SelectionDAG.cpp revision 23ff7cff52702a8bff904d8ab4c9ca67cc19d6ca
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    FLI(fli),
796    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
797    Root(getEntryNode()), Ordering(0) {
798  AllNodes.push_back(&EntryNode);
799  Ordering = new SDNodeOrdering();
800  DbgInfo = new SDDbgInfo();
801}
802
803void SelectionDAG::init(MachineFunction &mf) {
804  MF = &mf;
805  Context = &mf.getFunction()->getContext();
806}
807
808SelectionDAG::~SelectionDAG() {
809  allnodes_clear();
810  delete Ordering;
811  DbgInfo->clear();
812  delete DbgInfo;
813}
814
815void SelectionDAG::allnodes_clear() {
816  assert(&*AllNodes.begin() == &EntryNode);
817  AllNodes.remove(AllNodes.begin());
818  while (!AllNodes.empty())
819    DeallocateNode(AllNodes.begin());
820}
821
822void SelectionDAG::clear() {
823  allnodes_clear();
824  OperandAllocator.Reset();
825  CSEMap.clear();
826
827  ExtendedValueTypeNodes.clear();
828  ExternalSymbols.clear();
829  TargetExternalSymbols.clear();
830  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831            static_cast<CondCodeSDNode*>(0));
832  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833            static_cast<SDNode*>(0));
834
835  EntryNode.UseList = 0;
836  AllNodes.push_back(&EntryNode);
837  Root = getEntryNode();
838  delete Ordering;
839  Ordering = new SDNodeOrdering();
840  DbgInfo->clear();
841  delete DbgInfo;
842  DbgInfo = new SDDbgInfo();
843}
844
845SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
846  return VT.bitsGT(Op.getValueType()) ?
847    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
848    getNode(ISD::TRUNCATE, DL, VT, Op);
849}
850
851SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
852  return VT.bitsGT(Op.getValueType()) ?
853    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
854    getNode(ISD::TRUNCATE, DL, VT, Op);
855}
856
857SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
858  assert(!VT.isVector() &&
859         "getZeroExtendInReg should use the vector element type instead of "
860         "the vector type!");
861  if (Op.getValueType() == VT) return Op;
862  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
863  APInt Imm = APInt::getLowBitsSet(BitWidth,
864                                   VT.getSizeInBits());
865  return getNode(ISD::AND, DL, Op.getValueType(), Op,
866                 getConstant(Imm, Op.getValueType()));
867}
868
869/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
870///
871SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
872  EVT EltVT = VT.getScalarType();
873  SDValue NegOne =
874    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
875  return getNode(ISD::XOR, DL, VT, Val, NegOne);
876}
877
878SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
879  EVT EltVT = VT.getScalarType();
880  assert((EltVT.getSizeInBits() >= 64 ||
881         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
882         "getConstant with a uint64_t value that doesn't fit in the type!");
883  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
884}
885
886SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
887  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
888}
889
890SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
891  assert(VT.isInteger() && "Cannot create FP integer constant!");
892
893  EVT EltVT = VT.getScalarType();
894  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
895         "APInt size does not match type size!");
896
897  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
898  FoldingSetNodeID ID;
899  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
900  ID.AddPointer(&Val);
901  void *IP = 0;
902  SDNode *N = NULL;
903  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
904    if (!VT.isVector())
905      return SDValue(N, 0);
906
907  if (!N) {
908    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
909    CSEMap.InsertNode(N, IP);
910    AllNodes.push_back(N);
911  }
912
913  SDValue Result(N, 0);
914  if (VT.isVector()) {
915    SmallVector<SDValue, 8> Ops;
916    Ops.assign(VT.getVectorNumElements(), Result);
917    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
918  }
919  return Result;
920}
921
922SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
923  return getConstant(Val, TLI.getPointerTy(), isTarget);
924}
925
926
927SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
928  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
929}
930
931SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
932  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
933
934  EVT EltVT = VT.getScalarType();
935
936  // Do the map lookup using the actual bit pattern for the floating point
937  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
938  // we don't have issues with SNANs.
939  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
940  FoldingSetNodeID ID;
941  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
942  ID.AddPointer(&V);
943  void *IP = 0;
944  SDNode *N = NULL;
945  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
946    if (!VT.isVector())
947      return SDValue(N, 0);
948
949  if (!N) {
950    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
951    CSEMap.InsertNode(N, IP);
952    AllNodes.push_back(N);
953  }
954
955  SDValue Result(N, 0);
956  if (VT.isVector()) {
957    SmallVector<SDValue, 8> Ops;
958    Ops.assign(VT.getVectorNumElements(), Result);
959    // FIXME DebugLoc info might be appropriate here
960    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
961  }
962  return Result;
963}
964
965SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
966  EVT EltVT = VT.getScalarType();
967  if (EltVT==MVT::f32)
968    return getConstantFP(APFloat((float)Val), VT, isTarget);
969  else if (EltVT==MVT::f64)
970    return getConstantFP(APFloat(Val), VT, isTarget);
971  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
972    bool ignored;
973    APFloat apf = APFloat(Val);
974    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
975                &ignored);
976    return getConstantFP(apf, VT, isTarget);
977  } else {
978    assert(0 && "Unsupported type in getConstantFP");
979    return SDValue();
980  }
981}
982
983SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
984                                       EVT VT, int64_t Offset,
985                                       bool isTargetGA,
986                                       unsigned char TargetFlags) {
987  assert((TargetFlags == 0 || isTargetGA) &&
988         "Cannot set target flags on target-independent globals");
989
990  // Truncate (with sign-extension) the offset value to the pointer size.
991  EVT PTy = TLI.getPointerTy();
992  unsigned BitWidth = PTy.getSizeInBits();
993  if (BitWidth < 64)
994    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
995
996  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
997  if (!GVar) {
998    // If GV is an alias then use the aliasee for determining thread-localness.
999    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1000      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1001  }
1002
1003  unsigned Opc;
1004  if (GVar && GVar->isThreadLocal())
1005    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1006  else
1007    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1008
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddPointer(GV);
1012  ID.AddInteger(Offset);
1013  ID.AddInteger(TargetFlags);
1014  void *IP = 0;
1015  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1016    return SDValue(E, 0);
1017
1018  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1019                                                      Offset, TargetFlags);
1020  CSEMap.InsertNode(N, IP);
1021  AllNodes.push_back(N);
1022  return SDValue(N, 0);
1023}
1024
1025SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1026  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1027  FoldingSetNodeID ID;
1028  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029  ID.AddInteger(FI);
1030  void *IP = 0;
1031  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032    return SDValue(E, 0);
1033
1034  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDValue(N, 0);
1038}
1039
1040SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1041                                   unsigned char TargetFlags) {
1042  assert((TargetFlags == 0 || isTarget) &&
1043         "Cannot set target flags on target-independent jump tables");
1044  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1045  FoldingSetNodeID ID;
1046  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1047  ID.AddInteger(JTI);
1048  ID.AddInteger(TargetFlags);
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052
1053  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1054                                                  TargetFlags);
1055  CSEMap.InsertNode(N, IP);
1056  AllNodes.push_back(N);
1057  return SDValue(N, 0);
1058}
1059
1060SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1061                                      unsigned Alignment, int Offset,
1062                                      bool isTarget,
1063                                      unsigned char TargetFlags) {
1064  assert((TargetFlags == 0 || isTarget) &&
1065         "Cannot set target flags on target-independent globals");
1066  if (Alignment == 0)
1067    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1068  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1069  FoldingSetNodeID ID;
1070  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1071  ID.AddInteger(Alignment);
1072  ID.AddInteger(Offset);
1073  ID.AddPointer(C);
1074  ID.AddInteger(TargetFlags);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078
1079  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1080                                                     Alignment, TargetFlags);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086
1087SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1088                                      unsigned Alignment, int Offset,
1089                                      bool isTarget,
1090                                      unsigned char TargetFlags) {
1091  assert((TargetFlags == 0 || isTarget) &&
1092         "Cannot set target flags on target-independent globals");
1093  if (Alignment == 0)
1094    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1095  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1096  FoldingSetNodeID ID;
1097  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1098  ID.AddInteger(Alignment);
1099  ID.AddInteger(Offset);
1100  C->AddSelectionDAGCSEId(ID);
1101  ID.AddInteger(TargetFlags);
1102  void *IP = 0;
1103  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1104    return SDValue(E, 0);
1105
1106  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1107                                                     Alignment, TargetFlags);
1108  CSEMap.InsertNode(N, IP);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1114  FoldingSetNodeID ID;
1115  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1116  ID.AddPointer(MBB);
1117  void *IP = 0;
1118  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1119    return SDValue(E, 0);
1120
1121  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1122  CSEMap.InsertNode(N, IP);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getValueType(EVT VT) {
1128  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1129      ValueTypeNodes.size())
1130    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1131
1132  SDNode *&N = VT.isExtended() ?
1133    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1134
1135  if (N) return SDValue(N, 0);
1136  N = new (NodeAllocator) VTSDNode(VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1142  SDNode *&N = ExternalSymbols[Sym];
1143  if (N) return SDValue(N, 0);
1144  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1150                                              unsigned char TargetFlags) {
1151  SDNode *&N =
1152    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1153                                                               TargetFlags)];
1154  if (N) return SDValue(N, 0);
1155  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1161  if ((unsigned)Cond >= CondCodeNodes.size())
1162    CondCodeNodes.resize(Cond+1);
1163
1164  if (CondCodeNodes[Cond] == 0) {
1165    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1166    CondCodeNodes[Cond] = N;
1167    AllNodes.push_back(N);
1168  }
1169
1170  return SDValue(CondCodeNodes[Cond], 0);
1171}
1172
1173// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1174// the shuffle mask M that point at N1 to point at N2, and indices that point
1175// N2 to point at N1.
1176static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1177  std::swap(N1, N2);
1178  int NElts = M.size();
1179  for (int i = 0; i != NElts; ++i) {
1180    if (M[i] >= NElts)
1181      M[i] -= NElts;
1182    else if (M[i] >= 0)
1183      M[i] += NElts;
1184  }
1185}
1186
1187SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1188                                       SDValue N2, const int *Mask) {
1189  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1190  assert(VT.isVector() && N1.getValueType().isVector() &&
1191         "Vector Shuffle VTs must be a vectors");
1192  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1193         && "Vector Shuffle VTs must have same element type");
1194
1195  // Canonicalize shuffle undef, undef -> undef
1196  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1197    return getUNDEF(VT);
1198
1199  // Validate that all indices in Mask are within the range of the elements
1200  // input to the shuffle.
1201  unsigned NElts = VT.getVectorNumElements();
1202  SmallVector<int, 8> MaskVec;
1203  for (unsigned i = 0; i != NElts; ++i) {
1204    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1205    MaskVec.push_back(Mask[i]);
1206  }
1207
1208  // Canonicalize shuffle v, v -> v, undef
1209  if (N1 == N2) {
1210    N2 = getUNDEF(VT);
1211    for (unsigned i = 0; i != NElts; ++i)
1212      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1213  }
1214
1215  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1216  if (N1.getOpcode() == ISD::UNDEF)
1217    commuteShuffle(N1, N2, MaskVec);
1218
1219  // Canonicalize all index into lhs, -> shuffle lhs, undef
1220  // Canonicalize all index into rhs, -> shuffle rhs, undef
1221  bool AllLHS = true, AllRHS = true;
1222  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1223  for (unsigned i = 0; i != NElts; ++i) {
1224    if (MaskVec[i] >= (int)NElts) {
1225      if (N2Undef)
1226        MaskVec[i] = -1;
1227      else
1228        AllLHS = false;
1229    } else if (MaskVec[i] >= 0) {
1230      AllRHS = false;
1231    }
1232  }
1233  if (AllLHS && AllRHS)
1234    return getUNDEF(VT);
1235  if (AllLHS && !N2Undef)
1236    N2 = getUNDEF(VT);
1237  if (AllRHS) {
1238    N1 = getUNDEF(VT);
1239    commuteShuffle(N1, N2, MaskVec);
1240  }
1241
1242  // If Identity shuffle, or all shuffle in to undef, return that node.
1243  bool AllUndef = true;
1244  bool Identity = true;
1245  for (unsigned i = 0; i != NElts; ++i) {
1246    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1247    if (MaskVec[i] >= 0) AllUndef = false;
1248  }
1249  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1250    return N1;
1251  if (AllUndef)
1252    return getUNDEF(VT);
1253
1254  FoldingSetNodeID ID;
1255  SDValue Ops[2] = { N1, N2 };
1256  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1257  for (unsigned i = 0; i != NElts; ++i)
1258    ID.AddInteger(MaskVec[i]);
1259
1260  void* IP = 0;
1261  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262    return SDValue(E, 0);
1263
1264  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1265  // SDNode doesn't have access to it.  This memory will be "leaked" when
1266  // the node is deallocated, but recovered when the NodeAllocator is released.
1267  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1268  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1269
1270  ShuffleVectorSDNode *N =
1271    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1272  CSEMap.InsertNode(N, IP);
1273  AllNodes.push_back(N);
1274  return SDValue(N, 0);
1275}
1276
1277SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1278                                       SDValue Val, SDValue DTy,
1279                                       SDValue STy, SDValue Rnd, SDValue Sat,
1280                                       ISD::CvtCode Code) {
1281  // If the src and dest types are the same and the conversion is between
1282  // integer types of the same sign or two floats, no conversion is necessary.
1283  if (DTy == STy &&
1284      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1285    return Val;
1286
1287  FoldingSetNodeID ID;
1288  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1289  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1290  void* IP = 0;
1291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1292    return SDValue(E, 0);
1293
1294  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1295                                                           Code);
1296  CSEMap.InsertNode(N, IP);
1297  AllNodes.push_back(N);
1298  return SDValue(N, 0);
1299}
1300
1301SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1302  FoldingSetNodeID ID;
1303  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1304  ID.AddInteger(RegNo);
1305  void *IP = 0;
1306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1307    return SDValue(E, 0);
1308
1309  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1310  CSEMap.InsertNode(N, IP);
1311  AllNodes.push_back(N);
1312  return SDValue(N, 0);
1313}
1314
1315SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1316  FoldingSetNodeID ID;
1317  SDValue Ops[] = { Root };
1318  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1319  ID.AddPointer(Label);
1320  void *IP = 0;
1321  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1322    return SDValue(E, 0);
1323
1324  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1325  CSEMap.InsertNode(N, IP);
1326  AllNodes.push_back(N);
1327  return SDValue(N, 0);
1328}
1329
1330
1331SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1332                                      bool isTarget,
1333                                      unsigned char TargetFlags) {
1334  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1335
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1338  ID.AddPointer(BA);
1339  ID.AddInteger(TargetFlags);
1340  void *IP = 0;
1341  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1342    return SDValue(E, 0);
1343
1344  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1345  CSEMap.InsertNode(N, IP);
1346  AllNodes.push_back(N);
1347  return SDValue(N, 0);
1348}
1349
1350SDValue SelectionDAG::getSrcValue(const Value *V) {
1351  assert((!V || V->getType()->isPointerTy()) &&
1352         "SrcValue is not a pointer?");
1353
1354  FoldingSetNodeID ID;
1355  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1356  ID.AddPointer(V);
1357
1358  void *IP = 0;
1359  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1360    return SDValue(E, 0);
1361
1362  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1363  CSEMap.InsertNode(N, IP);
1364  AllNodes.push_back(N);
1365  return SDValue(N, 0);
1366}
1367
1368/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1369SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1372  ID.AddPointer(MD);
1373
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384
1385/// getShiftAmountOperand - Return the specified value casted to
1386/// the target's desired shift amount type.
