SelectionDAG.cpp revision 23e8b715267a64381e2fff8c208da1f24b387b83
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
297    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
298    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
299    }
300  }
301
302  return Result;
303}
304
305const TargetMachine &SelectionDAG::getTarget() const {
306  return TLI.getTargetMachine();
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              SDOperandPtr Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->Val);
331    ID.AddInteger(Ops->ResNo);
332  }
333}
334
335static void AddNodeIDNode(FoldingSetNodeID &ID,
336                          unsigned short OpC, SDVTList VTList,
337                          SDOperandPtr OpList, unsigned N) {
338  AddNodeIDOpcode(ID, OpC);
339  AddNodeIDValueTypes(ID, VTList);
340  AddNodeIDOperands(ID, OpList, N);
341}
342
343
344/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
345/// data.
346static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
347  AddNodeIDOpcode(ID, N->getOpcode());
348  // Add the return value info.
349  AddNodeIDValueTypes(ID, N->getVTList());
350  // Add the operand info.
351  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
352
353  // Handle SDNode leafs with special info.
354  switch (N->getOpcode()) {
355  default: break;  // Normal nodes don't need extra info.
356  case ISD::ARG_FLAGS:
357    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
358    break;
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    break;
376  }
377  case ISD::BasicBlock:
378    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
379    break;
380  case ISD::Register:
381    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
382    break;
383  case ISD::SRCVALUE:
384    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
385    break;
386  case ISD::MEMOPERAND: {
387    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
388    ID.AddPointer(MO.getValue());
389    ID.AddInteger(MO.getFlags());
390    ID.AddInteger(MO.getOffset());
391    ID.AddInteger(MO.getSize());
392    ID.AddInteger(MO.getAlignment());
393    break;
394  }
395  case ISD::FrameIndex:
396  case ISD::TargetFrameIndex:
397    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
398    break;
399  case ISD::JumpTable:
400  case ISD::TargetJumpTable:
401    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
402    break;
403  case ISD::ConstantPool:
404  case ISD::TargetConstantPool: {
405    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
406    ID.AddInteger(CP->getAlignment());
407    ID.AddInteger(CP->getOffset());
408    if (CP->isMachineConstantPoolEntry())
409      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
410    else
411      ID.AddPointer(CP->getConstVal());
412    break;
413  }
414  case ISD::LOAD: {
415    LoadSDNode *LD = cast<LoadSDNode>(N);
416    ID.AddInteger(LD->getAddressingMode());
417    ID.AddInteger(LD->getExtensionType());
418    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
419    ID.AddInteger(LD->getAlignment());
420    ID.AddInteger(LD->isVolatile());
421    break;
422  }
423  case ISD::STORE: {
424    StoreSDNode *ST = cast<StoreSDNode>(N);
425    ID.AddInteger(ST->getAddressingMode());
426    ID.AddInteger(ST->isTruncatingStore());
427    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
428    ID.AddInteger(ST->getAlignment());
429    ID.AddInteger(ST->isVolatile());
430    break;
431  }
432  }
433}
434
435//===----------------------------------------------------------------------===//
436//                              SelectionDAG Class
437//===----------------------------------------------------------------------===//
438
439/// RemoveDeadNodes - This method deletes all unreachable nodes in the
440/// SelectionDAG.
441void SelectionDAG::RemoveDeadNodes() {
442  // Create a dummy node (which is not added to allnodes), that adds a reference
443  // to the root node, preventing it from being deleted.
444  HandleSDNode Dummy(getRoot());
445
446  SmallVector<SDNode*, 128> DeadNodes;
447
448  // Add all obviously-dead nodes to the DeadNodes worklist.
449  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
450    if (I->use_empty())
451      DeadNodes.push_back(I);
452
453  // Process the worklist, deleting the nodes and adding their uses to the
454  // worklist.
455  while (!DeadNodes.empty()) {
456    SDNode *N = DeadNodes.back();
457    DeadNodes.pop_back();
458
459    // Take the node out of the appropriate CSE map.
460    RemoveNodeFromCSEMaps(N);
461
462    // Next, brutally remove the operand list.  This is safe to do, as there are
463    // no cycles in the graph.
464    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
465      SDNode *Operand = I->getVal();
466      Operand->removeUser(std::distance(N->op_begin(), I), N);
467
468      // Now that we removed this operand, see if there are no uses of it left.
469      if (Operand->use_empty())
470        DeadNodes.push_back(Operand);
471    }
472    if (N->OperandsNeedDelete) {
473      delete[] N->OperandList;
474    }
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    AllNodes.erase(N);
480  }
481
482  // If the root changed (e.g. it was a dead load, update the root).
483  setRoot(Dummy.getValue());
484}
485
486void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
487  SmallVector<SDNode*, 16> DeadNodes;
488  DeadNodes.push_back(N);
489
490  // Process the worklist, deleting the nodes and adding their uses to the
491  // worklist.
492  while (!DeadNodes.empty()) {
493    SDNode *N = DeadNodes.back();
494    DeadNodes.pop_back();
495
496    if (UpdateListener)
497      UpdateListener->NodeDeleted(N);
498
499    // Take the node out of the appropriate CSE map.
500    RemoveNodeFromCSEMaps(N);
501
502    // Next, brutally remove the operand list.  This is safe to do, as there are
503    // no cycles in the graph.
504    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
505      SDNode *Operand = I->getVal();
506      Operand->removeUser(std::distance(N->op_begin(), I), N);
507
508      // Now that we removed this operand, see if there are no uses of it left.
509      if (Operand->use_empty())
510        DeadNodes.push_back(Operand);
511    }
512    if (N->OperandsNeedDelete) {
513      delete[] N->OperandList;
514    }
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
542  if (N->OperandsNeedDelete) {
543    delete[] N->OperandList;
544  }
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           SDOperandPtr Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete) {
706      delete [] N->OperandList;
707    }
708    N->OperandList = 0;
709    N->NumOperands = 0;
710    AllNodes.pop_front();
711  }
712}
713
714SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
715  if (Op.getValueType() == VT) return Op;
716  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
717                                   MVT::getSizeInBits(VT));
718  return getNode(ISD::AND, Op.getValueType(), Op,
719                 getConstant(Imm, Op.getValueType()));
720}
721
722SDOperand SelectionDAG::getString(const std::string &Val) {
723  StringSDNode *&N = StringNodes[Val];
724  if (!N) {
725    N = new StringSDNode(Val);
726    AllNodes.push_back(N);
727  }
728  return SDOperand(N, 0);
729}
730
731SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
732  MVT::ValueType EltVT =
733    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
734
735  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
736}
737
738SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
739  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
740
741  MVT::ValueType EltVT =
742    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
743
744  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
745         "APInt size does not match type size!");
746
747  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
748  FoldingSetNodeID ID;
749  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
750  ID.Add(Val);
751  void *IP = 0;
752  SDNode *N = NULL;
753  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
754    if (!MVT::isVector(VT))
755      return SDOperand(N, 0);
756  if (!N) {
757    N = new ConstantSDNode(isT, Val, EltVT);
758    CSEMap.InsertNode(N, IP);
759    AllNodes.push_back(N);
760  }
761
762  SDOperand Result(N, 0);
763  if (MVT::isVector(VT)) {
764    SmallVector<SDOperand, 8> Ops;
765    Ops.assign(MVT::getVectorNumElements(VT), Result);
766    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
767  }
768  return Result;
769}
770
771SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
772  return getConstant(Val, TLI.getPointerTy(), isTarget);
773}
774
775
776SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
777                                      bool isTarget) {
778  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
779
780  MVT::ValueType EltVT =
781    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
782
783  // Do the map lookup using the actual bit pattern for the floating point
784  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
785  // we don't have issues with SNANs.
786  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
789  ID.Add(V);
790  void *IP = 0;
791  SDNode *N = NULL;
792  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
793    if (!MVT::isVector(VT))
794      return SDOperand(N, 0);
795  if (!N) {
796    N = new ConstantFPSDNode(isTarget, V, EltVT);
797    CSEMap.InsertNode(N, IP);
798    AllNodes.push_back(N);
799  }
800
801  SDOperand Result(N, 0);
802  if (MVT::isVector(VT)) {
803    SmallVector<SDOperand, 8> Ops;
804    Ops.assign(MVT::getVectorNumElements(VT), Result);
805    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
806  }
807  return Result;
808}
809
810SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
811                                      bool isTarget) {
812  MVT::ValueType EltVT =
813    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
814  if (EltVT==MVT::f32)
815    return getConstantFP(APFloat((float)Val), VT, isTarget);
816  else
817    return getConstantFP(APFloat(Val), VT, isTarget);
818}
819
820SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
821                                         MVT::ValueType VT, int Offset,
822                                         bool isTargetGA) {
823  unsigned Opc;
824
825  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
826  if (!GVar) {
827    // If GV is an alias then use the aliasee for determining thread-localness.
828    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
829      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
830  }
831
832  if (GVar && GVar->isThreadLocal())
833    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
834  else
835    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
836
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
839  ID.AddPointer(GV);
840  ID.AddInteger(Offset);
841  void *IP = 0;
842  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
843   return SDOperand(E, 0);
844  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
845  CSEMap.InsertNode(N, IP);
846  AllNodes.push_back(N);
847  return SDOperand(N, 0);
848}
849
850SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
851                                      bool isTarget) {
852  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
855  ID.AddInteger(FI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
866  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
867  FoldingSetNodeID ID;
868  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
869  ID.AddInteger(JTI);
870  void *IP = 0;
871  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
872    return SDOperand(E, 0);
873  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
874  CSEMap.InsertNode(N, IP);
875  AllNodes.push_back(N);
876  return SDOperand(N, 0);
877}
878
879SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
880                                        unsigned Alignment, int Offset,
881                                        bool isTarget) {
882  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
883  FoldingSetNodeID ID;
884  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
885  ID.AddInteger(Alignment);
886  ID.AddInteger(Offset);
887  ID.AddPointer(C);
888  void *IP = 0;
889  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
890    return SDOperand(E, 0);
891  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
892  CSEMap.InsertNode(N, IP);
893  AllNodes.push_back(N);
894  return SDOperand(N, 0);
895}
896
897
898SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
899                                        MVT::ValueType VT,
900                                        unsigned Alignment, int Offset,
901                                        bool isTarget) {
902  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
905  ID.AddInteger(Alignment);
906  ID.AddInteger(Offset);
907  C->AddSelectionDAGCSEId(ID);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917
918SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
921  ID.AddPointer(MBB);
922  void *IP = 0;
923  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924    return SDOperand(E, 0);
925  SDNode *N = new BasicBlockSDNode(MBB);
926  CSEMap.InsertNode(N, IP);
927  AllNodes.push_back(N);
928  return SDOperand(N, 0);
929}
930
931SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
934  ID.AddInteger(Flags.getRawBits());
935  void *IP = 0;
936  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
937    return SDOperand(E, 0);
938  SDNode *N = new ARG_FLAGSSDNode(Flags);
939  CSEMap.InsertNode(N, IP);
940  AllNodes.push_back(N);
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
945  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
946    ValueTypeNodes.resize(VT+1);
947
948  SDNode *&N = MVT::isExtendedVT(VT) ?
949    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
950
951  if (N) return SDOperand(N, 0);
952  N = new VTSDNode(VT);
953  AllNodes.push_back(N);
954  return SDOperand(N, 0);
955}
956
957SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
958  SDNode *&N = ExternalSymbols[Sym];
959  if (N) return SDOperand(N, 0);
960  N = new ExternalSymbolSDNode(false, Sym, VT);
961  AllNodes.push_back(N);
962  return SDOperand(N, 0);
963}
964
965SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
966                                                MVT::ValueType VT) {
967  SDNode *&N = TargetExternalSymbols[Sym];
968  if (N) return SDOperand(N, 0);
969  N = new ExternalSymbolSDNode(true, Sym, VT);
970  AllNodes.push_back(N);
971  return SDOperand(N, 0);
972}
973
974SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
975  if ((unsigned)Cond >= CondCodeNodes.size())
976    CondCodeNodes.resize(Cond+1);
977
978  if (CondCodeNodes[Cond] == 0) {
979    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
980    AllNodes.push_back(CondCodeNodes[Cond]);
981  }
982  return SDOperand(CondCodeNodes[Cond], 0);
983}
984
985SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
986  FoldingSetNodeID ID;
987  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
988  ID.AddInteger(RegNo);
989  void *IP = 0;
990  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
991    return SDOperand(E, 0);
992  SDNode *N = new RegisterSDNode(RegNo, VT);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDOperand(N, 0);
996}
997
998SDOperand SelectionDAG::getSrcValue(const Value *V) {
999  assert((!V || isa<PointerType>(V->getType())) &&
1000         "SrcValue is not a pointer?");
1001
1002  FoldingSetNodeID ID;
1003  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1004  ID.AddPointer(V);
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new SrcValueSDNode(V);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1017  const Value *v = MO.getValue();
1018  assert((!v || isa<PointerType>(v->getType())) &&
1019         "SrcValue is not a pointer?");
1020
1021  FoldingSetNodeID ID;
1022  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1023  ID.AddPointer(v);
1024  ID.AddInteger(MO.getFlags());
1025  ID.AddInteger(MO.getOffset());
1026  ID.AddInteger(MO.getSize());
1027  ID.AddInteger(MO.getAlignment());
1028
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDOperand(E, 0);
1032
1033  SDNode *N = new MemOperandSDNode(MO);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDOperand(N, 0);
1037}
1038
1039/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1040/// specified value type.
1041SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1042  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1043  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1044  const Type *Ty = MVT::getTypeForValueType(VT);
1045  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1046  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1047  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1048}
1049
1050
1051SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1052                                  SDOperand N2, ISD::CondCode Cond) {
1053  // These setcc operations always fold.
1054  switch (Cond) {
1055  default: break;
1056  case ISD::SETFALSE:
1057  case ISD::SETFALSE2: return getConstant(0, VT);
1058  case ISD::SETTRUE:
1059  case ISD::SETTRUE2:  return getConstant(1, VT);
1060
1061  case ISD::SETOEQ:
1062  case ISD::SETOGT:
1063  case ISD::SETOGE:
1064  case ISD::SETOLT:
1065  case ISD::SETOLE:
1066  case ISD::SETONE:
1067  case ISD::SETO:
1068  case ISD::SETUO:
1069  case ISD::SETUEQ:
1070  case ISD::SETUNE:
1071    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1072    break;
1073  }
1074
1075  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1076    const APInt &C2 = N2C->getAPIntValue();
1077    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1078      const APInt &C1 = N1C->getAPIntValue();
1079
1080      switch (Cond) {
1081      default: assert(0 && "Unknown integer setcc!");
1082      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1083      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1084      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1085      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1086      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1087      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1088      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1089      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1090      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1091      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1092      }
1093    }
1094  }
1095  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1096    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1097      // No compile time operations on this type yet.
1098      if (N1C->getValueType(0) == MVT::ppcf128)
1099        return SDOperand();
1100
1101      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1102      switch (Cond) {
1103      default: break;
1104      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1108      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1109                          return getNode(ISD::UNDEF, VT);
1110                        // fall through
1111      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpLessThan, VT);
1113      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1114                          return getNode(ISD::UNDEF, VT);
1115                        // fall through
1116      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1117      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1118                          return getNode(ISD::UNDEF, VT);
1119                        // fall through
1120      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1121      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1122                          return getNode(ISD::UNDEF, VT);
1123                        // fall through
1124      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1125                                           R==APFloat::cmpEqual, VT);
1126      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1127                          return getNode(ISD::UNDEF, VT);
1128                        // fall through
1129      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1130                                           R==APFloat::cmpEqual, VT);
1131      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1132      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1133      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1134                                           R==APFloat::cmpEqual, VT);
1135      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1136      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1137                                           R==APFloat::cmpLessThan, VT);
1138      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1139                                           R==APFloat::cmpUnordered, VT);
1140      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1141      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1142      }
1143    } else {
1144      // Ensure that the constant occurs on the RHS.
1145      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1146    }
1147  }
1148
1149  // Could not fold it.
1150  return SDOperand();
1151}
1152
1153/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1154/// use this predicate to simplify operations downstream.
1155bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1156  unsigned BitWidth = Op.getValueSizeInBits();
1157  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1158}
1159
1160/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1161/// this predicate to simplify operations downstream.  Mask is known to be zero
1162/// for bits that V cannot have.
