SelectionDAG.cpp revision 206ad10c14e5dda3bf7b2dc8faf84b2f75124844
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/ManagedStatic.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/System/Mutex.h"
39#include "llvm/ADT/SetVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/StringExtras.h"
44#include <algorithm>
45#include <cmath>
46using namespace llvm;
47
48/// makeVTList - Return an instance of the SDVTList struct initialized with the
49/// specified members.
50static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
51  SDVTList Res = {VTs, NumVTs};
52  return Res;
53}
54
55static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
56  switch (VT.getSimpleVT()) {
57  default: llvm_unreachable("Unknown FP format");
58  case MVT::f32:     return &APFloat::IEEEsingle;
59  case MVT::f64:     return &APFloat::IEEEdouble;
60  case MVT::f80:     return &APFloat::x87DoubleExtended;
61  case MVT::f128:    return &APFloat::IEEEquad;
62  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63  }
64}
65
66SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
67
68//===----------------------------------------------------------------------===//
69//                              ConstantFPSDNode Class
70//===----------------------------------------------------------------------===//
71
72/// isExactlyValue - We don't rely on operator== working on double values, as
73/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
74/// As such, this method can be used to do an exact bit-for-bit comparison of
75/// two floating point values.
76bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
77  return getValueAPF().bitwiseIsEqual(V);
78}
79
80bool ConstantFPSDNode::isValueValidForType(MVT VT,
81                                           const APFloat& Val) {
82  assert(VT.isFloatingPoint() && "Can only convert between FP types");
83
84  // PPC long double cannot be converted to any other type.
85  if (VT == MVT::ppcf128 ||
86      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
87    return false;
88
89  // convert modifies in place, so make a copy.
90  APFloat Val2 = APFloat(Val);
91  bool losesInfo;
92  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
93                      &losesInfo);
94  return !losesInfo;
95}
96
97//===----------------------------------------------------------------------===//
98//                              ISD Namespace
99//===----------------------------------------------------------------------===//
100
101/// isBuildVectorAllOnes - Return true if the specified node is a
102/// BUILD_VECTOR where all of the elements are ~0 or undef.
103bool ISD::isBuildVectorAllOnes(const SDNode *N) {
104  // Look through a bit convert.
105  if (N->getOpcode() == ISD::BIT_CONVERT)
106    N = N->getOperand(0).getNode();
107
108  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
109
110  unsigned i = 0, e = N->getNumOperands();
111
112  // Skip over all of the undef values.
113  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
114    ++i;
115
116  // Do not accept an all-undef vector.
117  if (i == e) return false;
118
119  // Do not accept build_vectors that aren't all constants or which have non-~0
120  // elements.
121  SDValue NotZero = N->getOperand(i);
122  if (isa<ConstantSDNode>(NotZero)) {
123    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
124      return false;
125  } else if (isa<ConstantFPSDNode>(NotZero)) {
126    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
127                bitcastToAPInt().isAllOnesValue())
128      return false;
129  } else
130    return false;
131
132  // Okay, we have at least one ~0 value, check to see if the rest match or are
133  // undefs.
134  for (++i; i != e; ++i)
135    if (N->getOperand(i) != NotZero &&
136        N->getOperand(i).getOpcode() != ISD::UNDEF)
137      return false;
138  return true;
139}
140
141
142/// isBuildVectorAllZeros - Return true if the specified node is a
143/// BUILD_VECTOR where all of the elements are 0 or undef.
144bool ISD::isBuildVectorAllZeros(const SDNode *N) {
145  // Look through a bit convert.
146  if (N->getOpcode() == ISD::BIT_CONVERT)
147    N = N->getOperand(0).getNode();
148
149  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
150
151  unsigned i = 0, e = N->getNumOperands();
152
153  // Skip over all of the undef values.
154  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
155    ++i;
156
157  // Do not accept an all-undef vector.
158  if (i == e) return false;
159
160  // Do not accept build_vectors that aren't all constants or which have non-0
161  // elements.
162  SDValue Zero = N->getOperand(i);
163  if (isa<ConstantSDNode>(Zero)) {
164    if (!cast<ConstantSDNode>(Zero)->isNullValue())
165      return false;
166  } else if (isa<ConstantFPSDNode>(Zero)) {
167    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
168      return false;
169  } else
170    return false;
171
172  // Okay, we have at least one 0 value, check to see if the rest match or are
173  // undefs.
174  for (++i; i != e; ++i)
175    if (N->getOperand(i) != Zero &&
176        N->getOperand(i).getOpcode() != ISD::UNDEF)
177      return false;
178  return true;
179}
180
181/// isScalarToVector - Return true if the specified node is a
182/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
183/// element is not an undef.
184bool ISD::isScalarToVector(const SDNode *N) {
185  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
186    return true;
187
188  if (N->getOpcode() != ISD::BUILD_VECTOR)
189    return false;
190  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
191    return false;
192  unsigned NumElems = N->getNumOperands();
193  for (unsigned i = 1; i < NumElems; ++i) {
194    SDValue V = N->getOperand(i);
195    if (V.getOpcode() != ISD::UNDEF)
196      return false;
197  }
198  return true;
199}
200
201
202/// isDebugLabel - Return true if the specified node represents a debug
203/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
204bool ISD::isDebugLabel(const SDNode *N) {
205  SDValue Zero;
206  if (N->getOpcode() == ISD::DBG_LABEL)
207    return true;
208  if (N->isMachineOpcode() &&
209      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
210    return true;
211  return false;
212}
213
214/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
215/// when given the operation for (X op Y).
216ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
217  // To perform this operation, we just need to swap the L and G bits of the
218  // operation.
219  unsigned OldL = (Operation >> 2) & 1;
220  unsigned OldG = (Operation >> 1) & 1;
221  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
222                       (OldL << 1) |       // New G bit
223                       (OldG << 2));       // New L bit.
224}
225
226/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
227/// 'op' is a valid SetCC operation.
228ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
229  unsigned Operation = Op;
230  if (isInteger)
231    Operation ^= 7;   // Flip L, G, E bits, but not U.
232  else
233    Operation ^= 15;  // Flip all of the condition bits.
234
235  if (Operation > ISD::SETTRUE2)
236    Operation &= ~8;  // Don't let N and U bits get set.
237
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: llvm_unreachable("Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
304    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
305    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
306    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
307    }
308  }
309
310  return Result;
311}
312
313const TargetMachine &SelectionDAG::getTarget() const {
314  return MF->getTarget();
315}
316
317//===----------------------------------------------------------------------===//
318//                           SDNode Profile Support
319//===----------------------------------------------------------------------===//
320
321/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
322///
323static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
324  ID.AddInteger(OpC);
325}
326
327/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
328/// solely with their pointer.
329static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
330  ID.AddPointer(VTList.VTs);
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDValue *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
344///
345static void AddNodeIDOperands(FoldingSetNodeID &ID,
346                              const SDUse *Ops, unsigned NumOps) {
347  for (; NumOps; --NumOps, ++Ops) {
348    ID.AddPointer(Ops->getNode());
349    ID.AddInteger(Ops->getResNo());
350  }
351}
352
353static void AddNodeIDNode(FoldingSetNodeID &ID,
354                          unsigned short OpC, SDVTList VTList,
355                          const SDValue *OpList, unsigned N) {
356  AddNodeIDOpcode(ID, OpC);
357  AddNodeIDValueTypes(ID, VTList);
358  AddNodeIDOperands(ID, OpList, N);
359}
360
361/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
362/// the NodeID data.
363static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
364  switch (N->getOpcode()) {
365  case ISD::TargetExternalSymbol:
366  case ISD::ExternalSymbol:
367    llvm_unreachable("Should only be used on nodes with operands");
368  default: break;  // Normal nodes don't need extra info.
369  case ISD::ARG_FLAGS:
370    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
371    break;
372  case ISD::TargetConstant:
373  case ISD::Constant:
374    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
375    break;
376  case ISD::TargetConstantFP:
377  case ISD::ConstantFP: {
378    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
379    break;
380  }
381  case ISD::TargetGlobalAddress:
382  case ISD::GlobalAddress:
383  case ISD::TargetGlobalTLSAddress:
384  case ISD::GlobalTLSAddress: {
385    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
386    ID.AddPointer(GA->getGlobal());
387    ID.AddInteger(GA->getOffset());
388    ID.AddInteger(GA->getTargetFlags());
389    break;
390  }
391  case ISD::BasicBlock:
392    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
393    break;
394  case ISD::Register:
395    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
396    break;
397  case ISD::DBG_STOPPOINT: {
398    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
399    ID.AddInteger(DSP->getLine());
400    ID.AddInteger(DSP->getColumn());
401    ID.AddPointer(DSP->getCompileUnit());
402    break;
403  }
404  case ISD::SRCVALUE:
405    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
406    break;
407  case ISD::MEMOPERAND: {
408    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
409    MO.Profile(ID);
410    break;
411  }
412  case ISD::FrameIndex:
413  case ISD::TargetFrameIndex:
414    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
415    break;
416  case ISD::JumpTable:
417  case ISD::TargetJumpTable:
418    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
419    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
420    break;
421  case ISD::ConstantPool:
422  case ISD::TargetConstantPool: {
423    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
424    ID.AddInteger(CP->getAlignment());
425    ID.AddInteger(CP->getOffset());
426    if (CP->isMachineConstantPoolEntry())
427      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
428    else
429      ID.AddPointer(CP->getConstVal());
430    ID.AddInteger(CP->getTargetFlags());
431    break;
432  }
433  case ISD::CALL: {
434    const CallSDNode *Call = cast<CallSDNode>(N);
435    ID.AddInteger(Call->getCallingConv());
436    ID.AddInteger(Call->isVarArg());
437    break;
438  }
439  case ISD::LOAD: {
440    const LoadSDNode *LD = cast<LoadSDNode>(N);
441    ID.AddInteger(LD->getMemoryVT().getRawBits());
442    ID.AddInteger(LD->getRawSubclassData());
443    break;
444  }
445  case ISD::STORE: {
446    const StoreSDNode *ST = cast<StoreSDNode>(N);
447    ID.AddInteger(ST->getMemoryVT().getRawBits());
448    ID.AddInteger(ST->getRawSubclassData());
449    break;
450  }
451  case ISD::ATOMIC_CMP_SWAP:
452  case ISD::ATOMIC_SWAP:
453  case ISD::ATOMIC_LOAD_ADD:
454  case ISD::ATOMIC_LOAD_SUB:
455  case ISD::ATOMIC_LOAD_AND:
456  case ISD::ATOMIC_LOAD_OR:
457  case ISD::ATOMIC_LOAD_XOR:
458  case ISD::ATOMIC_LOAD_NAND:
459  case ISD::ATOMIC_LOAD_MIN:
460  case ISD::ATOMIC_LOAD_MAX:
461  case ISD::ATOMIC_LOAD_UMIN:
462  case ISD::ATOMIC_LOAD_UMAX: {
463    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
464    ID.AddInteger(AT->getMemoryVT().getRawBits());
465    ID.AddInteger(AT->getRawSubclassData());
466    break;
467  }
468  case ISD::VECTOR_SHUFFLE: {
469    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
470    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
471         i != e; ++i)
472      ID.AddInteger(SVN->getMaskElt(i));
473    break;
474  }
475  } // end switch (N->getOpcode())
476}
477
478/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
479/// data.
480static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
481  AddNodeIDOpcode(ID, N->getOpcode());
482  // Add the return value info.
483  AddNodeIDValueTypes(ID, N->getVTList());
484  // Add the operand info.
485  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
486
487  // Handle SDNode leafs with special info.
488  AddNodeIDCustom(ID, N);
489}
490
491/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
492/// the CSE map that carries alignment, volatility, indexing mode, and
493/// extension/truncation information.
494///
495static inline unsigned
496encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
497                     bool isVolatile, unsigned Alignment) {
498  assert((ConvType & 3) == ConvType &&
499         "ConvType may not require more than 2 bits!");
500  assert((AM & 7) == AM &&
501         "AM may not require more than 3 bits!");
502  return ConvType |
503         (AM << 2) |
504         (isVolatile << 5) |
505         ((Log2_32(Alignment) + 1) << 6);
506}
507
508//===----------------------------------------------------------------------===//
509//                              SelectionDAG Class
510//===----------------------------------------------------------------------===//
511
512/// doNotCSE - Return true if CSE should not be performed for this node.
513static bool doNotCSE(SDNode *N) {
514  if (N->getValueType(0) == MVT::Flag)
515    return true; // Never CSE anything that produces a flag.
516
517  switch (N->getOpcode()) {
518  default: break;
519  case ISD::HANDLENODE:
520  case ISD::DBG_LABEL:
521  case ISD::DBG_STOPPOINT:
522  case ISD::EH_LABEL:
523  case ISD::DECLARE:
524    return true;   // Never CSE these nodes.
525  }
526
527  // Check that remaining values produced are not flags.
528  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
529    if (N->getValueType(i) == MVT::Flag)
530      return true; // Never CSE anything that produces a flag.
531
532  return false;
533}
534
535/// RemoveDeadNodes - This method deletes all unreachable nodes in the
536/// SelectionDAG.
537void SelectionDAG::RemoveDeadNodes() {
538  // Create a dummy node (which is not added to allnodes), that adds a reference
539  // to the root node, preventing it from being deleted.
540  HandleSDNode Dummy(getRoot());
541
542  SmallVector<SDNode*, 128> DeadNodes;
543
544  // Add all obviously-dead nodes to the DeadNodes worklist.
545  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
546    if (I->use_empty())
547      DeadNodes.push_back(I);
548
549  RemoveDeadNodes(DeadNodes);
550
551  // If the root changed (e.g. it was a dead load, update the root).
552  setRoot(Dummy.getValue());
553}
554
555/// RemoveDeadNodes - This method deletes the unreachable nodes in the
556/// given list, and any nodes that become unreachable as a result.
557void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
558                                   DAGUpdateListener *UpdateListener) {
559
560  // Process the worklist, deleting the nodes and adding their uses to the
561  // worklist.
562  while (!DeadNodes.empty()) {
563    SDNode *N = DeadNodes.pop_back_val();
564
565    if (UpdateListener)
566      UpdateListener->NodeDeleted(N, 0);
567
568    // Take the node out of the appropriate CSE map.
569    RemoveNodeFromCSEMaps(N);
570
571    // Next, brutally remove the operand list.  This is safe to do, as there are
572    // no cycles in the graph.
573    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
574      SDUse &Use = *I++;
575      SDNode *Operand = Use.getNode();
576      Use.set(SDValue());
577
578      // Now that we removed this operand, see if there are no uses of it left.
579      if (Operand->use_empty())
580        DeadNodes.push_back(Operand);
581    }
582
583    DeallocateNode(N);
584  }
585}
586
587void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
588  SmallVector<SDNode*, 16> DeadNodes(1, N);
589  RemoveDeadNodes(DeadNodes, UpdateListener);
590}
591
592void SelectionDAG::DeleteNode(SDNode *N) {
593  // First take this out of the appropriate CSE map.
594  RemoveNodeFromCSEMaps(N);
595
596  // Finally, remove uses due to operands of this node, remove from the
597  // AllNodes list, and delete the node.
598  DeleteNodeNotInCSEMaps(N);
599}
600
601void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
602  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
603  assert(N->use_empty() && "Cannot delete a node that is not dead!");
604
605  // Drop all of the operands and decrement used node's use counts.
606  N->DropOperands();
607
608  DeallocateNode(N);
609}
610
611void SelectionDAG::DeallocateNode(SDNode *N) {
612  if (N->OperandsNeedDelete)
613    delete[] N->OperandList;
614
615  // Set the opcode to DELETED_NODE to help catch bugs when node
616  // memory is reallocated.
617  N->NodeType = ISD::DELETED_NODE;
618
619  NodeAllocator.Deallocate(AllNodes.remove(N));
620}
621
622/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
623/// correspond to it.  This is useful when we're about to delete or repurpose
624/// the node.  We don't want future request for structurally identical nodes
625/// to return N anymore.
626bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
627  bool Erased = false;
628  switch (N->getOpcode()) {
629  case ISD::EntryToken:
630    llvm_unreachable("EntryToken should not be in CSEMaps!");
631    return false;
632  case ISD::HANDLENODE: return false;  // noop.
633  case ISD::CONDCODE:
634    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
635           "Cond code doesn't exist!");
636    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
637    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
638    break;
639  case ISD::ExternalSymbol:
640    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
641    break;
642  case ISD::TargetExternalSymbol: {
643    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
644    Erased = TargetExternalSymbols.erase(
645               std::pair<std::string,unsigned char>(ESN->getSymbol(),
646                                                    ESN->getTargetFlags()));
647    break;
648  }
649  case ISD::VALUETYPE: {
650    MVT VT = cast<VTSDNode>(N)->getVT();
651    if (VT.isExtended()) {
652      Erased = ExtendedValueTypeNodes.erase(VT);
653    } else {
654      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
655      ValueTypeNodes[VT.getSimpleVT()] = 0;
656    }
657    break;
658  }
659  default:
660    // Remove it from the CSE Map.
661    Erased = CSEMap.RemoveNode(N);
662    break;
663  }
664#ifndef NDEBUG
665  // Verify that the node was actually in one of the CSE maps, unless it has a
666  // flag result (which cannot be CSE'd) or is one of the special cases that are
667  // not subject to CSE.
668  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
669      !N->isMachineOpcode() && !doNotCSE(N)) {
670    N->dump(this);
671    cerr << "\n";
672    llvm_unreachable("Node is not in map!");
673  }
674#endif
675  return Erased;
676}
677
678/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
679/// maps and modified in place. Add it back to the CSE maps, unless an identical
680/// node already exists, in which case transfer all its users to the existing
681/// node. This transfer can potentially trigger recursive merging.
682///
683void
684SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
685                                       DAGUpdateListener *UpdateListener) {
686  // For node types that aren't CSE'd, just act as if no identical node
687  // already exists.
688  if (!doNotCSE(N)) {
689    SDNode *Existing = CSEMap.GetOrInsertNode(N);
690    if (Existing != N) {
691      // If there was already an existing matching node, use ReplaceAllUsesWith
692      // to replace the dead one with the existing one.  This can cause
693      // recursive merging of other unrelated nodes down the line.
694      ReplaceAllUsesWith(N, Existing, UpdateListener);
695
696      // N is now dead.  Inform the listener if it exists and delete it.
697      if (UpdateListener)
698        UpdateListener->NodeDeleted(N, Existing);
699      DeleteNodeNotInCSEMaps(N);
700      return;
701    }
702  }
703
704  // If the node doesn't already exist, we updated it.  Inform a listener if
705  // it exists.
706  if (UpdateListener)
707    UpdateListener->NodeUpdated(N);
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
715                                           void *&InsertPos) {
716  if (doNotCSE(N))
717    return 0;
718
719  SDValue Ops[] = { Op };
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
722  AddNodeIDCustom(ID, N);
723  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724}
725
726/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
727/// were replaced with those specified.  If this node is never memoized,
728/// return null, otherwise return a pointer to the slot it would take.  If a
729/// node already exists with these operands, the slot will be non-null.
730SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
731                                           SDValue Op1, SDValue Op2,
732                                           void *&InsertPos) {
733  if (doNotCSE(N))
734    return 0;
735
736  SDValue Ops[] = { Op1, Op2 };
737  FoldingSetNodeID ID;
738  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
739  AddNodeIDCustom(ID, N);
740  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741}
742
743
744/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
745/// were replaced with those specified.  If this node is never memoized,
746/// return null, otherwise return a pointer to the slot it would take.  If a
747/// node already exists with these operands, the slot will be non-null.
748SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
749                                           const SDValue *Ops,unsigned NumOps,
750                                           void *&InsertPos) {
751  if (doNotCSE(N))
752    return 0;
753
754  FoldingSetNodeID ID;
755  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
756  AddNodeIDCustom(ID, N);
757  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
758}
759
760/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
761void SelectionDAG::VerifyNode(SDNode *N) {
762  switch (N->getOpcode()) {
763  default:
764    break;
765  case ISD::BUILD_PAIR: {
766    MVT VT = N->getValueType(0);
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
769           "Wrong return type!");
770    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
771    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
772           "Mismatched operand types!");
773    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
774           "Wrong operand type!");
775    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
776           "Wrong return type size");
777    break;
778  }
779  case ISD::BUILD_VECTOR: {
780    assert(N->getNumValues() == 1 && "Too many results!");
781    assert(N->getValueType(0).isVector() && "Wrong return type!");
782    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
783           "Wrong number of operands!");
784    MVT EltVT = N->getValueType(0).getVectorElementType();
785    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786      assert((I->getValueType() == EltVT ||
787             (EltVT.isInteger() && I->getValueType().isInteger() &&
788              EltVT.bitsLE(I->getValueType()))) &&
789            "Wrong operand type!");
790    break;
791  }
792  }
793}
794
795/// getMVTAlignment - Compute the default alignment value for the
796/// given type.
797///
798unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
799  const Type *Ty = VT == MVT::iPTR ?
800                   PointerType::get(Type::Int8Ty, 0) :
801                   VT.getTypeForMVT();
802
803  return TLI.getTargetData()->getABITypeAlignment(Ty);
804}
805
806// EntryNode could meaningfully have debug info if we can find it...
807SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
808  : TLI(tli), FLI(fli), DW(0),
809    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
810    getVTList(MVT::Other)), Root(getEntryNode()) {
811  AllNodes.push_back(&EntryNode);
812}
813
814void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
815                        DwarfWriter *dw) {
816  MF = &mf;
817  MMI = mmi;
818  DW = dw;
819  Context = &mf.getFunction()->getContext();
820}
821
822SelectionDAG::~SelectionDAG() {
823  allnodes_clear();
824}
825
826void SelectionDAG::allnodes_clear() {
827  assert(&*AllNodes.begin() == &EntryNode);
828  AllNodes.remove(AllNodes.begin());
829  while (!AllNodes.empty())
830    DeallocateNode(AllNodes.begin());
831}
832
833void SelectionDAG::clear() {
834  allnodes_clear();
835  OperandAllocator.Reset();
836  CSEMap.clear();
837
838  ExtendedValueTypeNodes.clear();
839  ExternalSymbols.clear();
840  TargetExternalSymbols.clear();
841  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
842            static_cast<CondCodeSDNode*>(0));
843  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
844            static_cast<SDNode*>(0));
845
846  EntryNode.UseList = 0;
847  AllNodes.push_back(&EntryNode);
848  Root = getEntryNode();
849}
850
851SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
852  if (Op.getValueType() == VT) return Op;
853  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
854                                   VT.getSizeInBits());
855  return getNode(ISD::AND, DL, Op.getValueType(), Op,
856                 getConstant(Imm, Op.getValueType()));
857}
858
859/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
860///
861SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
862  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
863  SDValue NegOne =
864    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
865  return getNode(ISD::XOR, DL, VT, Val, NegOne);
866}
867
868SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
869  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
870  assert((EltVT.getSizeInBits() >= 64 ||
871         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
872         "getConstant with a uint64_t value that doesn't fit in the type!");
873  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
877  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
878}
879
880SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
881  assert(VT.isInteger() && "Cannot create FP integer constant!");
882
883  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
884  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
885         "APInt size does not match type size!");
886
887  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
890  ID.AddPointer(&Val);
891  void *IP = 0;
892  SDNode *N = NULL;
893  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
894    if (!VT.isVector())
895      return SDValue(N, 0);
896  if (!N) {
897    N = NodeAllocator.Allocate<ConstantSDNode>();
898    new (N) ConstantSDNode(isT, &Val, EltVT);
899    CSEMap.InsertNode(N, IP);
900    AllNodes.push_back(N);
901  }
902
903  SDValue Result(N, 0);
904  if (VT.isVector()) {
905    SmallVector<SDValue, 8> Ops;
906    Ops.assign(VT.getVectorNumElements(), Result);
907    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
908                     VT, &Ops[0], Ops.size());
909  }
910  return Result;
911}
912
913SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
914  return getConstant(Val, TLI.getPointerTy(), isTarget);
915}
916
917
918SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
919  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
920}
921
922SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
923  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
924
925  MVT EltVT =
926    VT.isVector() ? VT.getVectorElementType() : VT;
927
928  // Do the map lookup using the actual bit pattern for the floating point
929  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
930  // we don't have issues with SNANs.
931  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&V);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940  if (!N) {
941    N = NodeAllocator.Allocate<ConstantFPSDNode>();
942    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    // FIXME DebugLoc info might be appropriate here
952    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
953                     VT, &Ops[0], Ops.size());
954  }
955  return Result;
956}
957
958SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
959  MVT EltVT =
960    VT.isVector() ? VT.getVectorElementType() : VT;
961  if (EltVT==MVT::f32)
962    return getConstantFP(APFloat((float)Val), VT, isTarget);
963  else
964    return getConstantFP(APFloat(Val), VT, isTarget);
965}
966
967SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
968                                       MVT VT, int64_t Offset,
969                                       bool isTargetGA,
970                                       unsigned char TargetFlags) {
971  assert((TargetFlags == 0 || isTargetGA) &&
972         "Cannot set target flags on target-independent globals");
973
974  // Truncate (with sign-extension) the offset value to the pointer size.
975  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
976  if (BitWidth < 64)
977    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
978
979  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
980  if (!GVar) {
981    // If GV is an alias then use the aliasee for determining thread-localness.
982    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
983      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
984  }
985
986  unsigned Opc;
987  if (GVar && GVar->isThreadLocal())
988    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
989  else
990    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
991
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddPointer(GV);
995  ID.AddInteger(Offset);
996  ID.AddInteger(TargetFlags);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1001  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
1008  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(FI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1016  new (N) FrameIndexSDNode(FI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget,
1023                                   unsigned char TargetFlags) {
1024  assert((TargetFlags == 0 || isTarget) &&
1025         "Cannot set target flags on target-independent jump tables");
1026  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1027  FoldingSetNodeID ID;
1028  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029  ID.AddInteger(JTI);
1030  ID.AddInteger(TargetFlags);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1035  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1042                                      unsigned Alignment, int Offset,
1043                                      bool isTarget,
1044                                      unsigned char TargetFlags) {
1045  assert((TargetFlags == 0 || isTarget) &&
1046         "Cannot set target flags on target-independent globals");
1047  if (Alignment == 0)
1048    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1049  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1052  ID.AddInteger(Alignment);
1053  ID.AddInteger(Offset);
1054  ID.AddPointer(C);
1055  ID.AddInteger(TargetFlags);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1068                                      unsigned Alignment, int Offset,
1069                                      bool isTarget,
1070                                      unsigned char TargetFlags) {
1071  assert((TargetFlags == 0 || isTarget) &&
1072         "Cannot set target flags on target-independent globals");
1073  if (Alignment == 0)
1074    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1075  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1076  FoldingSetNodeID ID;
1077  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1078  ID.AddInteger(Alignment);
1079  ID.AddInteger(Offset);
1080  C->AddSelectionDAGCSEId(ID);
1081  ID.AddInteger(TargetFlags);
1082  void *IP = 0;
1083  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1084    return SDValue(E, 0);
1085  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1086  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1087  CSEMap.InsertNode(N, IP);
1088  AllNodes.push_back(N);
1089  return SDValue(N, 0);
1090}
1091
1092SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1095  ID.AddPointer(MBB);
1096  void *IP = 0;
1097  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1098    return SDValue(E, 0);
1099  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1100  new (N) BasicBlockSDNode(MBB);
1101  CSEMap.InsertNode(N, IP);
1102  AllNodes.push_back(N);
1103  return SDValue(N, 0);
1104}
1105
1106SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1107  FoldingSetNodeID ID;
1108  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1109  ID.AddInteger(Flags.getRawBits());
1110  void *IP = 0;
1111  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1112    return SDValue(E, 0);
1113  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1114  new (N) ARG_FLAGSSDNode(Flags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120SDValue SelectionDAG::getValueType(MVT VT) {
1121  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1122    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1123
1124  SDNode *&N = VT.isExtended() ?
1125    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1126
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<VTSDNode>();
1129  new (N) VTSDNode(VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1135  SDNode *&N = ExternalSymbols[Sym];
1136  if (N) return SDValue(N, 0);
1137  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1138  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1139  AllNodes.push_back(N);
1140  return SDValue(N, 0);
1141}
1142
1143SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT,
1144                                              unsigned char TargetFlags) {
1145  SDNode *&N =
1146    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1147                                                               TargetFlags)];
1148  if (N) return SDValue(N, 0);
1149  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1150  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156  if ((unsigned)Cond >= CondCodeNodes.size())
1157    CondCodeNodes.resize(Cond+1);
1158
1159  if (CondCodeNodes[Cond] == 0) {
1160    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1161    new (N) CondCodeSDNode(Cond);
1162    CondCodeNodes[Cond] = N;
1163    AllNodes.push_back(N);
1164  }
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1266  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  void* IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1287  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1288  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1289  CSEMap.InsertNode(N, IP);
1290  AllNodes.push_back(N);
1291  return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1295  FoldingSetNodeID ID;
1296  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1297  ID.AddInteger(RegNo);
1298  void *IP = 0;
1299  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1300    return SDValue(E, 0);
1301  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1302  new (N) RegisterSDNode(RegNo, VT);
1303  CSEMap.InsertNode(N, IP);
1304  AllNodes.push_back(N);
1305  return SDValue(N, 0);
1306}
1307
1308SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1309                                      unsigned Line, unsigned Col,
1310                                      Value *CU) {
1311  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1312  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1313  N->setDebugLoc(DL);
1314  AllNodes.push_back(N);
1315  return SDValue(N, 0);
1316}
1317
1318SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1319                               SDValue Root,
1320                               unsigned LabelID) {
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Root };
1323  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1324  ID.AddInteger(LabelID);
1325  void *IP = 0;
1326  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1327    return SDValue(E, 0);
1328  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1329  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getSrcValue(const Value *V) {
1336  assert((!V || isa<PointerType>(V->getType())) &&
1337         "SrcValue is not a pointer?");
1338
1339  FoldingSetNodeID ID;
1340  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1341  ID.AddPointer(V);
1342
1343  void *IP = 0;
1344  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1345    return SDValue(E, 0);
1346
1347  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1348  new (N) SrcValueSDNode(V);
1349  CSEMap.InsertNode(N, IP);
1350  AllNodes.push_back(N);
1351  return SDValue(N, 0);
1352}
1353
1354SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1355#ifndef NDEBUG
1356  const Value *v = MO.getValue();
1357  assert((!v || isa<PointerType>(v->getType())) &&
1358         "SrcValue is not a pointer?");
1359#endif
1360
1361  FoldingSetNodeID ID;
1362  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1363  MO.Profile(ID);
1364
1365  void *IP = 0;
1366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1367    return SDValue(E, 0);
1368
1369  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1370  new (N) MemOperandSDNode(MO);
1371  CSEMap.InsertNode(N, IP);
1372  AllNodes.push_back(N);
1373  return SDValue(N, 0);
1374}
1375
1376/// getShiftAmountOperand - Return the specified value casted to
1377/// the target's desired shift amount type.
1378SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1379  MVT OpTy = Op.getValueType();
1380  MVT ShTy = TLI.getShiftAmountTy();
1381  if (OpTy == ShTy || OpTy.isVector()) return Op;
1382
1383  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1384  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1385}
1386
1387/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1388/// specified value type.
1389SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1392  const Type *Ty = VT.getTypeForMVT();
1393  unsigned StackAlign =
1394  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1395
1396  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400/// CreateStackTemporary - Create a stack temporary suitable for holding
1401/// either of the specified value types.
1402SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1403  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1404                            VT2.getStoreSizeInBits())/8;
1405  const Type *Ty1 = VT1.getTypeForMVT();
1406  const Type *Ty2 = VT2.getTypeForMVT();
1407  const TargetData *TD = TLI.getTargetData();
1408  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1409                            TD->getPrefTypeAlignment(Ty2));
1410
1411  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1412  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1413  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1414}
1415
1416SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1417                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1418  // These setcc operations always fold.
1419  switch (Cond) {
1420  default: break;
1421  case ISD::SETFALSE:
1422  case ISD::SETFALSE2: return getConstant(0, VT);
1423  case ISD::SETTRUE:
1424  case ISD::SETTRUE2:  return getConstant(1, VT);
1425
1426  case ISD::SETOEQ:
1427  case ISD::SETOGT:
1428  case ISD::SETOGE:
1429  case ISD::SETOLT:
1430  case ISD::SETOLE:
1431  case ISD::SETONE:
1432  case ISD::SETO:
1433  case ISD::SETUO:
1434  case ISD::SETUEQ:
1435  case ISD::SETUNE:
1436    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1437    break;
1438  }
1439
1440  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1441    const APInt &C2 = N2C->getAPIntValue();
1442    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1443      const APInt &C1 = N1C->getAPIntValue();
1444
1445      switch (Cond) {
1446      default: llvm_unreachable("Unknown integer setcc!");
1447      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1448      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1449      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1450      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1451      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1452      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1453      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1454      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1455      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1456      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1457      }
1458    }
1459  }
1460  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1461    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1462      // No compile time operations on this type yet.
1463      if (N1C->getValueType(0) == MVT::ppcf128)
1464        return SDValue();
1465
1466      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1467      switch (Cond) {
1468      default: break;
1469      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1473      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1477                                           R==APFloat::cmpLessThan, VT);
1478      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1482      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1486      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1490                                           R==APFloat::cmpEqual, VT);
1491      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1497      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1498      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1501      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1502                                           R==APFloat::cmpLessThan, VT);
1503      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpUnordered, VT);
1505      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1506      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1507      }
1508    } else {
1509      // Ensure that the constant occurs on the RHS.
1510      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1511    }
1512  }
1513
1514  // Could not fold it.
1515  return SDValue();
1516}
1517
1518/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1519/// use this predicate to simplify operations downstream.
1520bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1521  // This predicate is not safe for vector operations.
1522  if (Op.getValueType().isVector())
1523    return false;
1524
1525  unsigned BitWidth = Op.getValueSizeInBits();
1526  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1527}
1528
1529/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1530/// this predicate to simplify operations downstream.  Mask is known to be zero
1531/// for bits that V cannot have.
1532bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1533                                     unsigned Depth) const {
1534  APInt KnownZero, KnownOne;
1535  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1536  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537  return (KnownZero & Mask) == Mask;
1538}
1539
1540/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1541/// known to be either zero or one and return them in the KnownZero/KnownOne
1542/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1543/// processing.
1544void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1545                                     APInt &KnownZero, APInt &KnownOne,
1546                                     unsigned Depth) const {
1547  unsigned BitWidth = Mask.getBitWidth();
1548  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1549         "Mask size mismatches value type size!");
1550
1551  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1552  if (Depth == 6 || Mask == 0)
1553    return;  // Limit search depth.
1554
1555  APInt KnownZero2, KnownOne2;
1556
1557  switch (Op.getOpcode()) {
1558  case ISD::Constant:
1559    // We know all of the bits for a constant!
1560    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1561    KnownZero = ~KnownOne & Mask;
1562    return;
1563  case ISD::AND:
1564    // If either the LHS or the RHS are Zero, the result is zero.
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1567                      KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-1 bits are only known if set in both the LHS & RHS.
1572    KnownOne &= KnownOne2;
1573    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1574    KnownZero |= KnownZero2;
1575    return;
1576  case ISD::OR:
1577    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1578    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1579                      KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are only known if clear in both the LHS & RHS.
1584    KnownZero &= KnownZero2;
1585    // Output known-1 are known to be set if set in either the LHS | RHS.
1586    KnownOne |= KnownOne2;
1587    return;
1588  case ISD::XOR: {
1589    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1590    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593
1594    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1595    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1596    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1597    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1598    KnownZero = KnownZeroOut;
1599    return;
1600  }
1601  case ISD::MUL: {
1602    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1603    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1604    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1605    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1606    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1607
1608    // If low bits are zero in either operand, output low known-0 bits.
1609    // Also compute a conserative estimate for high known-0 bits.
1610    // More trickiness is possible, but this is sufficient for the
1611    // interesting case of alignment computation.
1612    KnownOne.clear();
1613    unsigned TrailZ = KnownZero.countTrailingOnes() +
1614                      KnownZero2.countTrailingOnes();
1615    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1616                               KnownZero2.countLeadingOnes(),
1617                               BitWidth) - BitWidth;
1618
1619    TrailZ = std::min(TrailZ, BitWidth);
1620    LeadZ = std::min(LeadZ, BitWidth);
1621    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1622                APInt::getHighBitsSet(BitWidth, LeadZ);
1623    KnownZero &= Mask;
1624    return;
1625  }
1626  case ISD::UDIV: {
1627    // For the purposes of computing leading zeros we can conservatively
1628    // treat a udiv as a logical right shift by the power of 2 known to
1629    // be less than the denominator.
1630    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1631    ComputeMaskedBits(Op.getOperand(0),
1632                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1633    unsigned LeadZ = KnownZero2.countLeadingOnes();
1634
1635    KnownOne2.clear();
1636    KnownZero2.clear();
1637    ComputeMaskedBits(Op.getOperand(1),
1638                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1639    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1640    if (RHSUnknownLeadingOnes != BitWidth)
1641      LeadZ = std::min(BitWidth,
1642                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1643
1644    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1645    return;
1646  }
1647  case ISD::SELECT:
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SELECT_CC:
1658    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1659    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1660    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1662
1663    // Only known if known in both the LHS and RHS.
1664    KnownOne &= KnownOne2;
1665    KnownZero &= KnownZero2;
1666    return;
1667  case ISD::SADDO:
1668  case ISD::UADDO:
1669  case ISD::SSUBO:
1670  case ISD::USUBO:
1671  case ISD::SMULO:
1672  case ISD::UMULO:
1673    if (Op.getResNo() != 1)
1674      return;
1675    // The boolean result conforms to getBooleanContents.  Fall through.
1676  case ISD::SETCC:
1677    // If we know the result of a setcc has the top bits zero, use this info.
1678    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1679        BitWidth > 1)
1680      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1681    return;
1682  case ISD::SHL:
1683    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1684    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1685      unsigned ShAmt = SA->getZExtValue();
1686
1687      // If the shift count is an invalid immediate, don't do anything.
1688      if (ShAmt >= BitWidth)
1689        return;
1690
1691      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1692                        KnownZero, KnownOne, Depth+1);
1693      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694      KnownZero <<= ShAmt;
1695      KnownOne  <<= ShAmt;
1696      // low bits known zero.
1697      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1698    }
1699    return;
1700  case ISD::SRL:
1701    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1702    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1703      unsigned ShAmt = SA->getZExtValue();
1704
1705      // If the shift count is an invalid immediate, don't do anything.
1706      if (ShAmt >= BitWidth)
1707        return;
1708
1709      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1710                        KnownZero, KnownOne, Depth+1);
1711      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712      KnownZero = KnownZero.lshr(ShAmt);
1713      KnownOne  = KnownOne.lshr(ShAmt);
1714
1715      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1716      KnownZero |= HighBits;  // High bits known zero.
1717    }
1718    return;
1719  case ISD::SRA:
1720    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1721      unsigned ShAmt = SA->getZExtValue();
1722
1723      // If the shift count is an invalid immediate, don't do anything.
1724      if (ShAmt >= BitWidth)
1725        return;
1726
1727      APInt InDemandedMask = (Mask << ShAmt);
1728      // If any of the demanded bits are produced by the sign extension, we also
1729      // demand the input sign bit.
1730      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1731      if (HighBits.getBoolValue())
1732        InDemandedMask |= APInt::getSignBit(BitWidth);
1733
1734      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1735                        Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero = KnownZero.lshr(ShAmt);
1738      KnownOne  = KnownOne.lshr(ShAmt);
1739
1740      // Handle the sign bits.
1741      APInt SignBit = APInt::getSignBit(BitWidth);
1742      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1743
1744      if (KnownZero.intersects(SignBit)) {
1745        KnownZero |= HighBits;  // New bits are known zero.
1746      } else if (KnownOne.intersects(SignBit)) {
1747        KnownOne  |= HighBits;  // New bits are known one.
1748      }
1749    }
1750    return;
1751  case ISD::SIGN_EXTEND_INREG: {
1752    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1753    unsigned EBits = EVT.getSizeInBits();
1754
1755    // Sign extension.  Compute the demanded bits in the result that are not
1756    // present in the input.
1757    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1758
1759    APInt InSignBit = APInt::getSignBit(EBits);
1760    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1761
1762    // If the sign extended bits are demanded, we know that the sign
1763    // bit is demanded.
1764    InSignBit.zext(BitWidth);
1765    if (NewBits.getBoolValue())
1766      InputDemandedBits |= InSignBit;
1767
1768    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1769                      KnownZero, KnownOne, Depth+1);
1770    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1771
1772    // If the sign bit of the input is known set or clear, then we know the
1773    // top bits of the result.
1774    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1775      KnownZero |= NewBits;
1776      KnownOne  &= ~NewBits;
1777    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1778      KnownOne  |= NewBits;
1779      KnownZero &= ~NewBits;
1780    } else {                              // Input sign bit unknown
1781      KnownZero &= ~NewBits;
1782      KnownOne  &= ~NewBits;
1783    }
1784    return;
1785  }
1786  case ISD::CTTZ:
1787  case ISD::CTLZ:
1788  case ISD::CTPOP: {
1789    unsigned LowBits = Log2_32(BitWidth)+1;
1790    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1791    KnownOne.clear();
1792    return;
1793  }
1794  case ISD::LOAD: {
1795    if (ISD::isZEXTLoad(Op.getNode())) {
1796      LoadSDNode *LD = cast<LoadSDNode>(Op);
1797      MVT VT = LD->getMemoryVT();
1798      unsigned MemBits = VT.getSizeInBits();
1799      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1800    }
1801    return;
1802  }
1803  case ISD::ZERO_EXTEND: {
1804    MVT InVT = Op.getOperand(0).getValueType();
1805    unsigned InBits = InVT.getSizeInBits();
1806    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1807    APInt InMask    = Mask;
1808    InMask.trunc(InBits);
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812    KnownZero.zext(BitWidth);
1813    KnownOne.zext(BitWidth);
1814    KnownZero |= NewBits;
1815    return;
1816  }
1817  case ISD::SIGN_EXTEND: {
1818    MVT InVT = Op.getOperand(0).getValueType();
1819    unsigned InBits = InVT.getSizeInBits();
1820    APInt InSignBit = APInt::getSignBit(InBits);
1821    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1822    APInt InMask = Mask;
1823    InMask.trunc(InBits);
1824
1825    // If any of the sign extended bits are demanded, we know that the sign
1826    // bit is demanded. Temporarily set this bit in the mask for our callee.
1827    if (NewBits.getBoolValue())
1828      InMask |= InSignBit;
1829
1830    KnownZero.trunc(InBits);
1831    KnownOne.trunc(InBits);
1832    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1833
1834    // Note if the sign bit is known to be zero or one.