1387SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1388  EVT OpTy = Op.getValueType();
1389  MVT ShTy = TLI.getShiftAmountTy();
1390  if (OpTy == ShTy || OpTy.isVector()) return Op;
1391
1392  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1393  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1394}
1395
1396/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1397/// specified value type.
1398SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1399  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1400  unsigned ByteSize = VT.getStoreSize();
1401  const Type *Ty = VT.getTypeForEVT(*getContext());
1402  unsigned StackAlign =
1403  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1404
1405  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1406  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1407}
1408
1409/// CreateStackTemporary - Create a stack temporary suitable for holding
1410/// either of the specified value types.
1411SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1412  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1413                            VT2.getStoreSizeInBits())/8;
1414  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1415  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1416  const TargetData *TD = TLI.getTargetData();
1417  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1418                            TD->getPrefTypeAlignment(Ty2));
1419
1420  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1421  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1422  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1423}
1424
1425SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1426                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1427  // These setcc operations always fold.
1428  switch (Cond) {
1429  default: break;
1430  case ISD::SETFALSE:
1431  case ISD::SETFALSE2: return getConstant(0, VT);
1432  case ISD::SETTRUE:
1433  case ISD::SETTRUE2:  return getConstant(1, VT);
1434
1435  case ISD::SETOEQ:
1436  case ISD::SETOGT:
1437  case ISD::SETOGE:
1438  case ISD::SETOLT:
1439  case ISD::SETOLE:
1440  case ISD::SETONE:
1441  case ISD::SETO:
1442  case ISD::SETUO:
1443  case ISD::SETUEQ:
1444  case ISD::SETUNE:
1445    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1446    break;
1447  }
1448
1449  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1450    const APInt &C2 = N2C->getAPIntValue();
1451    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1452      const APInt &C1 = N1C->getAPIntValue();
1453
1454      switch (Cond) {
1455      default: llvm_unreachable("Unknown integer setcc!");
1456      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1457      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1458      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1459      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1460      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1461      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1462      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1463      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1464      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1465      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1466      }
1467    }
1468  }
1469  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1470    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1471      // No compile time operations on this type yet.
1472      if (N1C->getValueType(0) == MVT::ppcf128)
1473        return SDValue();
1474
1475      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1476      switch (Cond) {
1477      default: break;
1478      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1482      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1486                                           R==APFloat::cmpLessThan, VT);
1487      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1488                          return getUNDEF(VT);
1489                        // fall through
1490      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1491      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1495      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1496                          return getUNDEF(VT);
1497                        // fall through
1498      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1501                          return getUNDEF(VT);
1502                        // fall through
1503      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpEqual, VT);
1505      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1506      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1507      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1508                                           R==APFloat::cmpEqual, VT);
1509      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1510      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1511                                           R==APFloat::cmpLessThan, VT);
1512      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1513                                           R==APFloat::cmpUnordered, VT);
1514      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1515      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1516      }
1517    } else {
1518      // Ensure that the constant occurs on the RHS.
1519      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1520    }
1521  }
1522
1523  // Could not fold it.
1524  return SDValue();
1525}
1526
1527/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1528/// use this predicate to simplify operations downstream.
1529bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1530  // This predicate is not safe for vector operations.
1531  if (Op.getValueType().isVector())
1532    return false;
1533
1534  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1535  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1536}
1537
1538/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1539/// this predicate to simplify operations downstream.  Mask is known to be zero
1540/// for bits that V cannot have.
1541bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1542                                     unsigned Depth) const {
1543  APInt KnownZero, KnownOne;
1544  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1545  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546  return (KnownZero & Mask) == Mask;
1547}
1548
1549/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1550/// known to be either zero or one and return them in the KnownZero/KnownOne
1551/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1552/// processing.
1553void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1554                                     APInt &KnownZero, APInt &KnownOne,
1555                                     unsigned Depth) const {
1556  unsigned BitWidth = Mask.getBitWidth();
1557  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1558         "Mask size mismatches value type size!");
1559
1560  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1561  if (Depth == 6 || Mask == 0)
1562    return;  // Limit search depth.
1563
1564  APInt KnownZero2, KnownOne2;
1565
1566  switch (Op.getOpcode()) {
1567  case ISD::Constant:
1568    // We know all of the bits for a constant!
1569    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1570    KnownZero = ~KnownOne & Mask;
1571    return;
1572  case ISD::AND:
1573    // If either the LHS or the RHS are Zero, the result is zero.
1574    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1575    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1576                      KnownZero2, KnownOne2, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579
1580    // Output known-1 bits are only known if set in both the LHS & RHS.
1581    KnownOne &= KnownOne2;
1582    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1583    KnownZero |= KnownZero2;
1584    return;
1585  case ISD::OR:
1586    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1588                      KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // Output known-0 bits are only known if clear in both the LHS & RHS.
1593    KnownZero &= KnownZero2;
1594    // Output known-1 are known to be set if set in either the LHS | RHS.
1595    KnownOne |= KnownOne2;
1596    return;
1597  case ISD::XOR: {
1598    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1599    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1600    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1602
1603    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1604    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1605    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1606    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1607    KnownZero = KnownZeroOut;
1608    return;
1609  }
1610  case ISD::MUL: {
1611    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1612    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1613    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1614    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1616
1617    // If low bits are zero in either operand, output low known-0 bits.
1618    // Also compute a conserative estimate for high known-0 bits.
1619    // More trickiness is possible, but this is sufficient for the
1620    // interesting case of alignment computation.
1621    KnownOne.clear();
1622    unsigned TrailZ = KnownZero.countTrailingOnes() +
1623                      KnownZero2.countTrailingOnes();
1624    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1625                               KnownZero2.countLeadingOnes(),
1626                               BitWidth) - BitWidth;
1627
1628    TrailZ = std::min(TrailZ, BitWidth);
1629    LeadZ = std::min(LeadZ, BitWidth);
1630    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1631                APInt::getHighBitsSet(BitWidth, LeadZ);
1632    KnownZero &= Mask;
1633    return;
1634  }
1635  case ISD::UDIV: {
1636    // For the purposes of computing leading zeros we can conservatively
1637    // treat a udiv as a logical right shift by the power of 2 known to
1638    // be less than the denominator.
1639    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1640    ComputeMaskedBits(Op.getOperand(0),
1641                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1642    unsigned LeadZ = KnownZero2.countLeadingOnes();
1643
1644    KnownOne2.clear();
1645    KnownZero2.clear();
1646    ComputeMaskedBits(Op.getOperand(1),
1647                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1648    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1649    if (RHSUnknownLeadingOnes != BitWidth)
1650      LeadZ = std::min(BitWidth,
1651                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1652
1653    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1654    return;
1655  }
1656  case ISD::SELECT:
1657    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1658    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1661
1662    // Only known if known in both the LHS and RHS.
1663    KnownOne &= KnownOne2;
1664    KnownZero &= KnownZero2;
1665    return;
1666  case ISD::SELECT_CC:
1667    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1668    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1669    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1670    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1671
1672    // Only known if known in both the LHS and RHS.
1673    KnownOne &= KnownOne2;
1674    KnownZero &= KnownZero2;
1675    return;
1676  case ISD::SADDO:
1677  case ISD::UADDO:
1678  case ISD::SSUBO:
1679  case ISD::USUBO:
1680  case ISD::SMULO:
1681  case ISD::UMULO:
1682    if (Op.getResNo() != 1)
1683      return;
1684    // The boolean result conforms to getBooleanContents.  Fall through.
1685  case ISD::SETCC:
1686    // If we know the result of a setcc has the top bits zero, use this info.
1687    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1688        BitWidth > 1)
1689      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1690    return;
1691  case ISD::SHL:
1692    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1693    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694      unsigned ShAmt = SA->getZExtValue();
1695
1696      // If the shift count is an invalid immediate, don't do anything.
1697      if (ShAmt >= BitWidth)
1698        return;
1699
1700      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1701                        KnownZero, KnownOne, Depth+1);
1702      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703      KnownZero <<= ShAmt;
1704      KnownOne  <<= ShAmt;
1705      // low bits known zero.
1706      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1707    }
1708    return;
1709  case ISD::SRL:
1710    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1711    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712      unsigned ShAmt = SA->getZExtValue();
1713
1714      // If the shift count is an invalid immediate, don't do anything.
1715      if (ShAmt >= BitWidth)
1716        return;
1717
1718      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1719                        KnownZero, KnownOne, Depth+1);
1720      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721      KnownZero = KnownZero.lshr(ShAmt);
1722      KnownOne  = KnownOne.lshr(ShAmt);
1723
1724      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1725      KnownZero |= HighBits;  // High bits known zero.
1726    }
1727    return;
1728  case ISD::SRA:
1729    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730      unsigned ShAmt = SA->getZExtValue();
1731
1732      // If the shift count is an invalid immediate, don't do anything.
1733      if (ShAmt >= BitWidth)
1734        return;
1735
1736      APInt InDemandedMask = (Mask << ShAmt);
1737      // If any of the demanded bits are produced by the sign extension, we also
1738      // demand the input sign bit.
1739      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1740      if (HighBits.getBoolValue())
1741        InDemandedMask |= APInt::getSignBit(BitWidth);
1742
1743      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1744                        Depth+1);
1745      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1746      KnownZero = KnownZero.lshr(ShAmt);
1747      KnownOne  = KnownOne.lshr(ShAmt);
1748
1749      // Handle the sign bits.
1750      APInt SignBit = APInt::getSignBit(BitWidth);
1751      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1752
1753      if (KnownZero.intersects(SignBit)) {
1754        KnownZero |= HighBits;  // New bits are known zero.
1755      } else if (KnownOne.intersects(SignBit)) {
1756        KnownOne  |= HighBits;  // New bits are known one.
1757      }
1758    }
1759    return;
1760  case ISD::SIGN_EXTEND_INREG: {
1761    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1762    unsigned EBits = EVT.getScalarType().getSizeInBits();
1763
1764    // Sign extension.  Compute the demanded bits in the result that are not
1765    // present in the input.
1766    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1767
1768    APInt InSignBit = APInt::getSignBit(EBits);
1769    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1770
1771    // If the sign extended bits are demanded, we know that the sign
1772    // bit is demanded.
1773    InSignBit.zext(BitWidth);
1774    if (NewBits.getBoolValue())
1775      InputDemandedBits |= InSignBit;
1776
1777    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1778                      KnownZero, KnownOne, Depth+1);
1779    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780
1781    // If the sign bit of the input is known set or clear, then we know the
1782    // top bits of the result.
1783    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1784      KnownZero |= NewBits;
1785      KnownOne  &= ~NewBits;
1786    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1787      KnownOne  |= NewBits;
1788      KnownZero &= ~NewBits;
1789    } else {                              // Input sign bit unknown
1790      KnownZero &= ~NewBits;
1791      KnownOne  &= ~NewBits;
1792    }
1793    return;
1794  }
1795  case ISD::CTTZ:
1796  case ISD::CTLZ:
1797  case ISD::CTPOP: {
1798    unsigned LowBits = Log2_32(BitWidth)+1;
1799    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1800    KnownOne.clear();
1801    return;
1802  }
1803  case ISD::LOAD: {
1804    if (ISD::isZEXTLoad(Op.getNode())) {
1805      LoadSDNode *LD = cast<LoadSDNode>(Op);
1806      EVT VT = LD->getMemoryVT();
1807      unsigned MemBits = VT.getScalarType().getSizeInBits();
1808      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1809    }
1810    return;
1811  }
1812  case ISD::ZERO_EXTEND: {
1813    EVT InVT = Op.getOperand(0).getValueType();
1814    unsigned InBits = InVT.getScalarType().getSizeInBits();
1815    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1816    APInt InMask    = Mask;
1817    InMask.trunc(InBits);
1818    KnownZero.trunc(InBits);
1819    KnownOne.trunc(InBits);
1820    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1821    KnownZero.zext(BitWidth);
1822    KnownOne.zext(BitWidth);
1823    KnownZero |= NewBits;
1824    return;
1825  }
1826  case ISD::SIGN_EXTEND: {
1827    EVT InVT = Op.getOperand(0).getValueType();
1828    unsigned InBits = InVT.getScalarType().getSizeInBits();
1829    APInt InSignBit = APInt::getSignBit(InBits);
1830    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1831    APInt InMask = Mask;
1832    InMask.trunc(InBits);
1833
1834    // If any of the sign extended bits are demanded, we know that the sign
1835    // bit is demanded. Temporarily set this bit in the mask for our callee.
1836    if (NewBits.getBoolValue())
1837      InMask |= InSignBit;
1838
1839    KnownZero.trunc(InBits);
1840    KnownOne.trunc(InBits);
1841    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1842
1843    // Note if the sign bit is known to be zero or one.
1844    bool SignBitKnownZero = KnownZero.isNegative();
1845    bool SignBitKnownOne  = KnownOne.isNegative();
1846    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1847           "Sign bit can't be known to be both zero and one!");
1848
1849    // If the sign bit wasn't actually demanded by our caller, we don't
1850    // want it set in the KnownZero and KnownOne result values. Reset the
1851    // mask and reapply it to the result values.
1852    InMask = Mask;
1853    InMask.trunc(InBits);
1854    KnownZero &= InMask;
1855    KnownOne  &= InMask;
1856
1857    KnownZero.zext(BitWidth);
1858    KnownOne.zext(BitWidth);
1859
1860    // If the sign bit is known zero or one, the top bits match.
1861    if (SignBitKnownZero)
1862      KnownZero |= NewBits;
1863    else if (SignBitKnownOne)
1864      KnownOne  |= NewBits;
1865    return;
1866  }
1867  case ISD::ANY_EXTEND: {
1868    EVT InVT = Op.getOperand(0).getValueType();
1869    unsigned InBits = InVT.getScalarType().getSizeInBits();
1870    APInt InMask = Mask;
1871    InMask.trunc(InBits);
1872    KnownZero.trunc(InBits);
1873    KnownOne.trunc(InBits);
1874    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875    KnownZero.zext(BitWidth);
1876    KnownOne.zext(BitWidth);
1877    return;
1878  }
1879  case ISD::TRUNCATE: {
1880    EVT InVT = Op.getOperand(0).getValueType();
1881    unsigned InBits = InVT.getScalarType().getSizeInBits();
1882    APInt InMask = Mask;
1883    InMask.zext(InBits);
1884    KnownZero.zext(InBits);
1885    KnownOne.zext(InBits);
1886    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1887    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1888    KnownZero.trunc(BitWidth);
1889    KnownOne.trunc(BitWidth);
1890    break;
1891  }
1892  case ISD::AssertZext: {
1893    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1894    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1895    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1896                      KnownOne, Depth+1);
1897    KnownZero |= (~InMask) & Mask;
1898    return;
1899  }
1900  case ISD::FGETSIGN:
1901    // All bits are zero except the low bit.
