SelectionDAG.cpp revision 18141eed26d90b225ed4451a6b6521fb01f8eb31
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  DbgInfo->clear();
813  delete DbgInfo;
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839  delete Ordering;
840  Ordering = new SDNodeOrdering();
841  DbgInfo->clear();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  EVT EltVT = VT.getScalarType();
936
937  // Do the map lookup using the actual bit pattern for the floating point
938  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
939  // we don't have issues with SNANs.
940  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
943  ID.AddPointer(&V);
944  void *IP = 0;
945  SDNode *N = NULL;
946  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
947    if (!VT.isVector())
948      return SDValue(N, 0);
949
950  if (!N) {
951    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
952    CSEMap.InsertNode(N, IP);
953    AllNodes.push_back(N);
954  }
955
956  SDValue Result(N, 0);
957  if (VT.isVector()) {
958    SmallVector<SDValue, 8> Ops;
959    Ops.assign(VT.getVectorNumElements(), Result);
960    // FIXME DebugLoc info might be appropriate here
961    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
967  EVT EltVT = VT.getScalarType();
968  if (EltVT==MVT::f32)
969    return getConstantFP(APFloat((float)Val), VT, isTarget);
970  else
971    return getConstantFP(APFloat(Val), VT, isTarget);
972}
973
974SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
975                                       EVT VT, int64_t Offset,
976                                       bool isTargetGA,
977                                       unsigned char TargetFlags) {
978  assert((TargetFlags == 0 || isTargetGA) &&
979         "Cannot set target flags on target-independent globals");
980
981  // Truncate (with sign-extension) the offset value to the pointer size.
982  EVT PTy = TLI.getPointerTy();
983  unsigned BitWidth = PTy.getSizeInBits();
984  if (BitWidth < 64)
985    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
986
987  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
988  if (!GVar) {
989    // If GV is an alias then use the aliasee for determining thread-localness.
990    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
991      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
992  }
993
994  unsigned Opc;
995  if (GVar && GVar->isThreadLocal())
996    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
997  else
998    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddPointer(GV);
1003  ID.AddInteger(Offset);
1004  ID.AddInteger(TargetFlags);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008
1009  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1010                                                      Offset, TargetFlags);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1017  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(FI);
1021  void *IP = 0;
1022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1023    return SDValue(E, 0);
1024
1025  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1026  CSEMap.InsertNode(N, IP);
1027  AllNodes.push_back(N);
1028  return SDValue(N, 0);
1029}
1030
1031SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1032                                   unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent jump tables");
1035  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1036  FoldingSetNodeID ID;
1037  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1038  ID.AddInteger(JTI);
1039  ID.AddInteger(TargetFlags);
1040  void *IP = 0;
1041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1042    return SDValue(E, 0);
1043
1044  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1045                                                  TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1052                                      unsigned Alignment, int Offset,
1053                                      bool isTarget,
1054                                      unsigned char TargetFlags) {
1055  assert((TargetFlags == 0 || isTarget) &&
1056         "Cannot set target flags on target-independent globals");
1057  if (Alignment == 0)
1058    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1059  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddInteger(Alignment);
1063  ID.AddInteger(Offset);
1064  ID.AddPointer(C);
1065  ID.AddInteger(TargetFlags);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1071                                                     Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077
1078SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1079                                      unsigned Alignment, int Offset,
1080                                      bool isTarget,
1081                                      unsigned char TargetFlags) {
1082  assert((TargetFlags == 0 || isTarget) &&
1083         "Cannot set target flags on target-independent globals");
1084  if (Alignment == 0)
1085    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1086  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1089  ID.AddInteger(Alignment);
1090  ID.AddInteger(Offset);
1091  C->AddSelectionDAGCSEId(ID);
1092  ID.AddInteger(TargetFlags);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1098                                                     Alignment, TargetFlags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1107  ID.AddPointer(MBB);
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111
1112  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = new (NodeAllocator) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160
1161  return SDValue(CondCodeNodes[Cond], 0);
1162}
1163
1164// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1165// the shuffle mask M that point at N1 to point at N2, and indices that point
1166// N2 to point at N1.
1167static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1168  std::swap(N1, N2);
1169  int NElts = M.size();
1170  for (int i = 0; i != NElts; ++i) {
1171    if (M[i] >= NElts)
1172      M[i] -= NElts;
1173    else if (M[i] >= 0)
1174      M[i] += NElts;
1175  }
1176}
1177
1178SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1179                                       SDValue N2, const int *Mask) {
1180  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1181  assert(VT.isVector() && N1.getValueType().isVector() &&
1182         "Vector Shuffle VTs must be a vectors");
1183  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1184         && "Vector Shuffle VTs must have same element type");
1185
1186  // Canonicalize shuffle undef, undef -> undef
1187  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1188    return getUNDEF(VT);
1189
1190  // Validate that all indices in Mask are within the range of the elements
1191  // input to the shuffle.
1192  unsigned NElts = VT.getVectorNumElements();
1193  SmallVector<int, 8> MaskVec;
1194  for (unsigned i = 0; i != NElts; ++i) {
1195    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1196    MaskVec.push_back(Mask[i]);
1197  }
1198
1199  // Canonicalize shuffle v, v -> v, undef
1200  if (N1 == N2) {
1201    N2 = getUNDEF(VT);
1202    for (unsigned i = 0; i != NElts; ++i)
1203      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1204  }
1205
1206  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1207  if (N1.getOpcode() == ISD::UNDEF)
1208    commuteShuffle(N1, N2, MaskVec);
1209
1210  // Canonicalize all index into lhs, -> shuffle lhs, undef
1211  // Canonicalize all index into rhs, -> shuffle rhs, undef
1212  bool AllLHS = true, AllRHS = true;
1213  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1214  for (unsigned i = 0; i != NElts; ++i) {
1215    if (MaskVec[i] >= (int)NElts) {
1216      if (N2Undef)
1217        MaskVec[i] = -1;
1218      else
1219        AllLHS = false;
1220    } else if (MaskVec[i] >= 0) {
1221      AllRHS = false;
1222    }
1223  }
1224  if (AllLHS && AllRHS)
1225    return getUNDEF(VT);
1226  if (AllLHS && !N2Undef)
1227    N2 = getUNDEF(VT);
1228  if (AllRHS) {
1229    N1 = getUNDEF(VT);
1230    commuteShuffle(N1, N2, MaskVec);
1231  }
1232
1233  // If Identity shuffle, or all shuffle in to undef, return that node.
1234  bool AllUndef = true;
1235  bool Identity = true;
1236  for (unsigned i = 0; i != NElts; ++i) {
1237    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1238    if (MaskVec[i] >= 0) AllUndef = false;
1239  }
1240  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1241    return N1;
1242  if (AllUndef)
1243    return getUNDEF(VT);
1244
1245  FoldingSetNodeID ID;
1246  SDValue Ops[2] = { N1, N2 };
1247  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1248  for (unsigned i = 0; i != NElts; ++i)
1249    ID.AddInteger(MaskVec[i]);
1250
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254
1255  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1256  // SDNode doesn't have access to it.  This memory will be "leaked" when
1257  // the node is deallocated, but recovered when the NodeAllocator is released.
1258  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1259  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1260
1261  ShuffleVectorSDNode *N =
1262    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1263  CSEMap.InsertNode(N, IP);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1269                                       SDValue Val, SDValue DTy,
1270                                       SDValue STy, SDValue Rnd, SDValue Sat,
1271                                       ISD::CvtCode Code) {
1272  // If the src and dest types are the same and the conversion is between
1273  // integer types of the same sign or two floats, no conversion is necessary.
1274  if (DTy == STy &&
1275      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1276    return Val;
1277
1278  FoldingSetNodeID ID;
1279  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1280  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284
1285  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1286                                                           Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1307  FoldingSetNodeID ID;
1308  SDValue Ops[] = { Root };
1309  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1310  ID.AddPointer(Label);
1311  void *IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321
1322SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1323                                      bool isTarget,
1324                                      unsigned char TargetFlags) {
1325  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1326
1327  FoldingSetNodeID ID;
1328  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1329  ID.AddPointer(BA);
1330  ID.AddInteger(TargetFlags);
1331  void *IP = 0;
1332  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1333    return SDValue(E, 0);
1334
1335  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1336  CSEMap.InsertNode(N, IP);
1337  AllNodes.push_back(N);
1338  return SDValue(N, 0);
1339}
1340
1341SDValue SelectionDAG::getSrcValue(const Value *V) {
1342  assert((!V || V->getType()->isPointerTy()) &&
1343         "SrcValue is not a pointer?");
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1347  ID.AddPointer(V);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1354  CSEMap.InsertNode(N, IP);
1355  AllNodes.push_back(N);
1356  return SDValue(N, 0);
1357}
1358
1359/// getShiftAmountOperand - Return the specified value casted to
1360/// the target's desired shift amount type.
1361SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1362  EVT OpTy = Op.getValueType();
1363  MVT ShTy = TLI.getShiftAmountTy();
1364  if (OpTy == ShTy || OpTy.isVector()) return Op;
1365
1366  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1367  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1368}
1369
1370/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1371/// specified value type.
1372SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1373  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1374  unsigned ByteSize = VT.getStoreSize();
1375  const Type *Ty = VT.getTypeForEVT(*getContext());
1376  unsigned StackAlign =
1377  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1378
1379  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1380  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary suitable for holding
1384/// either of the specified value types.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1386  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1387                            VT2.getStoreSizeInBits())/8;
1388  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1389  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1390  const TargetData *TD = TLI.getTargetData();
1391  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1392                            TD->getPrefTypeAlignment(Ty2));
1393
1394  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1396  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1397}
1398
1399SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1400                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1401  // These setcc operations always fold.
1402  switch (Cond) {
1403  default: break;
1404  case ISD::SETFALSE:
1405  case ISD::SETFALSE2: return getConstant(0, VT);
1406  case ISD::SETTRUE:
1407  case ISD::SETTRUE2:  return getConstant(1, VT);
1408
1409  case ISD::SETOEQ:
1410  case ISD::SETOGT:
1411  case ISD::SETOGE:
1412  case ISD::SETOLT:
1413  case ISD::SETOLE:
1414  case ISD::SETONE:
1415  case ISD::SETO:
1416  case ISD::SETUO:
1417  case ISD::SETUEQ:
1418  case ISD::SETUNE:
1419    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1420    break;
1421  }
1422
1423  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1424    const APInt &C2 = N2C->getAPIntValue();
1425    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1426      const APInt &C1 = N1C->getAPIntValue();
1427
1428      switch (Cond) {
1429      default: llvm_unreachable("Unknown integer setcc!");
1430      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1431      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1432      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1433      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1434      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1435      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1436      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1437      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1438      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1439      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1440      }
1441    }
1442  }
1443  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1444    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1445      // No compile time operations on this type yet.
1446      if (N1C->getValueType(0) == MVT::ppcf128)
1447        return SDValue();
1448
1449      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1450      switch (Cond) {
1451      default: break;
1452      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1456      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1457                          return getUNDEF(VT);
1458                        // fall through
1459      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1460                                           R==APFloat::cmpLessThan, VT);
1461      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1465      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1469      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1473                                           R==APFloat::cmpEqual, VT);
1474      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1480      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1481      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1482                                           R==APFloat::cmpEqual, VT);
1483      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1484      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1487                                           R==APFloat::cmpUnordered, VT);
1488      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1489      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1490      }
1491    } else {
1492      // Ensure that the constant occurs on the RHS.
1493      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1494    }
1495  }
1496
1497  // Could not fold it.
1498  return SDValue();
1499}
1500
1501/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1502/// use this predicate to simplify operations downstream.
1503bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1504  // This predicate is not safe for vector operations.
1505  if (Op.getValueType().isVector())
1506    return false;
1507
1508  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1509  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1510}
1511
1512/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1513/// this predicate to simplify operations downstream.  Mask is known to be zero
1514/// for bits that V cannot have.
1515bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1516                                     unsigned Depth) const {
1517  APInt KnownZero, KnownOne;
1518  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1519  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1520  return (KnownZero & Mask) == Mask;
1521}
1522
1523/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1524/// known to be either zero or one and return them in the KnownZero/KnownOne
1525/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1526/// processing.
1527void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1528                                     APInt &KnownZero, APInt &KnownOne,
1529                                     unsigned Depth) const {
1530  unsigned BitWidth = Mask.getBitWidth();
1531  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1532         "Mask size mismatches value type size!");
1533
1534  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1535  if (Depth == 6 || Mask == 0)
1536    return;  // Limit search depth.
1537
1538  APInt KnownZero2, KnownOne2;
1539
1540  switch (Op.getOpcode()) {
1541  case ISD::Constant:
1542    // We know all of the bits for a constant!
1543    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1544    KnownZero = ~KnownOne & Mask;
1545    return;
1546  case ISD::AND:
1547    // If either the LHS or the RHS are Zero, the result is zero.
1548    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1549    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1550                      KnownZero2, KnownOne2, Depth+1);
1551    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1552    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1553
1554    // Output known-1 bits are only known if set in both the LHS & RHS.
1555    KnownOne &= KnownOne2;
1556    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1557    KnownZero |= KnownZero2;
1558    return;
1559  case ISD::OR:
1560    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1561    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1562                      KnownZero2, KnownOne2, Depth+1);
1563    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1565
1566    // Output known-0 bits are only known if clear in both the LHS & RHS.
1567    KnownZero &= KnownZero2;
1568    // Output known-1 are known to be set if set in either the LHS | RHS.
1569    KnownOne |= KnownOne2;
1570    return;
1571  case ISD::XOR: {
1572    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1573    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1578    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1579    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1580    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1581    KnownZero = KnownZeroOut;
1582    return;
1583  }
1584  case ISD::MUL: {
1585    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1586    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // If low bits are zero in either operand, output low known-0 bits.
1592    // Also compute a conserative estimate for high known-0 bits.
1593    // More trickiness is possible, but this is sufficient for the
1594    // interesting case of alignment computation.
1595    KnownOne.clear();
1596    unsigned TrailZ = KnownZero.countTrailingOnes() +
1597                      KnownZero2.countTrailingOnes();
1598    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1599                               KnownZero2.countLeadingOnes(),
1600                               BitWidth) - BitWidth;
1601
1602    TrailZ = std::min(TrailZ, BitWidth);
1603    LeadZ = std::min(LeadZ, BitWidth);
1604    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1605                APInt::getHighBitsSet(BitWidth, LeadZ);
1606    KnownZero &= Mask;
1607    return;
1608  }
1609  case ISD::UDIV: {
1610    // For the purposes of computing leading zeros we can conservatively
1611    // treat a udiv as a logical right shift by the power of 2 known to
1612    // be less than the denominator.
1613    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1614    ComputeMaskedBits(Op.getOperand(0),
1615                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1616    unsigned LeadZ = KnownZero2.countLeadingOnes();
1617
1618    KnownOne2.clear();
1619    KnownZero2.clear();
1620    ComputeMaskedBits(Op.getOperand(1),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1623    if (RHSUnknownLeadingOnes != BitWidth)
1624      LeadZ = std::min(BitWidth,
1625                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1626
1627    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1628    return;
1629  }
1630  case ISD::SELECT:
1631    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1633    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1634    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1635
1636    // Only known if known in both the LHS and RHS.
1637    KnownOne &= KnownOne2;
1638    KnownZero &= KnownZero2;
1639    return;
1640  case ISD::SELECT_CC:
1641    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1642    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1643    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1644    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1645
1646    // Only known if known in both the LHS and RHS.
1647    KnownOne &= KnownOne2;
1648    KnownZero &= KnownZero2;
1649    return;
1650  case ISD::SADDO:
1651  case ISD::UADDO:
1652  case ISD::SSUBO:
1653  case ISD::USUBO:
1654  case ISD::SMULO:
1655  case ISD::UMULO:
1656    if (Op.getResNo() != 1)
1657      return;
1658    // The boolean result conforms to getBooleanContents.  Fall through.
1659  case ISD::SETCC:
1660    // If we know the result of a setcc has the top bits zero, use this info.
1661    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1662        BitWidth > 1)
1663      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1664    return;
1665  case ISD::SHL:
1666    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1667    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1668      unsigned ShAmt = SA->getZExtValue();
1669
1670      // If the shift count is an invalid immediate, don't do anything.
1671      if (ShAmt >= BitWidth)
1672        return;
1673
1674      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1675                        KnownZero, KnownOne, Depth+1);
1676      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1677      KnownZero <<= ShAmt;
1678      KnownOne  <<= ShAmt;
1679      // low bits known zero.
1680      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1681    }
1682    return;
1683  case ISD::SRL:
1684    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1685    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1686      unsigned ShAmt = SA->getZExtValue();
1687
1688      // If the shift count is an invalid immediate, don't do anything.
1689      if (ShAmt >= BitWidth)
1690        return;
1691
1692      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1693                        KnownZero, KnownOne, Depth+1);
1694      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1695      KnownZero = KnownZero.lshr(ShAmt);
1696      KnownOne  = KnownOne.lshr(ShAmt);
1697
1698      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1699      KnownZero |= HighBits;  // High bits known zero.
1700    }
1701    return;
1702  case ISD::SRA:
1703    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1704      unsigned ShAmt = SA->getZExtValue();
1705
1706      // If the shift count is an invalid immediate, don't do anything.
1707      if (ShAmt >= BitWidth)
1708        return;
1709
1710      APInt InDemandedMask = (Mask << ShAmt);
1711      // If any of the demanded bits are produced by the sign extension, we also
1712      // demand the input sign bit.
1713      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1714      if (HighBits.getBoolValue())
1715        InDemandedMask |= APInt::getSignBit(BitWidth);
1716
1717      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1718                        Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      // Handle the sign bits.
1724      APInt SignBit = APInt::getSignBit(BitWidth);
1725      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1726
1727      if (KnownZero.intersects(SignBit)) {
1728        KnownZero |= HighBits;  // New bits are known zero.
1729      } else if (KnownOne.intersects(SignBit)) {
1730        KnownOne  |= HighBits;  // New bits are known one.
1731      }
1732    }
1733    return;
1734  case ISD::SIGN_EXTEND_INREG: {
1735    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1736    unsigned EBits = EVT.getScalarType().getSizeInBits();
1737
1738    // Sign extension.  Compute the demanded bits in the result that are not
1739    // present in the input.
1740    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1741
1742    APInt InSignBit = APInt::getSignBit(EBits);
1743    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1744
1745    // If the sign extended bits are demanded, we know that the sign
1746    // bit is demanded.
1747    InSignBit.zext(BitWidth);
1748    if (NewBits.getBoolValue())
1749      InputDemandedBits |= InSignBit;
1750
1751    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1752                      KnownZero, KnownOne, Depth+1);
1753    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1754
1755    // If the sign bit of the input is known set or clear, then we know the
1756    // top bits of the result.
1757    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1758      KnownZero |= NewBits;
1759      KnownOne  &= ~NewBits;
1760    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1761      KnownOne  |= NewBits;
1762      KnownZero &= ~NewBits;
1763    } else {                              // Input sign bit unknown
1764      KnownZero &= ~NewBits;
1765      KnownOne  &= ~NewBits;
1766    }
1767    return;
1768  }
1769  case ISD::CTTZ:
1770  case ISD::CTLZ:
1771  case ISD::CTPOP: {
1772    unsigned LowBits = Log2_32(BitWidth)+1;
1773    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1774    KnownOne.clear();
1775    return;
1776  }
1777  case ISD::LOAD: {
1778    if (ISD::isZEXTLoad(Op.getNode())) {
1779      LoadSDNode *LD = cast<LoadSDNode>(Op);
1780      EVT VT = LD->getMemoryVT();
1781      unsigned MemBits = VT.getScalarType().getSizeInBits();
1782      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1783    }
1784    return;
1785  }
1786  case ISD::ZERO_EXTEND: {
1787    EVT InVT = Op.getOperand(0).getValueType();
1788    unsigned InBits = InVT.getScalarType().getSizeInBits();
1789    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1790    APInt InMask    = Mask;
1791    InMask.trunc(InBits);
1792    KnownZero.trunc(InBits);
1793    KnownOne.trunc(InBits);
1794    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1795    KnownZero.zext(BitWidth);
1796    KnownOne.zext(BitWidth);
1797    KnownZero |= NewBits;
1798    return;
1799  }
1800  case ISD::SIGN_EXTEND: {
1801    EVT InVT = Op.getOperand(0).getValueType();
1802    unsigned InBits = InVT.getScalarType().getSizeInBits();
1803    APInt InSignBit = APInt::getSignBit(InBits);
1804    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1805    APInt InMask = Mask;
1806    InMask.trunc(InBits);
1807
1808    // If any of the sign extended bits are demanded, we know that the sign
1809    // bit is demanded. Temporarily set this bit in the mask for our callee.