1163bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1164                                     unsigned Depth) const {
1165  APInt KnownZero, KnownOne;
1166  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1167  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1168  return (KnownZero & Mask) == Mask;
1169}
1170
1171/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1172/// known to be either zero or one and return them in the KnownZero/KnownOne
1173/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1174/// processing.
1175void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1176                                     APInt &KnownZero, APInt &KnownOne,
1177                                     unsigned Depth) const {
1178  unsigned BitWidth = Mask.getBitWidth();
1179  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1180         "Mask size mismatches value type size!");
1181
1182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1183  if (Depth == 6 || Mask == 0)
1184    return;  // Limit search depth.
1185
1186  APInt KnownZero2, KnownOne2;
1187
1188  switch (Op.getOpcode()) {
1189  case ISD::Constant:
1190    // We know all of the bits for a constant!
1191    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1192    KnownZero = ~KnownOne & Mask;
1193    return;
1194  case ISD::AND:
1195    // If either the LHS or the RHS are Zero, the result is zero.
1196    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1197    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1198                      KnownZero2, KnownOne2, Depth+1);
1199    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1200    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1201
1202    // Output known-1 bits are only known if set in both the LHS & RHS.
1203    KnownOne &= KnownOne2;
1204    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1205    KnownZero |= KnownZero2;
1206    return;
1207  case ISD::OR:
1208    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1209    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1210                      KnownZero2, KnownOne2, Depth+1);
1211    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1213
1214    // Output known-0 bits are only known if clear in both the LHS & RHS.
1215    KnownZero &= KnownZero2;
1216    // Output known-1 are known to be set if set in either the LHS | RHS.
1217    KnownOne |= KnownOne2;
1218    return;
1219  case ISD::XOR: {
1220    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1221    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1222    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1224
1225    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1226    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1227    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1228    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1229    KnownZero = KnownZeroOut;
1230    return;
1231  }
1232  case ISD::MUL: {
1233    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1234    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1235    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1236    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1237    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1238
1239    // If low bits are zero in either operand, output low known-0 bits.
1240    // Also compute a conserative estimate for high known-0 bits.
1241    // More trickiness is possible, but this is sufficient for the
1242    // interesting case of alignment computation.
1243    KnownOne.clear();
1244    unsigned TrailZ = KnownZero.countTrailingOnes() +
1245                      KnownZero2.countTrailingOnes();
1246    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1247                               KnownZero2.countLeadingOnes() +
1248                               1, BitWidth) - BitWidth;
1249
1250    TrailZ = std::min(TrailZ, BitWidth);
1251    LeadZ = std::min(LeadZ, BitWidth);
1252    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1253                APInt::getHighBitsSet(BitWidth, LeadZ);
1254    KnownZero &= Mask;
1255    return;
1256  }
1257  case ISD::UDIV: {
1258    // For the purposes of computing leading zeros we can conservatively
1259    // treat a udiv as a logical right shift by the power of 2 known to
1260    // be greater than the denominator.
1261    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1262    ComputeMaskedBits(Op.getOperand(0),
1263                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1264    unsigned LeadZ = KnownZero2.countLeadingOnes();
1265
1266    KnownOne2.clear();
1267    KnownZero2.clear();
1268    ComputeMaskedBits(Op.getOperand(1),
1269                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1270    LeadZ = std::min(BitWidth,
1271                     LeadZ + BitWidth - KnownOne2.countLeadingZeros());
1272
1273    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1274    return;
1275  }
1276  case ISD::SELECT:
1277    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1278    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1279    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1280    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1281
1282    // Only known if known in both the LHS and RHS.
1283    KnownOne &= KnownOne2;
1284    KnownZero &= KnownZero2;
1285    return;
1286  case ISD::SELECT_CC:
1287    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1288    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1289    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1290    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1291
1292    // Only known if known in both the LHS and RHS.
1293    KnownOne &= KnownOne2;
1294    KnownZero &= KnownZero2;
1295    return;
1296  case ISD::SETCC:
1297    // If we know the result of a setcc has the top bits zero, use this info.
1298    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1299        BitWidth > 1)
1300      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1301    return;
1302  case ISD::SHL:
1303    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1304    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1305      unsigned ShAmt = SA->getValue();
1306
1307      // If the shift count is an invalid immediate, don't do anything.
1308      if (ShAmt >= BitWidth)
1309        return;
1310
1311      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1312                        KnownZero, KnownOne, Depth+1);
1313      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1314      KnownZero <<= ShAmt;
1315      KnownOne  <<= ShAmt;
1316      // low bits known zero.
1317      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1318    }
1319    return;
1320  case ISD::SRL:
1321    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1322    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1323      unsigned ShAmt = SA->getValue();
1324
1325      // If the shift count is an invalid immediate, don't do anything.
1326      if (ShAmt >= BitWidth)
1327        return;
1328
1329      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1330                        KnownZero, KnownOne, Depth+1);
1331      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1332      KnownZero = KnownZero.lshr(ShAmt);
1333      KnownOne  = KnownOne.lshr(ShAmt);
1334
1335      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1336      KnownZero |= HighBits;  // High bits known zero.
1337    }
1338    return;
1339  case ISD::SRA:
1340    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341      unsigned ShAmt = SA->getValue();
1342
1343      // If the shift count is an invalid immediate, don't do anything.
1344      if (ShAmt >= BitWidth)
1345        return;
1346
1347      APInt InDemandedMask = (Mask << ShAmt);
1348      // If any of the demanded bits are produced by the sign extension, we also
1349      // demand the input sign bit.
1350      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1351      if (HighBits.getBoolValue())
1352        InDemandedMask |= APInt::getSignBit(BitWidth);
1353
1354      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1355                        Depth+1);
1356      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357      KnownZero = KnownZero.lshr(ShAmt);
1358      KnownOne  = KnownOne.lshr(ShAmt);
1359
1360      // Handle the sign bits.
1361      APInt SignBit = APInt::getSignBit(BitWidth);
1362      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1363
1364      if (KnownZero.intersects(SignBit)) {
1365        KnownZero |= HighBits;  // New bits are known zero.
1366      } else if (KnownOne.intersects(SignBit)) {
1367        KnownOne  |= HighBits;  // New bits are known one.
1368      }
1369    }
1370    return;
1371  case ISD::SIGN_EXTEND_INREG: {
1372    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1373    unsigned EBits = MVT::getSizeInBits(EVT);
1374
1375    // Sign extension.  Compute the demanded bits in the result that are not
1376    // present in the input.
1377    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1378
1379    APInt InSignBit = APInt::getSignBit(EBits);
1380    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1381
1382    // If the sign extended bits are demanded, we know that the sign
1383    // bit is demanded.
1384    InSignBit.zext(BitWidth);
1385    if (NewBits.getBoolValue())
1386      InputDemandedBits |= InSignBit;
1387
1388    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1389                      KnownZero, KnownOne, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391
1392    // If the sign bit of the input is known set or clear, then we know the
1393    // top bits of the result.
1394    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1395      KnownZero |= NewBits;
1396      KnownOne  &= ~NewBits;
1397    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1398      KnownOne  |= NewBits;
1399      KnownZero &= ~NewBits;
1400    } else {                              // Input sign bit unknown
1401      KnownZero &= ~NewBits;
1402      KnownOne  &= ~NewBits;
1403    }
1404    return;
1405  }
1406  case ISD::CTTZ:
1407  case ISD::CTLZ:
1408  case ISD::CTPOP: {
1409    unsigned LowBits = Log2_32(BitWidth)+1;
1410    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1411    KnownOne  = APInt(BitWidth, 0);
1412    return;
1413  }
1414  case ISD::LOAD: {
1415    if (ISD::isZEXTLoad(Op.Val)) {
1416      LoadSDNode *LD = cast<LoadSDNode>(Op);
1417      MVT::ValueType VT = LD->getMemoryVT();
1418      unsigned MemBits = MVT::getSizeInBits(VT);
1419      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1420    }
1421    return;
1422  }
1423  case ISD::ZERO_EXTEND: {
1424    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1425    unsigned InBits = MVT::getSizeInBits(InVT);
1426    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1427    APInt InMask    = Mask;
1428    InMask.trunc(InBits);
1429    KnownZero.trunc(InBits);
1430    KnownOne.trunc(InBits);
1431    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1432    KnownZero.zext(BitWidth);
1433    KnownOne.zext(BitWidth);
1434    KnownZero |= NewBits;
1435    return;
1436  }
1437  case ISD::SIGN_EXTEND: {
1438    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1439    unsigned InBits = MVT::getSizeInBits(InVT);
1440    APInt InSignBit = APInt::getSignBit(InBits);
1441    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1442    APInt InMask = Mask;
1443    InMask.trunc(InBits);
1444
1445    // If any of the sign extended bits are demanded, we know that the sign
1446    // bit is demanded. Temporarily set this bit in the mask for our callee.
1447    if (NewBits.getBoolValue())
1448      InMask |= InSignBit;
1449
1450    KnownZero.trunc(InBits);
1451    KnownOne.trunc(InBits);
1452    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1453
1454    // Note if the sign bit is known to be zero or one.
1455    bool SignBitKnownZero = KnownZero.isNegative();
1456    bool SignBitKnownOne  = KnownOne.isNegative();
1457    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1458           "Sign bit can't be known to be both zero and one!");
1459
1460    // If the sign bit wasn't actually demanded by our caller, we don't
1461    // want it set in the KnownZero and KnownOne result values. Reset the
1462    // mask and reapply it to the result values.
1463    InMask = Mask;
1464    InMask.trunc(InBits);
1465    KnownZero &= InMask;
1466    KnownOne  &= InMask;
1467
1468    KnownZero.zext(BitWidth);
1469    KnownOne.zext(BitWidth);
1470
1471    // If the sign bit is known zero or one, the top bits match.
1472    if (SignBitKnownZero)
1473      KnownZero |= NewBits;
1474    else if (SignBitKnownOne)
1475      KnownOne  |= NewBits;
1476    return;
1477  }
1478  case ISD::ANY_EXTEND: {
1479    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1480    unsigned InBits = MVT::getSizeInBits(InVT);
1481    APInt InMask = Mask;
1482    InMask.trunc(InBits);
1483    KnownZero.trunc(InBits);
1484    KnownOne.trunc(InBits);
1485    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1486    KnownZero.zext(BitWidth);
1487    KnownOne.zext(BitWidth);
1488    return;
1489  }
1490  case ISD::TRUNCATE: {
1491    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1492    unsigned InBits = MVT::getSizeInBits(InVT);
1493    APInt InMask = Mask;
1494    InMask.zext(InBits);
1495    KnownZero.zext(InBits);
1496    KnownOne.zext(InBits);
1497    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1498    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1499    KnownZero.trunc(BitWidth);
1500    KnownOne.trunc(BitWidth);
1501    break;
1502  }
1503  case ISD::AssertZext: {
1504    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1505    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1506    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1507                      KnownOne, Depth+1);
1508    KnownZero |= (~InMask) & Mask;
1509    return;
1510  }
1511  case ISD::FGETSIGN:
1512    // All bits are zero except the low bit.
1513    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1514    return;
1515
1516  case ISD::SUB: {
1517    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1518      // We know that the top bits of C-X are clear if X contains less bits
1519      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1520      // positive if we can prove that X is >= 0 and < 16.
1521      if (CLHS->getAPIntValue().isNonNegative()) {
1522        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1523        // NLZ can't be BitWidth with no sign bit
1524        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1525        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1526                          Depth+1);
1527
1528        // If all of the MaskV bits are known to be zero, then we know the
1529        // output top bits are zero, because we now know that the output is
1530        // from [0-C].
1531        if ((KnownZero2 & MaskV) == MaskV) {
1532          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1533          // Top bits known zero.
1534          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1535        }
1536      }
1537    }
1538  }
1539  // fall through
1540  case ISD::ADD: {
1541    // Output known-0 bits are known if clear or set in both the low clear bits
1542    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1543    // low 3 bits clear.
1544    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1545    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1546    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1547    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1548
1549    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1550    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1551    KnownZeroOut = std::min(KnownZeroOut,
1552                            KnownZero2.countTrailingOnes());
1553
1554    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1555    return;
1556  }
1557  case ISD::SREM:
1558    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1559      APInt RA = Rem->getAPIntValue();
1560      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1561        APInt LowBits = RA.isStrictlyPositive() ? ((RA - 1) | RA) : ~RA;
1562        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1563        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1564
1565        // The sign of a remainder is equal to the sign of the first
1566        // operand (zero being positive).
1567        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1568          KnownZero2 |= ~LowBits;
1569        else if (KnownOne2[BitWidth-1])
1570          KnownOne2 |= ~LowBits;
1571
1572        KnownZero |= KnownZero2 & Mask;
1573        KnownOne |= KnownOne2 & Mask;
1574
1575        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1576      }
1577    }
1578    return;
1579  case ISD::UREM: {
1580    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1581      APInt RA = Rem->getAPIntValue();
1582      if (RA.isStrictlyPositive() && RA.isPowerOf2()) {
1583        APInt LowBits = (RA - 1) | RA;
1584        APInt Mask2 = LowBits & Mask;
1585        KnownZero |= ~LowBits & Mask;
1586        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1587        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1588        break;
1589      }
1590    }
1591
1592    // Since the result is less than or equal to either operand, any leading
1593    // zero bits in either operand must also exist in the result.
1594    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1595    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1596                      Depth+1);
1597    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1598                      Depth+1);
1599
1600    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1601                                KnownZero2.countLeadingOnes());
1602    KnownOne.clear();
1603    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1604    return;
1605  }
1606  default:
1607    // Allow the target to implement this method for its nodes.
1608    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1609  case ISD::INTRINSIC_WO_CHAIN:
1610  case ISD::INTRINSIC_W_CHAIN:
1611  case ISD::INTRINSIC_VOID:
1612      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1613    }
1614    return;
1615  }
1616}
1617
1618/// ComputeNumSignBits - Return the number of times the sign bit of the
1619/// register is replicated into the other bits.  We know that at least 1 bit
1620/// is always equal to the sign bit (itself), but other cases can give us
1621/// information.  For example, immediately after an "SRA X, 2", we know that
1622/// the top 3 bits are all equal to each other, so we return 3.
1623unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1624  MVT::ValueType VT = Op.getValueType();
1625  assert(MVT::isInteger(VT) && "Invalid VT!");
1626  unsigned VTBits = MVT::getSizeInBits(VT);
1627  unsigned Tmp, Tmp2;
1628
1629  if (Depth == 6)
1630    return 1;  // Limit search depth.
1631
1632  switch (Op.getOpcode()) {
1633  default: break;
1634  case ISD::AssertSext:
1635    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1636    return VTBits-Tmp+1;
1637  case ISD::AssertZext:
1638    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1639    return VTBits-Tmp;
1640
1641  case ISD::Constant: {
1642    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1643    // If negative, return # leading ones.
1644    if (Val.isNegative())
1645      return Val.countLeadingOnes();
1646
1647    // Return # leading zeros.
1648    return Val.countLeadingZeros();
1649  }
1650
1651  case ISD::SIGN_EXTEND:
1652    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1653    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1654
1655  case ISD::SIGN_EXTEND_INREG:
1656    // Max of the input and what this extends.
1657    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1658    Tmp = VTBits-Tmp+1;
1659
1660    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1661    return std::max(Tmp, Tmp2);
1662
1663  case ISD::SRA:
1664    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1665    // SRA X, C   -> adds C sign bits.
1666    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1667      Tmp += C->getValue();
1668      if (Tmp > VTBits) Tmp = VTBits;
1669    }
1670    return Tmp;
1671  case ISD::SHL:
1672    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1673      // shl destroys sign bits.
1674      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1675      if (C->getValue() >= VTBits ||      // Bad shift.
1676          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1677      return Tmp - C->getValue();
1678    }
1679    break;
1680  case ISD::AND:
1681  case ISD::OR:
1682  case ISD::XOR:    // NOT is handled here.
1683    // Logical binary ops preserve the number of sign bits.
1684    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1685    if (Tmp == 1) return 1;  // Early out.
1686    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1687    return std::min(Tmp, Tmp2);
1688
1689  case ISD::SELECT:
1690    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1691    if (Tmp == 1) return 1;  // Early out.