1902    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1903    return;
1904
1905  case ISD::SUB: {
1906    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1907      // We know that the top bits of C-X are clear if X contains less bits
1908      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1909      // positive if we can prove that X is >= 0 and < 16.
1910      if (CLHS->getAPIntValue().isNonNegative()) {
1911        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1912        // NLZ can't be BitWidth with no sign bit
1913        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1914        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1915                          Depth+1);
1916
1917        // If all of the MaskV bits are known to be zero, then we know the
1918        // output top bits are zero, because we now know that the output is
1919        // from [0-C].
1920        if ((KnownZero2 & MaskV) == MaskV) {
1921          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1922          // Top bits known zero.
1923          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1924        }
1925      }
1926    }
1927  }
1928  // fall through
1929  case ISD::ADD: {
1930    // Output known-0 bits are known if clear or set in both the low clear bits
1931    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1932    // low 3 bits clear.
1933    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1934                                       BitWidth - Mask.countLeadingZeros());
1935    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1936    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1937    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1938
1939    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1940    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1941    KnownZeroOut = std::min(KnownZeroOut,
1942                            KnownZero2.countTrailingOnes());
1943
1944    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1945    return;
1946  }
1947  case ISD::SREM:
1948    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949      const APInt &RA = Rem->getAPIntValue().abs();
1950      if (RA.isPowerOf2()) {
1951        APInt LowBits = RA - 1;
1952        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1953        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1954
1955        // The low bits of the first operand are unchanged by the srem.
1956        KnownZero = KnownZero2 & LowBits;
1957        KnownOne = KnownOne2 & LowBits;
1958
1959        // If the first operand is non-negative or has all low bits zero, then
1960        // the upper bits are all zero.
1961        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1962          KnownZero |= ~LowBits;
1963
1964        // If the first operand is negative and not all low bits are zero, then
1965        // the upper bits are all one.
1966        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1967          KnownOne |= ~LowBits;
1968
1969        KnownZero &= Mask;
1970        KnownOne &= Mask;
1971
1972        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1973      }
1974    }
1975    return;
1976  case ISD::UREM: {
1977    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1978      const APInt &RA = Rem->getAPIntValue();
1979      if (RA.isPowerOf2()) {
1980        APInt LowBits = (RA - 1);
1981        APInt Mask2 = LowBits & Mask;
1982        KnownZero |= ~LowBits & Mask;
1983        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1984        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1985        break;
1986      }
1987    }
1988
1989    // Since the result is less than or equal to either operand, any leading
1990    // zero bits in either operand must also exist in the result.
1991    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1992    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1993                      Depth+1);
1994    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1995                      Depth+1);
1996
1997    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1998                                KnownZero2.countLeadingOnes());
1999    KnownOne.clear();
2000    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2001    return;
2002  }
2003  default:
2004    // Allow the target to implement this method for its nodes.
2005    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2006  case ISD::INTRINSIC_WO_CHAIN:
2007  case ISD::INTRINSIC_W_CHAIN:
2008  case ISD::INTRINSIC_VOID:
2009      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2010                                         Depth);
2011    }
2012    return;
2013  }
2014}
2015
2016/// ComputeNumSignBits - Return the number of times the sign bit of the
2017/// register is replicated into the other bits.  We know that at least 1 bit
2018/// is always equal to the sign bit (itself), but other cases can give us
2019/// information.  For example, immediately after an "SRA X, 2", we know that
2020/// the top 3 bits are all equal to each other, so we return 3.
2021unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2022  EVT VT = Op.getValueType();
2023  assert(VT.isInteger() && "Invalid VT!");
2024  unsigned VTBits = VT.getScalarType().getSizeInBits();
2025  unsigned Tmp, Tmp2;
2026  unsigned FirstAnswer = 1;
2027
2028  if (Depth == 6)
2029    return 1;  // Limit search depth.
2030
2031  switch (Op.getOpcode()) {
2032  default: break;
2033  case ISD::AssertSext:
2034    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2035    return VTBits-Tmp+1;
2036  case ISD::AssertZext:
2037    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2038    return VTBits-Tmp;
2039
2040  case ISD::Constant: {
2041    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2042    // If negative, return # leading ones.
2043    if (Val.isNegative())
2044      return Val.countLeadingOnes();
2045
2046    // Return # leading zeros.
2047    return Val.countLeadingZeros();
2048  }
2049
2050  case ISD::SIGN_EXTEND:
2051    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2052    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2053
2054  case ISD::SIGN_EXTEND_INREG:
2055    // Max of the input and what this extends.
2056    Tmp =
2057      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2058    Tmp = VTBits-Tmp+1;
2059
2060    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2061    return std::max(Tmp, Tmp2);
2062
2063  case ISD::SRA:
2064    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065    // SRA X, C   -> adds C sign bits.
2066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2067      Tmp += C->getZExtValue();
2068      if (Tmp > VTBits) Tmp = VTBits;
2069    }
2070    return Tmp;
2071  case ISD::SHL:
2072    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2073      // shl destroys sign bits.
2074      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2076          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2077      return Tmp - C->getZExtValue();
2078    }
2079    break;
2080  case ISD::AND:
2081  case ISD::OR:
2082  case ISD::XOR:    // NOT is handled here.
2083    // Logical binary ops preserve the number of sign bits at the worst.
2084    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2085    if (Tmp != 1) {
2086      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2087      FirstAnswer = std::min(Tmp, Tmp2);
2088      // We computed what we know about the sign bits as our first
2089      // answer. Now proceed to the generic code that uses
2090      // ComputeMaskedBits, and pick whichever answer is better.
2091    }
2092    break;
2093
2094  case ISD::SELECT:
2095    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2096    if (Tmp == 1) return 1;  // Early out.
2097    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2098    return std::min(Tmp, Tmp2);
2099
2100  case ISD::SADDO:
2101  case ISD::UADDO:
2102  case ISD::SSUBO:
2103  case ISD::USUBO:
2104  case ISD::SMULO:
2105  case ISD::UMULO:
2106    if (Op.getResNo() != 1)
2107      break;
2108    // The boolean result conforms to getBooleanContents.  Fall through.
2109  case ISD::SETCC:
2110    // If setcc returns 0/-1, all bits are sign bits.
2111    if (TLI.getBooleanContents() ==
2112        TargetLowering::ZeroOrNegativeOneBooleanContent)
2113      return VTBits;
2114    break;
2115  case ISD::ROTL:
2116  case ISD::ROTR:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2119
2120      // Handle rotate right by N like a rotate left by 32-N.
2121      if (Op.getOpcode() == ISD::ROTR)
2122        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2123
2124      // If we aren't rotating out all of the known-in sign bits, return the
2125      // number that are left.  This handles rotl(sext(x), 1) for example.
2126      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2128    }
2129    break;
2130  case ISD::ADD:
2131    // Add can have at most one carry bit.  Thus we know that the output
2132    // is, at worst, one more bit than the inputs.
2133    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134    if (Tmp == 1) return 1;  // Early out.
2135
2136    // Special case decrementing a value (ADD X, -1):
2137    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2138      if (CRHS->isAllOnesValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2142
2143        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2144        // sign bits set.
2145        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2146          return VTBits;
2147
2148        // If we are subtracting one from a positive number, there is no carry
2149        // out of the result.
2150        if (KnownZero.isNegative())
2151          return Tmp;
2152      }
2153
2154    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155    if (Tmp2 == 1) return 1;
2156      return std::min(Tmp, Tmp2)-1;
2157    break;
2158
2159  case ISD::SUB:
2160    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2161    if (Tmp2 == 1) return 1;
2162
2163    // Handle NEG.
2164    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2165      if (CLHS->isNullValue()) {
2166        APInt KnownZero, KnownOne;
2167        APInt Mask = APInt::getAllOnesValue(VTBits);
2168        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2169        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2170        // sign bits set.
2171        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2172          return VTBits;
2173
2174        // If the input is known to be positive (the sign bit is known clear),
2175        // the output of the NEG has the same number of sign bits as the input.
2176        if (KnownZero.isNegative())
2177          return Tmp2;
2178
2179        // Otherwise, we treat this like a SUB.
2180      }
2181
2182    // Sub can have at most one carry bit.  Thus we know that the output
2183    // is, at worst, one more bit than the inputs.
2184    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2185    if (Tmp == 1) return 1;  // Early out.
2186      return std::min(Tmp, Tmp2)-1;
2187    break;
2188  case ISD::TRUNCATE:
2189    // FIXME: it's tricky to do anything useful for this, but it is an important
2190    // case for targets like X86.
2191    break;
2192  }
2193
2194  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2195  if (Op.getOpcode() == ISD::LOAD) {
2196    LoadSDNode *LD = cast<LoadSDNode>(Op);
2197    unsigned ExtType = LD->getExtensionType();
2198    switch (ExtType) {
2199    default: break;
2200    case ISD::SEXTLOAD:    // '17' bits known
2201      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2202      return VTBits-Tmp+1;
2203    case ISD::ZEXTLOAD:    // '16' bits known
2204      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2205      return VTBits-Tmp;
2206    }
2207  }
2208
2209  // Allow the target to implement this method for its nodes.
2210  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2211      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2212      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2213      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2214    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2215    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2216  }
2217
2218  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2219  // use this information.
2220  APInt KnownZero, KnownOne;
2221  APInt Mask = APInt::getAllOnesValue(VTBits);
2222  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2223
2224  if (KnownZero.isNegative()) {        // sign bit is 0
2225    Mask = KnownZero;
2226  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2227    Mask = KnownOne;
2228  } else {
2229    // Nothing known.
2230    return FirstAnswer;
2231  }
2232
2233  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2234  // the number of identical bits in the top of the input value.
2235  Mask = ~Mask;
2236  Mask <<= Mask.getBitWidth()-VTBits;
2237  // Return # leading zeros.  We use 'min' here in case Val was zero before
2238  // shifting.  We don't want to return '64' as for an i32 "0".
2239  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2240}
2241
2242bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2243  // If we're told that NaNs won't happen, assume they won't.
2244  if (FiniteOnlyFPMath())
2245    return true;
2246
2247  // If the value is a constant, we can obviously see if it is a NaN or not.
2248  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2249    return !C->getValueAPF().isNaN();
2250
2251  // TODO: Recognize more cases here.
2252
2253  return false;
2254}
2255
2256bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2257  // If the value is a constant, we can obviously see if it is a zero or not.
2258  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2259    return !C->isZero();
2260
2261  // TODO: Recognize more cases here.
2262
2263  return false;
2264}
2265
2266bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2267  // Check the obvious case.
2268  if (A == B) return true;
2269
2270  // For for negative and positive zero.
2271  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2272    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2273      if (CA->isZero() && CB->isZero()) return true;
2274
2275  // Otherwise they may not be equal.
2276  return false;
2277}
2278
2279bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2280  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2281  if (!GA) return false;
2282  if (GA->getOffset() != 0) return false;
2283  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2284  if (!GV) return false;
2285  return MF->getMMI().hasDebugInfo();
2286}
2287
2288
2289/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2290/// element of the result of the vector shuffle.
2291SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2292                                          unsigned i) {
2293  EVT VT = N->getValueType(0);
2294  DebugLoc dl = N->getDebugLoc();
2295  if (N->getMaskElt(i) < 0)
2296    return getUNDEF(VT.getVectorElementType());
2297  unsigned Index = N->getMaskElt(i);
2298  unsigned NumElems = VT.getVectorNumElements();
2299  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2300  Index %= NumElems;
2301
2302  if (V.getOpcode() == ISD::BIT_CONVERT) {
2303    V = V.getOperand(0);
2304    EVT VVT = V.getValueType();
2305    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2306      return SDValue();
2307  }
2308  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2309    return (Index == 0) ? V.getOperand(0)
2310                      : getUNDEF(VT.getVectorElementType());
2311  if (V.getOpcode() == ISD::BUILD_VECTOR)
2312    return V.getOperand(Index);
2313  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2314    return getShuffleScalarElt(SVN, Index);
2315  return SDValue();
2316}
2317
2318
2319/// getNode - Gets or creates the specified node.
2320///
2321SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2322  FoldingSetNodeID ID;
2323  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2324  void *IP = 0;
2325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2326    return SDValue(E, 0);
2327
2328  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2329  CSEMap.InsertNode(N, IP);
2330
2331  AllNodes.push_back(N);
2332#ifndef NDEBUG
2333  VerifyNode(N);
2334#endif
2335  return SDValue(N, 0);
2336}
2337
2338SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2339                              EVT VT, SDValue Operand) {
2340  // Constant fold unary operations with an integer constant operand.
2341  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2342    const APInt &Val = C->getAPIntValue();
2343    switch (Opcode) {
2344    default: break;
2345    case ISD::SIGN_EXTEND:
2346      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2347    case ISD::ANY_EXTEND:
2348    case ISD::ZERO_EXTEND:
2349    case ISD::TRUNCATE:
2350      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2351    case ISD::UINT_TO_FP:
2352    case ISD::SINT_TO_FP: {
2353      const uint64_t zero[] = {0, 0};
2354      // No compile time operations on ppcf128.
2355      if (VT == MVT::ppcf128) break;
2356      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2357      (void)apf.convertFromAPInt(Val,
2358                                 Opcode==ISD::SINT_TO_FP,
2359                                 APFloat::rmNearestTiesToEven);
2360      return getConstantFP(apf, VT);
2361    }
2362    case ISD::BIT_CONVERT:
2363      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2364        return getConstantFP(Val.bitsToFloat(), VT);
2365      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2366        return getConstantFP(Val.bitsToDouble(), VT);
2367      break;
2368    case ISD::BSWAP:
2369      return getConstant(Val.byteSwap(), VT);
2370    case ISD::CTPOP:
2371      return getConstant(Val.countPopulation(), VT);
2372    case ISD::CTLZ:
2373      return getConstant(Val.countLeadingZeros(), VT);
2374    case ISD::CTTZ:
2375      return getConstant(Val.countTrailingZeros(), VT);
2376    }
2377  }
2378
2379  // Constant fold unary operations with a floating point constant operand.
2380  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2381    APFloat V = C->getValueAPF();    // make copy
2382    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2383      switch (Opcode) {
2384      case ISD::FNEG:
2385        V.changeSign();
2386        return getConstantFP(V, VT);
2387      case ISD::FABS:
2388        V.clearSign();
2389        return getConstantFP(V, VT);
2390      case ISD::FP_ROUND:
2391      case ISD::FP_EXTEND: {
2392        bool ignored;
2393        // This can return overflow, underflow, or inexact; we don't care.
2394        // FIXME need to be more flexible about rounding mode.
2395        (void)V.convert(*EVTToAPFloatSemantics(VT),
2396                        APFloat::rmNearestTiesToEven, &ignored);
2397        return getConstantFP(V, VT);
2398      }
2399      case ISD::FP_TO_SINT:
2400      case ISD::FP_TO_UINT: {
2401        integerPart x[2];
2402        bool ignored;
2403        assert(integerPartWidth >= 64);
2404        // FIXME need to be more flexible about rounding mode.
