SelectionDAG.cpp revision 237898ac1f6f6d1915282cc3afaa3c36435e76c0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(double V) const {
52  return DoubleToBits(V) == DoubleToBits(Value);
53}
54
55//===----------------------------------------------------------------------===//
56//                              ISD Namespace
57//===----------------------------------------------------------------------===//
58
59/// isBuildVectorAllOnes - Return true if the specified node is a
60/// BUILD_VECTOR where all of the elements are ~0 or undef.
61bool ISD::isBuildVectorAllOnes(const SDNode *N) {
62  // Look through a bit convert.
63  if (N->getOpcode() == ISD::BIT_CONVERT)
64    N = N->getOperand(0).Val;
65
66  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
67
68  unsigned i = 0, e = N->getNumOperands();
69
70  // Skip over all of the undef values.
71  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
72    ++i;
73
74  // Do not accept an all-undef vector.
75  if (i == e) return false;
76
77  // Do not accept build_vectors that aren't all constants or which have non-~0
78  // elements.
79  SDOperand NotZero = N->getOperand(i);
80  if (isa<ConstantSDNode>(NotZero)) {
81    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
82      return false;
83  } else if (isa<ConstantFPSDNode>(NotZero)) {
84    MVT::ValueType VT = NotZero.getValueType();
85    if (VT== MVT::f64) {
86      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
87          (uint64_t)-1)
88        return false;
89    } else {
90      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
91          (uint32_t)-1)
92        return false;
93    }
94  } else
95    return false;
96
97  // Okay, we have at least one ~0 value, check to see if the rest match or are
98  // undefs.
99  for (++i; i != e; ++i)
100    if (N->getOperand(i) != NotZero &&
101        N->getOperand(i).getOpcode() != ISD::UNDEF)
102      return false;
103  return true;
104}
105
106
107/// isBuildVectorAllZeros - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are 0 or undef.
109bool ISD::isBuildVectorAllZeros(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).Val;
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDOperand Zero = N->getOperand(i);
128  if (isa<ConstantSDNode>(Zero)) {
129    if (!cast<ConstantSDNode>(Zero)->isNullValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(Zero)) {
132    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
133      return false;
134  } else
135    return false;
136
137  // Okay, we have at least one ~0 value, check to see if the rest match or are
138  // undefs.
139  for (++i; i != e; ++i)
140    if (N->getOperand(i) != Zero &&
141        N->getOperand(i).getOpcode() != ISD::UNDEF)
142      return false;
143  return true;
144}
145
146/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
147/// when given the operation for (X op Y).
148ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
149  // To perform this operation, we just need to swap the L and G bits of the
150  // operation.
151  unsigned OldL = (Operation >> 2) & 1;
152  unsigned OldG = (Operation >> 1) & 1;
153  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
154                       (OldL << 1) |       // New G bit
155                       (OldG << 2));        // New L bit.
156}
157
158/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
159/// 'op' is a valid SetCC operation.
160ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
161  unsigned Operation = Op;
162  if (isInteger)
163    Operation ^= 7;   // Flip L, G, E bits, but not U.
164  else
165    Operation ^= 15;  // Flip all of the condition bits.
166  if (Operation > ISD::SETTRUE2)
167    Operation &= ~8;     // Don't let N and U bits get set.
168  return ISD::CondCode(Operation);
169}
170
171
172/// isSignedOp - For an integer comparison, return 1 if the comparison is a
173/// signed operation and 2 if the result is an unsigned comparison.  Return zero
174/// if the operation does not depend on the sign of the input (setne and seteq).
175static int isSignedOp(ISD::CondCode Opcode) {
176  switch (Opcode) {
177  default: assert(0 && "Illegal integer setcc operation!");
178  case ISD::SETEQ:
179  case ISD::SETNE: return 0;
180  case ISD::SETLT:
181  case ISD::SETLE:
182  case ISD::SETGT:
183  case ISD::SETGE: return 1;
184  case ISD::SETULT:
185  case ISD::SETULE:
186  case ISD::SETUGT:
187  case ISD::SETUGE: return 2;
188  }
189}
190
191/// getSetCCOrOperation - Return the result of a logical OR between different
192/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
193/// returns SETCC_INVALID if it is not possible to represent the resultant
194/// comparison.
195ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
196                                       bool isInteger) {
197  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
198    // Cannot fold a signed integer setcc with an unsigned integer setcc.
199    return ISD::SETCC_INVALID;
200
201  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
202
203  // If the N and U bits get set then the resultant comparison DOES suddenly
204  // care about orderedness, and is true when ordered.
205  if (Op > ISD::SETTRUE2)
206    Op &= ~16;     // Clear the U bit if the N bit is set.
207
208  // Canonicalize illegal integer setcc's.
209  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
210    Op = ISD::SETNE;
211
212  return ISD::CondCode(Op);
213}
214
215/// getSetCCAndOperation - Return the result of a logical AND between different
216/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
217/// function returns zero if it is not possible to represent the resultant
218/// comparison.
219ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
220                                        bool isInteger) {
221  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
222    // Cannot fold a signed setcc with an unsigned setcc.
223    return ISD::SETCC_INVALID;
224
225  // Combine all of the condition bits.
226  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
227
228  // Canonicalize illegal integer setcc's.
229  if (isInteger) {
230    switch (Result) {
231    default: break;
232    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
233    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
234    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
235    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
236    }
237  }
238
239  return Result;
240}
241
242const TargetMachine &SelectionDAG::getTarget() const {
243  return TLI.getTargetMachine();
244}
245
246//===----------------------------------------------------------------------===//
247//                           SDNode Profile Support
248//===----------------------------------------------------------------------===//
249
250/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
251///
252static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
253  ID.AddInteger(OpC);
254}
255
256/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
257/// solely with their pointer.
258void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
259  ID.AddPointer(VTList.VTs);
260}
261
262/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
263///
264static void AddNodeIDOperands(FoldingSetNodeID &ID,
265                              const SDOperand *Ops, unsigned NumOps) {
266  for (; NumOps; --NumOps, ++Ops) {
267    ID.AddPointer(Ops->Val);
268    ID.AddInteger(Ops->ResNo);
269  }
270}
271
272static void AddNodeIDNode(FoldingSetNodeID &ID,
273                          unsigned short OpC, SDVTList VTList,
274                          const SDOperand *OpList, unsigned N) {
275  AddNodeIDOpcode(ID, OpC);
276  AddNodeIDValueTypes(ID, VTList);
277  AddNodeIDOperands(ID, OpList, N);
278}
279
280/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
281/// data.
282static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
283  AddNodeIDOpcode(ID, N->getOpcode());
284  // Add the return value info.
285  AddNodeIDValueTypes(ID, N->getVTList());
286  // Add the operand info.
287  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
288
289  // Handle SDNode leafs with special info.
290  switch (N->getOpcode()) {
291  default: break;  // Normal nodes don't need extra info.
292  case ISD::TargetConstant:
293  case ISD::Constant:
294    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
295    break;
296  case ISD::TargetConstantFP:
297  case ISD::ConstantFP:
298    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
299    break;
300  case ISD::TargetGlobalAddress:
301  case ISD::GlobalAddress:
302  case ISD::TargetGlobalTLSAddress:
303  case ISD::GlobalTLSAddress: {
304    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
305    ID.AddPointer(GA->getGlobal());
306    ID.AddInteger(GA->getOffset());
307    break;
308  }
309  case ISD::BasicBlock:
310    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
311    break;
312  case ISD::Register:
313    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
314    break;
315  case ISD::SRCVALUE: {
316    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
317    ID.AddPointer(SV->getValue());
318    ID.AddInteger(SV->getOffset());
319    break;
320  }
321  case ISD::FrameIndex:
322  case ISD::TargetFrameIndex:
323    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
324    break;
325  case ISD::JumpTable:
326  case ISD::TargetJumpTable:
327    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
328    break;
329  case ISD::ConstantPool:
330  case ISD::TargetConstantPool: {
331    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
332    ID.AddInteger(CP->getAlignment());
333    ID.AddInteger(CP->getOffset());
334    if (CP->isMachineConstantPoolEntry())
335      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
336    else
337      ID.AddPointer(CP->getConstVal());
338    break;
339  }
340  case ISD::LOAD: {
341    LoadSDNode *LD = cast<LoadSDNode>(N);
342    ID.AddInteger(LD->getAddressingMode());
343    ID.AddInteger(LD->getExtensionType());
344    ID.AddInteger(LD->getLoadedVT());
345    ID.AddPointer(LD->getSrcValue());
346    ID.AddInteger(LD->getSrcValueOffset());
347    ID.AddInteger(LD->getAlignment());
348    ID.AddInteger(LD->isVolatile());
349    break;
350  }
351  case ISD::STORE: {
352    StoreSDNode *ST = cast<StoreSDNode>(N);
353    ID.AddInteger(ST->getAddressingMode());
354    ID.AddInteger(ST->isTruncatingStore());
355    ID.AddInteger(ST->getStoredVT());
356    ID.AddPointer(ST->getSrcValue());
357    ID.AddInteger(ST->getSrcValueOffset());
358    ID.AddInteger(ST->getAlignment());
359    ID.AddInteger(ST->isVolatile());
360    break;
361  }
362  }
363}
364
365//===----------------------------------------------------------------------===//
366//                              SelectionDAG Class
367//===----------------------------------------------------------------------===//
368
369/// RemoveDeadNodes - This method deletes all unreachable nodes in the
370/// SelectionDAG.
371void SelectionDAG::RemoveDeadNodes() {
372  // Create a dummy node (which is not added to allnodes), that adds a reference
373  // to the root node, preventing it from being deleted.
374  HandleSDNode Dummy(getRoot());
375
376  SmallVector<SDNode*, 128> DeadNodes;
377
378  // Add all obviously-dead nodes to the DeadNodes worklist.
379  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
380    if (I->use_empty())
381      DeadNodes.push_back(I);
382
383  // Process the worklist, deleting the nodes and adding their uses to the
384  // worklist.
385  while (!DeadNodes.empty()) {
386    SDNode *N = DeadNodes.back();
387    DeadNodes.pop_back();
388
389    // Take the node out of the appropriate CSE map.
390    RemoveNodeFromCSEMaps(N);
391
392    // Next, brutally remove the operand list.  This is safe to do, as there are
393    // no cycles in the graph.
394    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
395      SDNode *Operand = I->Val;
396      Operand->removeUser(N);
397
398      // Now that we removed this operand, see if there are no uses of it left.
399      if (Operand->use_empty())
400        DeadNodes.push_back(Operand);
401    }
402    if (N->OperandsNeedDelete)
403      delete[] N->OperandList;
404    N->OperandList = 0;
405    N->NumOperands = 0;
406
407    // Finally, remove N itself.
408    AllNodes.erase(N);
409  }
410
411  // If the root changed (e.g. it was a dead load, update the root).
412  setRoot(Dummy.getValue());
413}
414
415void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
416  SmallVector<SDNode*, 16> DeadNodes;
417  DeadNodes.push_back(N);
418
419  // Process the worklist, deleting the nodes and adding their uses to the
420  // worklist.
421  while (!DeadNodes.empty()) {
422    SDNode *N = DeadNodes.back();
423    DeadNodes.pop_back();
424
425    // Take the node out of the appropriate CSE map.
426    RemoveNodeFromCSEMaps(N);
427
428    // Next, brutally remove the operand list.  This is safe to do, as there are
429    // no cycles in the graph.
430    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
431      SDNode *Operand = I->Val;
432      Operand->removeUser(N);
433
434      // Now that we removed this operand, see if there are no uses of it left.
435      if (Operand->use_empty())
436        DeadNodes.push_back(Operand);
437    }
438    if (N->OperandsNeedDelete)
439      delete[] N->OperandList;
440    N->OperandList = 0;
441    N->NumOperands = 0;
442
443    // Finally, remove N itself.
444    Deleted.push_back(N);
445    AllNodes.erase(N);
446  }
447}
448
449void SelectionDAG::DeleteNode(SDNode *N) {
450  assert(N->use_empty() && "Cannot delete a node that is not dead!");
451
452  // First take this out of the appropriate CSE map.
