
2019    assert(Operand.getValueType().bitsLT(VT)
2020           && "Invalid sext node, dst < src!");
2021    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2022      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2023    break;
2024  case ISD::ZERO_EXTEND:
2025    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2026           "Invalid ZERO_EXTEND!");
2027    if (Operand.getValueType() == VT) return Operand;   // noop extension
2028    assert(Operand.getValueType().bitsLT(VT)
2029           && "Invalid zext node, dst < src!");
2030    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2031      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2032    break;
2033  case ISD::ANY_EXTEND:
2034    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2035           "Invalid ANY_EXTEND!");
2036    if (Operand.getValueType() == VT) return Operand;   // noop extension
2037    assert(Operand.getValueType().bitsLT(VT)
2038           && "Invalid anyext node, dst < src!");
2039    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2040      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2041      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2042    break;
2043  case ISD::TRUNCATE:
2044    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2045           "Invalid TRUNCATE!");
2046    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2047    assert(Operand.getValueType().bitsGT(VT)
2048           && "Invalid truncate node, src < dst!");
2049    if (OpOpcode == ISD::TRUNCATE)
2050      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2051    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2052             OpOpcode == ISD::ANY_EXTEND) {
2053      // If the source is smaller than the dest, we still need an extend.
2054      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2055        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2056      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2057        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2058      else
2059        return Operand.Val->getOperand(0);
2060    }
2061    break;
2062  case ISD::BIT_CONVERT:
2063    // Basic sanity checking.
2064    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2065           && "Cannot BIT_CONVERT between types of different sizes!");
2066    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2067    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2068      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2069    if (OpOpcode == ISD::UNDEF)
2070      return getNode(ISD::UNDEF, VT);
2071    break;
2072  case ISD::SCALAR_TO_VECTOR:
2073    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2074           VT.getVectorElementType() == Operand.getValueType() &&
2075           "Illegal SCALAR_TO_VECTOR node!");
2076    if (OpOpcode == ISD::UNDEF)
2077      return getNode(ISD::UNDEF, VT);
2078    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2079    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2080        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2081        Operand.getConstantOperandVal(1) == 0 &&
2082        Operand.getOperand(0).getValueType() == VT)
2083      return Operand.getOperand(0);
2084    break;
2085  case ISD::FNEG:
2086    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2087      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2088                     Operand.Val->getOperand(0));
2089    if (OpOpcode == ISD::FNEG)  // --X -> X
2090      return Operand.Val->getOperand(0);
2091    break;
2092  case ISD::FABS:
2093    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2094      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2095    break;
2096  }
2097
2098  SDNode *N;
2099  SDVTList VTs = getVTList(VT);
2100  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2101    FoldingSetNodeID ID;
2102    SDOperand Ops[1] = { Operand };
2103    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2104    void *IP = 0;
2105    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2106      return SDOperand(E, 0);
2107    N = new UnarySDNode(Opcode, VTs, Operand);
2108    CSEMap.InsertNode(N, IP);
2109  } else {
2110    N = new UnarySDNode(Opcode, VTs, Operand);
2111  }
2112  AllNodes.push_back(N);
2113  return SDOperand(N, 0);
2114}
2115
2116
2117
2118SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2119                                SDOperand N1, SDOperand N2) {
2120  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2121  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2122  switch (Opcode) {
2123  default: break;
2124  case ISD::TokenFactor:
2125    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2126           N2.getValueType() == MVT::Other && "Invalid token factor!");
2127    // Fold trivial token factors.
2128    if (N1.getOpcode() == ISD::EntryToken) return N2;
2129    if (N2.getOpcode() == ISD::EntryToken) return N1;
2130    break;
2131  case ISD::AND:
2132    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2133           N1.getValueType() == VT && "Binary operator types must match!");
2134    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2135    // worth handling here.
2136    if (N2C && N2C->isNullValue())
2137      return N2;
2138    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2139      return N1;
2140    break;
2141  case ISD::OR:
2142  case ISD::XOR:
2143  case ISD::ADD:
2144  case ISD::SUB:
2145    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2146           N1.getValueType() == VT && "Binary operator types must match!");
2147    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2148    // it's worth handling here.
2149    if (N2C && N2C->isNullValue())
2150      return N1;
2151    break;
2152  case ISD::UDIV:
2153  case ISD::UREM:
2154  case ISD::MULHU:
2155  case ISD::MULHS:
2156    assert(VT.isInteger() && "This operator does not apply to FP types!");
2157    // fall through
2158  case ISD::MUL:
2159  case ISD::SDIV:
2160  case ISD::SREM:
2161  case ISD::FADD:
2162  case ISD::FSUB:
2163  case ISD::FMUL:
2164  case ISD::FDIV:
2165  case ISD::FREM:
2166    assert(N1.getValueType() == N2.getValueType() &&
2167           N1.getValueType() == VT && "Binary operator types must match!");
2168    break;
2169  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2170    assert(N1.getValueType() == VT &&
2171           N1.getValueType().isFloatingPoint() &&
2172           N2.getValueType().isFloatingPoint() &&
2173           "Invalid FCOPYSIGN!");
2174    break;
2175  case ISD::SHL:
2176  case ISD::SRA:
2177  case ISD::SRL:
2178  case ISD::ROTL:
2179  case ISD::ROTR:
2180    assert(VT == N1.getValueType() &&
2181           "Shift operators return type must be the same as their first arg");
2182    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2183           "Shifts only work on integers");
2184
2185    // Always fold shifts of i1 values so the code generator doesn't need to
2186    // handle them.  Since we know the size of the shift has to be less than the
2187    // size of the value, the shift/rotate count is guaranteed to be zero.
2188    if (VT == MVT::i1)
2189      return N1;
2190    break;
2191  case ISD::FP_ROUND_INREG: {
2192    MVT EVT = cast<VTSDNode>(N2)->getVT();
2193    assert(VT == N1.getValueType() && "Not an inreg round!");
2194    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2195           "Cannot FP_ROUND_INREG integer types");
2196    assert(EVT.bitsLE(VT) && "Not rounding down!");
2197    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2198    break;
2199  }
2200  case ISD::FP_ROUND:
2201    assert(VT.isFloatingPoint() &&
2202           N1.getValueType().isFloatingPoint() &&
2203           VT.bitsLE(N1.getValueType()) &&
2204           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2205    if (N1.getValueType() == VT) return N1;  // noop conversion.
2206    break;
2207  case ISD::AssertSext:
2208  case ISD::AssertZext: {
2209    MVT EVT = cast<VTSDNode>(N2)->getVT();
2210    assert(VT == N1.getValueType() && "Not an inreg extend!");
2211    assert(VT.isInteger() && EVT.isInteger() &&
2212           "Cannot *_EXTEND_INREG FP types");
2213    assert(EVT.bitsLE(VT) && "Not extending!");
2214    if (VT == EVT) return N1; // noop assertion.
2215    break;
2216  }
2217  case ISD::SIGN_EXTEND_INREG: {
2218    MVT EVT = cast<VTSDNode>(N2)->getVT();
2219    assert(VT == N1.getValueType() && "Not an inreg extend!");
2220    assert(VT.isInteger() && EVT.isInteger() &&
2221           "Cannot *_EXTEND_INREG FP types");
2222    assert(EVT.bitsLE(VT) && "Not extending!");
2223    if (EVT == VT) return N1;  // Not actually extending
2224
2225    if (N1C) {
2226      APInt Val = N1C->getAPIntValue();
2227      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2228      Val <<= Val.getBitWidth()-FromBits;
2229      Val = Val.ashr(Val.getBitWidth()-FromBits);
2230      return getConstant(Val, VT);
2231    }
2232    break;
2233  }
2234  case ISD::EXTRACT_VECTOR_ELT:
2235    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2236
2237    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2238    if (N1.getOpcode() == ISD::UNDEF)
2239      return getNode(ISD::UNDEF, VT);
2240
2241    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2242    // expanding copies of large vectors from registers.
2243    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2244        N1.getNumOperands() > 0) {
2245      unsigned Factor =
2246        N1.getOperand(0).getValueType().getVectorNumElements();
2247      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2248                     N1.getOperand(N2C->getValue() / Factor),
2249                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2250    }
2251
2252    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2253    // expanding large vector constants.
2254    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2255      return N1.getOperand(N2C->getValue());
2256
2257    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2258    // operations are lowered to scalars.
2259    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2260      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2261        if (IEC == N2C)
2262          return N1.getOperand(1);
2263        else
2264          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2265      }
2266    break;
2267  case ISD::EXTRACT_ELEMENT:
2268    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2269    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2270           (N1.getValueType().isInteger() == VT.isInteger()) &&
2271           "Wrong types for EXTRACT_ELEMENT!");
2272
2273    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2274    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2275    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2276    if (N1.getOpcode() == ISD::BUILD_PAIR)
2277      return N1.getOperand(N2C->getValue());
2278
2279    // EXTRACT_ELEMENT of a constant int is also very common.
2280    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2281      unsigned ElementSize = VT.getSizeInBits();
2282      unsigned Shift = ElementSize * N2C->getValue();
2283      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2284      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2285    }
2286    break;
2287  case ISD::EXTRACT_SUBVECTOR:
2288    if (N1.getValueType() == VT) // Trivial extraction.
2289      return N1;
2290    break;
2291  }
2292
2293  if (N1C) {
2294    if (N2C) {
2295      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2296      switch (Opcode) {
2297      case ISD::ADD: return getConstant(C1 + C2, VT);
2298      case ISD::SUB: return getConstant(C1 - C2, VT);
2299      case ISD::MUL: return getConstant(C1 * C2, VT);
2300      case ISD::UDIV:
2301        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2302        break;
2303      case ISD::UREM :
2304        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2305        break;
2306      case ISD::SDIV :
2307        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2308        break;
2309      case ISD::SREM :
2310        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2311        break;
2312      case ISD::AND  : return getConstant(C1 & C2, VT);
2313      case ISD::OR   : return getConstant(C1 | C2, VT);
2314      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2315      case ISD::SHL  : return getConstant(C1 << C2, VT);
2316      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2317      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2318      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2319      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2320      default: break;
2321      }
2322    } else {      // Cannonicalize constant to RHS if commutative
2323      if (isCommutativeBinOp(Opcode)) {
2324        std::swap(N1C, N2C);
2325        std::swap(N1, N2);
2326      }
2327    }
2328  }
2329
2330  // Constant fold FP operations.
2331  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2332  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2333  if (N1CFP) {
2334    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2335      // Cannonicalize constant to RHS if commutative
2336      std::swap(N1CFP, N2CFP);
2337      std::swap(N1, N2);
2338    } else if (N2CFP && VT != MVT::ppcf128) {
2339      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2340      APFloat::opStatus s;
2341      switch (Opcode) {
2342      case ISD::FADD:
2343        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2344        if (s != APFloat::opInvalidOp)
2345          return getConstantFP(V1, VT);
2346        break;
2347      case ISD::FSUB:
2348        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2349        if (s!=APFloat::opInvalidOp)
2350          return getConstantFP(V1, VT);
2351        break;
2352      case ISD::FMUL:
2353        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2354        if (s!=APFloat::opInvalidOp)
2355          return getConstantFP(V1, VT);
2356        break;
2357      case ISD::FDIV:
2358        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2359        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2360          return getConstantFP(V1, VT);
2361        break;
2362      case ISD::FREM :
2363        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2364        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2365          return getConstantFP(V1, VT);
2366        break;
2367      case ISD::FCOPYSIGN:
2368        V1.copySign(V2);
2369        return getConstantFP(V1, VT);
2370      default: break;
2371      }
2372    }
2373  }
2374
2375  // Canonicalize an UNDEF to the RHS, even over a constant.
2376  if (N1.getOpcode() == ISD::UNDEF) {
2377    if (isCommutativeBinOp(Opcode)) {
2378      std::swap(N1, N2);
2379    } else {
2380      switch (Opcode) {
2381      case ISD::FP_ROUND_INREG:
2382      case ISD::SIGN_EXTEND_INREG:
2383      case ISD::SUB:
2384      case ISD::FSUB:
2385      case ISD::FDIV:
2386      case ISD::FREM:
2387      case ISD::SRA:
2388        return N1;     // fold op(undef, arg2) -> undef
2389      case ISD::UDIV:
2390      case ISD::SDIV:
2391      case ISD::UREM:
2392      case ISD::SREM:
2393      case ISD::SRL:
2394      case ISD::SHL:
2395        if (!VT.isVector())
2396          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2397        // For vectors, we can't easily build an all zero vector, just return
2398        // the LHS.