1692    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1693    return std::min(Tmp, Tmp2);
1694
1695  case ISD::SETCC:
1696    // If setcc returns 0/-1, all bits are sign bits.
1697    if (TLI.getSetCCResultContents() ==
1698        TargetLowering::ZeroOrNegativeOneSetCCResult)
1699      return VTBits;
1700    break;
1701  case ISD::ROTL:
1702  case ISD::ROTR:
1703    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1704      unsigned RotAmt = C->getValue() & (VTBits-1);
1705
1706      // Handle rotate right by N like a rotate left by 32-N.
1707      if (Op.getOpcode() == ISD::ROTR)
1708        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1709
1710      // If we aren't rotating out all of the known-in sign bits, return the
1711      // number that are left.  This handles rotl(sext(x), 1) for example.
1712      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1713      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1714    }
1715    break;
1716  case ISD::ADD:
1717    // Add can have at most one carry bit.  Thus we know that the output
1718    // is, at worst, one more bit than the inputs.
1719    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1720    if (Tmp == 1) return 1;  // Early out.
1721
1722    // Special case decrementing a value (ADD X, -1):
1723    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1724      if (CRHS->isAllOnesValue()) {
1725        APInt KnownZero, KnownOne;
1726        APInt Mask = APInt::getAllOnesValue(VTBits);
1727        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1728
1729        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1730        // sign bits set.
1731        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1732          return VTBits;
1733
1734        // If we are subtracting one from a positive number, there is no carry
1735        // out of the result.
1736        if (KnownZero.isNegative())
1737          return Tmp;
1738      }
1739
1740    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1741    if (Tmp2 == 1) return 1;
1742      return std::min(Tmp, Tmp2)-1;
1743    break;
1744
1745  case ISD::SUB:
1746    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1747    if (Tmp2 == 1) return 1;
1748
1749    // Handle NEG.
1750    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1751      if (CLHS->isNullValue()) {
1752        APInt KnownZero, KnownOne;
1753        APInt Mask = APInt::getAllOnesValue(VTBits);
1754        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1755        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1756        // sign bits set.
1757        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1758          return VTBits;
1759
1760        // If the input is known to be positive (the sign bit is known clear),
1761        // the output of the NEG has the same number of sign bits as the input.
1762        if (KnownZero.isNegative())
1763          return Tmp2;
1764
1765        // Otherwise, we treat this like a SUB.
1766      }
1767
1768    // Sub can have at most one carry bit.  Thus we know that the output
1769    // is, at worst, one more bit than the inputs.
1770    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1771    if (Tmp == 1) return 1;  // Early out.
1772      return std::min(Tmp, Tmp2)-1;
1773    break;
1774  case ISD::TRUNCATE:
1775    // FIXME: it's tricky to do anything useful for this, but it is an important
1776    // case for targets like X86.
1777    break;
1778  }
1779
1780  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1781  if (Op.getOpcode() == ISD::LOAD) {
1782    LoadSDNode *LD = cast<LoadSDNode>(Op);
1783    unsigned ExtType = LD->getExtensionType();
1784    switch (ExtType) {
1785    default: break;
1786    case ISD::SEXTLOAD:    // '17' bits known
1787      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1788      return VTBits-Tmp+1;
1789    case ISD::ZEXTLOAD:    // '16' bits known
1790      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1791      return VTBits-Tmp;
1792    }
1793  }
1794
1795  // Allow the target to implement this method for its nodes.
1796  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1797      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1798      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1799      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1800    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1801    if (NumBits > 1) return NumBits;
1802  }
1803
1804  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1805  // use this information.
1806  APInt KnownZero, KnownOne;
1807  APInt Mask = APInt::getAllOnesValue(VTBits);
1808  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1809
1810  if (KnownZero.isNegative()) {        // sign bit is 0
1811    Mask = KnownZero;
1812  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1813    Mask = KnownOne;
1814  } else {
1815    // Nothing known.
1816    return 1;
1817  }
1818
1819  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1820  // the number of identical bits in the top of the input value.
1821  Mask = ~Mask;
1822  Mask <<= Mask.getBitWidth()-VTBits;
1823  // Return # leading zeros.  We use 'min' here in case Val was zero before
1824  // shifting.  We don't want to return '64' as for an i32 "0".
1825  return std::min(VTBits, Mask.countLeadingZeros());
1826}
1827
1828
1829bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1830  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1831  if (!GA) return false;
1832  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1833  if (!GV) return false;
1834  MachineModuleInfo *MMI = getMachineModuleInfo();
1835  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1836}
1837
1838
1839/// getNode - Gets or creates the specified node.
1840///
1841SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1842  FoldingSetNodeID ID;
1843  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1844  void *IP = 0;
1845  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1846    return SDOperand(E, 0);
1847  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1848  CSEMap.InsertNode(N, IP);
1849
1850  AllNodes.push_back(N);
1851  return SDOperand(N, 0);
1852}
1853
1854SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1855                                SDOperand Operand) {
1856  // Constant fold unary operations with an integer constant operand.
1857  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1858    const APInt &Val = C->getAPIntValue();
1859    unsigned BitWidth = MVT::getSizeInBits(VT);
1860    switch (Opcode) {
1861    default: break;
1862    case ISD::SIGN_EXTEND:
1863      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1864    case ISD::ANY_EXTEND:
1865    case ISD::ZERO_EXTEND:
1866    case ISD::TRUNCATE:
1867      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1868    case ISD::UINT_TO_FP:
1869    case ISD::SINT_TO_FP: {
1870      const uint64_t zero[] = {0, 0};
1871      // No compile time operations on this type.
1872      if (VT==MVT::ppcf128)
1873        break;
1874      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1875      (void)apf.convertFromAPInt(Val,
1876                                 Opcode==ISD::SINT_TO_FP,
1877                                 APFloat::rmNearestTiesToEven);
1878      return getConstantFP(apf, VT);
1879    }
1880    case ISD::BIT_CONVERT:
1881      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1882        return getConstantFP(Val.bitsToFloat(), VT);
1883      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1884        return getConstantFP(Val.bitsToDouble(), VT);
1885      break;
1886    case ISD::BSWAP:
1887      return getConstant(Val.byteSwap(), VT);
1888    case ISD::CTPOP:
1889      return getConstant(Val.countPopulation(), VT);
1890    case ISD::CTLZ:
1891      return getConstant(Val.countLeadingZeros(), VT);
1892    case ISD::CTTZ:
1893      return getConstant(Val.countTrailingZeros(), VT);
1894    }
1895  }
1896
1897  // Constant fold unary operations with a floating point constant operand.
1898  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1899    APFloat V = C->getValueAPF();    // make copy
1900    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1901      switch (Opcode) {
1902      case ISD::FNEG:
1903        V.changeSign();
1904        return getConstantFP(V, VT);
1905      case ISD::FABS:
1906        V.clearSign();
1907        return getConstantFP(V, VT);
1908      case ISD::FP_ROUND:
1909      case ISD::FP_EXTEND:
1910        // This can return overflow, underflow, or inexact; we don't care.
1911        // FIXME need to be more flexible about rounding mode.
1912        (void)V.convert(*MVTToAPFloatSemantics(VT),
1913                        APFloat::rmNearestTiesToEven);
1914        return getConstantFP(V, VT);
1915      case ISD::FP_TO_SINT:
1916      case ISD::FP_TO_UINT: {
1917        integerPart x;
1918        assert(integerPartWidth >= 64);
1919        // FIXME need to be more flexible about rounding mode.
1920        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1921                              Opcode==ISD::FP_TO_SINT,
1922                              APFloat::rmTowardZero);
1923        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1924          break;
1925        return getConstant(x, VT);
1926      }
1927      case ISD::BIT_CONVERT:
1928        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1929          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1930        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1931          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1932        break;
1933      }
1934    }
1935  }
1936
1937  unsigned OpOpcode = Operand.Val->getOpcode();
1938  switch (Opcode) {
1939  case ISD::TokenFactor:
1940  case ISD::MERGE_VALUES:
1941    return Operand;         // Factor or merge of one node?  No need.
1942  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1943  case ISD::FP_EXTEND:
1944    assert(MVT::isFloatingPoint(VT) &&
1945           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1946    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1947    if (Operand.getOpcode() == ISD::UNDEF)
1948      return getNode(ISD::UNDEF, VT);
1949    break;
1950  case ISD::SIGN_EXTEND:
1951    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1952           "Invalid SIGN_EXTEND!");
1953    if (Operand.getValueType() == VT) return Operand;   // noop extension
1954    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1955           && "Invalid sext node, dst < src!");
1956    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1957      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1958    break;
1959  case ISD::ZERO_EXTEND:
1960    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1961           "Invalid ZERO_EXTEND!");
1962    if (Operand.getValueType() == VT) return Operand;   // noop extension
1963    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1964           && "Invalid zext node, dst < src!");
1965    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1966      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1967    break;
1968  case ISD::ANY_EXTEND:
1969    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1970           "Invalid ANY_EXTEND!");
1971    if (Operand.getValueType() == VT) return Operand;   // noop extension
1972    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1973           && "Invalid anyext node, dst < src!");
1974    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1975      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1976      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1977    break;
1978  case ISD::TRUNCATE:
1979    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1980           "Invalid TRUNCATE!");
1981    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1982    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1983           && "Invalid truncate node, src < dst!");
1984    if (OpOpcode == ISD::TRUNCATE)
1985      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1986    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1987             OpOpcode == ISD::ANY_EXTEND) {
1988      // If the source is smaller than the dest, we still need an extend.
1989      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1990          < MVT::getSizeInBits(VT))
1991        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1992      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1993               > MVT::getSizeInBits(VT))
1994        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1995      else
1996        return Operand.Val->getOperand(0);
1997    }
1998    break;
1999  case ISD::BIT_CONVERT:
2000    // Basic sanity checking.
2001    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2002           && "Cannot BIT_CONVERT between types of different sizes!");
2003    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2004    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2005      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2006    if (OpOpcode == ISD::UNDEF)
2007      return getNode(ISD::UNDEF, VT);
2008    break;
2009  case ISD::SCALAR_TO_VECTOR:
2010    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2011           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2012           "Illegal SCALAR_TO_VECTOR node!");
2013    if (OpOpcode == ISD::UNDEF)
2014      return getNode(ISD::UNDEF, VT);
2015    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2016    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2017        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2018        Operand.getConstantOperandVal(1) == 0 &&
2019        Operand.getOperand(0).getValueType() == VT)
2020      return Operand.getOperand(0);
2021    break;
2022  case ISD::FNEG:
2023    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2024      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2025                     Operand.Val->getOperand(0));
2026    if (OpOpcode == ISD::FNEG)  // --X -> X
2027      return Operand.Val->getOperand(0);
2028    break;
2029  case ISD::FABS:
2030    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2031      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2032    break;
2033  }
2034
2035  SDNode *N;
2036  SDVTList VTs = getVTList(VT);
2037  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2038    FoldingSetNodeID ID;
2039    SDOperand Ops[1] = { Operand };
2040    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2041    void *IP = 0;
2042    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2043      return SDOperand(E, 0);
2044    N = new UnarySDNode(Opcode, VTs, Operand);
2045    CSEMap.InsertNode(N, IP);
2046  } else {
2047    N = new UnarySDNode(Opcode, VTs, Operand);
2048  }
2049  AllNodes.push_back(N);
2050  return SDOperand(N, 0);
2051}
2052
2053
2054
2055SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2056                                SDOperand N1, SDOperand N2) {
2057  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2058  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2059  switch (Opcode) {
2060  default: break;
2061  case ISD::TokenFactor:
2062    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2063           N2.getValueType() == MVT::Other && "Invalid token factor!");
2064    // Fold trivial token factors.
2065    if (N1.getOpcode() == ISD::EntryToken) return N2;
2066    if (N2.getOpcode() == ISD::EntryToken) return N1;
2067    break;
2068  case ISD::AND:
2069    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2070           N1.getValueType() == VT && "Binary operator types must match!");
2071    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2072    // worth handling here.
2073    if (N2C && N2C->isNullValue())
2074      return N2;
2075    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2076      return N1;
2077    break;
2078  case ISD::OR:
2079  case ISD::XOR:
2080    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2081           N1.getValueType() == VT && "Binary operator types must match!");
2082    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2083    // worth handling here.
2084    if (N2C && N2C->isNullValue())
2085      return N1;
2086    break;
2087  case ISD::UDIV:
2088  case ISD::UREM:
2089  case ISD::MULHU:
2090  case ISD::MULHS:
2091    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2092    // fall through
2093  case ISD::ADD:
2094  case ISD::SUB:
2095  case ISD::MUL:
2096  case ISD::SDIV:
2097  case ISD::SREM:
2098  case ISD::FADD:
2099  case ISD::FSUB:
2100  case ISD::FMUL:
2101  case ISD::FDIV:
2102  case ISD::FREM:
2103    assert(N1.getValueType() == N2.getValueType() &&
2104           N1.getValueType() == VT && "Binary operator types must match!");
2105    break;
2106  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2107    assert(N1.getValueType() == VT &&
2108           MVT::isFloatingPoint(N1.getValueType()) &&
2109           MVT::isFloatingPoint(N2.getValueType()) &&
2110           "Invalid FCOPYSIGN!");
2111    break;
2112  case ISD::SHL:
2113  case ISD::SRA:
2114  case ISD::SRL:
2115  case ISD::ROTL:
2116  case ISD::ROTR:
2117    assert(VT == N1.getValueType() &&
2118           "Shift operators return type must be the same as their first arg");
2119    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2120           VT != MVT::i1 && "Shifts only work on integers");
2121    break;
2122  case ISD::FP_ROUND_INREG: {
2123    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2124    assert(VT == N1.getValueType() && "Not an inreg round!");
2125    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2126           "Cannot FP_ROUND_INREG integer types");
2127    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2128           "Not rounding down!");
2129    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2130    break;
2131  }
2132  case ISD::FP_ROUND:
2133    assert(MVT::isFloatingPoint(VT) &&
2134           MVT::isFloatingPoint(N1.getValueType()) &&
2135           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2136           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2137    if (N1.getValueType() == VT) return N1;  // noop conversion.
2138    break;
2139  case ISD::AssertSext:
2140  case ISD::AssertZext: {
2141    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2142    assert(VT == N1.getValueType() && "Not an inreg extend!");
2143    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2144           "Cannot *_EXTEND_INREG FP types");
2145    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2146           "Not extending!");
2147    if (VT == EVT) return N1; // noop assertion.
2148    break;
2149  }
2150  case ISD::SIGN_EXTEND_INREG: {
2151    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2152    assert(VT == N1.getValueType() && "Not an inreg extend!");
2153    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2154           "Cannot *_EXTEND_INREG FP types");
2155    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2156           "Not extending!");
2157    if (EVT == VT) return N1;  // Not actually extending
2158
2159    if (N1C) {
2160      APInt Val = N1C->getAPIntValue();
2161      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2162      Val <<= Val.getBitWidth()-FromBits;
2163      Val = Val.ashr(Val.getBitWidth()-FromBits);
2164      return getConstant(Val, VT);
2165    }
2166    break;
2167  }
2168  case ISD::EXTRACT_VECTOR_ELT:
2169    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2170
2171    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2172    if (N1.getOpcode() == ISD::UNDEF)
2173      return getNode(ISD::UNDEF, VT);
2174
2175    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2176    // expanding copies of large vectors from registers.
2177    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2178        N1.getNumOperands() > 0) {
2179      unsigned Factor =
2180        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2181      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2182                     N1.getOperand(N2C->getValue() / Factor),
2183                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2184    }
2185
2186    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2187    // expanding large vector constants.
2188    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2189      return N1.getOperand(N2C->getValue());
2190
2191    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2192    // operations are lowered to scalars.
2193    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2194      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2195        if (IEC == N2C)
2196          return N1.getOperand(1);
2197        else
2198          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2199      }
2200    break;
2201  case ISD::EXTRACT_ELEMENT:
2202    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2203    assert(!MVT::isVector(N1.getValueType()) &&
2204           MVT::isInteger(N1.getValueType()) &&
2205           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2206           "EXTRACT_ELEMENT only applies to integers!");
2207
2208    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2209    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2210    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2211    if (N1.getOpcode() == ISD::BUILD_PAIR)
2212      return N1.getOperand(N2C->getValue());
2213
2214    // EXTRACT_ELEMENT of a constant int is also very common.
