SelectionDAG.cpp revision 187361b056823df4ff292561fe47468dad956872
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  Ordering->remove(N);
597}
598
599/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600/// correspond to it.  This is useful when we're about to delete or repurpose
601/// the node.  We don't want future request for structurally identical nodes
602/// to return N anymore.
603bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604  bool Erased = false;
605  switch (N->getOpcode()) {
606  case ISD::EntryToken:
607    llvm_unreachable("EntryToken should not be in CSEMaps!");
608    return false;
609  case ISD::HANDLENODE: return false;  // noop.
610  case ISD::CONDCODE:
611    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612           "Cond code doesn't exist!");
613    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615    break;
616  case ISD::ExternalSymbol:
617    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618    break;
619  case ISD::TargetExternalSymbol: {
620    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621    Erased = TargetExternalSymbols.erase(
622               std::pair<std::string,unsigned char>(ESN->getSymbol(),
623                                                    ESN->getTargetFlags()));
624    break;
625  }
626  case ISD::VALUETYPE: {
627    EVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    dbgs() << "\n";
649    llvm_unreachable("Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656/// maps and modified in place. Add it back to the CSE maps, unless an identical
657/// node already exists, in which case transfer all its users to the existing
658/// node. This transfer can potentially trigger recursive merging.
659///
660void
661SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662                                       DAGUpdateListener *UpdateListener) {
663  // For node types that aren't CSE'd, just act as if no identical node
664  // already exists.
665  if (!doNotCSE(N)) {
666    SDNode *Existing = CSEMap.GetOrInsertNode(N);
667    if (Existing != N) {
668      // If there was already an existing matching node, use ReplaceAllUsesWith
669      // to replace the dead one with the existing one.  This can cause
670      // recursive merging of other unrelated nodes down the line.
671      ReplaceAllUsesWith(N, Existing, UpdateListener);
672
673      // N is now dead.  Inform the listener if it exists and delete it.
674      if (UpdateListener)
675        UpdateListener->NodeDeleted(N, Existing);
676      DeleteNodeNotInCSEMaps(N);
677      return;
678    }
679  }
680
681  // If the node doesn't already exist, we updated it.  Inform a listener if
682  // it exists.
683  if (UpdateListener)
684    UpdateListener->NodeUpdated(N);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699  AddNodeIDCustom(ID, N);
700  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701  return Node;
702}
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           SDValue Op1, SDValue Op2,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  SDValue Ops[] = { Op1, Op2 };
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717  AddNodeIDCustom(ID, N);
718  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719  return Node;
720}
721
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           const SDValue *Ops,unsigned NumOps,
729                                           void *&InsertPos) {
730  if (doNotCSE(N))
731    return 0;
732
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735  AddNodeIDCustom(ID, N);
736  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737  return Node;
738}
739
740/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
741void SelectionDAG::VerifyNode(SDNode *N) {
742  switch (N->getOpcode()) {
743  default:
744    break;
745  case ISD::BUILD_PAIR: {
746    EVT VT = N->getValueType(0);
747    assert(N->getNumValues() == 1 && "Too many results!");
748    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749           "Wrong return type!");
750    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752           "Mismatched operand types!");
753    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754           "Wrong operand type!");
755    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756           "Wrong return type size");
757    break;
758  }
759  case ISD::BUILD_VECTOR: {
760    assert(N->getNumValues() == 1 && "Too many results!");
761    assert(N->getValueType(0).isVector() && "Wrong return type!");
762    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763           "Wrong number of operands!");
764    EVT EltVT = N->getValueType(0).getVectorElementType();
765    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766      assert((I->getValueType() == EltVT ||
767             (EltVT.isInteger() && I->getValueType().isInteger() &&
768              EltVT.bitsLE(I->getValueType()))) &&
769            "Wrong operand type!");
770    break;
771  }
772  }
773}
774
775/// getEVTAlignment - Compute the default alignment value for the
776/// given type.
777///
778unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779  const Type *Ty = VT == MVT::iPTR ?
780                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781                   VT.getTypeForEVT(*getContext());
782
783  return TLI.getTargetData()->getABITypeAlignment(Ty);
784}
785
786// EntryNode could meaningfully have debug info if we can find it...
787SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788  : TLI(tli), FLI(fli), DW(0),
789    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790              getVTList(MVT::Other)),
791    Root(getEntryNode()), Ordering(0) {
792  AllNodes.push_back(&EntryNode);
793  Ordering = new SDNodeOrdering();
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801  Context = &mf.getFunction()->getContext();
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806  delete Ordering;
807}
808
809void SelectionDAG::allnodes_clear() {
810  assert(&*AllNodes.begin() == &EntryNode);
811  AllNodes.remove(AllNodes.begin());
812  while (!AllNodes.empty())
813    DeallocateNode(AllNodes.begin());
814}
815
816void SelectionDAG::clear() {
817  allnodes_clear();
818  OperandAllocator.Reset();
819  CSEMap.clear();
820
821  ExtendedValueTypeNodes.clear();
822  ExternalSymbols.clear();
823  TargetExternalSymbols.clear();
824  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
825            static_cast<CondCodeSDNode*>(0));
826  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
827            static_cast<SDNode*>(0));
828
829  EntryNode.UseList = 0;
830  AllNodes.push_back(&EntryNode);
831  Root = getEntryNode();
832  Ordering = new SDNodeOrdering();
833}
834
835SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
836  return VT.bitsGT(Op.getValueType()) ?
837    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
838    getNode(ISD::TRUNCATE, DL, VT, Op);
839}
840
841SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
842  return VT.bitsGT(Op.getValueType()) ?
843    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
844    getNode(ISD::TRUNCATE, DL, VT, Op);
845}
846
847SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
848  assert(!VT.isVector() &&
849         "getZeroExtendInReg should use the vector element type instead of "
850         "the vector type!");
851  if (Op.getValueType() == VT) return Op;
852  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
853  APInt Imm = APInt::getLowBitsSet(BitWidth,
854                                   VT.getSizeInBits());
855  return getNode(ISD::AND, DL, Op.getValueType(), Op,
856                 getConstant(Imm, Op.getValueType()));
857}
858
859/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
860///
861SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
862  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  SDValue NegOne =
864    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
865  return getNode(ISD::XOR, DL, VT, Val, NegOne);
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
869  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  assert((EltVT.getSizeInBits() >= 64 ||
871         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
872         "getConstant with a uint64_t value that doesn't fit in the type!");
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896
897  if (!N) {
898    N = NodeAllocator.Allocate<ConstantSDNode>();
899    new (N) ConstantSDNode(isT, &Val, EltVT);
900    CSEMap.InsertNode(N, IP);
901    AllNodes.push_back(N);
902  }
903
904  SDValue Result(N, 0);
905  if (VT.isVector()) {
906    SmallVector<SDValue, 8> Ops;
907    Ops.assign(VT.getVectorNumElements(), Result);
908    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
909                     VT, &Ops[0], Ops.size());
910  }
911  return Result;
912}
913
914SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
915  return getConstant(Val, TLI.getPointerTy(), isTarget);
916}
917
918
919SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
920  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
921}
922
923SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
924  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
925
926  EVT EltVT =
927    VT.isVector() ? VT.getVectorElementType() : VT;
928
929  // Do the map lookup using the actual bit pattern for the floating point
930  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
931  // we don't have issues with SNANs.
932  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
935  ID.AddPointer(&V);
936  void *IP = 0;
937  SDNode *N = NULL;
938  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
939    if (!VT.isVector())
940      return SDValue(N, 0);
941
942  if (!N) {
943    N = NodeAllocator.Allocate<ConstantFPSDNode>();
944    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
945    CSEMap.InsertNode(N, IP);
946    AllNodes.push_back(N);
947  }
948
949  SDValue Result(N, 0);
950  if (VT.isVector()) {
951    SmallVector<SDValue, 8> Ops;
952    Ops.assign(VT.getVectorNumElements(), Result);
953    // FIXME DebugLoc info might be appropriate here
954    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
955                     VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT =
962    VT.isVector() ? VT.getVectorElementType() : VT;
963  if (EltVT==MVT::f32)
964    return getConstantFP(APFloat((float)Val), VT, isTarget);
965  else
966    return getConstantFP(APFloat(Val), VT, isTarget);
967}
968
969SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
970                                       EVT VT, int64_t Offset,
971                                       bool isTargetGA,
972                                       unsigned char TargetFlags) {
973  assert((TargetFlags == 0 || isTargetGA) &&
974         "Cannot set target flags on target-independent globals");
975
976  // Truncate (with sign-extension) the offset value to the pointer size.
977  EVT PTy = TLI.getPointerTy();
978  unsigned BitWidth = PTy.getSizeInBits();
979  if (BitWidth < 64)
980    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
981
982  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
983  if (!GVar) {
984    // If GV is an alias then use the aliasee for determining thread-localness.
985    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
986      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
987  }
988
989  unsigned Opc;
990  if (GVar && GVar->isThreadLocal())
991    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
992  else
993    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
994
995  FoldingSetNodeID ID;
996  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
997  ID.AddPointer(GV);
998  ID.AddInteger(Offset);
999  ID.AddInteger(TargetFlags);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003
1004  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1005  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1012  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(FI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019
1020  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1021  new (N) FrameIndexSDNode(FI, VT, isTarget);
1022  CSEMap.InsertNode(N, IP);
1023  AllNodes.push_back(N);
1024  return SDValue(N, 0);
1025}
1026
1027SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1028                                   unsigned char TargetFlags) {
1029  assert((TargetFlags == 0 || isTarget) &&
1030         "Cannot set target flags on target-independent jump tables");
1031  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1034  ID.AddInteger(JTI);
1035  ID.AddInteger(TargetFlags);
1036  void *IP = 0;
1037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1038    return SDValue(E, 0);
1039
1040  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1041  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1042  CSEMap.InsertNode(N, IP);
1043  AllNodes.push_back(N);
1044  return SDValue(N, 0);
1045}
1046
1047SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1048                                      unsigned Alignment, int Offset,
1049                                      bool isTarget,
1050                                      unsigned char TargetFlags) {
1051  assert((TargetFlags == 0 || isTarget) &&
1052         "Cannot set target flags on target-independent globals");
1053  if (Alignment == 0)
1054    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1055  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1056  FoldingSetNodeID ID;
1057  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1058  ID.AddInteger(Alignment);
1059  ID.AddInteger(Offset);
1060  ID.AddPointer(C);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1067  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073
1074SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1075                                      unsigned Alignment, int Offset,
1076                                      bool isTarget,
1077                                      unsigned char TargetFlags) {
1078  assert((TargetFlags == 0 || isTarget) &&
1079         "Cannot set target flags on target-independent globals");
1080  if (Alignment == 0)
1081    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1082  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1083  FoldingSetNodeID ID;
1084  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1085  ID.AddInteger(Alignment);
1086  ID.AddInteger(Offset);
1087  C->AddSelectionDAGCSEId(ID);
1088  ID.AddInteger(TargetFlags);
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092
1093  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1094  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1095  CSEMap.InsertNode(N, IP);
1096  AllNodes.push_back(N);
1097  return SDValue(N, 0);
1098}
1099
1100SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1101  FoldingSetNodeID ID;
1102  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1103  ID.AddPointer(MBB);
1104  void *IP = 0;
1105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1106    return SDValue(E, 0);
1107
1108  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1109  new (N) BasicBlockSDNode(MBB);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(EVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1117      ValueTypeNodes.size())
1118    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1119
1120  SDNode *&N = VT.isExtended() ?
1121    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1122
1123  if (N) return SDValue(N, 0);
1124  N = NodeAllocator.Allocate<VTSDNode>();
1125  new (N) VTSDNode(VT);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1131  SDNode *&N = ExternalSymbols[Sym];
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1134  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1140                                              unsigned char TargetFlags) {
1141  SDNode *&N =
1142    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1143                                                               TargetFlags)];
1144  if (N) return SDValue(N, 0);
1145  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1146  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1157    new (N) CondCodeSDNode(Cond);
1158    CondCodeNodes[Cond] = N;
1159    AllNodes.push_back(N);
1160  }
1161
1162  return SDValue(CondCodeNodes[Cond], 0);
1163}
1164
1165// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1166// the shuffle mask M that point at N1 to point at N2, and indices that point
1167// N2 to point at N1.
1168static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1169  std::swap(N1, N2);
1170  int NElts = M.size();
1171  for (int i = 0; i != NElts; ++i) {
1172    if (M[i] >= NElts)
1173      M[i] -= NElts;
1174    else if (M[i] >= 0)
1175      M[i] += NElts;
1176  }
1177}
1178
1179SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1180                                       SDValue N2, const int *Mask) {
1181  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1182  assert(VT.isVector() && N1.getValueType().isVector() &&
1183         "Vector Shuffle VTs must be a vectors");
1184  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1185         && "Vector Shuffle VTs must have same element type");
1186
1187  // Canonicalize shuffle undef, undef -> undef
1188  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1189    return getUNDEF(VT);
1190
1191  // Validate that all indices in Mask are within the range of the elements
1192  // input to the shuffle.
1193  unsigned NElts = VT.getVectorNumElements();
1194  SmallVector<int, 8> MaskVec;
1195  for (unsigned i = 0; i != NElts; ++i) {
1196    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1197    MaskVec.push_back(Mask[i]);
1198  }
1199
1200  // Canonicalize shuffle v, v -> v, undef
1201  if (N1 == N2) {
1202    N2 = getUNDEF(VT);
1203    for (unsigned i = 0; i != NElts; ++i)
1204      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1205  }
1206
1207  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1208  if (N1.getOpcode() == ISD::UNDEF)
1209    commuteShuffle(N1, N2, MaskVec);
1210
1211  // Canonicalize all index into lhs, -> shuffle lhs, undef
1212  // Canonicalize all index into rhs, -> shuffle rhs, undef
1213  bool AllLHS = true, AllRHS = true;
1214  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= (int)NElts) {
1217      if (N2Undef)
1218        MaskVec[i] = -1;
1219      else
1220        AllLHS = false;
1221    } else if (MaskVec[i] >= 0) {
1222      AllRHS = false;
1223    }
1224  }
1225  if (AllLHS && AllRHS)
1226    return getUNDEF(VT);
1227  if (AllLHS && !N2Undef)
1228    N2 = getUNDEF(VT);
1229  if (AllRHS) {
1230    N1 = getUNDEF(VT);
1231    commuteShuffle(N1, N2, MaskVec);
1232  }
1233
1234  // If Identity shuffle, or all shuffle in to undef, return that node.
1235  bool AllUndef = true;
1236  bool Identity = true;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1239    if (MaskVec[i] >= 0) AllUndef = false;
1240  }
1241  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1242    return N1;
1243  if (AllUndef)
1244    return getUNDEF(VT);
1245
1246  FoldingSetNodeID ID;
1247  SDValue Ops[2] = { N1, N2 };
1248  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1249  for (unsigned i = 0; i != NElts; ++i)
1250    ID.AddInteger(MaskVec[i]);
1251
1252  void* IP = 0;
1253  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1254    return SDValue(E, 0);
1255
1256  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1257  // SDNode doesn't have access to it.  This memory will be "leaked" when
1258  // the node is deallocated, but recovered when the NodeAllocator is released.
1259  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1260  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1261
1262  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1263  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1264  CSEMap.InsertNode(N, IP);
1265  AllNodes.push_back(N);
1266  return SDValue(N, 0);
1267}
1268
1269SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1270                                       SDValue Val, SDValue DTy,
1271                                       SDValue STy, SDValue Rnd, SDValue Sat,
1272                                       ISD::CvtCode Code) {
1273  // If the src and dest types are the same and the conversion is between
1274  // integer types of the same sign or two floats, no conversion is necessary.
1275  if (DTy == STy &&
1276      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1277    return Val;
1278
1279  FoldingSetNodeID ID;
1280  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1281  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1282  void* IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285
1286  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1287  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1294  FoldingSetNodeID ID;
1295  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1296  ID.AddInteger(RegNo);
1297  void *IP = 0;
1298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1299    return SDValue(E, 0);
1300
1301  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1302  new (N) RegisterSDNode(RegNo, VT);
1303  CSEMap.InsertNode(N, IP);
1304  AllNodes.push_back(N);
1305  return SDValue(N, 0);
1306}
1307
1308SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1309                               SDValue Root,
1310                               unsigned LabelID) {
1311  FoldingSetNodeID ID;
1312  SDValue Ops[] = { Root };
1313  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1314  ID.AddInteger(LabelID);
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1320  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1327                                      bool isTarget,
1328                                      unsigned char TargetFlags) {
1329  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333  ID.AddPointer(BA);
1334  ID.AddInteger(TargetFlags);
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1340  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346SDValue SelectionDAG::getSrcValue(const Value *V) {
1347  assert((!V || isa<PointerType>(V->getType())) &&
1348         "SrcValue is not a pointer?");
1349
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1352  ID.AddPointer(V);
1353
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1359  new (N) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getScalarType().getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getScalarType().getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getScalarType().getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getScalarType().getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue();
1929      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1930        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // If the sign bit of the first operand is zero, the sign bit of
1935        // the result is zero. If the first operand has no one bits below
1936        // the second operand's single 1 bit, its sign will be zero.
1937        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1938          KnownZero2 |= ~LowBits;
1939
1940        KnownZero |= KnownZero2 & Mask;
1941
1942        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1943      }
1944    }
1945    return;
1946  case ISD::UREM: {
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = (RA - 1);
1951        APInt Mask2 = LowBits & Mask;
1952        KnownZero |= ~LowBits & Mask;
1953        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1954        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1955        break;
1956      }
1957    }
1958
1959    // Since the result is less than or equal to either operand, any leading
1960    // zero bits in either operand must also exist in the result.
1961    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1962    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1963                      Depth+1);
1964    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1965                      Depth+1);
1966
1967    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1968                                KnownZero2.countLeadingOnes());
1969    KnownOne.clear();
1970    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1971    return;
1972  }
1973  default:
1974    // Allow the target to implement this method for its nodes.
1975    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1976  case ISD::INTRINSIC_WO_CHAIN:
1977  case ISD::INTRINSIC_W_CHAIN:
1978  case ISD::INTRINSIC_VOID:
1979      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1980                                         Depth);
1981    }
1982    return;
1983  }
1984}
1985
1986/// ComputeNumSignBits - Return the number of times the sign bit of the
1987/// register is replicated into the other bits.  We know that at least 1 bit
1988/// is always equal to the sign bit (itself), but other cases can give us
1989/// information.  For example, immediately after an "SRA X, 2", we know that
1990/// the top 3 bits are all equal to each other, so we return 3.
1991unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1992  EVT VT = Op.getValueType();
1993  assert(VT.isInteger() && "Invalid VT!");
1994  unsigned VTBits = VT.getScalarType().getSizeInBits();
1995  unsigned Tmp, Tmp2;
1996  unsigned FirstAnswer = 1;
1997
1998  if (Depth == 6)
1999    return 1;  // Limit search depth.
2000
2001  switch (Op.getOpcode()) {
2002  default: break;
2003  case ISD::AssertSext:
2004    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2005    return VTBits-Tmp+1;
2006  case ISD::AssertZext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp;
2009
2010  case ISD::Constant: {
2011    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2012    // If negative, return # leading ones.
2013    if (Val.isNegative())
2014      return Val.countLeadingOnes();
2015
2016    // Return # leading zeros.
2017    return Val.countLeadingZeros();
2018  }
2019
2020  case ISD::SIGN_EXTEND:
2021    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2022    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2023
2024  case ISD::SIGN_EXTEND_INREG:
2025    // Max of the input and what this extends.
2026    Tmp =
2027      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2028    Tmp = VTBits-Tmp+1;
2029
2030    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2031    return std::max(Tmp, Tmp2);
2032
2033  case ISD::SRA:
2034    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2035    // SRA X, C   -> adds C sign bits.