2399        return N2;
2400      }
2401    }
2402  }
2403
2404  // Fold a bunch of operators when the RHS is undef.
2405  if (N2.getOpcode() == ISD::UNDEF) {
2406    switch (Opcode) {
2407    case ISD::XOR:
2408      if (N1.getOpcode() == ISD::UNDEF)
2409        // Handle undef ^ undef -> 0 special case. This is a common
2410        // idiom (misuse).
2411        return getConstant(0, VT);
2412      // fallthrough
2413    case ISD::ADD:
2414    case ISD::ADDC:
2415    case ISD::ADDE:
2416    case ISD::SUB:
2417    case ISD::FADD:
2418    case ISD::FSUB:
2419    case ISD::FMUL:
2420    case ISD::FDIV:
2421    case ISD::FREM:
2422    case ISD::UDIV:
2423    case ISD::SDIV:
2424    case ISD::UREM:
2425    case ISD::SREM:
2426      return N2;       // fold op(arg1, undef) -> undef
2427    case ISD::MUL:
2428    case ISD::AND:
2429    case ISD::SRL:
2430    case ISD::SHL:
2431      if (!VT.isVector())
2432        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2433      // For vectors, we can't easily build an all zero vector, just return
2434      // the LHS.
2435      return N1;
2436    case ISD::OR:
2437      if (!VT.isVector())
2438        return getConstant(VT.getIntegerVTBitMask(), VT);
2439      // For vectors, we can't easily build an all one vector, just return
2440      // the LHS.
2441      return N1;
2442    case ISD::SRA:
2443      return N1;
2444    }
2445  }
2446
2447  // Memoize this node if possible.
2448  SDNode *N;
2449  SDVTList VTs = getVTList(VT);
2450  if (VT != MVT::Flag) {
2451    SDOperand Ops[] = { N1, N2 };
2452    FoldingSetNodeID ID;
2453    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2454    void *IP = 0;
2455    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2456      return SDOperand(E, 0);
2457    N = new BinarySDNode(Opcode, VTs, N1, N2);
2458    CSEMap.InsertNode(N, IP);
2459  } else {
2460    N = new BinarySDNode(Opcode, VTs, N1, N2);
2461  }
2462
2463  AllNodes.push_back(N);
2464  return SDOperand(N, 0);
2465}
2466
2467SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2468                                SDOperand N1, SDOperand N2, SDOperand N3) {
2469  // Perform various simplifications.
2470  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2471  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2472  switch (Opcode) {
2473  case ISD::SETCC: {
2474    // Use FoldSetCC to simplify SETCC's.
2475    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2476    if (Simp.Val) return Simp;
2477    break;
2478  }
2479  case ISD::SELECT:
2480    if (N1C) {
2481     if (N1C->getValue())
2482        return N2;             // select true, X, Y -> X
2483      else
2484        return N3;             // select false, X, Y -> Y
2485    }
2486
2487    if (N2 == N3) return N2;   // select C, X, X -> X
2488    break;
2489  case ISD::BRCOND:
2490    if (N2C) {
2491      if (N2C->getValue()) // Unconditional branch
2492        return getNode(ISD::BR, MVT::Other, N1, N3);
2493      else
2494        return N1;         // Never-taken branch
2495    }
2496    break;
2497  case ISD::VECTOR_SHUFFLE:
2498    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2499           VT.isVector() && N3.getValueType().isVector() &&
2500           N3.getOpcode() == ISD::BUILD_VECTOR &&
2501           VT.getVectorNumElements() == N3.getNumOperands() &&
2502           "Illegal VECTOR_SHUFFLE node!");
2503    break;
2504  case ISD::BIT_CONVERT:
2505    // Fold bit_convert nodes from a type to themselves.
2506    if (N1.getValueType() == VT)
2507      return N1;
2508    break;
2509  }
2510
2511  // Memoize node if it doesn't produce a flag.
2512  SDNode *N;
2513  SDVTList VTs = getVTList(VT);
2514  if (VT != MVT::Flag) {
2515    SDOperand Ops[] = { N1, N2, N3 };
2516    FoldingSetNodeID ID;
2517    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2518    void *IP = 0;
2519    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2520      return SDOperand(E, 0);
2521    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2522    CSEMap.InsertNode(N, IP);
2523  } else {
2524    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2525  }
2526  AllNodes.push_back(N);
2527  return SDOperand(N, 0);
2528}
2529
2530SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2531                                SDOperand N1, SDOperand N2, SDOperand N3,
2532                                SDOperand N4) {
2533  SDOperand Ops[] = { N1, N2, N3, N4 };
2534  return getNode(Opcode, VT, Ops, 4);
2535}
2536
2537SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2538                                SDOperand N1, SDOperand N2, SDOperand N3,
2539                                SDOperand N4, SDOperand N5) {
2540  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2541  return getNode(Opcode, VT, Ops, 5);
2542}
2543
2544/// getMemsetValue - Vectorized representation of the memset value
2545/// operand.
2546static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2547  unsigned NumBits = VT.isVector() ?
2548    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2549  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2550    APInt Val = APInt(NumBits, C->getValue() & 255);
2551    unsigned Shift = 8;
2552    for (unsigned i = NumBits; i > 8; i >>= 1) {
2553      Val = (Val << Shift) | Val;
2554      Shift <<= 1;
2555    }
2556    if (VT.isInteger())
2557      return DAG.getConstant(Val, VT);
2558    return DAG.getConstantFP(APFloat(Val), VT);
2559  }
2560
2561  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2562  unsigned Shift = 8;
2563  for (unsigned i = NumBits; i > 8; i >>= 1) {
2564    Value = DAG.getNode(ISD::OR, VT,
2565                        DAG.getNode(ISD::SHL, VT, Value,
2566                                    DAG.getConstant(Shift, MVT::i8)), Value);
2567    Shift <<= 1;
2568  }
2569
2570  return Value;
2571}
2572
2573/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2574/// used when a memcpy is turned into a memset when the source is a constant
2575/// string ptr.
2576static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2577                                    const TargetLowering &TLI,
2578                                    std::string &Str, unsigned Offset) {
2579  // Handle vector with all elements zero.
2580  if (Str.empty()) {
2581    if (VT.isInteger())
2582      return DAG.getConstant(0, VT);
2583    unsigned NumElts = VT.getVectorNumElements();
2584    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2585    return DAG.getNode(ISD::BIT_CONVERT, VT,
2586                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2587  }
2588
2589  assert(!VT.isVector() && "Can't handle vector type here!");
2590  unsigned NumBits = VT.getSizeInBits();
2591  unsigned MSB = NumBits / 8;
2592  uint64_t Val = 0;
2593  if (TLI.isLittleEndian())
2594    Offset = Offset + MSB - 1;
2595  for (unsigned i = 0; i != MSB; ++i) {
2596    Val = (Val << 8) | (unsigned char)Str[Offset];
2597    Offset += TLI.isLittleEndian() ? -1 : 1;
2598  }
2599  return DAG.getConstant(Val, VT);
2600}
2601
2602/// getMemBasePlusOffset - Returns base and offset node for the
2603///
2604static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2605                                      SelectionDAG &DAG) {
2606  MVT VT = Base.getValueType();
2607  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2608}
2609
2610/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2611///
2612static bool isMemSrcFromString(SDOperand Src, std::string &Str) {
2613  unsigned SrcDelta = 0;
2614  GlobalAddressSDNode *G = NULL;
2615  if (Src.getOpcode() == ISD::GlobalAddress)
2616    G = cast<GlobalAddressSDNode>(Src);
2617  else if (Src.getOpcode() == ISD::ADD &&
2618           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2619           Src.getOperand(1).getOpcode() == ISD::Constant) {
2620    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2621    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2622  }
2623  if (!G)
2624    return false;
2625
2626  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2627  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2628    return true;
2629
2630  return false;
2631}
2632
2633/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2634/// to replace the memset / memcpy is below the threshold. It also returns the
2635/// types of the sequence of memory ops to perform memset / memcpy.
2636static
2637bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2638                              SDOperand Dst, SDOperand Src,
2639                              unsigned Limit, uint64_t Size, unsigned &Align,
2640                              std::string &Str, bool &isSrcStr,
2641                              SelectionDAG &DAG,
2642                              const TargetLowering &TLI) {
2643  isSrcStr = isMemSrcFromString(Src, Str);
2644  bool isSrcConst = isa<ConstantSDNode>(Src);
2645  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2646  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2647  if (VT != MVT::iAny) {
2648    unsigned NewAlign = (unsigned)
2649      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2650    // If source is a string constant, this will require an unaligned load.
2651    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2652      if (Dst.getOpcode() != ISD::FrameIndex) {
2653        // Can't change destination alignment. It requires a unaligned store.
2654        if (AllowUnalign)
2655          VT = MVT::iAny;
2656      } else {
2657        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2658        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2659        if (MFI->isFixedObjectIndex(FI)) {
2660          // Can't change destination alignment. It requires a unaligned store.
2661          if (AllowUnalign)
2662            VT = MVT::iAny;
2663        } else {
2664          // Give the stack frame object a larger alignment if needed.
2665          if (MFI->getObjectAlignment(FI) < NewAlign)
2666            MFI->setObjectAlignment(FI, NewAlign);
2667          Align = NewAlign;
2668        }
2669      }
2670    }
2671  }
2672
2673  if (VT == MVT::iAny) {
2674    if (AllowUnalign) {
2675      VT = MVT::i64;
2676    } else {
2677      switch (Align & 7) {
2678      case 0:  VT = MVT::i64; break;
2679      case 4:  VT = MVT::i32; break;
2680      case 2:  VT = MVT::i16; break;
2681      default: VT = MVT::i8;  break;
2682      }
2683    }
2684
2685    MVT LVT = MVT::i64;
2686    while (!TLI.isTypeLegal(LVT))
2687      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2688    assert(LVT.isInteger());
2689
2690    if (VT.bitsGT(LVT))
2691      VT = LVT;
2692  }
2693
2694  unsigned NumMemOps = 0;
2695  while (Size != 0) {
2696    unsigned VTSize = VT.getSizeInBits() / 8;
2697    while (VTSize > Size) {
2698      // For now, only use non-vector load / store's for the left-over pieces.
2699      if (VT.isVector()) {
2700        VT = MVT::i64;
2701        while (!TLI.isTypeLegal(VT))
2702          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2703        VTSize = VT.getSizeInBits() / 8;
2704      } else {
2705        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2706        VTSize >>= 1;
2707      }
2708    }
2709
2710    if (++NumMemOps > Limit)
2711      return false;
2712    MemOps.push_back(VT);
2713    Size -= VTSize;
2714  }
2715
2716  return true;
2717}
2718
2719static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2720                                         SDOperand Chain, SDOperand Dst,
2721                                         SDOperand Src, uint64_t Size,
2722                                         unsigned Align, bool AlwaysInline,
2723                                         const Value *DstSV, uint64_t DstSVOff,
2724                                         const Value *SrcSV, uint64_t SrcSVOff){
2725  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2726
2727  // Expand memcpy to a series of load and store ops if the size operand falls
2728  // below a certain threshold.
2729  std::vector<MVT> MemOps;
2730  uint64_t Limit = -1;
2731  if (!AlwaysInline)
2732    Limit = TLI.getMaxStoresPerMemcpy();
2733  unsigned DstAlign = Align;  // Destination alignment can change.
2734  std::string Str;
2735  bool CopyFromStr;
2736  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2737                                Str, CopyFromStr, DAG, TLI))
2738    return SDOperand();
2739
2740
2741  bool isZeroStr = CopyFromStr && Str.empty();
2742  SmallVector<SDOperand, 8> OutChains;
2743  unsigned NumMemOps = MemOps.size();
2744  uint64_t SrcOff = 0, DstOff = 0;
2745  for (unsigned i = 0; i < NumMemOps; i++) {
2746    MVT VT = MemOps[i];
2747    unsigned VTSize = VT.getSizeInBits() / 8;
2748    SDOperand Value, Store;
2749
2750    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2751      // It's unlikely a store of a vector immediate can be done in a single
2752      // instruction. It would require a load from a constantpool first.
2753      // We also handle store a vector with all zero's.
2754      // FIXME: Handle other cases where store of vector immediate is done in
2755      // a single instruction.