2405        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2406                              Opcode==ISD::FP_TO_SINT,
2407                              APFloat::rmTowardZero, &ignored);
2408        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2409          break;
2410        APInt api(VT.getSizeInBits(), 2, x);
2411        return getConstant(api, VT);
2412      }
2413      case ISD::BIT_CONVERT:
2414        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2415          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2416        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2417          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2418        break;
2419      }
2420    }
2421  }
2422
2423  unsigned OpOpcode = Operand.getNode()->getOpcode();
2424  switch (Opcode) {
2425  case ISD::TokenFactor:
2426  case ISD::MERGE_VALUES:
2427  case ISD::CONCAT_VECTORS:
2428    return Operand;         // Factor, merge or concat of one node?  No need.
2429  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2430  case ISD::FP_EXTEND:
2431    assert(VT.isFloatingPoint() &&
2432           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2433    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2434    assert((!VT.isVector() ||
2435            VT.getVectorNumElements() ==
2436            Operand.getValueType().getVectorNumElements()) &&
2437           "Vector element count mismatch!");
2438    if (Operand.getOpcode() == ISD::UNDEF)
2439      return getUNDEF(VT);
2440    break;
2441  case ISD::SIGN_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid SIGN_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid sext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2452      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453    break;
2454  case ISD::ZERO_EXTEND:
2455    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2456           "Invalid ZERO_EXTEND!");
2457    if (Operand.getValueType() == VT) return Operand;   // noop extension
2458    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2459           "Invalid zext node, dst < src!");
2460    assert((!VT.isVector() ||
2461            VT.getVectorNumElements() ==
2462            Operand.getValueType().getVectorNumElements()) &&
2463           "Vector element count mismatch!");
2464    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2465      return getNode(ISD::ZERO_EXTEND, DL, VT,
2466                     Operand.getNode()->getOperand(0));
2467    break;
2468  case ISD::ANY_EXTEND:
2469    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2470           "Invalid ANY_EXTEND!");
2471    if (Operand.getValueType() == VT) return Operand;   // noop extension
2472    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2473           "Invalid anyext node, dst < src!");
2474    assert((!VT.isVector() ||
2475            VT.getVectorNumElements() ==
2476            Operand.getValueType().getVectorNumElements()) &&
2477           "Vector element count mismatch!");
2478    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2479      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2480      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2481    break;
2482  case ISD::TRUNCATE:
2483    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2484           "Invalid TRUNCATE!");
2485    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2486    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2487           "Invalid truncate node, src < dst!");
2488    assert((!VT.isVector() ||
2489            VT.getVectorNumElements() ==
2490            Operand.getValueType().getVectorNumElements()) &&
2491           "Vector element count mismatch!");
2492    if (OpOpcode == ISD::TRUNCATE)
2493      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2494    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2495             OpOpcode == ISD::ANY_EXTEND) {
2496      // If the source is smaller than the dest, we still need an extend.
2497      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2498            .bitsLT(VT.getScalarType()))
2499        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2500      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2501        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2502      else
2503        return Operand.getNode()->getOperand(0);
2504    }
2505    break;
2506  case ISD::BIT_CONVERT:
2507    // Basic sanity checking.
2508    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2509           && "Cannot BIT_CONVERT between types of different sizes!");
2510    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2511    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2512      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2513    if (OpOpcode == ISD::UNDEF)
2514      return getUNDEF(VT);
2515    break;
2516  case ISD::SCALAR_TO_VECTOR:
2517    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2518           (VT.getVectorElementType() == Operand.getValueType() ||
2519            (VT.getVectorElementType().isInteger() &&
2520             Operand.getValueType().isInteger() &&
2521             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2522           "Illegal SCALAR_TO_VECTOR node!");
2523    if (OpOpcode == ISD::UNDEF)
2524      return getUNDEF(VT);
2525    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2526    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2527        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2528        Operand.getConstantOperandVal(1) == 0 &&
2529        Operand.getOperand(0).getValueType() == VT)
2530      return Operand.getOperand(0);
2531    break;
2532  case ISD::FNEG:
2533    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2534    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2535      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2536                     Operand.getNode()->getOperand(0));
2537    if (OpOpcode == ISD::FNEG)  // --X -> X
2538      return Operand.getNode()->getOperand(0);
2539    break;
2540  case ISD::FABS:
2541    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2542      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2543    break;
2544  }
2545
2546  SDNode *N;
2547  SDVTList VTs = getVTList(VT);
2548  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2549    FoldingSetNodeID ID;
2550    SDValue Ops[1] = { Operand };
2551    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2552    void *IP = 0;
2553    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2554      return SDValue(E, 0);
2555
2556    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2557    CSEMap.InsertNode(N, IP);
2558  } else {
2559    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2560  }
2561
2562  AllNodes.push_back(N);
2563#ifndef NDEBUG
2564  VerifyNode(N);
2565#endif
2566  return SDValue(N, 0);
2567}
2568
2569SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2570                                             EVT VT,
2571                                             ConstantSDNode *Cst1,
2572                                             ConstantSDNode *Cst2) {
2573  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2574
2575  switch (Opcode) {
2576  case ISD::ADD:  return getConstant(C1 + C2, VT);
2577  case ISD::SUB:  return getConstant(C1 - C2, VT);
2578  case ISD::MUL:  return getConstant(C1 * C2, VT);
2579  case ISD::UDIV:
2580    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2581    break;
2582  case ISD::UREM:
2583    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2584    break;
2585  case ISD::SDIV:
2586    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2587    break;
2588  case ISD::SREM:
2589    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2590    break;
2591  case ISD::AND:  return getConstant(C1 & C2, VT);
2592  case ISD::OR:   return getConstant(C1 | C2, VT);
2593  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2594  case ISD::SHL:  return getConstant(C1 << C2, VT);
2595  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2596  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2597  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2598  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2599  default: break;
2600  }
2601
2602  return SDValue();
2603}
2604
2605SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2606                              SDValue N1, SDValue N2) {
2607  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2608  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2609  switch (Opcode) {
2610  default: break;
2611  case ISD::TokenFactor:
2612    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2613           N2.getValueType() == MVT::Other && "Invalid token factor!");
2614    // Fold trivial token factors.
2615    if (N1.getOpcode() == ISD::EntryToken) return N2;
2616    if (N2.getOpcode() == ISD::EntryToken) return N1;
2617    if (N1 == N2) return N1;
2618    break;
2619  case ISD::CONCAT_VECTORS:
2620    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2621    // one big BUILD_VECTOR.
2622    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2623        N2.getOpcode() == ISD::BUILD_VECTOR) {
2624      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2625      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2626      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2627    }
2628    break;
2629  case ISD::AND:
2630    assert(VT.isInteger() && "This operator does not apply to FP types!");
2631    assert(N1.getValueType() == N2.getValueType() &&
2632           N1.getValueType() == VT && "Binary operator types must match!");
2633    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2634    // worth handling here.
2635    if (N2C && N2C->isNullValue())
2636      return N2;
2637    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2638      return N1;
2639    break;
2640  case ISD::OR:
2641  case ISD::XOR:
2642  case ISD::ADD:
2643  case ISD::SUB:
2644    assert(VT.isInteger() && "This operator does not apply to FP types!");
2645    assert(N1.getValueType() == N2.getValueType() &&
2646           N1.getValueType() == VT && "Binary operator types must match!");
2647    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2648    // it's worth handling here.
2649    if (N2C && N2C->isNullValue())
2650      return N1;
2651    break;
2652  case ISD::UDIV:
2653  case ISD::UREM:
2654  case ISD::MULHU:
2655  case ISD::MULHS:
2656  case ISD::MUL:
2657  case ISD::SDIV:
2658  case ISD::SREM:
2659    assert(VT.isInteger() && "This operator does not apply to FP types!");
2660    assert(N1.getValueType() == N2.getValueType() &&
2661           N1.getValueType() == VT && "Binary operator types must match!");
2662    break;
2663  case ISD::FADD:
2664  case ISD::FSUB:
2665  case ISD::FMUL:
2666  case ISD::FDIV:
2667  case ISD::FREM:
2668    if (UnsafeFPMath) {
2669      if (Opcode == ISD::FADD) {
2670        // 0+x --> x
2671        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2672          if (CFP->getValueAPF().isZero())
2673            return N2;
2674        // x+0 --> x
2675        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2676          if (CFP->getValueAPF().isZero())
2677            return N1;
2678      } else if (Opcode == ISD::FSUB) {
2679        // x-0 --> x
2680        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2681          if (CFP->getValueAPF().isZero())
2682            return N1;
2683      }
2684    }
2685    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2686    assert(N1.getValueType() == N2.getValueType() &&
2687           N1.getValueType() == VT && "Binary operator types must match!");
2688    break;
2689  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2690    assert(N1.getValueType() == VT &&
2691           N1.getValueType().isFloatingPoint() &&
2692           N2.getValueType().isFloatingPoint() &&
2693           "Invalid FCOPYSIGN!");
2694    break;
2695  case ISD::SHL:
2696  case ISD::SRA:
2697  case ISD::SRL:
2698  case ISD::ROTL:
2699  case ISD::ROTR:
2700    assert(VT == N1.getValueType() &&
2701           "Shift operators return type must be the same as their first arg");
2702    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2703           "Shifts only work on integers");
2704
2705    // Always fold shifts of i1 values so the code generator doesn't need to
2706    // handle them.  Since we know the size of the shift has to be less than the
2707    // size of the value, the shift/rotate count is guaranteed to be zero.
2708    if (VT == MVT::i1)
2709      return N1;
2710    if (N2C && N2C->isNullValue())
2711      return N1;
2712    break;
2713  case ISD::FP_ROUND_INREG: {
2714    EVT EVT = cast<VTSDNode>(N2)->getVT();
2715    assert(VT == N1.getValueType() && "Not an inreg round!");
2716    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2717           "Cannot FP_ROUND_INREG integer types");
2718    assert(EVT.isVector() == VT.isVector() &&
2719           "FP_ROUND_INREG type should be vector iff the operand "
2720           "type is vector!");
2721    assert((!EVT.isVector() ||
2722            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2723           "Vector element counts must match in FP_ROUND_INREG");
2724    assert(EVT.bitsLE(VT) && "Not rounding down!");
2725    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2726    break;
2727  }
2728  case ISD::FP_ROUND:
2729    assert(VT.isFloatingPoint() &&
2730           N1.getValueType().isFloatingPoint() &&
2731           VT.bitsLE(N1.getValueType()) &&
2732           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2733    if (N1.getValueType() == VT) return N1;  // noop conversion.
2734    break;
2735  case ISD::AssertSext:
2736  case ISD::AssertZext: {
2737    EVT EVT = cast<VTSDNode>(N2)->getVT();
2738    assert(VT == N1.getValueType() && "Not an inreg extend!");
2739    assert(VT.isInteger() && EVT.isInteger() &&
2740           "Cannot *_EXTEND_INREG FP types");
2741    assert(!EVT.isVector() &&
2742           "AssertSExt/AssertZExt type should be the vector element type "
2743           "rather than the vector type!");
2744    assert(EVT.bitsLE(VT) && "Not extending!");
2745    if (VT == EVT) return N1; // noop assertion.
2746    break;
2747  }
2748  case ISD::SIGN_EXTEND_INREG: {
2749    EVT EVT = cast<VTSDNode>(N2)->getVT();
2750    assert(VT == N1.getValueType() && "Not an inreg extend!");
2751    assert(VT.isInteger() && EVT.isInteger() &&
2752           "Cannot *_EXTEND_INREG FP types");
2753    assert(EVT.isVector() == VT.isVector() &&
2754           "SIGN_EXTEND_INREG type should be vector iff the operand "
2755           "type is vector!");
2756    assert((!EVT.isVector() ||
2757            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2758           "Vector element counts must match in SIGN_EXTEND_INREG");
2759    assert(EVT.bitsLE(VT) && "Not extending!");
2760    if (EVT == VT) return N1;  // Not actually extending
2761
2762    if (N1C) {
2763      APInt Val = N1C->getAPIntValue();
2764      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2765      Val <<= Val.getBitWidth()-FromBits;
2766      Val = Val.ashr(Val.getBitWidth()-FromBits);
2767      return getConstant(Val, VT);
2768    }
2769    break;
2770  }
2771  case ISD::EXTRACT_VECTOR_ELT:
2772    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2773    if (N1.getOpcode() == ISD::UNDEF)
2774      return getUNDEF(VT);
2775
2776    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2777    // expanding copies of large vectors from registers.
2778    if (N2C &&
2779        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2780        N1.getNumOperands() > 0) {
2781      unsigned Factor =
2782        N1.getOperand(0).getValueType().getVectorNumElements();
2783      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2784                     N1.getOperand(N2C->getZExtValue() / Factor),
2785                     getConstant(N2C->getZExtValue() % Factor,
2786                                 N2.getValueType()));
2787    }
2788
2789    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2790    // expanding large vector constants.
2791    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2792      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2793      EVT VEltTy = N1.getValueType().getVectorElementType();
2794      if (Elt.getValueType() != VEltTy) {
2795        // If the vector element type is not legal, the BUILD_VECTOR operands
2796        // are promoted and implicitly truncated.  Make that explicit here.
2797        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2798      }
2799      if (VT != VEltTy) {
2800        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2801        // result is implicitly extended.
2802        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2803      }
2804      return Elt;
2805    }
2806
2807    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2808    // operations are lowered to scalars.
2809    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2810      // If the indices are the same, return the inserted element else
2811      // if the indices are known different, extract the element from
2812      // the original vector.
2813      SDValue N1Op2 = N1.getOperand(2);
2814      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2815
2816      if (N1Op2C && N2C) {
2817        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2818          if (VT == N1.getOperand(1).getValueType())
2819            return N1.getOperand(1);
2820          else
2821            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2822        }
2823
2824        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2825      }
2826    }
2827    break;
2828  case ISD::EXTRACT_ELEMENT:
2829    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2830    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2831           (N1.getValueType().isInteger() == VT.isInteger()) &&
2832           "Wrong types for EXTRACT_ELEMENT!");
2833
2834    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2835    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2836    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2837    if (N1.getOpcode() == ISD::BUILD_PAIR)
2838      return N1.getOperand(N2C->getZExtValue());
2839
2840    // EXTRACT_ELEMENT of a constant int is also very common.
2841    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2842      unsigned ElementSize = VT.getSizeInBits();
2843      unsigned Shift = ElementSize * N2C->getZExtValue();
2844      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2845      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2846    }
2847    break;
2848  case ISD::EXTRACT_SUBVECTOR:
2849    if (N1.getValueType() == VT) // Trivial extraction.
2850      return N1;
2851    break;
2852  }
2853
2854  if (N1C) {
2855    if (N2C) {
2856      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2857      if (SV.getNode()) return SV;
2858    } else {      // Cannonicalize constant to RHS if commutative
2859      if (isCommutativeBinOp(Opcode)) {
2860        std::swap(N1C, N2C);
2861        std::swap(N1, N2);
2862      }
2863    }
2864  }
2865
2866  // Constant fold FP operations.