2036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2037      Tmp += C->getZExtValue();
2038      if (Tmp > VTBits) Tmp = VTBits;
2039    }
2040    return Tmp;
2041  case ISD::SHL:
2042    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2043      // shl destroys sign bits.
2044      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2046          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2047      return Tmp - C->getZExtValue();
2048    }
2049    break;
2050  case ISD::AND:
2051  case ISD::OR:
2052  case ISD::XOR:    // NOT is handled here.
2053    // Logical binary ops preserve the number of sign bits at the worst.
2054    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055    if (Tmp != 1) {
2056      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2057      FirstAnswer = std::min(Tmp, Tmp2);
2058      // We computed what we know about the sign bits as our first
2059      // answer. Now proceed to the generic code that uses
2060      // ComputeMaskedBits, and pick whichever answer is better.
2061    }
2062    break;
2063
2064  case ISD::SELECT:
2065    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2066    if (Tmp == 1) return 1;  // Early out.
2067    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2068    return std::min(Tmp, Tmp2);
2069
2070  case ISD::SADDO:
2071  case ISD::UADDO:
2072  case ISD::SSUBO:
2073  case ISD::USUBO:
2074  case ISD::SMULO:
2075  case ISD::UMULO:
2076    if (Op.getResNo() != 1)
2077      break;
2078    // The boolean result conforms to getBooleanContents.  Fall through.
2079  case ISD::SETCC:
2080    // If setcc returns 0/-1, all bits are sign bits.
2081    if (TLI.getBooleanContents() ==
2082        TargetLowering::ZeroOrNegativeOneBooleanContent)
2083      return VTBits;
2084    break;
2085  case ISD::ROTL:
2086  case ISD::ROTR:
2087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2088      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2089
2090      // Handle rotate right by N like a rotate left by 32-N.
2091      if (Op.getOpcode() == ISD::ROTR)
2092        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2093
2094      // If we aren't rotating out all of the known-in sign bits, return the
2095      // number that are left.  This handles rotl(sext(x), 1) for example.
2096      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2097      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2098    }
2099    break;
2100  case ISD::ADD:
2101    // Add can have at most one carry bit.  Thus we know that the output
2102    // is, at worst, one more bit than the inputs.
2103    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2104    if (Tmp == 1) return 1;  // Early out.
2105
2106    // Special case decrementing a value (ADD X, -1):
2107    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2108      if (CRHS->isAllOnesValue()) {
2109        APInt KnownZero, KnownOne;
2110        APInt Mask = APInt::getAllOnesValue(VTBits);
2111        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2112
2113        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2114        // sign bits set.
2115        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2116          return VTBits;
2117
2118        // If we are subtracting one from a positive number, there is no carry
2119        // out of the result.
2120        if (KnownZero.isNegative())
2121          return Tmp;
2122      }
2123
2124    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2125    if (Tmp2 == 1) return 1;
2126      return std::min(Tmp, Tmp2)-1;
2127    break;
2128
2129  case ISD::SUB:
2130    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2131    if (Tmp2 == 1) return 1;
2132
2133    // Handle NEG.
2134    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2135      if (CLHS->isNullValue()) {
2136        APInt KnownZero, KnownOne;
2137        APInt Mask = APInt::getAllOnesValue(VTBits);
2138        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2139        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2140        // sign bits set.
2141        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2142          return VTBits;
2143
2144        // If the input is known to be positive (the sign bit is known clear),
2145        // the output of the NEG has the same number of sign bits as the input.
2146        if (KnownZero.isNegative())
2147          return Tmp2;
2148
2149        // Otherwise, we treat this like a SUB.
2150      }
2151
2152    // Sub can have at most one carry bit.  Thus we know that the output
2153    // is, at worst, one more bit than the inputs.
2154    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2155    if (Tmp == 1) return 1;  // Early out.
2156      return std::min(Tmp, Tmp2)-1;
2157    break;
2158  case ISD::TRUNCATE:
2159    // FIXME: it's tricky to do anything useful for this, but it is an important
2160    // case for targets like X86.
2161    break;
2162  }
2163
2164  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2165  if (Op.getOpcode() == ISD::LOAD) {
2166    LoadSDNode *LD = cast<LoadSDNode>(Op);
2167    unsigned ExtType = LD->getExtensionType();
2168    switch (ExtType) {
2169    default: break;
2170    case ISD::SEXTLOAD:    // '17' bits known
2171      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2172      return VTBits-Tmp+1;
2173    case ISD::ZEXTLOAD:    // '16' bits known
2174      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2175      return VTBits-Tmp;
2176    }
2177  }
2178
2179  // Allow the target to implement this method for its nodes.
2180  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2181      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2182      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2183      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2184    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2185    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2186  }
2187
2188  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2189  // use this information.
2190  APInt KnownZero, KnownOne;
2191  APInt Mask = APInt::getAllOnesValue(VTBits);
2192  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2193
2194  if (KnownZero.isNegative()) {        // sign bit is 0
2195    Mask = KnownZero;
2196  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2197    Mask = KnownOne;
2198  } else {
2199    // Nothing known.
2200    return FirstAnswer;
2201  }
2202
2203  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2204  // the number of identical bits in the top of the input value.
2205  Mask = ~Mask;
2206  Mask <<= Mask.getBitWidth()-VTBits;
2207  // Return # leading zeros.  We use 'min' here in case Val was zero before
2208  // shifting.  We don't want to return '64' as for an i32 "0".
2209  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2210}
2211
2212bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2213  // If we're told that NaNs won't happen, assume they won't.
2214  if (FiniteOnlyFPMath())
2215    return true;
2216
2217  // If the value is a constant, we can obviously see if it is a NaN or not.
2218  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2219    return !C->getValueAPF().isNaN();
2220
2221  // TODO: Recognize more cases here.
2222
2223  return false;
2224}
2225
2226bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2227  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2228  if (!GA) return false;
2229  if (GA->getOffset() != 0) return false;
2230  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2231  if (!GV) return false;
2232  MachineModuleInfo *MMI = getMachineModuleInfo();
2233  return MMI && MMI->hasDebugInfo();
2234}
2235
2236
2237/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2238/// element of the result of the vector shuffle.
2239SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2240                                          unsigned i) {
2241  EVT VT = N->getValueType(0);
2242  DebugLoc dl = N->getDebugLoc();
2243  if (N->getMaskElt(i) < 0)
2244    return getUNDEF(VT.getVectorElementType());
2245  unsigned Index = N->getMaskElt(i);
2246  unsigned NumElems = VT.getVectorNumElements();
2247  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2248  Index %= NumElems;
2249
2250  if (V.getOpcode() == ISD::BIT_CONVERT) {
2251    V = V.getOperand(0);
2252    EVT VVT = V.getValueType();
2253    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2254      return SDValue();
2255  }
2256  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2257    return (Index == 0) ? V.getOperand(0)
2258                      : getUNDEF(VT.getVectorElementType());
2259  if (V.getOpcode() == ISD::BUILD_VECTOR)
2260    return V.getOperand(Index);
2261  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2262    return getShuffleScalarElt(SVN, Index);
2263  return SDValue();
2264}
2265
2266
2267/// getNode - Gets or creates the specified node.
2268///
2269SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2270  FoldingSetNodeID ID;
2271  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2272  void *IP = 0;
2273  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2274    return SDValue(E, 0);
2275
2276  SDNode *N = NodeAllocator.Allocate<SDNode>();
2277  new (N) SDNode(Opcode, DL, getVTList(VT));
2278  CSEMap.InsertNode(N, IP);
2279
2280  AllNodes.push_back(N);
2281#ifndef NDEBUG
2282  VerifyNode(N);
2283#endif
2284  return SDValue(N, 0);
2285}
2286
2287SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2288                              EVT VT, SDValue Operand) {
2289  // Constant fold unary operations with an integer constant operand.
2290  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2291    const APInt &Val = C->getAPIntValue();
2292    unsigned BitWidth = VT.getSizeInBits();
2293    switch (Opcode) {
2294    default: break;
2295    case ISD::SIGN_EXTEND:
2296      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2297    case ISD::ANY_EXTEND:
2298    case ISD::ZERO_EXTEND:
2299    case ISD::TRUNCATE:
2300      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2301    case ISD::UINT_TO_FP:
2302    case ISD::SINT_TO_FP: {
2303      const uint64_t zero[] = {0, 0};
2304      // No compile time operations on this type.
2305      if (VT==MVT::ppcf128)
2306        break;
2307      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2308      (void)apf.convertFromAPInt(Val,
2309                                 Opcode==ISD::SINT_TO_FP,
2310                                 APFloat::rmNearestTiesToEven);
2311      return getConstantFP(apf, VT);
2312    }
2313    case ISD::BIT_CONVERT:
2314      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2315        return getConstantFP(Val.bitsToFloat(), VT);
2316      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2317        return getConstantFP(Val.bitsToDouble(), VT);
2318      break;
2319    case ISD::BSWAP:
2320      return getConstant(Val.byteSwap(), VT);
2321    case ISD::CTPOP:
2322      return getConstant(Val.countPopulation(), VT);
2323    case ISD::CTLZ:
2324      return getConstant(Val.countLeadingZeros(), VT);
2325    case ISD::CTTZ:
2326      return getConstant(Val.countTrailingZeros(), VT);
2327    }
2328  }
2329
2330  // Constant fold unary operations with a floating point constant operand.
2331  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2332    APFloat V = C->getValueAPF();    // make copy
2333    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2334      switch (Opcode) {
2335      case ISD::FNEG:
2336        V.changeSign();
2337        return getConstantFP(V, VT);
2338      case ISD::FABS:
2339        V.clearSign();
2340        return getConstantFP(V, VT);
2341      case ISD::FP_ROUND:
2342      case ISD::FP_EXTEND: {
2343        bool ignored;
2344        // This can return overflow, underflow, or inexact; we don't care.
2345        // FIXME need to be more flexible about rounding mode.
2346        (void)V.convert(*EVTToAPFloatSemantics(VT),
2347                        APFloat::rmNearestTiesToEven, &ignored);
2348        return getConstantFP(V, VT);
2349      }
2350      case ISD::FP_TO_SINT:
2351      case ISD::FP_TO_UINT: {
2352        integerPart x[2];
2353        bool ignored;
2354        assert(integerPartWidth >= 64);
2355        // FIXME need to be more flexible about rounding mode.
2356        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2357                              Opcode==ISD::FP_TO_SINT,
2358                              APFloat::rmTowardZero, &ignored);
2359        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2360          break;
2361        APInt api(VT.getSizeInBits(), 2, x);
2362        return getConstant(api, VT);
2363      }
2364      case ISD::BIT_CONVERT:
2365        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2366          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2367        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2368          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2369        break;
2370      }
2371    }
2372  }
2373
2374  unsigned OpOpcode = Operand.getNode()->getOpcode();
2375  switch (Opcode) {
2376  case ISD::TokenFactor:
2377  case ISD::MERGE_VALUES:
2378  case ISD::CONCAT_VECTORS:
2379    return Operand;         // Factor, merge or concat of one node?  No need.
2380  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2381  case ISD::FP_EXTEND:
2382    assert(VT.isFloatingPoint() &&
2383           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2384    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2385    assert((!VT.isVector() ||
2386            VT.getVectorNumElements() ==
2387            Operand.getValueType().getVectorNumElements()) &&
2388           "Vector element count mismatch!");
2389    if (Operand.getOpcode() == ISD::UNDEF)
2390      return getUNDEF(VT);
2391    break;
2392  case ISD::SIGN_EXTEND:
2393    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2394           "Invalid SIGN_EXTEND!");
2395    if (Operand.getValueType() == VT) return Operand;   // noop extension
2396    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2397           "Invalid sext node, dst < src!");
2398    assert((!VT.isVector() ||
2399            VT.getVectorNumElements() ==
2400            Operand.getValueType().getVectorNumElements()) &&
2401           "Vector element count mismatch!");
2402    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2403      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2404    break;
2405  case ISD::ZERO_EXTEND:
2406    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2407           "Invalid ZERO_EXTEND!");
2408    if (Operand.getValueType() == VT) return Operand;   // noop extension
2409    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2410           "Invalid zext node, dst < src!");
2411    assert((!VT.isVector() ||
2412            VT.getVectorNumElements() ==
2413            Operand.getValueType().getVectorNumElements()) &&
2414           "Vector element count mismatch!");
2415    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2416      return getNode(ISD::ZERO_EXTEND, DL, VT,
2417                     Operand.getNode()->getOperand(0));
2418    break;
2419  case ISD::ANY_EXTEND:
2420    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2421           "Invalid ANY_EXTEND!");
2422    if (Operand.getValueType() == VT) return Operand;   // noop extension
2423    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2424           "Invalid anyext node, dst < src!");
2425    assert((!VT.isVector() ||
2426            VT.getVectorNumElements() ==
2427            Operand.getValueType().getVectorNumElements()) &&
2428           "Vector element count mismatch!");
2429    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2430      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2431      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2432    break;
2433  case ISD::TRUNCATE:
2434    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435           "Invalid TRUNCATE!");
2436    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2437    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2438           "Invalid truncate node, src < dst!");
2439    assert((!VT.isVector() ||
2440            VT.getVectorNumElements() ==
2441            Operand.getValueType().getVectorNumElements()) &&
2442           "Vector element count mismatch!");
2443    if (OpOpcode == ISD::TRUNCATE)
2444      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2445    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2446             OpOpcode == ISD::ANY_EXTEND) {
2447      // If the source is smaller than the dest, we still need an extend.
2448      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2449            .bitsLT(VT.getScalarType()))
2450        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2451      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2452        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2453      else
2454        return Operand.getNode()->getOperand(0);
2455    }
2456    break;
2457  case ISD::BIT_CONVERT:
2458    // Basic sanity checking.
2459    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2460           && "Cannot BIT_CONVERT between types of different sizes!");
2461    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2462    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2463      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2464    if (OpOpcode == ISD::UNDEF)
2465      return getUNDEF(VT);
2466    break;
2467  case ISD::SCALAR_TO_VECTOR:
2468    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2469           (VT.getVectorElementType() == Operand.getValueType() ||
2470            (VT.getVectorElementType().isInteger() &&
2471             Operand.getValueType().isInteger() &&
2472             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2473           "Illegal SCALAR_TO_VECTOR node!");
2474    if (OpOpcode == ISD::UNDEF)
2475      return getUNDEF(VT);
2476    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2477    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2478        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2479        Operand.getConstantOperandVal(1) == 0 &&
2480        Operand.getOperand(0).getValueType() == VT)
2481      return Operand.getOperand(0);
2482    break;
2483  case ISD::FNEG:
2484    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2485    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2486      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2487                     Operand.getNode()->getOperand(0));
2488    if (OpOpcode == ISD::FNEG)  // --X -> X
2489      return Operand.getNode()->getOperand(0);
2490    break;
2491  case ISD::FABS:
2492    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2493      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2494    break;
2495  }
2496
2497  SDNode *N;
2498  SDVTList VTs = getVTList(VT);
2499  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2500    FoldingSetNodeID ID;
2501    SDValue Ops[1] = { Operand };
2502    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2503    void *IP = 0;
2504    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2505      return SDValue(E, 0);
2506
2507    N = NodeAllocator.Allocate<UnarySDNode>();
2508    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2509    CSEMap.InsertNode(N, IP);
2510  } else {
2511    N = NodeAllocator.Allocate<UnarySDNode>();
2512    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2513  }
2514
2515  AllNodes.push_back(N);
2516#ifndef NDEBUG
2517  VerifyNode(N);
2518#endif
2519  return SDValue(N, 0);
2520}
2521
2522SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2523                                             EVT VT,
2524                                             ConstantSDNode *Cst1,
2525                                             ConstantSDNode *Cst2) {
2526  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2527
2528  switch (Opcode) {
2529  case ISD::ADD:  return getConstant(C1 + C2, VT);
2530  case ISD::SUB:  return getConstant(C1 - C2, VT);
2531  case ISD::MUL:  return getConstant(C1 * C2, VT);
2532  case ISD::UDIV:
2533    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2534    break;
2535  case ISD::UREM:
2536    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2537    break;
2538  case ISD::SDIV:
2539    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2540    break;
2541  case ISD::SREM:
2542    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2543    break;
2544  case ISD::AND:  return getConstant(C1 & C2, VT);
2545  case ISD::OR:   return getConstant(C1 | C2, VT);
2546  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2547  case ISD::SHL:  return getConstant(C1 << C2, VT);
2548  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2549  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2550  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2551  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2552  default: break;
2553  }
2554
2555  return SDValue();
2556}
2557
2558SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2559                              SDValue N1, SDValue N2) {
2560  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2561  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2562  switch (Opcode) {
2563  default: break;
2564  case ISD::TokenFactor:
2565    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2566           N2.getValueType() == MVT::Other && "Invalid token factor!");
2567    // Fold trivial token factors.
2568    if (N1.getOpcode() == ISD::EntryToken) return N2;
2569    if (N2.getOpcode() == ISD::EntryToken) return N1;
2570    if (N1 == N2) return N1;
2571    break;
2572  case ISD::CONCAT_VECTORS:
2573    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2574    // one big BUILD_VECTOR.
2575    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2576        N2.getOpcode() == ISD::BUILD_VECTOR) {
2577      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2578      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2579      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2580    }
2581    break;
2582  case ISD::AND:
2583    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2584           N1.getValueType() == VT && "Binary operator types must match!");
2585    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2586    // worth handling here.
2587    if (N2C && N2C->isNullValue())
2588      return N2;
2589    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2590      return N1;
2591    break;
2592  case ISD::OR:
2593  case ISD::XOR:
2594  case ISD::ADD:
2595  case ISD::SUB:
2596    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2597           N1.getValueType() == VT && "Binary operator types must match!");
2598    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2599    // it's worth handling here.
2600    if (N2C && N2C->isNullValue())
2601      return N1;
2602    break;
2603  case ISD::UDIV:
2604  case ISD::UREM:
2605  case ISD::MULHU:
2606  case ISD::MULHS:
2607  case ISD::MUL:
2608  case ISD::SDIV:
2609  case ISD::SREM:
2610    assert(VT.isInteger() && "This operator does not apply to FP types!");
2611    // fall through
2612  case ISD::FADD:
2613  case ISD::FSUB:
2614  case ISD::FMUL:
2615  case ISD::FDIV:
2616  case ISD::FREM:
2617    if (UnsafeFPMath) {
2618      if (Opcode == ISD::FADD) {
2619        // 0+x --> x
2620        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2621          if (CFP->getValueAPF().isZero())
2622            return N2;
2623        // x+0 --> x
2624        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2625          if (CFP->getValueAPF().isZero())
2626            return N1;
2627      } else if (Opcode == ISD::FSUB) {
2628        // x-0 --> x
2629        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2630          if (CFP->getValueAPF().isZero())
2631            return N1;
2632      }
2633    }
2634    assert(N1.getValueType() == N2.getValueType() &&
2635           N1.getValueType() == VT && "Binary operator types must match!");
2636    break;
2637  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2638    assert(N1.getValueType() == VT &&
2639           N1.getValueType().isFloatingPoint() &&
2640           N2.getValueType().isFloatingPoint() &&
2641           "Invalid FCOPYSIGN!");
2642    break;
2643  case ISD::SHL:
2644  case ISD::SRA:
2645  case ISD::SRL:
2646  case ISD::ROTL:
2647  case ISD::ROTR:
2648    assert(VT == N1.getValueType() &&
2649           "Shift operators return type must be the same as their first arg");
2650    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2651           "Shifts only work on integers");
2652
2653    // Always fold shifts of i1 values so the code generator doesn't need to
2654    // handle them.  Since we know the size of the shift has to be less than the
2655    // size of the value, the shift/rotate count is guaranteed to be zero.