2756      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2757      Store = DAG.getStore(Chain, Value,
2758                           getMemBasePlusOffset(Dst, DstOff, DAG),
2759                           DstSV, DstSVOff + DstOff);
2760    } else {
2761      Value = DAG.getLoad(VT, Chain,
2762                          getMemBasePlusOffset(Src, SrcOff, DAG),
2763                          SrcSV, SrcSVOff + SrcOff, false, Align);
2764      Store = DAG.getStore(Chain, Value,
2765                           getMemBasePlusOffset(Dst, DstOff, DAG),
2766                           DstSV, DstSVOff + DstOff, false, DstAlign);
2767    }
2768    OutChains.push_back(Store);
2769    SrcOff += VTSize;
2770    DstOff += VTSize;
2771  }
2772
2773  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2774                     &OutChains[0], OutChains.size());
2775}
2776
2777static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2778                                          SDOperand Chain, SDOperand Dst,
2779                                          SDOperand Src, uint64_t Size,
2780                                          unsigned Align, bool AlwaysInline,
2781                                          const Value *DstSV, uint64_t DstSVOff,
2782                                          const Value *SrcSV, uint64_t SrcSVOff){
2783  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2784
2785  // Expand memmove to a series of load and store ops if the size operand falls
2786  // below a certain threshold.
2787  std::vector<MVT> MemOps;
2788  uint64_t Limit = -1;
2789  if (!AlwaysInline)
2790    Limit = TLI.getMaxStoresPerMemmove();
2791  unsigned DstAlign = Align;  // Destination alignment can change.
2792  std::string Str;
2793  bool CopyFromStr;
2794  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2795                                Str, CopyFromStr, DAG, TLI))
2796    return SDOperand();
2797
2798  uint64_t SrcOff = 0, DstOff = 0;
2799
2800  SmallVector<SDOperand, 8> LoadValues;
2801  SmallVector<SDOperand, 8> LoadChains;
2802  SmallVector<SDOperand, 8> OutChains;
2803  unsigned NumMemOps = MemOps.size();
2804  for (unsigned i = 0; i < NumMemOps; i++) {
2805    MVT VT = MemOps[i];
2806    unsigned VTSize = VT.getSizeInBits() / 8;
2807    SDOperand Value, Store;
2808
2809    Value = DAG.getLoad(VT, Chain,
2810                        getMemBasePlusOffset(Src, SrcOff, DAG),
2811                        SrcSV, SrcSVOff + SrcOff, false, Align);
2812    LoadValues.push_back(Value);
2813    LoadChains.push_back(Value.getValue(1));
2814    SrcOff += VTSize;
2815  }
2816  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2817                      &LoadChains[0], LoadChains.size());
2818  OutChains.clear();
2819  for (unsigned i = 0; i < NumMemOps; i++) {
2820    MVT VT = MemOps[i];
2821    unsigned VTSize = VT.getSizeInBits() / 8;
2822    SDOperand Value, Store;
2823
2824    Store = DAG.getStore(Chain, LoadValues[i],
2825                         getMemBasePlusOffset(Dst, DstOff, DAG),
2826                         DstSV, DstSVOff + DstOff, false, DstAlign);
2827    OutChains.push_back(Store);
2828    DstOff += VTSize;
2829  }
2830
2831  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2832                     &OutChains[0], OutChains.size());
2833}
2834
2835static SDOperand getMemsetStores(SelectionDAG &DAG,
2836                                 SDOperand Chain, SDOperand Dst,
2837                                 SDOperand Src, uint64_t Size,
2838                                 unsigned Align,
2839                                 const Value *DstSV, uint64_t DstSVOff) {
2840  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2841
2842  // Expand memset to a series of load/store ops if the size operand
2843  // falls below a certain threshold.
2844  std::vector<MVT> MemOps;
2845  std::string Str;
2846  bool CopyFromStr;
2847  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2848                                Size, Align, Str, CopyFromStr, DAG, TLI))
2849    return SDOperand();
2850
2851  SmallVector<SDOperand, 8> OutChains;
2852  uint64_t DstOff = 0;
2853
2854  unsigned NumMemOps = MemOps.size();
2855  for (unsigned i = 0; i < NumMemOps; i++) {
2856    MVT VT = MemOps[i];
2857    unsigned VTSize = VT.getSizeInBits() / 8;
2858    SDOperand Value = getMemsetValue(Src, VT, DAG);
2859    SDOperand Store = DAG.getStore(Chain, Value,
2860                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2861                                   DstSV, DstSVOff + DstOff);
2862    OutChains.push_back(Store);
2863    DstOff += VTSize;
2864  }
2865
2866  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2867                     &OutChains[0], OutChains.size());
2868}
2869
2870SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2871                                  SDOperand Src, SDOperand Size,
2872                                  unsigned Align, bool AlwaysInline,
2873                                  const Value *DstSV, uint64_t DstSVOff,
2874                                  const Value *SrcSV, uint64_t SrcSVOff) {
2875
2876  // Check to see if we should lower the memcpy to loads and stores first.
2877  // For cases within the target-specified limits, this is the best choice.
2878  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2879  if (ConstantSize) {
2880    // Memcpy with size zero? Just return the original chain.
2881    if (ConstantSize->isNullValue())
2882      return Chain;
2883
2884    SDOperand Result =
2885      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2886                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2887    if (Result.Val)
2888      return Result;
2889  }
2890
2891  // Then check to see if we should lower the memcpy with target-specific
2892  // code. If the target chooses to do this, this is the next best.
2893  SDOperand Result =
2894    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2895                                AlwaysInline,
2896                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2897  if (Result.Val)
2898    return Result;
2899
2900  // If we really need inline code and the target declined to provide it,
2901  // use a (potentially long) sequence of loads and stores.
2902  if (AlwaysInline) {
2903    assert(ConstantSize && "AlwaysInline requires a constant size!");
2904    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2905                                   ConstantSize->getValue(), Align, true,
2906                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2907  }
2908
2909  // Emit a library call.
2910  TargetLowering::ArgListTy Args;
2911  TargetLowering::ArgListEntry Entry;
2912  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2913  Entry.Node = Dst; Args.push_back(Entry);
2914  Entry.Node = Src; Args.push_back(Entry);
2915  Entry.Node = Size; Args.push_back(Entry);
2916  std::pair<SDOperand,SDOperand> CallResult =
2917    TLI.LowerCallTo(Chain, Type::VoidTy,
2918                    false, false, false, CallingConv::C, false,
2919                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2920                    Args, *this);
2921  return CallResult.second;
2922}
2923
2924SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2925                                   SDOperand Src, SDOperand Size,
2926                                   unsigned Align,
2927                                   const Value *DstSV, uint64_t DstSVOff,
2928                                   const Value *SrcSV, uint64_t SrcSVOff) {
2929
2930  // Check to see if we should lower the memmove to loads and stores first.
2931  // For cases within the target-specified limits, this is the best choice.
2932  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2933  if (ConstantSize) {
2934    // Memmove with size zero? Just return the original chain.
2935    if (ConstantSize->isNullValue())
2936      return Chain;
2937
2938    SDOperand Result =
2939      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2940                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2941    if (Result.Val)
2942      return Result;
2943  }
2944
2945  // Then check to see if we should lower the memmove with target-specific
2946  // code. If the target chooses to do this, this is the next best.
2947  SDOperand Result =
2948    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2949                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2950  if (Result.Val)
2951    return Result;
2952
2953  // Emit a library call.
2954  TargetLowering::ArgListTy Args;
2955  TargetLowering::ArgListEntry Entry;
2956  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2957  Entry.Node = Dst; Args.push_back(Entry);
2958  Entry.Node = Src; Args.push_back(Entry);
2959  Entry.Node = Size; Args.push_back(Entry);
2960  std::pair<SDOperand,SDOperand> CallResult =
2961    TLI.LowerCallTo(Chain, Type::VoidTy,
2962                    false, false, false, CallingConv::C, false,
2963                    getExternalSymbol("memmove", TLI.getPointerTy()),
2964                    Args, *this);
2965  return CallResult.second;
2966}
2967
2968SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2969                                  SDOperand Src, SDOperand Size,
2970                                  unsigned Align,
2971                                  const Value *DstSV, uint64_t DstSVOff) {
2972
2973  // Check to see if we should lower the memset to stores first.
2974  // For cases within the target-specified limits, this is the best choice.
2975  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2976  if (ConstantSize) {
2977    // Memset with size zero? Just return the original chain.
2978    if (ConstantSize->isNullValue())
2979      return Chain;
2980
2981    SDOperand Result =
2982      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2983                      DstSV, DstSVOff);
2984    if (Result.Val)
2985      return Result;
2986  }
2987
2988  // Then check to see if we should lower the memset with target-specific
2989  // code. If the target chooses to do this, this is the next best.
2990  SDOperand Result =
2991    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2992                                DstSV, DstSVOff);
2993  if (Result.Val)
2994    return Result;
2995
2996  // Emit a library call.
2997  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2998  TargetLowering::ArgListTy Args;
2999  TargetLowering::ArgListEntry Entry;
3000  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3001  Args.push_back(Entry);
3002  // Extend or truncate the argument to be an i32 value for the call.
3003  if (Src.getValueType().bitsGT(MVT::i32))
3004    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3005  else
3006    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3007  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3008  Args.push_back(Entry);
3009  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3010  Args.push_back(Entry);
3011  std::pair<SDOperand,SDOperand> CallResult =
3012    TLI.LowerCallTo(Chain, Type::VoidTy,
3013                    false, false, false, CallingConv::C, false,
3014                    getExternalSymbol("memset", TLI.getPointerTy()),
3015                    Args, *this);
3016  return CallResult.second;
3017}
3018
3019SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3020                                  SDOperand Ptr, SDOperand Cmp,
3021                                  SDOperand Swp, const Value* PtrVal,
3022                                  unsigned Alignment) {
3023  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3024  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3025  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
3026  FoldingSetNodeID ID;
3027  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
3028  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3029  void* IP = 0;
3030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3031    return SDOperand(E, 0);
3032  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp,
3033                               PtrVal, Alignment);
3034  CSEMap.InsertNode(N, IP);
3035  AllNodes.push_back(N);
3036  return SDOperand(N, 0);
3037}
3038
3039SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3040                                  SDOperand Ptr, SDOperand Val,
3041                                  const Value* PtrVal,
3042                                  unsigned Alignment) {
3043  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3044          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3045          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3046          || Opcode == ISD::ATOMIC_LOAD_NAND
3047          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3048          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3049         && "Invalid Atomic Op");
3050  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3051  FoldingSetNodeID ID;
3052  SDOperand Ops[] = {Chain, Ptr, Val};
3053  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3054  void* IP = 0;
3055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3056    return SDOperand(E, 0);
3057  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val,
3058                               PtrVal, Alignment);
3059  CSEMap.InsertNode(N, IP);
3060  AllNodes.push_back(N);
3061  return SDOperand(N, 0);
3062}
3063
3064/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3065/// Allowed to return something different (and simpler) if Simplify is true.
3066SDOperand SelectionDAG::getMergeValues(const SDOperand *Ops, unsigned NumOps,
3067                                       bool Simplify) {
3068  if (Simplify && NumOps == 1)
3069    return Ops[0];
3070
3071  SmallVector<MVT, 4> VTs;
3072  VTs.reserve(NumOps);
3073  for (unsigned i = 0; i < NumOps; ++i)
3074    VTs.push_back(Ops[i].getValueType());
3075  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3076}
3077
3078SDOperand
3079SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3080                      MVT VT, SDOperand Chain,
3081                      SDOperand Ptr, SDOperand Offset,
3082                      const Value *SV, int SVOffset, MVT EVT,
3083                      bool isVolatile, unsigned Alignment) {
3084  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3085    const Type *Ty = 0;
3086    if (VT != MVT::iPTR) {
3087      Ty = VT.getTypeForMVT();
3088    } else if (SV) {
3089      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3090      assert(PT && "Value for load must be a pointer");
3091      Ty = PT->getElementType();
3092    }
3093    assert(Ty && "Could not get type information for load");
3094    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3095  }
3096
3097  if (VT == EVT) {
3098    ExtType = ISD::NON_EXTLOAD;
3099  } else if (ExtType == ISD::NON_EXTLOAD) {
3100    assert(VT == EVT && "Non-extending load from different memory type!");
3101  } else {
3102    // Extending load.