1810    if (NewBits.getBoolValue())
1811      InMask |= InSignBit;
1812
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816
1817    // Note if the sign bit is known to be zero or one.
1818    bool SignBitKnownZero = KnownZero.isNegative();
1819    bool SignBitKnownOne  = KnownOne.isNegative();
1820    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1821           "Sign bit can't be known to be both zero and one!");
1822
1823    // If the sign bit wasn't actually demanded by our caller, we don't
1824    // want it set in the KnownZero and KnownOne result values. Reset the
1825    // mask and reapply it to the result values.
1826    InMask = Mask;
1827    InMask.trunc(InBits);
1828    KnownZero &= InMask;
1829    KnownOne  &= InMask;
1830
1831    KnownZero.zext(BitWidth);
1832    KnownOne.zext(BitWidth);
1833
1834    // If the sign bit is known zero or one, the top bits match.
1835    if (SignBitKnownZero)
1836      KnownZero |= NewBits;
1837    else if (SignBitKnownOne)
1838      KnownOne  |= NewBits;
1839    return;
1840  }
1841  case ISD::ANY_EXTEND: {
1842    EVT InVT = Op.getOperand(0).getValueType();
1843    unsigned InBits = InVT.getScalarType().getSizeInBits();
1844    APInt InMask = Mask;
1845    InMask.trunc(InBits);
1846    KnownZero.trunc(InBits);
1847    KnownOne.trunc(InBits);
1848    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1849    KnownZero.zext(BitWidth);
1850    KnownOne.zext(BitWidth);
1851    return;
1852  }
1853  case ISD::TRUNCATE: {
1854    EVT InVT = Op.getOperand(0).getValueType();
1855    unsigned InBits = InVT.getScalarType().getSizeInBits();
1856    APInt InMask = Mask;
1857    InMask.zext(InBits);
1858    KnownZero.zext(InBits);
1859    KnownOne.zext(InBits);
1860    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1861    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1862    KnownZero.trunc(BitWidth);
1863    KnownOne.trunc(BitWidth);
1864    break;
1865  }
1866  case ISD::AssertZext: {
1867    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1868    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1869    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1870                      KnownOne, Depth+1);
1871    KnownZero |= (~InMask) & Mask;
1872    return;
1873  }
1874  case ISD::FGETSIGN:
1875    // All bits are zero except the low bit.
1876    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1877    return;
1878
1879  case ISD::SUB: {
1880    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1881      // We know that the top bits of C-X are clear if X contains less bits
1882      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1883      // positive if we can prove that X is >= 0 and < 16.
1884      if (CLHS->getAPIntValue().isNonNegative()) {
1885        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1886        // NLZ can't be BitWidth with no sign bit
1887        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1888        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1889                          Depth+1);
1890
1891        // If all of the MaskV bits are known to be zero, then we know the
1892        // output top bits are zero, because we now know that the output is
1893        // from [0-C].
1894        if ((KnownZero2 & MaskV) == MaskV) {
1895          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1896          // Top bits known zero.
1897          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1898        }
1899      }
1900    }
1901  }
1902  // fall through
1903  case ISD::ADD: {
1904    // Output known-0 bits are known if clear or set in both the low clear bits
1905    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1906    // low 3 bits clear.
1907    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1908    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1909    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1910    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1911
1912    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1913    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1914    KnownZeroOut = std::min(KnownZeroOut,
1915                            KnownZero2.countTrailingOnes());
1916
1917    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1918    return;
1919  }
1920  case ISD::SREM:
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue().abs();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = RA - 1;
1925        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1926        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1927
1928        // The low bits of the first operand are unchanged by the srem.
1929        KnownZero = KnownZero2 & LowBits;
1930        KnownOne = KnownOne2 & LowBits;
1931
1932        // If the first operand is non-negative or has all low bits zero, then
1933        // the upper bits are all zero.
1934        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1935          KnownZero |= ~LowBits;
1936
1937        // If the first operand is negative and not all low bits are zero, then
1938        // the upper bits are all one.
1939        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1940          KnownOne |= ~LowBits;
1941
1942        KnownZero &= Mask;
1943        KnownOne &= Mask;
1944
1945        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1946      }
1947    }
1948    return;
1949  case ISD::UREM: {
1950    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1951      const APInt &RA = Rem->getAPIntValue();
1952      if (RA.isPowerOf2()) {
1953        APInt LowBits = (RA - 1);
1954        APInt Mask2 = LowBits & Mask;
1955        KnownZero |= ~LowBits & Mask;
1956        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1957        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1958        break;
1959      }
1960    }
1961
1962    // Since the result is less than or equal to either operand, any leading
1963    // zero bits in either operand must also exist in the result.
1964    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1965    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1966                      Depth+1);
1967    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1968                      Depth+1);
1969
1970    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1971                                KnownZero2.countLeadingOnes());
1972    KnownOne.clear();
1973    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1974    return;
1975  }
1976  default:
1977    // Allow the target to implement this method for its nodes.
1978    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1979  case ISD::INTRINSIC_WO_CHAIN:
1980  case ISD::INTRINSIC_W_CHAIN:
1981  case ISD::INTRINSIC_VOID:
1982      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1983                                         Depth);
1984    }
1985    return;
1986  }
1987}
1988
1989/// ComputeNumSignBits - Return the number of times the sign bit of the
1990/// register is replicated into the other bits.  We know that at least 1 bit
1991/// is always equal to the sign bit (itself), but other cases can give us
1992/// information.  For example, immediately after an "SRA X, 2", we know that
1993/// the top 3 bits are all equal to each other, so we return 3.
1994unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1995  EVT VT = Op.getValueType();
1996  assert(VT.isInteger() && "Invalid VT!");
1997  unsigned VTBits = VT.getScalarType().getSizeInBits();
1998  unsigned Tmp, Tmp2;
1999  unsigned FirstAnswer = 1;
2000
2001  if (Depth == 6)
2002    return 1;  // Limit search depth.
2003
2004  switch (Op.getOpcode()) {
2005  default: break;
2006  case ISD::AssertSext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp+1;
2009  case ISD::AssertZext:
2010    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2011    return VTBits-Tmp;
2012
2013  case ISD::Constant: {
2014    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2015    // If negative, return # leading ones.
2016    if (Val.isNegative())
2017      return Val.countLeadingOnes();
2018
2019    // Return # leading zeros.
2020    return Val.countLeadingZeros();
2021  }
2022
2023  case ISD::SIGN_EXTEND:
2024    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2025    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2026
2027  case ISD::SIGN_EXTEND_INREG:
2028    // Max of the input and what this extends.
2029    Tmp =
2030      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2031    Tmp = VTBits-Tmp+1;
2032
2033    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    return std::max(Tmp, Tmp2);
2035
2036  case ISD::SRA:
2037    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2038    // SRA X, C   -> adds C sign bits.
2039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2040      Tmp += C->getZExtValue();
2041      if (Tmp > VTBits) Tmp = VTBits;
2042    }
2043    return Tmp;
2044  case ISD::SHL:
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      // shl destroys sign bits.
2047      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2049          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2050      return Tmp - C->getZExtValue();
2051    }
2052    break;
2053  case ISD::AND:
2054  case ISD::OR:
2055  case ISD::XOR:    // NOT is handled here.
2056    // Logical binary ops preserve the number of sign bits at the worst.
2057    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2058    if (Tmp != 1) {
2059      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2060      FirstAnswer = std::min(Tmp, Tmp2);
2061      // We computed what we know about the sign bits as our first
2062      // answer. Now proceed to the generic code that uses
2063      // ComputeMaskedBits, and pick whichever answer is better.
2064    }
2065    break;
2066
2067  case ISD::SELECT:
2068    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069    if (Tmp == 1) return 1;  // Early out.
2070    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2071    return std::min(Tmp, Tmp2);
2072
2073  case ISD::SADDO:
2074  case ISD::UADDO:
2075  case ISD::SSUBO:
2076  case ISD::USUBO:
2077  case ISD::SMULO:
2078  case ISD::UMULO:
2079    if (Op.getResNo() != 1)
2080      break;
2081    // The boolean result conforms to getBooleanContents.  Fall through.
2082  case ISD::SETCC:
2083    // If setcc returns 0/-1, all bits are sign bits.
2084    if (TLI.getBooleanContents() ==
2085        TargetLowering::ZeroOrNegativeOneBooleanContent)
2086      return VTBits;
2087    break;
2088  case ISD::ROTL:
2089  case ISD::ROTR:
2090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2091      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2092
2093      // Handle rotate right by N like a rotate left by 32-N.
2094      if (Op.getOpcode() == ISD::ROTR)
2095        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2096
2097      // If we aren't rotating out all of the known-in sign bits, return the
2098      // number that are left.  This handles rotl(sext(x), 1) for example.
2099      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2101    }
2102    break;
2103  case ISD::ADD:
2104    // Add can have at most one carry bit.  Thus we know that the output
2105    // is, at worst, one more bit than the inputs.
2106    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107    if (Tmp == 1) return 1;  // Early out.
2108
2109    // Special case decrementing a value (ADD X, -1):
2110    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2111      if (CRHS->isAllOnesValue()) {
2112        APInt KnownZero, KnownOne;
2113        APInt Mask = APInt::getAllOnesValue(VTBits);
2114        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2115
2116        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2117        // sign bits set.
2118        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2119          return VTBits;
2120
2121        // If we are subtracting one from a positive number, there is no carry
2122        // out of the result.
2123        if (KnownZero.isNegative())
2124          return Tmp;
2125      }
2126
2127    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2128    if (Tmp2 == 1) return 1;
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131
2132  case ISD::SUB:
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135
2136    // Handle NEG.
2137    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2138      if (CLHS->isNullValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If the input is known to be positive (the sign bit is known clear),
2148        // the output of the NEG has the same number of sign bits as the input.
2149        if (KnownZero.isNegative())
2150          return Tmp2;
2151
2152        // Otherwise, we treat this like a SUB.
2153      }
2154
2155    // Sub can have at most one carry bit.  Thus we know that the output
2156    // is, at worst, one more bit than the inputs.
2157    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2158    if (Tmp == 1) return 1;  // Early out.
2159      return std::min(Tmp, Tmp2)-1;
2160    break;
2161  case ISD::TRUNCATE:
2162    // FIXME: it's tricky to do anything useful for this, but it is an important
2163    // case for targets like X86.
2164    break;
2165  }
2166
2167  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2168  if (Op.getOpcode() == ISD::LOAD) {
2169    LoadSDNode *LD = cast<LoadSDNode>(Op);
2170    unsigned ExtType = LD->getExtensionType();
2171    switch (ExtType) {
2172    default: break;
2173    case ISD::SEXTLOAD:    // '17' bits known
2174      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2175      return VTBits-Tmp+1;
2176    case ISD::ZEXTLOAD:    // '16' bits known
2177      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2178      return VTBits-Tmp;
2179    }
2180  }
2181
2182  // Allow the target to implement this method for its nodes.
2183  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2184      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2185      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2187    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2188    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2189  }
2190
2191  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2192  // use this information.
2193  APInt KnownZero, KnownOne;
2194  APInt Mask = APInt::getAllOnesValue(VTBits);
2195  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2196
2197  if (KnownZero.isNegative()) {        // sign bit is 0
2198    Mask = KnownZero;
2199  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2200    Mask = KnownOne;
2201  } else {
2202    // Nothing known.
2203    return FirstAnswer;
2204  }
2205
2206  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2207  // the number of identical bits in the top of the input value.
2208  Mask = ~Mask;
2209  Mask <<= Mask.getBitWidth()-VTBits;
2210  // Return # leading zeros.  We use 'min' here in case Val was zero before
2211  // shifting.  We don't want to return '64' as for an i32 "0".
2212  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2213}
2214
2215bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2216  // If we're told that NaNs won't happen, assume they won't.
2217  if (FiniteOnlyFPMath())
2218    return true;
2219
2220  // If the value is a constant, we can obviously see if it is a NaN or not.
2221  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2222    return !C->getValueAPF().isNaN();
2223
2224  // TODO: Recognize more cases here.
2225
2226  return false;
2227}
2228
2229bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2230  // If the value is a constant, we can obviously see if it is a zero or not.
2231  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2232    return !C->isZero();
2233
2234  // TODO: Recognize more cases here.
2235
2236  return false;
2237}
2238
2239bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2240  // Check the obvious case.
2241  if (A == B) return true;
2242
2243  // For for negative and positive zero.
2244  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2245    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2246      if (CA->isZero() && CB->isZero()) return true;
2247
2248  // Otherwise they may not be equal.
2249  return false;
2250}
2251
2252bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2253  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2254  if (!GA) return false;
2255  if (GA->getOffset() != 0) return false;
2256  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2257  if (!GV) return false;
2258  return MF->getMMI().hasDebugInfo();
2259}
2260
2261
2262/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2263/// element of the result of the vector shuffle.
2264SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2265                                          unsigned i) {
2266  EVT VT = N->getValueType(0);
2267  DebugLoc dl = N->getDebugLoc();
2268  if (N->getMaskElt(i) < 0)
2269    return getUNDEF(VT.getVectorElementType());
2270  unsigned Index = N->getMaskElt(i);
2271  unsigned NumElems = VT.getVectorNumElements();
2272  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2273  Index %= NumElems;
2274
2275  if (V.getOpcode() == ISD::BIT_CONVERT) {
2276    V = V.getOperand(0);
2277    EVT VVT = V.getValueType();
2278    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2279      return SDValue();
2280  }
2281  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2282    return (Index == 0) ? V.getOperand(0)
2283                      : getUNDEF(VT.getVectorElementType());
2284  if (V.getOpcode() == ISD::BUILD_VECTOR)
2285    return V.getOperand(Index);
2286  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2287    return getShuffleScalarElt(SVN, Index);
2288  return SDValue();
2289}
2290
2291
2292/// getNode - Gets or creates the specified node.
2293///
2294SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2295  FoldingSetNodeID ID;
2296  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2297  void *IP = 0;
2298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2299    return SDValue(E, 0);
2300
2301  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2302  CSEMap.InsertNode(N, IP);
2303
2304  AllNodes.push_back(N);
2305#ifndef NDEBUG
2306  VerifyNode(N);
2307#endif
2308  return SDValue(N, 0);
2309}
2310
2311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2312                              EVT VT, SDValue Operand) {
2313  // Constant fold unary operations with an integer constant operand.
2314  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2315    const APInt &Val = C->getAPIntValue();
2316    switch (Opcode) {
2317    default: break;
2318    case ISD::SIGN_EXTEND:
2319      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2320    case ISD::ANY_EXTEND:
2321    case ISD::ZERO_EXTEND:
2322    case ISD::TRUNCATE:
2323      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2324    case ISD::UINT_TO_FP:
2325    case ISD::SINT_TO_FP: {
2326      const uint64_t zero[] = {0, 0};
2327      // No compile time operations on ppcf128.
2328      if (VT == MVT::ppcf128) break;
2329      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2330      (void)apf.convertFromAPInt(Val,
2331                                 Opcode==ISD::SINT_TO_FP,
2332                                 APFloat::rmNearestTiesToEven);
2333      return getConstantFP(apf, VT);
2334    }
2335    case ISD::BIT_CONVERT:
2336      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2337        return getConstantFP(Val.bitsToFloat(), VT);
2338      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2339        return getConstantFP(Val.bitsToDouble(), VT);
2340      break;
2341    case ISD::BSWAP:
2342      return getConstant(Val.byteSwap(), VT);
2343    case ISD::CTPOP:
2344      return getConstant(Val.countPopulation(), VT);
2345    case ISD::CTLZ:
2346      return getConstant(Val.countLeadingZeros(), VT);
2347    case ISD::CTTZ:
2348      return getConstant(Val.countTrailingZeros(), VT);
2349    }
2350  }
2351
2352  // Constant fold unary operations with a floating point constant operand.
2353  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2354    APFloat V = C->getValueAPF();    // make copy
2355    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2356      switch (Opcode) {
2357      case ISD::FNEG:
2358        V.changeSign();
2359        return getConstantFP(V, VT);
2360      case ISD::FABS:
2361        V.clearSign();
2362        return getConstantFP(V, VT);
2363      case ISD::FP_ROUND:
2364      case ISD::FP_EXTEND: {
2365        bool ignored;
2366        // This can return overflow, underflow, or inexact; we don't care.
2367        // FIXME need to be more flexible about rounding mode.
2368        (void)V.convert(*EVTToAPFloatSemantics(VT),
2369                        APFloat::rmNearestTiesToEven, &ignored);
2370        return getConstantFP(V, VT);
2371      }
2372      case ISD::FP_TO_SINT:
2373      case ISD::FP_TO_UINT: {
2374        integerPart x[2];
2375        bool ignored;
2376        assert(integerPartWidth >= 64);
2377        // FIXME need to be more flexible about rounding mode.
2378        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2379                              Opcode==ISD::FP_TO_SINT,
2380                              APFloat::rmTowardZero, &ignored);
2381        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2382          break;
2383        APInt api(VT.getSizeInBits(), 2, x);
2384        return getConstant(api, VT);
2385      }
2386      case ISD::BIT_CONVERT:
2387        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2388          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2389        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2390          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2391        break;
2392      }
2393    }
2394  }
2395
2396  unsigned OpOpcode = Operand.getNode()->getOpcode();
2397  switch (Opcode) {
2398  case ISD::TokenFactor:
2399  case ISD::MERGE_VALUES:
2400  case ISD::CONCAT_VECTORS:
2401    return Operand;         // Factor, merge or concat of one node?  No need.
2402  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2403  case ISD::FP_EXTEND:
2404    assert(VT.isFloatingPoint() &&
2405           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2406    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2407    assert((!VT.isVector() ||
2408            VT.getVectorNumElements() ==
2409            Operand.getValueType().getVectorNumElements()) &&
2410           "Vector element count mismatch!");
2411    if (Operand.getOpcode() == ISD::UNDEF)
2412      return getUNDEF(VT);
2413    break;
2414  case ISD::SIGN_EXTEND:
2415    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2416           "Invalid SIGN_EXTEND!");
2417    if (Operand.getValueType() == VT) return Operand;   // noop extension
2418    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2419           "Invalid sext node, dst < src!");
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2425      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2426    break;
2427  case ISD::ZERO_EXTEND:
2428    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2429           "Invalid ZERO_EXTEND!");
2430    if (Operand.getValueType() == VT) return Operand;   // noop extension
2431    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2432           "Invalid zext node, dst < src!");
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2438      return getNode(ISD::ZERO_EXTEND, DL, VT,
2439                     Operand.getNode()->getOperand(0));
2440    break;
2441  case ISD::ANY_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid ANY_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid anyext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2452      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2453      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2454    break;
2455  case ISD::TRUNCATE:
2456    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2457           "Invalid TRUNCATE!");
2458    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2459    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2460           "Invalid truncate node, src < dst!");
2461    assert((!VT.isVector() ||
2462            VT.getVectorNumElements() ==
2463            Operand.getValueType().getVectorNumElements()) &&
2464           "Vector element count mismatch!");
2465    if (OpOpcode == ISD::TRUNCATE)
2466      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2467    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2468             OpOpcode == ISD::ANY_EXTEND) {
2469      // If the source is smaller than the dest, we still need an extend.
2470      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2471            .bitsLT(VT.getScalarType()))
2472        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2473      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2474        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2475      else
2476        return Operand.getNode()->getOperand(0);
2477    }
2478    break;
2479  case ISD::BIT_CONVERT:
2480    // Basic sanity checking.