2656    if (VT == MVT::i1)
2657      return N1;
2658    if (N2C && N2C->isNullValue())
2659      return N1;
2660    break;
2661  case ISD::FP_ROUND_INREG: {
2662    EVT EVT = cast<VTSDNode>(N2)->getVT();
2663    assert(VT == N1.getValueType() && "Not an inreg round!");
2664    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2665           "Cannot FP_ROUND_INREG integer types");
2666    assert(EVT.isVector() == VT.isVector() &&
2667           "FP_ROUND_INREG type should be vector iff the operand "
2668           "type is vector!");
2669    assert((!EVT.isVector() ||
2670            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2671           "Vector element counts must match in FP_ROUND_INREG");
2672    assert(EVT.bitsLE(VT) && "Not rounding down!");
2673    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2674    break;
2675  }
2676  case ISD::FP_ROUND:
2677    assert(VT.isFloatingPoint() &&
2678           N1.getValueType().isFloatingPoint() &&
2679           VT.bitsLE(N1.getValueType()) &&
2680           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2681    if (N1.getValueType() == VT) return N1;  // noop conversion.
2682    break;
2683  case ISD::AssertSext:
2684  case ISD::AssertZext: {
2685    EVT EVT = cast<VTSDNode>(N2)->getVT();
2686    assert(VT == N1.getValueType() && "Not an inreg extend!");
2687    assert(VT.isInteger() && EVT.isInteger() &&
2688           "Cannot *_EXTEND_INREG FP types");
2689    assert(!EVT.isVector() &&
2690           "AssertSExt/AssertZExt type should be the vector element type "
2691           "rather than the vector type!");
2692    assert(EVT.bitsLE(VT) && "Not extending!");
2693    if (VT == EVT) return N1; // noop assertion.
2694    break;
2695  }
2696  case ISD::SIGN_EXTEND_INREG: {
2697    EVT EVT = cast<VTSDNode>(N2)->getVT();
2698    assert(VT == N1.getValueType() && "Not an inreg extend!");
2699    assert(VT.isInteger() && EVT.isInteger() &&
2700           "Cannot *_EXTEND_INREG FP types");
2701    assert(EVT.isVector() == VT.isVector() &&
2702           "SIGN_EXTEND_INREG type should be vector iff the operand "
2703           "type is vector!");
2704    assert((!EVT.isVector() ||
2705            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2706           "Vector element counts must match in SIGN_EXTEND_INREG");
2707    assert(EVT.bitsLE(VT) && "Not extending!");
2708    if (EVT == VT) return N1;  // Not actually extending
2709
2710    if (N1C) {
2711      APInt Val = N1C->getAPIntValue();
2712      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2713      Val <<= Val.getBitWidth()-FromBits;
2714      Val = Val.ashr(Val.getBitWidth()-FromBits);
2715      return getConstant(Val, VT);
2716    }
2717    break;
2718  }
2719  case ISD::EXTRACT_VECTOR_ELT:
2720    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2721    if (N1.getOpcode() == ISD::UNDEF)
2722      return getUNDEF(VT);
2723
2724    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2725    // expanding copies of large vectors from registers.
2726    if (N2C &&
2727        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2728        N1.getNumOperands() > 0) {
2729      unsigned Factor =
2730        N1.getOperand(0).getValueType().getVectorNumElements();
2731      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2732                     N1.getOperand(N2C->getZExtValue() / Factor),
2733                     getConstant(N2C->getZExtValue() % Factor,
2734                                 N2.getValueType()));
2735    }
2736
2737    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2738    // expanding large vector constants.
2739    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2740      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2741      EVT VEltTy = N1.getValueType().getVectorElementType();
2742      if (Elt.getValueType() != VEltTy) {
2743        // If the vector element type is not legal, the BUILD_VECTOR operands
2744        // are promoted and implicitly truncated.  Make that explicit here.
2745        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2746      }
2747      if (VT != VEltTy) {
2748        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2749        // result is implicitly extended.
2750        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2751      }
2752      return Elt;
2753    }
2754
2755    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2756    // operations are lowered to scalars.
2757    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2758      // If the indices are the same, return the inserted element.
2759      if (N1.getOperand(2) == N2)
2760        return N1.getOperand(1);
2761      // If the indices are known different, extract the element from
2762      // the original vector.
2763      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2764               isa<ConstantSDNode>(N2))
2765        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2766    }
2767    break;
2768  case ISD::EXTRACT_ELEMENT:
2769    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2770    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2771           (N1.getValueType().isInteger() == VT.isInteger()) &&
2772           "Wrong types for EXTRACT_ELEMENT!");
2773
2774    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2775    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2776    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2777    if (N1.getOpcode() == ISD::BUILD_PAIR)
2778      return N1.getOperand(N2C->getZExtValue());
2779
2780    // EXTRACT_ELEMENT of a constant int is also very common.
2781    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2782      unsigned ElementSize = VT.getSizeInBits();
2783      unsigned Shift = ElementSize * N2C->getZExtValue();
2784      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2785      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2786    }
2787    break;
2788  case ISD::EXTRACT_SUBVECTOR:
2789    if (N1.getValueType() == VT) // Trivial extraction.
2790      return N1;
2791    break;
2792  }
2793
2794  if (N1C) {
2795    if (N2C) {
2796      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2797      if (SV.getNode()) return SV;
2798    } else {      // Cannonicalize constant to RHS if commutative
2799      if (isCommutativeBinOp(Opcode)) {
2800        std::swap(N1C, N2C);
2801        std::swap(N1, N2);
2802      }
2803    }
2804  }
2805
2806  // Constant fold FP operations.
2807  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2808  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2809  if (N1CFP) {
2810    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2811      // Cannonicalize constant to RHS if commutative
2812      std::swap(N1CFP, N2CFP);
2813      std::swap(N1, N2);
2814    } else if (N2CFP && VT != MVT::ppcf128) {
2815      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2816      APFloat::opStatus s;
2817      switch (Opcode) {
2818      case ISD::FADD:
2819        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2820        if (s != APFloat::opInvalidOp)
2821          return getConstantFP(V1, VT);
2822        break;
2823      case ISD::FSUB:
2824        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2825        if (s!=APFloat::opInvalidOp)
2826          return getConstantFP(V1, VT);
2827        break;
2828      case ISD::FMUL:
2829        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2830        if (s!=APFloat::opInvalidOp)
2831          return getConstantFP(V1, VT);
2832        break;
2833      case ISD::FDIV:
2834        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2835        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2836          return getConstantFP(V1, VT);
2837        break;
2838      case ISD::FREM :
2839        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2840        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2841          return getConstantFP(V1, VT);
2842        break;
2843      case ISD::FCOPYSIGN:
2844        V1.copySign(V2);
2845        return getConstantFP(V1, VT);
2846      default: break;
2847      }
2848    }
2849  }
2850
2851  // Canonicalize an UNDEF to the RHS, even over a constant.
2852  if (N1.getOpcode() == ISD::UNDEF) {
2853    if (isCommutativeBinOp(Opcode)) {
2854      std::swap(N1, N2);
2855    } else {
2856      switch (Opcode) {
2857      case ISD::FP_ROUND_INREG:
2858      case ISD::SIGN_EXTEND_INREG:
2859      case ISD::SUB:
2860      case ISD::FSUB:
2861      case ISD::FDIV:
2862      case ISD::FREM:
2863      case ISD::SRA:
2864        return N1;     // fold op(undef, arg2) -> undef
2865      case ISD::UDIV:
2866      case ISD::SDIV:
2867      case ISD::UREM:
2868      case ISD::SREM:
2869      case ISD::SRL:
2870      case ISD::SHL:
2871        if (!VT.isVector())
2872          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2873        // For vectors, we can't easily build an all zero vector, just return
2874        // the LHS.
2875        return N2;
2876      }
2877    }
2878  }
2879
2880  // Fold a bunch of operators when the RHS is undef.
2881  if (N2.getOpcode() == ISD::UNDEF) {
2882    switch (Opcode) {
2883    case ISD::XOR:
2884      if (N1.getOpcode() == ISD::UNDEF)
2885        // Handle undef ^ undef -> 0 special case. This is a common
2886        // idiom (misuse).
2887        return getConstant(0, VT);
2888      // fallthrough
2889    case ISD::ADD:
2890    case ISD::ADDC:
2891    case ISD::ADDE:
2892    case ISD::SUB:
2893    case ISD::UDIV:
2894    case ISD::SDIV:
2895    case ISD::UREM:
2896    case ISD::SREM:
2897      return N2;       // fold op(arg1, undef) -> undef
2898    case ISD::FADD:
2899    case ISD::FSUB:
2900    case ISD::FMUL:
2901    case ISD::FDIV:
2902    case ISD::FREM:
2903      if (UnsafeFPMath)
2904        return N2;
2905      break;
2906    case ISD::MUL:
2907    case ISD::AND:
2908    case ISD::SRL:
2909    case ISD::SHL:
2910      if (!VT.isVector())
2911        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2912      // For vectors, we can't easily build an all zero vector, just return
2913      // the LHS.
2914      return N1;
2915    case ISD::OR:
2916      if (!VT.isVector())
2917        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2918      // For vectors, we can't easily build an all one vector, just return
2919      // the LHS.
2920      return N1;
2921    case ISD::SRA:
2922      return N1;
2923    }
2924  }
2925
2926  // Memoize this node if possible.
2927  SDNode *N;
2928  SDVTList VTs = getVTList(VT);
2929  if (VT != MVT::Flag) {
2930    SDValue Ops[] = { N1, N2 };
2931    FoldingSetNodeID ID;
2932    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2933    void *IP = 0;
2934    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2935      return SDValue(E, 0);
2936
2937    N = NodeAllocator.Allocate<BinarySDNode>();
2938    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2939    CSEMap.InsertNode(N, IP);
2940  } else {
2941    N = NodeAllocator.Allocate<BinarySDNode>();
2942    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2943  }
2944
2945  AllNodes.push_back(N);
2946#ifndef NDEBUG
2947  VerifyNode(N);
2948#endif
2949  return SDValue(N, 0);
2950}
2951
2952SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2953                              SDValue N1, SDValue N2, SDValue N3) {
2954  // Perform various simplifications.
2955  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2956  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2957  switch (Opcode) {
2958  case ISD::CONCAT_VECTORS:
2959    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2960    // one big BUILD_VECTOR.
2961    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2962        N2.getOpcode() == ISD::BUILD_VECTOR &&
2963        N3.getOpcode() == ISD::BUILD_VECTOR) {
2964      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2965      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2966      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2967      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2968    }
2969    break;
2970  case ISD::SETCC: {
2971    // Use FoldSetCC to simplify SETCC's.
2972    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2973    if (Simp.getNode()) return Simp;
2974    break;
2975  }
2976  case ISD::SELECT:
2977    if (N1C) {
2978     if (N1C->getZExtValue())
2979        return N2;             // select true, X, Y -> X
2980      else
2981        return N3;             // select false, X, Y -> Y
2982    }
2983
2984    if (N2 == N3) return N2;   // select C, X, X -> X
2985    break;
2986  case ISD::BRCOND:
2987    if (N2C) {
2988      if (N2C->getZExtValue()) // Unconditional branch
2989        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2990      else
2991        return N1;         // Never-taken branch
2992    }
2993    break;
2994  case ISD::VECTOR_SHUFFLE:
2995    llvm_unreachable("should use getVectorShuffle constructor!");
2996    break;
2997  case ISD::BIT_CONVERT:
2998    // Fold bit_convert nodes from a type to themselves.
2999    if (N1.getValueType() == VT)
3000      return N1;
3001    break;
3002  }
3003
3004  // Memoize node if it doesn't produce a flag.
3005  SDNode *N;
3006  SDVTList VTs = getVTList(VT);
3007  if (VT != MVT::Flag) {
3008    SDValue Ops[] = { N1, N2, N3 };
3009    FoldingSetNodeID ID;
3010    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3011    void *IP = 0;
3012    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3013      return SDValue(E, 0);
3014
3015    N = NodeAllocator.Allocate<TernarySDNode>();
3016    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3017    CSEMap.InsertNode(N, IP);
3018  } else {
3019    N = NodeAllocator.Allocate<TernarySDNode>();
3020    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3021  }
3022
3023  AllNodes.push_back(N);
3024#ifndef NDEBUG
3025  VerifyNode(N);
3026#endif
3027  return SDValue(N, 0);
3028}
3029
3030SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3031                              SDValue N1, SDValue N2, SDValue N3,
3032                              SDValue N4) {
3033  SDValue Ops[] = { N1, N2, N3, N4 };
3034  return getNode(Opcode, DL, VT, Ops, 4);
3035}
3036
3037SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3038                              SDValue N1, SDValue N2, SDValue N3,
3039                              SDValue N4, SDValue N5) {
3040  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3041  return getNode(Opcode, DL, VT, Ops, 5);
3042}
3043
3044/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3045/// the incoming stack arguments to be loaded from the stack.
3046SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3047  SmallVector<SDValue, 8> ArgChains;
3048
3049  // Include the original chain at the beginning of the list. When this is
3050  // used by target LowerCall hooks, this helps legalize find the
3051  // CALLSEQ_BEGIN node.
3052  ArgChains.push_back(Chain);
3053
3054  // Add a chain value for each stack argument.
3055  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3056       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3057    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3058      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3059        if (FI->getIndex() < 0)
3060          ArgChains.push_back(SDValue(L, 1));
3061
3062  // Build a tokenfactor for all the chains.
3063  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3064                 &ArgChains[0], ArgChains.size());
3065}
3066
3067/// getMemsetValue - Vectorized representation of the memset value
3068/// operand.
3069static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3070                              DebugLoc dl) {
3071  unsigned NumBits = VT.isVector() ?
3072    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3073  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3074    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3075    unsigned Shift = 8;
3076    for (unsigned i = NumBits; i > 8; i >>= 1) {
3077      Val = (Val << Shift) | Val;
3078      Shift <<= 1;
3079    }
3080    if (VT.isInteger())
3081      return DAG.getConstant(Val, VT);
3082    return DAG.getConstantFP(APFloat(Val), VT);
3083  }
3084
3085  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3086  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3087  unsigned Shift = 8;
3088  for (unsigned i = NumBits; i > 8; i >>= 1) {
3089    Value = DAG.getNode(ISD::OR, dl, VT,
3090                        DAG.getNode(ISD::SHL, dl, VT, Value,
3091                                    DAG.getConstant(Shift,
3092                                                    TLI.getShiftAmountTy())),
3093                        Value);
3094    Shift <<= 1;
3095  }
3096
3097  return Value;
3098}
3099
3100/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3101/// used when a memcpy is turned into a memset when the source is a constant
3102/// string ptr.
3103static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3104                                  const TargetLowering &TLI,
3105                                  std::string &Str, unsigned Offset) {
3106  // Handle vector with all elements zero.
3107  if (Str.empty()) {
3108    if (VT.isInteger())
3109      return DAG.getConstant(0, VT);
3110    unsigned NumElts = VT.getVectorNumElements();
3111    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3112    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3113                       DAG.getConstant(0,
3114                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3115  }
3116
3117  assert(!VT.isVector() && "Can't handle vector type here!");
3118  unsigned NumBits = VT.getSizeInBits();
3119  unsigned MSB = NumBits / 8;
3120  uint64_t Val = 0;
3121  if (TLI.isLittleEndian())
3122    Offset = Offset + MSB - 1;
3123  for (unsigned i = 0; i != MSB; ++i) {
3124    Val = (Val << 8) | (unsigned char)Str[Offset];
3125    Offset += TLI.isLittleEndian() ? -1 : 1;
3126  }
3127  return DAG.getConstant(Val, VT);
3128}
3129
3130/// getMemBasePlusOffset - Returns base and offset node for the
3131///
3132static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3133                                      SelectionDAG &DAG) {
3134  EVT VT = Base.getValueType();
3135  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3136                     VT, Base, DAG.getConstant(Offset, VT));
3137}
3138
3139/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3140///
3141static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3142  unsigned SrcDelta = 0;
3143  GlobalAddressSDNode *G = NULL;
3144  if (Src.getOpcode() == ISD::GlobalAddress)
3145    G = cast<GlobalAddressSDNode>(Src);
3146  else if (Src.getOpcode() == ISD::ADD &&
3147           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3148           Src.getOperand(1).getOpcode() == ISD::Constant) {
3149    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3150    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3151  }
3152  if (!G)
3153    return false;
3154
3155  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3156  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3157    return true;
3158
3159  return false;
3160}
3161
3162/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3163/// to replace the memset / memcpy is below the threshold. It also returns the
3164/// types of the sequence of memory ops to perform memset / memcpy.
3165static
3166bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3167                              SDValue Dst, SDValue Src,
3168                              unsigned Limit, uint64_t Size, unsigned &Align,
3169                              std::string &Str, bool &isSrcStr,
3170                              SelectionDAG &DAG,
3171                              const TargetLowering &TLI) {
3172  isSrcStr = isMemSrcFromString(Src, Str);
3173  bool isSrcConst = isa<ConstantSDNode>(Src);
3174  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3175  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3176  if (VT != MVT::iAny) {
3177    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3178    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3179    // If source is a string constant, this will require an unaligned load.
3180    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3181      if (Dst.getOpcode() != ISD::FrameIndex) {
3182        // Can't change destination alignment. It requires a unaligned store.
3183        if (AllowUnalign)
3184          VT = MVT::iAny;
3185      } else {
3186        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3187        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3188        if (MFI->isFixedObjectIndex(FI)) {
3189          // Can't change destination alignment. It requires a unaligned store.
3190          if (AllowUnalign)
3191            VT = MVT::iAny;
3192        } else {
3193          // Give the stack frame object a larger alignment if needed.
3194          if (MFI->getObjectAlignment(FI) < NewAlign)
3195            MFI->setObjectAlignment(FI, NewAlign);
3196          Align = NewAlign;
3197        }
3198      }
3199    }
3200  }
3201
3202  if (VT == MVT::iAny) {
3203    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3204      VT = MVT::i64;
3205    } else {
3206      switch (Align & 7) {
3207      case 0:  VT = MVT::i64; break;
3208      case 4:  VT = MVT::i32; break;
3209      case 2:  VT = MVT::i16; break;
3210      default: VT = MVT::i8;  break;
3211      }
3212    }
3213
3214    MVT LVT = MVT::i64;
3215    while (!TLI.isTypeLegal(LVT))
3216      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3217    assert(LVT.isInteger());
3218
3219    if (VT.bitsGT(LVT))
3220      VT = LVT;
3221  }
3222
3223  unsigned NumMemOps = 0;
3224  while (Size != 0) {
3225    unsigned VTSize = VT.getSizeInBits() / 8;
3226    while (VTSize > Size) {
3227      // For now, only use non-vector load / store's for the left-over pieces.
3228      if (VT.isVector()) {
3229        VT = MVT::i64;
3230        while (!TLI.isTypeLegal(VT))
3231          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3232        VTSize = VT.getSizeInBits() / 8;
3233      } else {
3234        // This can result in a type that is not legal on the target, e.g.
3235        // 1 or 2 bytes on PPC.
3236        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3237        VTSize >>= 1;
3238      }
3239    }
3240
3241    if (++NumMemOps > Limit)
3242      return false;
3243    MemOps.push_back(VT);
3244    Size -= VTSize;
3245  }
3246
3247  return true;
3248}
3249
3250static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3251                                         SDValue Chain, SDValue Dst,
3252                                         SDValue Src, uint64_t Size,
3253                                         unsigned Align, bool AlwaysInline,
3254                                         const Value *DstSV, uint64_t DstSVOff,
3255                                         const Value *SrcSV, uint64_t SrcSVOff){
3256  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3257
3258  // Expand memcpy to a series of load and store ops if the size operand falls
3259  // below a certain threshold.