1835    bool SignBitKnownZero = KnownZero.isNegative();
1836    bool SignBitKnownOne  = KnownOne.isNegative();
1837    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1838           "Sign bit can't be known to be both zero and one!");
1839
1840    // If the sign bit wasn't actually demanded by our caller, we don't
1841    // want it set in the KnownZero and KnownOne result values. Reset the
1842    // mask and reapply it to the result values.
1843    InMask = Mask;
1844    InMask.trunc(InBits);
1845    KnownZero &= InMask;
1846    KnownOne  &= InMask;
1847
1848    KnownZero.zext(BitWidth);
1849    KnownOne.zext(BitWidth);
1850
1851    // If the sign bit is known zero or one, the top bits match.
1852    if (SignBitKnownZero)
1853      KnownZero |= NewBits;
1854    else if (SignBitKnownOne)
1855      KnownOne  |= NewBits;
1856    return;
1857  }
1858  case ISD::ANY_EXTEND: {
1859    MVT InVT = Op.getOperand(0).getValueType();
1860    unsigned InBits = InVT.getSizeInBits();
1861    APInt InMask = Mask;
1862    InMask.trunc(InBits);
1863    KnownZero.trunc(InBits);
1864    KnownOne.trunc(InBits);
1865    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1866    KnownZero.zext(BitWidth);
1867    KnownOne.zext(BitWidth);
1868    return;
1869  }
1870  case ISD::TRUNCATE: {
1871    MVT InVT = Op.getOperand(0).getValueType();
1872    unsigned InBits = InVT.getSizeInBits();
1873    APInt InMask = Mask;
1874    InMask.zext(InBits);
1875    KnownZero.zext(InBits);
1876    KnownOne.zext(InBits);
1877    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1878    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1879    KnownZero.trunc(BitWidth);
1880    KnownOne.trunc(BitWidth);
1881    break;
1882  }
1883  case ISD::AssertZext: {
1884    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1885    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1886    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1887                      KnownOne, Depth+1);
1888    KnownZero |= (~InMask) & Mask;
1889    return;
1890  }
1891  case ISD::FGETSIGN:
1892    // All bits are zero except the low bit.
1893    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1894    return;
1895
1896  case ISD::SUB: {
1897    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1898      // We know that the top bits of C-X are clear if X contains less bits
1899      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1900      // positive if we can prove that X is >= 0 and < 16.
1901      if (CLHS->getAPIntValue().isNonNegative()) {
1902        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1903        // NLZ can't be BitWidth with no sign bit
1904        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1905        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1906                          Depth+1);
1907
1908        // If all of the MaskV bits are known to be zero, then we know the
1909        // output top bits are zero, because we now know that the output is
1910        // from [0-C].
1911        if ((KnownZero2 & MaskV) == MaskV) {
1912          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1913          // Top bits known zero.
1914          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1915        }
1916      }
1917    }
1918  }
1919  // fall through
1920  case ISD::ADD: {
1921    // Output known-0 bits are known if clear or set in both the low clear bits
1922    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1923    // low 3 bits clear.
1924    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1925    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1926    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1927    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1928
1929    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1930    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1931    KnownZeroOut = std::min(KnownZeroOut,
1932                            KnownZero2.countTrailingOnes());
1933
1934    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1935    return;
1936  }
1937  case ISD::SREM:
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue();
1940      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1941        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1942        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1943        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1944
1945        // If the sign bit of the first operand is zero, the sign bit of
1946        // the result is zero. If the first operand has no one bits below
1947        // the second operand's single 1 bit, its sign will be zero.
1948        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1949          KnownZero2 |= ~LowBits;
1950
1951        KnownZero |= KnownZero2 & Mask;
1952
1953        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1954      }
1955    }
1956    return;
1957  case ISD::UREM: {
1958    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1959      const APInt &RA = Rem->getAPIntValue();
1960      if (RA.isPowerOf2()) {
1961        APInt LowBits = (RA - 1);
1962        APInt Mask2 = LowBits & Mask;
1963        KnownZero |= ~LowBits & Mask;
1964        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1965        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1966        break;
1967      }
1968    }
1969
1970    // Since the result is less than or equal to either operand, any leading
1971    // zero bits in either operand must also exist in the result.
1972    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1973    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1974                      Depth+1);
1975    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1976                      Depth+1);
1977
1978    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1979                                KnownZero2.countLeadingOnes());
1980    KnownOne.clear();
1981    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1982    return;
1983  }
1984  default:
1985    // Allow the target to implement this method for its nodes.
1986    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1987  case ISD::INTRINSIC_WO_CHAIN:
1988  case ISD::INTRINSIC_W_CHAIN:
1989  case ISD::INTRINSIC_VOID:
1990      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1991                                         Depth);
1992    }
1993    return;
1994  }
1995}
1996
1997/// ComputeNumSignBits - Return the number of times the sign bit of the
1998/// register is replicated into the other bits.  We know that at least 1 bit
1999/// is always equal to the sign bit (itself), but other cases can give us
2000/// information.  For example, immediately after an "SRA X, 2", we know that
2001/// the top 3 bits are all equal to each other, so we return 3.
2002unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2003  MVT VT = Op.getValueType();
2004  assert(VT.isInteger() && "Invalid VT!");
2005  unsigned VTBits = VT.getSizeInBits();
2006  unsigned Tmp, Tmp2;
2007  unsigned FirstAnswer = 1;
2008
2009  if (Depth == 6)
2010    return 1;  // Limit search depth.
2011
2012  switch (Op.getOpcode()) {
2013  default: break;
2014  case ISD::AssertSext:
2015    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2016    return VTBits-Tmp+1;
2017  case ISD::AssertZext:
2018    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2019    return VTBits-Tmp;
2020
2021  case ISD::Constant: {
2022    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2023    // If negative, return # leading ones.
2024    if (Val.isNegative())
2025      return Val.countLeadingOnes();
2026
2027    // Return # leading zeros.
2028    return Val.countLeadingZeros();
2029  }
2030
2031  case ISD::SIGN_EXTEND:
2032    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2033    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2034
2035  case ISD::SIGN_EXTEND_INREG:
2036    // Max of the input and what this extends.
2037    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2038    Tmp = VTBits-Tmp+1;
2039
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041    return std::max(Tmp, Tmp2);
2042
2043  case ISD::SRA:
2044    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045    // SRA X, C   -> adds C sign bits.
2046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      Tmp += C->getZExtValue();
2048      if (Tmp > VTBits) Tmp = VTBits;
2049    }
2050    return Tmp;
2051  case ISD::SHL:
2052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      // shl destroys sign bits.
2054      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2056          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2057      return Tmp - C->getZExtValue();
2058    }
2059    break;
2060  case ISD::AND:
2061  case ISD::OR:
2062  case ISD::XOR:    // NOT is handled here.
2063    // Logical binary ops preserve the number of sign bits at the worst.
2064    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065    if (Tmp != 1) {
2066      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2067      FirstAnswer = std::min(Tmp, Tmp2);
2068      // We computed what we know about the sign bits as our first
2069      // answer. Now proceed to the generic code that uses
2070      // ComputeMaskedBits, and pick whichever answer is better.
2071    }
2072    break;
2073
2074  case ISD::SELECT:
2075    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2076    if (Tmp == 1) return 1;  // Early out.
2077    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2078    return std::min(Tmp, Tmp2);
2079
2080  case ISD::SADDO:
2081  case ISD::UADDO:
2082  case ISD::SSUBO:
2083  case ISD::USUBO:
2084  case ISD::SMULO:
2085  case ISD::UMULO:
2086    if (Op.getResNo() != 1)
2087      break;
2088    // The boolean result conforms to getBooleanContents.  Fall through.
2089  case ISD::SETCC:
2090    // If setcc returns 0/-1, all bits are sign bits.
2091    if (TLI.getBooleanContents() ==
2092        TargetLowering::ZeroOrNegativeOneBooleanContent)
2093      return VTBits;
2094    break;
2095  case ISD::ROTL:
2096  case ISD::ROTR:
2097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2098      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2099
2100      // Handle rotate right by N like a rotate left by 32-N.
2101      if (Op.getOpcode() == ISD::ROTR)
2102        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2103
2104      // If we aren't rotating out all of the known-in sign bits, return the
2105      // number that are left.  This handles rotl(sext(x), 1) for example.
2106      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2108    }
2109    break;
2110  case ISD::ADD:
2111    // Add can have at most one carry bit.  Thus we know that the output
2112    // is, at worst, one more bit than the inputs.
2113    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114    if (Tmp == 1) return 1;  // Early out.
2115
2116    // Special case decrementing a value (ADD X, -1):
2117    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2118      if (CRHS->isAllOnesValue()) {
2119        APInt KnownZero, KnownOne;
2120        APInt Mask = APInt::getAllOnesValue(VTBits);
2121        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2122
2123        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2124        // sign bits set.
2125        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2126          return VTBits;
2127
2128        // If we are subtracting one from a positive number, there is no carry
2129        // out of the result.
2130        if (KnownZero.isNegative())
2131          return Tmp;
2132      }
2133
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135    if (Tmp2 == 1) return 1;
2136      return std::min(Tmp, Tmp2)-1;
2137    break;
2138
2139  case ISD::SUB:
2140    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp2 == 1) return 1;
2142
2143    // Handle NEG.
2144    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2145      if (CLHS->isNullValue()) {
2146        APInt KnownZero, KnownOne;
2147        APInt Mask = APInt::getAllOnesValue(VTBits);
2148        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2149        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2150        // sign bits set.
2151        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2152          return VTBits;
2153
2154        // If the input is known to be positive (the sign bit is known clear),
2155        // the output of the NEG has the same number of sign bits as the input.
2156        if (KnownZero.isNegative())
2157          return Tmp2;
2158
2159        // Otherwise, we treat this like a SUB.
2160      }
2161
2162    // Sub can have at most one carry bit.  Thus we know that the output
2163    // is, at worst, one more bit than the inputs.
2164    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165    if (Tmp == 1) return 1;  // Early out.
2166      return std::min(Tmp, Tmp2)-1;
2167    break;
2168  case ISD::TRUNCATE:
2169    // FIXME: it's tricky to do anything useful for this, but it is an important
2170    // case for targets like X86.
2171    break;
2172  }
2173
2174  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2175  if (Op.getOpcode() == ISD::LOAD) {
2176    LoadSDNode *LD = cast<LoadSDNode>(Op);
2177    unsigned ExtType = LD->getExtensionType();
2178    switch (ExtType) {
2179    default: break;
2180    case ISD::SEXTLOAD:    // '17' bits known
2181      Tmp = LD->getMemoryVT().getSizeInBits();
2182      return VTBits-Tmp+1;
2183    case ISD::ZEXTLOAD:    // '16' bits known
2184      Tmp = LD->getMemoryVT().getSizeInBits();
2185      return VTBits-Tmp;
2186    }
2187  }
2188
2189  // Allow the target to implement this method for its nodes.
2190  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2191      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2193      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2194    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2195    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2196  }
2197
2198  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2199  // use this information.
2200  APInt KnownZero, KnownOne;
2201  APInt Mask = APInt::getAllOnesValue(VTBits);
2202  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2203
2204  if (KnownZero.isNegative()) {        // sign bit is 0
2205    Mask = KnownZero;
2206  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2207    Mask = KnownOne;
2208  } else {
2209    // Nothing known.
2210    return FirstAnswer;
2211  }
2212
2213  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2214  // the number of identical bits in the top of the input value.
2215  Mask = ~Mask;
2216  Mask <<= Mask.getBitWidth()-VTBits;
2217  // Return # leading zeros.  We use 'min' here in case Val was zero before
2218  // shifting.  We don't want to return '64' as for an i32 "0".
2219  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2220}
2221
2222
2223bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2224  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2225  if (!GA) return false;
2226  if (GA->getOffset() != 0) return false;
2227  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2228  if (!GV) return false;
2229  MachineModuleInfo *MMI = getMachineModuleInfo();
2230  return MMI && MMI->hasDebugInfo();
2231}
2232
2233
2234/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2235/// element of the result of the vector shuffle.
2236SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2237                                          unsigned i) {
2238  MVT VT = N->getValueType(0);
2239  DebugLoc dl = N->getDebugLoc();
2240  if (N->getMaskElt(i) < 0)
2241    return getUNDEF(VT.getVectorElementType());
2242  unsigned Index = N->getMaskElt(i);
2243  unsigned NumElems = VT.getVectorNumElements();
2244  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2245  Index %= NumElems;
2246
2247  if (V.getOpcode() == ISD::BIT_CONVERT) {
2248    V = V.getOperand(0);
2249    MVT VVT = V.getValueType();
2250    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2251      return SDValue();
2252  }
2253  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2254    return (Index == 0) ? V.getOperand(0)
2255                      : getUNDEF(VT.getVectorElementType());
2256  if (V.getOpcode() == ISD::BUILD_VECTOR)
2257    return V.getOperand(Index);
2258  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2259    return getShuffleScalarElt(SVN, Index);
2260  return SDValue();
2261}
2262
2263
2264/// getNode - Gets or creates the specified node.
2265///
2266SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2267  FoldingSetNodeID ID;
2268  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2269  void *IP = 0;
2270  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2271    return SDValue(E, 0);
2272  SDNode *N = NodeAllocator.Allocate<SDNode>();
2273  new (N) SDNode(Opcode, DL, getVTList(VT));
2274  CSEMap.InsertNode(N, IP);
2275
2276  AllNodes.push_back(N);
2277#ifndef NDEBUG
2278  VerifyNode(N);
2279#endif
2280  return SDValue(N, 0);
2281}
2282
2283SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2284                              MVT VT, SDValue Operand) {
2285  // Constant fold unary operations with an integer constant operand.
2286  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2287    const APInt &Val = C->getAPIntValue();
2288    unsigned BitWidth = VT.getSizeInBits();
2289    switch (Opcode) {
2290    default: break;
2291    case ISD::SIGN_EXTEND:
2292      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2293    case ISD::ANY_EXTEND:
2294    case ISD::ZERO_EXTEND:
2295    case ISD::TRUNCATE:
2296      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2297    case ISD::UINT_TO_FP:
2298    case ISD::SINT_TO_FP: {
2299      const uint64_t zero[] = {0, 0};
2300      // No compile time operations on this type.
2301      if (VT==MVT::ppcf128)
2302        break;
2303      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2304      (void)apf.convertFromAPInt(Val,
2305                                 Opcode==ISD::SINT_TO_FP,
2306                                 APFloat::rmNearestTiesToEven);
2307      return getConstantFP(apf, VT);
2308    }
2309    case ISD::BIT_CONVERT:
2310      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2311        return getConstantFP(Val.bitsToFloat(), VT);
2312      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2313        return getConstantFP(Val.bitsToDouble(), VT);
2314      break;
2315    case ISD::BSWAP:
2316      return getConstant(Val.byteSwap(), VT);
2317    case ISD::CTPOP:
2318      return getConstant(Val.countPopulation(), VT);
2319    case ISD::CTLZ:
2320      return getConstant(Val.countLeadingZeros(), VT);
2321    case ISD::CTTZ:
2322      return getConstant(Val.countTrailingZeros(), VT);
2323    }
2324  }
2325
2326  // Constant fold unary operations with a floating point constant operand.
2327  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2328    APFloat V = C->getValueAPF();    // make copy
2329    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2330      switch (Opcode) {
2331      case ISD::FNEG:
2332        V.changeSign();
2333        return getConstantFP(V, VT);
2334      case ISD::FABS:
2335        V.clearSign();
2336        return getConstantFP(V, VT);
2337      case ISD::FP_ROUND:
2338      case ISD::FP_EXTEND: {
2339        bool ignored;
2340        // This can return overflow, underflow, or inexact; we don't care.
2341        // FIXME need to be more flexible about rounding mode.
2342        (void)V.convert(*MVTToAPFloatSemantics(VT),
2343                        APFloat::rmNearestTiesToEven, &ignored);
2344        return getConstantFP(V, VT);
2345      }
2346      case ISD::FP_TO_SINT:
2347      case ISD::FP_TO_UINT: {
2348        integerPart x[2];
2349        bool ignored;
2350        assert(integerPartWidth >= 64);
2351        // FIXME need to be more flexible about rounding mode.
2352        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2353                              Opcode==ISD::FP_TO_SINT,
2354                              APFloat::rmTowardZero, &ignored);
2355        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2356          break;
2357        APInt api(VT.getSizeInBits(), 2, x);
2358        return getConstant(api, VT);
2359      }
2360      case ISD::BIT_CONVERT:
2361        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2362          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2363        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2364          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2365        break;
2366      }
2367    }
2368  }
2369
2370  unsigned OpOpcode = Operand.getNode()->getOpcode();
2371  switch (Opcode) {
2372  case ISD::TokenFactor:
2373  case ISD::MERGE_VALUES:
2374  case ISD::CONCAT_VECTORS:
2375    return Operand;         // Factor, merge or concat of one node?  No need.
2376  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2377  case ISD::FP_EXTEND:
2378    assert(VT.isFloatingPoint() &&
2379           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2380    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2381    if (Operand.getOpcode() == ISD::UNDEF)
2382      return getUNDEF(VT);
2383    break;
2384  case ISD::SIGN_EXTEND:
2385    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2386           "Invalid SIGN_EXTEND!");
2387    if (Operand.getValueType() == VT) return Operand;   // noop extension
2388    assert(Operand.getValueType().bitsLT(VT)
2389           && "Invalid sext node, dst < src!");
2390    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2391      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2392    break;
2393  case ISD::ZERO_EXTEND:
2394    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2395           "Invalid ZERO_EXTEND!");
2396    if (Operand.getValueType() == VT) return Operand;   // noop extension
2397    assert(Operand.getValueType().bitsLT(VT)
2398           && "Invalid zext node, dst < src!");
2399    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2400      return getNode(ISD::ZERO_EXTEND, DL, VT,
2401                     Operand.getNode()->getOperand(0));
2402    break;
2403  case ISD::ANY_EXTEND:
2404    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2405           "Invalid ANY_EXTEND!");
2406    if (Operand.getValueType() == VT) return Operand;   // noop extension
2407    assert(Operand.getValueType().bitsLT(VT)
2408           && "Invalid anyext node, dst < src!");
2409    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2410      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2411      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2412    break;
2413  case ISD::TRUNCATE:
2414    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2415           "Invalid TRUNCATE!");
2416    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2417    assert(Operand.getValueType().bitsGT(VT)
2418           && "Invalid truncate node, src < dst!");
2419    if (OpOpcode == ISD::TRUNCATE)
2420      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2421    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2422             OpOpcode == ISD::ANY_EXTEND) {
2423      // If the source is smaller than the dest, we still need an extend.
2424      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2425        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2426      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2427        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2428      else
2429        return Operand.getNode()->getOperand(0);
2430    }
2431    break;
2432  case ISD::BIT_CONVERT:
2433    // Basic sanity checking.
2434    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2435           && "Cannot BIT_CONVERT between types of different sizes!");
2436    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2437    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2438      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2439    if (OpOpcode == ISD::UNDEF)
2440      return getUNDEF(VT);
2441    break;
2442  case ISD::SCALAR_TO_VECTOR:
2443    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2444           (VT.getVectorElementType() == Operand.getValueType() ||
2445            (VT.getVectorElementType().isInteger() &&
2446             Operand.getValueType().isInteger() &&
2447             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2448           "Illegal SCALAR_TO_VECTOR node!");
2449    if (OpOpcode == ISD::UNDEF)
2450      return getUNDEF(VT);
2451    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2452    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2453        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2454        Operand.getConstantOperandVal(1) == 0 &&
2455        Operand.getOperand(0).getValueType() == VT)
2456      return Operand.getOperand(0);
2457    break;
2458  case ISD::FNEG:
2459    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2460    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2461      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2462                     Operand.getNode()->getOperand(0));
2463    if (OpOpcode == ISD::FNEG)  // --X -> X
2464      return Operand.getNode()->getOperand(0);
2465    break;
2466  case ISD::FABS:
2467    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2468      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2469    break;
2470  }
2471
2472  SDNode *N;
2473  SDVTList VTs = getVTList(VT);
2474  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2475    FoldingSetNodeID ID;
2476    SDValue Ops[1] = { Operand };
2477    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2478    void *IP = 0;
2479    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2480      return SDValue(E, 0);
2481    N = NodeAllocator.Allocate<UnarySDNode>();
2482    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2483    CSEMap.InsertNode(N, IP);
2484  } else {
2485    N = NodeAllocator.Allocate<UnarySDNode>();
2486    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2487  }
2488
2489  AllNodes.push_back(N);
2490#ifndef NDEBUG
2491  VerifyNode(N);
2492#endif
2493  return SDValue(N, 0);
2494}
2495
2496SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2497                                             MVT VT,
2498                                             ConstantSDNode *Cst1,
2499                                             ConstantSDNode *Cst2) {
2500  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2501
2502  switch (Opcode) {
2503  case ISD::ADD:  return getConstant(C1 + C2, VT);
2504  case ISD::SUB:  return getConstant(C1 - C2, VT);
2505  case ISD::MUL:  return getConstant(C1 * C2, VT);
2506  case ISD::UDIV:
2507    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2508    break;
2509  case ISD::UREM:
2510    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2511    break;
2512  case ISD::SDIV:
2513    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2514    break;
2515  case ISD::SREM:
2516    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2517    break;
2518  case ISD::AND:  return getConstant(C1 & C2, VT);
2519  case ISD::OR:   return getConstant(C1 | C2, VT);
2520  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2521  case ISD::SHL:  return getConstant(C1 << C2, VT);
2522  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2523  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2524  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2525  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2526  default: break;
2527  }
2528
2529  return SDValue();
2530}
2531
2532SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2533                              SDValue N1, SDValue N2) {
2534  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2535  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2536  switch (Opcode) {
2537  default: break;
2538  case ISD::TokenFactor:
2539    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2540           N2.getValueType() == MVT::Other && "Invalid token factor!");
2541    // Fold trivial token factors.