2215    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2216      unsigned ElementSize = MVT::getSizeInBits(VT);
2217      unsigned Shift = ElementSize * N2C->getValue();
2218      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2219      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2220    }
2221    break;
2222  case ISD::EXTRACT_SUBVECTOR:
2223    if (N1.getValueType() == VT) // Trivial extraction.
2224      return N1;
2225    break;
2226  }
2227
2228  if (N1C) {
2229    if (N2C) {
2230      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2231      switch (Opcode) {
2232      case ISD::ADD: return getConstant(C1 + C2, VT);
2233      case ISD::SUB: return getConstant(C1 - C2, VT);
2234      case ISD::MUL: return getConstant(C1 * C2, VT);
2235      case ISD::UDIV:
2236        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2237        break;
2238      case ISD::UREM :
2239        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2240        break;
2241      case ISD::SDIV :
2242        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2243        break;
2244      case ISD::SREM :
2245        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2246        break;
2247      case ISD::AND  : return getConstant(C1 & C2, VT);
2248      case ISD::OR   : return getConstant(C1 | C2, VT);
2249      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2250      case ISD::SHL  : return getConstant(C1 << C2, VT);
2251      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2252      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2253      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2254      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2255      default: break;
2256      }
2257    } else {      // Cannonicalize constant to RHS if commutative
2258      if (isCommutativeBinOp(Opcode)) {
2259        std::swap(N1C, N2C);
2260        std::swap(N1, N2);
2261      }
2262    }
2263  }
2264
2265  // Constant fold FP operations.
2266  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2267  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2268  if (N1CFP) {
2269    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2270      // Cannonicalize constant to RHS if commutative
2271      std::swap(N1CFP, N2CFP);
2272      std::swap(N1, N2);
2273    } else if (N2CFP && VT != MVT::ppcf128) {
2274      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2275      APFloat::opStatus s;
2276      switch (Opcode) {
2277      case ISD::FADD:
2278        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2279        if (s != APFloat::opInvalidOp)
2280          return getConstantFP(V1, VT);
2281        break;
2282      case ISD::FSUB:
2283        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2284        if (s!=APFloat::opInvalidOp)
2285          return getConstantFP(V1, VT);
2286        break;
2287      case ISD::FMUL:
2288        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2289        if (s!=APFloat::opInvalidOp)
2290          return getConstantFP(V1, VT);
2291        break;
2292      case ISD::FDIV:
2293        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2294        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2295          return getConstantFP(V1, VT);
2296        break;
2297      case ISD::FREM :
2298        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2299        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2300          return getConstantFP(V1, VT);
2301        break;
2302      case ISD::FCOPYSIGN:
2303        V1.copySign(V2);
2304        return getConstantFP(V1, VT);
2305      default: break;
2306      }
2307    }
2308  }
2309
2310  // Canonicalize an UNDEF to the RHS, even over a constant.
2311  if (N1.getOpcode() == ISD::UNDEF) {
2312    if (isCommutativeBinOp(Opcode)) {
2313      std::swap(N1, N2);
2314    } else {
2315      switch (Opcode) {
2316      case ISD::FP_ROUND_INREG:
2317      case ISD::SIGN_EXTEND_INREG:
2318      case ISD::SUB:
2319      case ISD::FSUB:
2320      case ISD::FDIV:
2321      case ISD::FREM:
2322      case ISD::SRA:
2323        return N1;     // fold op(undef, arg2) -> undef
2324      case ISD::UDIV:
2325      case ISD::SDIV:
2326      case ISD::UREM:
2327      case ISD::SREM:
2328      case ISD::SRL:
2329      case ISD::SHL:
2330        if (!MVT::isVector(VT))
2331          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2332        // For vectors, we can't easily build an all zero vector, just return
2333        // the LHS.
2334        return N2;
2335      }
2336    }
2337  }
2338
2339  // Fold a bunch of operators when the RHS is undef.
2340  if (N2.getOpcode() == ISD::UNDEF) {
2341    switch (Opcode) {
2342    case ISD::XOR:
2343      if (N1.getOpcode() == ISD::UNDEF)
2344        // Handle undef ^ undef -> 0 special case. This is a common
2345        // idiom (misuse).
2346        return getConstant(0, VT);
2347      // fallthrough
2348    case ISD::ADD:
2349    case ISD::ADDC:
2350    case ISD::ADDE:
2351    case ISD::SUB:
2352    case ISD::FADD:
2353    case ISD::FSUB:
2354    case ISD::FMUL:
2355    case ISD::FDIV:
2356    case ISD::FREM:
2357    case ISD::UDIV:
2358    case ISD::SDIV:
2359    case ISD::UREM:
2360    case ISD::SREM:
2361      return N2;       // fold op(arg1, undef) -> undef
2362    case ISD::MUL:
2363    case ISD::AND:
2364    case ISD::SRL:
2365    case ISD::SHL:
2366      if (!MVT::isVector(VT))
2367        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2368      // For vectors, we can't easily build an all zero vector, just return
2369      // the LHS.
2370      return N1;
2371    case ISD::OR:
2372      if (!MVT::isVector(VT))
2373        return getConstant(MVT::getIntVTBitMask(VT), VT);
2374      // For vectors, we can't easily build an all one vector, just return
2375      // the LHS.
2376      return N1;
2377    case ISD::SRA:
2378      return N1;
2379    }
2380  }
2381
2382  // Memoize this node if possible.
2383  SDNode *N;
2384  SDVTList VTs = getVTList(VT);
2385  if (VT != MVT::Flag) {
2386    SDOperand Ops[] = { N1, N2 };
2387    FoldingSetNodeID ID;
2388    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2389    void *IP = 0;
2390    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2391      return SDOperand(E, 0);
2392    N = new BinarySDNode(Opcode, VTs, N1, N2);
2393    CSEMap.InsertNode(N, IP);
2394  } else {
2395    N = new BinarySDNode(Opcode, VTs, N1, N2);
2396  }
2397
2398  AllNodes.push_back(N);
2399  return SDOperand(N, 0);
2400}
2401
2402SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2403                                SDOperand N1, SDOperand N2, SDOperand N3) {
2404  // Perform various simplifications.
2405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2406  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2407  switch (Opcode) {
2408  case ISD::SETCC: {
2409    // Use FoldSetCC to simplify SETCC's.
2410    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2411    if (Simp.Val) return Simp;
2412    break;
2413  }
2414  case ISD::SELECT:
2415    if (N1C) {
2416     if (N1C->getValue())
2417        return N2;             // select true, X, Y -> X
2418      else
2419        return N3;             // select false, X, Y -> Y
2420    }
2421
2422    if (N2 == N3) return N2;   // select C, X, X -> X
2423    break;
2424  case ISD::BRCOND:
2425    if (N2C) {
2426      if (N2C->getValue()) // Unconditional branch
2427        return getNode(ISD::BR, MVT::Other, N1, N3);
2428      else
2429        return N1;         // Never-taken branch
2430    }
2431    break;
2432  case ISD::VECTOR_SHUFFLE:
2433    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2434           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2435           N3.getOpcode() == ISD::BUILD_VECTOR &&
2436           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2437           "Illegal VECTOR_SHUFFLE node!");
2438    break;
2439  case ISD::BIT_CONVERT:
2440    // Fold bit_convert nodes from a type to themselves.
2441    if (N1.getValueType() == VT)
2442      return N1;
2443    break;
2444  }
2445
2446  // Memoize node if it doesn't produce a flag.
2447  SDNode *N;
2448  SDVTList VTs = getVTList(VT);
2449  if (VT != MVT::Flag) {
2450    SDOperand Ops[] = { N1, N2, N3 };
2451    FoldingSetNodeID ID;
2452    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2453    void *IP = 0;
2454    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2455      return SDOperand(E, 0);
2456    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2457    CSEMap.InsertNode(N, IP);
2458  } else {
2459    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2460  }
2461  AllNodes.push_back(N);
2462  return SDOperand(N, 0);
2463}
2464
2465SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2466                                SDOperand N1, SDOperand N2, SDOperand N3,
2467                                SDOperand N4) {
2468  SDOperand Ops[] = { N1, N2, N3, N4 };
2469  return getNode(Opcode, VT, Ops, 4);
2470}
2471
2472SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2473                                SDOperand N1, SDOperand N2, SDOperand N3,
2474                                SDOperand N4, SDOperand N5) {
2475  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2476  return getNode(Opcode, VT, Ops, 5);
2477}
2478
2479/// getMemsetValue - Vectorized representation of the memset value
2480/// operand.
2481static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2482                                SelectionDAG &DAG) {
2483  MVT::ValueType CurVT = VT;
2484  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2485    uint64_t Val   = C->getValue() & 255;
2486    unsigned Shift = 8;
2487    while (CurVT != MVT::i8) {
2488      Val = (Val << Shift) | Val;
2489      Shift <<= 1;
2490      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2491    }
2492    return DAG.getConstant(Val, VT);
2493  } else {
2494    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2495    unsigned Shift = 8;
2496    while (CurVT != MVT::i8) {
2497      Value =
2498        DAG.getNode(ISD::OR, VT,
2499                    DAG.getNode(ISD::SHL, VT, Value,
2500                                DAG.getConstant(Shift, MVT::i8)), Value);
2501      Shift <<= 1;
2502      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2503    }
2504
2505    return Value;
2506  }
2507}
2508
2509/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2510/// used when a memcpy is turned into a memset when the source is a constant
2511/// string ptr.
2512static SDOperand getMemsetStringVal(MVT::ValueType VT,
2513                                    SelectionDAG &DAG,
2514                                    const TargetLowering &TLI,
2515                                    std::string &Str, unsigned Offset) {
2516  uint64_t Val = 0;
2517  unsigned MSB = MVT::getSizeInBits(VT) / 8;
2518  if (TLI.isLittleEndian())
2519    Offset = Offset + MSB - 1;
2520  for (unsigned i = 0; i != MSB; ++i) {
2521    Val = (Val << 8) | (unsigned char)Str[Offset];
2522    Offset += TLI.isLittleEndian() ? -1 : 1;
2523  }
2524  return DAG.getConstant(Val, VT);
2525}
2526
2527/// getMemBasePlusOffset - Returns base and offset node for the
2528static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2529                                      SelectionDAG &DAG) {
2530  MVT::ValueType VT = Base.getValueType();
2531  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2532}
2533
2534/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2535/// to replace the memset / memcpy is below the threshold. It also returns the
2536/// types of the sequence of memory ops to perform memset / memcpy.
2537static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2538                                     unsigned Limit, uint64_t Size,
2539                                     unsigned Align,
2540                                     const TargetLowering &TLI) {
2541  MVT::ValueType VT;
2542
2543  if (TLI.allowsUnalignedMemoryAccesses()) {
2544    VT = MVT::i64;
2545  } else {
2546    switch (Align & 7) {
2547    case 0:
2548      VT = MVT::i64;
2549      break;
2550    case 4:
2551      VT = MVT::i32;
2552      break;
2553    case 2:
2554      VT = MVT::i16;
2555      break;
2556    default:
2557      VT = MVT::i8;
2558      break;
2559    }
2560  }
2561
2562  MVT::ValueType LVT = MVT::i64;
2563  while (!TLI.isTypeLegal(LVT))
2564    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2565  assert(MVT::isInteger(LVT));
2566
2567  if (VT > LVT)
2568    VT = LVT;
2569
2570  unsigned NumMemOps = 0;
2571  while (Size != 0) {
2572    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2573    while (VTSize > Size) {
2574      VT = (MVT::ValueType)((unsigned)VT - 1);
2575      VTSize >>= 1;
2576    }
2577    assert(MVT::isInteger(VT));
2578
2579    if (++NumMemOps > Limit)
2580      return false;
2581    MemOps.push_back(VT);
2582    Size -= VTSize;
2583  }
2584
2585  return true;
2586}
2587
2588static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2589                                         SDOperand Chain, SDOperand Dst,
2590                                         SDOperand Src, uint64_t Size,
2591                                         unsigned Align,
2592                                         bool AlwaysInline,
2593                                         const Value *DstSV, uint64_t DstOff,
2594                                         const Value *SrcSV, uint64_t SrcOff) {
2595  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2596
2597  // Expand memcpy to a series of store ops if the size operand falls below
2598  // a certain threshold.
2599  std::vector<MVT::ValueType> MemOps;
2600  uint64_t Limit = -1;
2601  if (!AlwaysInline)
2602    Limit = TLI.getMaxStoresPerMemcpy();
2603  if (!MeetsMaxMemopRequirement(MemOps, Limit, Size, Align, TLI))
2604    return SDOperand();
2605
2606  SmallVector<SDOperand, 8> OutChains;
2607
2608  unsigned NumMemOps = MemOps.size();
2609  unsigned SrcDelta = 0;
2610  GlobalAddressSDNode *G = NULL;
2611  std::string Str;
2612  bool CopyFromStr = false;
2613
2614  if (Src.getOpcode() == ISD::GlobalAddress)
2615    G = cast<GlobalAddressSDNode>(Src);
2616  else if (Src.getOpcode() == ISD::ADD &&
2617           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2618           Src.getOperand(1).getOpcode() == ISD::Constant) {
2619    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2620    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2621  }
2622  if (G) {
2623    GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2624    if (GV && GV->isConstant()) {
2625      Str = GV->getStringValue(false);
2626      if (!Str.empty()) {
2627        CopyFromStr = true;
2628        SrcOff += SrcDelta;
2629      }
2630    }
2631  }
2632
2633  for (unsigned i = 0; i < NumMemOps; i++) {
2634    MVT::ValueType VT = MemOps[i];
2635    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2636    SDOperand Value, Store;
2637
2638    if (CopyFromStr) {
2639      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2640      Store =
2641        DAG.getStore(Chain, Value,
2642                     getMemBasePlusOffset(Dst, DstOff, DAG),
2643                     DstSV, DstOff);
2644    } else {
2645      Value = DAG.getLoad(VT, Chain,
2646                          getMemBasePlusOffset(Src, SrcOff, DAG),
2647                          SrcSV, SrcOff, false, Align);
2648      Store =
2649        DAG.getStore(Chain, Value,
2650                     getMemBasePlusOffset(Dst, DstOff, DAG),
2651                     DstSV, DstOff, false, Align);
2652    }
2653    OutChains.push_back(Store);
2654    SrcOff += VTSize;
2655    DstOff += VTSize;
2656  }
2657
2658  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2659                     &OutChains[0], OutChains.size());
2660}
2661
2662static SDOperand getMemsetStores(SelectionDAG &DAG,
2663                                 SDOperand Chain, SDOperand Dst,
2664                                 SDOperand Src, uint64_t Size,
2665                                 unsigned Align,
2666                                 const Value *DstSV, uint64_t DstOff) {
2667  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2668
2669  // Expand memset to a series of load/store ops if the size operand
2670  // falls below a certain threshold.
2671  std::vector<MVT::ValueType> MemOps;
2672  if (!MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2673                                Size, Align, TLI))
2674    return SDOperand();
2675
2676  SmallVector<SDOperand, 8> OutChains;
2677
2678  unsigned NumMemOps = MemOps.size();
2679  for (unsigned i = 0; i < NumMemOps; i++) {
2680    MVT::ValueType VT = MemOps[i];
2681    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2682    SDOperand Value = getMemsetValue(Src, VT, DAG);
2683    SDOperand Store = DAG.getStore(Chain, Value,
2684                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2685                                   DstSV, DstOff);
2686    OutChains.push_back(Store);
2687    DstOff += VTSize;
2688  }
2689
2690  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2691                     &OutChains[0], OutChains.size());
2692}
2693
2694SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2695                                  SDOperand Src, SDOperand Size,
2696                                  unsigned Align, bool AlwaysInline,
2697                                  const Value *DstSV, uint64_t DstOff,
2698                                  const Value *SrcSV, uint64_t SrcOff) {
2699
2700  // Check to see if we should lower the memcpy to loads and stores first.
2701  // For cases within the target-specified limits, this is the best choice.
2702  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2703  if (ConstantSize) {
2704    // Memcpy with size zero? Just return the original chain.
2705    if (ConstantSize->isNullValue())
2706      return Chain;
2707
2708    SDOperand Result =
2709      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2710                              Align, false, DstSV, DstOff, SrcSV, SrcOff);
2711    if (Result.Val)
2712      return Result;
2713  }
2714
2715  // Then check to see if we should lower the memcpy with target-specific
2716  // code. If the target chooses to do this, this is the next best.