3260  std::vector<EVT> MemOps;
3261  uint64_t Limit = -1ULL;
3262  if (!AlwaysInline)
3263    Limit = TLI.getMaxStoresPerMemcpy();
3264  unsigned DstAlign = Align;  // Destination alignment can change.
3265  std::string Str;
3266  bool CopyFromStr;
3267  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3268                                Str, CopyFromStr, DAG, TLI))
3269    return SDValue();
3270
3271
3272  bool isZeroStr = CopyFromStr && Str.empty();
3273  SmallVector<SDValue, 8> OutChains;
3274  unsigned NumMemOps = MemOps.size();
3275  uint64_t SrcOff = 0, DstOff = 0;
3276  for (unsigned i = 0; i != NumMemOps; ++i) {
3277    EVT VT = MemOps[i];
3278    unsigned VTSize = VT.getSizeInBits() / 8;
3279    SDValue Value, Store;
3280
3281    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3282      // It's unlikely a store of a vector immediate can be done in a single
3283      // instruction. It would require a load from a constantpool first.
3284      // We also handle store a vector with all zero's.
3285      // FIXME: Handle other cases where store of vector immediate is done in
3286      // a single instruction.
3287      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3288      Store = DAG.getStore(Chain, dl, Value,
3289                           getMemBasePlusOffset(Dst, DstOff, DAG),
3290                           DstSV, DstSVOff + DstOff, false, DstAlign);
3291    } else {
3292      // The type might not be legal for the target.  This should only happen
3293      // if the type is smaller than a legal type, as on PPC, so the right
3294      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3295      // to Load/Store if NVT==VT.
3296      // FIXME does the case above also need this?
3297      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3298      assert(NVT.bitsGE(VT));
3299      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3300                             getMemBasePlusOffset(Src, SrcOff, DAG),
3301                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3302      Store = DAG.getTruncStore(Chain, dl, Value,
3303                             getMemBasePlusOffset(Dst, DstOff, DAG),
3304                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3305    }
3306    OutChains.push_back(Store);
3307    SrcOff += VTSize;
3308    DstOff += VTSize;
3309  }
3310
3311  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3312                     &OutChains[0], OutChains.size());
3313}
3314
3315static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3316                                          SDValue Chain, SDValue Dst,
3317                                          SDValue Src, uint64_t Size,
3318                                          unsigned Align, bool AlwaysInline,
3319                                          const Value *DstSV, uint64_t DstSVOff,
3320                                          const Value *SrcSV, uint64_t SrcSVOff){
3321  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3322
3323  // Expand memmove to a series of load and store ops if the size operand falls
3324  // below a certain threshold.
3325  std::vector<EVT> MemOps;
3326  uint64_t Limit = -1ULL;
3327  if (!AlwaysInline)
3328    Limit = TLI.getMaxStoresPerMemmove();
3329  unsigned DstAlign = Align;  // Destination alignment can change.
3330  std::string Str;
3331  bool CopyFromStr;
3332  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3333                                Str, CopyFromStr, DAG, TLI))
3334    return SDValue();
3335
3336  uint64_t SrcOff = 0, DstOff = 0;
3337
3338  SmallVector<SDValue, 8> LoadValues;
3339  SmallVector<SDValue, 8> LoadChains;
3340  SmallVector<SDValue, 8> OutChains;
3341  unsigned NumMemOps = MemOps.size();
3342  for (unsigned i = 0; i < NumMemOps; i++) {
3343    EVT VT = MemOps[i];
3344    unsigned VTSize = VT.getSizeInBits() / 8;
3345    SDValue Value, Store;
3346
3347    Value = DAG.getLoad(VT, dl, Chain,
3348                        getMemBasePlusOffset(Src, SrcOff, DAG),
3349                        SrcSV, SrcSVOff + SrcOff, false, Align);
3350    LoadValues.push_back(Value);
3351    LoadChains.push_back(Value.getValue(1));
3352    SrcOff += VTSize;
3353  }
3354  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3355                      &LoadChains[0], LoadChains.size());
3356  OutChains.clear();
3357  for (unsigned i = 0; i < NumMemOps; i++) {
3358    EVT VT = MemOps[i];
3359    unsigned VTSize = VT.getSizeInBits() / 8;
3360    SDValue Value, Store;
3361
3362    Store = DAG.getStore(Chain, dl, LoadValues[i],
3363                         getMemBasePlusOffset(Dst, DstOff, DAG),
3364                         DstSV, DstSVOff + DstOff, false, DstAlign);
3365    OutChains.push_back(Store);
3366    DstOff += VTSize;
3367  }
3368
3369  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3370                     &OutChains[0], OutChains.size());
3371}
3372
3373static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3374                                 SDValue Chain, SDValue Dst,
3375                                 SDValue Src, uint64_t Size,
3376                                 unsigned Align,
3377                                 const Value *DstSV, uint64_t DstSVOff) {
3378  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3379
3380  // Expand memset to a series of load/store ops if the size operand
3381  // falls below a certain threshold.
3382  std::vector<EVT> MemOps;
3383  std::string Str;
3384  bool CopyFromStr;
3385  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3386                                Size, Align, Str, CopyFromStr, DAG, TLI))
3387    return SDValue();
3388
3389  SmallVector<SDValue, 8> OutChains;
3390  uint64_t DstOff = 0;
3391
3392  unsigned NumMemOps = MemOps.size();
3393  for (unsigned i = 0; i < NumMemOps; i++) {
3394    EVT VT = MemOps[i];
3395    unsigned VTSize = VT.getSizeInBits() / 8;
3396    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3397    SDValue Store = DAG.getStore(Chain, dl, Value,
3398                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3399                                 DstSV, DstSVOff + DstOff);
3400    OutChains.push_back(Store);
3401    DstOff += VTSize;
3402  }
3403
3404  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3405                     &OutChains[0], OutChains.size());
3406}
3407
3408SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3409                                SDValue Src, SDValue Size,
3410                                unsigned Align, bool AlwaysInline,
3411                                const Value *DstSV, uint64_t DstSVOff,
3412                                const Value *SrcSV, uint64_t SrcSVOff) {
3413
3414  // Check to see if we should lower the memcpy to loads and stores first.
3415  // For cases within the target-specified limits, this is the best choice.
3416  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3417  if (ConstantSize) {
3418    // Memcpy with size zero? Just return the original chain.
3419    if (ConstantSize->isNullValue())
3420      return Chain;
3421
3422    SDValue Result =
3423      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3424                              ConstantSize->getZExtValue(),
3425                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3426    if (Result.getNode())
3427      return Result;
3428  }
3429
3430  // Then check to see if we should lower the memcpy with target-specific
3431  // code. If the target chooses to do this, this is the next best.
3432  SDValue Result =
3433    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3434                                AlwaysInline,
3435                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3436  if (Result.getNode())
3437    return Result;
3438
3439  // If we really need inline code and the target declined to provide it,
3440  // use a (potentially long) sequence of loads and stores.
3441  if (AlwaysInline) {
3442    assert(ConstantSize && "AlwaysInline requires a constant size!");
3443    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3444                                   ConstantSize->getZExtValue(), Align, true,
3445                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3446  }
3447
3448  // Emit a library call.
3449  TargetLowering::ArgListTy Args;
3450  TargetLowering::ArgListEntry Entry;
3451  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3452  Entry.Node = Dst; Args.push_back(Entry);
3453  Entry.Node = Src; Args.push_back(Entry);
3454  Entry.Node = Size; Args.push_back(Entry);
3455  // FIXME: pass in DebugLoc
3456  std::pair<SDValue,SDValue> CallResult =
3457    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3458                    false, false, false, false, 0,
3459                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3460                    /*isReturnValueUsed=*/false,
3461                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3462                                      TLI.getPointerTy()),
3463                    Args, *this, dl, GetOrdering(Chain.getNode()));
3464  return CallResult.second;
3465}
3466
3467SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3468                                 SDValue Src, SDValue Size,
3469                                 unsigned Align,
3470                                 const Value *DstSV, uint64_t DstSVOff,
3471                                 const Value *SrcSV, uint64_t SrcSVOff) {
3472
3473  // Check to see if we should lower the memmove to loads and stores first.
3474  // For cases within the target-specified limits, this is the best choice.
3475  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3476  if (ConstantSize) {
3477    // Memmove with size zero? Just return the original chain.
3478    if (ConstantSize->isNullValue())
3479      return Chain;
3480
3481    SDValue Result =
3482      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3483                               ConstantSize->getZExtValue(),
3484                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3485    if (Result.getNode())
3486      return Result;
3487  }
3488
3489  // Then check to see if we should lower the memmove with target-specific
3490  // code. If the target chooses to do this, this is the next best.
3491  SDValue Result =
3492    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3493                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3494  if (Result.getNode())
3495    return Result;
3496
3497  // Emit a library call.
3498  TargetLowering::ArgListTy Args;
3499  TargetLowering::ArgListEntry Entry;
3500  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3501  Entry.Node = Dst; Args.push_back(Entry);
3502  Entry.Node = Src; Args.push_back(Entry);
3503  Entry.Node = Size; Args.push_back(Entry);
3504  // FIXME:  pass in DebugLoc
3505  std::pair<SDValue,SDValue> CallResult =
3506    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3507                    false, false, false, false, 0,
3508                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3509                    /*isReturnValueUsed=*/false,
3510                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3511                                      TLI.getPointerTy()),
3512                    Args, *this, dl, GetOrdering(Chain.getNode()));
3513  return CallResult.second;
3514}
3515
3516SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3517                                SDValue Src, SDValue Size,
3518                                unsigned Align,
3519                                const Value *DstSV, uint64_t DstSVOff) {
3520
3521  // Check to see if we should lower the memset to stores first.
3522  // For cases within the target-specified limits, this is the best choice.
3523  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3524  if (ConstantSize) {
3525    // Memset with size zero? Just return the original chain.
3526    if (ConstantSize->isNullValue())
3527      return Chain;
3528
3529    SDValue Result =
3530      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3531                      Align, DstSV, DstSVOff);
3532    if (Result.getNode())
3533      return Result;
3534  }
3535
3536  // Then check to see if we should lower the memset with target-specific
3537  // code. If the target chooses to do this, this is the next best.
3538  SDValue Result =
3539    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3540                                DstSV, DstSVOff);
3541  if (Result.getNode())
3542    return Result;
3543
3544  // Emit a library call.
3545  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3546  TargetLowering::ArgListTy Args;
3547  TargetLowering::ArgListEntry Entry;
3548  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3549  Args.push_back(Entry);
3550  // Extend or truncate the argument to be an i32 value for the call.
3551  if (Src.getValueType().bitsGT(MVT::i32))
3552    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3553  else
3554    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3555  Entry.Node = Src;
3556  Entry.Ty = Type::getInt32Ty(*getContext());
3557  Entry.isSExt = true;
3558  Args.push_back(Entry);
3559  Entry.Node = Size;
3560  Entry.Ty = IntPtrTy;
3561  Entry.isSExt = false;
3562  Args.push_back(Entry);
3563  // FIXME: pass in DebugLoc
3564  std::pair<SDValue,SDValue> CallResult =
3565    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3566                    false, false, false, false, 0,
3567                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3568                    /*isReturnValueUsed=*/false,
3569                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3570                                      TLI.getPointerTy()),
3571                    Args, *this, dl, GetOrdering(Chain.getNode()));
3572  return CallResult.second;
3573}
3574
3575SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3576                                SDValue Chain,
3577                                SDValue Ptr, SDValue Cmp,
3578                                SDValue Swp, const Value* PtrVal,
3579                                unsigned Alignment) {
3580  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3581    Alignment = getEVTAlignment(MemVT);
3582
3583  // Check if the memory reference references a frame index
3584  if (!PtrVal)
3585    if (const FrameIndexSDNode *FI =
3586          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3587      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3588
3589  MachineFunction &MF = getMachineFunction();
3590  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3591
3592  // For now, atomics are considered to be volatile always.
3593  Flags |= MachineMemOperand::MOVolatile;
3594
3595  MachineMemOperand *MMO =
3596    MF.getMachineMemOperand(PtrVal, Flags, 0,
3597                            MemVT.getStoreSize(), Alignment);
3598
3599  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3600}
3601
3602SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3603                                SDValue Chain,
3604                                SDValue Ptr, SDValue Cmp,
3605                                SDValue Swp, MachineMemOperand *MMO) {
3606  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3607  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3608
3609  EVT VT = Cmp.getValueType();
3610
3611  SDVTList VTs = getVTList(VT, MVT::Other);
3612  FoldingSetNodeID ID;
3613  ID.AddInteger(MemVT.getRawBits());
3614  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3615  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3616  void* IP = 0;
3617  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3618    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3619    return SDValue(E, 0);
3620  }
3621  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3622  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3623  CSEMap.InsertNode(N, IP);
3624  AllNodes.push_back(N);
3625  return SDValue(N, 0);
3626}
3627
3628SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3629                                SDValue Chain,
3630                                SDValue Ptr, SDValue Val,
3631                                const Value* PtrVal,
3632                                unsigned Alignment) {
3633  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3634    Alignment = getEVTAlignment(MemVT);
3635
3636  // Check if the memory reference references a frame index
3637  if (!PtrVal)
3638    if (const FrameIndexSDNode *FI =
3639          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3640      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3641
3642  MachineFunction &MF = getMachineFunction();
3643  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3644
3645  // For now, atomics are considered to be volatile always.
3646  Flags |= MachineMemOperand::MOVolatile;
3647
3648  MachineMemOperand *MMO =
3649    MF.getMachineMemOperand(PtrVal, Flags, 0,
3650                            MemVT.getStoreSize(), Alignment);
3651
3652  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3653}
3654
3655SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3656                                SDValue Chain,
3657                                SDValue Ptr, SDValue Val,
3658                                MachineMemOperand *MMO) {
3659  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3660          Opcode == ISD::ATOMIC_LOAD_SUB ||
3661          Opcode == ISD::ATOMIC_LOAD_AND ||
3662          Opcode == ISD::ATOMIC_LOAD_OR ||
3663          Opcode == ISD::ATOMIC_LOAD_XOR ||
3664          Opcode == ISD::ATOMIC_LOAD_NAND ||
3665          Opcode == ISD::ATOMIC_LOAD_MIN ||
3666          Opcode == ISD::ATOMIC_LOAD_MAX ||
3667          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3668          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3669          Opcode == ISD::ATOMIC_SWAP) &&
3670         "Invalid Atomic Op");
3671
3672  EVT VT = Val.getValueType();
3673
3674  SDVTList VTs = getVTList(VT, MVT::Other);
3675  FoldingSetNodeID ID;
3676  ID.AddInteger(MemVT.getRawBits());
3677  SDValue Ops[] = {Chain, Ptr, Val};
3678  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3679  void* IP = 0;
3680  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3681    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3682    return SDValue(E, 0);
3683  }
3684  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3685  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3686  CSEMap.InsertNode(N, IP);
3687  AllNodes.push_back(N);
3688  return SDValue(N, 0);
3689}
3690
3691/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3692/// Allowed to return something different (and simpler) if Simplify is true.
3693SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3694                                     DebugLoc dl) {
3695  if (NumOps == 1)
3696    return Ops[0];
3697
3698  SmallVector<EVT, 4> VTs;
3699  VTs.reserve(NumOps);
3700  for (unsigned i = 0; i < NumOps; ++i)
3701    VTs.push_back(Ops[i].getValueType());
3702  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3703                 Ops, NumOps);
3704}
3705
3706SDValue
3707SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3708                                  const EVT *VTs, unsigned NumVTs,
3709                                  const SDValue *Ops, unsigned NumOps,
3710                                  EVT MemVT, const Value *srcValue, int SVOff,
3711                                  unsigned Align, bool Vol,
3712                                  bool ReadMem, bool WriteMem) {
3713  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3714                             MemVT, srcValue, SVOff, Align, Vol,
3715                             ReadMem, WriteMem);
3716}
3717
3718SDValue
3719SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3720                                  const SDValue *Ops, unsigned NumOps,
3721                                  EVT MemVT, const Value *srcValue, int SVOff,
3722                                  unsigned Align, bool Vol,
3723                                  bool ReadMem, bool WriteMem) {
3724  if (Align == 0)  // Ensure that codegen never sees alignment 0
3725    Align = getEVTAlignment(MemVT);
3726
3727  MachineFunction &MF = getMachineFunction();
3728  unsigned Flags = 0;
3729  if (WriteMem)
3730    Flags |= MachineMemOperand::MOStore;
3731  if (ReadMem)
3732    Flags |= MachineMemOperand::MOLoad;
3733  if (Vol)
3734    Flags |= MachineMemOperand::MOVolatile;
3735  MachineMemOperand *MMO =
3736    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3737                            MemVT.getStoreSize(), Align);
3738
3739  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3740}
3741
3742SDValue
3743SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3744                                  const SDValue *Ops, unsigned NumOps,
3745                                  EVT MemVT, MachineMemOperand *MMO) {
3746  assert((Opcode == ISD::INTRINSIC_VOID ||
3747          Opcode == ISD::INTRINSIC_W_CHAIN ||
3748          (Opcode <= INT_MAX &&
3749           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3750         "Opcode is not a memory-accessing opcode!");
3751
3752  // Memoize the node unless it returns a flag.
3753  MemIntrinsicSDNode *N;
3754  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3755    FoldingSetNodeID ID;
3756    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3757    void *IP = 0;
3758    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3759      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3760      return SDValue(E, 0);
3761    }
3762
3763    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3764    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3765    CSEMap.InsertNode(N, IP);
3766  } else {
3767    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3768    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3769  }
3770  AllNodes.push_back(N);
3771  return SDValue(N, 0);
3772}
3773
3774SDValue
3775SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3776                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3777                      SDValue Ptr, SDValue Offset,
3778                      const Value *SV, int SVOffset, EVT MemVT,
3779                      bool isVolatile, unsigned Alignment) {
3780  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3781    Alignment = getEVTAlignment(VT);
3782
3783  // Check if the memory reference references a frame index
3784  if (!SV)
3785    if (const FrameIndexSDNode *FI =
3786          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3787      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3788
3789  MachineFunction &MF = getMachineFunction();
3790  unsigned Flags = MachineMemOperand::MOLoad;
3791  if (isVolatile)
3792    Flags |= MachineMemOperand::MOVolatile;
3793  MachineMemOperand *MMO =
3794    MF.getMachineMemOperand(SV, Flags, SVOffset,
3795                            MemVT.getStoreSize(), Alignment);
3796  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3797}
3798
3799SDValue
3800SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3801                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3802                      SDValue Ptr, SDValue Offset, EVT MemVT,
3803                      MachineMemOperand *MMO) {
3804  if (VT == MemVT) {
3805    ExtType = ISD::NON_EXTLOAD;
3806  } else if (ExtType == ISD::NON_EXTLOAD) {
3807    assert(VT == MemVT && "Non-extending load from different memory type!");
3808  } else {
3809    // Extending load.