3103    if (VT.isVector())
3104      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3105    else
3106      assert(EVT.bitsLT(VT) &&
3107             "Should only be an extending load, not truncating!");
3108    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3109           "Cannot sign/zero extend a FP/Vector load!");
3110    assert(VT.isInteger() == EVT.isInteger() &&
3111           "Cannot convert from FP to Int or Int -> FP!");
3112  }
3113
3114  bool Indexed = AM != ISD::UNINDEXED;
3115  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3116         "Unindexed load with an offset!");
3117
3118  SDVTList VTs = Indexed ?
3119    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3120  SDOperand Ops[] = { Chain, Ptr, Offset };
3121  FoldingSetNodeID ID;
3122  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3123  ID.AddInteger(AM);
3124  ID.AddInteger(ExtType);
3125  ID.AddInteger(EVT.getRawBits());
3126  ID.AddInteger(Alignment);
3127  ID.AddInteger(isVolatile);
3128  void *IP = 0;
3129  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3130    return SDOperand(E, 0);
3131  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3132                             Alignment, isVolatile);
3133  CSEMap.InsertNode(N, IP);
3134  AllNodes.push_back(N);
3135  return SDOperand(N, 0);
3136}
3137
3138SDOperand SelectionDAG::getLoad(MVT VT,
3139                                SDOperand Chain, SDOperand Ptr,
3140                                const Value *SV, int SVOffset,
3141                                bool isVolatile, unsigned Alignment) {
3142  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3143  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3144                 SV, SVOffset, VT, isVolatile, Alignment);
3145}
3146
3147SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3148                                   SDOperand Chain, SDOperand Ptr,
3149                                   const Value *SV,
3150                                   int SVOffset, MVT EVT,
3151                                   bool isVolatile, unsigned Alignment) {
3152  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3153  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3154                 SV, SVOffset, EVT, isVolatile, Alignment);
3155}
3156
3157SDOperand
3158SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3159                             SDOperand Offset, ISD::MemIndexedMode AM) {
3160  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3161  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3162         "Load is already a indexed load!");
3163  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3164                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3165                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3166                 LD->isVolatile(), LD->getAlignment());
3167}
3168
3169SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3170                                 SDOperand Ptr, const Value *SV, int SVOffset,
3171                                 bool isVolatile, unsigned Alignment) {
3172  MVT VT = Val.getValueType();
3173
3174  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3175    const Type *Ty = 0;
3176    if (VT != MVT::iPTR) {
3177      Ty = VT.getTypeForMVT();
3178    } else if (SV) {
3179      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3180      assert(PT && "Value for store must be a pointer");
3181      Ty = PT->getElementType();
3182    }
3183    assert(Ty && "Could not get type information for store");
3184    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3185  }
3186  SDVTList VTs = getVTList(MVT::Other);
3187  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3188  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3189  FoldingSetNodeID ID;
3190  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3191  ID.AddInteger(ISD::UNINDEXED);
3192  ID.AddInteger(false);
3193  ID.AddInteger(VT.getRawBits());
3194  ID.AddInteger(Alignment);
3195  ID.AddInteger(isVolatile);
3196  void *IP = 0;
3197  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3198    return SDOperand(E, 0);
3199  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3200                              VT, SV, SVOffset, Alignment, isVolatile);
3201  CSEMap.InsertNode(N, IP);
3202  AllNodes.push_back(N);
3203  return SDOperand(N, 0);
3204}
3205
3206SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3207                                      SDOperand Ptr, const Value *SV,
3208                                      int SVOffset, MVT SVT,
3209                                      bool isVolatile, unsigned Alignment) {
3210  MVT VT = Val.getValueType();
3211
3212  if (VT == SVT)
3213    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3214
3215  assert(VT.bitsGT(SVT) && "Not a truncation?");
3216  assert(VT.isInteger() == SVT.isInteger() &&
3217         "Can't do FP-INT conversion!");
3218
3219  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3220    const Type *Ty = 0;
3221    if (VT != MVT::iPTR) {
3222      Ty = VT.getTypeForMVT();
3223    } else if (SV) {
3224      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3225      assert(PT && "Value for store must be a pointer");
3226      Ty = PT->getElementType();
3227    }
3228    assert(Ty && "Could not get type information for store");
3229    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3230  }
3231  SDVTList VTs = getVTList(MVT::Other);
3232  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3233  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3234  FoldingSetNodeID ID;
3235  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3236  ID.AddInteger(ISD::UNINDEXED);
3237  ID.AddInteger(1);
3238  ID.AddInteger(SVT.getRawBits());
3239  ID.AddInteger(Alignment);
3240  ID.AddInteger(isVolatile);
3241  void *IP = 0;
3242  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3243    return SDOperand(E, 0);
3244  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3245                              SVT, SV, SVOffset, Alignment, isVolatile);
3246  CSEMap.InsertNode(N, IP);
3247  AllNodes.push_back(N);
3248  return SDOperand(N, 0);
3249}
3250
3251SDOperand
3252SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3253                              SDOperand Offset, ISD::MemIndexedMode AM) {
3254  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3255  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3256         "Store is already a indexed store!");
3257  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3258  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3259  FoldingSetNodeID ID;
3260  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3261  ID.AddInteger(AM);
3262  ID.AddInteger(ST->isTruncatingStore());
3263  ID.AddInteger(ST->getMemoryVT().getRawBits());
3264  ID.AddInteger(ST->getAlignment());
3265  ID.AddInteger(ST->isVolatile());
3266  void *IP = 0;
3267  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3268    return SDOperand(E, 0);
3269  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3270                              ST->isTruncatingStore(), ST->getMemoryVT(),
3271                              ST->getSrcValue(), ST->getSrcValueOffset(),
3272                              ST->getAlignment(), ST->isVolatile());
3273  CSEMap.InsertNode(N, IP);
3274  AllNodes.push_back(N);
3275  return SDOperand(N, 0);
3276}
3277
3278SDOperand SelectionDAG::getVAArg(MVT VT,
3279                                 SDOperand Chain, SDOperand Ptr,
3280                                 SDOperand SV) {
3281  SDOperand Ops[] = { Chain, Ptr, SV };
3282  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3283}
3284
3285SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3286                                const SDUse *Ops, unsigned NumOps) {
3287  switch (NumOps) {
3288  case 0: return getNode(Opcode, VT);
3289  case 1: return getNode(Opcode, VT, Ops[0].getSDOperand());
3290  case 2: return getNode(Opcode, VT, Ops[0].getSDOperand(),
3291                         Ops[1].getSDOperand());
3292  case 3: return getNode(Opcode, VT, Ops[0].getSDOperand(),
3293                         Ops[1].getSDOperand(), Ops[2].getSDOperand());
3294  default: break;
3295  }
3296
3297  // Copy from an SDUse array into an SDOperand array for use with
3298  // the regular getNode logic.
3299  SmallVector<SDOperand, 8> NewOps;
3300  NewOps.reserve(NumOps);
3301  for (unsigned i = 0; i != NumOps; ++i)
3302    NewOps.push_back(Ops[i].getSDOperand());
3303  return getNode(Opcode, VT, Ops, NumOps);
3304}
3305
3306SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3307                                const SDOperand *Ops, unsigned NumOps) {
3308  switch (NumOps) {
3309  case 0: return getNode(Opcode, VT);
3310  case 1: return getNode(Opcode, VT, Ops[0]);
3311  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3312  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3313  default: break;
3314  }
3315
3316  switch (Opcode) {
3317  default: break;
3318  case ISD::SELECT_CC: {
3319    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3320    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3321           "LHS and RHS of condition must have same type!");
3322    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3323           "True and False arms of SelectCC must have same type!");
3324    assert(Ops[2].getValueType() == VT &&
3325           "select_cc node must be of same type as true and false value!");
3326    break;
3327  }
3328  case ISD::BR_CC: {
3329    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3330    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3331           "LHS/RHS of comparison should match types!");
3332    break;
3333  }
3334  }
3335
3336  // Memoize nodes.
3337  SDNode *N;
3338  SDVTList VTs = getVTList(VT);
3339  if (VT != MVT::Flag) {
3340    FoldingSetNodeID ID;
3341    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3342    void *IP = 0;
3343    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3344      return SDOperand(E, 0);
3345    N = new SDNode(Opcode, VTs, Ops, NumOps);
3346    CSEMap.InsertNode(N, IP);
3347  } else {
3348    N = new SDNode(Opcode, VTs, Ops, NumOps);
3349  }
3350  AllNodes.push_back(N);
3351  return SDOperand(N, 0);
3352}
3353
3354SDOperand SelectionDAG::getNode(unsigned Opcode,
3355                                std::vector<MVT> &ResultTys,
3356                                const SDOperand *Ops, unsigned NumOps) {
3357  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3358                 Ops, NumOps);
3359}
3360
3361SDOperand SelectionDAG::getNode(unsigned Opcode,
3362                                const MVT *VTs, unsigned NumVTs,
3363                                const SDOperand *Ops, unsigned NumOps) {
3364  if (NumVTs == 1)
3365    return getNode(Opcode, VTs[0], Ops, NumOps);
3366  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3367}
3368
3369SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3370                                const SDOperand *Ops, unsigned NumOps) {
3371  if (VTList.NumVTs == 1)
3372    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3373
3374  switch (Opcode) {
3375  // FIXME: figure out how to safely handle things like
3376  // int foo(int x) { return 1 << (x & 255); }
3377  // int bar() { return foo(256); }
3378#if 0
3379  case ISD::SRA_PARTS:
3380  case ISD::SRL_PARTS:
3381  case ISD::SHL_PARTS:
3382    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3383        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3384      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3385    else if (N3.getOpcode() == ISD::AND)
3386      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3387        // If the and is only masking out bits that cannot effect the shift,
3388        // eliminate the and.
3389        unsigned NumBits = VT.getSizeInBits()*2;
3390        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3391          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3392      }
3393    break;
3394#endif
3395  }
3396
3397  // Memoize the node unless it returns a flag.
3398  SDNode *N;
3399  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3400    FoldingSetNodeID ID;
3401    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3402    void *IP = 0;
3403    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3404      return SDOperand(E, 0);
3405    if (NumOps == 1)
3406      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3407    else if (NumOps == 2)
3408      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3409    else if (NumOps == 3)
3410      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3411    else
3412      N = new SDNode(Opcode, VTList, Ops, NumOps);
3413    CSEMap.InsertNode(N, IP);
3414  } else {
3415    if (NumOps == 1)
3416      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3417    else if (NumOps == 2)
3418      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3419    else if (NumOps == 3)
3420      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3421    else
3422      N = new SDNode(Opcode, VTList, Ops, NumOps);
3423  }
3424  AllNodes.push_back(N);
3425  return SDOperand(N, 0);
3426}
3427
3428SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3429  return getNode(Opcode, VTList, 0, 0);
3430}
3431
3432SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3433                                SDOperand N1) {
3434  SDOperand Ops[] = { N1 };
3435  return getNode(Opcode, VTList, Ops, 1);
3436}
3437
3438SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3439                                SDOperand N1, SDOperand N2) {
3440  SDOperand Ops[] = { N1, N2 };
3441  return getNode(Opcode, VTList, Ops, 2);
3442}
3443
3444SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3445                                SDOperand N1, SDOperand N2, SDOperand N3) {
3446  SDOperand Ops[] = { N1, N2, N3 };
3447  return getNode(Opcode, VTList, Ops, 3);
3448}
3449
3450SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3451                                SDOperand N1, SDOperand N2, SDOperand N3,
3452                                SDOperand N4) {
3453  SDOperand Ops[] = { N1, N2, N3, N4 };
3454  return getNode(Opcode, VTList, Ops, 4);
3455}
3456
3457SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3458                                SDOperand N1, SDOperand N2, SDOperand N3,
3459                                SDOperand N4, SDOperand N5) {
3460  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3461  return getNode(Opcode, VTList, Ops, 5);
3462}
3463
3464SDVTList SelectionDAG::getVTList(MVT VT) {
3465  return makeVTList(SDNode::getValueTypeList(VT), 1);
3466}
3467
3468SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3469  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3470       E = VTList.end(); I != E; ++I) {
3471    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3472      return makeVTList(&(*I)[0], 2);
3473  }
3474  std::vector<MVT> V;
3475  V.push_back(VT1);
3476  V.push_back(VT2);
3477  VTList.push_front(V);
3478  return makeVTList(&(*VTList.begin())[0], 2);
3479}
3480SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3481                                 MVT VT3) {
3482  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3483       E = VTList.end(); I != E; ++I) {
3484    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3485        (*I)[2] == VT3)
3486      return makeVTList(&(*I)[0], 3);
3487  }
3488  std::vector<MVT> V;
3489  V.push_back(VT1);
3490  V.push_back(VT2);
3491  V.push_back(VT3);
3492  VTList.push_front(V);
3493  return makeVTList(&(*VTList.begin())[0], 3);
3494}
3495
3496SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3497  switch (NumVTs) {
3498    case 0: assert(0 && "Cannot have nodes without results!");
3499    case 1: return getVTList(VTs[0]);
3500    case 2: return getVTList(VTs[0], VTs[1]);
3501    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3502    default: break;
3503  }
3504
3505  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3506       E = VTList.end(); I != E; ++I) {
3507    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3508
3509    bool NoMatch = false;
3510    for (unsigned i = 2; i != NumVTs; ++i)
3511      if (VTs[i] != (*I)[i]) {
3512        NoMatch = true;
3513        break;
3514      }
3515    if (!NoMatch)
3516      return makeVTList(&*I->begin(), NumVTs);
3517  }
3518
3519  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3520  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3521}
3522
3523
3524/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3525/// specified operands.  If the resultant node already exists in the DAG,
3526/// this does not modify the specified node, instead it returns the node that
3527/// already exists.  If the resultant node does not exist in the DAG, the
3528/// input node is returned.  As a degenerate case, if you specify the same
3529/// input operands as the node already has, the input node is returned.