2542    if (N1.getOpcode() == ISD::EntryToken) return N2;
2543    if (N2.getOpcode() == ISD::EntryToken) return N1;
2544    if (N1 == N2) return N1;
2545    break;
2546  case ISD::CONCAT_VECTORS:
2547    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2548    // one big BUILD_VECTOR.
2549    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2550        N2.getOpcode() == ISD::BUILD_VECTOR) {
2551      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2552      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2553      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2554    }
2555    break;
2556  case ISD::AND:
2557    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2558           N1.getValueType() == VT && "Binary operator types must match!");
2559    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2560    // worth handling here.
2561    if (N2C && N2C->isNullValue())
2562      return N2;
2563    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2564      return N1;
2565    break;
2566  case ISD::OR:
2567  case ISD::XOR:
2568  case ISD::ADD:
2569  case ISD::SUB:
2570    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2571           N1.getValueType() == VT && "Binary operator types must match!");
2572    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2573    // it's worth handling here.
2574    if (N2C && N2C->isNullValue())
2575      return N1;
2576    break;
2577  case ISD::UDIV:
2578  case ISD::UREM:
2579  case ISD::MULHU:
2580  case ISD::MULHS:
2581  case ISD::MUL:
2582  case ISD::SDIV:
2583  case ISD::SREM:
2584    assert(VT.isInteger() && "This operator does not apply to FP types!");
2585    // fall through
2586  case ISD::FADD:
2587  case ISD::FSUB:
2588  case ISD::FMUL:
2589  case ISD::FDIV:
2590  case ISD::FREM:
2591    if (UnsafeFPMath) {
2592      if (Opcode == ISD::FADD) {
2593        // 0+x --> x
2594        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2595          if (CFP->getValueAPF().isZero())
2596            return N2;
2597        // x+0 --> x
2598        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2599          if (CFP->getValueAPF().isZero())
2600            return N1;
2601      } else if (Opcode == ISD::FSUB) {
2602        // x-0 --> x
2603        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2604          if (CFP->getValueAPF().isZero())
2605            return N1;
2606      }
2607    }
2608    assert(N1.getValueType() == N2.getValueType() &&
2609           N1.getValueType() == VT && "Binary operator types must match!");
2610    break;
2611  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2612    assert(N1.getValueType() == VT &&
2613           N1.getValueType().isFloatingPoint() &&
2614           N2.getValueType().isFloatingPoint() &&
2615           "Invalid FCOPYSIGN!");
2616    break;
2617  case ISD::SHL:
2618  case ISD::SRA:
2619  case ISD::SRL:
2620  case ISD::ROTL:
2621  case ISD::ROTR:
2622    assert(VT == N1.getValueType() &&
2623           "Shift operators return type must be the same as their first arg");
2624    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2625           "Shifts only work on integers");
2626
2627    // Always fold shifts of i1 values so the code generator doesn't need to
2628    // handle them.  Since we know the size of the shift has to be less than the
2629    // size of the value, the shift/rotate count is guaranteed to be zero.
2630    if (VT == MVT::i1)
2631      return N1;
2632    break;
2633  case ISD::FP_ROUND_INREG: {
2634    MVT EVT = cast<VTSDNode>(N2)->getVT();
2635    assert(VT == N1.getValueType() && "Not an inreg round!");
2636    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2637           "Cannot FP_ROUND_INREG integer types");
2638    assert(EVT.bitsLE(VT) && "Not rounding down!");
2639    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2640    break;
2641  }
2642  case ISD::FP_ROUND:
2643    assert(VT.isFloatingPoint() &&
2644           N1.getValueType().isFloatingPoint() &&
2645           VT.bitsLE(N1.getValueType()) &&
2646           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2647    if (N1.getValueType() == VT) return N1;  // noop conversion.
2648    break;
2649  case ISD::AssertSext:
2650  case ISD::AssertZext: {
2651    MVT EVT = cast<VTSDNode>(N2)->getVT();
2652    assert(VT == N1.getValueType() && "Not an inreg extend!");
2653    assert(VT.isInteger() && EVT.isInteger() &&
2654           "Cannot *_EXTEND_INREG FP types");
2655    assert(EVT.bitsLE(VT) && "Not extending!");
2656    if (VT == EVT) return N1; // noop assertion.
2657    break;
2658  }
2659  case ISD::SIGN_EXTEND_INREG: {
2660    MVT EVT = cast<VTSDNode>(N2)->getVT();
2661    assert(VT == N1.getValueType() && "Not an inreg extend!");
2662    assert(VT.isInteger() && EVT.isInteger() &&
2663           "Cannot *_EXTEND_INREG FP types");
2664    assert(EVT.bitsLE(VT) && "Not extending!");
2665    if (EVT == VT) return N1;  // Not actually extending
2666
2667    if (N1C) {
2668      APInt Val = N1C->getAPIntValue();
2669      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2670      Val <<= Val.getBitWidth()-FromBits;
2671      Val = Val.ashr(Val.getBitWidth()-FromBits);
2672      return getConstant(Val, VT);
2673    }
2674    break;
2675  }
2676  case ISD::EXTRACT_VECTOR_ELT:
2677    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2678    if (N1.getOpcode() == ISD::UNDEF)
2679      return getUNDEF(VT);
2680
2681    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2682    // expanding copies of large vectors from registers.
2683    if (N2C &&
2684        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2685        N1.getNumOperands() > 0) {
2686      unsigned Factor =
2687        N1.getOperand(0).getValueType().getVectorNumElements();
2688      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2689                     N1.getOperand(N2C->getZExtValue() / Factor),
2690                     getConstant(N2C->getZExtValue() % Factor,
2691                                 N2.getValueType()));
2692    }
2693
2694    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2695    // expanding large vector constants.
2696    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2697      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2698      MVT VEltTy = N1.getValueType().getVectorElementType();
2699      if (Elt.getValueType() != VEltTy) {
2700        // If the vector element type is not legal, the BUILD_VECTOR operands
2701        // are promoted and implicitly truncated.  Make that explicit here.
2702        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2703      }
2704      if (VT != VEltTy) {
2705        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2706        // result is implicitly extended.
2707        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2708      }
2709      return Elt;
2710    }
2711
2712    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2713    // operations are lowered to scalars.
2714    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2715      // If the indices are the same, return the inserted element.
2716      if (N1.getOperand(2) == N2)
2717        return N1.getOperand(1);
2718      // If the indices are known different, extract the element from
2719      // the original vector.
2720      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2721               isa<ConstantSDNode>(N2))
2722        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2723    }
2724    break;
2725  case ISD::EXTRACT_ELEMENT:
2726    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2727    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2728           (N1.getValueType().isInteger() == VT.isInteger()) &&
2729           "Wrong types for EXTRACT_ELEMENT!");
2730
2731    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2732    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2733    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2734    if (N1.getOpcode() == ISD::BUILD_PAIR)
2735      return N1.getOperand(N2C->getZExtValue());
2736
2737    // EXTRACT_ELEMENT of a constant int is also very common.
2738    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2739      unsigned ElementSize = VT.getSizeInBits();
2740      unsigned Shift = ElementSize * N2C->getZExtValue();
2741      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2742      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2743    }
2744    break;
2745  case ISD::EXTRACT_SUBVECTOR:
2746    if (N1.getValueType() == VT) // Trivial extraction.
2747      return N1;
2748    break;
2749  }
2750
2751  if (N1C) {
2752    if (N2C) {
2753      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2754      if (SV.getNode()) return SV;
2755    } else {      // Cannonicalize constant to RHS if commutative
2756      if (isCommutativeBinOp(Opcode)) {
2757        std::swap(N1C, N2C);
2758        std::swap(N1, N2);
2759      }
2760    }
2761  }
2762
2763  // Constant fold FP operations.
2764  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2765  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2766  if (N1CFP) {
2767    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2768      // Cannonicalize constant to RHS if commutative
2769      std::swap(N1CFP, N2CFP);
2770      std::swap(N1, N2);
2771    } else if (N2CFP && VT != MVT::ppcf128) {
2772      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2773      APFloat::opStatus s;
2774      switch (Opcode) {
2775      case ISD::FADD:
2776        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2777        if (s != APFloat::opInvalidOp)
2778          return getConstantFP(V1, VT);
2779        break;
2780      case ISD::FSUB:
2781        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2782        if (s!=APFloat::opInvalidOp)
2783          return getConstantFP(V1, VT);
2784        break;
2785      case ISD::FMUL:
2786        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2787        if (s!=APFloat::opInvalidOp)
2788          return getConstantFP(V1, VT);
2789        break;
2790      case ISD::FDIV:
2791        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2792        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2793          return getConstantFP(V1, VT);
2794        break;
2795      case ISD::FREM :
2796        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2797        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2798          return getConstantFP(V1, VT);
2799        break;
2800      case ISD::FCOPYSIGN:
2801        V1.copySign(V2);
2802        return getConstantFP(V1, VT);
2803      default: break;
2804      }
2805    }
2806  }
2807
2808  // Canonicalize an UNDEF to the RHS, even over a constant.
2809  if (N1.getOpcode() == ISD::UNDEF) {
2810    if (isCommutativeBinOp(Opcode)) {
2811      std::swap(N1, N2);
2812    } else {
2813      switch (Opcode) {
2814      case ISD::FP_ROUND_INREG:
2815      case ISD::SIGN_EXTEND_INREG:
2816      case ISD::SUB:
2817      case ISD::FSUB:
2818      case ISD::FDIV:
2819      case ISD::FREM:
2820      case ISD::SRA:
2821        return N1;     // fold op(undef, arg2) -> undef
2822      case ISD::UDIV:
2823      case ISD::SDIV:
2824      case ISD::UREM:
2825      case ISD::SREM:
2826      case ISD::SRL:
2827      case ISD::SHL:
2828        if (!VT.isVector())
2829          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2830        // For vectors, we can't easily build an all zero vector, just return
2831        // the LHS.
2832        return N2;
2833      }
2834    }
2835  }
2836
2837  // Fold a bunch of operators when the RHS is undef.
2838  if (N2.getOpcode() == ISD::UNDEF) {
2839    switch (Opcode) {
2840    case ISD::XOR:
2841      if (N1.getOpcode() == ISD::UNDEF)
2842        // Handle undef ^ undef -> 0 special case. This is a common
2843        // idiom (misuse).
2844        return getConstant(0, VT);
2845      // fallthrough
2846    case ISD::ADD:
2847    case ISD::ADDC:
2848    case ISD::ADDE:
2849    case ISD::SUB:
2850    case ISD::UDIV:
2851    case ISD::SDIV:
2852    case ISD::UREM:
2853    case ISD::SREM:
2854      return N2;       // fold op(arg1, undef) -> undef
2855    case ISD::FADD:
2856    case ISD::FSUB:
2857    case ISD::FMUL:
2858    case ISD::FDIV:
2859    case ISD::FREM:
2860      if (UnsafeFPMath)
2861        return N2;
2862      break;
2863    case ISD::MUL:
2864    case ISD::AND:
2865    case ISD::SRL:
2866    case ISD::SHL:
2867      if (!VT.isVector())
2868        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2869      // For vectors, we can't easily build an all zero vector, just return
2870      // the LHS.
2871      return N1;
2872    case ISD::OR:
2873      if (!VT.isVector())
2874        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2875      // For vectors, we can't easily build an all one vector, just return
2876      // the LHS.
2877      return N1;
2878    case ISD::SRA:
2879      return N1;
2880    }
2881  }
2882
2883  // Memoize this node if possible.
2884  SDNode *N;
2885  SDVTList VTs = getVTList(VT);
2886  if (VT != MVT::Flag) {
2887    SDValue Ops[] = { N1, N2 };
2888    FoldingSetNodeID ID;
2889    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2890    void *IP = 0;
2891    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2892      return SDValue(E, 0);
2893    N = NodeAllocator.Allocate<BinarySDNode>();
2894    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2895    CSEMap.InsertNode(N, IP);
2896  } else {
2897    N = NodeAllocator.Allocate<BinarySDNode>();
2898    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2899  }
2900
2901  AllNodes.push_back(N);
2902#ifndef NDEBUG
2903  VerifyNode(N);
2904#endif
2905  return SDValue(N, 0);
2906}
2907
2908SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2909                              SDValue N1, SDValue N2, SDValue N3) {
2910  // Perform various simplifications.
2911  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2912  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2913  switch (Opcode) {
2914  case ISD::CONCAT_VECTORS:
2915    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2916    // one big BUILD_VECTOR.
2917    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2918        N2.getOpcode() == ISD::BUILD_VECTOR &&
2919        N3.getOpcode() == ISD::BUILD_VECTOR) {
2920      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2921      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2922      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2923      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2924    }
2925    break;
2926  case ISD::SETCC: {
2927    // Use FoldSetCC to simplify SETCC's.
2928    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2929    if (Simp.getNode()) return Simp;
2930    break;
2931  }
2932  case ISD::SELECT:
2933    if (N1C) {
2934     if (N1C->getZExtValue())
2935        return N2;             // select true, X, Y -> X
2936      else
2937        return N3;             // select false, X, Y -> Y
2938    }
2939
2940    if (N2 == N3) return N2;   // select C, X, X -> X
2941    break;
2942  case ISD::BRCOND:
2943    if (N2C) {
2944      if (N2C->getZExtValue()) // Unconditional branch
2945        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2946      else
2947        return N1;         // Never-taken branch
2948    }
2949    break;
2950  case ISD::VECTOR_SHUFFLE:
2951    llvm_unreachable("should use getVectorShuffle constructor!");
2952    break;
2953  case ISD::BIT_CONVERT:
2954    // Fold bit_convert nodes from a type to themselves.
2955    if (N1.getValueType() == VT)
2956      return N1;
2957    break;
2958  }
2959
2960  // Memoize node if it doesn't produce a flag.
2961  SDNode *N;
2962  SDVTList VTs = getVTList(VT);
2963  if (VT != MVT::Flag) {
2964    SDValue Ops[] = { N1, N2, N3 };
2965    FoldingSetNodeID ID;
2966    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2967    void *IP = 0;
2968    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2969      return SDValue(E, 0);
2970    N = NodeAllocator.Allocate<TernarySDNode>();
2971    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2972    CSEMap.InsertNode(N, IP);
2973  } else {
2974    N = NodeAllocator.Allocate<TernarySDNode>();
2975    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2976  }
2977  AllNodes.push_back(N);
2978#ifndef NDEBUG
2979  VerifyNode(N);
2980#endif
2981  return SDValue(N, 0);
2982}
2983
2984SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2985                              SDValue N1, SDValue N2, SDValue N3,
2986                              SDValue N4) {
2987  SDValue Ops[] = { N1, N2, N3, N4 };
2988  return getNode(Opcode, DL, VT, Ops, 4);
2989}
2990
2991SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2992                              SDValue N1, SDValue N2, SDValue N3,
2993                              SDValue N4, SDValue N5) {
2994  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2995  return getNode(Opcode, DL, VT, Ops, 5);
2996}
2997
2998/// getMemsetValue - Vectorized representation of the memset value
2999/// operand.
3000static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
3001                              DebugLoc dl) {
3002  unsigned NumBits = VT.isVector() ?
3003    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3004  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3005    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3006    unsigned Shift = 8;
3007    for (unsigned i = NumBits; i > 8; i >>= 1) {
3008      Val = (Val << Shift) | Val;
3009      Shift <<= 1;
3010    }
3011    if (VT.isInteger())
3012      return DAG.getConstant(Val, VT);
3013    return DAG.getConstantFP(APFloat(Val), VT);
3014  }
3015
3016  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3017  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3018  unsigned Shift = 8;
3019  for (unsigned i = NumBits; i > 8; i >>= 1) {
3020    Value = DAG.getNode(ISD::OR, dl, VT,
3021                        DAG.getNode(ISD::SHL, dl, VT, Value,
3022                                    DAG.getConstant(Shift,
3023                                                    TLI.getShiftAmountTy())),
3024                        Value);
3025    Shift <<= 1;
3026  }
3027
3028  return Value;
3029}
3030
3031/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3032/// used when a memcpy is turned into a memset when the source is a constant
3033/// string ptr.
3034static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
3035                                    const TargetLowering &TLI,
3036                                    std::string &Str, unsigned Offset) {
3037  // Handle vector with all elements zero.
3038  if (Str.empty()) {
3039    if (VT.isInteger())
3040      return DAG.getConstant(0, VT);
3041    unsigned NumElts = VT.getVectorNumElements();
3042    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3043    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3044                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3045  }
3046
3047  assert(!VT.isVector() && "Can't handle vector type here!");
3048  unsigned NumBits = VT.getSizeInBits();
3049  unsigned MSB = NumBits / 8;
3050  uint64_t Val = 0;
3051  if (TLI.isLittleEndian())
3052    Offset = Offset + MSB - 1;
3053  for (unsigned i = 0; i != MSB; ++i) {
3054    Val = (Val << 8) | (unsigned char)Str[Offset];
3055    Offset += TLI.isLittleEndian() ? -1 : 1;
3056  }
3057  return DAG.getConstant(Val, VT);
3058}
3059
3060/// getMemBasePlusOffset - Returns base and offset node for the
3061///
3062static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3063                                      SelectionDAG &DAG) {
3064  MVT VT = Base.getValueType();
3065  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3066                     VT, Base, DAG.getConstant(Offset, VT));
3067}
3068
3069/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3070///
3071static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3072  unsigned SrcDelta = 0;
3073  GlobalAddressSDNode *G = NULL;
3074  if (Src.getOpcode() == ISD::GlobalAddress)
3075    G = cast<GlobalAddressSDNode>(Src);
3076  else if (Src.getOpcode() == ISD::ADD &&
3077           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3078           Src.getOperand(1).getOpcode() == ISD::Constant) {
3079    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3080    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3081  }
3082  if (!G)
3083    return false;
3084
3085  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3086  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3087    return true;
3088
3089  return false;
3090}
3091
3092/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3093/// to replace the memset / memcpy is below the threshold. It also returns the
3094/// types of the sequence of memory ops to perform memset / memcpy.
3095static
3096bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3097                              SDValue Dst, SDValue Src,
3098                              unsigned Limit, uint64_t Size, unsigned &Align,
3099                              std::string &Str, bool &isSrcStr,
3100                              SelectionDAG &DAG,
3101                              const TargetLowering &TLI) {
3102  isSrcStr = isMemSrcFromString(Src, Str);
3103  bool isSrcConst = isa<ConstantSDNode>(Src);
3104  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3105  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3106  if (VT != MVT::iAny) {
3107    unsigned NewAlign = (unsigned)
3108      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3109    // If source is a string constant, this will require an unaligned load.
3110    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3111      if (Dst.getOpcode() != ISD::FrameIndex) {
3112        // Can't change destination alignment. It requires a unaligned store.
3113        if (AllowUnalign)
3114          VT = MVT::iAny;
3115      } else {
3116        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3117        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3118        if (MFI->isFixedObjectIndex(FI)) {
3119          // Can't change destination alignment. It requires a unaligned store.
3120          if (AllowUnalign)
3121            VT = MVT::iAny;
3122        } else {
3123          // Give the stack frame object a larger alignment if needed.
3124          if (MFI->getObjectAlignment(FI) < NewAlign)
3125            MFI->setObjectAlignment(FI, NewAlign);
3126          Align = NewAlign;
3127        }
3128      }
3129    }
3130  }
3131
3132  if (VT == MVT::iAny) {
3133    if (AllowUnalign) {
3134      VT = MVT::i64;
3135    } else {
3136      switch (Align & 7) {
3137      case 0:  VT = MVT::i64; break;
3138      case 4:  VT = MVT::i32; break;
3139      case 2:  VT = MVT::i16; break;
3140      default: VT = MVT::i8;  break;
3141      }
3142    }
3143
3144    MVT LVT = MVT::i64;
3145    while (!TLI.isTypeLegal(LVT))
3146      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3147    assert(LVT.isInteger());
3148
3149    if (VT.bitsGT(LVT))
3150      VT = LVT;
3151  }
3152
3153  unsigned NumMemOps = 0;
3154  while (Size != 0) {
3155    unsigned VTSize = VT.getSizeInBits() / 8;
3156    while (VTSize > Size) {
3157      // For now, only use non-vector load / store's for the left-over pieces.
3158      if (VT.isVector()) {
3159        VT = MVT::i64;
3160        while (!TLI.isTypeLegal(VT))
3161          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3162        VTSize = VT.getSizeInBits() / 8;
3163      } else {
3164        // This can result in a type that is not legal on the target, e.g.
3165        // 1 or 2 bytes on PPC.
3166        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3167        VTSize >>= 1;
3168      }
3169    }
3170
3171    if (++NumMemOps > Limit)
3172      return false;
3173    MemOps.push_back(VT);
3174    Size -= VTSize;
3175  }
3176
3177  return true;
3178}
3179
3180static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3181                                         SDValue Chain, SDValue Dst,
3182                                         SDValue Src, uint64_t Size,
3183                                         unsigned Align, bool AlwaysInline,
3184                                         const Value *DstSV, uint64_t DstSVOff,
3185                                         const Value *SrcSV, uint64_t SrcSVOff){
3186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3187
3188  // Expand memcpy to a series of load and store ops if the size operand falls
3189  // below a certain threshold.