453  RemoveNodeFromCSEMaps(N);
454
455  // Finally, remove uses due to operands of this node, remove from the
456  // AllNodes list, and delete the node.
457  DeleteNodeNotInCSEMaps(N);
458}
459
460void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
461
462  // Remove it from the AllNodes list.
463  AllNodes.remove(N);
464
465  // Drop all of the operands and decrement used nodes use counts.
466  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
467    I->Val->removeUser(N);
468  if (N->OperandsNeedDelete)
469    delete[] N->OperandList;
470  N->OperandList = 0;
471  N->NumOperands = 0;
472
473  delete N;
474}
475
476/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
477/// correspond to it.  This is useful when we're about to delete or repurpose
478/// the node.  We don't want future request for structurally identical nodes
479/// to return N anymore.
480void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
481  bool Erased = false;
482  switch (N->getOpcode()) {
483  case ISD::HANDLENODE: return;  // noop.
484  case ISD::STRING:
485    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
486    break;
487  case ISD::CONDCODE:
488    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
489           "Cond code doesn't exist!");
490    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
491    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
492    break;
493  case ISD::ExternalSymbol:
494    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::TargetExternalSymbol:
497    Erased =
498      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
499    break;
500  case ISD::VALUETYPE:
501    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
502    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
503    break;
504  default:
505    // Remove it from the CSE Map.
506    Erased = CSEMap.RemoveNode(N);
507    break;
508  }
509#ifndef NDEBUG
510  // Verify that the node was actually in one of the CSE maps, unless it has a
511  // flag result (which cannot be CSE'd) or is one of the special cases that are
512  // not subject to CSE.
513  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
514      !N->isTargetOpcode()) {
515    N->dump();
516    cerr << "\n";
517    assert(0 && "Node is not in map!");
518  }
519#endif
520}
521
522/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
523/// has been taken out and modified in some way.  If the specified node already
524/// exists in the CSE maps, do not modify the maps, but return the existing node
525/// instead.  If it doesn't exist, add it and return null.
526///
527SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
528  assert(N->getNumOperands() && "This is a leaf node!");
529  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
530    return 0;    // Never add these nodes.
531
532  // Check that remaining values produced are not flags.
533  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
534    if (N->getValueType(i) == MVT::Flag)
535      return 0;   // Never CSE anything that produces a flag.
536
537  SDNode *New = CSEMap.GetOrInsertNode(N);
538  if (New != N) return New;  // Node already existed.
539  return 0;
540}
541
542/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
543/// were replaced with those specified.  If this node is never memoized,
544/// return null, otherwise return a pointer to the slot it would take.  If a
545/// node already exists with these operands, the slot will be non-null.
546SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
547                                           void *&InsertPos) {
548  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
549    return 0;    // Never add these nodes.
550
551  // Check that remaining values produced are not flags.
552  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
553    if (N->getValueType(i) == MVT::Flag)
554      return 0;   // Never CSE anything that produces a flag.
555
556  SDOperand Ops[] = { Op };
557  FoldingSetNodeID ID;
558  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
559  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
560}
561
562/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
563/// were replaced with those specified.  If this node is never memoized,
564/// return null, otherwise return a pointer to the slot it would take.  If a
565/// node already exists with these operands, the slot will be non-null.
566SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
567                                           SDOperand Op1, SDOperand Op2,
568                                           void *&InsertPos) {
569  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
570    return 0;    // Never add these nodes.
571
572  // Check that remaining values produced are not flags.
573  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
574    if (N->getValueType(i) == MVT::Flag)
575      return 0;   // Never CSE anything that produces a flag.
576
577  SDOperand Ops[] = { Op1, Op2 };
578  FoldingSetNodeID ID;
579  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
580  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
581}
582
583
584/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
585/// were replaced with those specified.  If this node is never memoized,
586/// return null, otherwise return a pointer to the slot it would take.  If a
587/// node already exists with these operands, the slot will be non-null.
588SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
589                                           const SDOperand *Ops,unsigned NumOps,
590                                           void *&InsertPos) {
591  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
592    return 0;    // Never add these nodes.
593
594  // Check that remaining values produced are not flags.
595  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
596    if (N->getValueType(i) == MVT::Flag)
597      return 0;   // Never CSE anything that produces a flag.
598
599  FoldingSetNodeID ID;
600  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), 0, 0);
601
602  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
603    ID.AddInteger(LD->getAddressingMode());
604    ID.AddInteger(LD->getExtensionType());
605    ID.AddInteger(LD->getLoadedVT());
606    ID.AddPointer(LD->getSrcValue());
607    ID.AddInteger(LD->getSrcValueOffset());
608    ID.AddInteger(LD->getAlignment());
609    ID.AddInteger(LD->isVolatile());
610  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
611    ID.AddInteger(ST->getAddressingMode());
612    ID.AddInteger(ST->isTruncatingStore());
613    ID.AddInteger(ST->getStoredVT());
614    ID.AddPointer(ST->getSrcValue());
615    ID.AddInteger(ST->getSrcValueOffset());
616    ID.AddInteger(ST->getAlignment());
617    ID.AddInteger(ST->isVolatile());
618  }
619
620  AddNodeIDOperands(ID, Ops, NumOps);
621  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
622}
623
624
625SelectionDAG::~SelectionDAG() {
626  while (!AllNodes.empty()) {
627    SDNode *N = AllNodes.begin();
628    N->SetNextInBucket(0);
629    if (N->OperandsNeedDelete)
630      delete [] N->OperandList;
631    N->OperandList = 0;
632    N->NumOperands = 0;
633    AllNodes.pop_front();
634  }
635}
636
637SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
638  if (Op.getValueType() == VT) return Op;
639  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
640  return getNode(ISD::AND, Op.getValueType(), Op,
641                 getConstant(Imm, Op.getValueType()));
642}
643
644SDOperand SelectionDAG::getString(const std::string &Val) {
645  StringSDNode *&N = StringNodes[Val];
646  if (!N) {
647    N = new StringSDNode(Val);
648    AllNodes.push_back(N);
649  }
650  return SDOperand(N, 0);
651}
652
653SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
654  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
655  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
656
657  // Mask out any bits that are not valid for this constant.
658  Val &= MVT::getIntVTBitMask(VT);
659
660  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
661  FoldingSetNodeID ID;
662  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
663  ID.AddInteger(Val);
664  void *IP = 0;
665  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
666    return SDOperand(E, 0);
667  SDNode *N = new ConstantSDNode(isT, Val, VT);
668  CSEMap.InsertNode(N, IP);
669  AllNodes.push_back(N);
670  return SDOperand(N, 0);
671}
672
673
674SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
675                                      bool isTarget) {
676  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
677  if (VT == MVT::f32)
678    Val = (float)Val;  // Mask out extra precision.
679
680  // Do the map lookup using the actual bit pattern for the floating point
681  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
682  // we don't have issues with SNANs.
683  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
684  FoldingSetNodeID ID;
685  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
686  ID.AddDouble(Val);
687  void *IP = 0;
688  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
689    return SDOperand(E, 0);
690  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
691  CSEMap.InsertNode(N, IP);
692  AllNodes.push_back(N);
693  return SDOperand(N, 0);
694}
695
696SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
697                                         MVT::ValueType VT, int Offset,
698                                         bool isTargetGA) {
699  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
700  unsigned Opc;
701  if (GVar && GVar->isThreadLocal())
702    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
703  else
704    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
707  ID.AddPointer(GV);
708  ID.AddInteger(Offset);
709  void *IP = 0;
710  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
711   return SDOperand(E, 0);
712  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
713  CSEMap.InsertNode(N, IP);
714  AllNodes.push_back(N);
715  return SDOperand(N, 0);
716}
717
718SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
719                                      bool isTarget) {
720  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
723  ID.AddInteger(FI);
724  void *IP = 0;
725  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
726    return SDOperand(E, 0);
727  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
728  CSEMap.InsertNode(N, IP);
729  AllNodes.push_back(N);
730  return SDOperand(N, 0);
731}
732
733SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
734  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
737  ID.AddInteger(JTI);
738  void *IP = 0;
739  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
740    return SDOperand(E, 0);
741  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
742  CSEMap.InsertNode(N, IP);
743  AllNodes.push_back(N);
744  return SDOperand(N, 0);
745}
746
747SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
748                                        unsigned Alignment, int Offset,
749                                        bool isTarget) {
750  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
751  FoldingSetNodeID ID;
752  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
753  ID.AddInteger(Alignment);
754  ID.AddInteger(Offset);
755  ID.AddPointer(C);
756  void *IP = 0;
757  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
758    return SDOperand(E, 0);
759  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
760  CSEMap.InsertNode(N, IP);
761  AllNodes.push_back(N);
762  return SDOperand(N, 0);
763}
764
765
766SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
767                                        MVT::ValueType VT,
768                                        unsigned Alignment, int Offset,
769                                        bool isTarget) {
770  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
771  FoldingSetNodeID ID;
772  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
773  ID.AddInteger(Alignment);
774  ID.AddInteger(Offset);
775  C->AddSelectionDAGCSEId(ID);
776  void *IP = 0;
777  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
778    return SDOperand(E, 0);
779  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
780  CSEMap.InsertNode(N, IP);
781  AllNodes.push_back(N);
782  return SDOperand(N, 0);
783}
784
785
786SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
789  ID.AddPointer(MBB);
790  void *IP = 0;
791  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
792    return SDOperand(E, 0);
793  SDNode *N = new BasicBlockSDNode(MBB);
794  CSEMap.InsertNode(N, IP);
795  AllNodes.push_back(N);
796  return SDOperand(N, 0);
797}
798
799SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
800  if ((unsigned)VT >= ValueTypeNodes.size())
801    ValueTypeNodes.resize(VT+1);
802  if (ValueTypeNodes[VT] == 0) {
803    ValueTypeNodes[VT] = new VTSDNode(VT);
804    AllNodes.push_back(ValueTypeNodes[VT]);
805  }
806
807  return SDOperand(ValueTypeNodes[VT], 0);
808}
809
810SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
811  SDNode *&N = ExternalSymbols[Sym];
812  if (N) return SDOperand(N, 0);
813  N = new ExternalSymbolSDNode(false, Sym, VT);
814  AllNodes.push_back(N);
815  return SDOperand(N, 0);
816}
817
818SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
819                                                MVT::ValueType VT) {
820  SDNode *&N = TargetExternalSymbols[Sym];
821  if (N) return SDOperand(N, 0);
822  N = new ExternalSymbolSDNode(true, Sym, VT);
823  AllNodes.push_back(N);
824  return SDOperand(N, 0);
825}
826
827SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
828  if ((unsigned)Cond >= CondCodeNodes.size())
829    CondCodeNodes.resize(Cond+1);
830
831  if (CondCodeNodes[Cond] == 0) {
832    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
833    AllNodes.push_back(CondCodeNodes[Cond]);
834  }
835  return SDOperand(CondCodeNodes[Cond], 0);
836}
837
838SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
839  FoldingSetNodeID ID;
840  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
841  ID.AddInteger(RegNo);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new RegisterSDNode(RegNo, VT);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
852  assert((!V || isa<PointerType>(V->getType())) &&
853         "SrcValue is not a pointer?");
854
855  FoldingSetNodeID ID;
856  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
857  ID.AddPointer(V);
858  ID.AddInteger(Offset);
859  void *IP = 0;
860  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
861    return SDOperand(E, 0);
862  SDNode *N = new SrcValueSDNode(V, Offset);
863  CSEMap.InsertNode(N, IP);
864  AllNodes.push_back(N);
865  return SDOperand(N, 0);
866}
867
868SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
869                                  SDOperand N2, ISD::CondCode Cond) {
870  // These setcc operations always fold.