3810    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3811           "Should only be an extending load, not truncating!");
3812    assert(VT.isInteger() == MemVT.isInteger() &&
3813           "Cannot convert from FP to Int or Int -> FP!");
3814    assert(VT.isVector() == MemVT.isVector() &&
3815           "Cannot use trunc store to convert to or from a vector!");
3816    assert((!VT.isVector() ||
3817            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3818           "Cannot use trunc store to change the number of vector elements!");
3819  }
3820
3821  bool Indexed = AM != ISD::UNINDEXED;
3822  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3823         "Unindexed load with an offset!");
3824
3825  SDVTList VTs = Indexed ?
3826    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3827  SDValue Ops[] = { Chain, Ptr, Offset };
3828  FoldingSetNodeID ID;
3829  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3830  ID.AddInteger(MemVT.getRawBits());
3831  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3832  void *IP = 0;
3833  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3834    cast<LoadSDNode>(E)->refineAlignment(MMO);
3835    return SDValue(E, 0);
3836  }
3837  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3838  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3839  CSEMap.InsertNode(N, IP);
3840  AllNodes.push_back(N);
3841  return SDValue(N, 0);
3842}
3843
3844SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3845                              SDValue Chain, SDValue Ptr,
3846                              const Value *SV, int SVOffset,
3847                              bool isVolatile, unsigned Alignment) {
3848  SDValue Undef = getUNDEF(Ptr.getValueType());
3849  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3850                 SV, SVOffset, VT, isVolatile, Alignment);
3851}
3852
3853SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3854                                 SDValue Chain, SDValue Ptr,
3855                                 const Value *SV,
3856                                 int SVOffset, EVT MemVT,
3857                                 bool isVolatile, unsigned Alignment) {
3858  SDValue Undef = getUNDEF(Ptr.getValueType());
3859  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3860                 SV, SVOffset, MemVT, isVolatile, Alignment);
3861}
3862
3863SDValue
3864SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3865                             SDValue Offset, ISD::MemIndexedMode AM) {
3866  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3867  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3868         "Load is already a indexed load!");
3869  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3870                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3871                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3872                 LD->isVolatile(), LD->getAlignment());
3873}
3874
3875SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3876                               SDValue Ptr, const Value *SV, int SVOffset,
3877                               bool isVolatile, unsigned Alignment) {
3878  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3879    Alignment = getEVTAlignment(Val.getValueType());
3880
3881  // Check if the memory reference references a frame index
3882  if (!SV)
3883    if (const FrameIndexSDNode *FI =
3884          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3885      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3886
3887  MachineFunction &MF = getMachineFunction();
3888  unsigned Flags = MachineMemOperand::MOStore;
3889  if (isVolatile)
3890    Flags |= MachineMemOperand::MOVolatile;
3891  MachineMemOperand *MMO =
3892    MF.getMachineMemOperand(SV, Flags, SVOffset,
3893                            Val.getValueType().getStoreSize(), Alignment);
3894
3895  return getStore(Chain, dl, Val, Ptr, MMO);
3896}
3897
3898SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3899                               SDValue Ptr, MachineMemOperand *MMO) {
3900  EVT VT = Val.getValueType();
3901  SDVTList VTs = getVTList(MVT::Other);
3902  SDValue Undef = getUNDEF(Ptr.getValueType());
3903  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3904  FoldingSetNodeID ID;
3905  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3906  ID.AddInteger(VT.getRawBits());
3907  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3908  void *IP = 0;
3909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3910    cast<StoreSDNode>(E)->refineAlignment(MMO);
3911    return SDValue(E, 0);
3912  }
3913  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3914  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3915  CSEMap.InsertNode(N, IP);
3916  AllNodes.push_back(N);
3917  return SDValue(N, 0);
3918}
3919
3920SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3921                                    SDValue Ptr, const Value *SV,
3922                                    int SVOffset, EVT SVT,
3923                                    bool isVolatile, unsigned Alignment) {
3924  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3925    Alignment = getEVTAlignment(SVT);
3926
3927  // Check if the memory reference references a frame index
3928  if (!SV)
3929    if (const FrameIndexSDNode *FI =
3930          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3931      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3932
3933  MachineFunction &MF = getMachineFunction();
3934  unsigned Flags = MachineMemOperand::MOStore;
3935  if (isVolatile)
3936    Flags |= MachineMemOperand::MOVolatile;
3937  MachineMemOperand *MMO =
3938    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3939
3940  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3941}
3942
3943SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3944                                    SDValue Ptr, EVT SVT,
3945                                    MachineMemOperand *MMO) {
3946  EVT VT = Val.getValueType();
3947
3948  if (VT == SVT)
3949    return getStore(Chain, dl, Val, Ptr, MMO);
3950
3951  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3952         "Should only be a truncating store, not extending!");
3953  assert(VT.isInteger() == SVT.isInteger() &&
3954         "Can't do FP-INT conversion!");
3955  assert(VT.isVector() == SVT.isVector() &&
3956         "Cannot use trunc store to convert to or from a vector!");
3957  assert((!VT.isVector() ||
3958          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3959         "Cannot use trunc store to change the number of vector elements!");
3960
3961  SDVTList VTs = getVTList(MVT::Other);
3962  SDValue Undef = getUNDEF(Ptr.getValueType());
3963  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3964  FoldingSetNodeID ID;
3965  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3966  ID.AddInteger(SVT.getRawBits());
3967  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3968  void *IP = 0;
3969  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3970    cast<StoreSDNode>(E)->refineAlignment(MMO);
3971    return SDValue(E, 0);
3972  }
3973  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3974  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3975  CSEMap.InsertNode(N, IP);
3976  AllNodes.push_back(N);
3977  return SDValue(N, 0);
3978}
3979
3980SDValue
3981SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3982                              SDValue Offset, ISD::MemIndexedMode AM) {
3983  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3984  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3985         "Store is already a indexed store!");
3986  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3987  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3988  FoldingSetNodeID ID;
3989  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3990  ID.AddInteger(ST->getMemoryVT().getRawBits());
3991  ID.AddInteger(ST->getRawSubclassData());
3992  void *IP = 0;
3993  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3994    return SDValue(E, 0);
3995
3996  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3997  new (N) StoreSDNode(Ops, dl, VTs, AM,
3998                      ST->isTruncatingStore(), ST->getMemoryVT(),
3999                      ST->getMemOperand());
4000  CSEMap.InsertNode(N, IP);
4001  AllNodes.push_back(N);
4002  return SDValue(N, 0);
4003}
4004
4005SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4006                               SDValue Chain, SDValue Ptr,
4007                               SDValue SV) {
4008  SDValue Ops[] = { Chain, Ptr, SV };
4009  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4010}
4011
4012SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4013                              const SDUse *Ops, unsigned NumOps) {
4014  switch (NumOps) {
4015  case 0: return getNode(Opcode, DL, VT);
4016  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4017  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4018  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4019  default: break;
4020  }
4021
4022  // Copy from an SDUse array into an SDValue array for use with
4023  // the regular getNode logic.
4024  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4025  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4026}
4027
4028SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4029                              const SDValue *Ops, unsigned NumOps) {
4030  switch (NumOps) {
4031  case 0: return getNode(Opcode, DL, VT);
4032  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4033  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4034  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4035  default: break;
4036  }
4037
4038  switch (Opcode) {
4039  default: break;
4040  case ISD::SELECT_CC: {
4041    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4042    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4043           "LHS and RHS of condition must have same type!");
4044    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4045           "True and False arms of SelectCC must have same type!");
4046    assert(Ops[2].getValueType() == VT &&
4047           "select_cc node must be of same type as true and false value!");
4048    break;
4049  }
4050  case ISD::BR_CC: {
4051    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4052    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4053           "LHS/RHS of comparison should match types!");
4054    break;
4055  }
4056  }
4057
4058  // Memoize nodes.
4059  SDNode *N;
4060  SDVTList VTs = getVTList(VT);
4061
4062  if (VT != MVT::Flag) {
4063    FoldingSetNodeID ID;
4064    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4065    void *IP = 0;
4066
4067    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4068      return SDValue(E, 0);
4069
4070    N = NodeAllocator.Allocate<SDNode>();
4071    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4072    CSEMap.InsertNode(N, IP);
4073  } else {
4074    N = NodeAllocator.Allocate<SDNode>();
4075    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4076  }
4077
4078  AllNodes.push_back(N);
4079#ifndef NDEBUG
4080  VerifyNode(N);
4081#endif
4082  return SDValue(N, 0);
4083}
4084
4085SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4086                              const std::vector<EVT> &ResultTys,
4087                              const SDValue *Ops, unsigned NumOps) {
4088  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4089                 Ops, NumOps);
4090}
4091
4092SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4093                              const EVT *VTs, unsigned NumVTs,
4094                              const SDValue *Ops, unsigned NumOps) {
4095  if (NumVTs == 1)
4096    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4097  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4098}
4099
4100SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4101                              const SDValue *Ops, unsigned NumOps) {
4102  if (VTList.NumVTs == 1)
4103    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4104
4105#if 0
4106  switch (Opcode) {
4107  // FIXME: figure out how to safely handle things like
4108  // int foo(int x) { return 1 << (x & 255); }
4109  // int bar() { return foo(256); }
4110  case ISD::SRA_PARTS:
4111  case ISD::SRL_PARTS:
4112  case ISD::SHL_PARTS:
4113    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4114        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4115      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4116    else if (N3.getOpcode() == ISD::AND)
4117      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4118        // If the and is only masking out bits that cannot effect the shift,
4119        // eliminate the and.
4120        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4121        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4122          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4123      }
4124    break;
4125  }
4126#endif
4127
4128  // Memoize the node unless it returns a flag.
4129  SDNode *N;
4130  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4131    FoldingSetNodeID ID;
4132    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4133    void *IP = 0;
4134    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4135      return SDValue(E, 0);
4136
4137    if (NumOps == 1) {
4138      N = NodeAllocator.Allocate<UnarySDNode>();
4139      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4140    } else if (NumOps == 2) {
4141      N = NodeAllocator.Allocate<BinarySDNode>();
4142      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4143    } else if (NumOps == 3) {
4144      N = NodeAllocator.Allocate<TernarySDNode>();
4145      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4146    } else {
4147      N = NodeAllocator.Allocate<SDNode>();
4148      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4149    }
4150    CSEMap.InsertNode(N, IP);
4151  } else {
4152    if (NumOps == 1) {
4153      N = NodeAllocator.Allocate<UnarySDNode>();
4154      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4155    } else if (NumOps == 2) {
4156      N = NodeAllocator.Allocate<BinarySDNode>();
4157      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4158    } else if (NumOps == 3) {
4159      N = NodeAllocator.Allocate<TernarySDNode>();
4160      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4161    } else {
4162      N = NodeAllocator.Allocate<SDNode>();
4163      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4164    }
4165  }
4166  AllNodes.push_back(N);
4167#ifndef NDEBUG
4168  VerifyNode(N);
4169#endif
4170  return SDValue(N, 0);
4171}
4172
4173SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4174  return getNode(Opcode, DL, VTList, 0, 0);
4175}
4176
4177SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4178                              SDValue N1) {
4179  SDValue Ops[] = { N1 };
4180  return getNode(Opcode, DL, VTList, Ops, 1);
4181}
4182
4183SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4184                              SDValue N1, SDValue N2) {
4185  SDValue Ops[] = { N1, N2 };
4186  return getNode(Opcode, DL, VTList, Ops, 2);
4187}
4188
4189SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4190                              SDValue N1, SDValue N2, SDValue N3) {
4191  SDValue Ops[] = { N1, N2, N3 };
4192  return getNode(Opcode, DL, VTList, Ops, 3);
4193}
4194
4195SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4196                              SDValue N1, SDValue N2, SDValue N3,
4197                              SDValue N4) {
4198  SDValue Ops[] = { N1, N2, N3, N4 };
4199  return getNode(Opcode, DL, VTList, Ops, 4);
4200}
4201
4202SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4203                              SDValue N1, SDValue N2, SDValue N3,
4204                              SDValue N4, SDValue N5) {
4205  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4206  return getNode(Opcode, DL, VTList, Ops, 5);
4207}
4208
4209SDVTList SelectionDAG::getVTList(EVT VT) {
4210  return makeVTList(SDNode::getValueTypeList(VT), 1);
4211}
4212
4213SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4214  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4215       E = VTList.rend(); I != E; ++I)
4216    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4217      return *I;
4218
4219  EVT *Array = Allocator.Allocate<EVT>(2);
4220  Array[0] = VT1;
4221  Array[1] = VT2;
4222  SDVTList Result = makeVTList(Array, 2);
4223  VTList.push_back(Result);
4224  return Result;
4225}
4226
4227SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4228  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4229       E = VTList.rend(); I != E; ++I)
4230    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4231                          I->VTs[2] == VT3)
4232      return *I;
4233
4234  EVT *Array = Allocator.Allocate<EVT>(3);
4235  Array[0] = VT1;
4236  Array[1] = VT2;
4237  Array[2] = VT3;
4238  SDVTList Result = makeVTList(Array, 3);
4239  VTList.push_back(Result);
4240  return Result;
4241}
4242
4243SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4244  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4245       E = VTList.rend(); I != E; ++I)
4246    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4247                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4248      return *I;
4249
4250  EVT *Array = Allocator.Allocate<EVT>(4);
4251  Array[0] = VT1;
4252  Array[1] = VT2;
4253  Array[2] = VT3;
4254  Array[3] = VT4;
4255  SDVTList Result = makeVTList(Array, 4);
4256  VTList.push_back(Result);
4257  return Result;
4258}
4259
4260SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4261  switch (NumVTs) {
4262    case 0: llvm_unreachable("Cannot have nodes without results!");
4263    case 1: return getVTList(VTs[0]);
4264    case 2: return getVTList(VTs[0], VTs[1]);
4265    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4266    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4267    default: break;
4268  }
4269
4270  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4271       E = VTList.rend(); I != E; ++I) {
4272    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4273      continue;
4274
4275    bool NoMatch = false;
4276    for (unsigned i = 2; i != NumVTs; ++i)
4277      if (VTs[i] != I->VTs[i]) {
4278        NoMatch = true;
4279        break;
4280      }
4281    if (!NoMatch)
4282      return *I;
4283  }
4284
4285  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4286  std::copy(VTs, VTs+NumVTs, Array);
4287  SDVTList Result = makeVTList(Array, NumVTs);
4288  VTList.push_back(Result);
4289  return Result;
4290}
4291
4292
4293/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4294/// specified operands.  If the resultant node already exists in the DAG,
4295/// this does not modify the specified node, instead it returns the node that
4296/// already exists.  If the resultant node does not exist in the DAG, the
4297/// input node is returned.  As a degenerate case, if you specify the same
4298/// input operands as the node already has, the input node is returned.
4299SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4300  SDNode *N = InN.getNode();
4301  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4302
4303  // Check to see if there is no change.
4304  if (Op == N->getOperand(0)) return InN;
4305
4306  // See if the modified node already exists.
4307  void *InsertPos = 0;
4308  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4309    return SDValue(Existing, InN.getResNo());
4310
4311  // Nope it doesn't.  Remove the node from its current place in the maps.
4312  if (InsertPos)
4313    if (!RemoveNodeFromCSEMaps(N))
4314      InsertPos = 0;
4315
4316  // Now we update the operands.
4317  N->OperandList[0].set(Op);
4318
4319  // If this gets put into a CSE map, add it.
4320  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4321  return InN;
4322}
4323
4324SDValue SelectionDAG::
4325UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4326  SDNode *N = InN.getNode();
4327  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4328
4329  // Check to see if there is no change.
4330  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4331    return InN;   // No operands changed, just return the input node.
4332
4333  // See if the modified node already exists.
4334  void *InsertPos = 0;
4335  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4336    return SDValue(Existing, InN.getResNo());
4337
4338  // Nope it doesn't.  Remove the node from its current place in the maps.
4339  if (InsertPos)
4340    if (!RemoveNodeFromCSEMaps(N))
4341      InsertPos = 0;
4342
4343  // Now we update the operands.
4344  if (N->OperandList[0] != Op1)
4345    N->OperandList[0].set(Op1);
4346  if (N->OperandList[1] != Op2)
4347    N->OperandList[1].set(Op2);
4348
4349  // If this gets put into a CSE map, add it.
4350  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4351  return InN;
4352}
4353
4354SDValue SelectionDAG::
4355UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4356  SDValue Ops[] = { Op1, Op2, Op3 };
4357  return UpdateNodeOperands(N, Ops, 3);
4358}
4359
4360SDValue SelectionDAG::
4361UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4362                   SDValue Op3, SDValue Op4) {
4363  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4364  return UpdateNodeOperands(N, Ops, 4);
4365}
4366
4367SDValue SelectionDAG::
4368UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4369                   SDValue Op3, SDValue Op4, SDValue Op5) {
4370  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4371  return UpdateNodeOperands(N, Ops, 5);
4372}
4373
4374SDValue SelectionDAG::
4375UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4376  SDNode *N = InN.getNode();
4377  assert(N->getNumOperands() == NumOps &&
4378         "Update with wrong number of operands");
4379
4380  // Check to see if there is no change.
4381  bool AnyChange = false;
4382  for (unsigned i = 0; i != NumOps; ++i) {
4383    if (Ops[i] != N->getOperand(i)) {
4384      AnyChange = true;
4385      break;
4386    }
4387  }
4388
4389  // No operands changed, just return the input node.
4390  if (!AnyChange) return InN;
4391
4392  // See if the modified node already exists.
4393  void *InsertPos = 0;
4394  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4395    return SDValue(Existing, InN.getResNo());
4396
4397  // Nope it doesn't.  Remove the node from its current place in the maps.
4398  if (InsertPos)
4399    if (!RemoveNodeFromCSEMaps(N))
4400      InsertPos = 0;
4401
4402  // Now we update the operands.
4403  for (unsigned i = 0; i != NumOps; ++i)
4404    if (N->OperandList[i] != Ops[i])
4405      N->OperandList[i].set(Ops[i]);
4406
4407  // If this gets put into a CSE map, add it.
4408  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4409  return InN;
4410}
4411
4412/// DropOperands - Release the operands and set this node to have
4413/// zero operands.
4414void SDNode::DropOperands() {
4415  // Unlike the code in MorphNodeTo that does this, we don't need to
4416  // watch for dead nodes here.
4417  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4418    SDUse &Use = *I++;
4419    Use.set(SDValue());
4420  }
4421}
4422
4423/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4424/// machine opcode.