3530SDOperand SelectionDAG::
3531UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3532  SDNode *N = InN.Val;
3533  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3534
3535  // Check to see if there is no change.
3536  if (Op == N->getOperand(0)) return InN;
3537
3538  // See if the modified node already exists.
3539  void *InsertPos = 0;
3540  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3541    return SDOperand(Existing, InN.ResNo);
3542
3543  // Nope it doesn't.  Remove the node from it's current place in the maps.
3544  if (InsertPos)
3545    RemoveNodeFromCSEMaps(N);
3546
3547  // Now we update the operands.
3548  N->OperandList[0].getVal()->removeUser(0, N);
3549  N->OperandList[0] = Op;
3550  N->OperandList[0].setUser(N);
3551  Op.Val->addUser(0, N);
3552
3553  // If this gets put into a CSE map, add it.
3554  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3555  return InN;
3556}
3557
3558SDOperand SelectionDAG::
3559UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3560  SDNode *N = InN.Val;
3561  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3562
3563  // Check to see if there is no change.
3564  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3565    return InN;   // No operands changed, just return the input node.
3566
3567  // See if the modified node already exists.
3568  void *InsertPos = 0;
3569  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3570    return SDOperand(Existing, InN.ResNo);
3571
3572  // Nope it doesn't.  Remove the node from it's current place in the maps.
3573  if (InsertPos)
3574    RemoveNodeFromCSEMaps(N);
3575
3576  // Now we update the operands.
3577  if (N->OperandList[0] != Op1) {
3578    N->OperandList[0].getVal()->removeUser(0, N);
3579    N->OperandList[0] = Op1;
3580    N->OperandList[0].setUser(N);
3581    Op1.Val->addUser(0, N);
3582  }
3583  if (N->OperandList[1] != Op2) {
3584    N->OperandList[1].getVal()->removeUser(1, N);
3585    N->OperandList[1] = Op2;
3586    N->OperandList[1].setUser(N);
3587    Op2.Val->addUser(1, N);
3588  }
3589
3590  // If this gets put into a CSE map, add it.
3591  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3592  return InN;
3593}
3594
3595SDOperand SelectionDAG::
3596UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3597  SDOperand Ops[] = { Op1, Op2, Op3 };
3598  return UpdateNodeOperands(N, Ops, 3);
3599}
3600
3601SDOperand SelectionDAG::
3602UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3603                   SDOperand Op3, SDOperand Op4) {
3604  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3605  return UpdateNodeOperands(N, Ops, 4);
3606}
3607
3608SDOperand SelectionDAG::
3609UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3610                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3611  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3612  return UpdateNodeOperands(N, Ops, 5);
3613}
3614
3615SDOperand SelectionDAG::
3616UpdateNodeOperands(SDOperand InN, const SDOperand *Ops, unsigned NumOps) {
3617  SDNode *N = InN.Val;
3618  assert(N->getNumOperands() == NumOps &&
3619         "Update with wrong number of operands");
3620
3621  // Check to see if there is no change.
3622  bool AnyChange = false;
3623  for (unsigned i = 0; i != NumOps; ++i) {
3624    if (Ops[i] != N->getOperand(i)) {
3625      AnyChange = true;
3626      break;
3627    }
3628  }
3629
3630  // No operands changed, just return the input node.
3631  if (!AnyChange) return InN;
3632
3633  // See if the modified node already exists.
3634  void *InsertPos = 0;
3635  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3636    return SDOperand(Existing, InN.ResNo);
3637
3638  // Nope it doesn't.  Remove the node from its current place in the maps.
3639  if (InsertPos)
3640    RemoveNodeFromCSEMaps(N);
3641
3642  // Now we update the operands.
3643  for (unsigned i = 0; i != NumOps; ++i) {
3644    if (N->OperandList[i] != Ops[i]) {
3645      N->OperandList[i].getVal()->removeUser(i, N);
3646      N->OperandList[i] = Ops[i];
3647      N->OperandList[i].setUser(N);
3648      Ops[i].Val->addUser(i, N);
3649    }
3650  }
3651
3652  // If this gets put into a CSE map, add it.
3653  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3654  return InN;
3655}
3656
3657/// MorphNodeTo - This frees the operands of the current node, resets the
3658/// opcode, types, and operands to the specified value.  This should only be
3659/// used by the SelectionDAG class.
3660void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3661                         const SDOperand *Ops, unsigned NumOps,
3662                         SmallVectorImpl<SDNode *> &DeadNodes) {
3663  NodeType = Opc;
3664  ValueList = L.VTs;
3665  NumValues = L.NumVTs;
3666
3667  // Clear the operands list, updating used nodes to remove this from their
3668  // use list.  Keep track of any operands that become dead as a result.
3669  SmallPtrSet<SDNode*, 16> DeadNodeSet;
3670  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
3671    SDNode *N = I->getVal();
3672    N->removeUser(std::distance(op_begin(), I), this);
3673    if (N->use_empty())
3674      DeadNodeSet.insert(N);
3675  }
3676
3677  // If NumOps is larger than the # of operands we currently have, reallocate
3678  // the operand list.
3679  if (NumOps > NumOperands) {
3680    if (OperandsNeedDelete) {
3681      delete [] OperandList;
3682    }
3683    OperandList = new SDUse[NumOps];
3684    OperandsNeedDelete = true;
3685  }
3686
3687  // Assign the new operands.
3688  NumOperands = NumOps;
3689
3690  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3691    OperandList[i] = Ops[i];
3692    OperandList[i].setUser(this);
3693    SDNode *N = OperandList[i].getVal();
3694    N->addUser(i, this);
3695    ++N->UsesSize;
3696    DeadNodeSet.erase(N);
3697  }
3698
3699  // Clean up any nodes that are still dead after adding the uses for the
3700  // new operands.
3701  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
3702       E = DeadNodeSet.end(); I != E; ++I)
3703    DeadNodes.push_back(*I);
3704}
3705
3706/// DropOperands - Release the operands and set this node to have
3707/// zero operands.  This should only be used by HandleSDNode to clear
3708/// its operand list.
3709void SDNode::DropOperands() {
3710  assert(NodeType == ISD::HANDLENODE &&
3711         "DropOperands is for HANDLENODE only!");
3712
3713  // Unlike the code in MorphNodeTo that does this, we don't need to
3714  // watch for dead nodes here.
3715  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3716    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3717
3718  NumOperands = 0;
3719}
3720
3721/// SelectNodeTo - These are used for target selectors to *mutate* the
3722/// specified node to have the specified return type, Target opcode, and
3723/// operands.  Note that target opcodes are stored as
3724/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3725///
3726/// Note that SelectNodeTo returns the resultant node.  If there is already a
3727/// node of the specified opcode and operands, it returns that node instead of
3728/// the current one.
3729SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3730                                   MVT VT) {
3731  SDVTList VTs = getVTList(VT);
3732  return SelectNodeTo(N, TargetOpc, VTs, 0, 0);
3733}
3734
3735SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3736                                   MVT VT, SDOperand Op1) {
3737  SDVTList VTs = getVTList(VT);
3738  SDOperand Ops[] = { Op1 };
3739  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3740}
3741
3742SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3743                                   MVT VT, SDOperand Op1,
3744                                   SDOperand Op2) {
3745  SDVTList VTs = getVTList(VT);
3746  SDOperand Ops[] = { Op1, Op2 };
3747  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3748}
3749
3750SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3751                                   MVT VT, SDOperand Op1,
3752                                   SDOperand Op2, SDOperand Op3) {
3753  SDVTList VTs = getVTList(VT);
3754  SDOperand Ops[] = { Op1, Op2, Op3 };
3755  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3756}
3757
3758SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3759                                   MVT VT, const SDOperand *Ops,
3760                                   unsigned NumOps) {
3761  SDVTList VTs = getVTList(VT);
3762  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3763}
3764
3765SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3766                                   MVT VT1, MVT VT2, const SDOperand *Ops,
3767                                   unsigned NumOps) {
3768  SDVTList VTs = getVTList(VT1, VT2);
3769  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3770}
3771
3772SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3773                                   MVT VT1, MVT VT2) {
3774  SDVTList VTs = getVTList(VT1, VT2);
3775  return SelectNodeTo(N, TargetOpc, VTs, (SDOperand *)0, 0);
3776}
3777
3778SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3779                                   MVT VT1, MVT VT2, MVT VT3,
3780                                   const SDOperand *Ops, unsigned NumOps) {
3781  SDVTList VTs = getVTList(VT1, VT2, VT3);
3782  return SelectNodeTo(N, TargetOpc, VTs, Ops, NumOps);
3783}
3784
3785SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3786                                   MVT VT1, MVT VT2,
3787                                   SDOperand Op1) {
3788  SDVTList VTs = getVTList(VT1, VT2);
3789  SDOperand Ops[] = { Op1 };
3790  return SelectNodeTo(N, TargetOpc, VTs, Ops, 1);
3791}
3792
3793SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3794                                   MVT VT1, MVT VT2,
3795                                   SDOperand Op1, SDOperand Op2) {
3796  SDVTList VTs = getVTList(VT1, VT2);
3797  SDOperand Ops[] = { Op1, Op2 };
3798  return SelectNodeTo(N, TargetOpc, VTs, Ops, 2);
3799}
3800
3801SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3802                                   MVT VT1, MVT VT2,
3803                                   SDOperand Op1, SDOperand Op2,
3804                                   SDOperand Op3) {
3805  SDVTList VTs = getVTList(VT1, VT2);
3806  SDOperand Ops[] = { Op1, Op2, Op3 };
3807  return SelectNodeTo(N, TargetOpc, VTs, Ops, 3);
3808}
3809
3810SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3811                                   SDVTList VTs, const SDOperand *Ops,
3812                                   unsigned NumOps) {
3813  // If an identical node already exists, use it.
3814  FoldingSetNodeID ID;
3815  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3816  void *IP = 0;
3817  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3818    return ON;
3819
3820  RemoveNodeFromCSEMaps(N);
3821
3822  SmallVector<SDNode *, 16> DeadNodes;
3823  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps, DeadNodes);
3824  RemoveDeadNodes(DeadNodes);
3825
3826  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3827  return N;
3828}
3829
3830
3831/// getTargetNode - These are used for target selectors to create a new node
3832/// with specified return type(s), target opcode, and operands.
3833///
3834/// Note that getTargetNode returns the resultant node.  If there is already a
3835/// node of the specified opcode and operands, it returns that node instead of
3836/// the current one.