871  switch (Cond) {
872  default: break;
873  case ISD::SETFALSE:
874  case ISD::SETFALSE2: return getConstant(0, VT);
875  case ISD::SETTRUE:
876  case ISD::SETTRUE2:  return getConstant(1, VT);
877
878  case ISD::SETOEQ:
879  case ISD::SETOGT:
880  case ISD::SETOGE:
881  case ISD::SETOLT:
882  case ISD::SETOLE:
883  case ISD::SETONE:
884  case ISD::SETO:
885  case ISD::SETUO:
886  case ISD::SETUEQ:
887  case ISD::SETUNE:
888    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
889    break;
890  }
891
892  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
893    uint64_t C2 = N2C->getValue();
894    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
895      uint64_t C1 = N1C->getValue();
896
897      // Sign extend the operands if required
898      if (ISD::isSignedIntSetCC(Cond)) {
899        C1 = N1C->getSignExtended();
900        C2 = N2C->getSignExtended();
901      }
902
903      switch (Cond) {
904      default: assert(0 && "Unknown integer setcc!");
905      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
906      case ISD::SETNE:  return getConstant(C1 != C2, VT);
907      case ISD::SETULT: return getConstant(C1 <  C2, VT);
908      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
909      case ISD::SETULE: return getConstant(C1 <= C2, VT);
910      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
911      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
912      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
913      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
914      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
915      }
916    }
917  }
918  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
919    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
920      double C1 = N1C->getValue(), C2 = N2C->getValue();
921
922      switch (Cond) {
923      default: break; // FIXME: Implement the rest of these!
924      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
925      case ISD::SETNE:  return getConstant(C1 != C2, VT);
926      case ISD::SETLT:  return getConstant(C1 < C2, VT);
927      case ISD::SETGT:  return getConstant(C1 > C2, VT);
928      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
929      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
930      }
931    } else {
932      // Ensure that the constant occurs on the RHS.
933      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
934    }
935
936  // Could not fold it.
937  return SDOperand();
938}
939
940
941/// getNode - Gets or creates the specified node.
942///
943SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
944  FoldingSetNodeID ID;
945  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
946  void *IP = 0;
947  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
948    return SDOperand(E, 0);
949  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
950  CSEMap.InsertNode(N, IP);
951
952  AllNodes.push_back(N);
953  return SDOperand(N, 0);
954}
955
956SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
957                                SDOperand Operand) {
958  unsigned Tmp1;
959  // Constant fold unary operations with an integer constant operand.
960  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
961    uint64_t Val = C->getValue();
962    switch (Opcode) {
963    default: break;
964    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
965    case ISD::ANY_EXTEND:
966    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
967    case ISD::TRUNCATE:    return getConstant(Val, VT);
968    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
969    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
970    case ISD::BIT_CONVERT:
971      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
972        return getConstantFP(BitsToFloat(Val), VT);
973      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
974        return getConstantFP(BitsToDouble(Val), VT);
975      break;
976    case ISD::BSWAP:
977      switch(VT) {
978      default: assert(0 && "Invalid bswap!"); break;
979      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
980      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
981      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
982      }
983      break;
984    case ISD::CTPOP:
985      switch(VT) {
986      default: assert(0 && "Invalid ctpop!"); break;
987      case MVT::i1: return getConstant(Val != 0, VT);
988      case MVT::i8:
989        Tmp1 = (unsigned)Val & 0xFF;
990        return getConstant(CountPopulation_32(Tmp1), VT);
991      case MVT::i16:
992        Tmp1 = (unsigned)Val & 0xFFFF;
993        return getConstant(CountPopulation_32(Tmp1), VT);
994      case MVT::i32:
995        return getConstant(CountPopulation_32((unsigned)Val), VT);
996      case MVT::i64:
997        return getConstant(CountPopulation_64(Val), VT);
998      }
999    case ISD::CTLZ:
1000      switch(VT) {
1001      default: assert(0 && "Invalid ctlz!"); break;
1002      case MVT::i1: return getConstant(Val == 0, VT);
1003      case MVT::i8:
1004        Tmp1 = (unsigned)Val & 0xFF;
1005        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1006      case MVT::i16:
1007        Tmp1 = (unsigned)Val & 0xFFFF;
1008        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1009      case MVT::i32:
1010        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1011      case MVT::i64:
1012        return getConstant(CountLeadingZeros_64(Val), VT);
1013      }
1014    case ISD::CTTZ:
1015      switch(VT) {
1016      default: assert(0 && "Invalid cttz!"); break;
1017      case MVT::i1: return getConstant(Val == 0, VT);
1018      case MVT::i8:
1019        Tmp1 = (unsigned)Val | 0x100;
1020        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1021      case MVT::i16:
1022        Tmp1 = (unsigned)Val | 0x10000;
1023        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1024      case MVT::i32:
1025        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1026      case MVT::i64:
1027        return getConstant(CountTrailingZeros_64(Val), VT);
1028      }
1029    }
1030  }
1031
1032  // Constant fold unary operations with an floating point constant operand.
1033  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1034    switch (Opcode) {
1035    case ISD::FNEG:
1036      return getConstantFP(-C->getValue(), VT);
1037    case ISD::FABS:
1038      return getConstantFP(fabs(C->getValue()), VT);
1039    case ISD::FP_ROUND:
1040    case ISD::FP_EXTEND:
1041      return getConstantFP(C->getValue(), VT);
1042    case ISD::FP_TO_SINT:
1043      return getConstant((int64_t)C->getValue(), VT);
1044    case ISD::FP_TO_UINT:
1045      return getConstant((uint64_t)C->getValue(), VT);
1046    case ISD::BIT_CONVERT:
1047      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1048        return getConstant(FloatToBits(C->getValue()), VT);
1049      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1050        return getConstant(DoubleToBits(C->getValue()), VT);
1051      break;
1052    }
1053
1054  unsigned OpOpcode = Operand.Val->getOpcode();
1055  switch (Opcode) {
1056  case ISD::TokenFactor:
1057    return Operand;         // Factor of one node?  No factor.
1058  case ISD::FP_ROUND:
1059  case ISD::FP_EXTEND:
1060    assert(MVT::isFloatingPoint(VT) &&
1061           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1062    break;
1063  case ISD::SIGN_EXTEND:
1064    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1065           "Invalid SIGN_EXTEND!");
1066    if (Operand.getValueType() == VT) return Operand;   // noop extension
1067    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1068    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1069      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1070    break;
1071  case ISD::ZERO_EXTEND:
1072    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1073           "Invalid ZERO_EXTEND!");
1074    if (Operand.getValueType() == VT) return Operand;   // noop extension
1075    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1076    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1077      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1078    break;
1079  case ISD::ANY_EXTEND:
1080    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1081           "Invalid ANY_EXTEND!");
1082    if (Operand.getValueType() == VT) return Operand;   // noop extension
1083    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1084    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1085      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1086      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1087    break;
1088  case ISD::TRUNCATE:
1089    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1090           "Invalid TRUNCATE!");
1091    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1092    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1093    if (OpOpcode == ISD::TRUNCATE)
1094      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1095    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1096             OpOpcode == ISD::ANY_EXTEND) {
1097      // If the source is smaller than the dest, we still need an extend.
1098      if (Operand.Val->getOperand(0).getValueType() < VT)
1099        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1100      else if (Operand.Val->getOperand(0).getValueType() > VT)
1101        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1102      else
1103        return Operand.Val->getOperand(0);
1104    }
1105    break;
1106  case ISD::BIT_CONVERT:
1107    // Basic sanity checking.
1108    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1109           && "Cannot BIT_CONVERT between types of different sizes!");
1110    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1111    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1112      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1113    if (OpOpcode == ISD::UNDEF)
1114      return getNode(ISD::UNDEF, VT);
1115    break;
1116  case ISD::SCALAR_TO_VECTOR:
1117    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1118           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1119           "Illegal SCALAR_TO_VECTOR node!");
1120    break;
1121  case ISD::FNEG:
1122    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1123      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1124                     Operand.Val->getOperand(0));
1125    if (OpOpcode == ISD::FNEG)  // --X -> X
1126      return Operand.Val->getOperand(0);
1127    break;
1128  case ISD::FABS:
1129    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1130      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1131    break;
1132  }
1133
1134  SDNode *N;
1135  SDVTList VTs = getVTList(VT);
1136  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1137    FoldingSetNodeID ID;
1138    SDOperand Ops[1] = { Operand };
1139    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1140    void *IP = 0;
1141    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1142      return SDOperand(E, 0);
1143    N = new UnarySDNode(Opcode, VTs, Operand);
1144    CSEMap.InsertNode(N, IP);
1145  } else {
1146    N = new UnarySDNode(Opcode, VTs, Operand);
1147  }
1148  AllNodes.push_back(N);
1149  return SDOperand(N, 0);
1150}
1151
1152
1153
1154SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1155                                SDOperand N1, SDOperand N2) {
1156#ifndef NDEBUG
1157  switch (Opcode) {
1158  case ISD::TokenFactor:
1159    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1160           N2.getValueType() == MVT::Other && "Invalid token factor!");
1161    break;
1162  case ISD::AND:
1163  case ISD::OR:
1164  case ISD::XOR:
1165  case ISD::UDIV:
1166  case ISD::UREM:
1167  case ISD::MULHU:
1168  case ISD::MULHS:
1169    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1170    // fall through
1171  case ISD::ADD:
1172  case ISD::SUB:
1173  case ISD::MUL:
1174  case ISD::SDIV:
1175  case ISD::SREM:
1176    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1177    // fall through.
1178  case ISD::FADD:
1179  case ISD::FSUB:
1180  case ISD::FMUL:
1181  case ISD::FDIV:
1182  case ISD::FREM:
1183    assert(N1.getValueType() == N2.getValueType() &&
1184           N1.getValueType() == VT && "Binary operator types must match!");
1185    break;
1186  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1187    assert(N1.getValueType() == VT &&
1188           MVT::isFloatingPoint(N1.getValueType()) &&
1189           MVT::isFloatingPoint(N2.getValueType()) &&
1190           "Invalid FCOPYSIGN!");
1191    break;
1192  case ISD::SHL:
1193  case ISD::SRA:
1194  case ISD::SRL:
1195  case ISD::ROTL:
1196  case ISD::ROTR:
1197    assert(VT == N1.getValueType() &&
1198           "Shift operators return type must be the same as their first arg");
1199    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1200           VT != MVT::i1 && "Shifts only work on integers");
1201    break;
1202  case ISD::FP_ROUND_INREG: {
1203    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1204    assert(VT == N1.getValueType() && "Not an inreg round!");
1205    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1206           "Cannot FP_ROUND_INREG integer types");
1207    assert(EVT <= VT && "Not rounding down!");
1208    break;
1209  }
1210  case ISD::AssertSext:
1211  case ISD::AssertZext:
1212  case ISD::SIGN_EXTEND_INREG: {
1213    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1214    assert(VT == N1.getValueType() && "Not an inreg extend!");
1215    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1216           "Cannot *_EXTEND_INREG FP types");
1217    assert(EVT <= VT && "Not extending!");
1218  }
1219
1220  default: break;
1221  }
1222#endif
1223
1224  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1225  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1226  if (N1C) {
1227    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1228      int64_t Val = N1C->getValue();
1229      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1230      Val <<= 64-FromBits;
1231      Val >>= 64-FromBits;
1232      return getConstant(Val, VT);
1233    }
1234
1235    if (N2C) {
1236      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1237      switch (Opcode) {
1238      case ISD::ADD: return getConstant(C1 + C2, VT);
1239      case ISD::SUB: return getConstant(C1 - C2, VT);
1240      case ISD::MUL: return getConstant(C1 * C2, VT);
1241      case ISD::UDIV:
1242        if (C2) return getConstant(C1 / C2, VT);
1243        break;
1244      case ISD::UREM :
1245        if (C2) return getConstant(C1 % C2, VT);
1246        break;
1247      case ISD::SDIV :
1248        if (C2) return getConstant(N1C->getSignExtended() /
1249                                   N2C->getSignExtended(), VT);
1250        break;
1251      case ISD::SREM :
1252        if (C2) return getConstant(N1C->getSignExtended() %
1253                                   N2C->getSignExtended(), VT);
1254        break;
1255      case ISD::AND  : return getConstant(C1 & C2, VT);
1256      case ISD::OR   : return getConstant(C1 | C2, VT);
1257      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1258      case ISD::SHL  : return getConstant(C1 << C2, VT);
1259      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1260      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1261      case ISD::ROTL :
1262        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1263                           VT);
1264      case ISD::ROTR :
1265        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1266                           VT);
1267      default: break;
1268      }
1269    } else {      // Cannonicalize constant to RHS if commutative
1270      if (isCommutativeBinOp(Opcode)) {
1271        std::swap(N1C, N2C);
1272        std::swap(N1, N2);
1273      }
1274    }
1275  }
1276
1277  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1278  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1279  if (N1CFP) {
1280    if (N2CFP) {
1281      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1282      switch (Opcode) {
1283      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1284      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1285      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1286      case ISD::FDIV:
1287        if (C2) return getConstantFP(C1 / C2, VT);
1288        break;
1289      case ISD::FREM :
1290        if (C2) return getConstantFP(fmod(C1, C2), VT);
1291        break;
1292      case ISD::FCOPYSIGN: {
1293        union {
1294          double   F;
1295          uint64_t I;
1296        } u1;
1297        u1.F = C1;
1298        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1299          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1300        else
1301          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1302        return getConstantFP(u1.F, VT);
1303      }
1304      default: break;
1305      }
1306    } else {      // Cannonicalize constant to RHS if commutative
1307      if (isCommutativeBinOp(Opcode)) {
1308        std::swap(N1CFP, N2CFP);
1309        std::swap(N1, N2);
1310      }
1311    }
1312  }
1313
1314  // Canonicalize an UNDEF to the RHS, even over a constant.