2717  SDOperand Result =
2718    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2719                                AlwaysInline,
2720                                DstSV, DstOff, SrcSV, SrcOff);
2721  if (Result.Val)
2722    return Result;
2723
2724  // If we really need inline code and the target declined to provide it,
2725  // use a (potentially long) sequence of loads and stores.
2726  if (AlwaysInline) {
2727    assert(ConstantSize && "AlwaysInline requires a constant size!");
2728    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2729                                   ConstantSize->getValue(), Align, true,
2730                                   DstSV, DstOff, SrcSV, SrcOff);
2731  }
2732
2733  // Emit a library call.
2734  TargetLowering::ArgListTy Args;
2735  TargetLowering::ArgListEntry Entry;
2736  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2737  Entry.Node = Dst; Args.push_back(Entry);
2738  Entry.Node = Src; Args.push_back(Entry);
2739  Entry.Node = Size; Args.push_back(Entry);
2740  std::pair<SDOperand,SDOperand> CallResult =
2741    TLI.LowerCallTo(Chain, Type::VoidTy,
2742                    false, false, false, CallingConv::C, false,
2743                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2744                    Args, *this);
2745  return CallResult.second;
2746}
2747
2748SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2749                                   SDOperand Src, SDOperand Size,
2750                                   unsigned Align,
2751                                   const Value *DstSV, uint64_t DstOff,
2752                                   const Value *SrcSV, uint64_t SrcOff) {
2753
2754  // TODO: Optimize small memmove cases with simple loads and stores,
2755  // ensuring that all loads precede all stores. This can cause severe
2756  // register pressure, so targets should be careful with the size limit.
2757
2758  // Then check to see if we should lower the memmove with target-specific
2759  // code. If the target chooses to do this, this is the next best.
2760  SDOperand Result =
2761    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2762                                 DstSV, DstOff, SrcSV, SrcOff);
2763  if (Result.Val)
2764    return Result;
2765
2766  // Emit a library call.
2767  TargetLowering::ArgListTy Args;
2768  TargetLowering::ArgListEntry Entry;
2769  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2770  Entry.Node = Dst; Args.push_back(Entry);
2771  Entry.Node = Src; Args.push_back(Entry);
2772  Entry.Node = Size; Args.push_back(Entry);
2773  std::pair<SDOperand,SDOperand> CallResult =
2774    TLI.LowerCallTo(Chain, Type::VoidTy,
2775                    false, false, false, CallingConv::C, false,
2776                    getExternalSymbol("memmove", TLI.getPointerTy()),
2777                    Args, *this);
2778  return CallResult.second;
2779}
2780
2781SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2782                                  SDOperand Src, SDOperand Size,
2783                                  unsigned Align,
2784                                  const Value *DstSV, uint64_t DstOff) {
2785
2786  // Check to see if we should lower the memset to stores first.
2787  // For cases within the target-specified limits, this is the best choice.
2788  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2789  if (ConstantSize) {
2790    // Memset with size zero? Just return the original chain.
2791    if (ConstantSize->isNullValue())
2792      return Chain;
2793
2794    SDOperand Result =
2795      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2796                      DstSV, DstOff);
2797    if (Result.Val)
2798      return Result;
2799  }
2800
2801  // Then check to see if we should lower the memset with target-specific
2802  // code. If the target chooses to do this, this is the next best.
2803  SDOperand Result =
2804    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2805                                DstSV, DstOff);
2806  if (Result.Val)
2807    return Result;
2808
2809  // Emit a library call.
2810  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2811  TargetLowering::ArgListTy Args;
2812  TargetLowering::ArgListEntry Entry;
2813  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2814  Args.push_back(Entry);
2815  // Extend or truncate the argument to be an i32 value for the call.
2816  if (Src.getValueType() > MVT::i32)
2817    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2818  else
2819    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2820  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2821  Args.push_back(Entry);
2822  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2823  Args.push_back(Entry);
2824  std::pair<SDOperand,SDOperand> CallResult =
2825    TLI.LowerCallTo(Chain, Type::VoidTy,
2826                    false, false, false, CallingConv::C, false,
2827                    getExternalSymbol("memset", TLI.getPointerTy()),
2828                    Args, *this);
2829  return CallResult.second;
2830}
2831
2832SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2833                                  SDOperand Ptr, SDOperand Cmp,
2834                                  SDOperand Swp, MVT::ValueType VT) {
2835  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2836  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2837  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2838  FoldingSetNodeID ID;
2839  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2840  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2841  ID.AddInteger((unsigned int)VT);
2842  void* IP = 0;
2843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2844    return SDOperand(E, 0);
2845  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2846  CSEMap.InsertNode(N, IP);
2847  AllNodes.push_back(N);
2848  return SDOperand(N, 0);
2849}
2850
2851SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2852                                  SDOperand Ptr, SDOperand Val,
2853                                  MVT::ValueType VT) {
2854  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2855         && "Invalid Atomic Op");
2856  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2857  FoldingSetNodeID ID;
2858  SDOperand Ops[] = {Chain, Ptr, Val};
2859  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2860  ID.AddInteger((unsigned int)VT);
2861  void* IP = 0;
2862  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2863    return SDOperand(E, 0);
2864  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2865  CSEMap.InsertNode(N, IP);
2866  AllNodes.push_back(N);
2867  return SDOperand(N, 0);
2868}
2869
2870SDOperand
2871SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
2872                      MVT::ValueType VT, SDOperand Chain,
2873                      SDOperand Ptr, SDOperand Offset,
2874                      const Value *SV, int SVOffset, MVT::ValueType EVT,
2875                      bool isVolatile, unsigned Alignment) {
2876  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2877    const Type *Ty = 0;
2878    if (VT != MVT::iPTR) {
2879      Ty = MVT::getTypeForValueType(VT);
2880    } else if (SV) {
2881      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2882      assert(PT && "Value for load must be a pointer");
2883      Ty = PT->getElementType();
2884    }
2885    assert(Ty && "Could not get type information for load");
2886    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2887  }
2888
2889  if (VT == EVT) {
2890    ExtType = ISD::NON_EXTLOAD;
2891  } else if (ExtType == ISD::NON_EXTLOAD) {
2892    assert(VT == EVT && "Non-extending load from different memory type!");
2893  } else {
2894    // Extending load.
2895    if (MVT::isVector(VT))
2896      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2897    else
2898      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2899             "Should only be an extending load, not truncating!");
2900    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2901           "Cannot sign/zero extend a FP/Vector load!");
2902    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2903           "Cannot convert from FP to Int or Int -> FP!");
2904  }
2905
2906  bool Indexed = AM != ISD::UNINDEXED;
2907  assert(Indexed || Offset.getOpcode() == ISD::UNDEF &&
2908         "Unindexed load with an offset!");
2909
2910  SDVTList VTs = Indexed ?
2911    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
2912  SDOperand Ops[] = { Chain, Ptr, Offset };
2913  FoldingSetNodeID ID;
2914  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2915  ID.AddInteger(AM);
2916  ID.AddInteger(ExtType);
2917  ID.AddInteger((unsigned int)EVT);
2918  ID.AddInteger(Alignment);
2919  ID.AddInteger(isVolatile);
2920  void *IP = 0;
2921  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2922    return SDOperand(E, 0);
2923  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
2924                             Alignment, isVolatile);
2925  CSEMap.InsertNode(N, IP);
2926  AllNodes.push_back(N);
2927  return SDOperand(N, 0);
2928}
2929
2930SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2931                                SDOperand Chain, SDOperand Ptr,
2932                                const Value *SV, int SVOffset,
2933                                bool isVolatile, unsigned Alignment) {
2934  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2935  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
2936                 SV, SVOffset, VT, isVolatile, Alignment);
2937}
2938
2939SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2940                                   SDOperand Chain, SDOperand Ptr,
2941                                   const Value *SV,
2942                                   int SVOffset, MVT::ValueType EVT,
2943                                   bool isVolatile, unsigned Alignment) {
2944  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2945  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
2946                 SV, SVOffset, EVT, isVolatile, Alignment);
2947}
2948
2949SDOperand
2950SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2951                             SDOperand Offset, ISD::MemIndexedMode AM) {
2952  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2953  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2954         "Load is already a indexed load!");
2955  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
2956                 LD->getChain(), Base, Offset, LD->getSrcValue(),
2957                 LD->getSrcValueOffset(), LD->getMemoryVT(),
2958                 LD->isVolatile(), LD->getAlignment());
2959}
2960
2961SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2962                                 SDOperand Ptr, const Value *SV, int SVOffset,
2963                                 bool isVolatile, unsigned Alignment) {
2964  MVT::ValueType VT = Val.getValueType();
2965
2966  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2967    const Type *Ty = 0;
2968    if (VT != MVT::iPTR) {
2969      Ty = MVT::getTypeForValueType(VT);
2970    } else if (SV) {
2971      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2972      assert(PT && "Value for store must be a pointer");
2973      Ty = PT->getElementType();
2974    }
2975    assert(Ty && "Could not get type information for store");
2976    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2977  }
2978  SDVTList VTs = getVTList(MVT::Other);
2979  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2980  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2981  FoldingSetNodeID ID;
2982  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2983  ID.AddInteger(ISD::UNINDEXED);
2984  ID.AddInteger(false);
2985  ID.AddInteger((unsigned int)VT);
2986  ID.AddInteger(Alignment);
2987  ID.AddInteger(isVolatile);
2988  void *IP = 0;
2989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2990    return SDOperand(E, 0);
2991  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2992                              VT, SV, SVOffset, Alignment, isVolatile);
2993  CSEMap.InsertNode(N, IP);
2994  AllNodes.push_back(N);
2995  return SDOperand(N, 0);
2996}
2997
2998SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2999                                      SDOperand Ptr, const Value *SV,
3000                                      int SVOffset, MVT::ValueType SVT,
3001                                      bool isVolatile, unsigned Alignment) {
3002  MVT::ValueType VT = Val.getValueType();
3003
3004  if (VT == SVT)
3005    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3006
3007  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3008         "Not a truncation?");
3009  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3010         "Can't do FP-INT conversion!");
3011
3012  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3013    const Type *Ty = 0;
3014    if (VT != MVT::iPTR) {
3015      Ty = MVT::getTypeForValueType(VT);
3016    } else if (SV) {
3017      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3018      assert(PT && "Value for store must be a pointer");
3019      Ty = PT->getElementType();
3020    }
3021    assert(Ty && "Could not get type information for store");
3022    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3023  }
3024  SDVTList VTs = getVTList(MVT::Other);
3025  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3026  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3027  FoldingSetNodeID ID;
3028  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3029  ID.AddInteger(ISD::UNINDEXED);
3030  ID.AddInteger(1);
3031  ID.AddInteger((unsigned int)SVT);
3032  ID.AddInteger(Alignment);
3033  ID.AddInteger(isVolatile);
3034  void *IP = 0;
3035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3036    return SDOperand(E, 0);
3037  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3038                              SVT, SV, SVOffset, Alignment, isVolatile);
3039  CSEMap.InsertNode(N, IP);
3040  AllNodes.push_back(N);
3041  return SDOperand(N, 0);
3042}
3043
3044SDOperand
3045SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3046                              SDOperand Offset, ISD::MemIndexedMode AM) {
3047  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3048  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3049         "Store is already a indexed store!");
3050  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3051  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3052  FoldingSetNodeID ID;
3053  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3054  ID.AddInteger(AM);
3055  ID.AddInteger(ST->isTruncatingStore());
3056  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3057  ID.AddInteger(ST->getAlignment());
3058  ID.AddInteger(ST->isVolatile());
3059  void *IP = 0;
3060  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3061    return SDOperand(E, 0);
3062  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3063                              ST->isTruncatingStore(), ST->getMemoryVT(),
3064                              ST->getSrcValue(), ST->getSrcValueOffset(),
3065                              ST->getAlignment(), ST->isVolatile());
3066  CSEMap.InsertNode(N, IP);
3067  AllNodes.push_back(N);
3068  return SDOperand(N, 0);
3069}
3070
3071SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3072                                 SDOperand Chain, SDOperand Ptr,
3073                                 SDOperand SV) {
3074  SDOperand Ops[] = { Chain, Ptr, SV };
3075  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3076}
3077
3078SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3079                                SDOperandPtr Ops, unsigned NumOps) {
3080  switch (NumOps) {
3081  case 0: return getNode(Opcode, VT);
3082  case 1: return getNode(Opcode, VT, Ops[0]);
3083  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3084  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3085  default: break;
3086  }
3087
3088  switch (Opcode) {
3089  default: break;
3090  case ISD::SELECT_CC: {
3091    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3092    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3093           "LHS and RHS of condition must have same type!");
3094    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3095           "True and False arms of SelectCC must have same type!");
3096    assert(Ops[2].getValueType() == VT &&
3097           "select_cc node must be of same type as true and false value!");
3098    break;
3099  }
3100  case ISD::BR_CC: {
3101    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3102    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3103           "LHS/RHS of comparison should match types!");
3104    break;
3105  }
3106  }
3107
3108  // Memoize nodes.
3109  SDNode *N;
3110  SDVTList VTs = getVTList(VT);
3111  if (VT != MVT::Flag) {
3112    FoldingSetNodeID ID;
3113    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3114    void *IP = 0;
3115    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3116      return SDOperand(E, 0);
3117    N = new SDNode(Opcode, VTs, Ops, NumOps);
3118    CSEMap.InsertNode(N, IP);
3119  } else {
3120    N = new SDNode(Opcode, VTs, Ops, NumOps);
3121  }
3122  AllNodes.push_back(N);
3123  return SDOperand(N, 0);
3124}
3125
3126SDOperand SelectionDAG::getNode(unsigned Opcode,
3127                                std::vector<MVT::ValueType> &ResultTys,
3128                                SDOperandPtr Ops, unsigned NumOps) {
3129  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3130                 Ops, NumOps);
3131}
3132
3133SDOperand SelectionDAG::getNode(unsigned Opcode,
3134                                const MVT::ValueType *VTs, unsigned NumVTs,
3135                                SDOperandPtr Ops, unsigned NumOps) {
3136  if (NumVTs == 1)
3137    return getNode(Opcode, VTs[0], Ops, NumOps);
3138  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3139}
3140
3141SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3142                                SDOperandPtr Ops, unsigned NumOps) {
3143  if (VTList.NumVTs == 1)
3144    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3145
3146  switch (Opcode) {
3147  // FIXME: figure out how to safely handle things like
3148  // int foo(int x) { return 1 << (x & 255); }
3149  // int bar() { return foo(256); }
3150#if 0
3151  case ISD::SRA_PARTS:
3152  case ISD::SRL_PARTS:
3153  case ISD::SHL_PARTS:
3154    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3155        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3156      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3157    else if (N3.getOpcode() == ISD::AND)
3158      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3159        // If the and is only masking out bits that cannot effect the shift,
3160        // eliminate the and.
3161        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3162        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3163          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3164      }
3165    break;
3166#endif
3167  }
3168
3169  // Memoize the node unless it returns a flag.