3837SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3838  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3839}
3840SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3841  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3842}
3843SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3844                                    SDOperand Op1, SDOperand Op2) {
3845  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3846}
3847SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3848                                    SDOperand Op1, SDOperand Op2,
3849                                    SDOperand Op3) {
3850  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3851}
3852SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3853                                    const SDOperand *Ops, unsigned NumOps) {
3854  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3855}
3856SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3857  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3858  SDOperand Op;
3859  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3860}
3861SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3862                                    MVT VT2, SDOperand Op1) {
3863  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3864  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3865}
3866SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3867                                    MVT VT2, SDOperand Op1,
3868                                    SDOperand Op2) {
3869  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3870  SDOperand Ops[] = { Op1, Op2 };
3871  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3872}
3873SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3874                                    MVT VT2, SDOperand Op1,
3875                                    SDOperand Op2, SDOperand Op3) {
3876  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3877  SDOperand Ops[] = { Op1, Op2, Op3 };
3878  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3879}
3880SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3881                                    const SDOperand *Ops, unsigned NumOps) {
3882  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3883  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3884}
3885SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3886                                    SDOperand Op1, SDOperand Op2) {
3887  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3888  SDOperand Ops[] = { Op1, Op2 };
3889  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3890}
3891SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3892                                    SDOperand Op1, SDOperand Op2,
3893                                    SDOperand Op3) {
3894  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3895  SDOperand Ops[] = { Op1, Op2, Op3 };
3896  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3897}
3898SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3899                                    const SDOperand *Ops, unsigned NumOps) {
3900  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3901  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3902}
3903SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3904                                    MVT VT2, MVT VT3, MVT VT4,
3905                                    const SDOperand *Ops, unsigned NumOps) {
3906  std::vector<MVT> VTList;
3907  VTList.push_back(VT1);
3908  VTList.push_back(VT2);
3909  VTList.push_back(VT3);
3910  VTList.push_back(VT4);
3911  const MVT *VTs = getNodeValueTypes(VTList);
3912  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3913}
3914SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3915                                    std::vector<MVT> &ResultTys,
3916                                    const SDOperand *Ops, unsigned NumOps) {
3917  const MVT *VTs = getNodeValueTypes(ResultTys);
3918  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3919                 Ops, NumOps).Val;
3920}
3921
3922/// getNodeIfExists - Get the specified node if it's already available, or
3923/// else return NULL.
3924SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3925                                      const SDOperand *Ops, unsigned NumOps) {
3926  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3927    FoldingSetNodeID ID;
3928    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3929    void *IP = 0;
3930    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3931      return E;
3932  }
3933  return NULL;
3934}
3935
3936
3937/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3938/// This can cause recursive merging of nodes in the DAG.
3939///
3940/// This version assumes From has a single result value.
3941///
3942void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3943                                      DAGUpdateListener *UpdateListener) {
3944  SDNode *From = FromN.Val;
3945  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3946         "Cannot replace with this method!");
3947  assert(From != To.Val && "Cannot replace uses of with self");
3948
3949  while (!From->use_empty()) {
3950    SDNode::use_iterator UI = From->use_begin();
3951    SDNode *U = UI->getUser();
3952
3953    // This node is about to morph, remove its old self from the CSE maps.
3954    RemoveNodeFromCSEMaps(U);
3955    int operandNum = 0;
3956    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3957         I != E; ++I, ++operandNum)
3958      if (I->getVal() == From) {
3959        From->removeUser(operandNum, U);
3960        *I = To;
3961        I->setUser(U);
3962        To.Val->addUser(operandNum, U);
3963      }
3964
3965    // Now that we have modified U, add it back to the CSE maps.  If it already
3966    // exists there, recursively merge the results together.
3967    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3968      ReplaceAllUsesWith(U, Existing, UpdateListener);
3969      // U is now dead.  Inform the listener if it exists and delete it.
3970      if (UpdateListener)
3971        UpdateListener->NodeDeleted(U, Existing);
3972      DeleteNodeNotInCSEMaps(U);
3973    } else {
3974      // If the node doesn't already exist, we updated it.  Inform a listener if
3975      // it exists.
3976      if (UpdateListener)
3977        UpdateListener->NodeUpdated(U);
3978    }
3979  }
3980}
3981
3982/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3983/// This can cause recursive merging of nodes in the DAG.
3984///
3985/// This version assumes From/To have matching types and numbers of result
3986/// values.
3987///
3988void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3989                                      DAGUpdateListener *UpdateListener) {
3990  assert(From != To && "Cannot replace uses of with self");
3991  assert(From->getNumValues() == To->getNumValues() &&
3992         "Cannot use this version of ReplaceAllUsesWith!");
3993  if (From->getNumValues() == 1)   // If possible, use the faster version.
3994    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3995                              UpdateListener);
3996
3997  while (!From->use_empty()) {
3998    SDNode::use_iterator UI = From->use_begin();
3999    SDNode *U = UI->getUser();
4000
4001    // This node is about to morph, remove its old self from the CSE maps.
4002    RemoveNodeFromCSEMaps(U);
4003    int operandNum = 0;
4004    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4005         I != E; ++I, ++operandNum)
4006      if (I->getVal() == From) {
4007        From->removeUser(operandNum, U);
4008        I->getVal() = To;
4009        To->addUser(operandNum, U);
4010      }
4011
4012    // Now that we have modified U, add it back to the CSE maps.  If it already
4013    // exists there, recursively merge the results together.
4014    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4015      ReplaceAllUsesWith(U, Existing, UpdateListener);
4016      // U is now dead.  Inform the listener if it exists and delete it.
4017      if (UpdateListener)
4018        UpdateListener->NodeDeleted(U, Existing);
4019      DeleteNodeNotInCSEMaps(U);
4020    } else {
4021      // If the node doesn't already exist, we updated it.  Inform a listener if
4022      // it exists.
4023      if (UpdateListener)
4024        UpdateListener->NodeUpdated(U);
4025    }
4026  }
4027}
4028
4029/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4030/// This can cause recursive merging of nodes in the DAG.
4031///
4032/// This version can replace From with any result values.  To must match the
4033/// number and types of values returned by From.
4034void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4035                                      const SDOperand *To,
4036                                      DAGUpdateListener *UpdateListener) {
4037  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4038    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
4039
4040  while (!From->use_empty()) {
4041    SDNode::use_iterator UI = From->use_begin();
4042    SDNode *U = UI->getUser();
4043
4044    // This node is about to morph, remove its old self from the CSE maps.
4045    RemoveNodeFromCSEMaps(U);
4046    int operandNum = 0;
4047    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4048         I != E; ++I, ++operandNum)
4049      if (I->getVal() == From) {
4050        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
4051        From->removeUser(operandNum, U);
4052        *I = ToOp;
4053        I->setUser(U);
4054        ToOp.Val->addUser(operandNum, U);
4055      }
4056
4057    // Now that we have modified U, add it back to the CSE maps.  If it already
4058    // exists there, recursively merge the results together.
4059    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4060      ReplaceAllUsesWith(U, Existing, UpdateListener);
4061      // U is now dead.  Inform the listener if it exists and delete it.
4062      if (UpdateListener)
4063        UpdateListener->NodeDeleted(U, Existing);
4064      DeleteNodeNotInCSEMaps(U);
4065    } else {
4066      // If the node doesn't already exist, we updated it.  Inform a listener if
4067      // it exists.
4068      if (UpdateListener)
4069        UpdateListener->NodeUpdated(U);
4070    }
4071  }
4072}
4073
4074namespace {
4075  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4076  /// any deleted nodes from the set passed into its constructor and recursively
4077  /// notifies another update listener if specified.
4078  class ChainedSetUpdaterListener :
4079  public SelectionDAG::DAGUpdateListener {
4080    SmallSetVector<SDNode*, 16> &Set;
4081    SelectionDAG::DAGUpdateListener *Chain;
4082  public:
4083    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4084                              SelectionDAG::DAGUpdateListener *chain)
4085      : Set(set), Chain(chain) {}
4086
4087    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4088      Set.remove(N);
4089      if (Chain) Chain->NodeDeleted(N, E);
4090    }
4091    virtual void NodeUpdated(SDNode *N) {
4092      if (Chain) Chain->NodeUpdated(N);
4093    }
4094  };
4095}
4096
4097/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4098/// uses of other values produced by From.Val alone.  The Deleted vector is
4099/// handled the same way as for ReplaceAllUsesWith.
4100void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4101                                             DAGUpdateListener *UpdateListener){
4102  assert(From != To && "Cannot replace a value with itself");
4103
4104  // Handle the simple, trivial, case efficiently.
4105  if (From.Val->getNumValues() == 1) {
4106    ReplaceAllUsesWith(From, To, UpdateListener);
4107    return;
4108  }
4109
4110  if (From.use_empty()) return;
4111
4112  // Get all of the users of From.Val.  We want these in a nice,
4113  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4114  SmallSetVector<SDNode*, 16> Users;
4115  for (SDNode::use_iterator UI = From.Val->use_begin(),
4116      E = From.Val->use_end(); UI != E; ++UI) {
4117    SDNode *User = UI->getUser();
4118    Users.insert(User);
4119  }
4120
4121  // When one of the recursive merges deletes nodes from the graph, we need to
4122  // make sure that UpdateListener is notified *and* that the node is removed
4123  // from Users if present.  CSUL does this.
4124  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4125
4126  while (!Users.empty()) {
4127    // We know that this user uses some value of From.  If it is the right
4128    // value, update it.
4129    SDNode *User = Users.back();
4130    Users.pop_back();
4131
4132    // Scan for an operand that matches From.
4133    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4134    for (; Op != E; ++Op)
4135      if (*Op == From) break;
4136
4137    // If there are no matches, the user must use some other result of From.
4138    if (Op == E) continue;
4139
4140    // Okay, we know this user needs to be updated.  Remove its old self
4141    // from the CSE maps.
4142    RemoveNodeFromCSEMaps(User);
4143
4144    // Update all operands that match "From" in case there are multiple uses.
4145    for (; Op != E; ++Op) {
4146      if (*Op == From) {
4147        From.Val->removeUser(Op-User->op_begin(), User);
4148        *Op = To;
4149        Op->setUser(User);
4150        To.Val->addUser(Op-User->op_begin(), User);
4151      }
4152    }
4153
4154    // Now that we have modified User, add it back to the CSE maps.  If it
4155    // already exists there, recursively merge the results together.
4156    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4157    if (!Existing) {
4158      if (UpdateListener) UpdateListener->NodeUpdated(User);
4159      continue;  // Continue on to next user.
4160    }
4161
4162    // If there was already an existing matching node, use ReplaceAllUsesWith
4163    // to replace the dead one with the existing one.  This can cause
4164    // recursive merging of other unrelated nodes down the line.  The merging
4165    // can cause deletion of nodes that used the old value.  To handle this, we
4166    // use CSUL to remove them from the Users set.
4167    ReplaceAllUsesWith(User, Existing, &CSUL);
4168
4169    // User is now dead.  Notify a listener if present.
4170    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4171    DeleteNodeNotInCSEMaps(User);
4172  }
4173}
4174
4175/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4176/// their allnodes order. It returns the maximum id.
4177unsigned SelectionDAG::AssignNodeIds() {
4178  unsigned Id = 0;
4179  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4180    SDNode *N = I;
4181    N->setNodeId(Id++);
4182  }
4183  return Id;
4184}
4185
4186/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4187/// based on their topological order. It returns the maximum id and a vector
4188/// of the SDNodes* in assigned order by reference.
4189unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4190  unsigned DAGSize = AllNodes.size();
4191  std::vector<unsigned> InDegree(DAGSize);
4192  std::vector<SDNode*> Sources;
4193
4194  // Use a two pass approach to avoid using a std::map which is slow.
4195  unsigned Id = 0;
4196  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4197    SDNode *N = I;
4198    N->setNodeId(Id++);
4199    unsigned Degree = N->use_size();
4200    InDegree[N->getNodeId()] = Degree;
4201    if (Degree == 0)
4202      Sources.push_back(N);
4203  }
4204
4205  TopOrder.clear();
4206  while (!Sources.empty()) {
4207    SDNode *N = Sources.back();
4208    Sources.pop_back();
4209    TopOrder.push_back(N);
4210    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4211      SDNode *P = I->getVal();
4212      unsigned Degree = --InDegree[P->getNodeId()];
4213      if (Degree == 0)
4214        Sources.push_back(P);
4215    }
4216  }
4217
4218  // Second pass, assign the actual topological order as node ids.
4219  Id = 0;
4220  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4221       TI != TE; ++TI)
4222    (*TI)->setNodeId(Id++);
4223
4224  return Id;
4225}
4226
4227
4228
4229//===----------------------------------------------------------------------===//
4230//                              SDNode Class
4231//===----------------------------------------------------------------------===//
4232
4233// Out-of-line virtual method to give class a home.