1315  if (N1.getOpcode() == ISD::UNDEF) {
1316    if (isCommutativeBinOp(Opcode)) {
1317      std::swap(N1, N2);
1318    } else {
1319      switch (Opcode) {
1320      case ISD::FP_ROUND_INREG:
1321      case ISD::SIGN_EXTEND_INREG:
1322      case ISD::SUB:
1323      case ISD::FSUB:
1324      case ISD::FDIV:
1325      case ISD::FREM:
1326      case ISD::SRA:
1327        return N1;     // fold op(undef, arg2) -> undef
1328      case ISD::UDIV:
1329      case ISD::SDIV:
1330      case ISD::UREM:
1331      case ISD::SREM:
1332      case ISD::SRL:
1333      case ISD::SHL:
1334        if (!MVT::isVector(VT))
1335          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1336        // For vectors, we can't easily build an all zero vector, just return
1337        // the LHS.
1338        return N2;
1339      }
1340    }
1341  }
1342
1343  // Fold a bunch of operators when the RHS is undef.
1344  if (N2.getOpcode() == ISD::UNDEF) {
1345    switch (Opcode) {
1346    case ISD::ADD:
1347    case ISD::ADDC:
1348    case ISD::ADDE:
1349    case ISD::SUB:
1350    case ISD::FADD:
1351    case ISD::FSUB:
1352    case ISD::FMUL:
1353    case ISD::FDIV:
1354    case ISD::FREM:
1355    case ISD::UDIV:
1356    case ISD::SDIV:
1357    case ISD::UREM:
1358    case ISD::SREM:
1359    case ISD::XOR:
1360      return N2;       // fold op(arg1, undef) -> undef
1361    case ISD::MUL:
1362    case ISD::AND:
1363    case ISD::SRL:
1364    case ISD::SHL:
1365      if (!MVT::isVector(VT))
1366        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1367      // For vectors, we can't easily build an all zero vector, just return
1368      // the LHS.
1369      return N1;
1370    case ISD::OR:
1371      if (!MVT::isVector(VT))
1372        return getConstant(MVT::getIntVTBitMask(VT), VT);
1373      // For vectors, we can't easily build an all one vector, just return
1374      // the LHS.
1375      return N1;
1376    case ISD::SRA:
1377      return N1;
1378    }
1379  }
1380
1381  // Fold operations.
1382  switch (Opcode) {
1383  case ISD::TokenFactor:
1384    // Fold trivial token factors.
1385    if (N1.getOpcode() == ISD::EntryToken) return N2;
1386    if (N2.getOpcode() == ISD::EntryToken) return N1;
1387    break;
1388
1389  case ISD::AND:
1390    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1391    // worth handling here.
1392    if (N2C && N2C->getValue() == 0)
1393      return N2;
1394    break;
1395  case ISD::OR:
1396  case ISD::XOR:
1397    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1398    // worth handling here.
1399    if (N2C && N2C->getValue() == 0)
1400      return N1;
1401    break;
1402  case ISD::FP_ROUND_INREG:
1403    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1404    break;
1405  case ISD::SIGN_EXTEND_INREG: {
1406    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1407    if (EVT == VT) return N1;  // Not actually extending
1408    break;
1409  }
1410  case ISD::EXTRACT_ELEMENT:
1411    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1412
1413    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1414    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1415    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1416    if (N1.getOpcode() == ISD::BUILD_PAIR)
1417      return N1.getOperand(N2C->getValue());
1418
1419    // EXTRACT_ELEMENT of a constant int is also very common.
1420    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1421      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1422      return getConstant(C->getValue() >> Shift, VT);
1423    }
1424    break;
1425
1426  // FIXME: figure out how to safely handle things like
1427  // int foo(int x) { return 1 << (x & 255); }
1428  // int bar() { return foo(256); }
1429#if 0
1430  case ISD::SHL:
1431  case ISD::SRL:
1432  case ISD::SRA:
1433    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1434        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1435      return getNode(Opcode, VT, N1, N2.getOperand(0));
1436    else if (N2.getOpcode() == ISD::AND)
1437      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1438        // If the and is only masking out bits that cannot effect the shift,
1439        // eliminate the and.
1440        unsigned NumBits = MVT::getSizeInBits(VT);
1441        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1442          return getNode(Opcode, VT, N1, N2.getOperand(0));
1443      }
1444    break;
1445#endif
1446  }
1447
1448  // Memoize this node if possible.
1449  SDNode *N;
1450  SDVTList VTs = getVTList(VT);
1451  if (VT != MVT::Flag) {
1452    SDOperand Ops[] = { N1, N2 };
1453    FoldingSetNodeID ID;
1454    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1455    void *IP = 0;
1456    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1457      return SDOperand(E, 0);
1458    N = new BinarySDNode(Opcode, VTs, N1, N2);
1459    CSEMap.InsertNode(N, IP);
1460  } else {
1461    N = new BinarySDNode(Opcode, VTs, N1, N2);
1462  }
1463
1464  AllNodes.push_back(N);
1465  return SDOperand(N, 0);
1466}
1467
1468SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1469                                SDOperand N1, SDOperand N2, SDOperand N3) {
1470  // Perform various simplifications.
1471  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1472  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1473  switch (Opcode) {
1474  case ISD::SETCC: {
1475    // Use FoldSetCC to simplify SETCC's.
1476    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1477    if (Simp.Val) return Simp;
1478    break;
1479  }
1480  case ISD::SELECT:
1481    if (N1C)
1482      if (N1C->getValue())
1483        return N2;             // select true, X, Y -> X
1484      else
1485        return N3;             // select false, X, Y -> Y
1486
1487    if (N2 == N3) return N2;   // select C, X, X -> X
1488    break;
1489  case ISD::BRCOND:
1490    if (N2C)
1491      if (N2C->getValue()) // Unconditional branch
1492        return getNode(ISD::BR, MVT::Other, N1, N3);
1493      else
1494        return N1;         // Never-taken branch
1495    break;
1496  case ISD::VECTOR_SHUFFLE:
1497    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1498           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1499           N3.getOpcode() == ISD::BUILD_VECTOR &&
1500           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1501           "Illegal VECTOR_SHUFFLE node!");
1502    break;
1503  case ISD::VBIT_CONVERT:
1504    // Fold vbit_convert nodes from a type to themselves.
1505    if (N1.getValueType() == MVT::Vector) {
1506      assert(isa<ConstantSDNode>(*(N1.Val->op_end()-2)) &&
1507             isa<VTSDNode>(*(N1.Val->op_end()-1)) && "Malformed vector input!");
1508      if (*(N1.Val->op_end()-2) == N2 && *(N1.Val->op_end()-1) == N3)
1509        return N1;
1510    }
1511    break;
1512  }
1513
1514  // Memoize node if it doesn't produce a flag.
1515  SDNode *N;
1516  SDVTList VTs = getVTList(VT);
1517  if (VT != MVT::Flag) {
1518    SDOperand Ops[] = { N1, N2, N3 };
1519    FoldingSetNodeID ID;
1520    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1521    void *IP = 0;
1522    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1523      return SDOperand(E, 0);
1524    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1525    CSEMap.InsertNode(N, IP);
1526  } else {
1527    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1528  }
1529  AllNodes.push_back(N);
1530  return SDOperand(N, 0);
1531}
1532
1533SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1534                                SDOperand N1, SDOperand N2, SDOperand N3,
1535                                SDOperand N4) {
1536  SDOperand Ops[] = { N1, N2, N3, N4 };
1537  return getNode(Opcode, VT, Ops, 4);
1538}
1539
1540SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1541                                SDOperand N1, SDOperand N2, SDOperand N3,
1542                                SDOperand N4, SDOperand N5) {
1543  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1544  return getNode(Opcode, VT, Ops, 5);
1545}
1546
1547SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1548                                SDOperand Chain, SDOperand Ptr,
1549                                const Value *SV, int SVOffset,
1550                                bool isVolatile, unsigned Alignment) {
1551  SDVTList VTs = getVTList(VT, MVT::Other);
1552  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1553  SDOperand Ops[] = { Chain, Ptr, Undef };
1554  FoldingSetNodeID ID;
1555  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1556  ID.AddInteger(ISD::UNINDEXED);
1557  ID.AddInteger(ISD::NON_EXTLOAD);
1558  ID.AddInteger(VT);
1559  ID.AddPointer(SV);
1560  ID.AddInteger(SVOffset);
1561  ID.AddInteger(Alignment);
1562  ID.AddInteger(isVolatile);
1563  void *IP = 0;
1564  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1565    return SDOperand(E, 0);
1566  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1567    const Type *Ty = 0;
1568    if (VT != MVT::Vector && VT != MVT::iPTR) {
1569      Ty = MVT::getTypeForValueType(VT);
1570    } else if (SV) {
1571      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1572      assert(PT && "Value for load must be a pointer");
1573      Ty = PT->getElementType();
1574    }
1575    assert(Ty && "Could not get type information for load");
1576    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1577  }
1578  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
1579                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1580                             isVolatile);
1581  CSEMap.InsertNode(N, IP);
1582  AllNodes.push_back(N);
1583  return SDOperand(N, 0);
1584}
1585
1586SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1587                                   SDOperand Chain, SDOperand Ptr,
1588                                   const Value *SV,
1589                                   int SVOffset, MVT::ValueType EVT,
1590                                   bool isVolatile, unsigned Alignment) {
1591  // If they are asking for an extending load from/to the same thing, return a
1592  // normal load.