3170  SDNode *N;
3171  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3172    FoldingSetNodeID ID;
3173    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3174    void *IP = 0;
3175    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3176      return SDOperand(E, 0);
3177    if (NumOps == 1)
3178      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3179    else if (NumOps == 2)
3180      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3181    else if (NumOps == 3)
3182      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3183    else
3184      N = new SDNode(Opcode, VTList, Ops, NumOps);
3185    CSEMap.InsertNode(N, IP);
3186  } else {
3187    if (NumOps == 1)
3188      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3189    else if (NumOps == 2)
3190      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3191    else if (NumOps == 3)
3192      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3193    else
3194      N = new SDNode(Opcode, VTList, Ops, NumOps);
3195  }
3196  AllNodes.push_back(N);
3197  return SDOperand(N, 0);
3198}
3199
3200SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3201  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3202}
3203
3204SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3205                                SDOperand N1) {
3206  SDOperand Ops[] = { N1 };
3207  return getNode(Opcode, VTList, Ops, 1);
3208}
3209
3210SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3211                                SDOperand N1, SDOperand N2) {
3212  SDOperand Ops[] = { N1, N2 };
3213  return getNode(Opcode, VTList, Ops, 2);
3214}
3215
3216SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3217                                SDOperand N1, SDOperand N2, SDOperand N3) {
3218  SDOperand Ops[] = { N1, N2, N3 };
3219  return getNode(Opcode, VTList, Ops, 3);
3220}
3221
3222SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3223                                SDOperand N1, SDOperand N2, SDOperand N3,
3224                                SDOperand N4) {
3225  SDOperand Ops[] = { N1, N2, N3, N4 };
3226  return getNode(Opcode, VTList, Ops, 4);
3227}
3228
3229SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3230                                SDOperand N1, SDOperand N2, SDOperand N3,
3231                                SDOperand N4, SDOperand N5) {
3232  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3233  return getNode(Opcode, VTList, Ops, 5);
3234}
3235
3236SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3237  return makeVTList(SDNode::getValueTypeList(VT), 1);
3238}
3239
3240SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3241  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3242       E = VTList.end(); I != E; ++I) {
3243    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3244      return makeVTList(&(*I)[0], 2);
3245  }
3246  std::vector<MVT::ValueType> V;
3247  V.push_back(VT1);
3248  V.push_back(VT2);
3249  VTList.push_front(V);
3250  return makeVTList(&(*VTList.begin())[0], 2);
3251}
3252SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3253                                 MVT::ValueType VT3) {
3254  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3255       E = VTList.end(); I != E; ++I) {
3256    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3257        (*I)[2] == VT3)
3258      return makeVTList(&(*I)[0], 3);
3259  }
3260  std::vector<MVT::ValueType> V;
3261  V.push_back(VT1);
3262  V.push_back(VT2);
3263  V.push_back(VT3);
3264  VTList.push_front(V);
3265  return makeVTList(&(*VTList.begin())[0], 3);
3266}
3267
3268SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3269  switch (NumVTs) {
3270    case 0: assert(0 && "Cannot have nodes without results!");
3271    case 1: return getVTList(VTs[0]);
3272    case 2: return getVTList(VTs[0], VTs[1]);
3273    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3274    default: break;
3275  }
3276
3277  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3278       E = VTList.end(); I != E; ++I) {
3279    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3280
3281    bool NoMatch = false;
3282    for (unsigned i = 2; i != NumVTs; ++i)
3283      if (VTs[i] != (*I)[i]) {
3284        NoMatch = true;
3285        break;
3286      }
3287    if (!NoMatch)
3288      return makeVTList(&*I->begin(), NumVTs);
3289  }
3290
3291  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3292  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3293}
3294
3295
3296/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3297/// specified operands.  If the resultant node already exists in the DAG,
3298/// this does not modify the specified node, instead it returns the node that
3299/// already exists.  If the resultant node does not exist in the DAG, the
3300/// input node is returned.  As a degenerate case, if you specify the same
3301/// input operands as the node already has, the input node is returned.
3302SDOperand SelectionDAG::
3303UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3304  SDNode *N = InN.Val;
3305  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3306
3307  // Check to see if there is no change.
3308  if (Op == N->getOperand(0)) return InN;
3309
3310  // See if the modified node already exists.
3311  void *InsertPos = 0;
3312  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3313    return SDOperand(Existing, InN.ResNo);
3314
3315  // Nope it doesn't.  Remove the node from it's current place in the maps.
3316  if (InsertPos)
3317    RemoveNodeFromCSEMaps(N);
3318
3319  // Now we update the operands.
3320  N->OperandList[0].getVal()->removeUser(0, N);
3321  N->OperandList[0] = Op;
3322  N->OperandList[0].setUser(N);
3323  Op.Val->addUser(0, N);
3324
3325  // If this gets put into a CSE map, add it.
3326  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3327  return InN;
3328}
3329
3330SDOperand SelectionDAG::
3331UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3332  SDNode *N = InN.Val;
3333  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3334
3335  // Check to see if there is no change.
3336  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3337    return InN;   // No operands changed, just return the input node.
3338
3339  // See if the modified node already exists.
3340  void *InsertPos = 0;
3341  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3342    return SDOperand(Existing, InN.ResNo);
3343
3344  // Nope it doesn't.  Remove the node from it's current place in the maps.
3345  if (InsertPos)
3346    RemoveNodeFromCSEMaps(N);
3347
3348  // Now we update the operands.
3349  if (N->OperandList[0] != Op1) {
3350    N->OperandList[0].getVal()->removeUser(0, N);
3351    N->OperandList[0] = Op1;
3352    N->OperandList[0].setUser(N);
3353    Op1.Val->addUser(0, N);
3354  }
3355  if (N->OperandList[1] != Op2) {
3356    N->OperandList[1].getVal()->removeUser(1, N);
3357    N->OperandList[1] = Op2;
3358    N->OperandList[1].setUser(N);
3359    Op2.Val->addUser(1, N);
3360  }
3361
3362  // If this gets put into a CSE map, add it.
3363  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3364  return InN;
3365}
3366
3367SDOperand SelectionDAG::
3368UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3369  SDOperand Ops[] = { Op1, Op2, Op3 };
3370  return UpdateNodeOperands(N, Ops, 3);
3371}
3372
3373SDOperand SelectionDAG::
3374UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3375                   SDOperand Op3, SDOperand Op4) {
3376  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3377  return UpdateNodeOperands(N, Ops, 4);
3378}
3379
3380SDOperand SelectionDAG::
3381UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3382                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3383  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3384  return UpdateNodeOperands(N, Ops, 5);
3385}
3386
3387SDOperand SelectionDAG::
3388UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3389  SDNode *N = InN.Val;
3390  assert(N->getNumOperands() == NumOps &&
3391         "Update with wrong number of operands");
3392
3393  // Check to see if there is no change.
3394  bool AnyChange = false;
3395  for (unsigned i = 0; i != NumOps; ++i) {
3396    if (Ops[i] != N->getOperand(i)) {
3397      AnyChange = true;
3398      break;
3399    }
3400  }
3401
3402  // No operands changed, just return the input node.
3403  if (!AnyChange) return InN;
3404
3405  // See if the modified node already exists.
3406  void *InsertPos = 0;
3407  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3408    return SDOperand(Existing, InN.ResNo);
3409
3410  // Nope it doesn't.  Remove the node from it's current place in the maps.
3411  if (InsertPos)
3412    RemoveNodeFromCSEMaps(N);
3413
3414  // Now we update the operands.
3415  for (unsigned i = 0; i != NumOps; ++i) {
3416    if (N->OperandList[i] != Ops[i]) {
3417      N->OperandList[i].getVal()->removeUser(i, N);
3418      N->OperandList[i] = Ops[i];
3419      N->OperandList[i].setUser(N);
3420      Ops[i].Val->addUser(i, N);
3421    }
3422  }
3423
3424  // If this gets put into a CSE map, add it.
3425  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3426  return InN;
3427}
3428
3429/// MorphNodeTo - This frees the operands of the current node, resets the
3430/// opcode, types, and operands to the specified value.  This should only be
3431/// used by the SelectionDAG class.
3432void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3433                         SDOperandPtr Ops, unsigned NumOps) {
3434  NodeType = Opc;
3435  ValueList = L.VTs;
3436  NumValues = L.NumVTs;
3437
3438  // Clear the operands list, updating used nodes to remove this from their
3439  // use list.
3440  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3441    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3442
3443  // If NumOps is larger than the # of operands we currently have, reallocate
3444  // the operand list.
3445  if (NumOps > NumOperands) {
3446    if (OperandsNeedDelete) {
3447      delete [] OperandList;
3448    }
3449    OperandList = new SDUse[NumOps];
3450    OperandsNeedDelete = true;
3451  }
3452
3453  // Assign the new operands.
3454  NumOperands = NumOps;
3455
3456  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3457    OperandList[i] = Ops[i];
3458    OperandList[i].setUser(this);
3459    SDNode *N = OperandList[i].getVal();
3460    N->addUser(i, this);
3461    ++N->UsesSize;
3462  }
3463}
3464
3465/// SelectNodeTo - These are used for target selectors to *mutate* the
3466/// specified node to have the specified return type, Target opcode, and
3467/// operands.  Note that target opcodes are stored as
3468/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3469///
3470/// Note that SelectNodeTo returns the resultant node.  If there is already a
3471/// node of the specified opcode and operands, it returns that node instead of
3472/// the current one.
3473SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3474                                   MVT::ValueType VT) {
3475  SDVTList VTs = getVTList(VT);
3476  FoldingSetNodeID ID;
3477  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3478  void *IP = 0;
3479  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3480    return ON;
3481
3482  RemoveNodeFromCSEMaps(N);
3483
3484  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3485
3486  CSEMap.InsertNode(N, IP);
3487  return N;
3488}
3489
3490SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3491                                   MVT::ValueType VT, SDOperand Op1) {
3492  // If an identical node already exists, use it.
3493  SDVTList VTs = getVTList(VT);
3494  SDOperand Ops[] = { Op1 };
3495
3496  FoldingSetNodeID ID;
3497  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3498  void *IP = 0;
3499  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3500    return ON;
3501
3502  RemoveNodeFromCSEMaps(N);
3503  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3504  CSEMap.InsertNode(N, IP);
3505  return N;
3506}
3507
3508SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3509                                   MVT::ValueType VT, SDOperand Op1,
3510                                   SDOperand Op2) {
3511  // If an identical node already exists, use it.
3512  SDVTList VTs = getVTList(VT);
3513  SDOperand Ops[] = { Op1, Op2 };
3514
3515  FoldingSetNodeID ID;
3516  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3517  void *IP = 0;
3518  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3519    return ON;
3520
3521  RemoveNodeFromCSEMaps(N);
3522
3523  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3524
3525  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3526  return N;
3527}
3528
3529SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3530                                   MVT::ValueType VT, SDOperand Op1,
3531                                   SDOperand Op2, SDOperand Op3) {
3532  // If an identical node already exists, use it.
3533  SDVTList VTs = getVTList(VT);
3534  SDOperand Ops[] = { Op1, Op2, Op3 };
3535  FoldingSetNodeID ID;
3536  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3537  void *IP = 0;
3538  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3539    return ON;
3540
3541  RemoveNodeFromCSEMaps(N);
3542
3543  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3544
3545  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3546  return N;
3547}
3548
3549SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3550                                   MVT::ValueType VT, SDOperandPtr Ops,
3551                                   unsigned NumOps) {
3552  // If an identical node already exists, use it.
3553  SDVTList VTs = getVTList(VT);
3554  FoldingSetNodeID ID;
3555  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3556  void *IP = 0;
3557  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3558    return ON;
3559
3560  RemoveNodeFromCSEMaps(N);
3561  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3562
3563  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3564  return N;
3565}
3566
3567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3568                                   MVT::ValueType VT1, MVT::ValueType VT2,
3569                                   SDOperand Op1, SDOperand Op2) {
3570  SDVTList VTs = getVTList(VT1, VT2);
3571  FoldingSetNodeID ID;
3572  SDOperand Ops[] = { Op1, Op2 };
3573  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3574  void *IP = 0;
3575  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3576    return ON;
3577
3578  RemoveNodeFromCSEMaps(N);
3579  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3580  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3581  return N;
3582}
3583
3584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3585                                   MVT::ValueType VT1, MVT::ValueType VT2,
3586                                   SDOperand Op1, SDOperand Op2,
3587                                   SDOperand Op3) {
3588  // If an identical node already exists, use it.
3589  SDVTList VTs = getVTList(VT1, VT2);
3590  SDOperand Ops[] = { Op1, Op2, Op3 };
3591  FoldingSetNodeID ID;
3592  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3593  void *IP = 0;
3594  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3595    return ON;
3596
3597  RemoveNodeFromCSEMaps(N);
3598
3599  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3600  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3601  return N;
3602}
3603
3604
3605/// getTargetNode - These are used for target selectors to create a new node
3606/// with specified return type(s), target opcode, and operands.
3607///
3608/// Note that getTargetNode returns the resultant node.  If there is already a
3609/// node of the specified opcode and operands, it returns that node instead of
3610/// the current one.
3611SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3612  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3613}
3614SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3615                                    SDOperand Op1) {
3616  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3617}
3618SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3619                                    SDOperand Op1, SDOperand Op2) {
3620  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3621}
3622SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3623                                    SDOperand Op1, SDOperand Op2,
3624                                    SDOperand Op3) {
3625  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3626}
3627SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3628                                    SDOperandPtr Ops, unsigned NumOps) {
3629  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3630}
3631SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3632                                    MVT::ValueType VT2) {
3633  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3634  SDOperand Op;
3635  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3636}
3637SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3638                                    MVT::ValueType VT2, SDOperand Op1) {
3639  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3640  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3641}
3642SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3643                                    MVT::ValueType VT2, SDOperand Op1,
3644                                    SDOperand Op2) {
3645  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3646  SDOperand Ops[] = { Op1, Op2 };
3647  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3648}
3649SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3650                                    MVT::ValueType VT2, SDOperand Op1,
3651                                    SDOperand Op2, SDOperand Op3) {
3652  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3653  SDOperand Ops[] = { Op1, Op2, Op3 };
3654  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3655}
3656SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3657                                    MVT::ValueType VT2,
3658                                    SDOperandPtr Ops, unsigned NumOps) {
3659  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3660  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3661}
3662SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3663                                    MVT::ValueType VT2, MVT::ValueType VT3,
3664                                    SDOperand Op1, SDOperand Op2) {
3665  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3666  SDOperand Ops[] = { Op1, Op2 };
3667  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3668}
3669SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3670                                    MVT::ValueType VT2, MVT::ValueType VT3,
3671                                    SDOperand Op1, SDOperand Op2,
3672                                    SDOperand Op3) {
3673  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3674  SDOperand Ops[] = { Op1, Op2, Op3 };
3675  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3676}
3677SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3678                                    MVT::ValueType VT2, MVT::ValueType VT3,
3679                                    SDOperandPtr Ops, unsigned NumOps) {
3680  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3681  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3682}
3683SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3684                                    MVT::ValueType VT2, MVT::ValueType VT3,
3685                                    MVT::ValueType VT4,
3686                                    SDOperandPtr Ops, unsigned NumOps) {
3687  std::vector<MVT::ValueType> VTList;
3688  VTList.push_back(VT1);
3689  VTList.push_back(VT2);
3690  VTList.push_back(VT3);
3691  VTList.push_back(VT4);
3692  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3693  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3694}
3695SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3696                                    std::vector<MVT::ValueType> &ResultTys,
3697                                    SDOperandPtr Ops, unsigned NumOps) {
3698  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3699  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3700                 Ops, NumOps).Val;
3701}
3702
3703/// getNodeIfExists - Get the specified node if it's already available, or
3704/// else return NULL.
3705SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3706                                      SDOperandPtr Ops, unsigned NumOps) {
3707  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3708    FoldingSetNodeID ID;
3709    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3710    void *IP = 0;
3711    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3712      return E;
3713  }
3714  return NULL;
3715}
3716
3717
3718/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3719/// This can cause recursive merging of nodes in the DAG.
3720///
3721/// This version assumes From has a single result value.
3722///
3723void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3724                                      DAGUpdateListener *UpdateListener) {
3725  SDNode *From = FromN.Val;
3726  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3727         "Cannot replace with this method!");
3728  assert(From != To.Val && "Cannot replace uses of with self");
3729
3730  while (!From->use_empty()) {
3731    SDNode::use_iterator UI = From->use_begin();
3732    SDNode *U = UI->getUser();
3733
3734    // This node is about to morph, remove its old self from the CSE maps.
3735    RemoveNodeFromCSEMaps(U);
3736    int operandNum = 0;
3737    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3738         I != E; ++I, ++operandNum)
3739      if (I->getVal() == From) {
3740        From->removeUser(operandNum, U);
3741        *I = To;
3742        I->setUser(U);
3743        To.Val->addUser(operandNum, U);
3744      }
3745
3746    // Now that we have modified U, add it back to the CSE maps.  If it already
3747    // exists there, recursively merge the results together.
3748    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3749      ReplaceAllUsesWith(U, Existing, UpdateListener);
3750      // U is now dead.  Inform the listener if it exists and delete it.
3751      if (UpdateListener)
3752        UpdateListener->NodeDeleted(U);
3753      DeleteNodeNotInCSEMaps(U);
3754    } else {
3755      // If the node doesn't already exist, we updated it.  Inform a listener if
3756      // it exists.