2867  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2868  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2869  if (N1CFP) {
2870    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2871      // Cannonicalize constant to RHS if commutative
2872      std::swap(N1CFP, N2CFP);
2873      std::swap(N1, N2);
2874    } else if (N2CFP && VT != MVT::ppcf128) {
2875      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2876      APFloat::opStatus s;
2877      switch (Opcode) {
2878      case ISD::FADD:
2879        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2880        if (s != APFloat::opInvalidOp)
2881          return getConstantFP(V1, VT);
2882        break;
2883      case ISD::FSUB:
2884        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2885        if (s!=APFloat::opInvalidOp)
2886          return getConstantFP(V1, VT);
2887        break;
2888      case ISD::FMUL:
2889        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2890        if (s!=APFloat::opInvalidOp)
2891          return getConstantFP(V1, VT);
2892        break;
2893      case ISD::FDIV:
2894        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2895        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2896          return getConstantFP(V1, VT);
2897        break;
2898      case ISD::FREM :
2899        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2900        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2901          return getConstantFP(V1, VT);
2902        break;
2903      case ISD::FCOPYSIGN:
2904        V1.copySign(V2);
2905        return getConstantFP(V1, VT);
2906      default: break;
2907      }
2908    }
2909  }
2910
2911  // Canonicalize an UNDEF to the RHS, even over a constant.
2912  if (N1.getOpcode() == ISD::UNDEF) {
2913    if (isCommutativeBinOp(Opcode)) {
2914      std::swap(N1, N2);
2915    } else {
2916      switch (Opcode) {
2917      case ISD::FP_ROUND_INREG:
2918      case ISD::SIGN_EXTEND_INREG:
2919      case ISD::SUB:
2920      case ISD::FSUB:
2921      case ISD::FDIV:
2922      case ISD::FREM:
2923      case ISD::SRA:
2924        return N1;     // fold op(undef, arg2) -> undef
2925      case ISD::UDIV:
2926      case ISD::SDIV:
2927      case ISD::UREM:
2928      case ISD::SREM:
2929      case ISD::SRL:
2930      case ISD::SHL:
2931        if (!VT.isVector())
2932          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2933        // For vectors, we can't easily build an all zero vector, just return
2934        // the LHS.
2935        return N2;
2936      }
2937    }
2938  }
2939
2940  // Fold a bunch of operators when the RHS is undef.
2941  if (N2.getOpcode() == ISD::UNDEF) {
2942    switch (Opcode) {
2943    case ISD::XOR:
2944      if (N1.getOpcode() == ISD::UNDEF)
2945        // Handle undef ^ undef -> 0 special case. This is a common
2946        // idiom (misuse).
2947        return getConstant(0, VT);
2948      // fallthrough
2949    case ISD::ADD:
2950    case ISD::ADDC:
2951    case ISD::ADDE:
2952    case ISD::SUB:
2953    case ISD::UDIV:
2954    case ISD::SDIV:
2955    case ISD::UREM:
2956    case ISD::SREM:
2957      return N2;       // fold op(arg1, undef) -> undef
2958    case ISD::FADD:
2959    case ISD::FSUB:
2960    case ISD::FMUL:
2961    case ISD::FDIV:
2962    case ISD::FREM:
2963      if (UnsafeFPMath)
2964        return N2;
2965      break;
2966    case ISD::MUL:
2967    case ISD::AND:
2968    case ISD::SRL:
2969    case ISD::SHL:
2970      if (!VT.isVector())
2971        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2972      // For vectors, we can't easily build an all zero vector, just return
2973      // the LHS.
2974      return N1;
2975    case ISD::OR:
2976      if (!VT.isVector())
2977        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2978      // For vectors, we can't easily build an all one vector, just return
2979      // the LHS.
2980      return N1;
2981    case ISD::SRA:
2982      return N1;
2983    }
2984  }
2985
2986  // Memoize this node if possible.
2987  SDNode *N;
2988  SDVTList VTs = getVTList(VT);
2989  if (VT != MVT::Flag) {
2990    SDValue Ops[] = { N1, N2 };
2991    FoldingSetNodeID ID;
2992    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2993    void *IP = 0;
2994    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2995      return SDValue(E, 0);
2996
2997    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2998    CSEMap.InsertNode(N, IP);
2999  } else {
3000    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3001  }
3002
3003  AllNodes.push_back(N);
3004#ifndef NDEBUG
3005  VerifyNode(N);
3006#endif
3007  return SDValue(N, 0);
3008}
3009
3010SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3011                              SDValue N1, SDValue N2, SDValue N3) {
3012  // Perform various simplifications.
3013  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3014  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3015  switch (Opcode) {
3016  case ISD::CONCAT_VECTORS:
3017    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3018    // one big BUILD_VECTOR.
3019    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3020        N2.getOpcode() == ISD::BUILD_VECTOR &&
3021        N3.getOpcode() == ISD::BUILD_VECTOR) {
3022      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3023      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3024      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3025      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3026    }
3027    break;
3028  case ISD::SETCC: {
3029    // Use FoldSetCC to simplify SETCC's.
3030    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3031    if (Simp.getNode()) return Simp;
3032    break;
3033  }
3034  case ISD::SELECT:
3035    if (N1C) {
3036     if (N1C->getZExtValue())
3037        return N2;             // select true, X, Y -> X
3038      else
3039        return N3;             // select false, X, Y -> Y
3040    }
3041
3042    if (N2 == N3) return N2;   // select C, X, X -> X
3043    break;
3044  case ISD::BRCOND:
3045    if (N2C) {
3046      if (N2C->getZExtValue()) // Unconditional branch
3047        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3048      else
3049        return N1;         // Never-taken branch
3050    }
3051    break;
3052  case ISD::VECTOR_SHUFFLE:
3053    llvm_unreachable("should use getVectorShuffle constructor!");
3054    break;
3055  case ISD::BIT_CONVERT:
3056    // Fold bit_convert nodes from a type to themselves.
3057    if (N1.getValueType() == VT)
3058      return N1;
3059    break;
3060  }
3061
3062  // Memoize node if it doesn't produce a flag.
3063  SDNode *N;
3064  SDVTList VTs = getVTList(VT);
3065  if (VT != MVT::Flag) {
3066    SDValue Ops[] = { N1, N2, N3 };
3067    FoldingSetNodeID ID;
3068    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3069    void *IP = 0;
3070    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3071      return SDValue(E, 0);
3072
3073    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3074    CSEMap.InsertNode(N, IP);
3075  } else {
3076    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3077  }
3078
3079  AllNodes.push_back(N);
3080#ifndef NDEBUG
3081  VerifyNode(N);
3082#endif
3083  return SDValue(N, 0);
3084}
3085
3086SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3087                              SDValue N1, SDValue N2, SDValue N3,
3088                              SDValue N4) {
3089  SDValue Ops[] = { N1, N2, N3, N4 };
3090  return getNode(Opcode, DL, VT, Ops, 4);
3091}
3092
3093SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3094                              SDValue N1, SDValue N2, SDValue N3,
3095                              SDValue N4, SDValue N5) {
3096  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3097  return getNode(Opcode, DL, VT, Ops, 5);
3098}
3099
3100/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3101/// the incoming stack arguments to be loaded from the stack.
3102SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3103  SmallVector<SDValue, 8> ArgChains;
3104
3105  // Include the original chain at the beginning of the list. When this is
3106  // used by target LowerCall hooks, this helps legalize find the
3107  // CALLSEQ_BEGIN node.
3108  ArgChains.push_back(Chain);
3109
3110  // Add a chain value for each stack argument.
3111  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3112       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3113    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3114      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3115        if (FI->getIndex() < 0)
3116          ArgChains.push_back(SDValue(L, 1));
3117
3118  // Build a tokenfactor for all the chains.
3119  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3120                 &ArgChains[0], ArgChains.size());
3121}
3122
3123/// getMemsetValue - Vectorized representation of the memset value
3124/// operand.
3125static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3126                              DebugLoc dl) {
3127  assert(Value.getOpcode() != ISD::UNDEF);
3128
3129  unsigned NumBits = VT.getScalarType().getSizeInBits();
3130  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3131    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3132    unsigned Shift = 8;
3133    for (unsigned i = NumBits; i > 8; i >>= 1) {
3134      Val = (Val << Shift) | Val;
3135      Shift <<= 1;
3136    }
3137    if (VT.isInteger())
3138      return DAG.getConstant(Val, VT);
3139    return DAG.getConstantFP(APFloat(Val), VT);
3140  }
3141
3142  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3143  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3144  unsigned Shift = 8;
3145  for (unsigned i = NumBits; i > 8; i >>= 1) {
3146    Value = DAG.getNode(ISD::OR, dl, VT,
3147                        DAG.getNode(ISD::SHL, dl, VT, Value,
3148                                    DAG.getConstant(Shift,
3149                                                    TLI.getShiftAmountTy())),
3150                        Value);
3151    Shift <<= 1;
3152  }
3153
3154  return Value;
3155}
3156
3157/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3158/// used when a memcpy is turned into a memset when the source is a constant
3159/// string ptr.
3160static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3161                                  const TargetLowering &TLI,
3162                                  std::string &Str, unsigned Offset) {
3163  // Handle vector with all elements zero.
3164  if (Str.empty()) {
3165    if (VT.isInteger())
3166      return DAG.getConstant(0, VT);
3167    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3168             VT.getSimpleVT().SimpleTy == MVT::f64)
3169      return DAG.getConstantFP(0.0, VT);
3170    else if (VT.isVector()) {
3171      unsigned NumElts = VT.getVectorNumElements();
3172      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3173      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3174                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3175                                                             EltVT, NumElts)));
3176    } else
3177      llvm_unreachable("Expected type!");
3178  }
3179
3180  assert(!VT.isVector() && "Can't handle vector type here!");
3181  unsigned NumBits = VT.getSizeInBits();
3182  unsigned MSB = NumBits / 8;
3183  uint64_t Val = 0;
3184  if (TLI.isLittleEndian())
3185    Offset = Offset + MSB - 1;
3186  for (unsigned i = 0; i != MSB; ++i) {
3187    Val = (Val << 8) | (unsigned char)Str[Offset];
3188    Offset += TLI.isLittleEndian() ? -1 : 1;
3189  }
3190  return DAG.getConstant(Val, VT);
3191}
3192
3193/// getMemBasePlusOffset - Returns base and offset node for the
3194///
3195static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3196                                      SelectionDAG &DAG) {
3197  EVT VT = Base.getValueType();
3198  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3199                     VT, Base, DAG.getConstant(Offset, VT));
3200}
3201
3202/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3203///
3204static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3205  unsigned SrcDelta = 0;
3206  GlobalAddressSDNode *G = NULL;
3207  if (Src.getOpcode() == ISD::GlobalAddress)
3208    G = cast<GlobalAddressSDNode>(Src);
3209  else if (Src.getOpcode() == ISD::ADD &&
3210           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3211           Src.getOperand(1).getOpcode() == ISD::Constant) {
3212    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3213    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3214  }
3215  if (!G)
3216    return false;
3217
3218  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3219  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3220    return true;
3221
3222  return false;
3223}
3224
3225/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3226/// to replace the memset / memcpy. Return true if the number of memory ops
3227/// is below the threshold. It returns the types of the sequence of
3228/// memory ops to perform memset / memcpy by reference.
3229static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3230                                     unsigned Limit, uint64_t Size,
3231                                     unsigned DstAlign, unsigned SrcAlign,
3232                                     bool NonScalarIntSafe,
3233                                     bool MemcpyStrSrc,
3234                                     SelectionDAG &DAG,
3235                                     const TargetLowering &TLI) {
3236  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3237         "Expecting memcpy / memset source to meet alignment requirement!");
3238  // If 'SrcAlign' is zero, that means the memory operation does not need load
3239  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3240  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3241  // specified alignment of the memory operation. If it is zero, that means
3242  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3243  // indicates whether the memcpy source is constant so it does not need to be
3244  // loaded.
3245  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3246                                   NonScalarIntSafe, MemcpyStrSrc,
3247                                   DAG.getMachineFunction());
3248
3249  if (VT == MVT::Other) {
3250    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3251        TLI.allowsUnalignedMemoryAccesses(VT)) {
3252      VT = TLI.getPointerTy();
3253    } else {
3254      switch (DstAlign & 7) {
3255      case 0:  VT = MVT::i64; break;
3256      case 4:  VT = MVT::i32; break;
3257      case 2:  VT = MVT::i16; break;
3258      default: VT = MVT::i8;  break;
3259      }
3260    }
3261
3262    MVT LVT = MVT::i64;
3263    while (!TLI.isTypeLegal(LVT))
3264      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3265    assert(LVT.isInteger());
3266
3267    if (VT.bitsGT(LVT))
3268      VT = LVT;
3269  }
3270
3271  unsigned NumMemOps = 0;
3272  while (Size != 0) {
3273    unsigned VTSize = VT.getSizeInBits() / 8;
3274    while (VTSize > Size) {
3275      // For now, only use non-vector load / store's for the left-over pieces.
3276      if (VT.isVector() || VT.isFloatingPoint()) {
3277        VT = MVT::i64;
3278        while (!TLI.isTypeLegal(VT))
3279          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3280        VTSize = VT.getSizeInBits() / 8;
3281      } else {
3282        // This can result in a type that is not legal on the target, e.g.
3283        // 1 or 2 bytes on PPC.
3284        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3285        VTSize >>= 1;
3286      }
3287    }
3288
3289    if (++NumMemOps > Limit)
3290      return false;
3291    MemOps.push_back(VT);
3292    Size -= VTSize;
3293  }
3294
3295  return true;
3296}
3297
3298static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3299                                       SDValue Chain, SDValue Dst,
3300                                       SDValue Src, uint64_t Size,
3301                                       unsigned Align, bool isVol,
3302                                       bool AlwaysInline,
3303                                       const Value *DstSV, uint64_t DstSVOff,
3304                                       const Value *SrcSV, uint64_t SrcSVOff) {
3305  // Turn a memcpy of undef to nop.
3306  if (Src.getOpcode() == ISD::UNDEF)
3307    return Chain;
3308
3309  // Expand memcpy to a series of load and store ops if the size operand falls
3310  // below a certain threshold.
3311  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312  std::vector<EVT> MemOps;
3313  bool DstAlignCanChange = false;
3314  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3315  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3316  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3317    DstAlignCanChange = true;
3318  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3319  if (Align > SrcAlign)
3320    SrcAlign = Align;
3321  std::string Str;
3322  bool CopyFromStr = isMemSrcFromString(Src, Str);
3323  bool isZeroStr = CopyFromStr && Str.empty();
3324  uint64_t Limit = -1ULL;
3325  if (!AlwaysInline)
3326    Limit = TLI.getMaxStoresPerMemcpy();
3327  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3328                                (DstAlignCanChange ? 0 : Align),
3329                                (isZeroStr ? 0 : SrcAlign),
3330                                true, CopyFromStr, DAG, TLI))
3331    return SDValue();
3332
3333  if (DstAlignCanChange) {
3334    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3335    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3336    if (NewAlign > Align) {
3337      // Give the stack frame object a larger alignment if needed.