1593  if (VT == EVT)
1594    ExtType = ISD::NON_EXTLOAD;
1595
1596  if (MVT::isVector(VT))
1597    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1598  else
1599    assert(EVT < VT && "Should only be an extending load, not truncating!");
1600  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1601         "Cannot sign/zero extend a FP/Vector load!");
1602  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1603         "Cannot convert from FP to Int or Int -> FP!");
1604
1605  SDVTList VTs = getVTList(VT, MVT::Other);
1606  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1607  SDOperand Ops[] = { Chain, Ptr, Undef };
1608  FoldingSetNodeID ID;
1609  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1610  ID.AddInteger(ISD::UNINDEXED);
1611  ID.AddInteger(ExtType);
1612  ID.AddInteger(EVT);
1613  ID.AddPointer(SV);
1614  ID.AddInteger(SVOffset);
1615  ID.AddInteger(Alignment);
1616  ID.AddInteger(isVolatile);
1617  void *IP = 0;
1618  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1619    return SDOperand(E, 0);
1620  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1621    const Type *Ty = 0;
1622    if (VT != MVT::Vector && VT != MVT::iPTR) {
1623      Ty = MVT::getTypeForValueType(VT);
1624    } else if (SV) {
1625      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1626      assert(PT && "Value for load must be a pointer");
1627      Ty = PT->getElementType();
1628    }
1629    assert(Ty && "Could not get type information for load");
1630    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1631  }
1632  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
1633                             SV, SVOffset, Alignment, isVolatile);
1634  CSEMap.InsertNode(N, IP);
1635  AllNodes.push_back(N);
1636  return SDOperand(N, 0);
1637}
1638
1639SDOperand
1640SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1641                             SDOperand Offset, ISD::MemIndexedMode AM) {
1642  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1643  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1644         "Load is already a indexed load!");
1645  MVT::ValueType VT = OrigLoad.getValueType();
1646  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1647  SDOperand Ops[] = { LD->getChain(), Base, Offset };
1648  FoldingSetNodeID ID;
1649  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1650  ID.AddInteger(AM);
1651  ID.AddInteger(LD->getExtensionType());
1652  ID.AddInteger(LD->getLoadedVT());
1653  ID.AddPointer(LD->getSrcValue());
1654  ID.AddInteger(LD->getSrcValueOffset());
1655  ID.AddInteger(LD->getAlignment());
1656  ID.AddInteger(LD->isVolatile());
1657  void *IP = 0;
1658  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1659    return SDOperand(E, 0);
1660  SDNode *N = new LoadSDNode(Ops, VTs, AM,
1661                             LD->getExtensionType(), LD->getLoadedVT(),
1662                             LD->getSrcValue(), LD->getSrcValueOffset(),
1663                             LD->getAlignment(), LD->isVolatile());
1664  CSEMap.InsertNode(N, IP);
1665  AllNodes.push_back(N);
1666  return SDOperand(N, 0);
1667}
1668
1669SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1670                                   SDOperand Chain, SDOperand Ptr,
1671                                   SDOperand SV) {
1672  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1673                      getValueType(EVT) };
1674  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1675}
1676
1677SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1678                                 SDOperand Ptr, const Value *SV, int SVOffset,
1679                                 bool isVolatile, unsigned Alignment) {
1680  MVT::ValueType VT = Val.getValueType();
1681
1682  SDVTList VTs = getVTList(MVT::Other);
1683  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1684  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1685  FoldingSetNodeID ID;
1686  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1687  ID.AddInteger(ISD::UNINDEXED);
1688  ID.AddInteger(false);
1689  ID.AddInteger(VT);
1690  ID.AddPointer(SV);
1691  ID.AddInteger(SVOffset);
1692  ID.AddInteger(Alignment);
1693  ID.AddInteger(isVolatile);
1694  void *IP = 0;
1695  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1696    return SDOperand(E, 0);
1697  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1698    const Type *Ty = 0;
1699    if (VT != MVT::Vector && VT != MVT::iPTR) {
1700      Ty = MVT::getTypeForValueType(VT);
1701    } else if (SV) {
1702      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1703      assert(PT && "Value for store must be a pointer");
1704      Ty = PT->getElementType();
1705    }
1706    assert(Ty && "Could not get type information for store");
1707    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1708  }
1709  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
1710                              VT, SV, SVOffset, Alignment, isVolatile);
1711  CSEMap.InsertNode(N, IP);
1712  AllNodes.push_back(N);
1713  return SDOperand(N, 0);
1714}
1715
1716SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1717                                      SDOperand Ptr, const Value *SV,
1718                                      int SVOffset, MVT::ValueType SVT,
1719                                      bool isVolatile, unsigned Alignment) {
1720  MVT::ValueType VT = Val.getValueType();
1721  bool isTrunc = VT != SVT;
1722
1723  assert(VT > SVT && "Not a truncation?");
1724  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1725         "Can't do FP-INT conversion!");
1726
1727  SDVTList VTs = getVTList(MVT::Other);
1728  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1729  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1730  FoldingSetNodeID ID;
1731  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1732  ID.AddInteger(ISD::UNINDEXED);
1733  ID.AddInteger(isTrunc);
1734  ID.AddInteger(SVT);
1735  ID.AddPointer(SV);
1736  ID.AddInteger(SVOffset);
1737  ID.AddInteger(Alignment);
1738  ID.AddInteger(isVolatile);
1739  void *IP = 0;
1740  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1741    return SDOperand(E, 0);
1742  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
1743    const Type *Ty = 0;
1744    if (VT != MVT::Vector && VT != MVT::iPTR) {
1745      Ty = MVT::getTypeForValueType(VT);
1746    } else if (SV) {
1747      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
1748      assert(PT && "Value for store must be a pointer");
1749      Ty = PT->getElementType();
1750    }
1751    assert(Ty && "Could not get type information for store");
1752    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1753  }
1754  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
1755                              SVT, SV, SVOffset, Alignment, isVolatile);
1756  CSEMap.InsertNode(N, IP);
1757  AllNodes.push_back(N);
1758  return SDOperand(N, 0);
1759}
1760
1761SDOperand
1762SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1763                              SDOperand Offset, ISD::MemIndexedMode AM) {
1764  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1765  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1766         "Store is already a indexed store!");
1767  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1768  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1769  FoldingSetNodeID ID;
1770  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1771  ID.AddInteger(AM);
1772  ID.AddInteger(ST->isTruncatingStore());
1773  ID.AddInteger(ST->getStoredVT());
1774  ID.AddPointer(ST->getSrcValue());
1775  ID.AddInteger(ST->getSrcValueOffset());
1776  ID.AddInteger(ST->getAlignment());
1777  ID.AddInteger(ST->isVolatile());
1778  void *IP = 0;
1779  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1780    return SDOperand(E, 0);
1781  SDNode *N = new StoreSDNode(Ops, VTs, AM,
1782                              ST->isTruncatingStore(), ST->getStoredVT(),
1783                              ST->getSrcValue(), ST->getSrcValueOffset(),
1784                              ST->getAlignment(), ST->isVolatile());
1785  CSEMap.InsertNode(N, IP);
1786  AllNodes.push_back(N);
1787  return SDOperand(N, 0);
1788}
1789
1790SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1791                                 SDOperand Chain, SDOperand Ptr,
1792                                 SDOperand SV) {
1793  SDOperand Ops[] = { Chain, Ptr, SV };
1794  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1795}
1796
1797SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1798                                const SDOperand *Ops, unsigned NumOps) {
1799  switch (NumOps) {
1800  case 0: return getNode(Opcode, VT);
1801  case 1: return getNode(Opcode, VT, Ops[0]);
1802  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1803  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1804  default: break;
1805  }
1806
1807  switch (Opcode) {
1808  default: break;
1809  case ISD::SELECT_CC: {
1810    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1811    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1812           "LHS and RHS of condition must have same type!");
1813    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1814           "True and False arms of SelectCC must have same type!");
1815    assert(Ops[2].getValueType() == VT &&
1816           "select_cc node must be of same type as true and false value!");
1817    break;
1818  }
1819  case ISD::BR_CC: {
1820    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1821    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1822           "LHS/RHS of comparison should match types!");
1823    break;
1824  }
1825  }
1826
1827  // Memoize nodes.
1828  SDNode *N;
1829  SDVTList VTs = getVTList(VT);
1830  if (VT != MVT::Flag) {
1831    FoldingSetNodeID ID;
1832    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1833    void *IP = 0;
1834    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1835      return SDOperand(E, 0);
1836    N = new SDNode(Opcode, VTs, Ops, NumOps);
1837    CSEMap.InsertNode(N, IP);
1838  } else {
1839    N = new SDNode(Opcode, VTs, Ops, NumOps);
1840  }
1841  AllNodes.push_back(N);
1842  return SDOperand(N, 0);
1843}
1844
1845SDOperand SelectionDAG::getNode(unsigned Opcode,
1846                                std::vector<MVT::ValueType> &ResultTys,
1847                                const SDOperand *Ops, unsigned NumOps) {
1848  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1849                 Ops, NumOps);
1850}
1851
1852SDOperand SelectionDAG::getNode(unsigned Opcode,
1853                                const MVT::ValueType *VTs, unsigned NumVTs,
1854                                const SDOperand *Ops, unsigned NumOps) {
1855  if (NumVTs == 1)
1856    return getNode(Opcode, VTs[0], Ops, NumOps);
1857  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1858}
1859
1860SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1861                                const SDOperand *Ops, unsigned NumOps) {
1862  if (VTList.NumVTs == 1)
1863    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1864
1865  switch (Opcode) {
1866  // FIXME: figure out how to safely handle things like
1867  // int foo(int x) { return 1 << (x & 255); }
1868  // int bar() { return foo(256); }
1869#if 0
1870  case ISD::SRA_PARTS:
1871  case ISD::SRL_PARTS:
1872  case ISD::SHL_PARTS:
1873    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1874        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1875      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1876    else if (N3.getOpcode() == ISD::AND)
1877      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1878        // If the and is only masking out bits that cannot effect the shift,
1879        // eliminate the and.
1880        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1881        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1882          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1883      }
1884    break;
1885#endif
1886  }
1887
1888  // Memoize the node unless it returns a flag.
1889  SDNode *N;
1890  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1891    FoldingSetNodeID ID;
1892    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1893    void *IP = 0;
1894    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1895      return SDOperand(E, 0);
1896    if (NumOps == 1)
1897      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1898    else if (NumOps == 2)
1899      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1900    else if (NumOps == 3)
1901      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1902    else
1903      N = new SDNode(Opcode, VTList, Ops, NumOps);
1904    CSEMap.InsertNode(N, IP);
1905  } else {
1906    if (NumOps == 1)
1907      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1908    else if (NumOps == 2)
1909      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1910    else if (NumOps == 3)
1911      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1912    else
1913      N = new SDNode(Opcode, VTList, Ops, NumOps);
1914  }
1915  AllNodes.push_back(N);
1916  return SDOperand(N, 0);
1917}
1918
1919SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1920  return makeVTList(SDNode::getValueTypeList(VT), 1);
1921}
1922
1923SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1924  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1925       E = VTList.end(); I != E; ++I) {
1926    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1927      return makeVTList(&(*I)[0], 2);
1928  }
1929  std::vector<MVT::ValueType> V;
1930  V.push_back(VT1);
1931  V.push_back(VT2);
1932  VTList.push_front(V);
1933  return makeVTList(&(*VTList.begin())[0], 2);
1934}
1935SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1936                                 MVT::ValueType VT3) {
1937  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1938       E = VTList.end(); I != E; ++I) {
1939    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1940        (*I)[2] == VT3)
1941      return makeVTList(&(*I)[0], 3);
1942  }
1943  std::vector<MVT::ValueType> V;
1944  V.push_back(VT1);
1945  V.push_back(VT2);
1946  V.push_back(VT3);
1947  VTList.push_front(V);
1948  return makeVTList(&(*VTList.begin())[0], 3);
1949}
1950
1951SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1952  switch (NumVTs) {
1953    case 0: assert(0 && "Cannot have nodes without results!");
1954    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1955    case 2: return getVTList(VTs[0], VTs[1]);
1956    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1957    default: break;
1958  }
1959
1960  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1961       E = VTList.end(); I != E; ++I) {
1962    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1963
1964    bool NoMatch = false;
1965    for (unsigned i = 2; i != NumVTs; ++i)
1966      if (VTs[i] != (*I)[i]) {
1967        NoMatch = true;
1968        break;
1969      }
1970    if (!NoMatch)
1971      return makeVTList(&*I->begin(), NumVTs);
1972  }
1973
1974  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1975  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1976}
1977
1978
1979/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1980/// specified operands.  If the resultant node already exists in the DAG,
1981/// this does not modify the specified node, instead it returns the node that
1982/// already exists.  If the resultant node does not exist in the DAG, the
1983/// input node is returned.  As a degenerate case, if you specify the same
1984/// input operands as the node already has, the input node is returned.
1985SDOperand SelectionDAG::
1986UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1987  SDNode *N = InN.Val;
1988  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1989
1990  // Check to see if there is no change.
1991  if (Op == N->getOperand(0)) return InN;
1992
1993  // See if the modified node already exists.
1994  void *InsertPos = 0;
1995  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1996    return SDOperand(Existing, InN.ResNo);
1997
1998  // Nope it doesn't.  Remove the node from it's current place in the maps.
1999  if (InsertPos)
2000    RemoveNodeFromCSEMaps(N);
2001
2002  // Now we update the operands.
2003  N->OperandList[0].Val->removeUser(N);
2004  Op.Val->addUser(N);
2005  N->OperandList[0] = Op;
2006
2007  // If this gets put into a CSE map, add it.