3757      if (UpdateListener)
3758        UpdateListener->NodeUpdated(U);
3759    }
3760  }
3761}
3762
3763/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3764/// This can cause recursive merging of nodes in the DAG.
3765///
3766/// This version assumes From/To have matching types and numbers of result
3767/// values.
3768///
3769void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3770                                      DAGUpdateListener *UpdateListener) {
3771  assert(From != To && "Cannot replace uses of with self");
3772  assert(From->getNumValues() == To->getNumValues() &&
3773         "Cannot use this version of ReplaceAllUsesWith!");
3774  if (From->getNumValues() == 1)   // If possible, use the faster version.
3775    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3776                              UpdateListener);
3777
3778  while (!From->use_empty()) {
3779    SDNode::use_iterator UI = From->use_begin();
3780    SDNode *U = UI->getUser();
3781
3782    // This node is about to morph, remove its old self from the CSE maps.
3783    RemoveNodeFromCSEMaps(U);
3784    int operandNum = 0;
3785    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3786         I != E; ++I, ++operandNum)
3787      if (I->getVal() == From) {
3788        From->removeUser(operandNum, U);
3789        I->getVal() = To;
3790        To->addUser(operandNum, U);
3791      }
3792
3793    // Now that we have modified U, add it back to the CSE maps.  If it already
3794    // exists there, recursively merge the results together.
3795    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3796      ReplaceAllUsesWith(U, Existing, UpdateListener);
3797      // U is now dead.  Inform the listener if it exists and delete it.
3798      if (UpdateListener)
3799        UpdateListener->NodeDeleted(U);
3800      DeleteNodeNotInCSEMaps(U);
3801    } else {
3802      // If the node doesn't already exist, we updated it.  Inform a listener if
3803      // it exists.
3804      if (UpdateListener)
3805        UpdateListener->NodeUpdated(U);
3806    }
3807  }
3808}
3809
3810/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3811/// This can cause recursive merging of nodes in the DAG.
3812///
3813/// This version can replace From with any result values.  To must match the
3814/// number and types of values returned by From.
3815void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3816                                      SDOperandPtr To,
3817                                      DAGUpdateListener *UpdateListener) {
3818  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3819    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3820
3821  while (!From->use_empty()) {
3822    SDNode::use_iterator UI = From->use_begin();
3823    SDNode *U = UI->getUser();
3824
3825    // This node is about to morph, remove its old self from the CSE maps.
3826    RemoveNodeFromCSEMaps(U);
3827    int operandNum = 0;
3828    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3829         I != E; ++I, ++operandNum)
3830      if (I->getVal() == From) {
3831        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3832        From->removeUser(operandNum, U);
3833        *I = ToOp;
3834        I->setUser(U);
3835        ToOp.Val->addUser(operandNum, U);
3836      }
3837
3838    // Now that we have modified U, add it back to the CSE maps.  If it already
3839    // exists there, recursively merge the results together.
3840    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3841      ReplaceAllUsesWith(U, Existing, UpdateListener);
3842      // U is now dead.  Inform the listener if it exists and delete it.
3843      if (UpdateListener)
3844        UpdateListener->NodeDeleted(U);
3845      DeleteNodeNotInCSEMaps(U);
3846    } else {
3847      // If the node doesn't already exist, we updated it.  Inform a listener if
3848      // it exists.
3849      if (UpdateListener)
3850        UpdateListener->NodeUpdated(U);
3851    }
3852  }
3853}
3854
3855namespace {
3856  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3857  /// any deleted nodes from the set passed into its constructor and recursively
3858  /// notifies another update listener if specified.
3859  class ChainedSetUpdaterListener :
3860  public SelectionDAG::DAGUpdateListener {
3861    SmallSetVector<SDNode*, 16> &Set;
3862    SelectionDAG::DAGUpdateListener *Chain;
3863  public:
3864    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3865                              SelectionDAG::DAGUpdateListener *chain)
3866      : Set(set), Chain(chain) {}
3867
3868    virtual void NodeDeleted(SDNode *N) {
3869      Set.remove(N);
3870      if (Chain) Chain->NodeDeleted(N);
3871    }
3872    virtual void NodeUpdated(SDNode *N) {
3873      if (Chain) Chain->NodeUpdated(N);
3874    }
3875  };
3876}
3877
3878/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3879/// uses of other values produced by From.Val alone.  The Deleted vector is
3880/// handled the same way as for ReplaceAllUsesWith.
3881void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3882                                             DAGUpdateListener *UpdateListener){
3883  assert(From != To && "Cannot replace a value with itself");
3884
3885  // Handle the simple, trivial, case efficiently.
3886  if (From.Val->getNumValues() == 1) {
3887    ReplaceAllUsesWith(From, To, UpdateListener);
3888    return;
3889  }
3890
3891  if (From.use_empty()) return;
3892
3893  // Get all of the users of From.Val.  We want these in a nice,
3894  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3895  SmallSetVector<SDNode*, 16> Users;
3896  for (SDNode::use_iterator UI = From.Val->use_begin(),
3897      E = From.Val->use_end(); UI != E; ++UI) {
3898    SDNode *User = UI->getUser();
3899    if (!Users.count(User))
3900      Users.insert(User);
3901  }
3902
3903  // When one of the recursive merges deletes nodes from the graph, we need to
3904  // make sure that UpdateListener is notified *and* that the node is removed
3905  // from Users if present.  CSUL does this.
3906  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3907
3908  while (!Users.empty()) {
3909    // We know that this user uses some value of From.  If it is the right
3910    // value, update it.
3911    SDNode *User = Users.back();
3912    Users.pop_back();
3913
3914    // Scan for an operand that matches From.
3915    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
3916    for (; Op != E; ++Op)
3917      if (*Op == From) break;
3918
3919    // If there are no matches, the user must use some other result of From.
3920    if (Op == E) continue;
3921
3922    // Okay, we know this user needs to be updated.  Remove its old self
3923    // from the CSE maps.
3924    RemoveNodeFromCSEMaps(User);
3925
3926    // Update all operands that match "From" in case there are multiple uses.
3927    for (; Op != E; ++Op) {
3928      if (*Op == From) {
3929        From.Val->removeUser(Op-User->op_begin(), User);
3930        *Op = To;
3931        Op->setUser(User);
3932        To.Val->addUser(Op-User->op_begin(), User);
3933      }
3934    }
3935
3936    // Now that we have modified User, add it back to the CSE maps.  If it
3937    // already exists there, recursively merge the results together.
3938    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3939    if (!Existing) {
3940      if (UpdateListener) UpdateListener->NodeUpdated(User);
3941      continue;  // Continue on to next user.
3942    }
3943
3944    // If there was already an existing matching node, use ReplaceAllUsesWith
3945    // to replace the dead one with the existing one.  This can cause
3946    // recursive merging of other unrelated nodes down the line.  The merging
3947    // can cause deletion of nodes that used the old value.  To handle this, we
3948    // use CSUL to remove them from the Users set.
3949    ReplaceAllUsesWith(User, Existing, &CSUL);
3950
3951    // User is now dead.  Notify a listener if present.
3952    if (UpdateListener) UpdateListener->NodeDeleted(User);
3953    DeleteNodeNotInCSEMaps(User);
3954  }
3955}
3956
3957/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3958/// their allnodes order. It returns the maximum id.
3959unsigned SelectionDAG::AssignNodeIds() {
3960  unsigned Id = 0;
3961  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3962    SDNode *N = I;
3963    N->setNodeId(Id++);
3964  }
3965  return Id;
3966}
3967
3968/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3969/// based on their topological order. It returns the maximum id and a vector
3970/// of the SDNodes* in assigned order by reference.
3971unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3972  unsigned DAGSize = AllNodes.size();
3973  std::vector<unsigned> InDegree(DAGSize);
3974  std::vector<SDNode*> Sources;
3975
3976  // Use a two pass approach to avoid using a std::map which is slow.
3977  unsigned Id = 0;
3978  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3979    SDNode *N = I;
3980    N->setNodeId(Id++);
3981    unsigned Degree = N->use_size();
3982    InDegree[N->getNodeId()] = Degree;
3983    if (Degree == 0)
3984      Sources.push_back(N);
3985  }
3986
3987  TopOrder.clear();
3988  while (!Sources.empty()) {
3989    SDNode *N = Sources.back();
3990    Sources.pop_back();
3991    TopOrder.push_back(N);
3992    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3993      SDNode *P = I->getVal();
3994      unsigned Degree = --InDegree[P->getNodeId()];
3995      if (Degree == 0)
3996        Sources.push_back(P);
3997    }
3998  }
3999
4000  // Second pass, assign the actual topological order as node ids.
4001  Id = 0;
4002  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4003       TI != TE; ++TI)
4004    (*TI)->setNodeId(Id++);
4005
4006  return Id;
4007}
4008
4009
4010
4011//===----------------------------------------------------------------------===//
4012//                              SDNode Class
4013//===----------------------------------------------------------------------===//
4014
4015// Out-of-line virtual method to give class a home.
4016void SDNode::ANCHOR() {}
4017void UnarySDNode::ANCHOR() {}
4018void BinarySDNode::ANCHOR() {}
4019void TernarySDNode::ANCHOR() {}
4020void HandleSDNode::ANCHOR() {}
4021void StringSDNode::ANCHOR() {}
4022void ConstantSDNode::ANCHOR() {}
4023void ConstantFPSDNode::ANCHOR() {}
4024void GlobalAddressSDNode::ANCHOR() {}
4025void FrameIndexSDNode::ANCHOR() {}
4026void JumpTableSDNode::ANCHOR() {}
4027void ConstantPoolSDNode::ANCHOR() {}
4028void BasicBlockSDNode::ANCHOR() {}
4029void SrcValueSDNode::ANCHOR() {}
4030void MemOperandSDNode::ANCHOR() {}
4031void RegisterSDNode::ANCHOR() {}
4032void ExternalSymbolSDNode::ANCHOR() {}
4033void CondCodeSDNode::ANCHOR() {}
4034void ARG_FLAGSSDNode::ANCHOR() {}
4035void VTSDNode::ANCHOR() {}
4036void LoadSDNode::ANCHOR() {}
4037void StoreSDNode::ANCHOR() {}
4038void AtomicSDNode::ANCHOR() {}
4039
4040HandleSDNode::~HandleSDNode() {
4041  SDVTList VTs = { 0, 0 };
4042  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4043}
4044
4045GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4046                                         MVT::ValueType VT, int o)
4047  : SDNode(isa<GlobalVariable>(GA) &&
4048           cast<GlobalVariable>(GA)->isThreadLocal() ?
4049           // Thread Local
4050           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4051           // Non Thread Local
4052           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4053           getSDVTList(VT)), Offset(o) {
4054  TheGlobal = const_cast<GlobalValue*>(GA);
4055}
4056
4057/// getMemOperand - Return a MachineMemOperand object describing the memory
4058/// reference performed by this load or store.
4059MachineMemOperand LSBaseSDNode::getMemOperand() const {
4060  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4061  int Flags =
4062    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4063                               MachineMemOperand::MOStore;
4064  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4065
4066  // Check if the load references a frame index, and does not have
4067  // an SV attached.
4068  const FrameIndexSDNode *FI =
4069    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4070  if (!getSrcValue() && FI)
4071    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4072                             FI->getIndex(), Size, Alignment);
4073  else
4074    return MachineMemOperand(getSrcValue(), Flags,
4075                             getSrcValueOffset(), Size, Alignment);
4076}
4077
4078/// Profile - Gather unique data for the node.
4079///
4080void SDNode::Profile(FoldingSetNodeID &ID) {
4081  AddNodeIDNode(ID, this);
4082}
4083
4084/// getValueTypeList - Return a pointer to the specified value type.
4085///
4086const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4087  if (MVT::isExtendedVT(VT)) {
4088    static std::set<MVT::ValueType> EVTs;
4089    return &(*EVTs.insert(VT).first);
4090  } else {
4091    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4092    VTs[VT] = VT;
4093    return &VTs[VT];
4094  }
4095}
4096
4097/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4098/// indicated value.  This method ignores uses of other values defined by this
4099/// operation.
4100bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4101  assert(Value < getNumValues() && "Bad value!");
4102
4103  // If there is only one value, this is easy.
4104  if (getNumValues() == 1)
4105    return use_size() == NUses;
4106  if (use_size() < NUses) return false;
4107
4108  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4109
4110  SmallPtrSet<SDNode*, 32> UsersHandled;
4111
4112  // TODO: Only iterate over uses of a given value of the node
4113  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4114    if (*UI == TheValue) {
4115      if (NUses == 0)
4116        return false;
4117      --NUses;
4118    }
4119  }
4120
4121  // Found exactly the right number of uses?
4122  return NUses == 0;
4123}
4124
4125
4126/// hasAnyUseOfValue - Return true if there are any use of the indicated
4127/// value. This method ignores uses of other values defined by this operation.
4128bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4129  assert(Value < getNumValues() && "Bad value!");
4130
4131  if (use_empty()) return false;
4132
4133  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4134
4135  SmallPtrSet<SDNode*, 32> UsersHandled;
4136
4137  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4138    SDNode *User = UI->getUser();
4139    if (User->getNumOperands() == 1 ||
4140        UsersHandled.insert(User))     // First time we've seen this?
4141      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4142        if (User->getOperand(i) == TheValue) {
4143          return true;
4144        }
4145  }
4146
4147  return false;
4148}
4149
4150
4151/// isOnlyUseOf - Return true if this node is the only use of N.
4152///
4153bool SDNode::isOnlyUseOf(SDNode *N) const {
4154  bool Seen = false;
4155  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4156    SDNode *User = I->getUser();
4157    if (User == this)
4158      Seen = true;
4159    else
4160      return false;
4161  }
4162
4163  return Seen;
4164}
4165
4166/// isOperand - Return true if this node is an operand of N.
4167///
4168bool SDOperand::isOperandOf(SDNode *N) const {
4169  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4170    if (*this == N->getOperand(i))
4171      return true;
4172  return false;
4173}
4174
4175bool SDNode::isOperandOf(SDNode *N) const {
4176  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4177    if (this == N->OperandList[i].getVal())
4178      return true;
4179  return false;
4180}
4181
4182/// reachesChainWithoutSideEffects - Return true if this operand (which must
4183/// be a chain) reaches the specified operand without crossing any
4184/// side-effecting instructions.  In practice, this looks through token
4185/// factors and non-volatile loads.  In order to remain efficient, this only
4186/// looks a couple of nodes in, it does not do an exhaustive search.
4187bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4188                                               unsigned Depth) const {
4189  if (*this == Dest) return true;
4190
4191  // Don't search too deeply, we just want to be able to see through
4192  // TokenFactor's etc.
4193  if (Depth == 0) return false;
4194
4195  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4196  // of the operands of the TF reach dest, then we can do the xform.
4197  if (getOpcode() == ISD::TokenFactor) {
4198    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4199      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4200        return true;
4201    return false;
4202  }
4203
4204  // Loads don't have side effects, look through them.
4205  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4206    if (!Ld->isVolatile())
4207      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4208  }
4209  return false;
4210}
4211
4212
4213static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4214                            SmallPtrSet<SDNode *, 32> &Visited) {
4215  if (found || !Visited.insert(N))
4216    return;
4217
4218  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4219    SDNode *Op = N->getOperand(i).Val;
4220    if (Op == P) {
4221      found = true;
4222      return;
4223    }
4224    findPredecessor(Op, P, found, Visited);
4225  }
4226}
4227
4228/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4229/// is either an operand of N or it can be reached by recursively traversing
4230/// up the operands.
4231/// NOTE: this is an expensive method. Use it carefully.