4425///
4426SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4427                                   EVT VT) {
4428  SDVTList VTs = getVTList(VT);
4429  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4430}
4431
4432SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4433                                   EVT VT, SDValue Op1) {
4434  SDVTList VTs = getVTList(VT);
4435  SDValue Ops[] = { Op1 };
4436  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4437}
4438
4439SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4440                                   EVT VT, SDValue Op1,
4441                                   SDValue Op2) {
4442  SDVTList VTs = getVTList(VT);
4443  SDValue Ops[] = { Op1, Op2 };
4444  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4445}
4446
4447SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4448                                   EVT VT, SDValue Op1,
4449                                   SDValue Op2, SDValue Op3) {
4450  SDVTList VTs = getVTList(VT);
4451  SDValue Ops[] = { Op1, Op2, Op3 };
4452  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4453}
4454
4455SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4456                                   EVT VT, const SDValue *Ops,
4457                                   unsigned NumOps) {
4458  SDVTList VTs = getVTList(VT);
4459  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4460}
4461
4462SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4463                                   EVT VT1, EVT VT2, const SDValue *Ops,
4464                                   unsigned NumOps) {
4465  SDVTList VTs = getVTList(VT1, VT2);
4466  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4467}
4468
4469SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4470                                   EVT VT1, EVT VT2) {
4471  SDVTList VTs = getVTList(VT1, VT2);
4472  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4473}
4474
4475SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4476                                   EVT VT1, EVT VT2, EVT VT3,
4477                                   const SDValue *Ops, unsigned NumOps) {
4478  SDVTList VTs = getVTList(VT1, VT2, VT3);
4479  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4480}
4481
4482SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4483                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4484                                   const SDValue *Ops, unsigned NumOps) {
4485  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4486  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4487}
4488
4489SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4490                                   EVT VT1, EVT VT2,
4491                                   SDValue Op1) {
4492  SDVTList VTs = getVTList(VT1, VT2);
4493  SDValue Ops[] = { Op1 };
4494  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4495}
4496
4497SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4498                                   EVT VT1, EVT VT2,
4499                                   SDValue Op1, SDValue Op2) {
4500  SDVTList VTs = getVTList(VT1, VT2);
4501  SDValue Ops[] = { Op1, Op2 };
4502  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   EVT VT1, EVT VT2,
4507                                   SDValue Op1, SDValue Op2,
4508                                   SDValue Op3) {
4509  SDVTList VTs = getVTList(VT1, VT2);
4510  SDValue Ops[] = { Op1, Op2, Op3 };
4511  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4512}
4513
4514SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4515                                   EVT VT1, EVT VT2, EVT VT3,
4516                                   SDValue Op1, SDValue Op2,
4517                                   SDValue Op3) {
4518  SDVTList VTs = getVTList(VT1, VT2, VT3);
4519  SDValue Ops[] = { Op1, Op2, Op3 };
4520  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4521}
4522
4523SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524                                   SDVTList VTs, const SDValue *Ops,
4525                                   unsigned NumOps) {
4526  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4527}
4528
4529SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4530                                  EVT VT) {
4531  SDVTList VTs = getVTList(VT);
4532  return MorphNodeTo(N, Opc, VTs, 0, 0);
4533}
4534
4535SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4536                                  EVT VT, SDValue Op1) {
4537  SDVTList VTs = getVTList(VT);
4538  SDValue Ops[] = { Op1 };
4539  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4540}
4541
4542SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4543                                  EVT VT, SDValue Op1,
4544                                  SDValue Op2) {
4545  SDVTList VTs = getVTList(VT);
4546  SDValue Ops[] = { Op1, Op2 };
4547  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4548}
4549
4550SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4551                                  EVT VT, SDValue Op1,
4552                                  SDValue Op2, SDValue Op3) {
4553  SDVTList VTs = getVTList(VT);
4554  SDValue Ops[] = { Op1, Op2, Op3 };
4555  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4556}
4557
4558SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4559                                  EVT VT, const SDValue *Ops,
4560                                  unsigned NumOps) {
4561  SDVTList VTs = getVTList(VT);
4562  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4563}
4564
4565SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4566                                  EVT VT1, EVT VT2, const SDValue *Ops,
4567                                  unsigned NumOps) {
4568  SDVTList VTs = getVTList(VT1, VT2);
4569  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4570}
4571
4572SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4573                                  EVT VT1, EVT VT2) {
4574  SDVTList VTs = getVTList(VT1, VT2);
4575  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4576}
4577
4578SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4579                                  EVT VT1, EVT VT2, EVT VT3,
4580                                  const SDValue *Ops, unsigned NumOps) {
4581  SDVTList VTs = getVTList(VT1, VT2, VT3);
4582  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4583}
4584
4585SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4586                                  EVT VT1, EVT VT2,
4587                                  SDValue Op1) {
4588  SDVTList VTs = getVTList(VT1, VT2);
4589  SDValue Ops[] = { Op1 };
4590  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4591}
4592
4593SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4594                                  EVT VT1, EVT VT2,
4595                                  SDValue Op1, SDValue Op2) {
4596  SDVTList VTs = getVTList(VT1, VT2);
4597  SDValue Ops[] = { Op1, Op2 };
4598  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4599}
4600
4601SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4602                                  EVT VT1, EVT VT2,
4603                                  SDValue Op1, SDValue Op2,
4604                                  SDValue Op3) {
4605  SDVTList VTs = getVTList(VT1, VT2);
4606  SDValue Ops[] = { Op1, Op2, Op3 };
4607  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4608}
4609
4610/// MorphNodeTo - These *mutate* the specified node to have the specified
4611/// return type, opcode, and operands.
4612///
4613/// Note that MorphNodeTo returns the resultant node.  If there is already a
4614/// node of the specified opcode and operands, it returns that node instead of
4615/// the current one.  Note that the DebugLoc need not be the same.
4616///
4617/// Using MorphNodeTo is faster than creating a new node and swapping it in
4618/// with ReplaceAllUsesWith both because it often avoids allocating a new
4619/// node, and because it doesn't require CSE recalculation for any of
4620/// the node's users.
4621///
4622SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4623                                  SDVTList VTs, const SDValue *Ops,
4624                                  unsigned NumOps) {
4625  // If an identical node already exists, use it.
4626  void *IP = 0;
4627  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4628    FoldingSetNodeID ID;
4629    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4630    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4631      return ON;
4632  }
4633
4634  if (!RemoveNodeFromCSEMaps(N))
4635    IP = 0;
4636
4637  // Start the morphing.
4638  N->NodeType = Opc;
4639  N->ValueList = VTs.VTs;
4640  N->NumValues = VTs.NumVTs;
4641
4642  // Clear the operands list, updating used nodes to remove this from their
4643  // use list.  Keep track of any operands that become dead as a result.
4644  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4645  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4646    SDUse &Use = *I++;
4647    SDNode *Used = Use.getNode();
4648    Use.set(SDValue());
4649    if (Used->use_empty())
4650      DeadNodeSet.insert(Used);
4651  }
4652
4653  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4654    // Initialize the memory references information.
4655    MN->setMemRefs(0, 0);
4656    // If NumOps is larger than the # of operands we can have in a
4657    // MachineSDNode, reallocate the operand list.
4658    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4659      if (MN->OperandsNeedDelete)
4660        delete[] MN->OperandList;
4661      if (NumOps > array_lengthof(MN->LocalOperands))
4662        // We're creating a final node that will live unmorphed for the
4663        // remainder of the current SelectionDAG iteration, so we can allocate
4664        // the operands directly out of a pool with no recycling metadata.
4665        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4666                        Ops, NumOps);
4667      else
4668        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4669      MN->OperandsNeedDelete = false;
4670    } else
4671      MN->InitOperands(MN->OperandList, Ops, NumOps);
4672  } else {
4673    // If NumOps is larger than the # of operands we currently have, reallocate
4674    // the operand list.
4675    if (NumOps > N->NumOperands) {
4676      if (N->OperandsNeedDelete)
4677        delete[] N->OperandList;
4678      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4679      N->OperandsNeedDelete = true;
4680    } else
4681      N->InitOperands(N->OperandList, Ops, NumOps);
4682  }
4683
4684  // Delete any nodes that are still dead after adding the uses for the
4685  // new operands.
4686  SmallVector<SDNode *, 16> DeadNodes;
4687  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4688       E = DeadNodeSet.end(); I != E; ++I)
4689    if ((*I)->use_empty())
4690      DeadNodes.push_back(*I);
4691  RemoveDeadNodes(DeadNodes);
4692
4693  if (IP)
4694    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4695  return N;
4696}
4697
4698
4699/// getMachineNode - These are used for target selectors to create a new node
4700/// with specified return type(s), MachineInstr opcode, and operands.
4701///
4702/// Note that getMachineNode returns the resultant node.  If there is already a
4703/// node of the specified opcode and operands, it returns that node instead of
4704/// the current one.
4705MachineSDNode *
4706SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4707  SDVTList VTs = getVTList(VT);
4708  return getMachineNode(Opcode, dl, VTs, 0, 0);
4709}
4710
4711MachineSDNode *
4712SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4713  SDVTList VTs = getVTList(VT);
4714  SDValue Ops[] = { Op1 };
4715  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4716}
4717
4718MachineSDNode *
4719SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4720                             SDValue Op1, SDValue Op2) {
4721  SDVTList VTs = getVTList(VT);
4722  SDValue Ops[] = { Op1, Op2 };
4723  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4724}
4725
4726MachineSDNode *
4727SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4728                             SDValue Op1, SDValue Op2, SDValue Op3) {
4729  SDVTList VTs = getVTList(VT);
4730  SDValue Ops[] = { Op1, Op2, Op3 };
4731  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4732}
4733
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4736                             const SDValue *Ops, unsigned NumOps) {
4737  SDVTList VTs = getVTList(VT);
4738  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4739}
4740
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4743  SDVTList VTs = getVTList(VT1, VT2);
4744  return getMachineNode(Opcode, dl, VTs, 0, 0);
4745}
4746
4747MachineSDNode *
4748SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4749                             EVT VT1, EVT VT2, SDValue Op1) {
4750  SDVTList VTs = getVTList(VT1, VT2);
4751  SDValue Ops[] = { Op1 };
4752  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4753}
4754
4755MachineSDNode *
4756SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4757                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4758  SDVTList VTs = getVTList(VT1, VT2);
4759  SDValue Ops[] = { Op1, Op2 };
4760  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765                             EVT VT1, EVT VT2, SDValue Op1,
4766                             SDValue Op2, SDValue Op3) {
4767  SDVTList VTs = getVTList(VT1, VT2);
4768  SDValue Ops[] = { Op1, Op2, Op3 };
4769  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4774                             EVT VT1, EVT VT2,
4775                             const SDValue *Ops, unsigned NumOps) {
4776  SDVTList VTs = getVTList(VT1, VT2);
4777  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2, EVT VT3,
4783                             SDValue Op1, SDValue Op2) {
4784  SDVTList VTs = getVTList(VT1, VT2, VT3);
4785  SDValue Ops[] = { Op1, Op2 };
4786  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4787}
4788
4789MachineSDNode *
4790SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4791                             EVT VT1, EVT VT2, EVT VT3,
4792                             SDValue Op1, SDValue Op2, SDValue Op3) {
4793  SDVTList VTs = getVTList(VT1, VT2, VT3);
4794  SDValue Ops[] = { Op1, Op2, Op3 };
4795  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4796}
4797
4798MachineSDNode *
4799SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4800                             EVT VT1, EVT VT2, EVT VT3,
4801                             const SDValue *Ops, unsigned NumOps) {
4802  SDVTList VTs = getVTList(VT1, VT2, VT3);
4803  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4804}
4805
4806MachineSDNode *
4807SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4808                             EVT VT2, EVT VT3, EVT VT4,
4809                             const SDValue *Ops, unsigned NumOps) {
4810  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4811  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4816                             const std::vector<EVT> &ResultTys,
4817                             const SDValue *Ops, unsigned NumOps) {
4818  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4819  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4824                             const SDValue *Ops, unsigned NumOps) {
4825  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4826  MachineSDNode *N;
4827  void *IP;
4828
4829  if (DoCSE) {
4830    FoldingSetNodeID ID;
4831    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4832    IP = 0;
4833    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4834      return cast<MachineSDNode>(E);
4835  }
4836
4837  // Allocate a new MachineSDNode.
4838  N = NodeAllocator.Allocate<MachineSDNode>();
4839  new (N) MachineSDNode(~Opcode, DL, VTs);
4840
4841  // Initialize the operands list.
4842  if (NumOps > array_lengthof(N->LocalOperands))
4843    // We're creating a final node that will live unmorphed for the
4844    // remainder of the current SelectionDAG iteration, so we can allocate
4845    // the operands directly out of a pool with no recycling metadata.
4846    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4847                    Ops, NumOps);
4848  else
4849    N->InitOperands(N->LocalOperands, Ops, NumOps);
4850  N->OperandsNeedDelete = false;
4851
4852  if (DoCSE)
4853    CSEMap.InsertNode(N, IP);
4854
4855  AllNodes.push_back(N);
4856#ifndef NDEBUG
4857  VerifyNode(N);
4858#endif
4859  return N;
4860}
4861
4862/// getTargetExtractSubreg - A convenience function for creating
4863/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4864SDValue
4865SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4866                                     SDValue Operand) {
4867  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4868  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4869                                  VT, Operand, SRIdxVal);
4870  return SDValue(Subreg, 0);
4871}
4872
4873/// getTargetInsertSubreg - A convenience function for creating
4874/// TargetInstrInfo::INSERT_SUBREG nodes.
4875SDValue
4876SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4877                                    SDValue Operand, SDValue Subreg) {
4878  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4879  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4880                                  VT, Operand, Subreg, SRIdxVal);
4881  return SDValue(Result, 0);
4882}
4883
4884/// getNodeIfExists - Get the specified node if it's already available, or
4885/// else return NULL.
4886SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4887                                      const SDValue *Ops, unsigned NumOps) {
4888  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4889    FoldingSetNodeID ID;
4890    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4891    void *IP = 0;
4892    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4893      return E;
4894  }
4895  return NULL;
4896}
4897
4898/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4899/// This can cause recursive merging of nodes in the DAG.
4900///
4901/// This version assumes From has a single result value.
4902///
4903void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4904                                      DAGUpdateListener *UpdateListener) {
4905  SDNode *From = FromN.getNode();
4906  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4907         "Cannot replace with this method!");
4908  assert(From != To.getNode() && "Cannot replace uses of with self");
4909
4910  // Iterate over all the existing uses of From. New uses will be added
4911  // to the beginning of the use list, which we avoid visiting.
4912  // This specifically avoids visiting uses of From that arise while the
4913  // replacement is happening, because any such uses would be the result
4914  // of CSE: If an existing node looks like From after one of its operands
4915  // is replaced by To, we don't want to replace of all its users with To
4916  // too. See PR3018 for more info.
4917  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4918  while (UI != UE) {
4919    SDNode *User = *UI;
4920
4921    // This node is about to morph, remove its old self from the CSE maps.
4922    RemoveNodeFromCSEMaps(User);
4923
4924    // A user can appear in a use list multiple times, and when this
4925    // happens the uses are usually next to each other in the list.
4926    // To help reduce the number of CSE recomputations, process all
4927    // the uses of this user that we can find this way.
4928    do {
4929      SDUse &Use = UI.getUse();
4930      ++UI;
4931      Use.set(To);
4932    } while (UI != UE && *UI == User);
4933
4934    // Now that we have modified User, add it back to the CSE maps.  If it
4935    // already exists there, recursively merge the results together.
4936    AddModifiedNodeToCSEMaps(User, UpdateListener);
4937  }
4938}
4939
4940/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4941/// This can cause recursive merging of nodes in the DAG.
4942///
4943/// This version assumes that for each value of From, there is a
4944/// corresponding value in To in the same position with the same type.
4945///
4946void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4947                                      DAGUpdateListener *UpdateListener) {
4948#ifndef NDEBUG
4949  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4950    assert((!From->hasAnyUseOfValue(i) ||
4951            From->getValueType(i) == To->getValueType(i)) &&
4952           "Cannot use this version of ReplaceAllUsesWith!");
4953#endif
4954
4955  // Handle the trivial case.
4956  if (From == To)
4957    return;
4958
4959  // Iterate over just the existing users of From. See the comments in
4960  // the ReplaceAllUsesWith above.
4961  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4962  while (UI != UE) {
4963    SDNode *User = *UI;
4964
4965    // This node is about to morph, remove its old self from the CSE maps.
4966    RemoveNodeFromCSEMaps(User);
4967
4968    // A user can appear in a use list multiple times, and when this
4969    // happens the uses are usually next to each other in the list.
4970    // To help reduce the number of CSE recomputations, process all
4971    // the uses of this user that we can find this way.
4972    do {
4973      SDUse &Use = UI.getUse();
4974      ++UI;
4975      Use.setNode(To);
4976    } while (UI != UE && *UI == User);
4977
4978    // Now that we have modified User, add it back to the CSE maps.  If it
4979    // already exists there, recursively merge the results together.
4980    AddModifiedNodeToCSEMaps(User, UpdateListener);
4981  }
4982}
4983
4984/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4985/// This can cause recursive merging of nodes in the DAG.
4986///
4987/// This version can replace From with any result values.  To must match the
4988/// number and types of values returned by From.
4989void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4990                                      const SDValue *To,
4991                                      DAGUpdateListener *UpdateListener) {
4992  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4993    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4994
4995  // Iterate over just the existing users of From. See the comments in
4996  // the ReplaceAllUsesWith above.
4997  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4998  while (UI != UE) {
4999    SDNode *User = *UI;
5000
5001    // This node is about to morph, remove its old self from the CSE maps.
5002    RemoveNodeFromCSEMaps(User);
5003
5004    // A user can appear in a use list multiple times, and when this
5005    // happens the uses are usually next to each other in the list.
5006    // To help reduce the number of CSE recomputations, process all
5007    // the uses of this user that we can find this way.
5008    do {
5009      SDUse &Use = UI.getUse();
5010      const SDValue &ToOp = To[Use.getResNo()];
5011      ++UI;
5012      Use.set(ToOp);
5013    } while (UI != UE && *UI == User);
5014
5015    // Now that we have modified User, add it back to the CSE maps.  If it
5016    // already exists there, recursively merge the results together.
5017    AddModifiedNodeToCSEMaps(User, UpdateListener);
5018  }
5019}
5020
5021/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5022/// uses of other values produced by From.getNode() alone.  The Deleted
5023/// vector is handled the same way as for ReplaceAllUsesWith.
5024void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5025                                             DAGUpdateListener *UpdateListener){
5026  // Handle the really simple, really trivial case efficiently.
5027  if (From == To) return;
5028
5029  // Handle the simple, trivial, case efficiently.
5030  if (From.getNode()->getNumValues() == 1) {
5031    ReplaceAllUsesWith(From, To, UpdateListener);
5032    return;
5033  }
5034
5035  // Iterate over just the existing users of From. See the comments in
5036  // the ReplaceAllUsesWith above.
5037  SDNode::use_iterator UI = From.getNode()->use_begin(),
5038                       UE = From.getNode()->use_end();
5039  while (UI != UE) {
5040    SDNode *User = *UI;
5041    bool UserRemovedFromCSEMaps = false;
5042
5043    // A user can appear in a use list multiple times, and when this
5044    // happens the uses are usually next to each other in the list.
5045    // To help reduce the number of CSE recomputations, process all
5046    // the uses of this user that we can find this way.
5047    do {
5048      SDUse &Use = UI.getUse();
5049
5050      // Skip uses of different values from the same node.
5051      if (Use.getResNo() != From.getResNo()) {
5052        ++UI;
5053        continue;
5054      }
5055
5056      // If this node hasn't been modified yet, it's still in the CSE maps,
5057      // so remove its old self from the CSE maps.
5058      if (!UserRemovedFromCSEMaps) {
5059        RemoveNodeFromCSEMaps(User);
5060        UserRemovedFromCSEMaps = true;
5061      }
5062
5063      ++UI;
5064      Use.set(To);
5065    } while (UI != UE && *UI == User);
5066
5067    // We are iterating over all uses of the From node, so if a use
5068    // doesn't use the specific value, no changes are made.
5069    if (!UserRemovedFromCSEMaps)
5070      continue;
5071
5072    // Now that we have modified User, add it back to the CSE maps.  If it
5073    // already exists there, recursively merge the results together.
5074    AddModifiedNodeToCSEMaps(User, UpdateListener);
5075  }
5076}
5077
5078namespace {
5079  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5080  /// to record information about a use.
5081  struct UseMemo {
5082    SDNode *User;
5083    unsigned Index;
5084    SDUse *Use;
5085  };
5086
5087  /// operator< - Sort Memos by User.
5088  bool operator<(const UseMemo &L, const UseMemo &R) {
5089    return (intptr_t)L.User < (intptr_t)R.User;
5090  }
5091}
5092
5093/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5094/// uses of other values produced by From.getNode() alone.  The same value
5095/// may appear in both the From and To list.  The Deleted vector is
5096/// handled the same way as for ReplaceAllUsesWith.
5097void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5098                                              const SDValue *To,
5099                                              unsigned Num,
5100                                              DAGUpdateListener *UpdateListener){
5101  // Handle the simple, trivial case efficiently.
5102  if (Num == 1)
5103    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5104
5105  // Read up all the uses and make records of them. This helps
5106  // processing new uses that are introduced during the
5107  // replacement process.
5108  SmallVector<UseMemo, 4> Uses;
5109  for (unsigned i = 0; i != Num; ++i) {
5110    unsigned FromResNo = From[i].getResNo();
5111    SDNode *FromNode = From[i].getNode();
5112    for (SDNode::use_iterator UI = FromNode->use_begin(),
5113         E = FromNode->use_end(); UI != E; ++UI) {
5114      SDUse &Use = UI.getUse();
5115      if (Use.getResNo() == FromResNo) {
5116        UseMemo Memo = { *UI, i, &Use };
5117        Uses.push_back(Memo);
5118      }
5119    }
5120  }
5121
5122  // Sort the uses, so that all the uses from a given User are together.