2008  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2009  return InN;
2010}
2011
2012SDOperand SelectionDAG::
2013UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2014  SDNode *N = InN.Val;
2015  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2016
2017  // Check to see if there is no change.
2018  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2019    return InN;   // No operands changed, just return the input node.
2020
2021  // See if the modified node already exists.
2022  void *InsertPos = 0;
2023  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2024    return SDOperand(Existing, InN.ResNo);
2025
2026  // Nope it doesn't.  Remove the node from it's current place in the maps.
2027  if (InsertPos)
2028    RemoveNodeFromCSEMaps(N);
2029
2030  // Now we update the operands.
2031  if (N->OperandList[0] != Op1) {
2032    N->OperandList[0].Val->removeUser(N);
2033    Op1.Val->addUser(N);
2034    N->OperandList[0] = Op1;
2035  }
2036  if (N->OperandList[1] != Op2) {
2037    N->OperandList[1].Val->removeUser(N);
2038    Op2.Val->addUser(N);
2039    N->OperandList[1] = Op2;
2040  }
2041
2042  // If this gets put into a CSE map, add it.
2043  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2044  return InN;
2045}
2046
2047SDOperand SelectionDAG::
2048UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2049  SDOperand Ops[] = { Op1, Op2, Op3 };
2050  return UpdateNodeOperands(N, Ops, 3);
2051}
2052
2053SDOperand SelectionDAG::
2054UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2055                   SDOperand Op3, SDOperand Op4) {
2056  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2057  return UpdateNodeOperands(N, Ops, 4);
2058}
2059
2060SDOperand SelectionDAG::
2061UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2062                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2063  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2064  return UpdateNodeOperands(N, Ops, 5);
2065}
2066
2067
2068SDOperand SelectionDAG::
2069UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2070  SDNode *N = InN.Val;
2071  assert(N->getNumOperands() == NumOps &&
2072         "Update with wrong number of operands");
2073
2074  // Check to see if there is no change.
2075  bool AnyChange = false;
2076  for (unsigned i = 0; i != NumOps; ++i) {
2077    if (Ops[i] != N->getOperand(i)) {
2078      AnyChange = true;
2079      break;
2080    }
2081  }
2082
2083  // No operands changed, just return the input node.
2084  if (!AnyChange) return InN;
2085
2086  // See if the modified node already exists.
2087  void *InsertPos = 0;
2088  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2089    return SDOperand(Existing, InN.ResNo);
2090
2091  // Nope it doesn't.  Remove the node from it's current place in the maps.
2092  if (InsertPos)
2093    RemoveNodeFromCSEMaps(N);
2094
2095  // Now we update the operands.
2096  for (unsigned i = 0; i != NumOps; ++i) {
2097    if (N->OperandList[i] != Ops[i]) {
2098      N->OperandList[i].Val->removeUser(N);
2099      Ops[i].Val->addUser(N);
2100      N->OperandList[i] = Ops[i];
2101    }
2102  }
2103
2104  // If this gets put into a CSE map, add it.
2105  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2106  return InN;
2107}
2108
2109
2110/// MorphNodeTo - This frees the operands of the current node, resets the
2111/// opcode, types, and operands to the specified value.  This should only be
2112/// used by the SelectionDAG class.
2113void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2114                         const SDOperand *Ops, unsigned NumOps) {
2115  NodeType = Opc;
2116  ValueList = L.VTs;
2117  NumValues = L.NumVTs;
2118
2119  // Clear the operands list, updating used nodes to remove this from their
2120  // use list.
2121  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2122    I->Val->removeUser(this);
2123
2124  // If NumOps is larger than the # of operands we currently have, reallocate
2125  // the operand list.
2126  if (NumOps > NumOperands) {
2127    if (OperandsNeedDelete)
2128      delete [] OperandList;
2129    OperandList = new SDOperand[NumOps];
2130    OperandsNeedDelete = true;
2131  }
2132
2133  // Assign the new operands.
2134  NumOperands = NumOps;
2135
2136  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2137    OperandList[i] = Ops[i];
2138    SDNode *N = OperandList[i].Val;
2139    N->Uses.push_back(this);
2140  }
2141}
2142
2143/// SelectNodeTo - These are used for target selectors to *mutate* the
2144/// specified node to have the specified return type, Target opcode, and
2145/// operands.  Note that target opcodes are stored as
2146/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2147///
2148/// Note that SelectNodeTo returns the resultant node.  If there is already a
2149/// node of the specified opcode and operands, it returns that node instead of
2150/// the current one.
2151SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2152                                   MVT::ValueType VT) {
2153  SDVTList VTs = getVTList(VT);
2154  FoldingSetNodeID ID;
2155  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2156  void *IP = 0;
2157  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2158    return ON;
2159
2160  RemoveNodeFromCSEMaps(N);
2161
2162  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2163
2164  CSEMap.InsertNode(N, IP);
2165  return N;
2166}
2167
2168SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2169                                   MVT::ValueType VT, SDOperand Op1) {
2170  // If an identical node already exists, use it.
2171  SDVTList VTs = getVTList(VT);
2172  SDOperand Ops[] = { Op1 };
2173
2174  FoldingSetNodeID ID;
2175  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2176  void *IP = 0;
2177  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2178    return ON;
2179
2180  RemoveNodeFromCSEMaps(N);
2181  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2182  CSEMap.InsertNode(N, IP);
2183  return N;
2184}
2185
2186SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2187                                   MVT::ValueType VT, SDOperand Op1,
2188                                   SDOperand Op2) {
2189  // If an identical node already exists, use it.
2190  SDVTList VTs = getVTList(VT);
2191  SDOperand Ops[] = { Op1, Op2 };
2192
2193  FoldingSetNodeID ID;
2194  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2195  void *IP = 0;
2196  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2197    return ON;
2198
2199  RemoveNodeFromCSEMaps(N);
2200
2201  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2202
2203  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2204  return N;
2205}
2206
2207SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2208                                   MVT::ValueType VT, SDOperand Op1,
2209                                   SDOperand Op2, SDOperand Op3) {
2210  // If an identical node already exists, use it.
2211  SDVTList VTs = getVTList(VT);
2212  SDOperand Ops[] = { Op1, Op2, Op3 };
2213  FoldingSetNodeID ID;
2214  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2215  void *IP = 0;
2216  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2217    return ON;
2218
2219  RemoveNodeFromCSEMaps(N);
2220
2221  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2222
2223  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2224  return N;
2225}
2226
2227SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2228                                   MVT::ValueType VT, const SDOperand *Ops,
2229                                   unsigned NumOps) {
2230  // If an identical node already exists, use it.
2231  SDVTList VTs = getVTList(VT);
2232  FoldingSetNodeID ID;
2233  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2234  void *IP = 0;
2235  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2236    return ON;
2237
2238  RemoveNodeFromCSEMaps(N);
2239  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2240
2241  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2242  return N;
2243}
2244
2245SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2246                                   MVT::ValueType VT1, MVT::ValueType VT2,
2247                                   SDOperand Op1, SDOperand Op2) {
2248  SDVTList VTs = getVTList(VT1, VT2);
2249  FoldingSetNodeID ID;
2250  SDOperand Ops[] = { Op1, Op2 };
2251  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2252  void *IP = 0;
2253  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2254    return ON;
2255
2256  RemoveNodeFromCSEMaps(N);
2257  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2258  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2259  return N;
2260}
2261
2262SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2263                                   MVT::ValueType VT1, MVT::ValueType VT2,
2264                                   SDOperand Op1, SDOperand Op2,
2265                                   SDOperand Op3) {
2266  // If an identical node already exists, use it.
2267  SDVTList VTs = getVTList(VT1, VT2);
2268  SDOperand Ops[] = { Op1, Op2, Op3 };
2269  FoldingSetNodeID ID;
2270  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2271  void *IP = 0;
2272  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2273    return ON;
2274
2275  RemoveNodeFromCSEMaps(N);
2276
2277  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2278  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2279  return N;
2280}
2281
2282
2283/// getTargetNode - These are used for target selectors to create a new node
2284/// with specified return type(s), target opcode, and operands.
2285///
2286/// Note that getTargetNode returns the resultant node.  If there is already a
2287/// node of the specified opcode and operands, it returns that node instead of
2288/// the current one.
2289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2290  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2291}
2292SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2293                                    SDOperand Op1) {
2294  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2295}
2296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2297                                    SDOperand Op1, SDOperand Op2) {
2298  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2299}
2300SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2301                                    SDOperand Op1, SDOperand Op2,
2302                                    SDOperand Op3) {
2303  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2304}
2305SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2306                                    const SDOperand *Ops, unsigned NumOps) {
2307  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2308}
2309SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2310                                    MVT::ValueType VT2, SDOperand Op1) {
2311  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2312  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2313}
2314SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2315                                    MVT::ValueType VT2, SDOperand Op1,
2316                                    SDOperand Op2) {
2317  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2318  SDOperand Ops[] = { Op1, Op2 };
2319  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2320}
2321SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2322                                    MVT::ValueType VT2, SDOperand Op1,
2323                                    SDOperand Op2, SDOperand Op3) {
2324  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2325  SDOperand Ops[] = { Op1, Op2, Op3 };
2326  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2327}
2328SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2329                                    MVT::ValueType VT2,
2330                                    const SDOperand *Ops, unsigned NumOps) {
2331  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2332  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2333}
2334SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2335                                    MVT::ValueType VT2, MVT::ValueType VT3,
2336                                    SDOperand Op1, SDOperand Op2) {
2337  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2338  SDOperand Ops[] = { Op1, Op2 };
2339  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2340}
2341SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2342                                    MVT::ValueType VT2, MVT::ValueType VT3,
2343                                    SDOperand Op1, SDOperand Op2,
2344                                    SDOperand Op3) {
2345  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2346  SDOperand Ops[] = { Op1, Op2, Op3 };
2347  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2348}
2349SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2350                                    MVT::ValueType VT2, MVT::ValueType VT3,
2351                                    const SDOperand *Ops, unsigned NumOps) {
2352  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2353  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2354}
2355
2356/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2357/// This can cause recursive merging of nodes in the DAG.
2358///
2359/// This version assumes From/To have a single result value.
2360///
2361void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2362                                      std::vector<SDNode*> *Deleted) {
2363  SDNode *From = FromN.Val, *To = ToN.Val;
2364  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2365         "Cannot replace with this method!");
2366  assert(From != To && "Cannot replace uses of with self");
2367
2368  while (!From->use_empty()) {
2369    // Process users until they are all gone.
2370    SDNode *U = *From->use_begin();
2371
2372    // This node is about to morph, remove its old self from the CSE maps.
2373    RemoveNodeFromCSEMaps(U);
2374
2375    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2376         I != E; ++I)
2377      if (I->Val == From) {
2378        From->removeUser(U);
2379        I->Val = To;
2380        To->addUser(U);
2381      }
2382
2383    // Now that we have modified U, add it back to the CSE maps.  If it already
2384    // exists there, recursively merge the results together.
2385    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2386      ReplaceAllUsesWith(U, Existing, Deleted);
2387      // U is now dead.
2388      if (Deleted) Deleted->push_back(U);
2389      DeleteNodeNotInCSEMaps(U);
2390    }
2391  }
2392}
2393
2394/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2395/// This can cause recursive merging of nodes in the DAG.
2396///
2397/// This version assumes From/To have matching types and numbers of result
2398/// values.
2399///
2400void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2401                                      std::vector<SDNode*> *Deleted) {
2402  assert(From != To && "Cannot replace uses of with self");
2403  assert(From->getNumValues() == To->getNumValues() &&
2404         "Cannot use this version of ReplaceAllUsesWith!");
2405  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2406    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2407    return;
2408  }
2409
2410  while (!From->use_empty()) {
2411    // Process users until they are all gone.
2412    SDNode *U = *From->use_begin();
2413
2414    // This node is about to morph, remove its old self from the CSE maps.
2415    RemoveNodeFromCSEMaps(U);
2416
2417    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2418         I != E; ++I)
2419      if (I->Val == From) {
2420        From->removeUser(U);
2421        I->Val = To;
2422        To->addUser(U);
2423      }
2424
2425    // Now that we have modified U, add it back to the CSE maps.  If it already
2426    // exists there, recursively merge the results together.