3190  std::vector<MVT> MemOps;
3191  uint64_t Limit = -1ULL;
3192  if (!AlwaysInline)
3193    Limit = TLI.getMaxStoresPerMemcpy();
3194  unsigned DstAlign = Align;  // Destination alignment can change.
3195  std::string Str;
3196  bool CopyFromStr;
3197  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3198                                Str, CopyFromStr, DAG, TLI))
3199    return SDValue();
3200
3201
3202  bool isZeroStr = CopyFromStr && Str.empty();
3203  SmallVector<SDValue, 8> OutChains;
3204  unsigned NumMemOps = MemOps.size();
3205  uint64_t SrcOff = 0, DstOff = 0;
3206  for (unsigned i = 0; i < NumMemOps; i++) {
3207    MVT VT = MemOps[i];
3208    unsigned VTSize = VT.getSizeInBits() / 8;
3209    SDValue Value, Store;
3210
3211    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3212      // It's unlikely a store of a vector immediate can be done in a single
3213      // instruction. It would require a load from a constantpool first.
3214      // We also handle store a vector with all zero's.
3215      // FIXME: Handle other cases where store of vector immediate is done in
3216      // a single instruction.
3217      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3218      Store = DAG.getStore(Chain, dl, Value,
3219                           getMemBasePlusOffset(Dst, DstOff, DAG),
3220                           DstSV, DstSVOff + DstOff, false, DstAlign);
3221    } else {
3222      // The type might not be legal for the target.  This should only happen
3223      // if the type is smaller than a legal type, as on PPC, so the right
3224      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3225      // to Load/Store if NVT==VT.
3226      // FIXME does the case above also need this?
3227      MVT NVT = TLI.getTypeToTransformTo(VT);
3228      assert(NVT.bitsGE(VT));
3229      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3230                             getMemBasePlusOffset(Src, SrcOff, DAG),
3231                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3232      Store = DAG.getTruncStore(Chain, dl, Value,
3233                             getMemBasePlusOffset(Dst, DstOff, DAG),
3234                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3235    }
3236    OutChains.push_back(Store);
3237    SrcOff += VTSize;
3238    DstOff += VTSize;
3239  }
3240
3241  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                     &OutChains[0], OutChains.size());
3243}
3244
3245static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3246                                          SDValue Chain, SDValue Dst,
3247                                          SDValue Src, uint64_t Size,
3248                                          unsigned Align, bool AlwaysInline,
3249                                          const Value *DstSV, uint64_t DstSVOff,
3250                                          const Value *SrcSV, uint64_t SrcSVOff){
3251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3252
3253  // Expand memmove to a series of load and store ops if the size operand falls
3254  // below a certain threshold.
3255  std::vector<MVT> MemOps;
3256  uint64_t Limit = -1ULL;
3257  if (!AlwaysInline)
3258    Limit = TLI.getMaxStoresPerMemmove();
3259  unsigned DstAlign = Align;  // Destination alignment can change.
3260  std::string Str;
3261  bool CopyFromStr;
3262  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3263                                Str, CopyFromStr, DAG, TLI))
3264    return SDValue();
3265
3266  uint64_t SrcOff = 0, DstOff = 0;
3267
3268  SmallVector<SDValue, 8> LoadValues;
3269  SmallVector<SDValue, 8> LoadChains;
3270  SmallVector<SDValue, 8> OutChains;
3271  unsigned NumMemOps = MemOps.size();
3272  for (unsigned i = 0; i < NumMemOps; i++) {
3273    MVT VT = MemOps[i];
3274    unsigned VTSize = VT.getSizeInBits() / 8;
3275    SDValue Value, Store;
3276
3277    Value = DAG.getLoad(VT, dl, Chain,
3278                        getMemBasePlusOffset(Src, SrcOff, DAG),
3279                        SrcSV, SrcSVOff + SrcOff, false, Align);
3280    LoadValues.push_back(Value);
3281    LoadChains.push_back(Value.getValue(1));
3282    SrcOff += VTSize;
3283  }
3284  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3285                      &LoadChains[0], LoadChains.size());
3286  OutChains.clear();
3287  for (unsigned i = 0; i < NumMemOps; i++) {
3288    MVT VT = MemOps[i];
3289    unsigned VTSize = VT.getSizeInBits() / 8;
3290    SDValue Value, Store;
3291
3292    Store = DAG.getStore(Chain, dl, LoadValues[i],
3293                         getMemBasePlusOffset(Dst, DstOff, DAG),
3294                         DstSV, DstSVOff + DstOff, false, DstAlign);
3295    OutChains.push_back(Store);
3296    DstOff += VTSize;
3297  }
3298
3299  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3300                     &OutChains[0], OutChains.size());
3301}
3302
3303static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3304                                 SDValue Chain, SDValue Dst,
3305                                 SDValue Src, uint64_t Size,
3306                                 unsigned Align,
3307                                 const Value *DstSV, uint64_t DstSVOff) {
3308  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3309
3310  // Expand memset to a series of load/store ops if the size operand
3311  // falls below a certain threshold.
3312  std::vector<MVT> MemOps;
3313  std::string Str;
3314  bool CopyFromStr;
3315  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3316                                Size, Align, Str, CopyFromStr, DAG, TLI))
3317    return SDValue();
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  uint64_t DstOff = 0;
3321
3322  unsigned NumMemOps = MemOps.size();
3323  for (unsigned i = 0; i < NumMemOps; i++) {
3324    MVT VT = MemOps[i];
3325    unsigned VTSize = VT.getSizeInBits() / 8;
3326    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3327    SDValue Store = DAG.getStore(Chain, dl, Value,
3328                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3329                                 DstSV, DstSVOff + DstOff);
3330    OutChains.push_back(Store);
3331    DstOff += VTSize;
3332  }
3333
3334  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3335                     &OutChains[0], OutChains.size());
3336}
3337
3338SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3339                                SDValue Src, SDValue Size,
3340                                unsigned Align, bool AlwaysInline,
3341                                const Value *DstSV, uint64_t DstSVOff,
3342                                const Value *SrcSV, uint64_t SrcSVOff) {
3343
3344  // Check to see if we should lower the memcpy to loads and stores first.
3345  // For cases within the target-specified limits, this is the best choice.
3346  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3347  if (ConstantSize) {
3348    // Memcpy with size zero? Just return the original chain.
3349    if (ConstantSize->isNullValue())
3350      return Chain;
3351
3352    SDValue Result =
3353      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3354                              ConstantSize->getZExtValue(),
3355                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3356    if (Result.getNode())
3357      return Result;
3358  }
3359
3360  // Then check to see if we should lower the memcpy with target-specific
3361  // code. If the target chooses to do this, this is the next best.
3362  SDValue Result =
3363    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3364                                AlwaysInline,
3365                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3366  if (Result.getNode())
3367    return Result;
3368
3369  // If we really need inline code and the target declined to provide it,
3370  // use a (potentially long) sequence of loads and stores.
3371  if (AlwaysInline) {
3372    assert(ConstantSize && "AlwaysInline requires a constant size!");
3373    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3374                                   ConstantSize->getZExtValue(), Align, true,
3375                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3376  }
3377
3378  // Emit a library call.
3379  TargetLowering::ArgListTy Args;
3380  TargetLowering::ArgListEntry Entry;
3381  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3382  Entry.Node = Dst; Args.push_back(Entry);
3383  Entry.Node = Src; Args.push_back(Entry);
3384  Entry.Node = Size; Args.push_back(Entry);
3385  // FIXME: pass in DebugLoc
3386  std::pair<SDValue,SDValue> CallResult =
3387    TLI.LowerCallTo(Chain, Type::VoidTy,
3388                    false, false, false, false, 0, CallingConv::C, false,
3389                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3390                                      TLI.getPointerTy()),
3391                    Args, *this, dl);
3392  return CallResult.second;
3393}
3394
3395SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3396                                 SDValue Src, SDValue Size,
3397                                 unsigned Align,
3398                                 const Value *DstSV, uint64_t DstSVOff,
3399                                 const Value *SrcSV, uint64_t SrcSVOff) {
3400
3401  // Check to see if we should lower the memmove to loads and stores first.
3402  // For cases within the target-specified limits, this is the best choice.
3403  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3404  if (ConstantSize) {
3405    // Memmove with size zero? Just return the original chain.
3406    if (ConstantSize->isNullValue())
3407      return Chain;
3408
3409    SDValue Result =
3410      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3411                               ConstantSize->getZExtValue(),
3412                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3413    if (Result.getNode())
3414      return Result;
3415  }
3416
3417  // Then check to see if we should lower the memmove with target-specific
3418  // code. If the target chooses to do this, this is the next best.
3419  SDValue Result =
3420    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3421                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3422  if (Result.getNode())
3423    return Result;
3424
3425  // Emit a library call.
3426  TargetLowering::ArgListTy Args;
3427  TargetLowering::ArgListEntry Entry;
3428  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3429  Entry.Node = Dst; Args.push_back(Entry);
3430  Entry.Node = Src; Args.push_back(Entry);
3431  Entry.Node = Size; Args.push_back(Entry);
3432  // FIXME:  pass in DebugLoc
3433  std::pair<SDValue,SDValue> CallResult =
3434    TLI.LowerCallTo(Chain, Type::VoidTy,
3435                    false, false, false, false, 0, CallingConv::C, false,
3436                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3437                                      TLI.getPointerTy()),
3438                    Args, *this, dl);
3439  return CallResult.second;
3440}
3441
3442SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3443                                SDValue Src, SDValue Size,
3444                                unsigned Align,
3445                                const Value *DstSV, uint64_t DstSVOff) {
3446
3447  // Check to see if we should lower the memset to stores first.
3448  // For cases within the target-specified limits, this is the best choice.
3449  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3450  if (ConstantSize) {
3451    // Memset with size zero? Just return the original chain.
3452    if (ConstantSize->isNullValue())
3453      return Chain;
3454
3455    SDValue Result =
3456      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3457                      Align, DstSV, DstSVOff);
3458    if (Result.getNode())
3459      return Result;
3460  }
3461
3462  // Then check to see if we should lower the memset with target-specific
3463  // code. If the target chooses to do this, this is the next best.
3464  SDValue Result =
3465    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3466                                DstSV, DstSVOff);
3467  if (Result.getNode())
3468    return Result;
3469
3470  // Emit a library call.
3471  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3472  TargetLowering::ArgListTy Args;
3473  TargetLowering::ArgListEntry Entry;
3474  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3475  Args.push_back(Entry);
3476  // Extend or truncate the argument to be an i32 value for the call.
3477  if (Src.getValueType().bitsGT(MVT::i32))
3478    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3479  else
3480    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3481  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3482  Args.push_back(Entry);
3483  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3484  Args.push_back(Entry);
3485  // FIXME: pass in DebugLoc
3486  std::pair<SDValue,SDValue> CallResult =
3487    TLI.LowerCallTo(Chain, Type::VoidTy,
3488                    false, false, false, false, 0, CallingConv::C, false,
3489                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3490                                      TLI.getPointerTy()),
3491                    Args, *this, dl);
3492  return CallResult.second;
3493}
3494
3495SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3496                                SDValue Chain,
3497                                SDValue Ptr, SDValue Cmp,
3498                                SDValue Swp, const Value* PtrVal,
3499                                unsigned Alignment) {
3500  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3501  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3502
3503  MVT VT = Cmp.getValueType();
3504
3505  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3506    Alignment = getMVTAlignment(MemVT);
3507
3508  SDVTList VTs = getVTList(VT, MVT::Other);
3509  FoldingSetNodeID ID;
3510  ID.AddInteger(MemVT.getRawBits());
3511  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3512  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3513  void* IP = 0;
3514  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3515    return SDValue(E, 0);
3516  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3517  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3518                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3519  CSEMap.InsertNode(N, IP);
3520  AllNodes.push_back(N);
3521  return SDValue(N, 0);
3522}
3523
3524SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3525                                SDValue Chain,
3526                                SDValue Ptr, SDValue Val,
3527                                const Value* PtrVal,
3528                                unsigned Alignment) {
3529  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3530          Opcode == ISD::ATOMIC_LOAD_SUB ||
3531          Opcode == ISD::ATOMIC_LOAD_AND ||
3532          Opcode == ISD::ATOMIC_LOAD_OR ||
3533          Opcode == ISD::ATOMIC_LOAD_XOR ||
3534          Opcode == ISD::ATOMIC_LOAD_NAND ||
3535          Opcode == ISD::ATOMIC_LOAD_MIN ||
3536          Opcode == ISD::ATOMIC_LOAD_MAX ||
3537          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3538          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3539          Opcode == ISD::ATOMIC_SWAP) &&
3540         "Invalid Atomic Op");
3541
3542  MVT VT = Val.getValueType();
3543
3544  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3545    Alignment = getMVTAlignment(MemVT);
3546
3547  SDVTList VTs = getVTList(VT, MVT::Other);
3548  FoldingSetNodeID ID;
3549  ID.AddInteger(MemVT.getRawBits());
3550  SDValue Ops[] = {Chain, Ptr, Val};
3551  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3552  void* IP = 0;
3553  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3554    return SDValue(E, 0);
3555  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3556  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3557                       Chain, Ptr, Val, PtrVal, Alignment);
3558  CSEMap.InsertNode(N, IP);
3559  AllNodes.push_back(N);
3560  return SDValue(N, 0);
3561}
3562
3563/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3564/// Allowed to return something different (and simpler) if Simplify is true.
3565SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3566                                     DebugLoc dl) {
3567  if (NumOps == 1)
3568    return Ops[0];
3569
3570  SmallVector<MVT, 4> VTs;
3571  VTs.reserve(NumOps);
3572  for (unsigned i = 0; i < NumOps; ++i)
3573    VTs.push_back(Ops[i].getValueType());
3574  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3575                 Ops, NumOps);
3576}
3577
3578SDValue
3579SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3580                                  const MVT *VTs, unsigned NumVTs,
3581                                  const SDValue *Ops, unsigned NumOps,
3582                                  MVT MemVT, const Value *srcValue, int SVOff,
3583                                  unsigned Align, bool Vol,
3584                                  bool ReadMem, bool WriteMem) {
3585  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3586                             MemVT, srcValue, SVOff, Align, Vol,
3587                             ReadMem, WriteMem);
3588}
3589
3590SDValue
3591SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3592                                  const SDValue *Ops, unsigned NumOps,
3593                                  MVT MemVT, const Value *srcValue, int SVOff,
3594                                  unsigned Align, bool Vol,
3595                                  bool ReadMem, bool WriteMem) {
3596  // Memoize the node unless it returns a flag.
3597  MemIntrinsicSDNode *N;
3598  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3599    FoldingSetNodeID ID;
3600    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3601    void *IP = 0;
3602    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3603      return SDValue(E, 0);
3604
3605    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3606    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3607                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3608    CSEMap.InsertNode(N, IP);
3609  } else {
3610    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3611    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3612                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3613  }
3614  AllNodes.push_back(N);
3615  return SDValue(N, 0);
3616}
3617
3618SDValue
3619SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3620                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3621                      const SDValue *Operands, unsigned NumOperands,
3622                      unsigned NumFixedArgs) {
3623  // Do not include isTailCall in the folding set profile.
3624  FoldingSetNodeID ID;
3625  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3626  ID.AddInteger(CallingConv);
3627  ID.AddInteger(IsVarArgs);
3628  void *IP = 0;
3629  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3630    // Instead of including isTailCall in the folding set, we just
3631    // set the flag of the existing node.
3632    if (!IsTailCall)
3633      cast<CallSDNode>(E)->setNotTailCall();
3634    return SDValue(E, 0);
3635  }
3636  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3637  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3638                     VTs, Operands, NumOperands, NumFixedArgs);
3639  CSEMap.InsertNode(N, IP);
3640  AllNodes.push_back(N);
3641  return SDValue(N, 0);
3642}
3643
3644SDValue
3645SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3646                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3647                      SDValue Ptr, SDValue Offset,
3648                      const Value *SV, int SVOffset, MVT EVT,
3649                      bool isVolatile, unsigned Alignment) {
3650  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3651    Alignment = getMVTAlignment(VT);
3652
3653  if (VT == EVT) {
3654    ExtType = ISD::NON_EXTLOAD;
3655  } else if (ExtType == ISD::NON_EXTLOAD) {
3656    assert(VT == EVT && "Non-extending load from different memory type!");
3657  } else {
3658    // Extending load.
3659    if (VT.isVector())
3660      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3661             "Invalid vector extload!");
3662    else
3663      assert(EVT.bitsLT(VT) &&
3664             "Should only be an extending load, not truncating!");
3665    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3666           "Cannot sign/zero extend a FP/Vector load!");
3667    assert(VT.isInteger() == EVT.isInteger() &&
3668           "Cannot convert from FP to Int or Int -> FP!");
3669  }
3670
3671  bool Indexed = AM != ISD::UNINDEXED;
3672  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3673         "Unindexed load with an offset!");
3674
3675  SDVTList VTs = Indexed ?
3676    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3677  SDValue Ops[] = { Chain, Ptr, Offset };
3678  FoldingSetNodeID ID;
3679  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3680  ID.AddInteger(EVT.getRawBits());
3681  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3682  void *IP = 0;
3683  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3684    return SDValue(E, 0);
3685  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3686  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3687                     Alignment, isVolatile);
3688  CSEMap.InsertNode(N, IP);
3689  AllNodes.push_back(N);
3690  return SDValue(N, 0);
3691}
3692
3693SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3694                              SDValue Chain, SDValue Ptr,
3695                              const Value *SV, int SVOffset,
3696                              bool isVolatile, unsigned Alignment) {
3697  SDValue Undef = getUNDEF(Ptr.getValueType());
3698  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3699                 SV, SVOffset, VT, isVolatile, Alignment);
3700}
3701
3702SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3703                                 SDValue Chain, SDValue Ptr,
3704                                 const Value *SV,
3705                                 int SVOffset, MVT EVT,
3706                                 bool isVolatile, unsigned Alignment) {
3707  SDValue Undef = getUNDEF(Ptr.getValueType());
3708  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3709                 SV, SVOffset, EVT, isVolatile, Alignment);
3710}
3711
3712SDValue
3713SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3714                             SDValue Offset, ISD::MemIndexedMode AM) {
3715  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3716  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3717         "Load is already a indexed load!");
3718  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3719                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3720                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3721                 LD->isVolatile(), LD->getAlignment());
3722}
3723
3724SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3725                               SDValue Ptr, const Value *SV, int SVOffset,
3726                               bool isVolatile, unsigned Alignment) {
3727  MVT VT = Val.getValueType();
3728
3729  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3730    Alignment = getMVTAlignment(VT);
3731
3732  SDVTList VTs = getVTList(MVT::Other);
3733  SDValue Undef = getUNDEF(Ptr.getValueType());
3734  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3735  FoldingSetNodeID ID;
3736  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3737  ID.AddInteger(VT.getRawBits());
3738  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3739                                     isVolatile, Alignment));
3740  void *IP = 0;
3741  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3742    return SDValue(E, 0);
3743  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3744  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3745                      VT, SV, SVOffset, Alignment, isVolatile);
3746  CSEMap.InsertNode(N, IP);
3747  AllNodes.push_back(N);
3748  return SDValue(N, 0);
3749}
3750
3751SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3752                                    SDValue Ptr, const Value *SV,
3753                                    int SVOffset, MVT SVT,
3754                                    bool isVolatile, unsigned Alignment) {
3755  MVT VT = Val.getValueType();
3756
3757  if (VT == SVT)
3758    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3759
3760  assert(VT.bitsGT(SVT) && "Not a truncation?");
3761  assert(VT.isInteger() == SVT.isInteger() &&
3762         "Can't do FP-INT conversion!");
3763
3764  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3765    Alignment = getMVTAlignment(VT);
3766
3767  SDVTList VTs = getVTList(MVT::Other);
3768  SDValue Undef = getUNDEF(Ptr.getValueType());
3769  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3770  FoldingSetNodeID ID;
3771  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3772  ID.AddInteger(SVT.getRawBits());
3773  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3774                                     isVolatile, Alignment));
3775  void *IP = 0;
3776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3777    return SDValue(E, 0);
3778  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3779  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3780                      SVT, SV, SVOffset, Alignment, isVolatile);
3781  CSEMap.InsertNode(N, IP);
3782  AllNodes.push_back(N);
3783  return SDValue(N, 0);
3784}
3785
3786SDValue
3787SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3788                              SDValue Offset, ISD::MemIndexedMode AM) {
3789  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3790  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3791         "Store is already a indexed store!");
3792  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3793  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3794  FoldingSetNodeID ID;
3795  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3796  ID.AddInteger(ST->getMemoryVT().getRawBits());
3797  ID.AddInteger(ST->getRawSubclassData());
3798  void *IP = 0;
3799  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3800    return SDValue(E, 0);
3801  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3802  new (N) StoreSDNode(Ops, dl, VTs, AM,
3803                      ST->isTruncatingStore(), ST->getMemoryVT(),
3804                      ST->getSrcValue(), ST->getSrcValueOffset(),
3805                      ST->getAlignment(), ST->isVolatile());
3806  CSEMap.InsertNode(N, IP);
3807  AllNodes.push_back(N);
3808  return SDValue(N, 0);
3809}
3810
3811SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3812                               SDValue Chain, SDValue Ptr,
3813                               SDValue SV) {
3814  SDValue Ops[] = { Chain, Ptr, SV };
3815  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3816}
3817
3818SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3819                              const SDUse *Ops, unsigned NumOps) {
3820  switch (NumOps) {
3821  case 0: return getNode(Opcode, DL, VT);
3822  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3823  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3824  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3825  default: break;
3826  }
3827
3828  // Copy from an SDUse array into an SDValue array for use with
3829  // the regular getNode logic.