4234void SDNode::ANCHOR() {}
4235void UnarySDNode::ANCHOR() {}
4236void BinarySDNode::ANCHOR() {}
4237void TernarySDNode::ANCHOR() {}
4238void HandleSDNode::ANCHOR() {}
4239void ConstantSDNode::ANCHOR() {}
4240void ConstantFPSDNode::ANCHOR() {}
4241void GlobalAddressSDNode::ANCHOR() {}
4242void FrameIndexSDNode::ANCHOR() {}
4243void JumpTableSDNode::ANCHOR() {}
4244void ConstantPoolSDNode::ANCHOR() {}
4245void BasicBlockSDNode::ANCHOR() {}
4246void SrcValueSDNode::ANCHOR() {}
4247void MemOperandSDNode::ANCHOR() {}
4248void RegisterSDNode::ANCHOR() {}
4249void DbgStopPointSDNode::ANCHOR() {}
4250void LabelSDNode::ANCHOR() {}
4251void ExternalSymbolSDNode::ANCHOR() {}
4252void CondCodeSDNode::ANCHOR() {}
4253void ARG_FLAGSSDNode::ANCHOR() {}
4254void VTSDNode::ANCHOR() {}
4255void MemSDNode::ANCHOR() {}
4256void LoadSDNode::ANCHOR() {}
4257void StoreSDNode::ANCHOR() {}
4258void AtomicSDNode::ANCHOR() {}
4259
4260HandleSDNode::~HandleSDNode() {
4261  DropOperands();
4262}
4263
4264GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4265                                         MVT VT, int o)
4266  : SDNode(isa<GlobalVariable>(GA) &&
4267           cast<GlobalVariable>(GA)->isThreadLocal() ?
4268           // Thread Local
4269           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4270           // Non Thread Local
4271           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4272           getSDVTList(VT)), Offset(o) {
4273  TheGlobal = const_cast<GlobalValue*>(GA);
4274}
4275
4276/// getMemOperand - Return a MachineMemOperand object describing the memory
4277/// reference performed by this atomic.
4278MachineMemOperand AtomicSDNode::getMemOperand() const {
4279  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4280  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4281  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4282
4283  // Check if the atomic references a frame index
4284  const FrameIndexSDNode *FI =
4285  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4286  if (!getSrcValue() && FI)
4287    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4288                             FI->getIndex(), Size, getAlignment());
4289  else
4290    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4291                             Size, getAlignment());
4292}
4293
4294/// getMemOperand - Return a MachineMemOperand object describing the memory
4295/// reference performed by this load or store.
4296MachineMemOperand LSBaseSDNode::getMemOperand() const {
4297  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4298  int Flags =
4299    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4300                               MachineMemOperand::MOStore;
4301  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4302
4303  // Check if the load references a frame index, and does not have
4304  // an SV attached.
4305  const FrameIndexSDNode *FI =
4306    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4307  if (!getSrcValue() && FI)
4308    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4309                             FI->getIndex(), Size, getAlignment());
4310  else
4311    return MachineMemOperand(getSrcValue(), Flags,
4312                             getSrcValueOffset(), Size, getAlignment());
4313}
4314
4315/// Profile - Gather unique data for the node.
4316///
4317void SDNode::Profile(FoldingSetNodeID &ID) {
4318  AddNodeIDNode(ID, this);
4319}
4320
4321/// getValueTypeList - Return a pointer to the specified value type.
4322///
4323const MVT *SDNode::getValueTypeList(MVT VT) {
4324  if (VT.isExtended()) {
4325    static std::set<MVT, MVT::compareRawBits> EVTs;
4326    return &(*EVTs.insert(VT).first);
4327  } else {
4328    static MVT VTs[MVT::LAST_VALUETYPE];
4329    VTs[VT.getSimpleVT()] = VT;
4330    return &VTs[VT.getSimpleVT()];
4331  }
4332}
4333
4334/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4335/// indicated value.  This method ignores uses of other values defined by this
4336/// operation.
4337bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4338  assert(Value < getNumValues() && "Bad value!");
4339
4340  // If there is only one value, this is easy.
4341  if (getNumValues() == 1)
4342    return use_size() == NUses;
4343  if (use_size() < NUses) return false;
4344
4345  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4346
4347  SmallPtrSet<SDNode*, 32> UsersHandled;
4348
4349  // TODO: Only iterate over uses of a given value of the node
4350  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4351    if (*UI == TheValue) {
4352      if (NUses == 0)
4353        return false;
4354      --NUses;
4355    }
4356  }
4357
4358  // Found exactly the right number of uses?
4359  return NUses == 0;
4360}
4361
4362
4363/// hasAnyUseOfValue - Return true if there are any use of the indicated
4364/// value. This method ignores uses of other values defined by this operation.
4365bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4366  assert(Value < getNumValues() && "Bad value!");
4367
4368  if (use_empty()) return false;
4369
4370  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4371
4372  SmallPtrSet<SDNode*, 32> UsersHandled;
4373
4374  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4375    SDNode *User = UI->getUser();
4376    if (User->getNumOperands() == 1 ||
4377        UsersHandled.insert(User))     // First time we've seen this?
4378      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4379        if (User->getOperand(i) == TheValue) {
4380          return true;
4381        }
4382  }
4383
4384  return false;
4385}
4386
4387
4388/// isOnlyUseOf - Return true if this node is the only use of N.
4389///
4390bool SDNode::isOnlyUseOf(SDNode *N) const {
4391  bool Seen = false;
4392  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4393    SDNode *User = I->getUser();
4394    if (User == this)
4395      Seen = true;
4396    else
4397      return false;
4398  }
4399
4400  return Seen;
4401}
4402
4403/// isOperand - Return true if this node is an operand of N.
4404///
4405bool SDOperand::isOperandOf(SDNode *N) const {
4406  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4407    if (*this == N->getOperand(i))
4408      return true;
4409  return false;
4410}
4411
4412bool SDNode::isOperandOf(SDNode *N) const {
4413  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4414    if (this == N->OperandList[i].getVal())
4415      return true;
4416  return false;
4417}
4418
4419/// reachesChainWithoutSideEffects - Return true if this operand (which must
4420/// be a chain) reaches the specified operand without crossing any
4421/// side-effecting instructions.  In practice, this looks through token
4422/// factors and non-volatile loads.  In order to remain efficient, this only
4423/// looks a couple of nodes in, it does not do an exhaustive search.
4424bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4425                                               unsigned Depth) const {
4426  if (*this == Dest) return true;
4427
4428  // Don't search too deeply, we just want to be able to see through
4429  // TokenFactor's etc.
4430  if (Depth == 0) return false;
4431
4432  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4433  // of the operands of the TF reach dest, then we can do the xform.
4434  if (getOpcode() == ISD::TokenFactor) {
4435    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4436      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4437        return true;
4438    return false;
4439  }
4440
4441  // Loads don't have side effects, look through them.
4442  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4443    if (!Ld->isVolatile())
4444      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4445  }
4446  return false;
4447}
4448
4449
4450static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4451                            SmallPtrSet<SDNode *, 32> &Visited) {
4452  if (found || !Visited.insert(N))
4453    return;
4454
4455  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4456    SDNode *Op = N->getOperand(i).Val;
4457    if (Op == P) {
4458      found = true;
4459      return;
4460    }
4461    findPredecessor(Op, P, found, Visited);
4462  }
4463}
4464
4465/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4466/// is either an operand of N or it can be reached by recursively traversing
4467/// up the operands.
4468/// NOTE: this is an expensive method. Use it carefully.
4469bool SDNode::isPredecessorOf(SDNode *N) const {
4470  SmallPtrSet<SDNode *, 32> Visited;
4471  bool found = false;
4472  findPredecessor(N, this, found, Visited);
4473  return found;
4474}
4475
4476uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4477  assert(Num < NumOperands && "Invalid child # of SDNode!");
4478  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4479}
4480
4481std::string SDNode::getOperationName(const SelectionDAG *G) const {
4482  switch (getOpcode()) {
4483  default:
4484    if (getOpcode() < ISD::BUILTIN_OP_END)
4485      return "<<Unknown DAG Node>>";
4486    else {
4487      if (G) {
4488        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4489          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4490            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4491
4492        TargetLowering &TLI = G->getTargetLoweringInfo();
4493        const char *Name =
4494          TLI.getTargetNodeName(getOpcode());
4495        if (Name) return Name;
4496      }
4497
4498      return "<<Unknown Target Node>>";
4499    }
4500
4501  case ISD::PREFETCH:      return "Prefetch";
4502  case ISD::MEMBARRIER:    return "MemBarrier";
4503  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4504  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4505  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4506  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4507  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4508  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4509  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4510  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4511  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4512  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4513  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4514  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4515  case ISD::PCMARKER:      return "PCMarker";
4516  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4517  case ISD::SRCVALUE:      return "SrcValue";
4518  case ISD::MEMOPERAND:    return "MemOperand";
4519  case ISD::EntryToken:    return "EntryToken";
4520  case ISD::TokenFactor:   return "TokenFactor";
4521  case ISD::AssertSext:    return "AssertSext";
4522  case ISD::AssertZext:    return "AssertZext";
4523
4524  case ISD::BasicBlock:    return "BasicBlock";
4525  case ISD::ARG_FLAGS:     return "ArgFlags";
4526  case ISD::VALUETYPE:     return "ValueType";
4527  case ISD::Register:      return "Register";
4528
4529  case ISD::Constant:      return "Constant";
4530  case ISD::ConstantFP:    return "ConstantFP";
4531  case ISD::GlobalAddress: return "GlobalAddress";
4532  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4533  case ISD::FrameIndex:    return "FrameIndex";
4534  case ISD::JumpTable:     return "JumpTable";
4535  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4536  case ISD::RETURNADDR: return "RETURNADDR";
4537  case ISD::FRAMEADDR: return "FRAMEADDR";
4538  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4539  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4540  case ISD::EHSELECTION: return "EHSELECTION";
4541  case ISD::EH_RETURN: return "EH_RETURN";
4542  case ISD::ConstantPool:  return "ConstantPool";
4543  case ISD::ExternalSymbol: return "ExternalSymbol";
4544  case ISD::INTRINSIC_WO_CHAIN: {
4545    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4546    return Intrinsic::getName((Intrinsic::ID)IID);
4547  }
4548  case ISD::INTRINSIC_VOID:
4549  case ISD::INTRINSIC_W_CHAIN: {
4550    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4551    return Intrinsic::getName((Intrinsic::ID)IID);
4552  }
4553
4554  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4555  case ISD::TargetConstant: return "TargetConstant";
4556  case ISD::TargetConstantFP:return "TargetConstantFP";
4557  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4558  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4559  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4560  case ISD::TargetJumpTable:  return "TargetJumpTable";
4561  case ISD::TargetConstantPool:  return "TargetConstantPool";
4562  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4563
4564  case ISD::CopyToReg:     return "CopyToReg";
4565  case ISD::CopyFromReg:   return "CopyFromReg";
4566  case ISD::UNDEF:         return "undef";
4567  case ISD::MERGE_VALUES:  return "merge_values";
4568  case ISD::INLINEASM:     return "inlineasm";
4569  case ISD::DBG_LABEL:     return "dbg_label";
4570  case ISD::EH_LABEL:      return "eh_label";
4571  case ISD::DECLARE:       return "declare";
4572  case ISD::HANDLENODE:    return "handlenode";
4573  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4574  case ISD::CALL:          return "call";
4575
4576  // Unary operators
4577  case ISD::FABS:   return "fabs";
4578  case ISD::FNEG:   return "fneg";
4579  case ISD::FSQRT:  return "fsqrt";
4580  case ISD::FSIN:   return "fsin";
4581  case ISD::FCOS:   return "fcos";
4582  case ISD::FPOWI:  return "fpowi";
4583  case ISD::FPOW:   return "fpow";
4584
4585  // Binary operators
4586  case ISD::ADD:    return "add";
4587  case ISD::SUB:    return "sub";
4588  case ISD::MUL:    return "mul";
4589  case ISD::MULHU:  return "mulhu";
4590  case ISD::MULHS:  return "mulhs";
4591  case ISD::SDIV:   return "sdiv";
4592  case ISD::UDIV:   return "udiv";
4593  case ISD::SREM:   return "srem";
4594  case ISD::UREM:   return "urem";
4595  case ISD::SMUL_LOHI:  return "smul_lohi";
4596  case ISD::UMUL_LOHI:  return "umul_lohi";
4597  case ISD::SDIVREM:    return "sdivrem";
4598  case ISD::UDIVREM:    return "divrem";
4599  case ISD::AND:    return "and";
4600  case ISD::OR:     return "or";
4601  case ISD::XOR:    return "xor";
4602  case ISD::SHL:    return "shl";
4603  case ISD::SRA:    return "sra";
4604  case ISD::SRL:    return "srl";
4605  case ISD::ROTL:   return "rotl";
4606  case ISD::ROTR:   return "rotr";
4607  case ISD::FADD:   return "fadd";
4608  case ISD::FSUB:   return "fsub";
4609  case ISD::FMUL:   return "fmul";
4610  case ISD::FDIV:   return "fdiv";
4611  case ISD::FREM:   return "frem";
4612  case ISD::FCOPYSIGN: return "fcopysign";
4613  case ISD::FGETSIGN:  return "fgetsign";
4614
4615  case ISD::SETCC:       return "setcc";
4616  case ISD::VSETCC:      return "vsetcc";
4617  case ISD::SELECT:      return "select";
4618  case ISD::SELECT_CC:   return "select_cc";
4619  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4620  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4621  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4622  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4623  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4624  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4625  case ISD::CARRY_FALSE:         return "carry_false";
4626  case ISD::ADDC:        return "addc";
4627  case ISD::ADDE:        return "adde";
4628  case ISD::SUBC:        return "subc";
4629  case ISD::SUBE:        return "sube";
4630  case ISD::SHL_PARTS:   return "shl_parts";
4631  case ISD::SRA_PARTS:   return "sra_parts";
4632  case ISD::SRL_PARTS:   return "srl_parts";
4633
4634  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4635  case ISD::INSERT_SUBREG:      return "insert_subreg";
4636
4637  // Conversion operators.