2427    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2428      ReplaceAllUsesWith(U, Existing, Deleted);
2429      // U is now dead.
2430      if (Deleted) Deleted->push_back(U);
2431      DeleteNodeNotInCSEMaps(U);
2432    }
2433  }
2434}
2435
2436/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2437/// This can cause recursive merging of nodes in the DAG.
2438///
2439/// This version can replace From with any result values.  To must match the
2440/// number and types of values returned by From.
2441void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2442                                      const SDOperand *To,
2443                                      std::vector<SDNode*> *Deleted) {
2444  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2445    // Degenerate case handled above.
2446    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2447    return;
2448  }
2449
2450  while (!From->use_empty()) {
2451    // Process users until they are all gone.
2452    SDNode *U = *From->use_begin();
2453
2454    // This node is about to morph, remove its old self from the CSE maps.
2455    RemoveNodeFromCSEMaps(U);
2456
2457    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2458         I != E; ++I)
2459      if (I->Val == From) {
2460        const SDOperand &ToOp = To[I->ResNo];
2461        From->removeUser(U);
2462        *I = ToOp;
2463        ToOp.Val->addUser(U);
2464      }
2465
2466    // Now that we have modified U, add it back to the CSE maps.  If it already
2467    // exists there, recursively merge the results together.
2468    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2469      ReplaceAllUsesWith(U, Existing, Deleted);
2470      // U is now dead.
2471      if (Deleted) Deleted->push_back(U);
2472      DeleteNodeNotInCSEMaps(U);
2473    }
2474  }
2475}
2476
2477/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2478/// uses of other values produced by From.Val alone.  The Deleted vector is
2479/// handled the same was as for ReplaceAllUsesWith.
2480void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2481                                             std::vector<SDNode*> &Deleted) {
2482  assert(From != To && "Cannot replace a value with itself");
2483  // Handle the simple, trivial, case efficiently.
2484  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2485    ReplaceAllUsesWith(From, To, &Deleted);
2486    return;
2487  }
2488
2489  // Get all of the users of From.Val.  We want these in a nice,
2490  // deterministically ordered and uniqued set, so we use a SmallSetVector.
2491  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2492
2493  while (!Users.empty()) {
2494    // We know that this user uses some value of From.  If it is the right
2495    // value, update it.
2496    SDNode *User = Users.back();
2497    Users.pop_back();
2498
2499    for (SDOperand *Op = User->OperandList,
2500         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2501      if (*Op == From) {
2502        // Okay, we know this user needs to be updated.  Remove its old self
2503        // from the CSE maps.
2504        RemoveNodeFromCSEMaps(User);
2505
2506        // Update all operands that match "From".
2507        for (; Op != E; ++Op) {
2508          if (*Op == From) {
2509            From.Val->removeUser(User);
2510            *Op = To;
2511            To.Val->addUser(User);
2512          }
2513        }
2514
2515        // Now that we have modified User, add it back to the CSE maps.  If it
2516        // already exists there, recursively merge the results together.
2517        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2518          unsigned NumDeleted = Deleted.size();
2519          ReplaceAllUsesWith(User, Existing, &Deleted);
2520
2521          // User is now dead.
2522          Deleted.push_back(User);
2523          DeleteNodeNotInCSEMaps(User);
2524
2525          // We have to be careful here, because ReplaceAllUsesWith could have
2526          // deleted a user of From, which means there may be dangling pointers
2527          // in the "Users" setvector.  Scan over the deleted node pointers and
2528          // remove them from the setvector.
2529          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2530            Users.remove(Deleted[i]);
2531        }
2532        break;   // Exit the operand scanning loop.
2533      }
2534    }
2535  }
2536}
2537
2538
2539/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2540/// their allnodes order. It returns the maximum id.
2541unsigned SelectionDAG::AssignNodeIds() {
2542  unsigned Id = 0;
2543  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2544    SDNode *N = I;
2545    N->setNodeId(Id++);
2546  }
2547  return Id;
2548}
2549
2550/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2551/// based on their topological order. It returns the maximum id and a vector
2552/// of the SDNodes* in assigned order by reference.
2553unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2554  unsigned DAGSize = AllNodes.size();
2555  std::vector<unsigned> InDegree(DAGSize);
2556  std::vector<SDNode*> Sources;
2557
2558  // Use a two pass approach to avoid using a std::map which is slow.
2559  unsigned Id = 0;
2560  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2561    SDNode *N = I;
2562    N->setNodeId(Id++);
2563    unsigned Degree = N->use_size();
2564    InDegree[N->getNodeId()] = Degree;
2565    if (Degree == 0)
2566      Sources.push_back(N);
2567  }
2568
2569  TopOrder.clear();
2570  while (!Sources.empty()) {
2571    SDNode *N = Sources.back();
2572    Sources.pop_back();
2573    TopOrder.push_back(N);
2574    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2575      SDNode *P = I->Val;
2576      unsigned Degree = --InDegree[P->getNodeId()];
2577      if (Degree == 0)
2578        Sources.push_back(P);
2579    }
2580  }
2581
2582  // Second pass, assign the actual topological order as node ids.
2583  Id = 0;
2584  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2585       TI != TE; ++TI)
2586    (*TI)->setNodeId(Id++);
2587
2588  return Id;
2589}
2590
2591
2592
2593//===----------------------------------------------------------------------===//
2594//                              SDNode Class
2595//===----------------------------------------------------------------------===//
2596
2597// Out-of-line virtual method to give class a home.
2598void SDNode::ANCHOR() {}
2599void UnarySDNode::ANCHOR() {}
2600void BinarySDNode::ANCHOR() {}
2601void TernarySDNode::ANCHOR() {}
2602void HandleSDNode::ANCHOR() {}
2603void StringSDNode::ANCHOR() {}
2604void ConstantSDNode::ANCHOR() {}
2605void ConstantFPSDNode::ANCHOR() {}
2606void GlobalAddressSDNode::ANCHOR() {}
2607void FrameIndexSDNode::ANCHOR() {}
2608void JumpTableSDNode::ANCHOR() {}
2609void ConstantPoolSDNode::ANCHOR() {}
2610void BasicBlockSDNode::ANCHOR() {}
2611void SrcValueSDNode::ANCHOR() {}
2612void RegisterSDNode::ANCHOR() {}
2613void ExternalSymbolSDNode::ANCHOR() {}
2614void CondCodeSDNode::ANCHOR() {}
2615void VTSDNode::ANCHOR() {}
2616void LoadSDNode::ANCHOR() {}
2617void StoreSDNode::ANCHOR() {}
2618
2619HandleSDNode::~HandleSDNode() {
2620  SDVTList VTs = { 0, 0 };
2621  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
2622}
2623
2624GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
2625                                         MVT::ValueType VT, int o)
2626  : SDNode(isa<GlobalVariable>(GA) &&
2627           dyn_cast<GlobalVariable>(GA)->isThreadLocal() ?
2628           // Thread Local
2629           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
2630           // Non Thread Local
2631           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
2632           getSDVTList(VT)), Offset(o) {
2633  TheGlobal = const_cast<GlobalValue*>(GA);
2634}
2635
2636/// Profile - Gather unique data for the node.
2637///
2638void SDNode::Profile(FoldingSetNodeID &ID) {
2639  AddNodeIDNode(ID, this);
2640}
2641
2642/// getValueTypeList - Return a pointer to the specified value type.
2643///
2644MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2645  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2646  VTs[VT] = VT;
2647  return &VTs[VT];
2648}
2649
2650/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2651/// indicated value.  This method ignores uses of other values defined by this
2652/// operation.
2653bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2654  assert(Value < getNumValues() && "Bad value!");
2655
2656  // If there is only one value, this is easy.
2657  if (getNumValues() == 1)
2658    return use_size() == NUses;
2659  if (Uses.size() < NUses) return false;
2660
2661  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2662
2663  SmallPtrSet<SDNode*, 32> UsersHandled;
2664
2665  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2666    SDNode *User = *UI;
2667    if (User->getNumOperands() == 1 ||
2668        UsersHandled.insert(User))     // First time we've seen this?
2669      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2670        if (User->getOperand(i) == TheValue) {
2671          if (NUses == 0)
2672            return false;   // too many uses
2673          --NUses;
2674        }
2675  }
2676
2677  // Found exactly the right number of uses?
2678  return NUses == 0;
2679}
2680
2681
2682/// isOnlyUse - Return true if this node is the only use of N.
2683///
2684bool SDNode::isOnlyUse(SDNode *N) const {
2685  bool Seen = false;
2686  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2687    SDNode *User = *I;
2688    if (User == this)
2689      Seen = true;
2690    else
2691      return false;
2692  }
2693
2694  return Seen;
2695}
2696
2697/// isOperand - Return true if this node is an operand of N.
2698///
2699bool SDOperand::isOperand(SDNode *N) const {
2700  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2701    if (*this == N->getOperand(i))
2702      return true;
2703  return false;
2704}
2705
2706bool SDNode::isOperand(SDNode *N) const {
2707  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2708    if (this == N->OperandList[i].Val)
2709      return true;
2710  return false;
2711}
2712
2713static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2714                            SmallPtrSet<SDNode *, 32> &Visited) {
2715  if (found || !Visited.insert(N))
2716    return;
2717
2718  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2719    SDNode *Op = N->getOperand(i).Val;
2720    if (Op == P) {
2721      found = true;
2722      return;
2723    }
2724    findPredecessor(Op, P, found, Visited);
2725  }
2726}
2727
2728/// isPredecessor - Return true if this node is a predecessor of N. This node
2729/// is either an operand of N or it can be reached by recursively traversing
2730/// up the operands.
2731/// NOTE: this is an expensive method. Use it carefully.