3338      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3339        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3340      Align = NewAlign;
3341    }
3342  }
3343
3344  SmallVector<SDValue, 8> OutChains;
3345  unsigned NumMemOps = MemOps.size();
3346  uint64_t SrcOff = 0, DstOff = 0;
3347  for (unsigned i = 0; i != NumMemOps; ++i) {
3348    EVT VT = MemOps[i];
3349    unsigned VTSize = VT.getSizeInBits() / 8;
3350    SDValue Value, Store;
3351
3352    if (CopyFromStr &&
3353        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3354      // It's unlikely a store of a vector immediate can be done in a single
3355      // instruction. It would require a load from a constantpool first.
3356      // We only handle zero vectors here.
3357      // FIXME: Handle other cases where store of vector immediate is done in
3358      // a single instruction.
3359      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3360      Store = DAG.getStore(Chain, dl, Value,
3361                           getMemBasePlusOffset(Dst, DstOff, DAG),
3362                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3363    } else {
3364      // The type might not be legal for the target.  This should only happen
3365      // if the type is smaller than a legal type, as on PPC, so the right
3366      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3367      // to Load/Store if NVT==VT.
3368      // FIXME does the case above also need this?
3369      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3370      assert(NVT.bitsGE(VT));
3371      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3372                             getMemBasePlusOffset(Src, SrcOff, DAG),
3373                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3374                             MinAlign(SrcAlign, SrcOff));
3375      Store = DAG.getTruncStore(Chain, dl, Value,
3376                                getMemBasePlusOffset(Dst, DstOff, DAG),
3377                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3378                                Align);
3379    }
3380    OutChains.push_back(Store);
3381    SrcOff += VTSize;
3382    DstOff += VTSize;
3383  }
3384
3385  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3386                     &OutChains[0], OutChains.size());
3387}
3388
3389static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3390                                        SDValue Chain, SDValue Dst,
3391                                        SDValue Src, uint64_t Size,
3392                                        unsigned Align,  bool isVol,
3393                                        bool AlwaysInline,
3394                                        const Value *DstSV, uint64_t DstSVOff,
3395                                        const Value *SrcSV, uint64_t SrcSVOff) {
3396  // Turn a memmove of undef to nop.
3397  if (Src.getOpcode() == ISD::UNDEF)
3398    return Chain;
3399
3400  // Expand memmove to a series of load and store ops if the size operand falls
3401  // below a certain threshold.
3402  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403  std::vector<EVT> MemOps;
3404  uint64_t Limit = -1ULL;
3405  if (!AlwaysInline)
3406    Limit = TLI.getMaxStoresPerMemmove();
3407  bool DstAlignCanChange = false;
3408  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3409  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3410  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3411    DstAlignCanChange = true;
3412  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3413  if (Align > SrcAlign)
3414    SrcAlign = Align;
3415
3416  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3417                                (DstAlignCanChange ? 0 : Align),
3418                                SrcAlign, true, false, DAG, TLI))
3419    return SDValue();
3420
3421  if (DstAlignCanChange) {
3422    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3423    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3424    if (NewAlign > Align) {
3425      // Give the stack frame object a larger alignment if needed.
3426      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3427        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3428      Align = NewAlign;
3429    }
3430  }
3431
3432  uint64_t SrcOff = 0, DstOff = 0;
3433  SmallVector<SDValue, 8> LoadValues;
3434  SmallVector<SDValue, 8> LoadChains;
3435  SmallVector<SDValue, 8> OutChains;
3436  unsigned NumMemOps = MemOps.size();
3437  for (unsigned i = 0; i < NumMemOps; i++) {
3438    EVT VT = MemOps[i];
3439    unsigned VTSize = VT.getSizeInBits() / 8;
3440    SDValue Value, Store;
3441
3442    Value = DAG.getLoad(VT, dl, Chain,
3443                        getMemBasePlusOffset(Src, SrcOff, DAG),
3444                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3445    LoadValues.push_back(Value);
3446    LoadChains.push_back(Value.getValue(1));
3447    SrcOff += VTSize;
3448  }
3449  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3450                      &LoadChains[0], LoadChains.size());
3451  OutChains.clear();
3452  for (unsigned i = 0; i < NumMemOps; i++) {
3453    EVT VT = MemOps[i];
3454    unsigned VTSize = VT.getSizeInBits() / 8;
3455    SDValue Value, Store;
3456
3457    Store = DAG.getStore(Chain, dl, LoadValues[i],
3458                         getMemBasePlusOffset(Dst, DstOff, DAG),
3459                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3460    OutChains.push_back(Store);
3461    DstOff += VTSize;
3462  }
3463
3464  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3465                     &OutChains[0], OutChains.size());
3466}
3467
3468static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3469                               SDValue Chain, SDValue Dst,
3470                               SDValue Src, uint64_t Size,
3471                               unsigned Align, bool isVol,
3472                               const Value *DstSV, uint64_t DstSVOff) {
3473  // Turn a memset of undef to nop.
3474  if (Src.getOpcode() == ISD::UNDEF)
3475    return Chain;
3476
3477  // Expand memset to a series of load/store ops if the size operand
3478  // falls below a certain threshold.
3479  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480  std::vector<EVT> MemOps;
3481  bool DstAlignCanChange = false;
3482  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3483  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3484  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3485    DstAlignCanChange = true;
3486  bool NonScalarIntSafe =
3487    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3488  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3489                                Size, (DstAlignCanChange ? 0 : Align), 0,
3490                                NonScalarIntSafe, false, DAG, TLI))
3491    return SDValue();
3492
3493  if (DstAlignCanChange) {
3494    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3495    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3496    if (NewAlign > Align) {
3497      // Give the stack frame object a larger alignment if needed.
3498      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3499        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3500      Align = NewAlign;
3501    }
3502  }
3503
3504  SmallVector<SDValue, 8> OutChains;
3505  uint64_t DstOff = 0;
3506  unsigned NumMemOps = MemOps.size();
3507  for (unsigned i = 0; i < NumMemOps; i++) {
3508    EVT VT = MemOps[i];
3509    unsigned VTSize = VT.getSizeInBits() / 8;
3510    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3511    SDValue Store = DAG.getStore(Chain, dl, Value,
3512                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3513                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3514    OutChains.push_back(Store);
3515    DstOff += VTSize;
3516  }
3517
3518  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3519                     &OutChains[0], OutChains.size());
3520}
3521
3522SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3523                                SDValue Src, SDValue Size,
3524                                unsigned Align, bool isVol, bool AlwaysInline,
3525                                const Value *DstSV, uint64_t DstSVOff,
3526                                const Value *SrcSV, uint64_t SrcSVOff) {
3527
3528  // Check to see if we should lower the memcpy to loads and stores first.
3529  // For cases within the target-specified limits, this is the best choice.
3530  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3531  if (ConstantSize) {
3532    // Memcpy with size zero? Just return the original chain.
3533    if (ConstantSize->isNullValue())
3534      return Chain;
3535
3536    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3537                                             ConstantSize->getZExtValue(),Align,
3538                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3539    if (Result.getNode())
3540      return Result;
3541  }
3542
3543  // Then check to see if we should lower the memcpy with target-specific
3544  // code. If the target chooses to do this, this is the next best.
3545  SDValue Result =
3546    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3547                                isVol, AlwaysInline,
3548                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3549  if (Result.getNode())
3550    return Result;
3551
3552  // If we really need inline code and the target declined to provide it,
3553  // use a (potentially long) sequence of loads and stores.
3554  if (AlwaysInline) {
3555    assert(ConstantSize && "AlwaysInline requires a constant size!");
3556    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3557                                   ConstantSize->getZExtValue(), Align, isVol,
3558                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3559  }
3560
3561  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3562  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3563  // respect volatile, so they may do things like read or write memory
3564  // beyond the given memory regions. But fixing this isn't easy, and most
3565  // people don't care.
3566
3567  // Emit a library call.
3568  TargetLowering::ArgListTy Args;
3569  TargetLowering::ArgListEntry Entry;
3570  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3571  Entry.Node = Dst; Args.push_back(Entry);
3572  Entry.Node = Src; Args.push_back(Entry);
3573  Entry.Node = Size; Args.push_back(Entry);
3574  // FIXME: pass in DebugLoc
3575  std::pair<SDValue,SDValue> CallResult =
3576    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3577                    false, false, false, false, 0,
3578                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3579                    /*isReturnValueUsed=*/false,
3580                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3581                                      TLI.getPointerTy()),
3582                    Args, *this, dl);
3583  return CallResult.second;
3584}
3585
3586SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3587                                 SDValue Src, SDValue Size,
3588                                 unsigned Align, bool isVol,
3589                                 const Value *DstSV, uint64_t DstSVOff,
3590                                 const Value *SrcSV, uint64_t SrcSVOff) {
3591
3592  // Check to see if we should lower the memmove to loads and stores first.
3593  // For cases within the target-specified limits, this is the best choice.
3594  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3595  if (ConstantSize) {
3596    // Memmove with size zero? Just return the original chain.
3597    if (ConstantSize->isNullValue())
3598      return Chain;
3599
3600    SDValue Result =
3601      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3602                               ConstantSize->getZExtValue(), Align, isVol,
3603                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3604    if (Result.getNode())
3605      return Result;
3606  }
3607
3608  // Then check to see if we should lower the memmove with target-specific
3609  // code. If the target chooses to do this, this is the next best.
3610  SDValue Result =
3611    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3612                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3613  if (Result.getNode())
3614    return Result;
3615
3616  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3617  // not be safe.  See memcpy above for more details.
3618
3619  // Emit a library call.
3620  TargetLowering::ArgListTy Args;
3621  TargetLowering::ArgListEntry Entry;
3622  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3623  Entry.Node = Dst; Args.push_back(Entry);
3624  Entry.Node = Src; Args.push_back(Entry);
3625  Entry.Node = Size; Args.push_back(Entry);
3626  // FIXME:  pass in DebugLoc
3627  std::pair<SDValue,SDValue> CallResult =
3628    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3629                    false, false, false, false, 0,
3630                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3631                    /*isReturnValueUsed=*/false,
3632                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3633                                      TLI.getPointerTy()),
3634                    Args, *this, dl);
3635  return CallResult.second;
3636}
3637
3638SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3639                                SDValue Src, SDValue Size,
3640                                unsigned Align, bool isVol,
3641                                const Value *DstSV, uint64_t DstSVOff) {
3642
3643  // Check to see if we should lower the memset to stores first.
3644  // For cases within the target-specified limits, this is the best choice.
3645  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3646  if (ConstantSize) {
3647    // Memset with size zero? Just return the original chain.
3648    if (ConstantSize->isNullValue())
3649      return Chain;
3650
3651    SDValue Result =
3652      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3653                      Align, isVol, DstSV, DstSVOff);
3654
3655    if (Result.getNode())
3656      return Result;
3657  }
3658
3659  // Then check to see if we should lower the memset with target-specific
3660  // code. If the target chooses to do this, this is the next best.
3661  SDValue Result =
3662    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3663                                DstSV, DstSVOff);
3664  if (Result.getNode())
3665    return Result;
3666
3667  // Emit a library call.
3668  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3669  TargetLowering::ArgListTy Args;
3670  TargetLowering::ArgListEntry Entry;
3671  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3672  Args.push_back(Entry);
3673  // Extend or truncate the argument to be an i32 value for the call.
3674  if (Src.getValueType().bitsGT(MVT::i32))
3675    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3676  else
3677    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3678  Entry.Node = Src;
3679  Entry.Ty = Type::getInt32Ty(*getContext());
3680  Entry.isSExt = true;
3681  Args.push_back(Entry);
3682  Entry.Node = Size;
3683  Entry.Ty = IntPtrTy;
3684  Entry.isSExt = false;
3685  Args.push_back(Entry);
3686  // FIXME: pass in DebugLoc
3687  std::pair<SDValue,SDValue> CallResult =
3688    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3689                    false, false, false, false, 0,
3690                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3691                    /*isReturnValueUsed=*/false,
3692                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3693                                      TLI.getPointerTy()),
3694                    Args, *this, dl);
3695  return CallResult.second;
3696}
3697
3698SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3699                                SDValue Chain,
3700                                SDValue Ptr, SDValue Cmp,
3701                                SDValue Swp, const Value* PtrVal,
3702                                unsigned Alignment) {
3703  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3704    Alignment = getEVTAlignment(MemVT);
3705
3706  // Check if the memory reference references a frame index
3707  if (!PtrVal)
3708    if (const FrameIndexSDNode *FI =
3709          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3710      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3711
3712  MachineFunction &MF = getMachineFunction();
3713  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3714
3715  // For now, atomics are considered to be volatile always.
3716  Flags |= MachineMemOperand::MOVolatile;
3717
3718  MachineMemOperand *MMO =
3719    MF.getMachineMemOperand(PtrVal, Flags, 0,
3720                            MemVT.getStoreSize(), Alignment);
3721
3722  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3723}
3724
3725SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3726                                SDValue Chain,
3727                                SDValue Ptr, SDValue Cmp,
3728                                SDValue Swp, MachineMemOperand *MMO) {
3729  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3730  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3731
3732  EVT VT = Cmp.getValueType();
3733
3734  SDVTList VTs = getVTList(VT, MVT::Other);
3735  FoldingSetNodeID ID;
3736  ID.AddInteger(MemVT.getRawBits());
3737  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3738  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3739  void* IP = 0;
3740  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3741    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3742    return SDValue(E, 0);
3743  }
3744  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3745                                               Ptr, Cmp, Swp, MMO);
3746  CSEMap.InsertNode(N, IP);
3747  AllNodes.push_back(N);
3748  return SDValue(N, 0);
3749}
3750
3751SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3752                                SDValue Chain,
3753                                SDValue Ptr, SDValue Val,
3754                                const Value* PtrVal,
3755                                unsigned Alignment) {
3756  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3757    Alignment = getEVTAlignment(MemVT);
3758
3759  // Check if the memory reference references a frame index
3760  if (!PtrVal)
3761    if (const FrameIndexSDNode *FI =
3762          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3763      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3764
3765  MachineFunction &MF = getMachineFunction();
3766  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3767
3768  // For now, atomics are considered to be volatile always.