3830  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3831  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3832}
3833
3834SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3835                              const SDValue *Ops, unsigned NumOps) {
3836  switch (NumOps) {
3837  case 0: return getNode(Opcode, DL, VT);
3838  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3839  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3840  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3841  default: break;
3842  }
3843
3844  switch (Opcode) {
3845  default: break;
3846  case ISD::SELECT_CC: {
3847    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3848    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3849           "LHS and RHS of condition must have same type!");
3850    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3851           "True and False arms of SelectCC must have same type!");
3852    assert(Ops[2].getValueType() == VT &&
3853           "select_cc node must be of same type as true and false value!");
3854    break;
3855  }
3856  case ISD::BR_CC: {
3857    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3858    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3859           "LHS/RHS of comparison should match types!");
3860    break;
3861  }
3862  }
3863
3864  // Memoize nodes.
3865  SDNode *N;
3866  SDVTList VTs = getVTList(VT);
3867
3868  if (VT != MVT::Flag) {
3869    FoldingSetNodeID ID;
3870    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3871    void *IP = 0;
3872
3873    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3874      return SDValue(E, 0);
3875
3876    N = NodeAllocator.Allocate<SDNode>();
3877    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3878    CSEMap.InsertNode(N, IP);
3879  } else {
3880    N = NodeAllocator.Allocate<SDNode>();
3881    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3882  }
3883
3884  AllNodes.push_back(N);
3885#ifndef NDEBUG
3886  VerifyNode(N);
3887#endif
3888  return SDValue(N, 0);
3889}
3890
3891SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3892                              const std::vector<MVT> &ResultTys,
3893                              const SDValue *Ops, unsigned NumOps) {
3894  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3895                 Ops, NumOps);
3896}
3897
3898SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3899                              const MVT *VTs, unsigned NumVTs,
3900                              const SDValue *Ops, unsigned NumOps) {
3901  if (NumVTs == 1)
3902    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3903  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3904}
3905
3906SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3907                              const SDValue *Ops, unsigned NumOps) {
3908  if (VTList.NumVTs == 1)
3909    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3910
3911#if 0
3912  switch (Opcode) {
3913  // FIXME: figure out how to safely handle things like
3914  // int foo(int x) { return 1 << (x & 255); }
3915  // int bar() { return foo(256); }
3916  case ISD::SRA_PARTS:
3917  case ISD::SRL_PARTS:
3918  case ISD::SHL_PARTS:
3919    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3920        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3921      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3922    else if (N3.getOpcode() == ISD::AND)
3923      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3924        // If the and is only masking out bits that cannot effect the shift,
3925        // eliminate the and.
3926        unsigned NumBits = VT.getSizeInBits()*2;
3927        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3928          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3929      }
3930    break;
3931  }
3932#endif
3933
3934  // Memoize the node unless it returns a flag.
3935  SDNode *N;
3936  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3937    FoldingSetNodeID ID;
3938    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3939    void *IP = 0;
3940    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3941      return SDValue(E, 0);
3942    if (NumOps == 1) {
3943      N = NodeAllocator.Allocate<UnarySDNode>();
3944      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3945    } else if (NumOps == 2) {
3946      N = NodeAllocator.Allocate<BinarySDNode>();
3947      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3948    } else if (NumOps == 3) {
3949      N = NodeAllocator.Allocate<TernarySDNode>();
3950      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3951    } else {
3952      N = NodeAllocator.Allocate<SDNode>();
3953      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3954    }
3955    CSEMap.InsertNode(N, IP);
3956  } else {
3957    if (NumOps == 1) {
3958      N = NodeAllocator.Allocate<UnarySDNode>();
3959      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3960    } else if (NumOps == 2) {
3961      N = NodeAllocator.Allocate<BinarySDNode>();
3962      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3963    } else if (NumOps == 3) {
3964      N = NodeAllocator.Allocate<TernarySDNode>();
3965      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3966    } else {
3967      N = NodeAllocator.Allocate<SDNode>();
3968      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3969    }
3970  }
3971  AllNodes.push_back(N);
3972#ifndef NDEBUG
3973  VerifyNode(N);
3974#endif
3975  return SDValue(N, 0);
3976}
3977
3978SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3979  return getNode(Opcode, DL, VTList, 0, 0);
3980}
3981
3982SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3983                              SDValue N1) {
3984  SDValue Ops[] = { N1 };
3985  return getNode(Opcode, DL, VTList, Ops, 1);
3986}
3987
3988SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3989                              SDValue N1, SDValue N2) {
3990  SDValue Ops[] = { N1, N2 };
3991  return getNode(Opcode, DL, VTList, Ops, 2);
3992}
3993
3994SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3995                              SDValue N1, SDValue N2, SDValue N3) {
3996  SDValue Ops[] = { N1, N2, N3 };
3997  return getNode(Opcode, DL, VTList, Ops, 3);
3998}
3999
4000SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4001                              SDValue N1, SDValue N2, SDValue N3,
4002                              SDValue N4) {
4003  SDValue Ops[] = { N1, N2, N3, N4 };
4004  return getNode(Opcode, DL, VTList, Ops, 4);
4005}
4006
4007SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4008                              SDValue N1, SDValue N2, SDValue N3,
4009                              SDValue N4, SDValue N5) {
4010  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4011  return getNode(Opcode, DL, VTList, Ops, 5);
4012}
4013
4014SDVTList SelectionDAG::getVTList(MVT VT) {
4015  return makeVTList(SDNode::getValueTypeList(VT), 1);
4016}
4017
4018SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4019  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4020       E = VTList.rend(); I != E; ++I)
4021    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4022      return *I;
4023
4024  MVT *Array = Allocator.Allocate<MVT>(2);
4025  Array[0] = VT1;
4026  Array[1] = VT2;
4027  SDVTList Result = makeVTList(Array, 2);
4028  VTList.push_back(Result);
4029  return Result;
4030}
4031
4032SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4033  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4034       E = VTList.rend(); I != E; ++I)
4035    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4036                          I->VTs[2] == VT3)
4037      return *I;
4038
4039  MVT *Array = Allocator.Allocate<MVT>(3);
4040  Array[0] = VT1;
4041  Array[1] = VT2;
4042  Array[2] = VT3;
4043  SDVTList Result = makeVTList(Array, 3);
4044  VTList.push_back(Result);
4045  return Result;
4046}
4047
4048SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4049  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4050       E = VTList.rend(); I != E; ++I)
4051    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4052                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4053      return *I;
4054
4055  MVT *Array = Allocator.Allocate<MVT>(3);
4056  Array[0] = VT1;
4057  Array[1] = VT2;
4058  Array[2] = VT3;
4059  Array[3] = VT4;
4060  SDVTList Result = makeVTList(Array, 4);
4061  VTList.push_back(Result);
4062  return Result;
4063}
4064
4065SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4066  switch (NumVTs) {
4067    case 0: llvm_unreachable("Cannot have nodes without results!");
4068    case 1: return getVTList(VTs[0]);
4069    case 2: return getVTList(VTs[0], VTs[1]);
4070    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4071    default: break;
4072  }
4073
4074  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4075       E = VTList.rend(); I != E; ++I) {
4076    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4077      continue;
4078
4079    bool NoMatch = false;
4080    for (unsigned i = 2; i != NumVTs; ++i)
4081      if (VTs[i] != I->VTs[i]) {
4082        NoMatch = true;
4083        break;
4084      }
4085    if (!NoMatch)
4086      return *I;
4087  }
4088
4089  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4090  std::copy(VTs, VTs+NumVTs, Array);
4091  SDVTList Result = makeVTList(Array, NumVTs);
4092  VTList.push_back(Result);
4093  return Result;
4094}
4095
4096
4097/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4098/// specified operands.  If the resultant node already exists in the DAG,
4099/// this does not modify the specified node, instead it returns the node that
4100/// already exists.  If the resultant node does not exist in the DAG, the
4101/// input node is returned.  As a degenerate case, if you specify the same
4102/// input operands as the node already has, the input node is returned.
4103SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4104  SDNode *N = InN.getNode();
4105  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4106
4107  // Check to see if there is no change.
4108  if (Op == N->getOperand(0)) return InN;
4109
4110  // See if the modified node already exists.
4111  void *InsertPos = 0;
4112  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4113    return SDValue(Existing, InN.getResNo());
4114
4115  // Nope it doesn't.  Remove the node from its current place in the maps.
4116  if (InsertPos)
4117    if (!RemoveNodeFromCSEMaps(N))
4118      InsertPos = 0;
4119
4120  // Now we update the operands.
4121  N->OperandList[0].set(Op);
4122
4123  // If this gets put into a CSE map, add it.
4124  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4125  return InN;
4126}
4127
4128SDValue SelectionDAG::
4129UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4130  SDNode *N = InN.getNode();
4131  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4132
4133  // Check to see if there is no change.
4134  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4135    return InN;   // No operands changed, just return the input node.
4136
4137  // See if the modified node already exists.
4138  void *InsertPos = 0;
4139  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4140    return SDValue(Existing, InN.getResNo());
4141
4142  // Nope it doesn't.  Remove the node from its current place in the maps.
4143  if (InsertPos)
4144    if (!RemoveNodeFromCSEMaps(N))
4145      InsertPos = 0;
4146
4147  // Now we update the operands.
4148  if (N->OperandList[0] != Op1)
4149    N->OperandList[0].set(Op1);
4150  if (N->OperandList[1] != Op2)
4151    N->OperandList[1].set(Op2);
4152
4153  // If this gets put into a CSE map, add it.
4154  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4155  return InN;
4156}
4157
4158SDValue SelectionDAG::
4159UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4160  SDValue Ops[] = { Op1, Op2, Op3 };
4161  return UpdateNodeOperands(N, Ops, 3);
4162}
4163
4164SDValue SelectionDAG::
4165UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4166                   SDValue Op3, SDValue Op4) {
4167  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4168  return UpdateNodeOperands(N, Ops, 4);
4169}
4170
4171SDValue SelectionDAG::
4172UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4173                   SDValue Op3, SDValue Op4, SDValue Op5) {
4174  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4175  return UpdateNodeOperands(N, Ops, 5);
4176}
4177
4178SDValue SelectionDAG::
4179UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4180  SDNode *N = InN.getNode();
4181  assert(N->getNumOperands() == NumOps &&
4182         "Update with wrong number of operands");
4183
4184  // Check to see if there is no change.
4185  bool AnyChange = false;
4186  for (unsigned i = 0; i != NumOps; ++i) {
4187    if (Ops[i] != N->getOperand(i)) {
4188      AnyChange = true;
4189      break;
4190    }
4191  }
4192
4193  // No operands changed, just return the input node.
4194  if (!AnyChange) return InN;
4195
4196  // See if the modified node already exists.
4197  void *InsertPos = 0;
4198  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4199    return SDValue(Existing, InN.getResNo());
4200
4201  // Nope it doesn't.  Remove the node from its current place in the maps.
4202  if (InsertPos)
4203    if (!RemoveNodeFromCSEMaps(N))
4204      InsertPos = 0;
4205
4206  // Now we update the operands.
4207  for (unsigned i = 0; i != NumOps; ++i)
4208    if (N->OperandList[i] != Ops[i])
4209      N->OperandList[i].set(Ops[i]);
4210
4211  // If this gets put into a CSE map, add it.
4212  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4213  return InN;
4214}
4215
4216/// DropOperands - Release the operands and set this node to have
4217/// zero operands.
4218void SDNode::DropOperands() {
4219  // Unlike the code in MorphNodeTo that does this, we don't need to
4220  // watch for dead nodes here.
4221  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4222    SDUse &Use = *I++;
4223    Use.set(SDValue());
4224  }
4225}
4226
4227/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4228/// machine opcode.
4229///
4230SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4231                                   MVT VT) {
4232  SDVTList VTs = getVTList(VT);
4233  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4234}
4235
4236SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4237                                   MVT VT, SDValue Op1) {
4238  SDVTList VTs = getVTList(VT);
4239  SDValue Ops[] = { Op1 };
4240  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4241}
4242
4243SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4244                                   MVT VT, SDValue Op1,
4245                                   SDValue Op2) {
4246  SDVTList VTs = getVTList(VT);
4247  SDValue Ops[] = { Op1, Op2 };
4248  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4249}
4250
4251SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4252                                   MVT VT, SDValue Op1,
4253                                   SDValue Op2, SDValue Op3) {
4254  SDVTList VTs = getVTList(VT);
4255  SDValue Ops[] = { Op1, Op2, Op3 };
4256  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4257}
4258
4259SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4260                                   MVT VT, const SDValue *Ops,
4261                                   unsigned NumOps) {
4262  SDVTList VTs = getVTList(VT);
4263  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4264}
4265
4266SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4267                                   MVT VT1, MVT VT2, const SDValue *Ops,
4268                                   unsigned NumOps) {
4269  SDVTList VTs = getVTList(VT1, VT2);
4270  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4271}
4272
4273SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4274                                   MVT VT1, MVT VT2) {
4275  SDVTList VTs = getVTList(VT1, VT2);
4276  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4277}
4278
4279SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4280                                   MVT VT1, MVT VT2, MVT VT3,
4281                                   const SDValue *Ops, unsigned NumOps) {
4282  SDVTList VTs = getVTList(VT1, VT2, VT3);
4283  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4284}
4285
4286SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4287                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4288                                   const SDValue *Ops, unsigned NumOps) {
4289  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4290  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4291}
4292
4293SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4294                                   MVT VT1, MVT VT2,
4295                                   SDValue Op1) {
4296  SDVTList VTs = getVTList(VT1, VT2);
4297  SDValue Ops[] = { Op1 };
4298  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4299}
4300
4301SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4302                                   MVT VT1, MVT VT2,
4303                                   SDValue Op1, SDValue Op2) {
4304  SDVTList VTs = getVTList(VT1, VT2);
4305  SDValue Ops[] = { Op1, Op2 };
4306  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4307}
4308
4309SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4310                                   MVT VT1, MVT VT2,
4311                                   SDValue Op1, SDValue Op2,
4312                                   SDValue Op3) {
4313  SDVTList VTs = getVTList(VT1, VT2);
4314  SDValue Ops[] = { Op1, Op2, Op3 };
4315  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4316}
4317
4318SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4319                                   MVT VT1, MVT VT2, MVT VT3,
4320                                   SDValue Op1, SDValue Op2,
4321                                   SDValue Op3) {
4322  SDVTList VTs = getVTList(VT1, VT2, VT3);
4323  SDValue Ops[] = { Op1, Op2, Op3 };
4324  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4325}
4326
4327SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4328                                   SDVTList VTs, const SDValue *Ops,
4329                                   unsigned NumOps) {
4330  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4331}
4332
4333SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4334                                  MVT VT) {
4335  SDVTList VTs = getVTList(VT);
4336  return MorphNodeTo(N, Opc, VTs, 0, 0);
4337}
4338
4339SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4340                                  MVT VT, SDValue Op1) {
4341  SDVTList VTs = getVTList(VT);
4342  SDValue Ops[] = { Op1 };
4343  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4344}
4345
4346SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4347                                  MVT VT, SDValue Op1,
4348                                  SDValue Op2) {
4349  SDVTList VTs = getVTList(VT);
4350  SDValue Ops[] = { Op1, Op2 };
4351  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4352}
4353
4354SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4355                                  MVT VT, SDValue Op1,
4356                                  SDValue Op2, SDValue Op3) {
4357  SDVTList VTs = getVTList(VT);
4358  SDValue Ops[] = { Op1, Op2, Op3 };
4359  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4360}
4361
4362SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4363                                  MVT VT, const SDValue *Ops,
4364                                  unsigned NumOps) {
4365  SDVTList VTs = getVTList(VT);
4366  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4367}
4368
4369SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370                                  MVT VT1, MVT VT2, const SDValue *Ops,
4371                                  unsigned NumOps) {
4372  SDVTList VTs = getVTList(VT1, VT2);
4373  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4374}
4375
4376SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4377                                  MVT VT1, MVT VT2) {
4378  SDVTList VTs = getVTList(VT1, VT2);
4379  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4380}
4381
4382SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4383                                  MVT VT1, MVT VT2, MVT VT3,
4384                                  const SDValue *Ops, unsigned NumOps) {
4385  SDVTList VTs = getVTList(VT1, VT2, VT3);
4386  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4387}
4388
4389SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4390                                  MVT VT1, MVT VT2,
4391                                  SDValue Op1) {
4392  SDVTList VTs = getVTList(VT1, VT2);
4393  SDValue Ops[] = { Op1 };
4394  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4395}
4396
4397SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4398                                  MVT VT1, MVT VT2,
4399                                  SDValue Op1, SDValue Op2) {
4400  SDVTList VTs = getVTList(VT1, VT2);
4401  SDValue Ops[] = { Op1, Op2 };
4402  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4403}
4404
4405SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4406                                  MVT VT1, MVT VT2,
4407                                  SDValue Op1, SDValue Op2,
4408                                  SDValue Op3) {
4409  SDVTList VTs = getVTList(VT1, VT2);
4410  SDValue Ops[] = { Op1, Op2, Op3 };
4411  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4412}
4413
4414/// MorphNodeTo - These *mutate* the specified node to have the specified
4415/// return type, opcode, and operands.
4416///
4417/// Note that MorphNodeTo returns the resultant node.  If there is already a
4418/// node of the specified opcode and operands, it returns that node instead of
4419/// the current one.  Note that the DebugLoc need not be the same.
4420///
4421/// Using MorphNodeTo is faster than creating a new node and swapping it in
4422/// with ReplaceAllUsesWith both because it often avoids allocating a new
4423/// node, and because it doesn't require CSE recalculation for any of
4424/// the node's users.
4425///
4426SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4427                                  SDVTList VTs, const SDValue *Ops,
4428                                  unsigned NumOps) {
4429  // If an identical node already exists, use it.
4430  void *IP = 0;
4431  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4432    FoldingSetNodeID ID;
4433    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4434    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4435      return ON;
4436  }
4437
4438  if (!RemoveNodeFromCSEMaps(N))
4439    IP = 0;
4440
4441  // Start the morphing.
4442  N->NodeType = Opc;
4443  N->ValueList = VTs.VTs;
4444  N->NumValues = VTs.NumVTs;
4445
4446  // Clear the operands list, updating used nodes to remove this from their
4447  // use list.  Keep track of any operands that become dead as a result.
4448  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4449  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4450    SDUse &Use = *I++;
4451    SDNode *Used = Use.getNode();
4452    Use.set(SDValue());
4453    if (Used->use_empty())
4454      DeadNodeSet.insert(Used);
4455  }
4456
4457  // If NumOps is larger than the # of operands we currently have, reallocate
4458  // the operand list.
4459  if (NumOps > N->NumOperands) {
4460    if (N->OperandsNeedDelete)
4461      delete[] N->OperandList;
4462
4463    if (N->isMachineOpcode()) {
4464      // We're creating a final node that will live unmorphed for the
4465      // remainder of the current SelectionDAG iteration, so we can allocate
4466      // the operands directly out of a pool with no recycling metadata.
4467      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4468      N->OperandsNeedDelete = false;
4469    } else {
4470      N->OperandList = new SDUse[NumOps];
4471      N->OperandsNeedDelete = true;
4472    }
4473  }
4474
4475  // Assign the new operands.
4476  N->NumOperands = NumOps;
4477  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4478    N->OperandList[i].setUser(N);
4479    N->OperandList[i].setInitial(Ops[i]);
4480  }
4481
4482  // Delete any nodes that are still dead after adding the uses for the
4483  // new operands.
4484  SmallVector<SDNode *, 16> DeadNodes;
4485  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4486       E = DeadNodeSet.end(); I != E; ++I)
4487    if ((*I)->use_empty())
4488      DeadNodes.push_back(*I);
4489  RemoveDeadNodes(DeadNodes);
4490
4491  if (IP)
4492    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4493  return N;
4494}
4495
4496
4497/// getTargetNode - These are used for target selectors to create a new node
4498/// with specified return type(s), target opcode, and operands.
4499///
4500/// Note that getTargetNode returns the resultant node.  If there is already a
4501/// node of the specified opcode and operands, it returns that node instead of
4502/// the current one.