2732bool SDNode::isPredecessor(SDNode *N) const {
2733  SmallPtrSet<SDNode *, 32> Visited;
2734  bool found = false;
2735  findPredecessor(N, this, found, Visited);
2736  return found;
2737}
2738
2739uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2740  assert(Num < NumOperands && "Invalid child # of SDNode!");
2741  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2742}
2743
2744std::string SDNode::getOperationName(const SelectionDAG *G) const {
2745  switch (getOpcode()) {
2746  default:
2747    if (getOpcode() < ISD::BUILTIN_OP_END)
2748      return "<<Unknown DAG Node>>";
2749    else {
2750      if (G) {
2751        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2752          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2753            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2754
2755        TargetLowering &TLI = G->getTargetLoweringInfo();
2756        const char *Name =
2757          TLI.getTargetNodeName(getOpcode());
2758        if (Name) return Name;
2759      }
2760
2761      return "<<Unknown Target Node>>";
2762    }
2763
2764  case ISD::PCMARKER:      return "PCMarker";
2765  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2766  case ISD::SRCVALUE:      return "SrcValue";
2767  case ISD::EntryToken:    return "EntryToken";
2768  case ISD::TokenFactor:   return "TokenFactor";
2769  case ISD::AssertSext:    return "AssertSext";
2770  case ISD::AssertZext:    return "AssertZext";
2771
2772  case ISD::STRING:        return "String";
2773  case ISD::BasicBlock:    return "BasicBlock";
2774  case ISD::VALUETYPE:     return "ValueType";
2775  case ISD::Register:      return "Register";
2776
2777  case ISD::Constant:      return "Constant";
2778  case ISD::ConstantFP:    return "ConstantFP";
2779  case ISD::GlobalAddress: return "GlobalAddress";
2780  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
2781  case ISD::FrameIndex:    return "FrameIndex";
2782  case ISD::JumpTable:     return "JumpTable";
2783  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2784  case ISD::RETURNADDR: return "RETURNADDR";
2785  case ISD::FRAMEADDR: return "FRAMEADDR";
2786  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
2787  case ISD::EHSELECTION: return "EHSELECTION";
2788  case ISD::ConstantPool:  return "ConstantPool";
2789  case ISD::ExternalSymbol: return "ExternalSymbol";
2790  case ISD::INTRINSIC_WO_CHAIN: {
2791    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2792    return Intrinsic::getName((Intrinsic::ID)IID);
2793  }
2794  case ISD::INTRINSIC_VOID:
2795  case ISD::INTRINSIC_W_CHAIN: {
2796    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2797    return Intrinsic::getName((Intrinsic::ID)IID);
2798  }
2799
2800  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2801  case ISD::TargetConstant: return "TargetConstant";
2802  case ISD::TargetConstantFP:return "TargetConstantFP";
2803  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2804  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
2805  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2806  case ISD::TargetJumpTable:  return "TargetJumpTable";
2807  case ISD::TargetConstantPool:  return "TargetConstantPool";
2808  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2809
2810  case ISD::CopyToReg:     return "CopyToReg";
2811  case ISD::CopyFromReg:   return "CopyFromReg";
2812  case ISD::UNDEF:         return "undef";
2813  case ISD::MERGE_VALUES:  return "mergevalues";
2814  case ISD::INLINEASM:     return "inlineasm";
2815  case ISD::LABEL:         return "label";
2816  case ISD::HANDLENODE:    return "handlenode";
2817  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2818  case ISD::CALL:          return "call";
2819
2820  // Unary operators
2821  case ISD::FABS:   return "fabs";
2822  case ISD::FNEG:   return "fneg";
2823  case ISD::FSQRT:  return "fsqrt";
2824  case ISD::FSIN:   return "fsin";
2825  case ISD::FCOS:   return "fcos";
2826  case ISD::FPOWI:  return "fpowi";
2827
2828  // Binary operators
2829  case ISD::ADD:    return "add";
2830  case ISD::SUB:    return "sub";
2831  case ISD::MUL:    return "mul";
2832  case ISD::MULHU:  return "mulhu";
2833  case ISD::MULHS:  return "mulhs";
2834  case ISD::SDIV:   return "sdiv";
2835  case ISD::UDIV:   return "udiv";
2836  case ISD::SREM:   return "srem";
2837  case ISD::UREM:   return "urem";
2838  case ISD::AND:    return "and";
2839  case ISD::OR:     return "or";
2840  case ISD::XOR:    return "xor";
2841  case ISD::SHL:    return "shl";
2842  case ISD::SRA:    return "sra";
2843  case ISD::SRL:    return "srl";
2844  case ISD::ROTL:   return "rotl";
2845  case ISD::ROTR:   return "rotr";
2846  case ISD::FADD:   return "fadd";
2847  case ISD::FSUB:   return "fsub";
2848  case ISD::FMUL:   return "fmul";
2849  case ISD::FDIV:   return "fdiv";
2850  case ISD::FREM:   return "frem";
2851  case ISD::FCOPYSIGN: return "fcopysign";
2852  case ISD::VADD:   return "vadd";
2853  case ISD::VSUB:   return "vsub";
2854  case ISD::VMUL:   return "vmul";
2855  case ISD::VSDIV:  return "vsdiv";
2856  case ISD::VUDIV:  return "vudiv";
2857  case ISD::VAND:   return "vand";
2858  case ISD::VOR:    return "vor";
2859  case ISD::VXOR:   return "vxor";
2860
2861  case ISD::SETCC:       return "setcc";
2862  case ISD::SELECT:      return "select";
2863  case ISD::SELECT_CC:   return "select_cc";
2864  case ISD::VSELECT:     return "vselect";
2865  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2866  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2867  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2868  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2869  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2870  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2871  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2872  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2873  case ISD::VBIT_CONVERT:        return "vbit_convert";
2874  case ISD::CARRY_FALSE:         return "carry_false";
2875  case ISD::ADDC:        return "addc";
2876  case ISD::ADDE:        return "adde";
2877  case ISD::SUBC:        return "subc";
2878  case ISD::SUBE:        return "sube";
2879  case ISD::SHL_PARTS:   return "shl_parts";
2880  case ISD::SRA_PARTS:   return "sra_parts";
2881  case ISD::SRL_PARTS:   return "srl_parts";
2882
2883  // Conversion operators.
2884  case ISD::SIGN_EXTEND: return "sign_extend";
2885  case ISD::ZERO_EXTEND: return "zero_extend";
2886  case ISD::ANY_EXTEND:  return "any_extend";
2887  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2888  case ISD::TRUNCATE:    return "truncate";
2889  case ISD::FP_ROUND:    return "fp_round";
2890  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2891  case ISD::FP_EXTEND:   return "fp_extend";
2892
2893  case ISD::SINT_TO_FP:  return "sint_to_fp";
2894  case ISD::UINT_TO_FP:  return "uint_to_fp";
2895  case ISD::FP_TO_SINT:  return "fp_to_sint";
2896  case ISD::FP_TO_UINT:  return "fp_to_uint";
2897  case ISD::BIT_CONVERT: return "bit_convert";
2898
2899    // Control flow instructions
2900  case ISD::BR:      return "br";
2901  case ISD::BRIND:   return "brind";
2902  case ISD::BR_JT:   return "br_jt";
2903  case ISD::BRCOND:  return "brcond";
2904  case ISD::BR_CC:   return "br_cc";
2905  case ISD::RET:     return "ret";
2906  case ISD::CALLSEQ_START:  return "callseq_start";
2907  case ISD::CALLSEQ_END:    return "callseq_end";
2908
2909    // Other operators
2910  case ISD::LOAD:               return "load";
2911  case ISD::STORE:              return "store";
2912  case ISD::VLOAD:              return "vload";
2913  case ISD::VAARG:              return "vaarg";
2914  case ISD::VACOPY:             return "vacopy";
2915  case ISD::VAEND:              return "vaend";
2916  case ISD::VASTART:            return "vastart";
2917  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2918  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2919  case ISD::BUILD_PAIR:         return "build_pair";
2920  case ISD::STACKSAVE:          return "stacksave";
2921  case ISD::STACKRESTORE:       return "stackrestore";
2922
2923  // Block memory operations.
2924  case ISD::MEMSET:  return "memset";
2925  case ISD::MEMCPY:  return "memcpy";
2926  case ISD::MEMMOVE: return "memmove";
2927
2928  // Bit manipulation
2929  case ISD::BSWAP:   return "bswap";
2930  case ISD::CTPOP:   return "ctpop";
2931  case ISD::CTTZ:    return "cttz";
2932  case ISD::CTLZ:    return "ctlz";
2933
2934  // Debug info
2935  case ISD::LOCATION: return "location";
2936  case ISD::DEBUG_LOC: return "debug_loc";
2937
2938  case ISD::CONDCODE:
2939    switch (cast<CondCodeSDNode>(this)->get()) {
2940    default: assert(0 && "Unknown setcc condition!");
2941    case ISD::SETOEQ:  return "setoeq";
2942    case ISD::SETOGT:  return "setogt";
2943    case ISD::SETOGE:  return "setoge";
2944    case ISD::SETOLT:  return "setolt";
2945    case ISD::SETOLE:  return "setole";
2946    case ISD::SETONE:  return "setone";
2947
2948    case ISD::SETO:    return "seto";
2949    case ISD::SETUO:   return "setuo";
2950    case ISD::SETUEQ:  return "setue";
2951    case ISD::SETUGT:  return "setugt";
2952    case ISD::SETUGE:  return "setuge";
2953    case ISD::SETULT:  return "setult";
2954    case ISD::SETULE:  return "setule";
2955    case ISD::SETUNE:  return "setune";
2956
2957    case ISD::SETEQ:   return "seteq";
2958    case ISD::SETGT:   return "setgt";
2959    case ISD::SETGE:   return "setge";
2960    case ISD::SETLT:   return "setlt";
2961    case ISD::SETLE:   return "setle";
2962    case ISD::SETNE:   return "setne";
2963    }
2964  }
2965}
2966
2967const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2968  switch (AM) {
2969  default:
2970    return "";
2971  case ISD::PRE_INC:
2972    return "<pre-inc>";
2973  case ISD::PRE_DEC:
2974    return "<pre-dec>";
2975  case ISD::POST_INC:
2976    return "<post-inc>";
2977  case ISD::POST_DEC:
2978    return "<post-dec>";
2979  }
2980}
2981
2982void SDNode::dump() const { dump(0); }
2983void SDNode::dump(const SelectionDAG *G) const {
2984  cerr << (void*)this << ": ";
2985
2986  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2987    if (i) cerr << ",";
2988    if (getValueType(i) == MVT::Other)
2989      cerr << "ch";
2990    else
2991      cerr << MVT::getValueTypeString(getValueType(i));
2992  }
2993  cerr << " = " << getOperationName(G);
2994
2995  cerr << " ";
2996  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2997    if (i) cerr << ", ";
2998    cerr << (void*)getOperand(i).Val;
2999    if (unsigned RN = getOperand(i).ResNo)
3000      cerr << ":" << RN;
3001  }
3002
3003  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3004    cerr << "<" << CSDN->getValue() << ">";
3005  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3006    cerr << "<" << CSDN->getValue() << ">";
3007  } else if (const GlobalAddressSDNode *GADN =
3008             dyn_cast<GlobalAddressSDNode>(this)) {
3009    int offset = GADN->getOffset();
3010    cerr << "<";
3011    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3012    if (offset > 0)
3013      cerr << " + " << offset;
3014    else
3015      cerr << " " << offset;
3016  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3017    cerr << "<" << FIDN->getIndex() << ">";
3018  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3019    cerr << "<" << JTDN->getIndex() << ">";
3020  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3021    int offset = CP->getOffset();
3022    if (CP->isMachineConstantPoolEntry())
3023      cerr << "<" << *CP->getMachineCPVal() << ">";
3024    else
3025      cerr << "<" << *CP->getConstVal() << ">";
3026    if (offset > 0)
3027      cerr << " + " << offset;
3028    else
3029      cerr << " " << offset;
3030  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3031    cerr << "<";
3032    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3033    if (LBB)
3034      cerr << LBB->getName() << " ";
3035    cerr << (const void*)BBDN->getBasicBlock() << ">";
3036  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3037    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3038      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3039    } else {
3040      cerr << " #" << R->getReg();
3041    }
3042  } else if (const ExternalSymbolSDNode *ES =
3043             dyn_cast<ExternalSymbolSDNode>(this)) {
3044    cerr << "'" << ES->getSymbol() << "'";
3045  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3046    if (M->getValue())
3047      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3048    else
3049      cerr << "<null:" << M->getOffset() << ">";
3050  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3051    cerr << ":" << MVT::getValueTypeString(N->getVT());
3052  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3053    bool doExt = true;
3054    switch (LD->getExtensionType()) {
3055    default: doExt = false; break;
3056    case ISD::EXTLOAD:
3057      cerr << " <anyext ";
3058      break;
3059    case ISD::SEXTLOAD:
3060      cerr << " <sext ";
3061      break;
3062    case ISD::ZEXTLOAD:
3063      cerr << " <zext ";
3064      break;
3065    }
3066    if (doExt)
3067      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3068
3069    const char *AM = getIndexedModeName(LD->getAddressingMode());
3070    if (AM != "")
3071      cerr << " " << AM;
3072  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3073    if (ST->isTruncatingStore())
3074      cerr << " <trunc "
3075           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3076
3077    const char *AM = getIndexedModeName(ST->getAddressingMode());
3078    if (AM != "")
3079      cerr << " " << AM;
3080  }
3081}
3082
3083static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3084  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3085    if (N->getOperand(i).Val->hasOneUse())
3086      DumpNodes(N->getOperand(i).Val, indent+2, G);
3087    else
3088      cerr << "\n" << std::string(indent+2, ' ')
3089           << (void*)N->getOperand(i).Val << ": <multiple use>";
3090
3091
3092  cerr << "\n" << std::string(indent, ' ');
3093  N->dump(G);
3094}
3095
3096void SelectionDAG::dump() const {
3097  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3098  std::vector<const SDNode*> Nodes;
3099  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3100       I != E; ++I)
3101    Nodes.push_back(I);
3102
3103  std::sort(Nodes.begin(), Nodes.end());
3104
3105  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3106    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3107      DumpNodes(Nodes[i], 2, this);
3108  }
3109
3110  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3111
3112  cerr << "\n\n";
3113}
3114
3115const Type *ConstantPoolSDNode::getType() const {
3116  if (isMachineConstantPoolEntry())
3117    return Val.MachineCPVal->getType();
3118  return Val.ConstVal->getType();
3119}
3120