3769  Flags |= MachineMemOperand::MOVolatile;
3770
3771  MachineMemOperand *MMO =
3772    MF.getMachineMemOperand(PtrVal, Flags, 0,
3773                            MemVT.getStoreSize(), Alignment);
3774
3775  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3776}
3777
3778SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3779                                SDValue Chain,
3780                                SDValue Ptr, SDValue Val,
3781                                MachineMemOperand *MMO) {
3782  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3783          Opcode == ISD::ATOMIC_LOAD_SUB ||
3784          Opcode == ISD::ATOMIC_LOAD_AND ||
3785          Opcode == ISD::ATOMIC_LOAD_OR ||
3786          Opcode == ISD::ATOMIC_LOAD_XOR ||
3787          Opcode == ISD::ATOMIC_LOAD_NAND ||
3788          Opcode == ISD::ATOMIC_LOAD_MIN ||
3789          Opcode == ISD::ATOMIC_LOAD_MAX ||
3790          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3791          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3792          Opcode == ISD::ATOMIC_SWAP) &&
3793         "Invalid Atomic Op");
3794
3795  EVT VT = Val.getValueType();
3796
3797  SDVTList VTs = getVTList(VT, MVT::Other);
3798  FoldingSetNodeID ID;
3799  ID.AddInteger(MemVT.getRawBits());
3800  SDValue Ops[] = {Chain, Ptr, Val};
3801  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3802  void* IP = 0;
3803  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3804    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3805    return SDValue(E, 0);
3806  }
3807  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3808                                               Ptr, Val, MMO);
3809  CSEMap.InsertNode(N, IP);
3810  AllNodes.push_back(N);
3811  return SDValue(N, 0);
3812}
3813
3814/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3815/// Allowed to return something different (and simpler) if Simplify is true.
3816SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3817                                     DebugLoc dl) {
3818  if (NumOps == 1)
3819    return Ops[0];
3820
3821  SmallVector<EVT, 4> VTs;
3822  VTs.reserve(NumOps);
3823  for (unsigned i = 0; i < NumOps; ++i)
3824    VTs.push_back(Ops[i].getValueType());
3825  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3826                 Ops, NumOps);
3827}
3828
3829SDValue
3830SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3831                                  const EVT *VTs, unsigned NumVTs,
3832                                  const SDValue *Ops, unsigned NumOps,
3833                                  EVT MemVT, const Value *srcValue, int SVOff,
3834                                  unsigned Align, bool Vol,
3835                                  bool ReadMem, bool WriteMem) {
3836  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3837                             MemVT, srcValue, SVOff, Align, Vol,
3838                             ReadMem, WriteMem);
3839}
3840
3841SDValue
3842SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3843                                  const SDValue *Ops, unsigned NumOps,
3844                                  EVT MemVT, const Value *srcValue, int SVOff,
3845                                  unsigned Align, bool Vol,
3846                                  bool ReadMem, bool WriteMem) {
3847  if (Align == 0)  // Ensure that codegen never sees alignment 0
3848    Align = getEVTAlignment(MemVT);
3849
3850  MachineFunction &MF = getMachineFunction();
3851  unsigned Flags = 0;
3852  if (WriteMem)
3853    Flags |= MachineMemOperand::MOStore;
3854  if (ReadMem)
3855    Flags |= MachineMemOperand::MOLoad;
3856  if (Vol)
3857    Flags |= MachineMemOperand::MOVolatile;
3858  MachineMemOperand *MMO =
3859    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3860                            MemVT.getStoreSize(), Align);
3861
3862  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3863}
3864
3865SDValue
3866SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3867                                  const SDValue *Ops, unsigned NumOps,
3868                                  EVT MemVT, MachineMemOperand *MMO) {
3869  assert((Opcode == ISD::INTRINSIC_VOID ||
3870          Opcode == ISD::INTRINSIC_W_CHAIN ||
3871          (Opcode <= INT_MAX &&
3872           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3873         "Opcode is not a memory-accessing opcode!");
3874
3875  // Memoize the node unless it returns a flag.
3876  MemIntrinsicSDNode *N;
3877  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3878    FoldingSetNodeID ID;
3879    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3880    void *IP = 0;
3881    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3882      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3883      return SDValue(E, 0);
3884    }
3885
3886    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3887                                               MemVT, MMO);
3888    CSEMap.InsertNode(N, IP);
3889  } else {
3890    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3891                                               MemVT, MMO);
3892  }
3893  AllNodes.push_back(N);
3894  return SDValue(N, 0);
3895}
3896
3897SDValue
3898SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3899                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3900                      SDValue Ptr, SDValue Offset,
3901                      const Value *SV, int SVOffset, EVT MemVT,
3902                      bool isVolatile, bool isNonTemporal,
3903                      unsigned Alignment) {
3904  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3905    Alignment = getEVTAlignment(VT);
3906
3907  // Check if the memory reference references a frame index
3908  if (!SV)
3909    if (const FrameIndexSDNode *FI =
3910          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3911      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3912
3913  MachineFunction &MF = getMachineFunction();
3914  unsigned Flags = MachineMemOperand::MOLoad;
3915  if (isVolatile)
3916    Flags |= MachineMemOperand::MOVolatile;
3917  if (isNonTemporal)
3918    Flags |= MachineMemOperand::MONonTemporal;
3919  MachineMemOperand *MMO =
3920    MF.getMachineMemOperand(SV, Flags, SVOffset,
3921                            MemVT.getStoreSize(), Alignment);
3922  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3923}
3924
3925SDValue
3926SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3927                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3928                      SDValue Ptr, SDValue Offset, EVT MemVT,
3929                      MachineMemOperand *MMO) {
3930  if (VT == MemVT) {
3931    ExtType = ISD::NON_EXTLOAD;
3932  } else if (ExtType == ISD::NON_EXTLOAD) {
3933    assert(VT == MemVT && "Non-extending load from different memory type!");
3934  } else {
3935    // Extending load.
3936    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3937           "Should only be an extending load, not truncating!");
3938    assert(VT.isInteger() == MemVT.isInteger() &&
3939           "Cannot convert from FP to Int or Int -> FP!");
3940    assert(VT.isVector() == MemVT.isVector() &&
3941           "Cannot use trunc store to convert to or from a vector!");
3942    assert((!VT.isVector() ||
3943            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3944           "Cannot use trunc store to change the number of vector elements!");
3945  }
3946
3947  bool Indexed = AM != ISD::UNINDEXED;
3948  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3949         "Unindexed load with an offset!");
3950
3951  SDVTList VTs = Indexed ?
3952    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3953  SDValue Ops[] = { Chain, Ptr, Offset };
3954  FoldingSetNodeID ID;
3955  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3956  ID.AddInteger(MemVT.getRawBits());
3957  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3958                                     MMO->isNonTemporal()));
3959  void *IP = 0;
3960  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3961    cast<LoadSDNode>(E)->refineAlignment(MMO);
3962    return SDValue(E, 0);
3963  }
3964  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3965                                             MemVT, MMO);
3966  CSEMap.InsertNode(N, IP);
3967  AllNodes.push_back(N);
3968  return SDValue(N, 0);
3969}
3970
3971SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3972                              SDValue Chain, SDValue Ptr,
3973                              const Value *SV, int SVOffset,
3974                              bool isVolatile, bool isNonTemporal,
3975                              unsigned Alignment) {
3976  SDValue Undef = getUNDEF(Ptr.getValueType());
3977  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3978                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3979}
3980
3981SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3982                                 SDValue Chain, SDValue Ptr,
3983                                 const Value *SV,
3984                                 int SVOffset, EVT MemVT,
3985                                 bool isVolatile, bool isNonTemporal,
3986                                 unsigned Alignment) {
3987  SDValue Undef = getUNDEF(Ptr.getValueType());
3988  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3989                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3990}
3991
3992SDValue
3993SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3994                             SDValue Offset, ISD::MemIndexedMode AM) {
3995  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3996  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3997         "Load is already a indexed load!");
3998  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3999                 LD->getChain(), Base, Offset, LD->getSrcValue(),
4000                 LD->getSrcValueOffset(), LD->getMemoryVT(),
4001                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4002}
4003
4004SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4005                               SDValue Ptr, const Value *SV, int SVOffset,
4006                               bool isVolatile, bool isNonTemporal,
4007                               unsigned Alignment) {
4008  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4009    Alignment = getEVTAlignment(Val.getValueType());
4010
4011  // Check if the memory reference references a frame index
4012  if (!SV)
4013    if (const FrameIndexSDNode *FI =
4014          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4015      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4016
4017  MachineFunction &MF = getMachineFunction();
4018  unsigned Flags = MachineMemOperand::MOStore;
4019  if (isVolatile)
4020    Flags |= MachineMemOperand::MOVolatile;
4021  if (isNonTemporal)
4022    Flags |= MachineMemOperand::MONonTemporal;
4023  MachineMemOperand *MMO =
4024    MF.getMachineMemOperand(SV, Flags, SVOffset,
4025                            Val.getValueType().getStoreSize(), Alignment);
4026
4027  return getStore(Chain, dl, Val, Ptr, MMO);
4028}
4029
4030SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4031                               SDValue Ptr, MachineMemOperand *MMO) {
4032  EVT VT = Val.getValueType();
4033  SDVTList VTs = getVTList(MVT::Other);
4034  SDValue Undef = getUNDEF(Ptr.getValueType());
4035  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4036  FoldingSetNodeID ID;
4037  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4038  ID.AddInteger(VT.getRawBits());
4039  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4040                                     MMO->isNonTemporal()));
4041  void *IP = 0;
4042  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4043    cast<StoreSDNode>(E)->refineAlignment(MMO);
4044    return SDValue(E, 0);
4045  }
4046  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4047                                              false, VT, MMO);
4048  CSEMap.InsertNode(N, IP);
4049  AllNodes.push_back(N);
4050  return SDValue(N, 0);
4051}
4052
4053SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4054                                    SDValue Ptr, const Value *SV,
4055                                    int SVOffset, EVT SVT,
4056                                    bool isVolatile, bool isNonTemporal,
4057                                    unsigned Alignment) {
4058  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4059    Alignment = getEVTAlignment(SVT);
4060
4061  // Check if the memory reference references a frame index
4062  if (!SV)
4063    if (const FrameIndexSDNode *FI =
4064          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4065      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4066
4067  MachineFunction &MF = getMachineFunction();
4068  unsigned Flags = MachineMemOperand::MOStore;
4069  if (isVolatile)
4070    Flags |= MachineMemOperand::MOVolatile;
4071  if (isNonTemporal)
4072    Flags |= MachineMemOperand::MONonTemporal;
4073  MachineMemOperand *MMO =
4074    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4075
4076  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4077}
4078
4079SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4080                                    SDValue Ptr, EVT SVT,
4081                                    MachineMemOperand *MMO) {
4082  EVT VT = Val.getValueType();
4083
4084  if (VT == SVT)
4085    return getStore(Chain, dl, Val, Ptr, MMO);
4086
4087  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4088         "Should only be a truncating store, not extending!");
4089  assert(VT.isInteger() == SVT.isInteger() &&
4090         "Can't do FP-INT conversion!");
4091  assert(VT.isVector() == SVT.isVector() &&
4092         "Cannot use trunc store to convert to or from a vector!");
4093  assert((!VT.isVector() ||
4094          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4095         "Cannot use trunc store to change the number of vector elements!");
4096
4097  SDVTList VTs = getVTList(MVT::Other);
4098  SDValue Undef = getUNDEF(Ptr.getValueType());
4099  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4100  FoldingSetNodeID ID;
4101  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4102  ID.AddInteger(SVT.getRawBits());
4103  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4104                                     MMO->isNonTemporal()));
4105  void *IP = 0;
4106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4107    cast<StoreSDNode>(E)->refineAlignment(MMO);
4108    return SDValue(E, 0);
4109  }
4110  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4111                                              true, SVT, MMO);
4112  CSEMap.InsertNode(N, IP);
4113  AllNodes.push_back(N);
4114  return SDValue(N, 0);
4115}
4116
4117SDValue
4118SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4119                              SDValue Offset, ISD::MemIndexedMode AM) {
4120  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4121  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4122         "Store is already a indexed store!");
4123  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4124  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4125  FoldingSetNodeID ID;
4126  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4127  ID.AddInteger(ST->getMemoryVT().getRawBits());
4128  ID.AddInteger(ST->getRawSubclassData());
4129  void *IP = 0;
4130  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4131    return SDValue(E, 0);
4132
4133  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4134                                              ST->isTruncatingStore(),
4135                                              ST->getMemoryVT(),
4136                                              ST->getMemOperand());
4137  CSEMap.InsertNode(N, IP);
4138  AllNodes.push_back(N);
4139  return SDValue(N, 0);
4140}
4141
4142SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4143                               SDValue Chain, SDValue Ptr,
4144                               SDValue SV) {
4145  SDValue Ops[] = { Chain, Ptr, SV };
4146  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4147}
4148
4149SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4150                              const SDUse *Ops, unsigned NumOps) {
4151  switch (NumOps) {
4152  case 0: return getNode(Opcode, DL, VT);
4153  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4154  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4155  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4156  default: break;
4157  }
4158
4159  // Copy from an SDUse array into an SDValue array for use with
4160  // the regular getNode logic.
4161  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4162  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4163}
4164
4165SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4166                              const SDValue *Ops, unsigned NumOps) {
4167  switch (NumOps) {
4168  case 0: return getNode(Opcode, DL, VT);
4169  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4170  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4171  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4172  default: break;
4173  }
4174
4175  switch (Opcode) {
4176  default: break;
4177  case ISD::SELECT_CC: {
4178    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4179    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4180           "LHS and RHS of condition must have same type!");
4181    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4182           "True and False arms of SelectCC must have same type!");
4183    assert(Ops[2].getValueType() == VT &&
4184           "select_cc node must be of same type as true and false value!");
4185    break;
4186  }
4187  case ISD::BR_CC: {
4188    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4189    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4190           "LHS/RHS of comparison should match types!");
4191    break;
4192  }
4193  }
4194
4195  // Memoize nodes.
4196  SDNode *N;
4197  SDVTList VTs = getVTList(VT);
4198
4199  if (VT != MVT::Flag) {
4200    FoldingSetNodeID ID;
4201    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4202    void *IP = 0;
4203
4204    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4205      return SDValue(E, 0);
4206
4207    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4208    CSEMap.InsertNode(N, IP);
4209  } else {
4210    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4211  }
4212
4213  AllNodes.push_back(N);
4214#ifndef NDEBUG
4215  VerifyNode(N);
4216#endif
4217  return SDValue(N, 0);
4218}
4219
4220SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4221                              const std::vector<EVT> &ResultTys,
4222                              const SDValue *Ops, unsigned NumOps) {
4223  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4224                 Ops, NumOps);
4225}
4226
4227SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4228                              const EVT *VTs, unsigned NumVTs,
4229                              const SDValue *Ops, unsigned NumOps) {
4230  if (NumVTs == 1)
4231    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4232  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4233}
4234
4235SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4236                              const SDValue *Ops, unsigned NumOps) {
4237  if (VTList.NumVTs == 1)
4238    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4239
4240#if 0
4241  switch (Opcode) {
4242  // FIXME: figure out how to safely handle things like
4243  // int foo(int x) { return 1 << (x & 255); }
4244  // int bar() { return foo(256); }
4245  case ISD::SRA_PARTS:
4246  case ISD::SRL_PARTS:
4247  case ISD::SHL_PARTS:
4248    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4249        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4250      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4251    else if (N3.getOpcode() == ISD::AND)
4252      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4253        // If the and is only masking out bits that cannot effect the shift,
4254        // eliminate the and.
4255        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4256        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4257          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4258      }
4259    break;
4260  }
4261#endif
4262
4263  // Memoize the node unless it returns a flag.