2481    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2482           && "Cannot BIT_CONVERT between types of different sizes!");
2483    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2484    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2485      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2486    if (OpOpcode == ISD::UNDEF)
2487      return getUNDEF(VT);
2488    break;
2489  case ISD::SCALAR_TO_VECTOR:
2490    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2491           (VT.getVectorElementType() == Operand.getValueType() ||
2492            (VT.getVectorElementType().isInteger() &&
2493             Operand.getValueType().isInteger() &&
2494             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2495           "Illegal SCALAR_TO_VECTOR node!");
2496    if (OpOpcode == ISD::UNDEF)
2497      return getUNDEF(VT);
2498    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2499    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2500        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2501        Operand.getConstantOperandVal(1) == 0 &&
2502        Operand.getOperand(0).getValueType() == VT)
2503      return Operand.getOperand(0);
2504    break;
2505  case ISD::FNEG:
2506    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2507    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2508      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2509                     Operand.getNode()->getOperand(0));
2510    if (OpOpcode == ISD::FNEG)  // --X -> X
2511      return Operand.getNode()->getOperand(0);
2512    break;
2513  case ISD::FABS:
2514    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2515      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2516    break;
2517  }
2518
2519  SDNode *N;
2520  SDVTList VTs = getVTList(VT);
2521  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2522    FoldingSetNodeID ID;
2523    SDValue Ops[1] = { Operand };
2524    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2525    void *IP = 0;
2526    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2527      return SDValue(E, 0);
2528
2529    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2530    CSEMap.InsertNode(N, IP);
2531  } else {
2532    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2533  }
2534
2535  AllNodes.push_back(N);
2536#ifndef NDEBUG
2537  VerifyNode(N);
2538#endif
2539  return SDValue(N, 0);
2540}
2541
2542SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2543                                             EVT VT,
2544                                             ConstantSDNode *Cst1,
2545                                             ConstantSDNode *Cst2) {
2546  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2547
2548  switch (Opcode) {
2549  case ISD::ADD:  return getConstant(C1 + C2, VT);
2550  case ISD::SUB:  return getConstant(C1 - C2, VT);
2551  case ISD::MUL:  return getConstant(C1 * C2, VT);
2552  case ISD::UDIV:
2553    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2554    break;
2555  case ISD::UREM:
2556    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2557    break;
2558  case ISD::SDIV:
2559    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2560    break;
2561  case ISD::SREM:
2562    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2563    break;
2564  case ISD::AND:  return getConstant(C1 & C2, VT);
2565  case ISD::OR:   return getConstant(C1 | C2, VT);
2566  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2567  case ISD::SHL:  return getConstant(C1 << C2, VT);
2568  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2569  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2570  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2571  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2572  default: break;
2573  }
2574
2575  return SDValue();
2576}
2577
2578SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2579                              SDValue N1, SDValue N2) {
2580  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2581  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2582  switch (Opcode) {
2583  default: break;
2584  case ISD::TokenFactor:
2585    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2586           N2.getValueType() == MVT::Other && "Invalid token factor!");
2587    // Fold trivial token factors.
2588    if (N1.getOpcode() == ISD::EntryToken) return N2;
2589    if (N2.getOpcode() == ISD::EntryToken) return N1;
2590    if (N1 == N2) return N1;
2591    break;
2592  case ISD::CONCAT_VECTORS:
2593    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2594    // one big BUILD_VECTOR.
2595    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2596        N2.getOpcode() == ISD::BUILD_VECTOR) {
2597      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2598      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2599      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2600    }
2601    break;
2602  case ISD::AND:
2603    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2604           N1.getValueType() == VT && "Binary operator types must match!");
2605    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2606    // worth handling here.
2607    if (N2C && N2C->isNullValue())
2608      return N2;
2609    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2610      return N1;
2611    break;
2612  case ISD::OR:
2613  case ISD::XOR:
2614  case ISD::ADD:
2615  case ISD::SUB:
2616    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617           N1.getValueType() == VT && "Binary operator types must match!");
2618    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2619    // it's worth handling here.
2620    if (N2C && N2C->isNullValue())
2621      return N1;
2622    break;
2623  case ISD::UDIV:
2624  case ISD::UREM:
2625  case ISD::MULHU:
2626  case ISD::MULHS:
2627  case ISD::MUL:
2628  case ISD::SDIV:
2629  case ISD::SREM:
2630    assert(VT.isInteger() && "This operator does not apply to FP types!");
2631    // fall through
2632  case ISD::FADD:
2633  case ISD::FSUB:
2634  case ISD::FMUL:
2635  case ISD::FDIV:
2636  case ISD::FREM:
2637    if (UnsafeFPMath) {
2638      if (Opcode == ISD::FADD) {
2639        // 0+x --> x
2640        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2641          if (CFP->getValueAPF().isZero())
2642            return N2;
2643        // x+0 --> x
2644        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2645          if (CFP->getValueAPF().isZero())
2646            return N1;
2647      } else if (Opcode == ISD::FSUB) {
2648        // x-0 --> x
2649        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2650          if (CFP->getValueAPF().isZero())
2651            return N1;
2652      }
2653    }
2654    assert(N1.getValueType() == N2.getValueType() &&
2655           N1.getValueType() == VT && "Binary operator types must match!");
2656    break;
2657  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2658    assert(N1.getValueType() == VT &&
2659           N1.getValueType().isFloatingPoint() &&
2660           N2.getValueType().isFloatingPoint() &&
2661           "Invalid FCOPYSIGN!");
2662    break;
2663  case ISD::SHL:
2664  case ISD::SRA:
2665  case ISD::SRL:
2666  case ISD::ROTL:
2667  case ISD::ROTR:
2668    assert(VT == N1.getValueType() &&
2669           "Shift operators return type must be the same as their first arg");
2670    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2671           "Shifts only work on integers");
2672
2673    // Always fold shifts of i1 values so the code generator doesn't need to
2674    // handle them.  Since we know the size of the shift has to be less than the
2675    // size of the value, the shift/rotate count is guaranteed to be zero.
2676    if (VT == MVT::i1)
2677      return N1;
2678    if (N2C && N2C->isNullValue())
2679      return N1;
2680    break;
2681  case ISD::FP_ROUND_INREG: {
2682    EVT EVT = cast<VTSDNode>(N2)->getVT();
2683    assert(VT == N1.getValueType() && "Not an inreg round!");
2684    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2685           "Cannot FP_ROUND_INREG integer types");
2686    assert(EVT.isVector() == VT.isVector() &&
2687           "FP_ROUND_INREG type should be vector iff the operand "
2688           "type is vector!");
2689    assert((!EVT.isVector() ||
2690            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2691           "Vector element counts must match in FP_ROUND_INREG");
2692    assert(EVT.bitsLE(VT) && "Not rounding down!");
2693    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2694    break;
2695  }
2696  case ISD::FP_ROUND:
2697    assert(VT.isFloatingPoint() &&
2698           N1.getValueType().isFloatingPoint() &&
2699           VT.bitsLE(N1.getValueType()) &&
2700           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2701    if (N1.getValueType() == VT) return N1;  // noop conversion.
2702    break;
2703  case ISD::AssertSext:
2704  case ISD::AssertZext: {
2705    EVT EVT = cast<VTSDNode>(N2)->getVT();
2706    assert(VT == N1.getValueType() && "Not an inreg extend!");
2707    assert(VT.isInteger() && EVT.isInteger() &&
2708           "Cannot *_EXTEND_INREG FP types");
2709    assert(!EVT.isVector() &&
2710           "AssertSExt/AssertZExt type should be the vector element type "
2711           "rather than the vector type!");
2712    assert(EVT.bitsLE(VT) && "Not extending!");
2713    if (VT == EVT) return N1; // noop assertion.
2714    break;
2715  }
2716  case ISD::SIGN_EXTEND_INREG: {
2717    EVT EVT = cast<VTSDNode>(N2)->getVT();
2718    assert(VT == N1.getValueType() && "Not an inreg extend!");
2719    assert(VT.isInteger() && EVT.isInteger() &&
2720           "Cannot *_EXTEND_INREG FP types");
2721    assert(EVT.isVector() == VT.isVector() &&
2722           "SIGN_EXTEND_INREG type should be vector iff the operand "
2723           "type is vector!");
2724    assert((!EVT.isVector() ||
2725            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2726           "Vector element counts must match in SIGN_EXTEND_INREG");
2727    assert(EVT.bitsLE(VT) && "Not extending!");
2728    if (EVT == VT) return N1;  // Not actually extending
2729
2730    if (N1C) {
2731      APInt Val = N1C->getAPIntValue();
2732      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2733      Val <<= Val.getBitWidth()-FromBits;
2734      Val = Val.ashr(Val.getBitWidth()-FromBits);
2735      return getConstant(Val, VT);
2736    }
2737    break;
2738  }
2739  case ISD::EXTRACT_VECTOR_ELT:
2740    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2741    if (N1.getOpcode() == ISD::UNDEF)
2742      return getUNDEF(VT);
2743
2744    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2745    // expanding copies of large vectors from registers.
2746    if (N2C &&
2747        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2748        N1.getNumOperands() > 0) {
2749      unsigned Factor =
2750        N1.getOperand(0).getValueType().getVectorNumElements();
2751      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2752                     N1.getOperand(N2C->getZExtValue() / Factor),
2753                     getConstant(N2C->getZExtValue() % Factor,
2754                                 N2.getValueType()));
2755    }
2756
2757    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2758    // expanding large vector constants.
2759    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2760      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2761      EVT VEltTy = N1.getValueType().getVectorElementType();
2762      if (Elt.getValueType() != VEltTy) {
2763        // If the vector element type is not legal, the BUILD_VECTOR operands
2764        // are promoted and implicitly truncated.  Make that explicit here.
2765        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2766      }
2767      if (VT != VEltTy) {
2768        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2769        // result is implicitly extended.
2770        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2771      }
2772      return Elt;
2773    }
2774
2775    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2776    // operations are lowered to scalars.
2777    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2778      // If the indices are the same, return the inserted element else
2779      // if the indices are known different, extract the element from
2780      // the original vector.
2781      if (N1.getOperand(2) == N2) {
2782        if (VT == N1.getOperand(1).getValueType())
2783          return N1.getOperand(1);
2784        else
2785          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2786      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2787                 isa<ConstantSDNode>(N2))
2788        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2789    }
2790    break;
2791  case ISD::EXTRACT_ELEMENT:
2792    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2793    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2794           (N1.getValueType().isInteger() == VT.isInteger()) &&
2795           "Wrong types for EXTRACT_ELEMENT!");
2796
2797    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2798    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2799    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2800    if (N1.getOpcode() == ISD::BUILD_PAIR)
2801      return N1.getOperand(N2C->getZExtValue());
2802
2803    // EXTRACT_ELEMENT of a constant int is also very common.
2804    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2805      unsigned ElementSize = VT.getSizeInBits();
2806      unsigned Shift = ElementSize * N2C->getZExtValue();
2807      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2808      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2809    }
2810    break;
2811  case ISD::EXTRACT_SUBVECTOR:
2812    if (N1.getValueType() == VT) // Trivial extraction.
2813      return N1;
2814    break;
2815  }
2816
2817  if (N1C) {
2818    if (N2C) {
2819      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2820      if (SV.getNode()) return SV;
2821    } else {      // Cannonicalize constant to RHS if commutative
2822      if (isCommutativeBinOp(Opcode)) {
2823        std::swap(N1C, N2C);
2824        std::swap(N1, N2);
2825      }
2826    }
2827  }
2828
2829  // Constant fold FP operations.
2830  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2831  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2832  if (N1CFP) {
2833    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2834      // Cannonicalize constant to RHS if commutative
2835      std::swap(N1CFP, N2CFP);
2836      std::swap(N1, N2);
2837    } else if (N2CFP && VT != MVT::ppcf128) {
2838      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2839      APFloat::opStatus s;
2840      switch (Opcode) {
2841      case ISD::FADD:
2842        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2843        if (s != APFloat::opInvalidOp)
2844          return getConstantFP(V1, VT);
2845        break;
2846      case ISD::FSUB:
2847        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2848        if (s!=APFloat::opInvalidOp)
2849          return getConstantFP(V1, VT);
2850        break;
2851      case ISD::FMUL:
2852        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2853        if (s!=APFloat::opInvalidOp)
2854          return getConstantFP(V1, VT);
2855        break;
2856      case ISD::FDIV:
2857        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2858        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2859          return getConstantFP(V1, VT);
2860        break;
2861      case ISD::FREM :
2862        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2863        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FCOPYSIGN:
2867        V1.copySign(V2);
2868        return getConstantFP(V1, VT);
2869      default: break;
2870      }
2871    }
2872  }
2873
2874  // Canonicalize an UNDEF to the RHS, even over a constant.
2875  if (N1.getOpcode() == ISD::UNDEF) {
2876    if (isCommutativeBinOp(Opcode)) {
2877      std::swap(N1, N2);
2878    } else {
2879      switch (Opcode) {
2880      case ISD::FP_ROUND_INREG:
2881      case ISD::SIGN_EXTEND_INREG:
2882      case ISD::SUB:
2883      case ISD::FSUB:
2884      case ISD::FDIV:
2885      case ISD::FREM:
2886      case ISD::SRA:
2887        return N1;     // fold op(undef, arg2) -> undef
2888      case ISD::UDIV:
2889      case ISD::SDIV:
2890      case ISD::UREM:
2891      case ISD::SREM:
2892      case ISD::SRL:
2893      case ISD::SHL:
2894        if (!VT.isVector())
2895          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2896        // For vectors, we can't easily build an all zero vector, just return
2897        // the LHS.
2898        return N2;
2899      }
2900    }
2901  }
2902
2903  // Fold a bunch of operators when the RHS is undef.
2904  if (N2.getOpcode() == ISD::UNDEF) {
2905    switch (Opcode) {
2906    case ISD::XOR:
2907      if (N1.getOpcode() == ISD::UNDEF)
2908        // Handle undef ^ undef -> 0 special case. This is a common
2909        // idiom (misuse).
2910        return getConstant(0, VT);
2911      // fallthrough
2912    case ISD::ADD:
2913    case ISD::ADDC:
2914    case ISD::ADDE:
2915    case ISD::SUB:
2916    case ISD::UDIV:
2917    case ISD::SDIV:
2918    case ISD::UREM:
2919    case ISD::SREM:
2920      return N2;       // fold op(arg1, undef) -> undef
2921    case ISD::FADD:
2922    case ISD::FSUB:
2923    case ISD::FMUL:
2924    case ISD::FDIV:
2925    case ISD::FREM:
2926      if (UnsafeFPMath)
2927        return N2;
2928      break;
2929    case ISD::MUL:
2930    case ISD::AND:
2931    case ISD::SRL:
2932    case ISD::SHL:
2933      if (!VT.isVector())
2934        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2935      // For vectors, we can't easily build an all zero vector, just return
2936      // the LHS.
2937      return N1;
2938    case ISD::OR:
2939      if (!VT.isVector())
2940        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2941      // For vectors, we can't easily build an all one vector, just return
2942      // the LHS.
2943      return N1;
2944    case ISD::SRA:
2945      return N1;
2946    }
2947  }
2948
2949  // Memoize this node if possible.
2950  SDNode *N;
2951  SDVTList VTs = getVTList(VT);
2952  if (VT != MVT::Flag) {
2953    SDValue Ops[] = { N1, N2 };
2954    FoldingSetNodeID ID;
2955    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2956    void *IP = 0;
2957    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2958      return SDValue(E, 0);
2959
2960    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2961    CSEMap.InsertNode(N, IP);
2962  } else {
2963    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2964  }
2965
2966  AllNodes.push_back(N);
2967#ifndef NDEBUG
2968  VerifyNode(N);
2969#endif
2970  return SDValue(N, 0);
2971}
2972
2973SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2974                              SDValue N1, SDValue N2, SDValue N3) {
2975  // Perform various simplifications.
2976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2977  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2978  switch (Opcode) {
2979  case ISD::CONCAT_VECTORS:
2980    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2981    // one big BUILD_VECTOR.
2982    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2983        N2.getOpcode() == ISD::BUILD_VECTOR &&
2984        N3.getOpcode() == ISD::BUILD_VECTOR) {
2985      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2986      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2987      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2988      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2989    }
2990    break;
2991  case ISD::SETCC: {
2992    // Use FoldSetCC to simplify SETCC's.
2993    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2994    if (Simp.getNode()) return Simp;
2995    break;
2996  }
2997  case ISD::SELECT:
2998    if (N1C) {
2999     if (N1C->getZExtValue())
3000        return N2;             // select true, X, Y -> X
3001      else
3002        return N3;             // select false, X, Y -> Y
3003    }
3004
3005    if (N2 == N3) return N2;   // select C, X, X -> X
3006    break;
3007  case ISD::BRCOND:
3008    if (N2C) {
3009      if (N2C->getZExtValue()) // Unconditional branch
3010        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3011      else
3012        return N1;         // Never-taken branch
3013    }
3014    break;
3015  case ISD::VECTOR_SHUFFLE:
3016    llvm_unreachable("should use getVectorShuffle constructor!");
3017    break;
3018  case ISD::BIT_CONVERT:
3019    // Fold bit_convert nodes from a type to themselves.
3020    if (N1.getValueType() == VT)
3021      return N1;
3022    break;
3023  }
3024
3025  // Memoize node if it doesn't produce a flag.
3026  SDNode *N;
3027  SDVTList VTs = getVTList(VT);
3028  if (VT != MVT::Flag) {
3029    SDValue Ops[] = { N1, N2, N3 };
3030    FoldingSetNodeID ID;
3031    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3032    void *IP = 0;
3033    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3034      return SDValue(E, 0);
3035
3036    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3037    CSEMap.InsertNode(N, IP);
3038  } else {
3039    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3040  }
3041
3042  AllNodes.push_back(N);
3043#ifndef NDEBUG
3044  VerifyNode(N);
3045#endif
3046  return SDValue(N, 0);
3047}
3048
3049SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3050                              SDValue N1, SDValue N2, SDValue N3,
3051                              SDValue N4) {
3052  SDValue Ops[] = { N1, N2, N3, N4 };
3053  return getNode(Opcode, DL, VT, Ops, 4);
3054}
3055
3056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3057                              SDValue N1, SDValue N2, SDValue N3,
3058                              SDValue N4, SDValue N5) {
3059  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3060  return getNode(Opcode, DL, VT, Ops, 5);
3061}
3062
3063/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3064/// the incoming stack arguments to be loaded from the stack.
3065SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3066  SmallVector<SDValue, 8> ArgChains;
3067
3068  // Include the original chain at the beginning of the list. When this is
3069  // used by target LowerCall hooks, this helps legalize find the
3070  // CALLSEQ_BEGIN node.
3071  ArgChains.push_back(Chain);
3072
3073  // Add a chain value for each stack argument.
3074  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3075       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3076    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3077      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3078        if (FI->getIndex() < 0)
3079          ArgChains.push_back(SDValue(L, 1));
3080
3081  // Build a tokenfactor for all the chains.
3082  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3083                 &ArgChains[0], ArgChains.size());
3084}
3085
3086/// getMemsetValue - Vectorized representation of the memset value
3087/// operand.
3088static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3089                              DebugLoc dl) {
3090  assert(Value.getOpcode() != ISD::UNDEF);
3091
3092  unsigned NumBits = VT.getScalarType().getSizeInBits();
3093  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3094    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3095    unsigned Shift = 8;
3096    for (unsigned i = NumBits; i > 8; i >>= 1) {
3097      Val = (Val << Shift) | Val;
3098      Shift <<= 1;
3099    }
3100    if (VT.isInteger())
3101      return DAG.getConstant(Val, VT);
3102    return DAG.getConstantFP(APFloat(Val), VT);
3103  }
3104
3105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3106  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3107  unsigned Shift = 8;
3108  for (unsigned i = NumBits; i > 8; i >>= 1) {
3109    Value = DAG.getNode(ISD::OR, dl, VT,
3110                        DAG.getNode(ISD::SHL, dl, VT, Value,
3111                                    DAG.getConstant(Shift,
3112                                                    TLI.getShiftAmountTy())),
3113                        Value);
3114    Shift <<= 1;
3115  }
3116
3117  return Value;
3118}
3119
3120/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3121/// used when a memcpy is turned into a memset when the source is a constant
3122/// string ptr.
3123static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3124                                  const TargetLowering &TLI,
3125                                  std::string &Str, unsigned Offset) {
3126  // Handle vector with all elements zero.
3127  if (Str.empty()) {
3128    if (VT.isInteger())
3129      return DAG.getConstant(0, VT);
3130    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3131             VT.getSimpleVT().SimpleTy == MVT::f64)
3132      return DAG.getConstantFP(0.0, VT);
3133    else if (VT.isVector()) {
3134      unsigned NumElts = VT.getVectorNumElements();
3135      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3136      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3137                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3138                                                             EltVT, NumElts)));
3139    } else
3140      llvm_unreachable("Expected type!");
3141  }
3142
3143  assert(!VT.isVector() && "Can't handle vector type here!");
3144  unsigned NumBits = VT.getSizeInBits();
3145  unsigned MSB = NumBits / 8;
3146  uint64_t Val = 0;
3147  if (TLI.isLittleEndian())
3148    Offset = Offset + MSB - 1;
3149  for (unsigned i = 0; i != MSB; ++i) {
3150    Val = (Val << 8) | (unsigned char)Str[Offset];
3151    Offset += TLI.isLittleEndian() ? -1 : 1;
3152  }
3153  return DAG.getConstant(Val, VT);
3154}
3155
3156/// getMemBasePlusOffset - Returns base and offset node for the
3157///
3158static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3159                                      SelectionDAG &DAG) {
3160  EVT VT = Base.getValueType();
3161  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3162                     VT, Base, DAG.getConstant(Offset, VT));
3163}
3164
3165/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3166///
3167static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3168  unsigned SrcDelta = 0;
3169  GlobalAddressSDNode *G = NULL;
3170  if (Src.getOpcode() == ISD::GlobalAddress)
3171    G = cast<GlobalAddressSDNode>(Src);
3172  else if (Src.getOpcode() == ISD::ADD &&
3173           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3174           Src.getOperand(1).getOpcode() == ISD::Constant) {
3175    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3176    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3177  }
3178  if (!G)
3179    return false;
3180
3181  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3182  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3183    return true;
3184
3185  return false;
3186}
3187
3188/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3189/// to replace the memset / memcpy. Return true if the number of memory ops
3190/// is below the threshold. It returns the types of the sequence of
3191/// memory ops to perform memset / memcpy by reference.