4232bool SDNode::isPredecessorOf(SDNode *N) const {
4233  SmallPtrSet<SDNode *, 32> Visited;
4234  bool found = false;
4235  findPredecessor(N, this, found, Visited);
4236  return found;
4237}
4238
4239uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4240  assert(Num < NumOperands && "Invalid child # of SDNode!");
4241  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4242}
4243
4244std::string SDNode::getOperationName(const SelectionDAG *G) const {
4245  switch (getOpcode()) {
4246  default:
4247    if (getOpcode() < ISD::BUILTIN_OP_END)
4248      return "<<Unknown DAG Node>>";
4249    else {
4250      if (G) {
4251        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4252          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4253            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4254
4255        TargetLowering &TLI = G->getTargetLoweringInfo();
4256        const char *Name =
4257          TLI.getTargetNodeName(getOpcode());
4258        if (Name) return Name;
4259      }
4260
4261      return "<<Unknown Target Node>>";
4262    }
4263
4264  case ISD::PREFETCH:      return "Prefetch";
4265  case ISD::MEMBARRIER:    return "MemBarrier";
4266  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4267  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4268  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
4269  case ISD::PCMARKER:      return "PCMarker";
4270  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4271  case ISD::SRCVALUE:      return "SrcValue";
4272  case ISD::MEMOPERAND:    return "MemOperand";
4273  case ISD::EntryToken:    return "EntryToken";
4274  case ISD::TokenFactor:   return "TokenFactor";
4275  case ISD::AssertSext:    return "AssertSext";
4276  case ISD::AssertZext:    return "AssertZext";
4277
4278  case ISD::STRING:        return "String";
4279  case ISD::BasicBlock:    return "BasicBlock";
4280  case ISD::ARG_FLAGS:     return "ArgFlags";
4281  case ISD::VALUETYPE:     return "ValueType";
4282  case ISD::Register:      return "Register";
4283
4284  case ISD::Constant:      return "Constant";
4285  case ISD::ConstantFP:    return "ConstantFP";
4286  case ISD::GlobalAddress: return "GlobalAddress";
4287  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4288  case ISD::FrameIndex:    return "FrameIndex";
4289  case ISD::JumpTable:     return "JumpTable";
4290  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4291  case ISD::RETURNADDR: return "RETURNADDR";
4292  case ISD::FRAMEADDR: return "FRAMEADDR";
4293  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4294  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4295  case ISD::EHSELECTION: return "EHSELECTION";
4296  case ISD::EH_RETURN: return "EH_RETURN";
4297  case ISD::ConstantPool:  return "ConstantPool";
4298  case ISD::ExternalSymbol: return "ExternalSymbol";
4299  case ISD::INTRINSIC_WO_CHAIN: {
4300    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4301    return Intrinsic::getName((Intrinsic::ID)IID);
4302  }
4303  case ISD::INTRINSIC_VOID:
4304  case ISD::INTRINSIC_W_CHAIN: {
4305    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4306    return Intrinsic::getName((Intrinsic::ID)IID);
4307  }
4308
4309  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4310  case ISD::TargetConstant: return "TargetConstant";
4311  case ISD::TargetConstantFP:return "TargetConstantFP";
4312  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4313  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4314  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4315  case ISD::TargetJumpTable:  return "TargetJumpTable";
4316  case ISD::TargetConstantPool:  return "TargetConstantPool";
4317  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4318
4319  case ISD::CopyToReg:     return "CopyToReg";
4320  case ISD::CopyFromReg:   return "CopyFromReg";
4321  case ISD::UNDEF:         return "undef";
4322  case ISD::MERGE_VALUES:  return "merge_values";
4323  case ISD::INLINEASM:     return "inlineasm";
4324  case ISD::LABEL:         return "label";
4325  case ISD::DECLARE:       return "declare";
4326  case ISD::HANDLENODE:    return "handlenode";
4327  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4328  case ISD::CALL:          return "call";
4329
4330  // Unary operators
4331  case ISD::FABS:   return "fabs";
4332  case ISD::FNEG:   return "fneg";
4333  case ISD::FSQRT:  return "fsqrt";
4334  case ISD::FSIN:   return "fsin";
4335  case ISD::FCOS:   return "fcos";
4336  case ISD::FPOWI:  return "fpowi";
4337  case ISD::FPOW:   return "fpow";
4338
4339  // Binary operators
4340  case ISD::ADD:    return "add";
4341  case ISD::SUB:    return "sub";
4342  case ISD::MUL:    return "mul";
4343  case ISD::MULHU:  return "mulhu";
4344  case ISD::MULHS:  return "mulhs";
4345  case ISD::SDIV:   return "sdiv";
4346  case ISD::UDIV:   return "udiv";
4347  case ISD::SREM:   return "srem";
4348  case ISD::UREM:   return "urem";
4349  case ISD::SMUL_LOHI:  return "smul_lohi";
4350  case ISD::UMUL_LOHI:  return "umul_lohi";
4351  case ISD::SDIVREM:    return "sdivrem";
4352  case ISD::UDIVREM:    return "divrem";
4353  case ISD::AND:    return "and";
4354  case ISD::OR:     return "or";
4355  case ISD::XOR:    return "xor";
4356  case ISD::SHL:    return "shl";
4357  case ISD::SRA:    return "sra";
4358  case ISD::SRL:    return "srl";
4359  case ISD::ROTL:   return "rotl";
4360  case ISD::ROTR:   return "rotr";
4361  case ISD::FADD:   return "fadd";
4362  case ISD::FSUB:   return "fsub";
4363  case ISD::FMUL:   return "fmul";
4364  case ISD::FDIV:   return "fdiv";
4365  case ISD::FREM:   return "frem";
4366  case ISD::FCOPYSIGN: return "fcopysign";
4367  case ISD::FGETSIGN:  return "fgetsign";
4368
4369  case ISD::SETCC:       return "setcc";
4370  case ISD::SELECT:      return "select";
4371  case ISD::SELECT_CC:   return "select_cc";
4372  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4373  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4374  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4375  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4376  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4377  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4378  case ISD::CARRY_FALSE:         return "carry_false";
4379  case ISD::ADDC:        return "addc";
4380  case ISD::ADDE:        return "adde";
4381  case ISD::SUBC:        return "subc";
4382  case ISD::SUBE:        return "sube";
4383  case ISD::SHL_PARTS:   return "shl_parts";
4384  case ISD::SRA_PARTS:   return "sra_parts";
4385  case ISD::SRL_PARTS:   return "srl_parts";
4386
4387  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4388  case ISD::INSERT_SUBREG:      return "insert_subreg";
4389
4390  // Conversion operators.
4391  case ISD::SIGN_EXTEND: return "sign_extend";
4392  case ISD::ZERO_EXTEND: return "zero_extend";
4393  case ISD::ANY_EXTEND:  return "any_extend";
4394  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4395  case ISD::TRUNCATE:    return "truncate";
4396  case ISD::FP_ROUND:    return "fp_round";
4397  case ISD::FLT_ROUNDS_: return "flt_rounds";
4398  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4399  case ISD::FP_EXTEND:   return "fp_extend";
4400
4401  case ISD::SINT_TO_FP:  return "sint_to_fp";
4402  case ISD::UINT_TO_FP:  return "uint_to_fp";
4403  case ISD::FP_TO_SINT:  return "fp_to_sint";
4404  case ISD::FP_TO_UINT:  return "fp_to_uint";
4405  case ISD::BIT_CONVERT: return "bit_convert";
4406
4407    // Control flow instructions
4408  case ISD::BR:      return "br";
4409  case ISD::BRIND:   return "brind";
4410  case ISD::BR_JT:   return "br_jt";
4411  case ISD::BRCOND:  return "brcond";
4412  case ISD::BR_CC:   return "br_cc";
4413  case ISD::RET:     return "ret";
4414  case ISD::CALLSEQ_START:  return "callseq_start";
4415  case ISD::CALLSEQ_END:    return "callseq_end";
4416
4417    // Other operators
4418  case ISD::LOAD:               return "load";
4419  case ISD::STORE:              return "store";
4420  case ISD::VAARG:              return "vaarg";
4421  case ISD::VACOPY:             return "vacopy";
4422  case ISD::VAEND:              return "vaend";
4423  case ISD::VASTART:            return "vastart";
4424  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4425  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4426  case ISD::BUILD_PAIR:         return "build_pair";
4427  case ISD::STACKSAVE:          return "stacksave";
4428  case ISD::STACKRESTORE:       return "stackrestore";
4429  case ISD::TRAP:               return "trap";
4430
4431  // Bit manipulation
4432  case ISD::BSWAP:   return "bswap";
4433  case ISD::CTPOP:   return "ctpop";
4434  case ISD::CTTZ:    return "cttz";
4435  case ISD::CTLZ:    return "ctlz";
4436
4437  // Debug info
4438  case ISD::LOCATION: return "location";
4439  case ISD::DEBUG_LOC: return "debug_loc";
4440
4441  // Trampolines
4442  case ISD::TRAMPOLINE: return "trampoline";
4443
4444  case ISD::CONDCODE:
4445    switch (cast<CondCodeSDNode>(this)->get()) {
4446    default: assert(0 && "Unknown setcc condition!");
4447    case ISD::SETOEQ:  return "setoeq";
4448    case ISD::SETOGT:  return "setogt";
4449    case ISD::SETOGE:  return "setoge";
4450    case ISD::SETOLT:  return "setolt";
4451    case ISD::SETOLE:  return "setole";
4452    case ISD::SETONE:  return "setone";
4453
4454    case ISD::SETO:    return "seto";
4455    case ISD::SETUO:   return "setuo";
4456    case ISD::SETUEQ:  return "setue";
4457    case ISD::SETUGT:  return "setugt";
4458    case ISD::SETUGE:  return "setuge";
4459    case ISD::SETULT:  return "setult";
4460    case ISD::SETULE:  return "setule";
4461    case ISD::SETUNE:  return "setune";
4462
4463    case ISD::SETEQ:   return "seteq";
4464    case ISD::SETGT:   return "setgt";
4465    case ISD::SETGE:   return "setge";
4466    case ISD::SETLT:   return "setlt";
4467    case ISD::SETLE:   return "setle";
4468    case ISD::SETNE:   return "setne";
4469    }
4470  }
4471}
4472
4473const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4474  switch (AM) {
4475  default:
4476    return "";
4477  case ISD::PRE_INC:
4478    return "<pre-inc>";
4479  case ISD::PRE_DEC:
4480    return "<pre-dec>";
4481  case ISD::POST_INC:
4482    return "<post-inc>";
4483  case ISD::POST_DEC:
4484    return "<post-dec>";
4485  }
4486}
4487
4488std::string ISD::ArgFlagsTy::getArgFlagsString() {
4489  std::string S = "< ";
4490
4491  if (isZExt())
4492    S += "zext ";
4493  if (isSExt())
4494    S += "sext ";
4495  if (isInReg())
4496    S += "inreg ";
4497  if (isSRet())
4498    S += "sret ";
4499  if (isByVal())
4500    S += "byval ";
4501  if (isNest())
4502    S += "nest ";
4503  if (getByValAlign())
4504    S += "byval-align:" + utostr(getByValAlign()) + " ";
4505  if (getOrigAlign())
4506    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4507  if (getByValSize())
4508    S += "byval-size:" + utostr(getByValSize()) + " ";
4509  return S + ">";
4510}
4511
4512void SDNode::dump() const { dump(0); }
4513void SDNode::dump(const SelectionDAG *G) const {
4514  cerr << (void*)this << ": ";
4515
4516  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4517    if (i) cerr << ",";
4518    if (getValueType(i) == MVT::Other)
4519      cerr << "ch";
4520    else
4521      cerr << MVT::getValueTypeString(getValueType(i));
4522  }
4523  cerr << " = " << getOperationName(G);
4524
4525  cerr << " ";
4526  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4527    if (i) cerr << ", ";
4528    cerr << (void*)getOperand(i).Val;
4529    if (unsigned RN = getOperand(i).ResNo)
4530      cerr << ":" << RN;
4531  }
4532
4533  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4534    SDNode *Mask = getOperand(2).Val;
4535    cerr << "<";
4536    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4537      if (i) cerr << ",";
4538      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4539        cerr << "u";
4540      else
4541        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4542    }
4543    cerr << ">";
4544  }
4545
4546  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4547    cerr << "<" << CSDN->getValue() << ">";
4548  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4549    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4550      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4551    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4552      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4553    else {
4554      cerr << "<APFloat(";
4555      CSDN->getValueAPF().convertToAPInt().dump();
4556      cerr << ")>";
4557    }
4558  } else if (const GlobalAddressSDNode *GADN =
4559             dyn_cast<GlobalAddressSDNode>(this)) {
4560    int offset = GADN->getOffset();
4561    cerr << "<";
4562    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4563    if (offset > 0)
4564      cerr << " + " << offset;
4565    else
4566      cerr << " " << offset;
4567  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4568    cerr << "<" << FIDN->getIndex() << ">";
4569  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4570    cerr << "<" << JTDN->getIndex() << ">";
4571  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4572    int offset = CP->getOffset();
4573    if (CP->isMachineConstantPoolEntry())
4574      cerr << "<" << *CP->getMachineCPVal() << ">";
4575    else
4576      cerr << "<" << *CP->getConstVal() << ">";
4577    if (offset > 0)
4578      cerr << " + " << offset;
4579    else
4580      cerr << " " << offset;
4581  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4582    cerr << "<";
4583    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4584    if (LBB)
4585      cerr << LBB->getName() << " ";
4586    cerr << (const void*)BBDN->getBasicBlock() << ">";
4587  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4588    if (G && R->getReg() &&
4589        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4590      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4591    } else {
4592      cerr << " #" << R->getReg();
4593    }
4594  } else if (const ExternalSymbolSDNode *ES =
4595             dyn_cast<ExternalSymbolSDNode>(this)) {
4596    cerr << "'" << ES->getSymbol() << "'";
4597  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4598    if (M->getValue())
4599      cerr << "<" << M->getValue() << ">";
4600    else
4601      cerr << "<null>";
4602  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4603    if (M->MO.getValue())
4604      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4605    else
4606      cerr << "<null:" << M->MO.getOffset() << ">";
4607  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4608    cerr << N->getArgFlags().getArgFlagsString();
4609  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4610    cerr << ":" << MVT::getValueTypeString(N->getVT());
4611  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4612    const Value *SrcValue = LD->getSrcValue();
4613    int SrcOffset = LD->getSrcValueOffset();
4614    cerr << " <";
4615    if (SrcValue)
4616      cerr << SrcValue;
4617    else
4618      cerr << "null";
4619    cerr << ":" << SrcOffset << ">";
4620
4621    bool doExt = true;
4622    switch (LD->getExtensionType()) {
4623    default: doExt = false; break;
4624    case ISD::EXTLOAD:
4625      cerr << " <anyext ";
4626      break;
4627    case ISD::SEXTLOAD:
4628      cerr << " <sext ";
4629      break;
4630    case ISD::ZEXTLOAD:
4631      cerr << " <zext ";
4632      break;
4633    }
4634    if (doExt)
4635      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4636
4637    const char *AM = getIndexedModeName(LD->getAddressingMode());
4638    if (*AM)
4639      cerr << " " << AM;
4640    if (LD->isVolatile())
4641      cerr << " <volatile>";
4642    cerr << " alignment=" << LD->getAlignment();
4643  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4644    const Value *SrcValue = ST->getSrcValue();
4645    int SrcOffset = ST->getSrcValueOffset();
4646    cerr << " <";
4647    if (SrcValue)
4648      cerr << SrcValue;
4649    else
4650      cerr << "null";
4651    cerr << ":" << SrcOffset << ">";
4652
4653    if (ST->isTruncatingStore())
4654      cerr << " <trunc "
4655           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4656
4657    const char *AM = getIndexedModeName(ST->getAddressingMode());
4658    if (*AM)
4659      cerr << " " << AM;
4660    if (ST->isVolatile())
4661      cerr << " <volatile>";
4662    cerr << " alignment=" << ST->getAlignment();
4663  }
4664}
4665
4666static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4667  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4668    if (N->getOperand(i).Val->hasOneUse())
4669      DumpNodes(N->getOperand(i).Val, indent+2, G);
4670    else
4671      cerr << "\n" << std::string(indent+2, ' ')
4672           << (void*)N->getOperand(i).Val << ": <multiple use>";
4673
4674
4675  cerr << "\n" << std::string(indent, ' ');
4676  N->dump(G);
4677}
4678
4679void SelectionDAG::dump() const {
4680  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4681  std::vector<const SDNode*> Nodes;
4682  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4683       I != E; ++I)
4684    Nodes.push_back(I);
4685
4686  std::sort(Nodes.begin(), Nodes.end());
4687
4688  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4689    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4690      DumpNodes(Nodes[i], 2, this);
4691  }
4692
4693  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4694
4695  cerr << "\n\n";
4696}
4697
4698const Type *ConstantPoolSDNode::getType() const {
4699  if (isMachineConstantPoolEntry())
4700    return Val.MachineCPVal->getType();
4701  return Val.ConstVal->getType();
4702}
4703