5123  std::sort(Uses.begin(), Uses.end());
5124
5125  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5126       UseIndex != UseIndexEnd; ) {
5127    // We know that this user uses some value of From.  If it is the right
5128    // value, update it.
5129    SDNode *User = Uses[UseIndex].User;
5130
5131    // This node is about to morph, remove its old self from the CSE maps.
5132    RemoveNodeFromCSEMaps(User);
5133
5134    // The Uses array is sorted, so all the uses for a given User
5135    // are next to each other in the list.
5136    // To help reduce the number of CSE recomputations, process all
5137    // the uses of this user that we can find this way.
5138    do {
5139      unsigned i = Uses[UseIndex].Index;
5140      SDUse &Use = *Uses[UseIndex].Use;
5141      ++UseIndex;
5142
5143      Use.set(To[i]);
5144    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5145
5146    // Now that we have modified User, add it back to the CSE maps.  If it
5147    // already exists there, recursively merge the results together.
5148    AddModifiedNodeToCSEMaps(User, UpdateListener);
5149  }
5150}
5151
5152/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5153/// based on their topological order. It returns the maximum id and a vector
5154/// of the SDNodes* in assigned order by reference.
5155unsigned SelectionDAG::AssignTopologicalOrder() {
5156
5157  unsigned DAGSize = 0;
5158
5159  // SortedPos tracks the progress of the algorithm. Nodes before it are
5160  // sorted, nodes after it are unsorted. When the algorithm completes
5161  // it is at the end of the list.
5162  allnodes_iterator SortedPos = allnodes_begin();
5163
5164  // Visit all the nodes. Move nodes with no operands to the front of
5165  // the list immediately. Annotate nodes that do have operands with their
5166  // operand count. Before we do this, the Node Id fields of the nodes
5167  // may contain arbitrary values. After, the Node Id fields for nodes
5168  // before SortedPos will contain the topological sort index, and the
5169  // Node Id fields for nodes At SortedPos and after will contain the
5170  // count of outstanding operands.
5171  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5172    SDNode *N = I++;
5173    checkForCycles(N);
5174    unsigned Degree = N->getNumOperands();
5175    if (Degree == 0) {
5176      // A node with no uses, add it to the result array immediately.
5177      N->setNodeId(DAGSize++);
5178      allnodes_iterator Q = N;
5179      if (Q != SortedPos)
5180        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5181      assert(SortedPos != AllNodes.end() && "Overran node list");
5182      ++SortedPos;
5183    } else {
5184      // Temporarily use the Node Id as scratch space for the degree count.
5185      N->setNodeId(Degree);
5186    }
5187  }
5188
5189  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5190  // such that by the time the end is reached all nodes will be sorted.
5191  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5192    SDNode *N = I;
5193    checkForCycles(N);
5194    // N is in sorted position, so all its uses have one less operand
5195    // that needs to be sorted.
5196    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5197         UI != UE; ++UI) {
5198      SDNode *P = *UI;
5199      unsigned Degree = P->getNodeId();
5200      assert(Degree != 0 && "Invalid node degree");
5201      --Degree;
5202      if (Degree == 0) {
5203        // All of P's operands are sorted, so P may sorted now.
5204        P->setNodeId(DAGSize++);
5205        if (P != SortedPos)
5206          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5207        assert(SortedPos != AllNodes.end() && "Overran node list");
5208        ++SortedPos;
5209      } else {
5210        // Update P's outstanding operand count.
5211        P->setNodeId(Degree);
5212      }
5213    }
5214    if (I == SortedPos) {
5215      allnodes_iterator J = I;
5216      SDNode *S = ++J;
5217      dbgs() << "Offending node:\n";
5218      S->dumprFull();
5219      assert(0 && "Overran sorted position");
5220    }
5221  }
5222
5223  assert(SortedPos == AllNodes.end() &&
5224         "Topological sort incomplete!");
5225  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5226         "First node in topological sort is not the entry token!");
5227  assert(AllNodes.front().getNodeId() == 0 &&
5228         "First node in topological sort has non-zero id!");
5229  assert(AllNodes.front().getNumOperands() == 0 &&
5230         "First node in topological sort has operands!");
5231  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5232         "Last node in topologic sort has unexpected id!");
5233  assert(AllNodes.back().use_empty() &&
5234         "Last node in topologic sort has users!");
5235  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5236  return DAGSize;
5237}
5238
5239/// AssignOrdering - Assign an order to the SDNode.
5240void SelectionDAG::AssignOrdering(SDNode *SD, unsigned Order) {
5241  assert(SD && "Trying to assign an order to a null node!");
5242  Ordering->add(SD, Order);
5243}
5244
5245/// GetOrdering - Get the order for the SDNode.
5246unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5247  assert(SD && "Trying to get the order of a null node!");
5248  return Ordering->getOrder(SD);
5249}
5250
5251
5252//===----------------------------------------------------------------------===//
5253//                              SDNode Class
5254//===----------------------------------------------------------------------===//
5255
5256HandleSDNode::~HandleSDNode() {
5257  DropOperands();
5258}
5259
5260GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5261                                         EVT VT, int64_t o, unsigned char TF)
5262  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5263    Offset(o), TargetFlags(TF) {
5264  TheGlobal = const_cast<GlobalValue*>(GA);
5265}
5266
5267MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5268                     MachineMemOperand *mmo)
5269 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5270  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5271  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5272  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5273}
5274
5275MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5276                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5277                     MachineMemOperand *mmo)
5278   : SDNode(Opc, dl, VTs, Ops, NumOps),
5279     MemoryVT(memvt), MMO(mmo) {
5280  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5281  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5282  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5283}
5284
5285/// Profile - Gather unique data for the node.
5286///
5287void SDNode::Profile(FoldingSetNodeID &ID) const {
5288  AddNodeIDNode(ID, this);
5289}
5290
5291namespace {
5292  struct EVTArray {
5293    std::vector<EVT> VTs;
5294
5295    EVTArray() {
5296      VTs.reserve(MVT::LAST_VALUETYPE);
5297      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5298        VTs.push_back(MVT((MVT::SimpleValueType)i));
5299    }
5300  };
5301}
5302
5303static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5304static ManagedStatic<EVTArray> SimpleVTArray;
5305static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5306
5307/// getValueTypeList - Return a pointer to the specified value type.
5308///
5309const EVT *SDNode::getValueTypeList(EVT VT) {
5310  if (VT.isExtended()) {
5311    sys::SmartScopedLock<true> Lock(*VTMutex);
5312    return &(*EVTs->insert(VT).first);
5313  } else {
5314    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5315  }
5316}
5317
5318/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5319/// indicated value.  This method ignores uses of other values defined by this
5320/// operation.
5321bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5322  assert(Value < getNumValues() && "Bad value!");
5323
5324  // TODO: Only iterate over uses of a given value of the node
5325  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5326    if (UI.getUse().getResNo() == Value) {
5327      if (NUses == 0)
5328        return false;
5329      --NUses;
5330    }
5331  }
5332
5333  // Found exactly the right number of uses?
5334  return NUses == 0;
5335}
5336
5337
5338/// hasAnyUseOfValue - Return true if there are any use of the indicated
5339/// value. This method ignores uses of other values defined by this operation.
5340bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5341  assert(Value < getNumValues() && "Bad value!");
5342
5343  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5344    if (UI.getUse().getResNo() == Value)
5345      return true;
5346
5347  return false;
5348}
5349
5350
5351/// isOnlyUserOf - Return true if this node is the only use of N.
5352///
5353bool SDNode::isOnlyUserOf(SDNode *N) const {
5354  bool Seen = false;
5355  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5356    SDNode *User = *I;
5357    if (User == this)
5358      Seen = true;
5359    else
5360      return false;
5361  }
5362
5363  return Seen;
5364}
5365
5366/// isOperand - Return true if this node is an operand of N.
5367///
5368bool SDValue::isOperandOf(SDNode *N) const {
5369  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5370    if (*this == N->getOperand(i))
5371      return true;
5372  return false;
5373}
5374
5375bool SDNode::isOperandOf(SDNode *N) const {
5376  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5377    if (this == N->OperandList[i].getNode())
5378      return true;
5379  return false;
5380}
5381
5382/// reachesChainWithoutSideEffects - Return true if this operand (which must
5383/// be a chain) reaches the specified operand without crossing any
5384/// side-effecting instructions.  In practice, this looks through token
5385/// factors and non-volatile loads.  In order to remain efficient, this only
5386/// looks a couple of nodes in, it does not do an exhaustive search.
5387bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5388                                               unsigned Depth) const {
5389  if (*this == Dest) return true;
5390
5391  // Don't search too deeply, we just want to be able to see through
5392  // TokenFactor's etc.
5393  if (Depth == 0) return false;
5394
5395  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5396  // of the operands of the TF reach dest, then we can do the xform.
5397  if (getOpcode() == ISD::TokenFactor) {
5398    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5399      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5400        return true;
5401    return false;
5402  }
5403
5404  // Loads don't have side effects, look through them.
5405  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5406    if (!Ld->isVolatile())
5407      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5408  }
5409  return false;
5410}
5411
5412/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5413/// is either an operand of N or it can be reached by traversing up the operands.
5414/// NOTE: this is an expensive method. Use it carefully.
5415bool SDNode::isPredecessorOf(SDNode *N) const {
5416  SmallPtrSet<SDNode *, 32> Visited;
5417  SmallVector<SDNode *, 16> Worklist;
5418  Worklist.push_back(N);
5419
5420  do {
5421    N = Worklist.pop_back_val();
5422    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5423      SDNode *Op = N->getOperand(i).getNode();
5424      if (Op == this)
5425        return true;
5426      if (Visited.insert(Op))
5427        Worklist.push_back(Op);
5428    }
5429  } while (!Worklist.empty());
5430
5431  return false;
5432}
5433
5434uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5435  assert(Num < NumOperands && "Invalid child # of SDNode!");
5436  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5437}
5438
5439std::string SDNode::getOperationName(const SelectionDAG *G) const {
5440  switch (getOpcode()) {
5441  default:
5442    if (getOpcode() < ISD::BUILTIN_OP_END)
5443      return "<<Unknown DAG Node>>";
5444    if (isMachineOpcode()) {
5445      if (G)
5446        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5447          if (getMachineOpcode() < TII->getNumOpcodes())
5448            return TII->get(getMachineOpcode()).getName();
5449      return "<<Unknown Machine Node>>";
5450    }
5451    if (G) {
5452      const TargetLowering &TLI = G->getTargetLoweringInfo();
5453      const char *Name = TLI.getTargetNodeName(getOpcode());
5454      if (Name) return Name;
5455      return "<<Unknown Target Node>>";
5456    }
5457    return "<<Unknown Node>>";
5458
5459#ifndef NDEBUG
5460  case ISD::DELETED_NODE:
5461    return "<<Deleted Node!>>";
5462#endif
5463  case ISD::PREFETCH:      return "Prefetch";
5464  case ISD::MEMBARRIER:    return "MemBarrier";
5465  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5466  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5467  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5468  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5469  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5470  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5471  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5472  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5473  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5474  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5475  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5476  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5477  case ISD::PCMARKER:      return "PCMarker";
5478  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5479  case ISD::SRCVALUE:      return "SrcValue";
5480  case ISD::EntryToken:    return "EntryToken";
5481  case ISD::TokenFactor:   return "TokenFactor";
5482  case ISD::AssertSext:    return "AssertSext";
5483  case ISD::AssertZext:    return "AssertZext";
5484
5485  case ISD::BasicBlock:    return "BasicBlock";
5486  case ISD::VALUETYPE:     return "ValueType";
5487  case ISD::Register:      return "Register";
5488
5489  case ISD::Constant:      return "Constant";
5490  case ISD::ConstantFP:    return "ConstantFP";
5491  case ISD::GlobalAddress: return "GlobalAddress";
5492  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5493  case ISD::FrameIndex:    return "FrameIndex";
5494  case ISD::JumpTable:     return "JumpTable";
5495  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5496  case ISD::RETURNADDR: return "RETURNADDR";
5497  case ISD::FRAMEADDR: return "FRAMEADDR";
5498  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5499  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5500  case ISD::LSDAADDR: return "LSDAADDR";
5501  case ISD::EHSELECTION: return "EHSELECTION";
5502  case ISD::EH_RETURN: return "EH_RETURN";
5503  case ISD::ConstantPool:  return "ConstantPool";
5504  case ISD::ExternalSymbol: return "ExternalSymbol";
5505  case ISD::BlockAddress:  return "BlockAddress";
5506  case ISD::INTRINSIC_WO_CHAIN:
5507  case ISD::INTRINSIC_VOID:
5508  case ISD::INTRINSIC_W_CHAIN: {
5509    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5510    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5511    if (IID < Intrinsic::num_intrinsics)
5512      return Intrinsic::getName((Intrinsic::ID)IID);
5513    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5514      return TII->getName(IID);
5515    llvm_unreachable("Invalid intrinsic ID");
5516  }
5517
5518  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5519  case ISD::TargetConstant: return "TargetConstant";
5520  case ISD::TargetConstantFP:return "TargetConstantFP";
5521  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5522  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5523  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5524  case ISD::TargetJumpTable:  return "TargetJumpTable";
5525  case ISD::TargetConstantPool:  return "TargetConstantPool";
5526  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5527  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5528
5529  case ISD::CopyToReg:     return "CopyToReg";
5530  case ISD::CopyFromReg:   return "CopyFromReg";
5531  case ISD::UNDEF:         return "undef";
5532  case ISD::MERGE_VALUES:  return "merge_values";
5533  case ISD::INLINEASM:     return "inlineasm";
5534  case ISD::EH_LABEL:      return "eh_label";
5535  case ISD::HANDLENODE:    return "handlenode";
5536
5537  // Unary operators
5538  case ISD::FABS:   return "fabs";
5539  case ISD::FNEG:   return "fneg";
5540  case ISD::FSQRT:  return "fsqrt";
5541  case ISD::FSIN:   return "fsin";
5542  case ISD::FCOS:   return "fcos";
5543  case ISD::FPOWI:  return "fpowi";
5544  case ISD::FPOW:   return "fpow";
5545  case ISD::FTRUNC: return "ftrunc";
5546  case ISD::FFLOOR: return "ffloor";
5547  case ISD::FCEIL:  return "fceil";
5548  case ISD::FRINT:  return "frint";
5549  case ISD::FNEARBYINT: return "fnearbyint";
5550
5551  // Binary operators
5552  case ISD::ADD:    return "add";
5553  case ISD::SUB:    return "sub";
5554  case ISD::MUL:    return "mul";
5555  case ISD::MULHU:  return "mulhu";
5556  case ISD::MULHS:  return "mulhs";
5557  case ISD::SDIV:   return "sdiv";
5558  case ISD::UDIV:   return "udiv";
5559  case ISD::SREM:   return "srem";
5560  case ISD::UREM:   return "urem";
5561  case ISD::SMUL_LOHI:  return "smul_lohi";
5562  case ISD::UMUL_LOHI:  return "umul_lohi";
5563  case ISD::SDIVREM:    return "sdivrem";
5564  case ISD::UDIVREM:    return "udivrem";
5565  case ISD::AND:    return "and";
5566  case ISD::OR:     return "or";
5567  case ISD::XOR:    return "xor";
5568  case ISD::SHL:    return "shl";
5569  case ISD::SRA:    return "sra";
5570  case ISD::SRL:    return "srl";
5571  case ISD::ROTL:   return "rotl";
5572  case ISD::ROTR:   return "rotr";
5573  case ISD::FADD:   return "fadd";
5574  case ISD::FSUB:   return "fsub";
5575  case ISD::FMUL:   return "fmul";
5576  case ISD::FDIV:   return "fdiv";
5577  case ISD::FREM:   return "frem";
5578  case ISD::FCOPYSIGN: return "fcopysign";
5579  case ISD::FGETSIGN:  return "fgetsign";
5580
5581  case ISD::SETCC:       return "setcc";
5582  case ISD::VSETCC:      return "vsetcc";
5583  case ISD::SELECT:      return "select";
5584  case ISD::SELECT_CC:   return "select_cc";
5585  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5586  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5587  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5588  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5589  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5590  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5591  case ISD::CARRY_FALSE:         return "carry_false";
5592  case ISD::ADDC:        return "addc";
5593  case ISD::ADDE:        return "adde";
5594  case ISD::SADDO:       return "saddo";
5595  case ISD::UADDO:       return "uaddo";
5596  case ISD::SSUBO:       return "ssubo";
5597  case ISD::USUBO:       return "usubo";
5598  case ISD::SMULO:       return "smulo";
5599  case ISD::UMULO:       return "umulo";
5600  case ISD::SUBC:        return "subc";
5601  case ISD::SUBE:        return "sube";
5602  case ISD::SHL_PARTS:   return "shl_parts";
5603  case ISD::SRA_PARTS:   return "sra_parts";
5604  case ISD::SRL_PARTS:   return "srl_parts";
5605
5606  // Conversion operators.