3192static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3193                                     unsigned Limit, uint64_t Size,
3194                                     unsigned DstAlign, unsigned SrcAlign,
3195                                     bool NonScalarIntSafe,
3196                                     SelectionDAG &DAG,
3197                                     const TargetLowering &TLI) {
3198  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3199         "Expecting memcpy / memset source to meet alignment requirement!");
3200  // If 'SrcAlign' is zero, that means the memory operation does not need load
3201  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3202  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3203  // specified alignment of the memory operation. If it is zero, that means
3204  // it's possible to change the alignment of the destination.
3205  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3206                                   NonScalarIntSafe, DAG);
3207
3208  if (VT == MVT::Other) {
3209    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3210        TLI.allowsUnalignedMemoryAccesses(VT)) {
3211      VT = TLI.getPointerTy();
3212    } else {
3213      switch (DstAlign & 7) {
3214      case 0:  VT = MVT::i64; break;
3215      case 4:  VT = MVT::i32; break;
3216      case 2:  VT = MVT::i16; break;
3217      default: VT = MVT::i8;  break;
3218      }
3219    }
3220
3221    MVT LVT = MVT::i64;
3222    while (!TLI.isTypeLegal(LVT))
3223      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3224    assert(LVT.isInteger());
3225
3226    if (VT.bitsGT(LVT))
3227      VT = LVT;
3228  }
3229
3230  unsigned NumMemOps = 0;
3231  while (Size != 0) {
3232    unsigned VTSize = VT.getSizeInBits() / 8;
3233    while (VTSize > Size) {
3234      // For now, only use non-vector load / store's for the left-over pieces.
3235      if (VT.isVector() || VT.isFloatingPoint()) {
3236        VT = MVT::i64;
3237        while (!TLI.isTypeLegal(VT))
3238          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3239        VTSize = VT.getSizeInBits() / 8;
3240      } else {
3241        // This can result in a type that is not legal on the target, e.g.
3242        // 1 or 2 bytes on PPC.
3243        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3244        VTSize >>= 1;
3245      }
3246    }
3247
3248    if (++NumMemOps > Limit)
3249      return false;
3250    MemOps.push_back(VT);
3251    Size -= VTSize;
3252  }
3253
3254  return true;
3255}
3256
3257static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3258                                       SDValue Chain, SDValue Dst,
3259                                       SDValue Src, uint64_t Size,
3260                                       unsigned Align, bool isVol,
3261                                       bool AlwaysInline,
3262                                       const Value *DstSV, uint64_t DstSVOff,
3263                                       const Value *SrcSV, uint64_t SrcSVOff) {
3264  // Turn a memcpy of undef to nop.
3265  if (Src.getOpcode() == ISD::UNDEF)
3266    return Chain;
3267
3268  // Expand memcpy to a series of load and store ops if the size operand falls
3269  // below a certain threshold.
3270  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3271  std::vector<EVT> MemOps;
3272  uint64_t Limit = -1ULL;
3273  if (!AlwaysInline)
3274    Limit = TLI.getMaxStoresPerMemcpy();
3275  bool DstAlignCanChange = false;
3276  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3277  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3278  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3279    DstAlignCanChange = true;
3280  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3281  if (Align > SrcAlign)
3282    SrcAlign = Align;
3283  std::string Str;
3284  bool CopyFromStr = isMemSrcFromString(Src, Str);
3285  bool isZeroStr = CopyFromStr && Str.empty();
3286  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3287                                (DstAlignCanChange ? 0 : Align),
3288                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3289    return SDValue();
3290
3291  if (DstAlignCanChange) {
3292    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3293    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3294    if (NewAlign > Align) {
3295      // Give the stack frame object a larger alignment if needed.
3296      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3297        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3298      Align = NewAlign;
3299    }
3300  }
3301
3302  SmallVector<SDValue, 8> OutChains;
3303  unsigned NumMemOps = MemOps.size();
3304  uint64_t SrcOff = 0, DstOff = 0;
3305  for (unsigned i = 0; i != NumMemOps; ++i) {
3306    EVT VT = MemOps[i];
3307    unsigned VTSize = VT.getSizeInBits() / 8;
3308    SDValue Value, Store;
3309
3310    if (CopyFromStr &&
3311        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3312      // It's unlikely a store of a vector immediate can be done in a single
3313      // instruction. It would require a load from a constantpool first.
3314      // We only handle zero vectors here.
3315      // FIXME: Handle other cases where store of vector immediate is done in
3316      // a single instruction.
3317      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3318      Store = DAG.getStore(Chain, dl, Value,
3319                           getMemBasePlusOffset(Dst, DstOff, DAG),
3320                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3321    } else {
3322      // The type might not be legal for the target.  This should only happen
3323      // if the type is smaller than a legal type, as on PPC, so the right
3324      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3325      // to Load/Store if NVT==VT.
3326      // FIXME does the case above also need this?
3327      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3328      assert(NVT.bitsGE(VT));
3329      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3330                             getMemBasePlusOffset(Src, SrcOff, DAG),
3331                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3332                             MinAlign(SrcAlign, SrcOff));
3333      Store = DAG.getTruncStore(Chain, dl, Value,
3334                                getMemBasePlusOffset(Dst, DstOff, DAG),
3335                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3336                                Align);
3337    }
3338    OutChains.push_back(Store);
3339    SrcOff += VTSize;
3340    DstOff += VTSize;
3341  }
3342
3343  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3344                     &OutChains[0], OutChains.size());
3345}
3346
3347static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3348                                        SDValue Chain, SDValue Dst,
3349                                        SDValue Src, uint64_t Size,
3350                                        unsigned Align,  bool isVol,
3351                                        bool AlwaysInline,
3352                                        const Value *DstSV, uint64_t DstSVOff,
3353                                        const Value *SrcSV, uint64_t SrcSVOff) {
3354  // Turn a memmove of undef to nop.
3355  if (Src.getOpcode() == ISD::UNDEF)
3356    return Chain;
3357
3358  // Expand memmove to a series of load and store ops if the size operand falls
3359  // below a certain threshold.
3360  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3361  std::vector<EVT> MemOps;
3362  uint64_t Limit = -1ULL;
3363  if (!AlwaysInline)
3364    Limit = TLI.getMaxStoresPerMemmove();
3365  bool DstAlignCanChange = false;
3366  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3367  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3368  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3369    DstAlignCanChange = true;
3370  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3371  if (Align > SrcAlign)
3372    SrcAlign = Align;
3373
3374  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3375                                (DstAlignCanChange ? 0 : Align),
3376                                SrcAlign, true, DAG, TLI))
3377    return SDValue();
3378
3379  if (DstAlignCanChange) {
3380    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3381    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3382    if (NewAlign > Align) {
3383      // Give the stack frame object a larger alignment if needed.
3384      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3385        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3386      Align = NewAlign;
3387    }
3388  }
3389
3390  uint64_t SrcOff = 0, DstOff = 0;
3391  SmallVector<SDValue, 8> LoadValues;
3392  SmallVector<SDValue, 8> LoadChains;
3393  SmallVector<SDValue, 8> OutChains;
3394  unsigned NumMemOps = MemOps.size();
3395  for (unsigned i = 0; i < NumMemOps; i++) {
3396    EVT VT = MemOps[i];
3397    unsigned VTSize = VT.getSizeInBits() / 8;
3398    SDValue Value, Store;
3399
3400    Value = DAG.getLoad(VT, dl, Chain,
3401                        getMemBasePlusOffset(Src, SrcOff, DAG),
3402                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3403    LoadValues.push_back(Value);
3404    LoadChains.push_back(Value.getValue(1));
3405    SrcOff += VTSize;
3406  }
3407  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3408                      &LoadChains[0], LoadChains.size());
3409  OutChains.clear();
3410  for (unsigned i = 0; i < NumMemOps; i++) {
3411    EVT VT = MemOps[i];
3412    unsigned VTSize = VT.getSizeInBits() / 8;
3413    SDValue Value, Store;
3414
3415    Store = DAG.getStore(Chain, dl, LoadValues[i],
3416                         getMemBasePlusOffset(Dst, DstOff, DAG),
3417                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3418    OutChains.push_back(Store);
3419    DstOff += VTSize;
3420  }
3421
3422  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3423                     &OutChains[0], OutChains.size());
3424}
3425
3426static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3427                               SDValue Chain, SDValue Dst,
3428                               SDValue Src, uint64_t Size,
3429                               unsigned Align, bool isVol,
3430                               const Value *DstSV, uint64_t DstSVOff) {
3431  // Turn a memset of undef to nop.
3432  if (Src.getOpcode() == ISD::UNDEF)
3433    return Chain;
3434
3435  // Expand memset to a series of load/store ops if the size operand
3436  // falls below a certain threshold.
3437  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3438  std::vector<EVT> MemOps;
3439  bool DstAlignCanChange = false;
3440  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3441  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3442  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3443    DstAlignCanChange = true;
3444  bool NonScalarIntSafe =
3445    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3446  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3447                                Size, (DstAlignCanChange ? 0 : Align), 0,
3448                                NonScalarIntSafe, DAG, TLI))
3449    return SDValue();
3450
3451  if (DstAlignCanChange) {
3452    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3453    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3454    if (NewAlign > Align) {
3455      // Give the stack frame object a larger alignment if needed.
3456      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3457        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3458      Align = NewAlign;
3459    }
3460  }
3461
3462  SmallVector<SDValue, 8> OutChains;
3463  uint64_t DstOff = 0;
3464  unsigned NumMemOps = MemOps.size();
3465  for (unsigned i = 0; i < NumMemOps; i++) {
3466    EVT VT = MemOps[i];
3467    unsigned VTSize = VT.getSizeInBits() / 8;
3468    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3469    SDValue Store = DAG.getStore(Chain, dl, Value,
3470                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3471                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3472    OutChains.push_back(Store);
3473    DstOff += VTSize;
3474  }
3475
3476  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3477                     &OutChains[0], OutChains.size());
3478}
3479
3480SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3481                                SDValue Src, SDValue Size,
3482                                unsigned Align, bool isVol, bool AlwaysInline,
3483                                const Value *DstSV, uint64_t DstSVOff,
3484                                const Value *SrcSV, uint64_t SrcSVOff) {
3485
3486  // Check to see if we should lower the memcpy to loads and stores first.
3487  // For cases within the target-specified limits, this is the best choice.
3488  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3489  if (ConstantSize) {
3490    // Memcpy with size zero? Just return the original chain.
3491    if (ConstantSize->isNullValue())
3492      return Chain;
3493
3494    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3495                                             ConstantSize->getZExtValue(),Align,
3496                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3497    if (Result.getNode())
3498      return Result;
3499  }
3500
3501  // Then check to see if we should lower the memcpy with target-specific
3502  // code. If the target chooses to do this, this is the next best.
3503  SDValue Result =
3504    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3505                                isVol, AlwaysInline,
3506                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3507  if (Result.getNode())
3508    return Result;
3509
3510  // If we really need inline code and the target declined to provide it,
3511  // use a (potentially long) sequence of loads and stores.
3512  if (AlwaysInline) {
3513    assert(ConstantSize && "AlwaysInline requires a constant size!");
3514    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3515                                   ConstantSize->getZExtValue(), Align, isVol,
3516                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3517  }
3518
3519  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3520  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3521  // respect volatile, so they may do things like read or write memory
3522  // beyond the given memory regions. But fixing this isn't easy, and most
3523  // people don't care.
3524
3525  // Emit a library call.
3526  TargetLowering::ArgListTy Args;
3527  TargetLowering::ArgListEntry Entry;
3528  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3529  Entry.Node = Dst; Args.push_back(Entry);
3530  Entry.Node = Src; Args.push_back(Entry);
3531  Entry.Node = Size; Args.push_back(Entry);
3532  // FIXME: pass in DebugLoc
3533  std::pair<SDValue,SDValue> CallResult =
3534    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3535                    false, false, false, false, 0,
3536                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3537                    /*isReturnValueUsed=*/false,
3538                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3539                                      TLI.getPointerTy()),
3540                    Args, *this, dl);
3541  return CallResult.second;
3542}
3543
3544SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3545                                 SDValue Src, SDValue Size,
3546                                 unsigned Align, bool isVol,
3547                                 const Value *DstSV, uint64_t DstSVOff,
3548                                 const Value *SrcSV, uint64_t SrcSVOff) {
3549
3550  // Check to see if we should lower the memmove to loads and stores first.
3551  // For cases within the target-specified limits, this is the best choice.
3552  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3553  if (ConstantSize) {
3554    // Memmove with size zero? Just return the original chain.
3555    if (ConstantSize->isNullValue())
3556      return Chain;
3557
3558    SDValue Result =
3559      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3560                               ConstantSize->getZExtValue(), Align, isVol,
3561                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3562    if (Result.getNode())
3563      return Result;
3564  }
3565
3566  // Then check to see if we should lower the memmove with target-specific
3567  // code. If the target chooses to do this, this is the next best.
3568  SDValue Result =
3569    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3570                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3571  if (Result.getNode())
3572    return Result;
3573
3574  // Emit a library call.
3575  assert(!isVol && "library memmove does not support volatile");
3576  TargetLowering::ArgListTy Args;
3577  TargetLowering::ArgListEntry Entry;
3578  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3579  Entry.Node = Dst; Args.push_back(Entry);
3580  Entry.Node = Src; Args.push_back(Entry);
3581  Entry.Node = Size; Args.push_back(Entry);
3582  // FIXME:  pass in DebugLoc
3583  std::pair<SDValue,SDValue> CallResult =
3584    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3585                    false, false, false, false, 0,
3586                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3587                    /*isReturnValueUsed=*/false,
3588                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3589                                      TLI.getPointerTy()),
3590                    Args, *this, dl);
3591  return CallResult.second;
3592}
3593
3594SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3595                                SDValue Src, SDValue Size,
3596                                unsigned Align, bool isVol,
3597                                const Value *DstSV, uint64_t DstSVOff) {
3598
3599  // Check to see if we should lower the memset to stores first.
3600  // For cases within the target-specified limits, this is the best choice.
3601  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3602  if (ConstantSize) {
3603    // Memset with size zero? Just return the original chain.
3604    if (ConstantSize->isNullValue())
3605      return Chain;
3606
3607    SDValue Result =
3608      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3609                      Align, isVol, DstSV, DstSVOff);
3610
3611    if (Result.getNode())
3612      return Result;
3613  }
3614
3615  // Then check to see if we should lower the memset with target-specific
3616  // code. If the target chooses to do this, this is the next best.
3617  SDValue Result =
3618    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3619                                DstSV, DstSVOff);
3620  if (Result.getNode())
3621    return Result;
3622
3623  // Emit a library call.
3624  assert(!isVol && "library memset does not support volatile");
3625  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3626  TargetLowering::ArgListTy Args;
3627  TargetLowering::ArgListEntry Entry;
3628  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3629  Args.push_back(Entry);
3630  // Extend or truncate the argument to be an i32 value for the call.
3631  if (Src.getValueType().bitsGT(MVT::i32))
3632    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3633  else
3634    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3635  Entry.Node = Src;
3636  Entry.Ty = Type::getInt32Ty(*getContext());
3637  Entry.isSExt = true;
3638  Args.push_back(Entry);
3639  Entry.Node = Size;
3640  Entry.Ty = IntPtrTy;
3641  Entry.isSExt = false;
3642  Args.push_back(Entry);
3643  // FIXME: pass in DebugLoc
3644  std::pair<SDValue,SDValue> CallResult =
3645    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3646                    false, false, false, false, 0,
3647                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3648                    /*isReturnValueUsed=*/false,
3649                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3650                                      TLI.getPointerTy()),
3651                    Args, *this, dl);
3652  return CallResult.second;
3653}
3654
3655SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3656                                SDValue Chain,
3657                                SDValue Ptr, SDValue Cmp,
3658                                SDValue Swp, const Value* PtrVal,
3659                                unsigned Alignment) {
3660  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3661    Alignment = getEVTAlignment(MemVT);
3662
3663  // Check if the memory reference references a frame index
3664  if (!PtrVal)
3665    if (const FrameIndexSDNode *FI =
3666          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3667      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3668
3669  MachineFunction &MF = getMachineFunction();
3670  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3671
3672  // For now, atomics are considered to be volatile always.
3673  Flags |= MachineMemOperand::MOVolatile;
3674
3675  MachineMemOperand *MMO =
3676    MF.getMachineMemOperand(PtrVal, Flags, 0,
3677                            MemVT.getStoreSize(), Alignment);
3678
3679  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3680}
3681
3682SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3683                                SDValue Chain,
3684                                SDValue Ptr, SDValue Cmp,
3685                                SDValue Swp, MachineMemOperand *MMO) {
3686  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3687  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3688
3689  EVT VT = Cmp.getValueType();
3690
3691  SDVTList VTs = getVTList(VT, MVT::Other);
3692  FoldingSetNodeID ID;
3693  ID.AddInteger(MemVT.getRawBits());
3694  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3695  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3696  void* IP = 0;
3697  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3698    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3699    return SDValue(E, 0);
3700  }
3701  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3702                                               Ptr, Cmp, Swp, MMO);
3703  CSEMap.InsertNode(N, IP);
3704  AllNodes.push_back(N);
3705  return SDValue(N, 0);
3706}
3707
3708SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3709                                SDValue Chain,
3710                                SDValue Ptr, SDValue Val,
3711                                const Value* PtrVal,
3712                                unsigned Alignment) {
3713  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3714    Alignment = getEVTAlignment(MemVT);
3715
3716  // Check if the memory reference references a frame index
3717  if (!PtrVal)
3718    if (const FrameIndexSDNode *FI =
3719          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3720      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3721
3722  MachineFunction &MF = getMachineFunction();
3723  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3724
3725  // For now, atomics are considered to be volatile always.
3726  Flags |= MachineMemOperand::MOVolatile;
3727
3728  MachineMemOperand *MMO =
3729    MF.getMachineMemOperand(PtrVal, Flags, 0,
3730                            MemVT.getStoreSize(), Alignment);
3731
3732  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3733}
3734
3735SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3736                                SDValue Chain,
3737                                SDValue Ptr, SDValue Val,
3738                                MachineMemOperand *MMO) {
3739  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3740          Opcode == ISD::ATOMIC_LOAD_SUB ||
3741          Opcode == ISD::ATOMIC_LOAD_AND ||
3742          Opcode == ISD::ATOMIC_LOAD_OR ||
3743          Opcode == ISD::ATOMIC_LOAD_XOR ||
3744          Opcode == ISD::ATOMIC_LOAD_NAND ||
3745          Opcode == ISD::ATOMIC_LOAD_MIN ||
3746          Opcode == ISD::ATOMIC_LOAD_MAX ||
3747          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3748          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3749          Opcode == ISD::ATOMIC_SWAP) &&
3750         "Invalid Atomic Op");
3751
3752  EVT VT = Val.getValueType();
3753
3754  SDVTList VTs = getVTList(VT, MVT::Other);
3755  FoldingSetNodeID ID;
3756  ID.AddInteger(MemVT.getRawBits());
3757  SDValue Ops[] = {Chain, Ptr, Val};
3758  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3759  void* IP = 0;
3760  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3761    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3762    return SDValue(E, 0);
3763  }
3764  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3765                                               Ptr, Val, MMO);
3766  CSEMap.InsertNode(N, IP);
3767  AllNodes.push_back(N);
3768  return SDValue(N, 0);
3769}
3770
3771/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3772/// Allowed to return something different (and simpler) if Simplify is true.