4503SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4504  return getNode(~Opcode, dl, VT).getNode();
4505}
4506
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4508                                    SDValue Op1) {
4509  return getNode(~Opcode, dl, VT, Op1).getNode();
4510}
4511
4512SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4513                                    SDValue Op1, SDValue Op2) {
4514  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4515}
4516
4517SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4518                                    SDValue Op1, SDValue Op2,
4519                                    SDValue Op3) {
4520  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4521}
4522
4523SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4524                                    const SDValue *Ops, unsigned NumOps) {
4525  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4526}
4527
4528SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4529                                    MVT VT1, MVT VT2) {
4530  SDVTList VTs = getVTList(VT1, VT2);
4531  SDValue Op;
4532  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4533}
4534
4535SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4536                                    MVT VT2, SDValue Op1) {
4537  SDVTList VTs = getVTList(VT1, VT2);
4538  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4539}
4540
4541SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4542                                    MVT VT2, SDValue Op1,
4543                                    SDValue Op2) {
4544  SDVTList VTs = getVTList(VT1, VT2);
4545  SDValue Ops[] = { Op1, Op2 };
4546  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4547}
4548
4549SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4550                                    MVT VT2, SDValue Op1,
4551                                    SDValue Op2, SDValue Op3) {
4552  SDVTList VTs = getVTList(VT1, VT2);
4553  SDValue Ops[] = { Op1, Op2, Op3 };
4554  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4555}
4556
4557SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4558                                    MVT VT1, MVT VT2,
4559                                    const SDValue *Ops, unsigned NumOps) {
4560  SDVTList VTs = getVTList(VT1, VT2);
4561  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4562}
4563
4564SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4565                                    MVT VT1, MVT VT2, MVT VT3,
4566                                    SDValue Op1, SDValue Op2) {
4567  SDVTList VTs = getVTList(VT1, VT2, VT3);
4568  SDValue Ops[] = { Op1, Op2 };
4569  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4570}
4571
4572SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4573                                    MVT VT1, MVT VT2, MVT VT3,
4574                                    SDValue Op1, SDValue Op2,
4575                                    SDValue Op3) {
4576  SDVTList VTs = getVTList(VT1, VT2, VT3);
4577  SDValue Ops[] = { Op1, Op2, Op3 };
4578  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4579}
4580
4581SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4582                                    MVT VT1, MVT VT2, MVT VT3,
4583                                    const SDValue *Ops, unsigned NumOps) {
4584  SDVTList VTs = getVTList(VT1, VT2, VT3);
4585  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4586}
4587
4588SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4589                                    MVT VT2, MVT VT3, MVT VT4,
4590                                    const SDValue *Ops, unsigned NumOps) {
4591  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4592  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4593}
4594
4595SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4596                                    const std::vector<MVT> &ResultTys,
4597                                    const SDValue *Ops, unsigned NumOps) {
4598  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4599}
4600
4601/// getNodeIfExists - Get the specified node if it's already available, or
4602/// else return NULL.
4603SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4604                                      const SDValue *Ops, unsigned NumOps) {
4605  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4606    FoldingSetNodeID ID;
4607    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4608    void *IP = 0;
4609    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4610      return E;
4611  }
4612  return NULL;
4613}
4614
4615/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4616/// This can cause recursive merging of nodes in the DAG.
4617///
4618/// This version assumes From has a single result value.
4619///
4620void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4621                                      DAGUpdateListener *UpdateListener) {
4622  SDNode *From = FromN.getNode();
4623  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4624         "Cannot replace with this method!");
4625  assert(From != To.getNode() && "Cannot replace uses of with self");
4626
4627  // Iterate over all the existing uses of From. New uses will be added
4628  // to the beginning of the use list, which we avoid visiting.
4629  // This specifically avoids visiting uses of From that arise while the
4630  // replacement is happening, because any such uses would be the result
4631  // of CSE: If an existing node looks like From after one of its operands
4632  // is replaced by To, we don't want to replace of all its users with To
4633  // too. See PR3018 for more info.
4634  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4635  while (UI != UE) {
4636    SDNode *User = *UI;
4637
4638    // This node is about to morph, remove its old self from the CSE maps.
4639    RemoveNodeFromCSEMaps(User);
4640
4641    // A user can appear in a use list multiple times, and when this
4642    // happens the uses are usually next to each other in the list.
4643    // To help reduce the number of CSE recomputations, process all
4644    // the uses of this user that we can find this way.
4645    do {
4646      SDUse &Use = UI.getUse();
4647      ++UI;
4648      Use.set(To);
4649    } while (UI != UE && *UI == User);
4650
4651    // Now that we have modified User, add it back to the CSE maps.  If it
4652    // already exists there, recursively merge the results together.
4653    AddModifiedNodeToCSEMaps(User, UpdateListener);
4654  }
4655}
4656
4657/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4658/// This can cause recursive merging of nodes in the DAG.
4659///
4660/// This version assumes that for each value of From, there is a
4661/// corresponding value in To in the same position with the same type.
4662///
4663void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4664                                      DAGUpdateListener *UpdateListener) {
4665#ifndef NDEBUG
4666  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4667    assert((!From->hasAnyUseOfValue(i) ||
4668            From->getValueType(i) == To->getValueType(i)) &&
4669           "Cannot use this version of ReplaceAllUsesWith!");
4670#endif
4671
4672  // Handle the trivial case.
4673  if (From == To)
4674    return;
4675
4676  // Iterate over just the existing users of From. See the comments in
4677  // the ReplaceAllUsesWith above.
4678  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4679  while (UI != UE) {
4680    SDNode *User = *UI;
4681
4682    // This node is about to morph, remove its old self from the CSE maps.
4683    RemoveNodeFromCSEMaps(User);
4684
4685    // A user can appear in a use list multiple times, and when this
4686    // happens the uses are usually next to each other in the list.
4687    // To help reduce the number of CSE recomputations, process all
4688    // the uses of this user that we can find this way.
4689    do {
4690      SDUse &Use = UI.getUse();
4691      ++UI;
4692      Use.setNode(To);
4693    } while (UI != UE && *UI == User);
4694
4695    // Now that we have modified User, add it back to the CSE maps.  If it
4696    // already exists there, recursively merge the results together.
4697    AddModifiedNodeToCSEMaps(User, UpdateListener);
4698  }
4699}
4700
4701/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4702/// This can cause recursive merging of nodes in the DAG.
4703///
4704/// This version can replace From with any result values.  To must match the
4705/// number and types of values returned by From.
4706void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4707                                      const SDValue *To,
4708                                      DAGUpdateListener *UpdateListener) {
4709  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4710    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4711
4712  // Iterate over just the existing users of From. See the comments in
4713  // the ReplaceAllUsesWith above.
4714  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4715  while (UI != UE) {
4716    SDNode *User = *UI;
4717
4718    // This node is about to morph, remove its old self from the CSE maps.
4719    RemoveNodeFromCSEMaps(User);
4720
4721    // A user can appear in a use list multiple times, and when this
4722    // happens the uses are usually next to each other in the list.
4723    // To help reduce the number of CSE recomputations, process all
4724    // the uses of this user that we can find this way.
4725    do {
4726      SDUse &Use = UI.getUse();
4727      const SDValue &ToOp = To[Use.getResNo()];
4728      ++UI;
4729      Use.set(ToOp);
4730    } while (UI != UE && *UI == User);
4731
4732    // Now that we have modified User, add it back to the CSE maps.  If it
4733    // already exists there, recursively merge the results together.
4734    AddModifiedNodeToCSEMaps(User, UpdateListener);
4735  }
4736}
4737
4738/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4739/// uses of other values produced by From.getNode() alone.  The Deleted
4740/// vector is handled the same way as for ReplaceAllUsesWith.
4741void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4742                                             DAGUpdateListener *UpdateListener){
4743  // Handle the really simple, really trivial case efficiently.
4744  if (From == To) return;
4745
4746  // Handle the simple, trivial, case efficiently.
4747  if (From.getNode()->getNumValues() == 1) {
4748    ReplaceAllUsesWith(From, To, UpdateListener);
4749    return;
4750  }
4751
4752  // Iterate over just the existing users of From. See the comments in
4753  // the ReplaceAllUsesWith above.
4754  SDNode::use_iterator UI = From.getNode()->use_begin(),
4755                       UE = From.getNode()->use_end();
4756  while (UI != UE) {
4757    SDNode *User = *UI;
4758    bool UserRemovedFromCSEMaps = false;
4759
4760    // A user can appear in a use list multiple times, and when this
4761    // happens the uses are usually next to each other in the list.
4762    // To help reduce the number of CSE recomputations, process all
4763    // the uses of this user that we can find this way.
4764    do {
4765      SDUse &Use = UI.getUse();
4766
4767      // Skip uses of different values from the same node.
4768      if (Use.getResNo() != From.getResNo()) {
4769        ++UI;
4770        continue;
4771      }
4772
4773      // If this node hasn't been modified yet, it's still in the CSE maps,
4774      // so remove its old self from the CSE maps.
4775      if (!UserRemovedFromCSEMaps) {
4776        RemoveNodeFromCSEMaps(User);
4777        UserRemovedFromCSEMaps = true;
4778      }
4779
4780      ++UI;
4781      Use.set(To);
4782    } while (UI != UE && *UI == User);
4783
4784    // We are iterating over all uses of the From node, so if a use
4785    // doesn't use the specific value, no changes are made.
4786    if (!UserRemovedFromCSEMaps)
4787      continue;
4788
4789    // Now that we have modified User, add it back to the CSE maps.  If it
4790    // already exists there, recursively merge the results together.
4791    AddModifiedNodeToCSEMaps(User, UpdateListener);
4792  }
4793}
4794
4795namespace {
4796  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4797  /// to record information about a use.
4798  struct UseMemo {
4799    SDNode *User;
4800    unsigned Index;
4801    SDUse *Use;
4802  };
4803
4804  /// operator< - Sort Memos by User.
4805  bool operator<(const UseMemo &L, const UseMemo &R) {
4806    return (intptr_t)L.User < (intptr_t)R.User;
4807  }
4808}
4809
4810/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4811/// uses of other values produced by From.getNode() alone.  The same value
4812/// may appear in both the From and To list.  The Deleted vector is
4813/// handled the same way as for ReplaceAllUsesWith.
4814void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4815                                              const SDValue *To,
4816                                              unsigned Num,
4817                                              DAGUpdateListener *UpdateListener){
4818  // Handle the simple, trivial case efficiently.
4819  if (Num == 1)
4820    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4821
4822  // Read up all the uses and make records of them. This helps
4823  // processing new uses that are introduced during the
4824  // replacement process.
4825  SmallVector<UseMemo, 4> Uses;
4826  for (unsigned i = 0; i != Num; ++i) {
4827    unsigned FromResNo = From[i].getResNo();
4828    SDNode *FromNode = From[i].getNode();
4829    for (SDNode::use_iterator UI = FromNode->use_begin(),
4830         E = FromNode->use_end(); UI != E; ++UI) {
4831      SDUse &Use = UI.getUse();
4832      if (Use.getResNo() == FromResNo) {
4833        UseMemo Memo = { *UI, i, &Use };
4834        Uses.push_back(Memo);
4835      }
4836    }
4837  }
4838
4839  // Sort the uses, so that all the uses from a given User are together.
4840  std::sort(Uses.begin(), Uses.end());
4841
4842  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4843       UseIndex != UseIndexEnd; ) {
4844    // We know that this user uses some value of From.  If it is the right
4845    // value, update it.
4846    SDNode *User = Uses[UseIndex].User;
4847
4848    // This node is about to morph, remove its old self from the CSE maps.
4849    RemoveNodeFromCSEMaps(User);
4850
4851    // The Uses array is sorted, so all the uses for a given User
4852    // are next to each other in the list.
4853    // To help reduce the number of CSE recomputations, process all
4854    // the uses of this user that we can find this way.
4855    do {
4856      unsigned i = Uses[UseIndex].Index;
4857      SDUse &Use = *Uses[UseIndex].Use;
4858      ++UseIndex;
4859
4860      Use.set(To[i]);
4861    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4862
4863    // Now that we have modified User, add it back to the CSE maps.  If it
4864    // already exists there, recursively merge the results together.
4865    AddModifiedNodeToCSEMaps(User, UpdateListener);
4866  }
4867}
4868
4869/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4870/// based on their topological order. It returns the maximum id and a vector
4871/// of the SDNodes* in assigned order by reference.
4872unsigned SelectionDAG::AssignTopologicalOrder() {
4873
4874  unsigned DAGSize = 0;
4875
4876  // SortedPos tracks the progress of the algorithm. Nodes before it are
4877  // sorted, nodes after it are unsorted. When the algorithm completes
4878  // it is at the end of the list.
4879  allnodes_iterator SortedPos = allnodes_begin();
4880
4881  // Visit all the nodes. Move nodes with no operands to the front of
4882  // the list immediately. Annotate nodes that do have operands with their
4883  // operand count. Before we do this, the Node Id fields of the nodes
4884  // may contain arbitrary values. After, the Node Id fields for nodes
4885  // before SortedPos will contain the topological sort index, and the
4886  // Node Id fields for nodes At SortedPos and after will contain the
4887  // count of outstanding operands.
4888  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4889    SDNode *N = I++;
4890    unsigned Degree = N->getNumOperands();
4891    if (Degree == 0) {
4892      // A node with no uses, add it to the result array immediately.
4893      N->setNodeId(DAGSize++);
4894      allnodes_iterator Q = N;
4895      if (Q != SortedPos)
4896        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4897      ++SortedPos;
4898    } else {
4899      // Temporarily use the Node Id as scratch space for the degree count.
4900      N->setNodeId(Degree);
4901    }
4902  }
4903
4904  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4905  // such that by the time the end is reached all nodes will be sorted.
4906  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4907    SDNode *N = I;
4908    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4909         UI != UE; ++UI) {
4910      SDNode *P = *UI;
4911      unsigned Degree = P->getNodeId();
4912      --Degree;
4913      if (Degree == 0) {
4914        // All of P's operands are sorted, so P may sorted now.
4915        P->setNodeId(DAGSize++);
4916        if (P != SortedPos)
4917          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4918        ++SortedPos;
4919      } else {
4920        // Update P's outstanding operand count.
4921        P->setNodeId(Degree);
4922      }
4923    }
4924  }
4925
4926  assert(SortedPos == AllNodes.end() &&
4927         "Topological sort incomplete!");
4928  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4929         "First node in topological sort is not the entry token!");
4930  assert(AllNodes.front().getNodeId() == 0 &&
4931         "First node in topological sort has non-zero id!");
4932  assert(AllNodes.front().getNumOperands() == 0 &&
4933         "First node in topological sort has operands!");
4934  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4935         "Last node in topologic sort has unexpected id!");
4936  assert(AllNodes.back().use_empty() &&
4937         "Last node in topologic sort has users!");
4938  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4939  return DAGSize;
4940}
4941
4942
4943
4944//===----------------------------------------------------------------------===//
4945//                              SDNode Class
4946//===----------------------------------------------------------------------===//
4947
4948HandleSDNode::~HandleSDNode() {
4949  DropOperands();
4950}
4951
4952GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
4953                                         MVT VT, int64_t o, unsigned char TF)
4954  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
4955    Offset(o), TargetFlags(TF) {
4956  TheGlobal = const_cast<GlobalValue*>(GA);
4957}
4958
4959MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4960                     const Value *srcValue, int SVO,
4961                     unsigned alignment, bool vol)
4962 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4963  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4964  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4965  assert(getAlignment() == alignment && "Alignment representation error!");
4966  assert(isVolatile() == vol && "Volatile representation error!");
4967}
4968
4969MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4970                     const SDValue *Ops,
4971                     unsigned NumOps, MVT memvt, const Value *srcValue,
4972                     int SVO, unsigned alignment, bool vol)
4973   : SDNode(Opc, dl, VTs, Ops, NumOps),
4974     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4975  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4976  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4977  assert(getAlignment() == alignment && "Alignment representation error!");
4978  assert(isVolatile() == vol && "Volatile representation error!");
4979}
4980
4981/// getMemOperand - Return a MachineMemOperand object describing the memory
4982/// reference performed by this memory reference.
4983MachineMemOperand MemSDNode::getMemOperand() const {
4984  int Flags = 0;
4985  if (isa<LoadSDNode>(this))
4986    Flags = MachineMemOperand::MOLoad;
4987  else if (isa<StoreSDNode>(this))
4988    Flags = MachineMemOperand::MOStore;
4989  else if (isa<AtomicSDNode>(this)) {
4990    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4991  }
4992  else {
4993    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4994    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4995    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4996    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4997  }
4998
4999  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5000  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5001
5002  // Check if the memory reference references a frame index
5003  const FrameIndexSDNode *FI =
5004  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5005  if (!getSrcValue() && FI)
5006    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5007                             Flags, 0, Size, getAlignment());
5008  else
5009    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5010                             Size, getAlignment());
5011}
5012
5013/// Profile - Gather unique data for the node.
5014///
5015void SDNode::Profile(FoldingSetNodeID &ID) const {
5016  AddNodeIDNode(ID, this);
5017}
5018
5019static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
5020static MVT VTs[MVT::LAST_VALUETYPE];
5021static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5022
5023/// getValueTypeList - Return a pointer to the specified value type.
5024///
5025const MVT *SDNode::getValueTypeList(MVT VT) {
5026  sys::SmartScopedLock<true> Lock(*VTMutex);
5027  if (VT.isExtended()) {
5028    return &(*EVTs->insert(VT).first);
5029  } else {
5030    VTs[VT.getSimpleVT()] = VT;
5031    return &VTs[VT.getSimpleVT()];
5032  }
5033}
5034
5035/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5036/// indicated value.  This method ignores uses of other values defined by this
5037/// operation.
5038bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5039  assert(Value < getNumValues() && "Bad value!");
5040
5041  // TODO: Only iterate over uses of a given value of the node
5042  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5043    if (UI.getUse().getResNo() == Value) {
5044      if (NUses == 0)
5045        return false;
5046      --NUses;
5047    }
5048  }
5049
5050  // Found exactly the right number of uses?
5051  return NUses == 0;
5052}
5053
5054
5055/// hasAnyUseOfValue - Return true if there are any use of the indicated
5056/// value. This method ignores uses of other values defined by this operation.
5057bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5058  assert(Value < getNumValues() && "Bad value!");
5059
5060  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5061    if (UI.getUse().getResNo() == Value)
5062      return true;
5063
5064  return false;
5065}
5066
5067
5068/// isOnlyUserOf - Return true if this node is the only use of N.
5069///
5070bool SDNode::isOnlyUserOf(SDNode *N) const {
5071  bool Seen = false;
5072  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5073    SDNode *User = *I;
5074    if (User == this)
5075      Seen = true;
5076    else
5077      return false;
5078  }
5079
5080  return Seen;
5081}
5082
5083/// isOperand - Return true if this node is an operand of N.
5084///
5085bool SDValue::isOperandOf(SDNode *N) const {
5086  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5087    if (*this == N->getOperand(i))
5088      return true;
5089  return false;
5090}
5091
5092bool SDNode::isOperandOf(SDNode *N) const {
5093  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5094    if (this == N->OperandList[i].getNode())
5095      return true;
5096  return false;
5097}
5098
5099/// reachesChainWithoutSideEffects - Return true if this operand (which must
5100/// be a chain) reaches the specified operand without crossing any
5101/// side-effecting instructions.  In practice, this looks through token
5102/// factors and non-volatile loads.  In order to remain efficient, this only
5103/// looks a couple of nodes in, it does not do an exhaustive search.
5104bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5105                                               unsigned Depth) const {
5106  if (*this == Dest) return true;
5107
5108  // Don't search too deeply, we just want to be able to see through
5109  // TokenFactor's etc.
5110  if (Depth == 0) return false;
5111
5112  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5113  // of the operands of the TF reach dest, then we can do the xform.
5114  if (getOpcode() == ISD::TokenFactor) {
5115    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5116      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5117        return true;
5118    return false;
5119  }
5120
5121  // Loads don't have side effects, look through them.
5122  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5123    if (!Ld->isVolatile())
5124      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5125  }
5126  return false;
5127}
5128
5129
5130static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5131                            SmallPtrSet<SDNode *, 32> &Visited) {
5132  if (found || !Visited.insert(N))
5133    return;
5134
5135  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5136    SDNode *Op = N->getOperand(i).getNode();
5137    if (Op == P) {
5138      found = true;
5139      return;
5140    }
5141    findPredecessor(Op, P, found, Visited);
5142  }
5143}
5144
5145/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5146/// is either an operand of N or it can be reached by recursively traversing
5147/// up the operands.
5148/// NOTE: this is an expensive method. Use it carefully.