5607  case ISD::SIGN_EXTEND: return "sign_extend";
5608  case ISD::ZERO_EXTEND: return "zero_extend";
5609  case ISD::ANY_EXTEND:  return "any_extend";
5610  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5611  case ISD::TRUNCATE:    return "truncate";
5612  case ISD::FP_ROUND:    return "fp_round";
5613  case ISD::FLT_ROUNDS_: return "flt_rounds";
5614  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5615  case ISD::FP_EXTEND:   return "fp_extend";
5616
5617  case ISD::SINT_TO_FP:  return "sint_to_fp";
5618  case ISD::UINT_TO_FP:  return "uint_to_fp";
5619  case ISD::FP_TO_SINT:  return "fp_to_sint";
5620  case ISD::FP_TO_UINT:  return "fp_to_uint";
5621  case ISD::BIT_CONVERT: return "bit_convert";
5622
5623  case ISD::CONVERT_RNDSAT: {
5624    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5625    default: llvm_unreachable("Unknown cvt code!");
5626    case ISD::CVT_FF:  return "cvt_ff";
5627    case ISD::CVT_FS:  return "cvt_fs";
5628    case ISD::CVT_FU:  return "cvt_fu";
5629    case ISD::CVT_SF:  return "cvt_sf";
5630    case ISD::CVT_UF:  return "cvt_uf";
5631    case ISD::CVT_SS:  return "cvt_ss";
5632    case ISD::CVT_SU:  return "cvt_su";
5633    case ISD::CVT_US:  return "cvt_us";
5634    case ISD::CVT_UU:  return "cvt_uu";
5635    }
5636  }
5637
5638    // Control flow instructions
5639  case ISD::BR:      return "br";
5640  case ISD::BRIND:   return "brind";
5641  case ISD::BR_JT:   return "br_jt";
5642  case ISD::BRCOND:  return "brcond";
5643  case ISD::BR_CC:   return "br_cc";
5644  case ISD::CALLSEQ_START:  return "callseq_start";
5645  case ISD::CALLSEQ_END:    return "callseq_end";
5646
5647    // Other operators
5648  case ISD::LOAD:               return "load";
5649  case ISD::STORE:              return "store";
5650  case ISD::VAARG:              return "vaarg";
5651  case ISD::VACOPY:             return "vacopy";
5652  case ISD::VAEND:              return "vaend";
5653  case ISD::VASTART:            return "vastart";
5654  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5655  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5656  case ISD::BUILD_PAIR:         return "build_pair";
5657  case ISD::STACKSAVE:          return "stacksave";
5658  case ISD::STACKRESTORE:       return "stackrestore";
5659  case ISD::TRAP:               return "trap";
5660
5661  // Bit manipulation
5662  case ISD::BSWAP:   return "bswap";
5663  case ISD::CTPOP:   return "ctpop";
5664  case ISD::CTTZ:    return "cttz";
5665  case ISD::CTLZ:    return "ctlz";
5666
5667  // Trampolines
5668  case ISD::TRAMPOLINE: return "trampoline";
5669
5670  case ISD::CONDCODE:
5671    switch (cast<CondCodeSDNode>(this)->get()) {
5672    default: llvm_unreachable("Unknown setcc condition!");
5673    case ISD::SETOEQ:  return "setoeq";
5674    case ISD::SETOGT:  return "setogt";
5675    case ISD::SETOGE:  return "setoge";
5676    case ISD::SETOLT:  return "setolt";
5677    case ISD::SETOLE:  return "setole";
5678    case ISD::SETONE:  return "setone";
5679
5680    case ISD::SETO:    return "seto";
5681    case ISD::SETUO:   return "setuo";
5682    case ISD::SETUEQ:  return "setue";
5683    case ISD::SETUGT:  return "setugt";
5684    case ISD::SETUGE:  return "setuge";
5685    case ISD::SETULT:  return "setult";
5686    case ISD::SETULE:  return "setule";
5687    case ISD::SETUNE:  return "setune";
5688
5689    case ISD::SETEQ:   return "seteq";
5690    case ISD::SETGT:   return "setgt";
5691    case ISD::SETGE:   return "setge";
5692    case ISD::SETLT:   return "setlt";
5693    case ISD::SETLE:   return "setle";
5694    case ISD::SETNE:   return "setne";
5695    }
5696  }
5697}
5698
5699const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5700  switch (AM) {
5701  default:
5702    return "";
5703  case ISD::PRE_INC:
5704    return "<pre-inc>";
5705  case ISD::PRE_DEC:
5706    return "<pre-dec>";
5707  case ISD::POST_INC:
5708    return "<post-inc>";
5709  case ISD::POST_DEC:
5710    return "<post-dec>";
5711  }
5712}
5713
5714std::string ISD::ArgFlagsTy::getArgFlagsString() {
5715  std::string S = "< ";
5716
5717  if (isZExt())
5718    S += "zext ";
5719  if (isSExt())
5720    S += "sext ";
5721  if (isInReg())
5722    S += "inreg ";
5723  if (isSRet())
5724    S += "sret ";
5725  if (isByVal())
5726    S += "byval ";
5727  if (isNest())
5728    S += "nest ";
5729  if (getByValAlign())
5730    S += "byval-align:" + utostr(getByValAlign()) + " ";
5731  if (getOrigAlign())
5732    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5733  if (getByValSize())
5734    S += "byval-size:" + utostr(getByValSize()) + " ";
5735  return S + ">";
5736}
5737
5738void SDNode::dump() const { dump(0); }
5739void SDNode::dump(const SelectionDAG *G) const {
5740  print(dbgs(), G);
5741}
5742
5743void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5744  OS << (void*)this << ": ";
5745
5746  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5747    if (i) OS << ",";
5748    if (getValueType(i) == MVT::Other)
5749      OS << "ch";
5750    else
5751      OS << getValueType(i).getEVTString();
5752  }
5753  OS << " = " << getOperationName(G);
5754}
5755
5756void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5757  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5758    if (!MN->memoperands_empty()) {
5759      OS << "<";
5760      OS << "Mem:";
5761      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5762           e = MN->memoperands_end(); i != e; ++i) {
5763        OS << **i;
5764        if (next(i) != e)
5765          OS << " ";
5766      }
5767      OS << ">";
5768    }
5769  } else if (const ShuffleVectorSDNode *SVN =
5770               dyn_cast<ShuffleVectorSDNode>(this)) {
5771    OS << "<";
5772    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5773      int Idx = SVN->getMaskElt(i);
5774      if (i) OS << ",";
5775      if (Idx < 0)
5776        OS << "u";
5777      else
5778        OS << Idx;
5779    }
5780    OS << ">";
5781  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5782    OS << '<' << CSDN->getAPIntValue() << '>';
5783  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5784    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5785      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5786    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5787      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5788    else {
5789      OS << "<APFloat(";
5790      CSDN->getValueAPF().bitcastToAPInt().dump();
5791      OS << ")>";
5792    }
5793  } else if (const GlobalAddressSDNode *GADN =
5794             dyn_cast<GlobalAddressSDNode>(this)) {
5795    int64_t offset = GADN->getOffset();
5796    OS << '<';
5797    WriteAsOperand(OS, GADN->getGlobal());
5798    OS << '>';
5799    if (offset > 0)
5800      OS << " + " << offset;
5801    else
5802      OS << " " << offset;
5803    if (unsigned int TF = GADN->getTargetFlags())
5804      OS << " [TF=" << TF << ']';
5805  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5806    OS << "<" << FIDN->getIndex() << ">";
5807  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5808    OS << "<" << JTDN->getIndex() << ">";
5809    if (unsigned int TF = JTDN->getTargetFlags())
5810      OS << " [TF=" << TF << ']';
5811  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5812    int offset = CP->getOffset();
5813    if (CP->isMachineConstantPoolEntry())
5814      OS << "<" << *CP->getMachineCPVal() << ">";
5815    else
5816      OS << "<" << *CP->getConstVal() << ">";
5817    if (offset > 0)
5818      OS << " + " << offset;
5819    else
5820      OS << " " << offset;
5821    if (unsigned int TF = CP->getTargetFlags())
5822      OS << " [TF=" << TF << ']';
5823  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5824    OS << "<";
5825    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5826    if (LBB)
5827      OS << LBB->getName() << " ";
5828    OS << (const void*)BBDN->getBasicBlock() << ">";
5829  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5830    if (G && R->getReg() &&
5831        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5832      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5833    } else {
5834      OS << " %reg" << R->getReg();
5835    }
5836  } else if (const ExternalSymbolSDNode *ES =
5837             dyn_cast<ExternalSymbolSDNode>(this)) {
5838    OS << "'" << ES->getSymbol() << "'";
5839    if (unsigned int TF = ES->getTargetFlags())
5840      OS << " [TF=" << TF << ']';
5841  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5842    if (M->getValue())
5843      OS << "<" << M->getValue() << ">";
5844    else
5845      OS << "<null>";
5846  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5847    OS << ":" << N->getVT().getEVTString();
5848  }
5849  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5850    OS << "<" << *LD->getMemOperand();
5851
5852    bool doExt = true;
5853    switch (LD->getExtensionType()) {
5854    default: doExt = false; break;
5855    case ISD::EXTLOAD: OS << ", anyext"; break;
5856    case ISD::SEXTLOAD: OS << ", sext"; break;
5857    case ISD::ZEXTLOAD: OS << ", zext"; break;
5858    }
5859    if (doExt)
5860      OS << " from " << LD->getMemoryVT().getEVTString();
5861
5862    const char *AM = getIndexedModeName(LD->getAddressingMode());
5863    if (*AM)
5864      OS << ", " << AM;
5865
5866    OS << ">";
5867  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5868    OS << "<" << *ST->getMemOperand();
5869
5870    if (ST->isTruncatingStore())
5871      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5872
5873    const char *AM = getIndexedModeName(ST->getAddressingMode());
5874    if (*AM)
5875      OS << ", " << AM;
5876
5877    OS << ">";
5878  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5879    OS << "<" << *M->getMemOperand() << ">";
5880  } else if (const BlockAddressSDNode *BA =
5881               dyn_cast<BlockAddressSDNode>(this)) {
5882    OS << "<";
5883    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5884    OS << ", ";
5885    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5886    OS << ">";
5887    if (unsigned int TF = BA->getTargetFlags())
5888      OS << " [TF=" << TF << ']';
5889  }
5890
5891  if (G)
5892    if (unsigned Order = G->GetOrdering(this))
5893      OS << " [ORD=" << Order << ']';
5894}
5895
5896void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5897  print_types(OS, G);
5898  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5899    if (i) OS << ", "; else OS << " ";
5900    OS << (void*)getOperand(i).getNode();
5901    if (unsigned RN = getOperand(i).getResNo())
5902      OS << ":" << RN;
5903  }
5904  print_details(OS, G);
5905}
5906
5907static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5908                                  const SelectionDAG *G, unsigned depth,
5909                                  unsigned indent)
5910{
5911  if (depth == 0)
5912    return;
5913
5914  OS.indent(indent);
5915
5916  N->print(OS, G);
5917
5918  if (depth < 1)
5919    return;
5920
5921  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5922    OS << '\n';
5923    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5924  }
5925}
5926
5927void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5928                            unsigned depth) const {
5929  printrWithDepthHelper(OS, this, G, depth, 0);
5930}
5931
5932void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5933  // Don't print impossibly deep things.
5934  printrWithDepth(OS, G, 100);
5935}
5936
5937void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5938  printrWithDepth(dbgs(), G, depth);
5939}
5940
5941void SDNode::dumprFull(const SelectionDAG *G) const {
5942  // Don't print impossibly deep things.
5943  dumprWithDepth(G, 100);
5944}
5945
5946static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5947  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5948    if (N->getOperand(i).getNode()->hasOneUse())
5949      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5950    else
5951      dbgs() << "\n" << std::string(indent+2, ' ')
5952           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5953
5954
5955  dbgs() << "\n";
5956  dbgs().indent(indent);
5957  N->dump(G);
5958}
5959
5960SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5961  assert(N->getNumValues() == 1 &&
5962         "Can't unroll a vector with multiple results!");
5963
5964  EVT VT = N->getValueType(0);
5965  unsigned NE = VT.getVectorNumElements();
5966  EVT EltVT = VT.getVectorElementType();
5967  DebugLoc dl = N->getDebugLoc();
5968
5969  SmallVector<SDValue, 8> Scalars;
5970  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5971
5972  // If ResNE is 0, fully unroll the vector op.
5973  if (ResNE == 0)
5974    ResNE = NE;
5975  else if (NE > ResNE)
5976    NE = ResNE;
5977
5978  unsigned i;
5979  for (i= 0; i != NE; ++i) {
5980    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5981      SDValue Operand = N->getOperand(j);
5982      EVT OperandVT = Operand.getValueType();
5983      if (OperandVT.isVector()) {
5984        // A vector operand; extract a single element.
5985        EVT OperandEltVT = OperandVT.getVectorElementType();
5986        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5987                              OperandEltVT,
5988                              Operand,
5989                              getConstant(i, MVT::i32));
5990      } else {
5991        // A scalar operand; just use it as is.
5992        Operands[j] = Operand;
5993      }
5994    }
5995
5996    switch (N->getOpcode()) {
5997    default:
5998      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5999                                &Operands[0], Operands.size()));
6000      break;
6001    case ISD::SHL:
6002    case ISD::SRA:
6003    case ISD::SRL:
6004    case ISD::ROTL:
6005    case ISD::ROTR:
6006      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6007                                getShiftAmountOperand(Operands[1])));
6008      break;
6009    case ISD::SIGN_EXTEND_INREG:
6010    case ISD::FP_ROUND_INREG: {
6011      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6012      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6013                                Operands[0],
6014                                getValueType(ExtVT)));
6015    }
6016    }
6017  }
6018
6019  for (; i < ResNE; ++i)
6020    Scalars.push_back(getUNDEF(EltVT));
6021
6022  return getNode(ISD::BUILD_VECTOR, dl,
6023                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6024                 &Scalars[0], Scalars.size());
6025}
6026
6027
6028/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6029/// location that is 'Dist' units away from the location that the 'Base' load
6030/// is loading from.
6031bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6032                                     unsigned Bytes, int Dist) const {
6033  if (LD->getChain() != Base->getChain())
6034    return false;
6035  EVT VT = LD->getValueType(0);
6036  if (VT.getSizeInBits() / 8 != Bytes)
6037    return false;
6038
6039  SDValue Loc = LD->getOperand(1);
6040  SDValue BaseLoc = Base->getOperand(1);
6041  if (Loc.getOpcode() == ISD::FrameIndex) {
6042    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6043      return false;
6044    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6045    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6046    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6047    int FS  = MFI->getObjectSize(FI);
6048    int BFS = MFI->getObjectSize(BFI);
6049    if (FS != BFS || FS != (int)Bytes) return false;
6050    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6051  }
6052  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6053    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6054    if (V && (V->getSExtValue() == Dist*Bytes))
6055      return true;
6056  }
6057
6058  GlobalValue *GV1 = NULL;
6059  GlobalValue *GV2 = NULL;
6060  int64_t Offset1 = 0;
6061  int64_t Offset2 = 0;
6062  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6063  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6064  if (isGA1 && isGA2 && GV1 == GV2)
6065    return Offset1 == (Offset2 + Dist*Bytes);
6066  return false;
6067}
6068
6069
6070/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6071/// it cannot be inferred.
6072unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6073  // If this is a GlobalAddress + cst, return the alignment.
6074  GlobalValue *GV;
6075  int64_t GVOffset = 0;
6076  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6077    return MinAlign(GV->getAlignment(), GVOffset);
6078
6079  // If this is a direct reference to a stack slot, use information about the
6080  // stack slot's alignment.
6081  int FrameIdx = 1 << 31;
6082  int64_t FrameOffset = 0;
6083  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6084    FrameIdx = FI->getIndex();
6085  } else if (Ptr.getOpcode() == ISD::ADD &&
6086             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6087             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6088    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6089    FrameOffset = Ptr.getConstantOperandVal(1);
6090  }
6091
6092  if (FrameIdx != (1 << 31)) {
6093    // FIXME: Handle FI+CST.
6094    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6095    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6096                                    FrameOffset);
6097    if (MFI.isFixedObjectIndex(FrameIdx)) {
6098      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6099
6100      // The alignment of the frame index can be determined from its offset from
6101      // the incoming frame position.  If the frame object is at offset 32 and
6102      // the stack is guaranteed to be 16-byte aligned, then we know that the
6103      // object is 16-byte aligned.
6104      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6105      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6106
6107      // Finally, the frame object itself may have a known alignment.  Factor
6108      // the alignment + offset into a new alignment.  For example, if we know
6109      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6110      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6111      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6112      return std::max(Align, FIInfoAlign);
6113    }
6114    return FIInfoAlign;
6115  }
6116
6117  return 0;
6118}
6119
6120void SelectionDAG::dump() const {
6121  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6122
6123  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6124       I != E; ++I) {
6125    const SDNode *N = I;
6126    if (!N->hasOneUse() && N != getRoot().getNode())
6127      DumpNodes(N, 2, this);
6128  }
6129
6130  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6131
6132  dbgs() << "\n\n";
6133}
6134
6135void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6136  print_types(OS, G);
6137  print_details(OS, G);
6138}
6139
6140typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6141static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6142                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6143  if (!once.insert(N))          // If we've been here before, return now.
6144    return;
6145
6146  // Dump the current SDNode, but don't end the line yet.
6147  OS << std::string(indent, ' ');
6148  N->printr(OS, G);
6149
6150  // Having printed this SDNode, walk the children:
6151  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6152    const SDNode *child = N->getOperand(i).getNode();
6153
6154    if (i) OS << ",";
6155    OS << " ";
6156
6157    if (child->getNumOperands() == 0) {
6158      // This child has no grandchildren; print it inline right here.
6159      child->printr(OS, G);
6160      once.insert(child);
6161    } else {         // Just the address. FIXME: also print the child's opcode.
6162      OS << (void*)child;
6163      if (unsigned RN = N->getOperand(i).getResNo())
6164        OS << ":" << RN;
6165    }
6166  }
6167
6168  OS << "\n";
6169
6170  // Dump children that have grandchildren on their own line(s).
6171  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6172    const SDNode *child = N->getOperand(i).getNode();
6173    DumpNodesr(OS, child, indent+2, G, once);
6174  }
6175}
6176
6177void SDNode::dumpr() const {
6178  VisitedSDNodeSet once;
6179  DumpNodesr(dbgs(), this, 0, 0, once);
6180}
6181
6182void SDNode::dumpr(const SelectionDAG *G) const {
6183  VisitedSDNodeSet once;
6184  DumpNodesr(dbgs(), this, 0, G, once);
6185}
6186
6187
6188// getAddressSpace - Return the address space this GlobalAddress belongs to.
6189unsigned GlobalAddressSDNode::getAddressSpace() const {
6190  return getGlobal()->getType()->getAddressSpace();
6191}
6192
6193
6194const Type *ConstantPoolSDNode::getType() const {
6195  if (isMachineConstantPoolEntry())
6196    return Val.MachineCPVal->getType();
6197  return Val.ConstVal->getType();
6198}
6199
6200bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6201                                        APInt &SplatUndef,
6202                                        unsigned &SplatBitSize,
6203                                        bool &HasAnyUndefs,
6204                                        unsigned MinSplatBits,
6205                                        bool isBigEndian) {
6206  EVT VT = getValueType(0);
6207  assert(VT.isVector() && "Expected a vector type");
6208  unsigned sz = VT.getSizeInBits();
6209  if (MinSplatBits > sz)
6210    return false;
6211
6212  SplatValue = APInt(sz, 0);
6213  SplatUndef = APInt(sz, 0);
6214
6215  // Get the bits.  Bits with undefined values (when the corresponding element
6216  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6217  // in SplatValue.  If any of the values are not constant, give up and return
6218  // false.
6219  unsigned int nOps = getNumOperands();
6220  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6221  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6222
6223  for (unsigned j = 0; j < nOps; ++j) {
6224    unsigned i = isBigEndian ? nOps-1-j : j;
6225    SDValue OpVal = getOperand(i);
6226    unsigned BitPos = j * EltBitSize;
6227
6228    if (OpVal.getOpcode() == ISD::UNDEF)
6229      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6230    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6231      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6232                     zextOrTrunc(sz) << BitPos);
6233    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6234      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6235     else
6236      return false;
6237  }
6238
6239  // The build_vector is all constants or undefs.  Find the smallest element
6240  // size that splats the vector.
6241
6242  HasAnyUndefs = (SplatUndef != 0);
6243  while (sz > 8) {
6244
6245    unsigned HalfSize = sz / 2;
6246    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6247    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6248    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6249    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6250
6251    // If the two halves do not match (ignoring undef bits), stop here.
6252    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6253        MinSplatBits > HalfSize)
6254      break;
6255
6256    SplatValue = HighValue | LowValue;
6257    SplatUndef = HighUndef & LowUndef;
6258
6259    sz = HalfSize;
6260  }
6261
6262  SplatBitSize = sz;
6263  return true;
6264}
6265
6266bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6267  // Find the first non-undef value in the shuffle mask.
6268  unsigned i, e;
6269  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6270    /* search */;
6271
6272  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6273
6274  // Make sure all remaining elements are either undef or the same as the first
6275  // non-undef value.
6276  for (int Idx = Mask[i]; i != e; ++i)
6277    if (Mask[i] >= 0 && Mask[i] != Idx)
6278      return false;
6279  return true;
6280}
6281
6282static void checkForCyclesHelper(const SDNode *N,
6283                                 std::set<const SDNode *> &visited) {
6284  if (visited.find(N) != visited.end()) {
6285    dbgs() << "Offending node:\n";
6286    N->dumprFull();
6287    assert(0 && "Detected cycle in SelectionDAG");
6288  }
6289
6290  std::set<const SDNode*>::iterator i;
6291  bool inserted;
6292
6293  tie(i, inserted) = visited.insert(N);
6294  assert(inserted && "Missed cycle");
6295
6296  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
6297    checkForCyclesHelper(N->getOperand(i).getNode(), visited);
6298  }
6299  visited.erase(i);
6300}
6301
6302void llvm::checkForCycles(const llvm::SDNode *N) {
6303#ifdef XDEBUG
6304  assert(N && "Checking nonexistant SDNode");
6305  std::set<const SDNode *> visited;
6306  checkForCyclesHelper(N, visited);
6307#endif
6308}
6309
6310void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6311  checkForCycles(DAG->getRoot().getNode());
6312}
6313