3773SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3774                                     DebugLoc dl) {
3775  if (NumOps == 1)
3776    return Ops[0];
3777
3778  SmallVector<EVT, 4> VTs;
3779  VTs.reserve(NumOps);
3780  for (unsigned i = 0; i < NumOps; ++i)
3781    VTs.push_back(Ops[i].getValueType());
3782  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3783                 Ops, NumOps);
3784}
3785
3786SDValue
3787SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3788                                  const EVT *VTs, unsigned NumVTs,
3789                                  const SDValue *Ops, unsigned NumOps,
3790                                  EVT MemVT, const Value *srcValue, int SVOff,
3791                                  unsigned Align, bool Vol,
3792                                  bool ReadMem, bool WriteMem) {
3793  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3794                             MemVT, srcValue, SVOff, Align, Vol,
3795                             ReadMem, WriteMem);
3796}
3797
3798SDValue
3799SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3800                                  const SDValue *Ops, unsigned NumOps,
3801                                  EVT MemVT, const Value *srcValue, int SVOff,
3802                                  unsigned Align, bool Vol,
3803                                  bool ReadMem, bool WriteMem) {
3804  if (Align == 0)  // Ensure that codegen never sees alignment 0
3805    Align = getEVTAlignment(MemVT);
3806
3807  MachineFunction &MF = getMachineFunction();
3808  unsigned Flags = 0;
3809  if (WriteMem)
3810    Flags |= MachineMemOperand::MOStore;
3811  if (ReadMem)
3812    Flags |= MachineMemOperand::MOLoad;
3813  if (Vol)
3814    Flags |= MachineMemOperand::MOVolatile;
3815  MachineMemOperand *MMO =
3816    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3817                            MemVT.getStoreSize(), Align);
3818
3819  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3820}
3821
3822SDValue
3823SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3824                                  const SDValue *Ops, unsigned NumOps,
3825                                  EVT MemVT, MachineMemOperand *MMO) {
3826  assert((Opcode == ISD::INTRINSIC_VOID ||
3827          Opcode == ISD::INTRINSIC_W_CHAIN ||
3828          (Opcode <= INT_MAX &&
3829           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3830         "Opcode is not a memory-accessing opcode!");
3831
3832  // Memoize the node unless it returns a flag.
3833  MemIntrinsicSDNode *N;
3834  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3835    FoldingSetNodeID ID;
3836    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3837    void *IP = 0;
3838    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3839      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3840      return SDValue(E, 0);
3841    }
3842
3843    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3844                                               MemVT, MMO);
3845    CSEMap.InsertNode(N, IP);
3846  } else {
3847    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3848                                               MemVT, MMO);
3849  }
3850  AllNodes.push_back(N);
3851  return SDValue(N, 0);
3852}
3853
3854SDValue
3855SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3856                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3857                      SDValue Ptr, SDValue Offset,
3858                      const Value *SV, int SVOffset, EVT MemVT,
3859                      bool isVolatile, bool isNonTemporal,
3860                      unsigned Alignment) {
3861  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3862    Alignment = getEVTAlignment(VT);
3863
3864  // Check if the memory reference references a frame index
3865  if (!SV)
3866    if (const FrameIndexSDNode *FI =
3867          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3868      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3869
3870  MachineFunction &MF = getMachineFunction();
3871  unsigned Flags = MachineMemOperand::MOLoad;
3872  if (isVolatile)
3873    Flags |= MachineMemOperand::MOVolatile;
3874  if (isNonTemporal)
3875    Flags |= MachineMemOperand::MONonTemporal;
3876  MachineMemOperand *MMO =
3877    MF.getMachineMemOperand(SV, Flags, SVOffset,
3878                            MemVT.getStoreSize(), Alignment);
3879  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3880}
3881
3882SDValue
3883SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3884                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3885                      SDValue Ptr, SDValue Offset, EVT MemVT,
3886                      MachineMemOperand *MMO) {
3887  if (VT == MemVT) {
3888    ExtType = ISD::NON_EXTLOAD;
3889  } else if (ExtType == ISD::NON_EXTLOAD) {
3890    assert(VT == MemVT && "Non-extending load from different memory type!");
3891  } else {
3892    // Extending load.
3893    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3894           "Should only be an extending load, not truncating!");
3895    assert(VT.isInteger() == MemVT.isInteger() &&
3896           "Cannot convert from FP to Int or Int -> FP!");
3897    assert(VT.isVector() == MemVT.isVector() &&
3898           "Cannot use trunc store to convert to or from a vector!");
3899    assert((!VT.isVector() ||
3900            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3901           "Cannot use trunc store to change the number of vector elements!");
3902  }
3903
3904  bool Indexed = AM != ISD::UNINDEXED;
3905  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3906         "Unindexed load with an offset!");
3907
3908  SDVTList VTs = Indexed ?
3909    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3910  SDValue Ops[] = { Chain, Ptr, Offset };
3911  FoldingSetNodeID ID;
3912  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3913  ID.AddInteger(MemVT.getRawBits());
3914  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3915                                     MMO->isNonTemporal()));
3916  void *IP = 0;
3917  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3918    cast<LoadSDNode>(E)->refineAlignment(MMO);
3919    return SDValue(E, 0);
3920  }
3921  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3922                                             MemVT, MMO);
3923  CSEMap.InsertNode(N, IP);
3924  AllNodes.push_back(N);
3925  return SDValue(N, 0);
3926}
3927
3928SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3929                              SDValue Chain, SDValue Ptr,
3930                              const Value *SV, int SVOffset,
3931                              bool isVolatile, bool isNonTemporal,
3932                              unsigned Alignment) {
3933  SDValue Undef = getUNDEF(Ptr.getValueType());
3934  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3935                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3936}
3937
3938SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3939                                 SDValue Chain, SDValue Ptr,
3940                                 const Value *SV,
3941                                 int SVOffset, EVT MemVT,
3942                                 bool isVolatile, bool isNonTemporal,
3943                                 unsigned Alignment) {
3944  SDValue Undef = getUNDEF(Ptr.getValueType());
3945  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3946                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3947}
3948
3949SDValue
3950SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3951                             SDValue Offset, ISD::MemIndexedMode AM) {
3952  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3953  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3954         "Load is already a indexed load!");
3955  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3956                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3957                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3958                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3959}
3960
3961SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3962                               SDValue Ptr, const Value *SV, int SVOffset,
3963                               bool isVolatile, bool isNonTemporal,
3964                               unsigned Alignment) {
3965  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3966    Alignment = getEVTAlignment(Val.getValueType());
3967
3968  // Check if the memory reference references a frame index
3969  if (!SV)
3970    if (const FrameIndexSDNode *FI =
3971          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3972      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3973
3974  MachineFunction &MF = getMachineFunction();
3975  unsigned Flags = MachineMemOperand::MOStore;
3976  if (isVolatile)
3977    Flags |= MachineMemOperand::MOVolatile;
3978  if (isNonTemporal)
3979    Flags |= MachineMemOperand::MONonTemporal;
3980  MachineMemOperand *MMO =
3981    MF.getMachineMemOperand(SV, Flags, SVOffset,
3982                            Val.getValueType().getStoreSize(), Alignment);
3983
3984  return getStore(Chain, dl, Val, Ptr, MMO);
3985}
3986
3987SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3988                               SDValue Ptr, MachineMemOperand *MMO) {
3989  EVT VT = Val.getValueType();
3990  SDVTList VTs = getVTList(MVT::Other);
3991  SDValue Undef = getUNDEF(Ptr.getValueType());
3992  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3993  FoldingSetNodeID ID;
3994  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3995  ID.AddInteger(VT.getRawBits());
3996  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3997                                     MMO->isNonTemporal()));
3998  void *IP = 0;
3999  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4000    cast<StoreSDNode>(E)->refineAlignment(MMO);
4001    return SDValue(E, 0);
4002  }
4003  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4004                                              false, VT, MMO);
4005  CSEMap.InsertNode(N, IP);
4006  AllNodes.push_back(N);
4007  return SDValue(N, 0);
4008}
4009
4010SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4011                                    SDValue Ptr, const Value *SV,
4012                                    int SVOffset, EVT SVT,
4013                                    bool isVolatile, bool isNonTemporal,
4014                                    unsigned Alignment) {
4015  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4016    Alignment = getEVTAlignment(SVT);
4017
4018  // Check if the memory reference references a frame index
4019  if (!SV)
4020    if (const FrameIndexSDNode *FI =
4021          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4022      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4023
4024  MachineFunction &MF = getMachineFunction();
4025  unsigned Flags = MachineMemOperand::MOStore;
4026  if (isVolatile)
4027    Flags |= MachineMemOperand::MOVolatile;
4028  if (isNonTemporal)
4029    Flags |= MachineMemOperand::MONonTemporal;
4030  MachineMemOperand *MMO =
4031    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4032
4033  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4034}
4035
4036SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4037                                    SDValue Ptr, EVT SVT,
4038                                    MachineMemOperand *MMO) {
4039  EVT VT = Val.getValueType();
4040
4041  if (VT == SVT)
4042    return getStore(Chain, dl, Val, Ptr, MMO);
4043
4044  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4045         "Should only be a truncating store, not extending!");
4046  assert(VT.isInteger() == SVT.isInteger() &&
4047         "Can't do FP-INT conversion!");
4048  assert(VT.isVector() == SVT.isVector() &&
4049         "Cannot use trunc store to convert to or from a vector!");
4050  assert((!VT.isVector() ||
4051          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4052         "Cannot use trunc store to change the number of vector elements!");
4053
4054  SDVTList VTs = getVTList(MVT::Other);
4055  SDValue Undef = getUNDEF(Ptr.getValueType());
4056  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4057  FoldingSetNodeID ID;
4058  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4059  ID.AddInteger(SVT.getRawBits());
4060  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4061                                     MMO->isNonTemporal()));
4062  void *IP = 0;
4063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4064    cast<StoreSDNode>(E)->refineAlignment(MMO);
4065    return SDValue(E, 0);
4066  }
4067  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4068                                              true, SVT, MMO);
4069  CSEMap.InsertNode(N, IP);
4070  AllNodes.push_back(N);
4071  return SDValue(N, 0);
4072}
4073
4074SDValue
4075SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4076                              SDValue Offset, ISD::MemIndexedMode AM) {
4077  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4078  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4079         "Store is already a indexed store!");
4080  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4081  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4082  FoldingSetNodeID ID;
4083  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4084  ID.AddInteger(ST->getMemoryVT().getRawBits());
4085  ID.AddInteger(ST->getRawSubclassData());
4086  void *IP = 0;
4087  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4088    return SDValue(E, 0);
4089
4090  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4091                                              ST->isTruncatingStore(),
4092                                              ST->getMemoryVT(),
4093                                              ST->getMemOperand());
4094  CSEMap.InsertNode(N, IP);
4095  AllNodes.push_back(N);
4096  return SDValue(N, 0);
4097}
4098
4099SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4100                               SDValue Chain, SDValue Ptr,
4101                               SDValue SV) {
4102  SDValue Ops[] = { Chain, Ptr, SV };
4103  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4104}
4105
4106SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4107                              const SDUse *Ops, unsigned NumOps) {
4108  switch (NumOps) {
4109  case 0: return getNode(Opcode, DL, VT);
4110  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4111  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4112  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4113  default: break;
4114  }
4115
4116  // Copy from an SDUse array into an SDValue array for use with
4117  // the regular getNode logic.
4118  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4119  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4120}
4121
4122SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4123                              const SDValue *Ops, unsigned NumOps) {
4124  switch (NumOps) {
4125  case 0: return getNode(Opcode, DL, VT);
4126  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4127  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4128  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4129  default: break;
4130  }
4131
4132  switch (Opcode) {
4133  default: break;
4134  case ISD::SELECT_CC: {
4135    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4136    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4137           "LHS and RHS of condition must have same type!");
4138    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4139           "True and False arms of SelectCC must have same type!");
4140    assert(Ops[2].getValueType() == VT &&
4141           "select_cc node must be of same type as true and false value!");
4142    break;
4143  }
4144  case ISD::BR_CC: {
4145    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4146    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4147           "LHS/RHS of comparison should match types!");
4148    break;
4149  }
4150  }
4151
4152  // Memoize nodes.
4153  SDNode *N;
4154  SDVTList VTs = getVTList(VT);
4155
4156  if (VT != MVT::Flag) {
4157    FoldingSetNodeID ID;
4158    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4159    void *IP = 0;
4160
4161    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4162      return SDValue(E, 0);
4163
4164    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4165    CSEMap.InsertNode(N, IP);
4166  } else {
4167    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4168  }
4169
4170  AllNodes.push_back(N);
4171#ifndef NDEBUG
4172  VerifyNode(N);
4173#endif
4174  return SDValue(N, 0);
4175}
4176
4177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4178                              const std::vector<EVT> &ResultTys,
4179                              const SDValue *Ops, unsigned NumOps) {
4180  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4181                 Ops, NumOps);
4182}
4183
4184SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4185                              const EVT *VTs, unsigned NumVTs,
4186                              const SDValue *Ops, unsigned NumOps) {
4187  if (NumVTs == 1)
4188    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4189  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4190}
4191
4192SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4193                              const SDValue *Ops, unsigned NumOps) {
4194  if (VTList.NumVTs == 1)
4195    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4196
4197#if 0
4198  switch (Opcode) {
4199  // FIXME: figure out how to safely handle things like
4200  // int foo(int x) { return 1 << (x & 255); }
4201  // int bar() { return foo(256); }
4202  case ISD::SRA_PARTS:
4203  case ISD::SRL_PARTS:
4204  case ISD::SHL_PARTS:
4205    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4206        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4207      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4208    else if (N3.getOpcode() == ISD::AND)
4209      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4210        // If the and is only masking out bits that cannot effect the shift,
4211        // eliminate the and.
4212        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4213        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4214          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4215      }
4216    break;
4217  }
4218#endif
4219
4220  // Memoize the node unless it returns a flag.
4221  SDNode *N;
4222  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4223    FoldingSetNodeID ID;
4224    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4225    void *IP = 0;
4226    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4227      return SDValue(E, 0);
4228
4229    if (NumOps == 1) {
4230      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4231    } else if (NumOps == 2) {
4232      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4233    } else if (NumOps == 3) {
4234      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4235                                            Ops[2]);
4236    } else {
4237      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4238    }
4239    CSEMap.InsertNode(N, IP);
4240  } else {
4241    if (NumOps == 1) {
4242      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4243    } else if (NumOps == 2) {
4244      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4245    } else if (NumOps == 3) {
4246      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4247                                            Ops[2]);
4248    } else {
4249      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4250    }
4251  }
4252  AllNodes.push_back(N);
4253#ifndef NDEBUG
4254  VerifyNode(N);
4255#endif
4256  return SDValue(N, 0);
4257}
4258
4259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4260  return getNode(Opcode, DL, VTList, 0, 0);
4261}
4262
4263SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4264                              SDValue N1) {
4265  SDValue Ops[] = { N1 };
4266  return getNode(Opcode, DL, VTList, Ops, 1);
4267}
4268
4269SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4270                              SDValue N1, SDValue N2) {
4271  SDValue Ops[] = { N1, N2 };
4272  return getNode(Opcode, DL, VTList, Ops, 2);
4273}
4274
4275SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4276                              SDValue N1, SDValue N2, SDValue N3) {
4277  SDValue Ops[] = { N1, N2, N3 };
4278  return getNode(Opcode, DL, VTList, Ops, 3);
4279}
4280
4281SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4282                              SDValue N1, SDValue N2, SDValue N3,
4283                              SDValue N4) {
4284  SDValue Ops[] = { N1, N2, N3, N4 };
4285  return getNode(Opcode, DL, VTList, Ops, 4);
4286}
4287
4288SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4289                              SDValue N1, SDValue N2, SDValue N3,
4290                              SDValue N4, SDValue N5) {
4291  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4292  return getNode(Opcode, DL, VTList, Ops, 5);
4293}
4294
4295SDVTList SelectionDAG::getVTList(EVT VT) {
4296  return makeVTList(SDNode::getValueTypeList(VT), 1);
4297}
4298
4299SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4300  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4301       E = VTList.rend(); I != E; ++I)
4302    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4303      return *I;
4304
4305  EVT *Array = Allocator.Allocate<EVT>(2);
4306  Array[0] = VT1;
4307  Array[1] = VT2;
4308  SDVTList Result = makeVTList(Array, 2);
4309  VTList.push_back(Result);
4310  return Result;
4311}
4312
4313SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4314  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4315       E = VTList.rend(); I != E; ++I)
4316    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4317                          I->VTs[2] == VT3)
4318      return *I;
4319
4320  EVT *Array = Allocator.Allocate<EVT>(3);
4321  Array[0] = VT1;
4322  Array[1] = VT2;
4323  Array[2] = VT3;
4324  SDVTList Result = makeVTList(Array, 3);
4325  VTList.push_back(Result);
4326  return Result;
4327}
4328
4329SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4330  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4331       E = VTList.rend(); I != E; ++I)
4332    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4333                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4334      return *I;
4335
4336  EVT *Array = Allocator.Allocate<EVT>(4);
4337  Array[0] = VT1;
4338  Array[1] = VT2;
4339  Array[2] = VT3;
4340  Array[3] = VT4;
4341  SDVTList Result = makeVTList(Array, 4);
4342  VTList.push_back(Result);
4343  return Result;
4344}
4345
4346SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4347  switch (NumVTs) {
4348    case 0: llvm_unreachable("Cannot have nodes without results!");
4349    case 1: return getVTList(VTs[0]);
4350    case 2: return getVTList(VTs[0], VTs[1]);
4351    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4352    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4353    default: break;
4354  }
4355
4356  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4357       E = VTList.rend(); I != E; ++I) {
4358    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4359      continue;
4360
4361    bool NoMatch = false;
4362    for (unsigned i = 2; i != NumVTs; ++i)
4363      if (VTs[i] != I->VTs[i]) {
4364        NoMatch = true;
4365        break;
4366      }
4367    if (!NoMatch)
4368      return *I;
4369  }
4370
4371  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4372  std::copy(VTs, VTs+NumVTs, Array);
4373  SDVTList Result = makeVTList(Array, NumVTs);
4374  VTList.push_back(Result);
4375  return Result;
4376}
4377
4378
4379/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4380/// specified operands.  If the resultant node already exists in the DAG,
4381/// this does not modify the specified node, instead it returns the node that
4382/// already exists.  If the resultant node does not exist in the DAG, the
4383/// input node is returned.  As a degenerate case, if you specify the same
4384/// input operands as the node already has, the input node is returned.
4385SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4386  SDNode *N = InN.getNode();
4387  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4388
4389  // Check to see if there is no change.
4390  if (Op == N->getOperand(0)) return InN;
4391
4392  // See if the modified node already exists.
4393  void *InsertPos = 0;
4394  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4395    return SDValue(Existing, InN.getResNo());
4396
4397  // Nope it doesn't.  Remove the node from its current place in the maps.
4398  if (InsertPos)
4399    if (!RemoveNodeFromCSEMaps(N))
4400      InsertPos = 0;
4401
4402  // Now we update the operands.
4403  N->OperandList[0].set(Op);
4404
4405  // If this gets put into a CSE map, add it.
4406  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4407  return InN;
4408}
4409
4410SDValue SelectionDAG::
4411UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4412  SDNode *N = InN.getNode();
4413  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4414
4415  // Check to see if there is no change.
4416  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4417    return InN;   // No operands changed, just return the input node.
4418
4419  // See if the modified node already exists.
4420  void *InsertPos = 0;
4421  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4422    return SDValue(Existing, InN.getResNo());
4423
4424  // Nope it doesn't.  Remove the node from its current place in the maps.
4425  if (InsertPos)
4426    if (!RemoveNodeFromCSEMaps(N))
4427      InsertPos = 0;
4428
4429  // Now we update the operands.
4430  if (N->OperandList[0] != Op1)
4431    N->OperandList[0].set(Op1);
4432  if (N->OperandList[1] != Op2)
4433    N->OperandList[1].set(Op2);
4434
4435  // If this gets put into a CSE map, add it.
4436  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4437  return InN;
4438}
4439
4440SDValue SelectionDAG::
4441UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4442  SDValue Ops[] = { Op1, Op2, Op3 };
4443  return UpdateNodeOperands(N, Ops, 3);
4444}
4445
4446SDValue SelectionDAG::
4447UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4448                   SDValue Op3, SDValue Op4) {
4449  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4450  return UpdateNodeOperands(N, Ops, 4);
4451}
4452
4453SDValue SelectionDAG::
4454UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4455                   SDValue Op3, SDValue Op4, SDValue Op5) {
4456  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4457  return UpdateNodeOperands(N, Ops, 5);
4458}
4459
4460SDValue SelectionDAG::
4461UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4462  SDNode *N = InN.getNode();
4463  assert(N->getNumOperands() == NumOps &&
4464         "Update with wrong number of operands");
4465
4466  // Check to see if there is no change.
4467  bool AnyChange = false;
4468  for (unsigned i = 0; i != NumOps; ++i) {
4469    if (Ops[i] != N->getOperand(i)) {
4470      AnyChange = true;
4471      break;
4472    }
4473  }
4474
4475  // No operands changed, just return the input node.
4476  if (!AnyChange) return InN;
4477
4478  // See if the modified node already exists.
4479  void *InsertPos = 0;
4480  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4481    return SDValue(Existing, InN.getResNo());
4482
4483  // Nope it doesn't.  Remove the node from its current place in the maps.
4484  if (InsertPos)
4485    if (!RemoveNodeFromCSEMaps(N))
4486      InsertPos = 0;
4487
4488  // Now we update the operands.