4638  case ISD::SIGN_EXTEND: return "sign_extend";
4639  case ISD::ZERO_EXTEND: return "zero_extend";
4640  case ISD::ANY_EXTEND:  return "any_extend";
4641  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4642  case ISD::TRUNCATE:    return "truncate";
4643  case ISD::FP_ROUND:    return "fp_round";
4644  case ISD::FLT_ROUNDS_: return "flt_rounds";
4645  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4646  case ISD::FP_EXTEND:   return "fp_extend";
4647
4648  case ISD::SINT_TO_FP:  return "sint_to_fp";
4649  case ISD::UINT_TO_FP:  return "uint_to_fp";
4650  case ISD::FP_TO_SINT:  return "fp_to_sint";
4651  case ISD::FP_TO_UINT:  return "fp_to_uint";
4652  case ISD::BIT_CONVERT: return "bit_convert";
4653
4654    // Control flow instructions
4655  case ISD::BR:      return "br";
4656  case ISD::BRIND:   return "brind";
4657  case ISD::BR_JT:   return "br_jt";
4658  case ISD::BRCOND:  return "brcond";
4659  case ISD::BR_CC:   return "br_cc";
4660  case ISD::RET:     return "ret";
4661  case ISD::CALLSEQ_START:  return "callseq_start";
4662  case ISD::CALLSEQ_END:    return "callseq_end";
4663
4664    // Other operators
4665  case ISD::LOAD:               return "load";
4666  case ISD::STORE:              return "store";
4667  case ISD::VAARG:              return "vaarg";
4668  case ISD::VACOPY:             return "vacopy";
4669  case ISD::VAEND:              return "vaend";
4670  case ISD::VASTART:            return "vastart";
4671  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4672  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4673  case ISD::BUILD_PAIR:         return "build_pair";
4674  case ISD::STACKSAVE:          return "stacksave";
4675  case ISD::STACKRESTORE:       return "stackrestore";
4676  case ISD::TRAP:               return "trap";
4677
4678  // Bit manipulation
4679  case ISD::BSWAP:   return "bswap";
4680  case ISD::CTPOP:   return "ctpop";
4681  case ISD::CTTZ:    return "cttz";
4682  case ISD::CTLZ:    return "ctlz";
4683
4684  // Debug info
4685  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
4686  case ISD::DEBUG_LOC: return "debug_loc";
4687
4688  // Trampolines
4689  case ISD::TRAMPOLINE: return "trampoline";
4690
4691  case ISD::CONDCODE:
4692    switch (cast<CondCodeSDNode>(this)->get()) {
4693    default: assert(0 && "Unknown setcc condition!");
4694    case ISD::SETOEQ:  return "setoeq";
4695    case ISD::SETOGT:  return "setogt";
4696    case ISD::SETOGE:  return "setoge";
4697    case ISD::SETOLT:  return "setolt";
4698    case ISD::SETOLE:  return "setole";
4699    case ISD::SETONE:  return "setone";
4700
4701    case ISD::SETO:    return "seto";
4702    case ISD::SETUO:   return "setuo";
4703    case ISD::SETUEQ:  return "setue";
4704    case ISD::SETUGT:  return "setugt";
4705    case ISD::SETUGE:  return "setuge";
4706    case ISD::SETULT:  return "setult";
4707    case ISD::SETULE:  return "setule";
4708    case ISD::SETUNE:  return "setune";
4709
4710    case ISD::SETEQ:   return "seteq";
4711    case ISD::SETGT:   return "setgt";
4712    case ISD::SETGE:   return "setge";
4713    case ISD::SETLT:   return "setlt";
4714    case ISD::SETLE:   return "setle";
4715    case ISD::SETNE:   return "setne";
4716    }
4717  }
4718}
4719
4720const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4721  switch (AM) {
4722  default:
4723    return "";
4724  case ISD::PRE_INC:
4725    return "<pre-inc>";
4726  case ISD::PRE_DEC:
4727    return "<pre-dec>";
4728  case ISD::POST_INC:
4729    return "<post-inc>";
4730  case ISD::POST_DEC:
4731    return "<post-dec>";
4732  }
4733}
4734
4735std::string ISD::ArgFlagsTy::getArgFlagsString() {
4736  std::string S = "< ";
4737
4738  if (isZExt())
4739    S += "zext ";
4740  if (isSExt())
4741    S += "sext ";
4742  if (isInReg())
4743    S += "inreg ";
4744  if (isSRet())
4745    S += "sret ";
4746  if (isByVal())
4747    S += "byval ";
4748  if (isNest())
4749    S += "nest ";
4750  if (getByValAlign())
4751    S += "byval-align:" + utostr(getByValAlign()) + " ";
4752  if (getOrigAlign())
4753    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4754  if (getByValSize())
4755    S += "byval-size:" + utostr(getByValSize()) + " ";
4756  return S + ">";
4757}
4758
4759void SDNode::dump() const { dump(0); }
4760void SDNode::dump(const SelectionDAG *G) const {
4761  cerr << (void*)this << ": ";
4762
4763  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4764    if (i) cerr << ",";
4765    if (getValueType(i) == MVT::Other)
4766      cerr << "ch";
4767    else
4768      cerr << getValueType(i).getMVTString();
4769  }
4770  cerr << " = " << getOperationName(G);
4771
4772  cerr << " ";
4773  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4774    if (i) cerr << ", ";
4775    cerr << (void*)getOperand(i).Val;
4776    if (unsigned RN = getOperand(i).ResNo)
4777      cerr << ":" << RN;
4778  }
4779
4780  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4781    SDNode *Mask = getOperand(2).Val;
4782    cerr << "<";
4783    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4784      if (i) cerr << ",";
4785      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4786        cerr << "u";
4787      else
4788        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4789    }
4790    cerr << ">";
4791  }
4792
4793  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4794    cerr << "<" << CSDN->getValue() << ">";
4795  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4796    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4797      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4798    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4799      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4800    else {
4801      cerr << "<APFloat(";
4802      CSDN->getValueAPF().convertToAPInt().dump();
4803      cerr << ")>";
4804    }
4805  } else if (const GlobalAddressSDNode *GADN =
4806             dyn_cast<GlobalAddressSDNode>(this)) {
4807    int offset = GADN->getOffset();
4808    cerr << "<";
4809    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4810    if (offset > 0)
4811      cerr << " + " << offset;
4812    else
4813      cerr << " " << offset;
4814  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4815    cerr << "<" << FIDN->getIndex() << ">";
4816  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4817    cerr << "<" << JTDN->getIndex() << ">";
4818  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4819    int offset = CP->getOffset();
4820    if (CP->isMachineConstantPoolEntry())
4821      cerr << "<" << *CP->getMachineCPVal() << ">";
4822    else
4823      cerr << "<" << *CP->getConstVal() << ">";
4824    if (offset > 0)
4825      cerr << " + " << offset;
4826    else
4827      cerr << " " << offset;
4828  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4829    cerr << "<";
4830    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4831    if (LBB)
4832      cerr << LBB->getName() << " ";
4833    cerr << (const void*)BBDN->getBasicBlock() << ">";
4834  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4835    if (G && R->getReg() &&
4836        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4837      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4838    } else {
4839      cerr << " #" << R->getReg();
4840    }
4841  } else if (const ExternalSymbolSDNode *ES =
4842             dyn_cast<ExternalSymbolSDNode>(this)) {
4843    cerr << "'" << ES->getSymbol() << "'";
4844  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4845    if (M->getValue())
4846      cerr << "<" << M->getValue() << ">";
4847    else
4848      cerr << "<null>";
4849  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4850    if (M->MO.getValue())
4851      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4852    else
4853      cerr << "<null:" << M->MO.getOffset() << ">";
4854  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4855    cerr << N->getArgFlags().getArgFlagsString();
4856  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4857    cerr << ":" << N->getVT().getMVTString();
4858  }
4859  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4860    const Value *SrcValue = LD->getSrcValue();
4861    int SrcOffset = LD->getSrcValueOffset();
4862    cerr << " <";
4863    if (SrcValue)
4864      cerr << SrcValue;
4865    else
4866      cerr << "null";
4867    cerr << ":" << SrcOffset << ">";
4868
4869    bool doExt = true;
4870    switch (LD->getExtensionType()) {
4871    default: doExt = false; break;
4872    case ISD::EXTLOAD:
4873      cerr << " <anyext ";
4874      break;
4875    case ISD::SEXTLOAD:
4876      cerr << " <sext ";
4877      break;
4878    case ISD::ZEXTLOAD:
4879      cerr << " <zext ";
4880      break;
4881    }
4882    if (doExt)
4883      cerr << LD->getMemoryVT().getMVTString() << ">";
4884
4885    const char *AM = getIndexedModeName(LD->getAddressingMode());
4886    if (*AM)
4887      cerr << " " << AM;
4888    if (LD->isVolatile())
4889      cerr << " <volatile>";
4890    cerr << " alignment=" << LD->getAlignment();
4891  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4892    const Value *SrcValue = ST->getSrcValue();
4893    int SrcOffset = ST->getSrcValueOffset();
4894    cerr << " <";
4895    if (SrcValue)
4896      cerr << SrcValue;
4897    else
4898      cerr << "null";
4899    cerr << ":" << SrcOffset << ">";
4900
4901    if (ST->isTruncatingStore())
4902      cerr << " <trunc "
4903           << ST->getMemoryVT().getMVTString() << ">";
4904
4905    const char *AM = getIndexedModeName(ST->getAddressingMode());
4906    if (*AM)
4907      cerr << " " << AM;
4908    if (ST->isVolatile())
4909      cerr << " <volatile>";
4910    cerr << " alignment=" << ST->getAlignment();
4911  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4912    const Value *SrcValue = AT->getSrcValue();
4913    int SrcOffset = AT->getSrcValueOffset();
4914    cerr << " <";
4915    if (SrcValue)
4916      cerr << SrcValue;
4917    else
4918      cerr << "null";
4919    cerr << ":" << SrcOffset << ">";
4920    if (AT->isVolatile())
4921      cerr << " <volatile>";
4922    cerr << " alignment=" << AT->getAlignment();
4923  }
4924}
4925
4926static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4927  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4928    if (N->getOperand(i).Val->hasOneUse())
4929      DumpNodes(N->getOperand(i).Val, indent+2, G);
4930    else
4931      cerr << "\n" << std::string(indent+2, ' ')
4932           << (void*)N->getOperand(i).Val << ": <multiple use>";
4933
4934
4935  cerr << "\n" << std::string(indent, ' ');
4936  N->dump(G);
4937}
4938
4939void SelectionDAG::dump() const {
4940  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4941  std::vector<const SDNode*> Nodes;
4942  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4943       I != E; ++I)
4944    Nodes.push_back(I);
4945
4946  std::sort(Nodes.begin(), Nodes.end());
4947
4948  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4949    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4950      DumpNodes(Nodes[i], 2, this);
4951  }
4952
4953  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4954
4955  cerr << "\n\n";
4956}
4957
4958const Type *ConstantPoolSDNode::getType() const {
4959  if (isMachineConstantPoolEntry())
4960    return Val.MachineCPVal->getType();
4961  return Val.ConstVal->getType();
4962}
4963