5149bool SDNode::isPredecessorOf(SDNode *N) const {
5150  SmallPtrSet<SDNode *, 32> Visited;
5151  bool found = false;
5152  findPredecessor(N, this, found, Visited);
5153  return found;
5154}
5155
5156uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5157  assert(Num < NumOperands && "Invalid child # of SDNode!");
5158  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5159}
5160
5161std::string SDNode::getOperationName(const SelectionDAG *G) const {
5162  switch (getOpcode()) {
5163  default:
5164    if (getOpcode() < ISD::BUILTIN_OP_END)
5165      return "<<Unknown DAG Node>>";
5166    if (isMachineOpcode()) {
5167      if (G)
5168        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5169          if (getMachineOpcode() < TII->getNumOpcodes())
5170            return TII->get(getMachineOpcode()).getName();
5171      return "<<Unknown Machine Node>>";
5172    }
5173    if (G) {
5174      const TargetLowering &TLI = G->getTargetLoweringInfo();
5175      const char *Name = TLI.getTargetNodeName(getOpcode());
5176      if (Name) return Name;
5177      return "<<Unknown Target Node>>";
5178    }
5179    return "<<Unknown Node>>";
5180
5181#ifndef NDEBUG
5182  case ISD::DELETED_NODE:
5183    return "<<Deleted Node!>>";
5184#endif
5185  case ISD::PREFETCH:      return "Prefetch";
5186  case ISD::MEMBARRIER:    return "MemBarrier";
5187  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5188  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5189  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5190  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5191  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5192  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5193  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5194  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5195  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5196  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5197  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5198  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5199  case ISD::PCMARKER:      return "PCMarker";
5200  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5201  case ISD::SRCVALUE:      return "SrcValue";
5202  case ISD::MEMOPERAND:    return "MemOperand";
5203  case ISD::EntryToken:    return "EntryToken";
5204  case ISD::TokenFactor:   return "TokenFactor";
5205  case ISD::AssertSext:    return "AssertSext";
5206  case ISD::AssertZext:    return "AssertZext";
5207
5208  case ISD::BasicBlock:    return "BasicBlock";
5209  case ISD::ARG_FLAGS:     return "ArgFlags";
5210  case ISD::VALUETYPE:     return "ValueType";
5211  case ISD::Register:      return "Register";
5212
5213  case ISD::Constant:      return "Constant";
5214  case ISD::ConstantFP:    return "ConstantFP";
5215  case ISD::GlobalAddress: return "GlobalAddress";
5216  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5217  case ISD::FrameIndex:    return "FrameIndex";
5218  case ISD::JumpTable:     return "JumpTable";
5219  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5220  case ISD::RETURNADDR: return "RETURNADDR";
5221  case ISD::FRAMEADDR: return "FRAMEADDR";
5222  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5223  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5224  case ISD::EHSELECTION: return "EHSELECTION";
5225  case ISD::EH_RETURN: return "EH_RETURN";
5226  case ISD::ConstantPool:  return "ConstantPool";
5227  case ISD::ExternalSymbol: return "ExternalSymbol";
5228  case ISD::INTRINSIC_WO_CHAIN: {
5229    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5230    return Intrinsic::getName((Intrinsic::ID)IID);
5231  }
5232  case ISD::INTRINSIC_VOID:
5233  case ISD::INTRINSIC_W_CHAIN: {
5234    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5235    return Intrinsic::getName((Intrinsic::ID)IID);
5236  }
5237
5238  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5239  case ISD::TargetConstant: return "TargetConstant";
5240  case ISD::TargetConstantFP:return "TargetConstantFP";
5241  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5242  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5243  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5244  case ISD::TargetJumpTable:  return "TargetJumpTable";
5245  case ISD::TargetConstantPool:  return "TargetConstantPool";
5246  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5247
5248  case ISD::CopyToReg:     return "CopyToReg";
5249  case ISD::CopyFromReg:   return "CopyFromReg";
5250  case ISD::UNDEF:         return "undef";
5251  case ISD::MERGE_VALUES:  return "merge_values";
5252  case ISD::INLINEASM:     return "inlineasm";
5253  case ISD::DBG_LABEL:     return "dbg_label";
5254  case ISD::EH_LABEL:      return "eh_label";
5255  case ISD::DECLARE:       return "declare";
5256  case ISD::HANDLENODE:    return "handlenode";
5257  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5258  case ISD::CALL:          return "call";
5259
5260  // Unary operators
5261  case ISD::FABS:   return "fabs";
5262  case ISD::FNEG:   return "fneg";
5263  case ISD::FSQRT:  return "fsqrt";
5264  case ISD::FSIN:   return "fsin";
5265  case ISD::FCOS:   return "fcos";
5266  case ISD::FPOWI:  return "fpowi";
5267  case ISD::FPOW:   return "fpow";
5268  case ISD::FTRUNC: return "ftrunc";
5269  case ISD::FFLOOR: return "ffloor";
5270  case ISD::FCEIL:  return "fceil";
5271  case ISD::FRINT:  return "frint";
5272  case ISD::FNEARBYINT: return "fnearbyint";
5273
5274  // Binary operators
5275  case ISD::ADD:    return "add";
5276  case ISD::SUB:    return "sub";
5277  case ISD::MUL:    return "mul";
5278  case ISD::MULHU:  return "mulhu";
5279  case ISD::MULHS:  return "mulhs";
5280  case ISD::SDIV:   return "sdiv";
5281  case ISD::UDIV:   return "udiv";
5282  case ISD::SREM:   return "srem";
5283  case ISD::UREM:   return "urem";
5284  case ISD::SMUL_LOHI:  return "smul_lohi";
5285  case ISD::UMUL_LOHI:  return "umul_lohi";
5286  case ISD::SDIVREM:    return "sdivrem";
5287  case ISD::UDIVREM:    return "udivrem";
5288  case ISD::AND:    return "and";
5289  case ISD::OR:     return "or";
5290  case ISD::XOR:    return "xor";
5291  case ISD::SHL:    return "shl";
5292  case ISD::SRA:    return "sra";
5293  case ISD::SRL:    return "srl";
5294  case ISD::ROTL:   return "rotl";
5295  case ISD::ROTR:   return "rotr";
5296  case ISD::FADD:   return "fadd";
5297  case ISD::FSUB:   return "fsub";
5298  case ISD::FMUL:   return "fmul";
5299  case ISD::FDIV:   return "fdiv";
5300  case ISD::FREM:   return "frem";
5301  case ISD::FCOPYSIGN: return "fcopysign";
5302  case ISD::FGETSIGN:  return "fgetsign";
5303
5304  case ISD::SETCC:       return "setcc";
5305  case ISD::VSETCC:      return "vsetcc";
5306  case ISD::SELECT:      return "select";
5307  case ISD::SELECT_CC:   return "select_cc";
5308  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5309  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5310  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5311  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5312  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5313  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5314  case ISD::CARRY_FALSE:         return "carry_false";
5315  case ISD::ADDC:        return "addc";
5316  case ISD::ADDE:        return "adde";
5317  case ISD::SADDO:       return "saddo";
5318  case ISD::UADDO:       return "uaddo";
5319  case ISD::SSUBO:       return "ssubo";
5320  case ISD::USUBO:       return "usubo";
5321  case ISD::SMULO:       return "smulo";
5322  case ISD::UMULO:       return "umulo";
5323  case ISD::SUBC:        return "subc";
5324  case ISD::SUBE:        return "sube";
5325  case ISD::SHL_PARTS:   return "shl_parts";
5326  case ISD::SRA_PARTS:   return "sra_parts";
5327  case ISD::SRL_PARTS:   return "srl_parts";
5328
5329  // Conversion operators.
5330  case ISD::SIGN_EXTEND: return "sign_extend";
5331  case ISD::ZERO_EXTEND: return "zero_extend";
5332  case ISD::ANY_EXTEND:  return "any_extend";
5333  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5334  case ISD::TRUNCATE:    return "truncate";
5335  case ISD::FP_ROUND:    return "fp_round";
5336  case ISD::FLT_ROUNDS_: return "flt_rounds";
5337  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5338  case ISD::FP_EXTEND:   return "fp_extend";
5339
5340  case ISD::SINT_TO_FP:  return "sint_to_fp";
5341  case ISD::UINT_TO_FP:  return "uint_to_fp";
5342  case ISD::FP_TO_SINT:  return "fp_to_sint";
5343  case ISD::FP_TO_UINT:  return "fp_to_uint";
5344  case ISD::BIT_CONVERT: return "bit_convert";
5345
5346  case ISD::CONVERT_RNDSAT: {
5347    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5348    default: llvm_unreachable("Unknown cvt code!");
5349    case ISD::CVT_FF:  return "cvt_ff";
5350    case ISD::CVT_FS:  return "cvt_fs";
5351    case ISD::CVT_FU:  return "cvt_fu";
5352    case ISD::CVT_SF:  return "cvt_sf";
5353    case ISD::CVT_UF:  return "cvt_uf";
5354    case ISD::CVT_SS:  return "cvt_ss";
5355    case ISD::CVT_SU:  return "cvt_su";
5356    case ISD::CVT_US:  return "cvt_us";
5357    case ISD::CVT_UU:  return "cvt_uu";
5358    }
5359  }
5360
5361    // Control flow instructions
5362  case ISD::BR:      return "br";
5363  case ISD::BRIND:   return "brind";
5364  case ISD::BR_JT:   return "br_jt";
5365  case ISD::BRCOND:  return "brcond";
5366  case ISD::BR_CC:   return "br_cc";
5367  case ISD::RET:     return "ret";
5368  case ISD::CALLSEQ_START:  return "callseq_start";
5369  case ISD::CALLSEQ_END:    return "callseq_end";
5370
5371    // Other operators
5372  case ISD::LOAD:               return "load";
5373  case ISD::STORE:              return "store";
5374  case ISD::VAARG:              return "vaarg";
5375  case ISD::VACOPY:             return "vacopy";
5376  case ISD::VAEND:              return "vaend";
5377  case ISD::VASTART:            return "vastart";
5378  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5379  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5380  case ISD::BUILD_PAIR:         return "build_pair";
5381  case ISD::STACKSAVE:          return "stacksave";
5382  case ISD::STACKRESTORE:       return "stackrestore";
5383  case ISD::TRAP:               return "trap";
5384
5385  // Bit manipulation
5386  case ISD::BSWAP:   return "bswap";
5387  case ISD::CTPOP:   return "ctpop";
5388  case ISD::CTTZ:    return "cttz";
5389  case ISD::CTLZ:    return "ctlz";
5390
5391  // Debug info
5392  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5393  case ISD::DEBUG_LOC: return "debug_loc";
5394
5395  // Trampolines
5396  case ISD::TRAMPOLINE: return "trampoline";
5397
5398  case ISD::CONDCODE:
5399    switch (cast<CondCodeSDNode>(this)->get()) {
5400    default: llvm_unreachable("Unknown setcc condition!");
5401    case ISD::SETOEQ:  return "setoeq";
5402    case ISD::SETOGT:  return "setogt";
5403    case ISD::SETOGE:  return "setoge";
5404    case ISD::SETOLT:  return "setolt";
5405    case ISD::SETOLE:  return "setole";
5406    case ISD::SETONE:  return "setone";
5407
5408    case ISD::SETO:    return "seto";
5409    case ISD::SETUO:   return "setuo";
5410    case ISD::SETUEQ:  return "setue";
5411    case ISD::SETUGT:  return "setugt";
5412    case ISD::SETUGE:  return "setuge";
5413    case ISD::SETULT:  return "setult";
5414    case ISD::SETULE:  return "setule";
5415    case ISD::SETUNE:  return "setune";
5416
5417    case ISD::SETEQ:   return "seteq";
5418    case ISD::SETGT:   return "setgt";
5419    case ISD::SETGE:   return "setge";
5420    case ISD::SETLT:   return "setlt";
5421    case ISD::SETLE:   return "setle";
5422    case ISD::SETNE:   return "setne";
5423    }
5424  }
5425}
5426
5427const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5428  switch (AM) {
5429  default:
5430    return "";
5431  case ISD::PRE_INC:
5432    return "<pre-inc>";
5433  case ISD::PRE_DEC:
5434    return "<pre-dec>";
5435  case ISD::POST_INC:
5436    return "<post-inc>";
5437  case ISD::POST_DEC:
5438    return "<post-dec>";
5439  }
5440}
5441
5442std::string ISD::ArgFlagsTy::getArgFlagsString() {
5443  std::string S = "< ";
5444
5445  if (isZExt())
5446    S += "zext ";
5447  if (isSExt())
5448    S += "sext ";
5449  if (isInReg())
5450    S += "inreg ";
5451  if (isSRet())
5452    S += "sret ";
5453  if (isByVal())
5454    S += "byval ";
5455  if (isNest())
5456    S += "nest ";
5457  if (getByValAlign())
5458    S += "byval-align:" + utostr(getByValAlign()) + " ";
5459  if (getOrigAlign())
5460    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5461  if (getByValSize())
5462    S += "byval-size:" + utostr(getByValSize()) + " ";
5463  return S + ">";
5464}
5465
5466void SDNode::dump() const { dump(0); }
5467void SDNode::dump(const SelectionDAG *G) const {
5468  print(errs(), G);
5469}
5470
5471void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5472  OS << (void*)this << ": ";
5473
5474  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5475    if (i) OS << ",";
5476    if (getValueType(i) == MVT::Other)
5477      OS << "ch";
5478    else
5479      OS << getValueType(i).getMVTString();
5480  }
5481  OS << " = " << getOperationName(G);
5482}
5483
5484void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5485  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5486    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5487    OS << "<";
5488    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5489      int Idx = SVN->getMaskElt(i);
5490      if (i) OS << ",";
5491      if (Idx < 0)
5492        OS << "u";
5493      else
5494        OS << Idx;
5495    }
5496    OS << ">";
5497  }
5498
5499  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5500    OS << '<' << CSDN->getAPIntValue() << '>';
5501  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5502    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5503      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5504    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5505      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5506    else {
5507      OS << "<APFloat(";
5508      CSDN->getValueAPF().bitcastToAPInt().dump();
5509      OS << ")>";
5510    }
5511  } else if (const GlobalAddressSDNode *GADN =
5512             dyn_cast<GlobalAddressSDNode>(this)) {
5513    int64_t offset = GADN->getOffset();
5514    OS << '<';
5515    WriteAsOperand(OS, GADN->getGlobal());
5516    OS << '>';
5517    if (offset > 0)
5518      OS << " + " << offset;
5519    else
5520      OS << " " << offset;
5521    if (unsigned int TF = GADN->getTargetFlags())
5522      OS << " [TF=" << TF << ']';
5523  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5524    OS << "<" << FIDN->getIndex() << ">";
5525  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5526    OS << "<" << JTDN->getIndex() << ">";
5527    if (unsigned int TF = JTDN->getTargetFlags())
5528      OS << " [TF=" << TF << ']';
5529  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5530    int offset = CP->getOffset();
5531    if (CP->isMachineConstantPoolEntry())
5532      OS << "<" << *CP->getMachineCPVal() << ">";
5533    else
5534      OS << "<" << *CP->getConstVal() << ">";
5535    if (offset > 0)
5536      OS << " + " << offset;
5537    else
5538      OS << " " << offset;
5539    if (unsigned int TF = CP->getTargetFlags())
5540      OS << " [TF=" << TF << ']';
5541  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5542    OS << "<";
5543    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5544    if (LBB)
5545      OS << LBB->getName() << " ";
5546    OS << (const void*)BBDN->getBasicBlock() << ">";
5547  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5548    if (G && R->getReg() &&
5549        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5550      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5551    } else {
5552      OS << " #" << R->getReg();
5553    }
5554  } else if (const ExternalSymbolSDNode *ES =
5555             dyn_cast<ExternalSymbolSDNode>(this)) {
5556    OS << "'" << ES->getSymbol() << "'";
5557    if (unsigned int TF = ES->getTargetFlags())
5558      OS << " [TF=" << TF << ']';
5559  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5560    if (M->getValue())
5561      OS << "<" << M->getValue() << ">";
5562    else
5563      OS << "<null>";
5564  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5565    if (M->MO.getValue())
5566      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5567    else
5568      OS << "<null:" << M->MO.getOffset() << ">";
5569  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5570    OS << N->getArgFlags().getArgFlagsString();
5571  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5572    OS << ":" << N->getVT().getMVTString();
5573  }
5574  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5575    const Value *SrcValue = LD->getSrcValue();
5576    int SrcOffset = LD->getSrcValueOffset();
5577    OS << " <";
5578    if (SrcValue)
5579      OS << SrcValue;
5580    else
5581      OS << "null";
5582    OS << ":" << SrcOffset << ">";
5583
5584    bool doExt = true;
5585    switch (LD->getExtensionType()) {
5586    default: doExt = false; break;
5587    case ISD::EXTLOAD: OS << " <anyext "; break;
5588    case ISD::SEXTLOAD: OS << " <sext "; break;
5589    case ISD::ZEXTLOAD: OS << " <zext "; break;
5590    }
5591    if (doExt)
5592      OS << LD->getMemoryVT().getMVTString() << ">";
5593
5594    const char *AM = getIndexedModeName(LD->getAddressingMode());
5595    if (*AM)
5596      OS << " " << AM;
5597    if (LD->isVolatile())
5598      OS << " <volatile>";
5599    OS << " alignment=" << LD->getAlignment();
5600  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5601    const Value *SrcValue = ST->getSrcValue();
5602    int SrcOffset = ST->getSrcValueOffset();
5603    OS << " <";
5604    if (SrcValue)
5605      OS << SrcValue;
5606    else
5607      OS << "null";
5608    OS << ":" << SrcOffset << ">";
5609
5610    if (ST->isTruncatingStore())
5611      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5612
5613    const char *AM = getIndexedModeName(ST->getAddressingMode());
5614    if (*AM)
5615      OS << " " << AM;
5616    if (ST->isVolatile())
5617      OS << " <volatile>";
5618    OS << " alignment=" << ST->getAlignment();
5619  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5620    const Value *SrcValue = AT->getSrcValue();
5621    int SrcOffset = AT->getSrcValueOffset();
5622    OS << " <";
5623    if (SrcValue)
5624      OS << SrcValue;
5625    else
5626      OS << "null";
5627    OS << ":" << SrcOffset << ">";
5628    if (AT->isVolatile())
5629      OS << " <volatile>";
5630    OS << " alignment=" << AT->getAlignment();
5631  }
5632}
5633
5634void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5635  print_types(OS, G);
5636  OS << " ";
5637  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5638    if (i) OS << ", ";
5639    OS << (void*)getOperand(i).getNode();
5640    if (unsigned RN = getOperand(i).getResNo())
5641      OS << ":" << RN;
5642  }
5643  print_details(OS, G);
5644}
5645
5646static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5647  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5648    if (N->getOperand(i).getNode()->hasOneUse())
5649      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5650    else
5651      cerr << "\n" << std::string(indent+2, ' ')
5652           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5653
5654
5655  cerr << "\n" << std::string(indent, ' ');
5656  N->dump(G);
5657}
5658
5659void SelectionDAG::dump() const {
5660  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5661
5662  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5663       I != E; ++I) {
5664    const SDNode *N = I;
5665    if (!N->hasOneUse() && N != getRoot().getNode())
5666      DumpNodes(N, 2, this);
5667  }
5668
5669  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5670
5671  cerr << "\n\n";
5672}
5673
5674void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5675  print_types(OS, G);
5676  print_details(OS, G);
5677}
5678
5679typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5680static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5681                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5682  if (!once.insert(N))          // If we've been here before, return now.
5683    return;
5684  // Dump the current SDNode, but don't end the line yet.
5685  OS << std::string(indent, ' ');
5686  N->printr(OS, G);
5687  // Having printed this SDNode, walk the children:
5688  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5689    const SDNode *child = N->getOperand(i).getNode();
5690    if (i) OS << ",";
5691    OS << " ";
5692    if (child->getNumOperands() == 0) {
5693      // This child has no grandchildren; print it inline right here.
5694      child->printr(OS, G);
5695      once.insert(child);
5696    } else {          // Just the address.  FIXME: also print the child's opcode
5697      OS << (void*)child;
5698      if (unsigned RN = N->getOperand(i).getResNo())
5699        OS << ":" << RN;
5700    }
5701  }
5702  OS << "\n";
5703  // Dump children that have grandchildren on their own line(s).
5704  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5705    const SDNode *child = N->getOperand(i).getNode();
5706    DumpNodesr(OS, child, indent+2, G, once);
5707  }
5708}
5709
5710void SDNode::dumpr() const {
5711  VisitedSDNodeSet once;
5712  DumpNodesr(errs(), this, 0, 0, once);
5713}
5714
5715
5716// getAddressSpace - Return the address space this GlobalAddress belongs to.
5717unsigned GlobalAddressSDNode::getAddressSpace() const {
5718  return getGlobal()->getType()->getAddressSpace();
5719}
5720
5721
5722const Type *ConstantPoolSDNode::getType() const {
5723  if (isMachineConstantPoolEntry())
5724    return Val.MachineCPVal->getType();
5725  return Val.ConstVal->getType();
5726}
5727
5728bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5729                                        APInt &SplatUndef,
5730                                        unsigned &SplatBitSize,
5731                                        bool &HasAnyUndefs,
5732                                        unsigned MinSplatBits) {
5733  MVT VT = getValueType(0);
5734  assert(VT.isVector() && "Expected a vector type");
5735  unsigned sz = VT.getSizeInBits();
5736  if (MinSplatBits > sz)
5737    return false;
5738
5739  SplatValue = APInt(sz, 0);
5740  SplatUndef = APInt(sz, 0);
5741
5742  // Get the bits.  Bits with undefined values (when the corresponding element
5743  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5744  // in SplatValue.  If any of the values are not constant, give up and return
5745  // false.
5746  unsigned int nOps = getNumOperands();
5747  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5748  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5749  for (unsigned i = 0; i < nOps; ++i) {
5750    SDValue OpVal = getOperand(i);
5751    unsigned BitPos = i * EltBitSize;
5752
5753    if (OpVal.getOpcode() == ISD::UNDEF)
5754      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5755    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5756      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5757                     zextOrTrunc(sz) << BitPos);
5758    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5759      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5760     else
5761      return false;
5762  }
5763
5764  // The build_vector is all constants or undefs.  Find the smallest element
5765  // size that splats the vector.
5766
5767  HasAnyUndefs = (SplatUndef != 0);
5768  while (sz > 8) {
5769
5770    unsigned HalfSize = sz / 2;
5771    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5772    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5773    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5774    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5775
5776    // If the two halves do not match (ignoring undef bits), stop here.
5777    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5778        MinSplatBits > HalfSize)
5779      break;
5780
5781    SplatValue = HighValue | LowValue;
5782    SplatUndef = HighUndef & LowUndef;
5783
5784    sz = HalfSize;
5785  }
5786
5787  SplatBitSize = sz;
5788  return true;
5789}
5790
5791bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5792  // Find the first non-undef value in the shuffle mask.
5793  unsigned i, e;
5794  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5795    /* search */;
5796
5797  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5798
5799  // Make sure all remaining elements are either undef or the same as the first
5800  // non-undef value.
5801  for (int Idx = Mask[i]; i != e; ++i)
5802    if (Mask[i] >= 0 && Mask[i] != Idx)
5803      return false;
5804  return true;
5805}
5806