4489  for (unsigned i = 0; i != NumOps; ++i)
4490    if (N->OperandList[i] != Ops[i])
4491      N->OperandList[i].set(Ops[i]);
4492
4493  // If this gets put into a CSE map, add it.
4494  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4495  return InN;
4496}
4497
4498/// DropOperands - Release the operands and set this node to have
4499/// zero operands.
4500void SDNode::DropOperands() {
4501  // Unlike the code in MorphNodeTo that does this, we don't need to
4502  // watch for dead nodes here.
4503  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4504    SDUse &Use = *I++;
4505    Use.set(SDValue());
4506  }
4507}
4508
4509/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4510/// machine opcode.
4511///
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513                                   EVT VT) {
4514  SDVTList VTs = getVTList(VT);
4515  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4516}
4517
4518SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4519                                   EVT VT, SDValue Op1) {
4520  SDVTList VTs = getVTList(VT);
4521  SDValue Ops[] = { Op1 };
4522  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526                                   EVT VT, SDValue Op1,
4527                                   SDValue Op2) {
4528  SDVTList VTs = getVTList(VT);
4529  SDValue Ops[] = { Op1, Op2 };
4530  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4531}
4532
4533SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4534                                   EVT VT, SDValue Op1,
4535                                   SDValue Op2, SDValue Op3) {
4536  SDVTList VTs = getVTList(VT);
4537  SDValue Ops[] = { Op1, Op2, Op3 };
4538  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4539}
4540
4541SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4542                                   EVT VT, const SDValue *Ops,
4543                                   unsigned NumOps) {
4544  SDVTList VTs = getVTList(VT);
4545  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4546}
4547
4548SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4549                                   EVT VT1, EVT VT2, const SDValue *Ops,
4550                                   unsigned NumOps) {
4551  SDVTList VTs = getVTList(VT1, VT2);
4552  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4553}
4554
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556                                   EVT VT1, EVT VT2) {
4557  SDVTList VTs = getVTList(VT1, VT2);
4558  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   EVT VT1, EVT VT2, EVT VT3,
4563                                   const SDValue *Ops, unsigned NumOps) {
4564  SDVTList VTs = getVTList(VT1, VT2, VT3);
4565  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4570                                   const SDValue *Ops, unsigned NumOps) {
4571  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4572  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4573}
4574
4575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576                                   EVT VT1, EVT VT2,
4577                                   SDValue Op1) {
4578  SDVTList VTs = getVTList(VT1, VT2);
4579  SDValue Ops[] = { Op1 };
4580  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4581}
4582
4583SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4584                                   EVT VT1, EVT VT2,
4585                                   SDValue Op1, SDValue Op2) {
4586  SDVTList VTs = getVTList(VT1, VT2);
4587  SDValue Ops[] = { Op1, Op2 };
4588  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4589}
4590
4591SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592                                   EVT VT1, EVT VT2,
4593                                   SDValue Op1, SDValue Op2,
4594                                   SDValue Op3) {
4595  SDVTList VTs = getVTList(VT1, VT2);
4596  SDValue Ops[] = { Op1, Op2, Op3 };
4597  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4598}
4599
4600SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4601                                   EVT VT1, EVT VT2, EVT VT3,
4602                                   SDValue Op1, SDValue Op2,
4603                                   SDValue Op3) {
4604  SDVTList VTs = getVTList(VT1, VT2, VT3);
4605  SDValue Ops[] = { Op1, Op2, Op3 };
4606  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4607}
4608
4609SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4610                                   SDVTList VTs, const SDValue *Ops,
4611                                   unsigned NumOps) {
4612  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4613  // Reset the NodeID to -1.
4614  N->setNodeId(-1);
4615  return N;
4616}
4617
4618/// MorphNodeTo - This *mutates* the specified node to have the specified
4619/// return type, opcode, and operands.
4620///
4621/// Note that MorphNodeTo returns the resultant node.  If there is already a
4622/// node of the specified opcode and operands, it returns that node instead of
4623/// the current one.  Note that the DebugLoc need not be the same.
4624///
4625/// Using MorphNodeTo is faster than creating a new node and swapping it in
4626/// with ReplaceAllUsesWith both because it often avoids allocating a new
4627/// node, and because it doesn't require CSE recalculation for any of
4628/// the node's users.
4629///
4630SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4631                                  SDVTList VTs, const SDValue *Ops,
4632                                  unsigned NumOps) {
4633  // If an identical node already exists, use it.
4634  void *IP = 0;
4635  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4636    FoldingSetNodeID ID;
4637    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4638    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4639      return ON;
4640  }
4641
4642  if (!RemoveNodeFromCSEMaps(N))
4643    IP = 0;
4644
4645  // Start the morphing.
4646  N->NodeType = Opc;
4647  N->ValueList = VTs.VTs;
4648  N->NumValues = VTs.NumVTs;
4649
4650  // Clear the operands list, updating used nodes to remove this from their
4651  // use list.  Keep track of any operands that become dead as a result.
4652  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4653  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4654    SDUse &Use = *I++;
4655    SDNode *Used = Use.getNode();
4656    Use.set(SDValue());
4657    if (Used->use_empty())
4658      DeadNodeSet.insert(Used);
4659  }
4660
4661  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4662    // Initialize the memory references information.
4663    MN->setMemRefs(0, 0);
4664    // If NumOps is larger than the # of operands we can have in a
4665    // MachineSDNode, reallocate the operand list.
4666    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4667      if (MN->OperandsNeedDelete)
4668        delete[] MN->OperandList;
4669      if (NumOps > array_lengthof(MN->LocalOperands))
4670        // We're creating a final node that will live unmorphed for the
4671        // remainder of the current SelectionDAG iteration, so we can allocate
4672        // the operands directly out of a pool with no recycling metadata.
4673        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4674                         Ops, NumOps);
4675      else
4676        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4677      MN->OperandsNeedDelete = false;
4678    } else
4679      MN->InitOperands(MN->OperandList, Ops, NumOps);
4680  } else {
4681    // If NumOps is larger than the # of operands we currently have, reallocate
4682    // the operand list.
4683    if (NumOps > N->NumOperands) {
4684      if (N->OperandsNeedDelete)
4685        delete[] N->OperandList;
4686      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4687      N->OperandsNeedDelete = true;
4688    } else
4689      N->InitOperands(N->OperandList, Ops, NumOps);
4690  }
4691
4692  // Delete any nodes that are still dead after adding the uses for the
4693  // new operands.
4694  if (!DeadNodeSet.empty()) {
4695    SmallVector<SDNode *, 16> DeadNodes;
4696    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4697         E = DeadNodeSet.end(); I != E; ++I)
4698      if ((*I)->use_empty())
4699        DeadNodes.push_back(*I);
4700    RemoveDeadNodes(DeadNodes);
4701  }
4702
4703  if (IP)
4704    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4705  return N;
4706}
4707
4708
4709/// getMachineNode - These are used for target selectors to create a new node
4710/// with specified return type(s), MachineInstr opcode, and operands.
4711///
4712/// Note that getMachineNode returns the resultant node.  If there is already a
4713/// node of the specified opcode and operands, it returns that node instead of
4714/// the current one.
4715MachineSDNode *
4716SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4717  SDVTList VTs = getVTList(VT);
4718  return getMachineNode(Opcode, dl, VTs, 0, 0);
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4723  SDVTList VTs = getVTList(VT);
4724  SDValue Ops[] = { Op1 };
4725  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4730                             SDValue Op1, SDValue Op2) {
4731  SDVTList VTs = getVTList(VT);
4732  SDValue Ops[] = { Op1, Op2 };
4733  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4734}
4735
4736MachineSDNode *
4737SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4738                             SDValue Op1, SDValue Op2, SDValue Op3) {
4739  SDVTList VTs = getVTList(VT);
4740  SDValue Ops[] = { Op1, Op2, Op3 };
4741  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4746                             const SDValue *Ops, unsigned NumOps) {
4747  SDVTList VTs = getVTList(VT);
4748  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4749}
4750
4751MachineSDNode *
4752SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4753  SDVTList VTs = getVTList(VT1, VT2);
4754  return getMachineNode(Opcode, dl, VTs, 0, 0);
4755}
4756
4757MachineSDNode *
4758SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4759                             EVT VT1, EVT VT2, SDValue Op1) {
4760  SDVTList VTs = getVTList(VT1, VT2);
4761  SDValue Ops[] = { Op1 };
4762  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4763}
4764
4765MachineSDNode *
4766SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4767                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4768  SDVTList VTs = getVTList(VT1, VT2);
4769  SDValue Ops[] = { Op1, Op2 };
4770  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4771}
4772
4773MachineSDNode *
4774SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4775                             EVT VT1, EVT VT2, SDValue Op1,
4776                             SDValue Op2, SDValue Op3) {
4777  SDVTList VTs = getVTList(VT1, VT2);
4778  SDValue Ops[] = { Op1, Op2, Op3 };
4779  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4780}
4781
4782MachineSDNode *
4783SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4784                             EVT VT1, EVT VT2,
4785                             const SDValue *Ops, unsigned NumOps) {
4786  SDVTList VTs = getVTList(VT1, VT2);
4787  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4788}
4789
4790MachineSDNode *
4791SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4792                             EVT VT1, EVT VT2, EVT VT3,
4793                             SDValue Op1, SDValue Op2) {
4794  SDVTList VTs = getVTList(VT1, VT2, VT3);
4795  SDValue Ops[] = { Op1, Op2 };
4796  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4797}
4798
4799MachineSDNode *
4800SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4801                             EVT VT1, EVT VT2, EVT VT3,
4802                             SDValue Op1, SDValue Op2, SDValue Op3) {
4803  SDVTList VTs = getVTList(VT1, VT2, VT3);
4804  SDValue Ops[] = { Op1, Op2, Op3 };
4805  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810                             EVT VT1, EVT VT2, EVT VT3,
4811                             const SDValue *Ops, unsigned NumOps) {
4812  SDVTList VTs = getVTList(VT1, VT2, VT3);
4813  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4814}
4815
4816MachineSDNode *
4817SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4818                             EVT VT2, EVT VT3, EVT VT4,
4819                             const SDValue *Ops, unsigned NumOps) {
4820  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4821  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4822}
4823
4824MachineSDNode *
4825SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4826                             const std::vector<EVT> &ResultTys,
4827                             const SDValue *Ops, unsigned NumOps) {
4828  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4829  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4830}
4831
4832MachineSDNode *
4833SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4834                             const SDValue *Ops, unsigned NumOps) {
4835  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4836  MachineSDNode *N;
4837  void *IP;
4838
4839  if (DoCSE) {
4840    FoldingSetNodeID ID;
4841    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4842    IP = 0;
4843    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4844      return cast<MachineSDNode>(E);
4845  }
4846
4847  // Allocate a new MachineSDNode.
4848  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4849
4850  // Initialize the operands list.
4851  if (NumOps > array_lengthof(N->LocalOperands))
4852    // We're creating a final node that will live unmorphed for the
4853    // remainder of the current SelectionDAG iteration, so we can allocate
4854    // the operands directly out of a pool with no recycling metadata.
4855    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4856                    Ops, NumOps);
4857  else
4858    N->InitOperands(N->LocalOperands, Ops, NumOps);
4859  N->OperandsNeedDelete = false;
4860
4861  if (DoCSE)
4862    CSEMap.InsertNode(N, IP);
4863
4864  AllNodes.push_back(N);
4865#ifndef NDEBUG
4866  VerifyNode(N);
4867#endif
4868  return N;
4869}
4870
4871/// getTargetExtractSubreg - A convenience function for creating
4872/// TargetOpcode::EXTRACT_SUBREG nodes.
4873SDValue
4874SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4875                                     SDValue Operand) {
4876  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4877  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4878                                  VT, Operand, SRIdxVal);
4879  return SDValue(Subreg, 0);
4880}
4881
4882/// getTargetInsertSubreg - A convenience function for creating
4883/// TargetOpcode::INSERT_SUBREG nodes.
4884SDValue
4885SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4886                                    SDValue Operand, SDValue Subreg) {
4887  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4888  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4889                                  VT, Operand, Subreg, SRIdxVal);
4890  return SDValue(Result, 0);
4891}
4892
4893/// getNodeIfExists - Get the specified node if it's already available, or
4894/// else return NULL.
4895SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4896                                      const SDValue *Ops, unsigned NumOps) {
4897  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4898    FoldingSetNodeID ID;
4899    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4900    void *IP = 0;
4901    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4902      return E;
4903  }
4904  return NULL;
4905}
4906
4907/// getDbgValue - Creates a SDDbgValue node.
4908///
4909SDDbgValue *
4910SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4911                          DebugLoc DL, unsigned O) {
4912  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4913}
4914
4915SDDbgValue *
4916SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4917                          DebugLoc DL, unsigned O) {
4918  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4919}
4920
4921SDDbgValue *
4922SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4923                          DebugLoc DL, unsigned O) {
4924  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4925}
4926
4927namespace {
4928
4929/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4930/// pointed to by a use iterator is deleted, increment the use iterator
4931/// so that it doesn't dangle.
4932///
4933/// This class also manages a "downlink" DAGUpdateListener, to forward
4934/// messages to ReplaceAllUsesWith's callers.
4935///
4936class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4937  SelectionDAG::DAGUpdateListener *DownLink;
4938  SDNode::use_iterator &UI;
4939  SDNode::use_iterator &UE;
4940
4941  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4942    // Increment the iterator as needed.
4943    while (UI != UE && N == *UI)
4944      ++UI;
4945
4946    // Then forward the message.
4947    if (DownLink) DownLink->NodeDeleted(N, E);
4948  }
4949
4950  virtual void NodeUpdated(SDNode *N) {
4951    // Just forward the message.
4952    if (DownLink) DownLink->NodeUpdated(N);
4953  }
4954
4955public:
4956  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4957                     SDNode::use_iterator &ui,
4958                     SDNode::use_iterator &ue)
4959    : DownLink(dl), UI(ui), UE(ue) {}
4960};
4961
4962}
4963
4964/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4965/// This can cause recursive merging of nodes in the DAG.
4966///
4967/// This version assumes From has a single result value.
4968///
4969void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4970                                      DAGUpdateListener *UpdateListener) {
4971  SDNode *From = FromN.getNode();
4972  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4973         "Cannot replace with this method!");
4974  assert(From != To.getNode() && "Cannot replace uses of with self");
4975
4976  // Iterate over all the existing uses of From. New uses will be added
4977  // to the beginning of the use list, which we avoid visiting.
4978  // This specifically avoids visiting uses of From that arise while the
4979  // replacement is happening, because any such uses would be the result
4980  // of CSE: If an existing node looks like From after one of its operands
4981  // is replaced by To, we don't want to replace of all its users with To
4982  // too. See PR3018 for more info.
4983  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4984  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4985  while (UI != UE) {
4986    SDNode *User = *UI;
4987
4988    // This node is about to morph, remove its old self from the CSE maps.
4989    RemoveNodeFromCSEMaps(User);
4990
4991    // A user can appear in a use list multiple times, and when this
4992    // happens the uses are usually next to each other in the list.
4993    // To help reduce the number of CSE recomputations, process all
4994    // the uses of this user that we can find this way.
4995    do {
4996      SDUse &Use = UI.getUse();
4997      ++UI;
4998      Use.set(To);
4999    } while (UI != UE && *UI == User);
5000
5001    // Now that we have modified User, add it back to the CSE maps.  If it
5002    // already exists there, recursively merge the results together.
5003    AddModifiedNodeToCSEMaps(User, &Listener);
5004  }
5005}
5006
5007/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5008/// This can cause recursive merging of nodes in the DAG.
5009///
5010/// This version assumes that for each value of From, there is a
5011/// corresponding value in To in the same position with the same type.
5012///
5013void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5014                                      DAGUpdateListener *UpdateListener) {
5015#ifndef NDEBUG
5016  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5017    assert((!From->hasAnyUseOfValue(i) ||
5018            From->getValueType(i) == To->getValueType(i)) &&
5019           "Cannot use this version of ReplaceAllUsesWith!");
5020#endif
5021
5022  // Handle the trivial case.
5023  if (From == To)
5024    return;
5025
5026  // Iterate over just the existing users of From. See the comments in
5027  // the ReplaceAllUsesWith above.
5028  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5029  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5030  while (UI != UE) {
5031    SDNode *User = *UI;
5032
5033    // This node is about to morph, remove its old self from the CSE maps.
5034    RemoveNodeFromCSEMaps(User);
5035
5036    // A user can appear in a use list multiple times, and when this
5037    // happens the uses are usually next to each other in the list.
5038    // To help reduce the number of CSE recomputations, process all
5039    // the uses of this user that we can find this way.
5040    do {
5041      SDUse &Use = UI.getUse();
5042      ++UI;
5043      Use.setNode(To);
5044    } while (UI != UE && *UI == User);
5045
5046    // Now that we have modified User, add it back to the CSE maps.  If it
5047    // already exists there, recursively merge the results together.
5048    AddModifiedNodeToCSEMaps(User, &Listener);
5049  }
5050}
5051
5052/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5053/// This can cause recursive merging of nodes in the DAG.
5054///
5055/// This version can replace From with any result values.  To must match the
5056/// number and types of values returned by From.
5057void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5058                                      const SDValue *To,
5059                                      DAGUpdateListener *UpdateListener) {
5060  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5061    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5062
5063  // Iterate over just the existing users of From. See the comments in
5064  // the ReplaceAllUsesWith above.
5065  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5066  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5067  while (UI != UE) {
5068    SDNode *User = *UI;
5069
5070    // This node is about to morph, remove its old self from the CSE maps.
5071    RemoveNodeFromCSEMaps(User);
5072
5073    // A user can appear in a use list multiple times, and when this
5074    // happens the uses are usually next to each other in the list.
5075    // To help reduce the number of CSE recomputations, process all
5076    // the uses of this user that we can find this way.
5077    do {
5078      SDUse &Use = UI.getUse();
5079      const SDValue &ToOp = To[Use.getResNo()];
5080      ++UI;
5081      Use.set(ToOp);
5082    } while (UI != UE && *UI == User);
5083
5084    // Now that we have modified User, add it back to the CSE maps.  If it
5085    // already exists there, recursively merge the results together.
5086    AddModifiedNodeToCSEMaps(User, &Listener);
5087  }
5088}
5089
5090/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5091/// uses of other values produced by From.getNode() alone.  The Deleted
5092/// vector is handled the same way as for ReplaceAllUsesWith.
5093void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5094                                             DAGUpdateListener *UpdateListener){
5095  // Handle the really simple, really trivial case efficiently.
5096  if (From == To) return;
5097
5098  // Handle the simple, trivial, case efficiently.
5099  if (From.getNode()->getNumValues() == 1) {
5100    ReplaceAllUsesWith(From, To, UpdateListener);
5101    return;
5102  }
5103
5104  // Iterate over just the existing users of From. See the comments in
5105  // the ReplaceAllUsesWith above.
5106  SDNode::use_iterator UI = From.getNode()->use_begin(),
5107                       UE = From.getNode()->use_end();
5108  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5109  while (UI != UE) {
5110    SDNode *User = *UI;
5111    bool UserRemovedFromCSEMaps = false;
5112
5113    // A user can appear in a use list multiple times, and when this
5114    // happens the uses are usually next to each other in the list.
5115    // To help reduce the number of CSE recomputations, process all
5116    // the uses of this user that we can find this way.
5117    do {
5118      SDUse &Use = UI.getUse();
5119
5120      // Skip uses of different values from the same node.
5121      if (Use.getResNo() != From.getResNo()) {
5122        ++UI;
5123        continue;
5124      }
5125
5126      // If this node hasn't been modified yet, it's still in the CSE maps,
5127      // so remove its old self from the CSE maps.
5128      if (!UserRemovedFromCSEMaps) {
5129        RemoveNodeFromCSEMaps(User);
5130        UserRemovedFromCSEMaps = true;
5131      }
5132
5133      ++UI;
5134      Use.set(To);
5135    } while (UI != UE && *UI == User);
5136
5137    // We are iterating over all uses of the From node, so if a use
5138    // doesn't use the specific value, no changes are made.
5139    if (!UserRemovedFromCSEMaps)
5140      continue;
5141
5142    // Now that we have modified User, add it back to the CSE maps.  If it
5143    // already exists there, recursively merge the results together.
5144    AddModifiedNodeToCSEMaps(User, &Listener);
5145  }
5146}
5147
5148namespace {
5149  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5150  /// to record information about a use.
5151  struct UseMemo {
5152    SDNode *User;
5153    unsigned Index;
5154    SDUse *Use;
5155  };
5156
5157  /// operator< - Sort Memos by User.
5158  bool operator<(const UseMemo &L, const UseMemo &R) {
5159    return (intptr_t)L.User < (intptr_t)R.User;
5160  }
5161}
5162
5163/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5164/// uses of other values produced by From.getNode() alone.  The same value
5165/// may appear in both the From and To list.  The Deleted vector is
5166/// handled the same way as for ReplaceAllUsesWith.
5167void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5168                                              const SDValue *To,
5169                                              unsigned Num,
5170                                              DAGUpdateListener *UpdateListener){
5171  // Handle the simple, trivial case efficiently.
5172  if (Num == 1)
5173    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5174
5175  // Read up all the uses and make records of them. This helps
5176  // processing new uses that are introduced during the
5177  // replacement process.
5178  SmallVector<UseMemo, 4> Uses;
5179  for (unsigned i = 0; i != Num; ++i) {
5180    unsigned FromResNo = From[i].getResNo();
5181    SDNode *FromNode = From[i].getNode();
5182    for (SDNode::use_iterator UI = FromNode->use_begin(),
5183         E = FromNode->use_end(); UI != E; ++UI) {
5184      SDUse &Use = UI.getUse();
5185      if (Use.getResNo() == FromResNo) {
5186        UseMemo Memo = { *UI, i, &Use };
5187        Uses.push_back(Memo);
5188      }
5189    }
5190  }
5191
5192  // Sort the uses, so that all the uses from a given User are together.
5193  std::sort(Uses.begin(), Uses.end());
5194
5195  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5196       UseIndex != UseIndexEnd; ) {
5197    // We know that this user uses some value of From.  If it is the right
5198    // value, update it.
5199    SDNode *User = Uses[UseIndex].User;
5200
5201    // This node is about to morph, remove its old self from the CSE maps.
5202    RemoveNodeFromCSEMaps(User);
5203
5204    // The Uses array is sorted, so all the uses for a given User
5205    // are next to each other in the list.
5206    // To help reduce the number of CSE recomputations, process all
5207    // the uses of this user that we can find this way.
5208    do {
5209      unsigned i = Uses[UseIndex].Index;
5210      SDUse &Use = *Uses[UseIndex].Use;
5211      ++UseIndex;
5212
5213      Use.set(To[i]);
5214    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5215
5216    // Now that we have modified User, add it back to the CSE maps.  If it
5217    // already exists there, recursively merge the results together.
5218    AddModifiedNodeToCSEMaps(User, UpdateListener);
5219  }
5220}
5221
5222/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5223/// based on their topological order. It returns the maximum id and a vector
5224/// of the SDNodes* in assigned order by reference.
5225unsigned SelectionDAG::AssignTopologicalOrder() {
5226
5227  unsigned DAGSize = 0;
5228
5229  // SortedPos tracks the progress of the algorithm. Nodes before it are
5230  // sorted, nodes after it are unsorted. When the algorithm completes
5231  // it is at the end of the list.
5232  allnodes_iterator SortedPos = allnodes_begin();
5233
5234  // Visit all the nodes. Move nodes with no operands to the front of
5235  // the list immediately. Annotate nodes that do have operands with their
5236  // operand count. Before we do this, the Node Id fields of the nodes
5237  // may contain arbitrary values. After, the Node Id fields for nodes
5238  // before SortedPos will contain the topological sort index, and the
5239  // Node Id fields for nodes At SortedPos and after will contain the
5240  // count of outstanding operands.
5241  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5242    SDNode *N = I++;
5243    checkForCycles(N);
5244    unsigned Degree = N->getNumOperands();
5245    if (Degree == 0) {
5246      // A node with no uses, add it to the result array immediately.
5247      N->setNodeId(DAGSize++);
5248      allnodes_iterator Q = N;
5249      if (Q != SortedPos)
5250        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5251      assert(SortedPos != AllNodes.end() && "Overran node list");
5252      ++SortedPos;
5253    } else {
5254      // Temporarily use the Node Id as scratch space for the degree count.
5255      N->setNodeId(Degree);
5256    }
5257  }
5258
5259  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5260  // such that by the time the end is reached all nodes will be sorted.
5261  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5262    SDNode *N = I;
5263    checkForCycles(N);
5264    // N is in sorted position, so all its uses have one less operand
5265    // that needs to be sorted.
5266    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5267         UI != UE; ++UI) {
5268      SDNode *P = *UI;
5269      unsigned Degree = P->getNodeId();
5270      assert(Degree != 0 && "Invalid node degree");
5271      --Degree;
5272      if (Degree == 0) {
5273        // All of P's operands are sorted, so P may sorted now.
5274        P->setNodeId(DAGSize++);
5275        if (P != SortedPos)
5276          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5277        assert(SortedPos != AllNodes.end() && "Overran node list");
5278        ++SortedPos;
5279      } else {
5280        // Update P's outstanding operand count.
5281        P->setNodeId(Degree);
5282      }
5283    }
5284    if (I == SortedPos) {
5285#ifndef NDEBUG
5286      SDNode *S = ++I;
5287      dbgs() << "Overran sorted position:\n";
5288      S->dumprFull();
5289#endif
5290      llvm_unreachable(0);
5291    }
5292  }
5293
5294  assert(SortedPos == AllNodes.end() &&
5295         "Topological sort incomplete!");
5296  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5297         "First node in topological sort is not the entry token!");
5298  assert(AllNodes.front().getNodeId() == 0 &&
5299         "First node in topological sort has non-zero id!");
5300  assert(AllNodes.front().getNumOperands() == 0 &&
5301         "First node in topological sort has operands!");
5302  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5303         "Last node in topologic sort has unexpected id!");
5304  assert(AllNodes.back().use_empty() &&
5305         "Last node in topologic sort has users!");
5306  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5307  return DAGSize;
5308}
5309
5310/// AssignOrdering - Assign an order to the SDNode.
5311void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5312  assert(SD && "Trying to assign an order to a null node!");
5313  Ordering->add(SD, Order);
5314}
5315
5316/// GetOrdering - Get the order for the SDNode.
5317unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5318  assert(SD && "Trying to get the order of a null node!");
5319  return Ordering->getOrder(SD);
5320}
5321
5322/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5323/// value is produced by SD.
5324void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5325  DbgInfo->add(DB, SD);
5326  if (SD)
5327    SD->setHasDebugValue(true);
5328}
5329
5330//===----------------------------------------------------------------------===//
5331//                              SDNode Class
5332//===----------------------------------------------------------------------===//
5333
5334HandleSDNode::~HandleSDNode() {
5335  DropOperands();
5336}
5337
5338GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5339                                         EVT VT, int64_t o, unsigned char TF)
5340  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5341  TheGlobal = const_cast<GlobalValue*>(GA);
5342}
5343
5344MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5345                     MachineMemOperand *mmo)
5346 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5347  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5348                                      MMO->isNonTemporal());
5349  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5350  assert(isNonTemporal() == MMO->isNonTemporal() &&
5351         "Non-temporal encoding error!");
5352  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5353}
5354
5355MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5356                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5357                     MachineMemOperand *mmo)
5358   : SDNode(Opc, dl, VTs, Ops, NumOps),
5359     MemoryVT(memvt), MMO(mmo) {
5360  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5361                                      MMO->isNonTemporal());
5362  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5363  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5364}
5365
5366/// Profile - Gather unique data for the node.
5367///
5368void SDNode::Profile(FoldingSetNodeID &ID) const {
5369  AddNodeIDNode(ID, this);
5370}
5371
5372namespace {
5373  struct EVTArray {
5374    std::vector<EVT> VTs;
5375
5376    EVTArray() {
5377      VTs.reserve(MVT::LAST_VALUETYPE);
5378      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5379        VTs.push_back(MVT((MVT::SimpleValueType)i));
5380    }
5381  };
5382}
5383
5384static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5385static ManagedStatic<EVTArray> SimpleVTArray;
5386static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5387
5388/// getValueTypeList - Return a pointer to the specified value type.
5389///
5390const EVT *SDNode::getValueTypeList(EVT VT) {
5391  if (VT.isExtended()) {
5392    sys::SmartScopedLock<true> Lock(*VTMutex);
5393    return &(*EVTs->insert(VT).first);
5394  } else {
5395    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5396  }
5397}
5398
5399/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5400/// indicated value.  This method ignores uses of other values defined by this
5401/// operation.
5402bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5403  assert(Value < getNumValues() && "Bad value!");
5404
5405  // TODO: Only iterate over uses of a given value of the node
5406  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5407    if (UI.getUse().getResNo() == Value) {
5408      if (NUses == 0)
5409        return false;
5410      --NUses;
5411    }
5412  }
5413
5414  // Found exactly the right number of uses?
5415  return NUses == 0;
5416}
5417
5418
5419/// hasAnyUseOfValue - Return true if there are any use of the indicated
5420/// value. This method ignores uses of other values defined by this operation.
5421bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5422  assert(Value < getNumValues() && "Bad value!");
5423
5424  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5425    if (UI.getUse().getResNo() == Value)
5426      return true;
5427
5428  return false;
5429}
5430
5431
5432/// isOnlyUserOf - Return true if this node is the only use of N.
5433///
5434bool SDNode::isOnlyUserOf(SDNode *N) const {
5435  bool Seen = false;
5436  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5437    SDNode *User = *I;
5438    if (User == this)
5439      Seen = true;
5440    else
5441      return false;
5442  }
5443
5444  return Seen;
5445}
5446
5447/// isOperand - Return true if this node is an operand of N.
5448///
5449bool SDValue::isOperandOf(SDNode *N) const {
5450  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5451    if (*this == N->getOperand(i))
5452      return true;
5453  return false;
5454}
5455
5456bool SDNode::isOperandOf(SDNode *N) const {
5457  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5458    if (this == N->OperandList[i].getNode())
5459      return true;
5460  return false;
5461}
5462
5463/// reachesChainWithoutSideEffects - Return true if this operand (which must
5464/// be a chain) reaches the specified operand without crossing any
5465/// side-effecting instructions.  In practice, this looks through token
5466/// factors and non-volatile loads.  In order to remain efficient, this only
5467/// looks a couple of nodes in, it does not do an exhaustive search.
5468bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5469                                               unsigned Depth) const {
5470  if (*this == Dest) return true;
5471
5472  // Don't search too deeply, we just want to be able to see through
5473  // TokenFactor's etc.
5474  if (Depth == 0) return false;
5475
5476  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5477  // of the operands of the TF reach dest, then we can do the xform.
5478  if (getOpcode() == ISD::TokenFactor) {
5479    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5480      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5481        return true;
5482    return false;
5483  }
5484
5485  // Loads don't have side effects, look through them.
5486  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5487    if (!Ld->isVolatile())
5488      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5489  }
5490  return false;
5491}
5492
5493/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5494/// is either an operand of N or it can be reached by traversing up the operands.
5495/// NOTE: this is an expensive method. Use it carefully.
5496bool SDNode::isPredecessorOf(SDNode *N) const {
5497  SmallPtrSet<SDNode *, 32> Visited;
5498  SmallVector<SDNode *, 16> Worklist;
5499  Worklist.push_back(N);
5500
5501  do {
5502    N = Worklist.pop_back_val();
5503    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5504      SDNode *Op = N->getOperand(i).getNode();
5505      if (Op == this)
5506        return true;
5507      if (Visited.insert(Op))
5508        Worklist.push_back(Op);
5509    }
5510  } while (!Worklist.empty());
5511
5512  return false;
5513}
5514
5515uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5516  assert(Num < NumOperands && "Invalid child # of SDNode!");
5517  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5518}
5519
5520std::string SDNode::getOperationName(const SelectionDAG *G) const {
5521  switch (getOpcode()) {
5522  default:
5523    if (getOpcode() < ISD::BUILTIN_OP_END)
5524      return "<<Unknown DAG Node>>";
5525    if (isMachineOpcode()) {
5526      if (G)
5527        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5528          if (getMachineOpcode() < TII->getNumOpcodes())
5529            return TII->get(getMachineOpcode()).getName();
5530      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5531    }
5532    if (G) {
5533      const TargetLowering &TLI = G->getTargetLoweringInfo();
5534      const char *Name = TLI.getTargetNodeName(getOpcode());
5535      if (Name) return Name;
5536      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5537    }
5538    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5539
5540#ifndef NDEBUG
5541  case ISD::DELETED_NODE:
5542    return "<<Deleted Node!>>";
5543#endif
5544  case ISD::PREFETCH:      return "Prefetch";
5545  case ISD::MEMBARRIER:    return "MemBarrier";
5546  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5547  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5548  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5549  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5550  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5551  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5552  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5553  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5554  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5555  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5556  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5557  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5558  case ISD::PCMARKER:      return "PCMarker";
5559  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5560  case ISD::SRCVALUE:      return "SrcValue";
5561  case ISD::EntryToken:    return "EntryToken";
5562  case ISD::TokenFactor:   return "TokenFactor";
5563  case ISD::AssertSext:    return "AssertSext";
5564  case ISD::AssertZext:    return "AssertZext";
5565
5566  case ISD::BasicBlock:    return "BasicBlock";
5567  case ISD::VALUETYPE:     return "ValueType";
5568  case ISD::Register:      return "Register";
5569
5570  case ISD::Constant:      return "Constant";
5571  case ISD::ConstantFP:    return "ConstantFP";
5572  case ISD::GlobalAddress: return "GlobalAddress";
5573  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5574  case ISD::FrameIndex:    return "FrameIndex";
5575  case ISD::JumpTable:     return "JumpTable";
5576  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5577  case ISD::RETURNADDR: return "RETURNADDR";
5578  case ISD::FRAMEADDR: return "FRAMEADDR";
5579  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5580  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5581  case ISD::LSDAADDR: return "LSDAADDR";
5582  case ISD::EHSELECTION: return "EHSELECTION";
5583  case ISD::EH_RETURN: return "EH_RETURN";
5584  case ISD::ConstantPool:  return "ConstantPool";
5585  case ISD::ExternalSymbol: return "ExternalSymbol";
5586  case ISD::BlockAddress:  return "BlockAddress";
5587  case ISD::INTRINSIC_WO_CHAIN:
5588  case ISD::INTRINSIC_VOID:
5589  case ISD::INTRINSIC_W_CHAIN: {
5590    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5591    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5592    if (IID < Intrinsic::num_intrinsics)
5593      return Intrinsic::getName((Intrinsic::ID)IID);
5594    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5595      return TII->getName(IID);
5596    llvm_unreachable("Invalid intrinsic ID");
5597  }
5598
5599  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5600  case ISD::TargetConstant: return "TargetConstant";
5601  case ISD::TargetConstantFP:return "TargetConstantFP";
5602  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5603  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5604  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5605  case ISD::TargetJumpTable:  return "TargetJumpTable";
5606  case ISD::TargetConstantPool:  return "TargetConstantPool";
5607  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5608  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5609
5610  case ISD::CopyToReg:     return "CopyToReg";
5611  case ISD::CopyFromReg:   return "CopyFromReg";
5612  case ISD::UNDEF:         return "undef";
5613  case ISD::MERGE_VALUES:  return "merge_values";
5614  case ISD::INLINEASM:     return "inlineasm";
5615  case ISD::EH_LABEL:      return "eh_label";
5616  case ISD::HANDLENODE:    return "handlenode";
5617
5618  // Unary operators
5619  case ISD::FABS:   return "fabs";
5620  case ISD::FNEG:   return "fneg";
5621  case ISD::FSQRT:  return "fsqrt";
5622  case ISD::FSIN:   return "fsin";
5623  case ISD::FCOS:   return "fcos";
5624  case ISD::FPOWI:  return "fpowi";
5625  case ISD::FPOW:   return "fpow";
5626  case ISD::FTRUNC: return "ftrunc";
5627  case ISD::FFLOOR: return "ffloor";
5628  case ISD::FCEIL:  return "fceil";
5629  case ISD::FRINT:  return "frint";
5630  case ISD::FNEARBYINT: return "fnearbyint";
5631
5632  // Binary operators
5633  case ISD::ADD:    return "add";
5634  case ISD::SUB:    return "sub";
5635  case ISD::MUL:    return "mul";
5636  case ISD::MULHU:  return "mulhu";
5637  case ISD::MULHS:  return "mulhs";
5638  case ISD::SDIV:   return "sdiv";
5639  case ISD::UDIV:   return "udiv";
5640  case ISD::SREM:   return "srem";
5641  case ISD::UREM:   return "urem";
5642  case ISD::SMUL_LOHI:  return "smul_lohi";
5643  case ISD::UMUL_LOHI:  return "umul_lohi";
5644  case ISD::SDIVREM:    return "sdivrem";
5645  case ISD::UDIVREM:    return "udivrem";
5646  case ISD::AND:    return "and";
5647  case ISD::OR:     return "or";
5648  case ISD::XOR:    return "xor";
5649  case ISD::SHL:    return "shl";
5650  case ISD::SRA:    return "sra";
5651  case ISD::SRL:    return "srl";
5652  case ISD::ROTL:   return "rotl";
5653  case ISD::ROTR:   return "rotr";
5654  case ISD::FADD:   return "fadd";
5655  case ISD::FSUB:   return "fsub";
5656  case ISD::FMUL:   return "fmul";
5657  case ISD::FDIV:   return "fdiv";
5658  case ISD::FREM:   return "frem";
5659  case ISD::FCOPYSIGN: return "fcopysign";
5660  case ISD::FGETSIGN:  return "fgetsign";
5661
5662  case ISD::SETCC:       return "setcc";
5663  case ISD::VSETCC:      return "vsetcc";
5664  case ISD::SELECT:      return "select";
5665  case ISD::SELECT_CC:   return "select_cc";
5666  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5667  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5668  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5669  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5670  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5671  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5672  case ISD::CARRY_FALSE:         return "carry_false";
5673  case ISD::ADDC:        return "addc";
5674  case ISD::ADDE:        return "adde";
5675  case ISD::SADDO:       return "saddo";
5676  case ISD::UADDO:       return "uaddo";
5677  case ISD::SSUBO:       return "ssubo";
5678  case ISD::USUBO:       return "usubo";
5679  case ISD::SMULO:       return "smulo";
5680  case ISD::UMULO:       return "umulo";
5681  case ISD::SUBC:        return "subc";
5682  case ISD::SUBE:        return "sube";
5683  case ISD::SHL_PARTS:   return "shl_parts";
5684  case ISD::SRA_PARTS:   return "sra_parts";
5685  case ISD::SRL_PARTS:   return "srl_parts";
5686
5687  // Conversion operators.
5688  case ISD::SIGN_EXTEND: return "sign_extend";
5689  case ISD::ZERO_EXTEND: return "zero_extend";
5690  case ISD::ANY_EXTEND:  return "any_extend";
5691  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5692  case ISD::TRUNCATE:    return "truncate";
5693  case ISD::FP_ROUND:    return "fp_round";
5694  case ISD::FLT_ROUNDS_: return "flt_rounds";
5695  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5696  case ISD::FP_EXTEND:   return "fp_extend";
5697
5698  case ISD::SINT_TO_FP:  return "sint_to_fp";
5699  case ISD::UINT_TO_FP:  return "uint_to_fp";
5700  case ISD::FP_TO_SINT:  return "fp_to_sint";
5701  case ISD::FP_TO_UINT:  return "fp_to_uint";
5702  case ISD::BIT_CONVERT: return "bit_convert";
5703  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5704  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5705
5706  case ISD::CONVERT_RNDSAT: {
5707    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5708    default: llvm_unreachable("Unknown cvt code!");
5709    case ISD::CVT_FF:  return "cvt_ff";
5710    case ISD::CVT_FS:  return "cvt_fs";
5711    case ISD::CVT_FU:  return "cvt_fu";
5712    case ISD::CVT_SF:  return "cvt_sf";
5713    case ISD::CVT_UF:  return "cvt_uf";
5714    case ISD::CVT_SS:  return "cvt_ss";
5715    case ISD::CVT_SU:  return "cvt_su";
5716    case ISD::CVT_US:  return "cvt_us";
5717    case ISD::CVT_UU:  return "cvt_uu";
5718    }
5719  }
5720
5721    // Control flow instructions
5722  case ISD::BR:      return "br";
5723  case ISD::BRIND:   return "brind";
5724  case ISD::BR_JT:   return "br_jt";
5725  case ISD::BRCOND:  return "brcond";
5726  case ISD::BR_CC:   return "br_cc";
5727  case ISD::CALLSEQ_START:  return "callseq_start";
5728  case ISD::CALLSEQ_END:    return "callseq_end";
5729
5730    // Other operators
5731  case ISD::LOAD:               return "load";
5732  case ISD::STORE:              return "store";
5733  case ISD::VAARG:              return "vaarg";
5734  case ISD::VACOPY:             return "vacopy";
5735  case ISD::VAEND:              return "vaend";
5736  case ISD::VASTART:            return "vastart";
5737  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5738  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5739  case ISD::BUILD_PAIR:         return "build_pair";
5740  case ISD::STACKSAVE:          return "stacksave";
5741  case ISD::STACKRESTORE:       return "stackrestore";
5742  case ISD::TRAP:               return "trap";
5743
5744  // Bit manipulation
5745  case ISD::BSWAP:   return "bswap";
5746  case ISD::CTPOP:   return "ctpop";
5747  case ISD::CTTZ:    return "cttz";
5748  case ISD::CTLZ:    return "ctlz";
5749
5750  // Trampolines
5751  case ISD::TRAMPOLINE: return "trampoline";
5752
5753  case ISD::CONDCODE:
5754    switch (cast<CondCodeSDNode>(this)->get()) {
5755    default: llvm_unreachable("Unknown setcc condition!");
5756    case ISD::SETOEQ:  return "setoeq";
5757    case ISD::SETOGT:  return "setogt";
5758    case ISD::SETOGE:  return "setoge";
5759    case ISD::SETOLT:  return "setolt";
5760    case ISD::SETOLE:  return "setole";
5761    case ISD::SETONE:  return "setone";
5762
5763    case ISD::SETO:    return "seto";
5764    case ISD::SETUO:   return "setuo";
5765    case ISD::SETUEQ:  return "setue";
5766    case ISD::SETUGT:  return "setugt";
5767    case ISD::SETUGE:  return "setuge";
5768    case ISD::SETULT:  return "setult";
5769    case ISD::SETULE:  return "setule";
5770    case ISD::SETUNE:  return "setune";
5771
5772    case ISD::SETEQ:   return "seteq";
5773    case ISD::SETGT:   return "setgt";
5774    case ISD::SETGE:   return "setge";
5775    case ISD::SETLT:   return "setlt";
5776    case ISD::SETLE:   return "setle";
5777    case ISD::SETNE:   return "setne";
5778    }
5779  }
5780}
5781
5782const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5783  switch (AM) {
5784  default:
5785    return "";
5786  case ISD::PRE_INC:
5787    return "<pre-inc>";
5788  case ISD::PRE_DEC:
5789    return "<pre-dec>";
5790  case ISD::POST_INC:
5791    return "<post-inc>";
5792  case ISD::POST_DEC:
5793    return "<post-dec>";
5794  }
5795}
5796
5797std::string ISD::ArgFlagsTy::getArgFlagsString() {
5798  std::string S = "< ";
5799
5800  if (isZExt())
5801    S += "zext ";
5802  if (isSExt())
5803    S += "sext ";
5804  if (isInReg())
5805    S += "inreg ";
5806  if (isSRet())
5807    S += "sret ";
5808  if (isByVal())
5809    S += "byval ";
5810  if (isNest())
5811    S += "nest ";
5812  if (getByValAlign())
5813    S += "byval-align:" + utostr(getByValAlign()) + " ";
5814  if (getOrigAlign())
5815    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5816  if (getByValSize())
5817    S += "byval-size:" + utostr(getByValSize()) + " ";
5818  return S + ">";
5819}
5820
5821void SDNode::dump() const { dump(0); }
5822void SDNode::dump(const SelectionDAG *G) const {
5823  print(dbgs(), G);
5824}
5825
5826void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5827  OS << (void*)this << ": ";
5828
5829  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5830    if (i) OS << ",";
5831    if (getValueType(i) == MVT::Other)
5832      OS << "ch";
5833    else
5834      OS << getValueType(i).getEVTString();
5835  }
5836  OS << " = " << getOperationName(G);
5837}
5838
5839void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5840  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5841    if (!MN->memoperands_empty()) {
5842      OS << "<";
5843      OS << "Mem:";
5844      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5845           e = MN->memoperands_end(); i != e; ++i) {
5846        OS << **i;
5847        if (next(i) != e)
5848          OS << " ";
5849      }
5850      OS << ">";
5851    }
5852  } else if (const ShuffleVectorSDNode *SVN =
5853               dyn_cast<ShuffleVectorSDNode>(this)) {
5854    OS << "<";
5855    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5856      int Idx = SVN->getMaskElt(i);
5857      if (i) OS << ",";
5858      if (Idx < 0)
5859        OS << "u";
5860      else
5861        OS << Idx;
5862    }
5863    OS << ">";
5864  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5865    OS << '<' << CSDN->getAPIntValue() << '>';
5866  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5867    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5868      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5869    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5870      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5871    else {
5872      OS << "<APFloat(";
5873      CSDN->getValueAPF().bitcastToAPInt().dump();
5874      OS << ")>";
5875    }
5876  } else if (const GlobalAddressSDNode *GADN =
5877             dyn_cast<GlobalAddressSDNode>(this)) {
5878    int64_t offset = GADN->getOffset();
5879    OS << '<';
5880    WriteAsOperand(OS, GADN->getGlobal());
5881    OS << '>';
5882    if (offset > 0)
5883      OS << " + " << offset;
5884    else
5885      OS << " " << offset;
5886    if (unsigned int TF = GADN->getTargetFlags())
5887      OS << " [TF=" << TF << ']';
5888  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5889    OS << "<" << FIDN->getIndex() << ">";
5890  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5891    OS << "<" << JTDN->getIndex() << ">";
5892    if (unsigned int TF = JTDN->getTargetFlags())
5893      OS << " [TF=" << TF << ']';
5894  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5895    int offset = CP->getOffset();
5896    if (CP->isMachineConstantPoolEntry())
5897      OS << "<" << *CP->getMachineCPVal() << ">";
5898    else
5899      OS << "<" << *CP->getConstVal() << ">";
5900    if (offset > 0)
5901      OS << " + " << offset;
5902    else
5903      OS << " " << offset;
5904    if (unsigned int TF = CP->getTargetFlags())
5905      OS << " [TF=" << TF << ']';
5906  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5907    OS << "<";
5908    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5909    if (LBB)
5910      OS << LBB->getName() << " ";
5911    OS << (const void*)BBDN->getBasicBlock() << ">";
5912  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5913    if (G && R->getReg() &&
5914        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5915      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5916    } else {
5917      OS << " %reg" << R->getReg();
5918    }
5919  } else if (const ExternalSymbolSDNode *ES =
5920             dyn_cast<ExternalSymbolSDNode>(this)) {
5921    OS << "'" << ES->getSymbol() << "'";
5922    if (unsigned int TF = ES->getTargetFlags())
5923      OS << " [TF=" << TF << ']';
5924  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5925    if (M->getValue())
5926      OS << "<" << M->getValue() << ">";
5927    else
5928      OS << "<null>";
5929  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5930    OS << ":" << N->getVT().getEVTString();
5931  }
5932  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5933    OS << "<" << *LD->getMemOperand();
5934
5935    bool doExt = true;
5936    switch (LD->getExtensionType()) {
5937    default: doExt = false; break;
5938    case ISD::EXTLOAD: OS << ", anyext"; break;
5939    case ISD::SEXTLOAD: OS << ", sext"; break;
5940    case ISD::ZEXTLOAD: OS << ", zext"; break;
5941    }
5942    if (doExt)
5943      OS << " from " << LD->getMemoryVT().getEVTString();
5944
5945    const char *AM = getIndexedModeName(LD->getAddressingMode());
5946    if (*AM)
5947      OS << ", " << AM;
5948
5949    OS << ">";
5950  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5951    OS << "<" << *ST->getMemOperand();
5952
5953    if (ST->isTruncatingStore())
5954      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5955
5956    const char *AM = getIndexedModeName(ST->getAddressingMode());
5957    if (*AM)
5958      OS << ", " << AM;
5959
5960    OS << ">";
5961  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5962    OS << "<" << *M->getMemOperand() << ">";
5963  } else if (const BlockAddressSDNode *BA =
5964               dyn_cast<BlockAddressSDNode>(this)) {
5965    OS << "<";
5966    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5967    OS << ", ";
5968    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5969    OS << ">";
5970    if (unsigned int TF = BA->getTargetFlags())
5971      OS << " [TF=" << TF << ']';
5972  }
5973
5974  if (G)
5975    if (unsigned Order = G->GetOrdering(this))
5976      OS << " [ORD=" << Order << ']';
5977
5978  if (getNodeId() != -1)
5979    OS << " [ID=" << getNodeId() << ']';
5980}
5981
5982void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5983  print_types(OS, G);
5984  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5985    if (i) OS << ", "; else OS << " ";
5986    OS << (void*)getOperand(i).getNode();
5987    if (unsigned RN = getOperand(i).getResNo())
5988      OS << ":" << RN;
5989  }
5990  print_details(OS, G);
5991}
5992
5993static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5994                                  const SelectionDAG *G, unsigned depth,
5995                                  unsigned indent)
5996{
5997  if (depth == 0)
5998    return;
5999
6000  OS.indent(indent);
6001
6002  N->print(OS, G);
6003
6004  if (depth < 1)
6005    return;
6006
6007  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6008    OS << '\n';
6009    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6010  }
6011}
6012
6013void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6014                            unsigned depth) const {
6015  printrWithDepthHelper(OS, this, G, depth, 0);
6016}
6017
6018void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6019  // Don't print impossibly deep things.
6020  printrWithDepth(OS, G, 100);
6021}
6022
6023void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6024  printrWithDepth(dbgs(), G, depth);
6025}
6026
6027void SDNode::dumprFull(const SelectionDAG *G) const {
6028  // Don't print impossibly deep things.
6029  dumprWithDepth(G, 100);
6030}
6031
6032static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6033  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6034    if (N->getOperand(i).getNode()->hasOneUse())
6035      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6036    else
6037      dbgs() << "\n" << std::string(indent+2, ' ')
6038           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6039
6040
6041  dbgs() << "\n";
6042  dbgs().indent(indent);
6043  N->dump(G);
6044}
6045
6046SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6047  assert(N->getNumValues() == 1 &&
6048         "Can't unroll a vector with multiple results!");
6049
6050  EVT VT = N->getValueType(0);
6051  unsigned NE = VT.getVectorNumElements();
6052  EVT EltVT = VT.getVectorElementType();
6053  DebugLoc dl = N->getDebugLoc();
6054
6055  SmallVector<SDValue, 8> Scalars;
6056  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6057
6058  // If ResNE is 0, fully unroll the vector op.
6059  if (ResNE == 0)
6060    ResNE = NE;
6061  else if (NE > ResNE)
6062    NE = ResNE;
6063
6064  unsigned i;
6065  for (i= 0; i != NE; ++i) {
6066    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6067      SDValue Operand = N->getOperand(j);
6068      EVT OperandVT = Operand.getValueType();
6069      if (OperandVT.isVector()) {
6070        // A vector operand; extract a single element.
6071        EVT OperandEltVT = OperandVT.getVectorElementType();
6072        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6073                              OperandEltVT,
6074                              Operand,
6075                              getConstant(i, MVT::i32));
6076      } else {
6077        // A scalar operand; just use it as is.
6078        Operands[j] = Operand;
6079      }
6080    }
6081
6082    switch (N->getOpcode()) {
6083    default:
6084      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6085                                &Operands[0], Operands.size()));
6086      break;
6087    case ISD::SHL:
6088    case ISD::SRA:
6089    case ISD::SRL:
6090    case ISD::ROTL:
6091    case ISD::ROTR:
6092      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6093                                getShiftAmountOperand(Operands[1])));
6094      break;
6095    case ISD::SIGN_EXTEND_INREG:
6096    case ISD::FP_ROUND_INREG: {
6097      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6098      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6099                                Operands[0],
6100                                getValueType(ExtVT)));
6101    }
6102    }
6103  }
6104
6105  for (; i < ResNE; ++i)
6106    Scalars.push_back(getUNDEF(EltVT));
6107
6108  return getNode(ISD::BUILD_VECTOR, dl,
6109                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6110                 &Scalars[0], Scalars.size());
6111}
6112
6113
6114/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6115/// location that is 'Dist' units away from the location that the 'Base' load
6116/// is loading from.
6117bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6118                                     unsigned Bytes, int Dist) const {
6119  if (LD->getChain() != Base->getChain())
6120    return false;
6121  EVT VT = LD->getValueType(0);
6122  if (VT.getSizeInBits() / 8 != Bytes)
6123    return false;
6124
6125  SDValue Loc = LD->getOperand(1);
6126  SDValue BaseLoc = Base->getOperand(1);
6127  if (Loc.getOpcode() == ISD::FrameIndex) {
6128    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6129      return false;
6130    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6131    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6132    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6133    int FS  = MFI->getObjectSize(FI);
6134    int BFS = MFI->getObjectSize(BFI);
6135    if (FS != BFS || FS != (int)Bytes) return false;
6136    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6137  }
6138  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6139    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6140    if (V && (V->getSExtValue() == Dist*Bytes))
6141      return true;
6142  }
6143
6144  GlobalValue *GV1 = NULL;
6145  GlobalValue *GV2 = NULL;
6146  int64_t Offset1 = 0;
6147  int64_t Offset2 = 0;
6148  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6149  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6150  if (isGA1 && isGA2 && GV1 == GV2)
6151    return Offset1 == (Offset2 + Dist*Bytes);
6152  return false;
6153}
6154
6155
6156/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6157/// it cannot be inferred.
6158unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6159  // If this is a GlobalAddress + cst, return the alignment.
6160  GlobalValue *GV;
6161  int64_t GVOffset = 0;
6162  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6163    // If GV has specified alignment, then use it. Otherwise, use the preferred
6164    // alignment.
6165    unsigned Align = GV->getAlignment();
6166    if (!Align) {
6167      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6168        if (GVar->hasInitializer()) {
6169          const TargetData *TD = TLI.getTargetData();
6170          Align = TD->getPreferredAlignment(GVar);
6171        }
6172      }
6173    }
6174    return MinAlign(Align, GVOffset);
6175  }
6176
6177  // If this is a direct reference to a stack slot, use information about the
6178  // stack slot's alignment.
6179  int FrameIdx = 1 << 31;
6180  int64_t FrameOffset = 0;
6181  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6182    FrameIdx = FI->getIndex();
6183  } else if (Ptr.getOpcode() == ISD::ADD &&
6184             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6185             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6186    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6187    FrameOffset = Ptr.getConstantOperandVal(1);
6188  }
6189
6190  if (FrameIdx != (1 << 31)) {
6191    // FIXME: Handle FI+CST.
6192    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6193    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6194                                    FrameOffset);
6195    if (MFI.isFixedObjectIndex(FrameIdx)) {
6196      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6197
6198      // The alignment of the frame index can be determined from its offset from
6199      // the incoming frame position.  If the frame object is at offset 32 and
6200      // the stack is guaranteed to be 16-byte aligned, then we know that the
6201      // object is 16-byte aligned.
6202      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6203      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6204
6205      // Finally, the frame object itself may have a known alignment.  Factor
6206      // the alignment + offset into a new alignment.  For example, if we know
6207      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6208      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6209      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6210      return std::max(Align, FIInfoAlign);
6211    }
6212    return FIInfoAlign;
6213  }
6214
6215  return 0;
6216}
6217
6218void SelectionDAG::dump() const {
6219  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6220
6221  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6222       I != E; ++I) {
6223    const SDNode *N = I;
6224    if (!N->hasOneUse() && N != getRoot().getNode())
6225      DumpNodes(N, 2, this);
6226  }
6227
6228  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6229
6230  dbgs() << "\n\n";
6231}
6232
6233void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6234  print_types(OS, G);
6235  print_details(OS, G);
6236}
6237
6238typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6239static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6240                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6241  if (!once.insert(N))          // If we've been here before, return now.
6242    return;
6243
6244  // Dump the current SDNode, but don't end the line yet.
6245  OS << std::string(indent, ' ');
6246  N->printr(OS, G);
6247
6248  // Having printed this SDNode, walk the children:
6249  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6250    const SDNode *child = N->getOperand(i).getNode();
6251
6252    if (i) OS << ",";
6253    OS << " ";
6254
6255    if (child->getNumOperands() == 0) {
6256      // This child has no grandchildren; print it inline right here.
6257      child->printr(OS, G);
6258      once.insert(child);
6259    } else {         // Just the address. FIXME: also print the child's opcode.
6260      OS << (void*)child;
6261      if (unsigned RN = N->getOperand(i).getResNo())
6262        OS << ":" << RN;
6263    }
6264  }
6265
6266  OS << "\n";
6267
6268  // Dump children that have grandchildren on their own line(s).
6269  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6270    const SDNode *child = N->getOperand(i).getNode();
6271    DumpNodesr(OS, child, indent+2, G, once);
6272  }
6273}
6274
6275void SDNode::dumpr() const {
6276  VisitedSDNodeSet once;
6277  DumpNodesr(dbgs(), this, 0, 0, once);
6278}
6279
6280void SDNode::dumpr(const SelectionDAG *G) const {
6281  VisitedSDNodeSet once;
6282  DumpNodesr(dbgs(), this, 0, G, once);
6283}
6284
6285
6286// getAddressSpace - Return the address space this GlobalAddress belongs to.
6287unsigned GlobalAddressSDNode::getAddressSpace() const {
6288  return getGlobal()->getType()->getAddressSpace();
6289}
6290
6291
6292const Type *ConstantPoolSDNode::getType() const {
6293  if (isMachineConstantPoolEntry())
6294    return Val.MachineCPVal->getType();
6295  return Val.ConstVal->getType();
6296}
6297
6298bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6299                                        APInt &SplatUndef,
6300                                        unsigned &SplatBitSize,
6301                                        bool &HasAnyUndefs,
6302                                        unsigned MinSplatBits,
6303                                        bool isBigEndian) {
6304  EVT VT = getValueType(0);
6305  assert(VT.isVector() && "Expected a vector type");
6306  unsigned sz = VT.getSizeInBits();
6307  if (MinSplatBits > sz)
6308    return false;
6309
6310  SplatValue = APInt(sz, 0);
6311  SplatUndef = APInt(sz, 0);
6312
6313  // Get the bits.  Bits with undefined values (when the corresponding element
6314  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6315  // in SplatValue.  If any of the values are not constant, give up and return
6316  // false.
6317  unsigned int nOps = getNumOperands();
6318  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6319  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6320
6321  for (unsigned j = 0; j < nOps; ++j) {
6322    unsigned i = isBigEndian ? nOps-1-j : j;
6323    SDValue OpVal = getOperand(i);
6324    unsigned BitPos = j * EltBitSize;
6325
6326    if (OpVal.getOpcode() == ISD::UNDEF)
6327      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6328    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6329      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6330                     zextOrTrunc(sz) << BitPos);
6331    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6332      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6333     else
6334      return false;
6335  }
6336
6337  // The build_vector is all constants or undefs.  Find the smallest element
6338  // size that splats the vector.
6339
6340  HasAnyUndefs = (SplatUndef != 0);
6341  while (sz > 8) {
6342
6343    unsigned HalfSize = sz / 2;
6344    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6345    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6346    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6347    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6348
6349    // If the two halves do not match (ignoring undef bits), stop here.
6350    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6351        MinSplatBits > HalfSize)
6352      break;
6353
6354    SplatValue = HighValue | LowValue;
6355    SplatUndef = HighUndef & LowUndef;
6356
6357    sz = HalfSize;
6358  }
6359
6360  SplatBitSize = sz;
6361  return true;
6362}
6363
6364bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6365  // Find the first non-undef value in the shuffle mask.
6366  unsigned i, e;
6367  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6368    /* search */;
6369
6370  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6371
6372  // Make sure all remaining elements are either undef or the same as the first
6373  // non-undef value.
6374  for (int Idx = Mask[i]; i != e; ++i)
6375    if (Mask[i] >= 0 && Mask[i] != Idx)
6376      return false;
6377  return true;
6378}
6379
6380#ifdef XDEBUG
6381static void checkForCyclesHelper(const SDNode *N,
6382                                 SmallPtrSet<const SDNode*, 32> &Visited,
6383                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6384  // If this node has already been checked, don't check it again.
6385  if (Checked.count(N))
6386    return;
6387
6388  // If a node has already been visited on this depth-first walk, reject it as
6389  // a cycle.
6390  if (!Visited.insert(N)) {
6391    dbgs() << "Offending node:\n";
6392    N->dumprFull();
6393    errs() << "Detected cycle in SelectionDAG\n";
6394    abort();
6395  }
6396
6397  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6398    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6399
6400  Checked.insert(N);
6401  Visited.erase(N);
6402}
6403#endif
6404
6405void llvm::checkForCycles(const llvm::SDNode *N) {
6406#ifdef XDEBUG
6407  assert(N && "Checking nonexistant SDNode");
6408  SmallPtrSet<const SDNode*, 32> visited;
6409  SmallPtrSet<const SDNode*, 32> checked;
6410  checkForCyclesHelper(N, visited, checked);
6411#endif
6412}
6413
6414void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6415  checkForCycles(DAG->getRoot().getNode());
6416}
6417