4264  SDNode *N;
4265  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4266    FoldingSetNodeID ID;
4267    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4268    void *IP = 0;
4269    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4270      return SDValue(E, 0);
4271
4272    if (NumOps == 1) {
4273      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4274    } else if (NumOps == 2) {
4275      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4276    } else if (NumOps == 3) {
4277      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4278                                            Ops[2]);
4279    } else {
4280      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4281    }
4282    CSEMap.InsertNode(N, IP);
4283  } else {
4284    if (NumOps == 1) {
4285      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4286    } else if (NumOps == 2) {
4287      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4288    } else if (NumOps == 3) {
4289      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4290                                            Ops[2]);
4291    } else {
4292      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4293    }
4294  }
4295  AllNodes.push_back(N);
4296#ifndef NDEBUG
4297  VerifyNode(N);
4298#endif
4299  return SDValue(N, 0);
4300}
4301
4302SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4303  return getNode(Opcode, DL, VTList, 0, 0);
4304}
4305
4306SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4307                              SDValue N1) {
4308  SDValue Ops[] = { N1 };
4309  return getNode(Opcode, DL, VTList, Ops, 1);
4310}
4311
4312SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4313                              SDValue N1, SDValue N2) {
4314  SDValue Ops[] = { N1, N2 };
4315  return getNode(Opcode, DL, VTList, Ops, 2);
4316}
4317
4318SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4319                              SDValue N1, SDValue N2, SDValue N3) {
4320  SDValue Ops[] = { N1, N2, N3 };
4321  return getNode(Opcode, DL, VTList, Ops, 3);
4322}
4323
4324SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4325                              SDValue N1, SDValue N2, SDValue N3,
4326                              SDValue N4) {
4327  SDValue Ops[] = { N1, N2, N3, N4 };
4328  return getNode(Opcode, DL, VTList, Ops, 4);
4329}
4330
4331SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4332                              SDValue N1, SDValue N2, SDValue N3,
4333                              SDValue N4, SDValue N5) {
4334  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4335  return getNode(Opcode, DL, VTList, Ops, 5);
4336}
4337
4338SDVTList SelectionDAG::getVTList(EVT VT) {
4339  return makeVTList(SDNode::getValueTypeList(VT), 1);
4340}
4341
4342SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4343  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4344       E = VTList.rend(); I != E; ++I)
4345    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4346      return *I;
4347
4348  EVT *Array = Allocator.Allocate<EVT>(2);
4349  Array[0] = VT1;
4350  Array[1] = VT2;
4351  SDVTList Result = makeVTList(Array, 2);
4352  VTList.push_back(Result);
4353  return Result;
4354}
4355
4356SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4357  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4358       E = VTList.rend(); I != E; ++I)
4359    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4360                          I->VTs[2] == VT3)
4361      return *I;
4362
4363  EVT *Array = Allocator.Allocate<EVT>(3);
4364  Array[0] = VT1;
4365  Array[1] = VT2;
4366  Array[2] = VT3;
4367  SDVTList Result = makeVTList(Array, 3);
4368  VTList.push_back(Result);
4369  return Result;
4370}
4371
4372SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4373  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4374       E = VTList.rend(); I != E; ++I)
4375    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4376                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4377      return *I;
4378
4379  EVT *Array = Allocator.Allocate<EVT>(4);
4380  Array[0] = VT1;
4381  Array[1] = VT2;
4382  Array[2] = VT3;
4383  Array[3] = VT4;
4384  SDVTList Result = makeVTList(Array, 4);
4385  VTList.push_back(Result);
4386  return Result;
4387}
4388
4389SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4390  switch (NumVTs) {
4391    case 0: llvm_unreachable("Cannot have nodes without results!");
4392    case 1: return getVTList(VTs[0]);
4393    case 2: return getVTList(VTs[0], VTs[1]);
4394    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4395    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4396    default: break;
4397  }
4398
4399  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4400       E = VTList.rend(); I != E; ++I) {
4401    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4402      continue;
4403
4404    bool NoMatch = false;
4405    for (unsigned i = 2; i != NumVTs; ++i)
4406      if (VTs[i] != I->VTs[i]) {
4407        NoMatch = true;
4408        break;
4409      }
4410    if (!NoMatch)
4411      return *I;
4412  }
4413
4414  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4415  std::copy(VTs, VTs+NumVTs, Array);
4416  SDVTList Result = makeVTList(Array, NumVTs);
4417  VTList.push_back(Result);
4418  return Result;
4419}
4420
4421
4422/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4423/// specified operands.  If the resultant node already exists in the DAG,
4424/// this does not modify the specified node, instead it returns the node that
4425/// already exists.  If the resultant node does not exist in the DAG, the
4426/// input node is returned.  As a degenerate case, if you specify the same
4427/// input operands as the node already has, the input node is returned.
4428SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4429  SDNode *N = InN.getNode();
4430  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4431
4432  // Check to see if there is no change.
4433  if (Op == N->getOperand(0)) return InN;
4434
4435  // See if the modified node already exists.
4436  void *InsertPos = 0;
4437  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4438    return SDValue(Existing, InN.getResNo());
4439
4440  // Nope it doesn't.  Remove the node from its current place in the maps.
4441  if (InsertPos)
4442    if (!RemoveNodeFromCSEMaps(N))
4443      InsertPos = 0;
4444
4445  // Now we update the operands.
4446  N->OperandList[0].set(Op);
4447
4448  // If this gets put into a CSE map, add it.
4449  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4450  return InN;
4451}
4452
4453SDValue SelectionDAG::
4454UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4455  SDNode *N = InN.getNode();
4456  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4457
4458  // Check to see if there is no change.
4459  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4460    return InN;   // No operands changed, just return the input node.
4461
4462  // See if the modified node already exists.
4463  void *InsertPos = 0;
4464  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4465    return SDValue(Existing, InN.getResNo());
4466
4467  // Nope it doesn't.  Remove the node from its current place in the maps.
4468  if (InsertPos)
4469    if (!RemoveNodeFromCSEMaps(N))
4470      InsertPos = 0;
4471
4472  // Now we update the operands.
4473  if (N->OperandList[0] != Op1)
4474    N->OperandList[0].set(Op1);
4475  if (N->OperandList[1] != Op2)
4476    N->OperandList[1].set(Op2);
4477
4478  // If this gets put into a CSE map, add it.
4479  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4480  return InN;
4481}
4482
4483SDValue SelectionDAG::
4484UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4485  SDValue Ops[] = { Op1, Op2, Op3 };
4486  return UpdateNodeOperands(N, Ops, 3);
4487}
4488
4489SDValue SelectionDAG::
4490UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4491                   SDValue Op3, SDValue Op4) {
4492  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4493  return UpdateNodeOperands(N, Ops, 4);
4494}
4495
4496SDValue SelectionDAG::
4497UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4498                   SDValue Op3, SDValue Op4, SDValue Op5) {
4499  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4500  return UpdateNodeOperands(N, Ops, 5);
4501}
4502
4503SDValue SelectionDAG::
4504UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4505  SDNode *N = InN.getNode();
4506  assert(N->getNumOperands() == NumOps &&
4507         "Update with wrong number of operands");
4508
4509  // Check to see if there is no change.
4510  bool AnyChange = false;
4511  for (unsigned i = 0; i != NumOps; ++i) {
4512    if (Ops[i] != N->getOperand(i)) {
4513      AnyChange = true;
4514      break;
4515    }
4516  }
4517
4518  // No operands changed, just return the input node.
4519  if (!AnyChange) return InN;
4520
4521  // See if the modified node already exists.
4522  void *InsertPos = 0;
4523  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4524    return SDValue(Existing, InN.getResNo());
4525
4526  // Nope it doesn't.  Remove the node from its current place in the maps.
4527  if (InsertPos)
4528    if (!RemoveNodeFromCSEMaps(N))
4529      InsertPos = 0;
4530
4531  // Now we update the operands.
4532  for (unsigned i = 0; i != NumOps; ++i)
4533    if (N->OperandList[i] != Ops[i])
4534      N->OperandList[i].set(Ops[i]);
4535
4536  // If this gets put into a CSE map, add it.
4537  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4538  return InN;
4539}
4540
4541/// DropOperands - Release the operands and set this node to have
4542/// zero operands.
4543void SDNode::DropOperands() {
4544  // Unlike the code in MorphNodeTo that does this, we don't need to
4545  // watch for dead nodes here.
4546  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4547    SDUse &Use = *I++;
4548    Use.set(SDValue());
4549  }
4550}
4551
4552/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4553/// machine opcode.
4554///
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556                                   EVT VT) {
4557  SDVTList VTs = getVTList(VT);
4558  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4559}
4560
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   EVT VT, SDValue Op1) {
4563  SDVTList VTs = getVTList(VT);
4564  SDValue Ops[] = { Op1 };
4565  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                   EVT VT, SDValue Op1,
4570                                   SDValue Op2) {
4571  SDVTList VTs = getVTList(VT);
4572  SDValue Ops[] = { Op1, Op2 };
4573  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4574}
4575
4576SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4577                                   EVT VT, SDValue Op1,
4578                                   SDValue Op2, SDValue Op3) {
4579  SDVTList VTs = getVTList(VT);
4580  SDValue Ops[] = { Op1, Op2, Op3 };
4581  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   EVT VT, const SDValue *Ops,
4586                                   unsigned NumOps) {
4587  SDVTList VTs = getVTList(VT);
4588  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4589}
4590
4591SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592                                   EVT VT1, EVT VT2, const SDValue *Ops,
4593                                   unsigned NumOps) {
4594  SDVTList VTs = getVTList(VT1, VT2);
4595  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4596}
4597
4598SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                   EVT VT1, EVT VT2) {
4600  SDVTList VTs = getVTList(VT1, VT2);
4601  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4602}
4603
4604SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605                                   EVT VT1, EVT VT2, EVT VT3,
4606                                   const SDValue *Ops, unsigned NumOps) {
4607  SDVTList VTs = getVTList(VT1, VT2, VT3);
4608  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4609}
4610
4611SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4613                                   const SDValue *Ops, unsigned NumOps) {
4614  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4615  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4616}
4617
4618SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                   EVT VT1, EVT VT2,
4620                                   SDValue Op1) {
4621  SDVTList VTs = getVTList(VT1, VT2);
4622  SDValue Ops[] = { Op1 };
4623  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4624}
4625
4626SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4627                                   EVT VT1, EVT VT2,
4628                                   SDValue Op1, SDValue Op2) {
4629  SDVTList VTs = getVTList(VT1, VT2);
4630  SDValue Ops[] = { Op1, Op2 };
4631  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4632}
4633
4634SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4635                                   EVT VT1, EVT VT2,
4636                                   SDValue Op1, SDValue Op2,
4637                                   SDValue Op3) {
4638  SDVTList VTs = getVTList(VT1, VT2);
4639  SDValue Ops[] = { Op1, Op2, Op3 };
4640  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4641}
4642
4643SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4644                                   EVT VT1, EVT VT2, EVT VT3,
4645                                   SDValue Op1, SDValue Op2,
4646                                   SDValue Op3) {
4647  SDVTList VTs = getVTList(VT1, VT2, VT3);
4648  SDValue Ops[] = { Op1, Op2, Op3 };
4649  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4650}
4651
4652SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4653                                   SDVTList VTs, const SDValue *Ops,
4654                                   unsigned NumOps) {
4655  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4656  // Reset the NodeID to -1.
4657  N->setNodeId(-1);
4658  return N;
4659}
4660
4661/// MorphNodeTo - This *mutates* the specified node to have the specified
4662/// return type, opcode, and operands.
4663///
4664/// Note that MorphNodeTo returns the resultant node.  If there is already a
4665/// node of the specified opcode and operands, it returns that node instead of
4666/// the current one.  Note that the DebugLoc need not be the same.
4667///
4668/// Using MorphNodeTo is faster than creating a new node and swapping it in
4669/// with ReplaceAllUsesWith both because it often avoids allocating a new
4670/// node, and because it doesn't require CSE recalculation for any of
4671/// the node's users.
4672///
4673SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4674                                  SDVTList VTs, const SDValue *Ops,
4675                                  unsigned NumOps) {
4676  // If an identical node already exists, use it.
4677  void *IP = 0;
4678  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4679    FoldingSetNodeID ID;
4680    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4681    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4682      return ON;
4683  }
4684
4685  if (!RemoveNodeFromCSEMaps(N))
4686    IP = 0;
4687
4688  // Start the morphing.
4689  N->NodeType = Opc;
4690  N->ValueList = VTs.VTs;
4691  N->NumValues = VTs.NumVTs;
4692
4693  // Clear the operands list, updating used nodes to remove this from their
4694  // use list.  Keep track of any operands that become dead as a result.
4695  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4696  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4697    SDUse &Use = *I++;
4698    SDNode *Used = Use.getNode();
4699    Use.set(SDValue());
4700    if (Used->use_empty())
4701      DeadNodeSet.insert(Used);
4702  }
4703
4704  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4705    // Initialize the memory references information.
4706    MN->setMemRefs(0, 0);
4707    // If NumOps is larger than the # of operands we can have in a
4708    // MachineSDNode, reallocate the operand list.
4709    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4710      if (MN->OperandsNeedDelete)
4711        delete[] MN->OperandList;
4712      if (NumOps > array_lengthof(MN->LocalOperands))
4713        // We're creating a final node that will live unmorphed for the
4714        // remainder of the current SelectionDAG iteration, so we can allocate
4715        // the operands directly out of a pool with no recycling metadata.
4716        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4717                         Ops, NumOps);
4718      else
4719        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4720      MN->OperandsNeedDelete = false;
4721    } else
4722      MN->InitOperands(MN->OperandList, Ops, NumOps);
4723  } else {
4724    // If NumOps is larger than the # of operands we currently have, reallocate
4725    // the operand list.
4726    if (NumOps > N->NumOperands) {
4727      if (N->OperandsNeedDelete)
4728        delete[] N->OperandList;
4729      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4730      N->OperandsNeedDelete = true;
4731    } else
4732      N->InitOperands(N->OperandList, Ops, NumOps);
4733  }
4734
4735  // Delete any nodes that are still dead after adding the uses for the
4736  // new operands.
4737  if (!DeadNodeSet.empty()) {
4738    SmallVector<SDNode *, 16> DeadNodes;
4739    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4740         E = DeadNodeSet.end(); I != E; ++I)
4741      if ((*I)->use_empty())
4742        DeadNodes.push_back(*I);
4743    RemoveDeadNodes(DeadNodes);
4744  }
4745
4746  if (IP)
4747    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4748  return N;
4749}
4750
4751
4752/// getMachineNode - These are used for target selectors to create a new node
4753/// with specified return type(s), MachineInstr opcode, and operands.
4754///
4755/// Note that getMachineNode returns the resultant node.  If there is already a
4756/// node of the specified opcode and operands, it returns that node instead of
4757/// the current one.
4758MachineSDNode *
4759SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4760  SDVTList VTs = getVTList(VT);
4761  return getMachineNode(Opcode, dl, VTs, 0, 0);
4762}
4763
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4766  SDVTList VTs = getVTList(VT);
4767  SDValue Ops[] = { Op1 };
4768  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4773                             SDValue Op1, SDValue Op2) {
4774  SDVTList VTs = getVTList(VT);
4775  SDValue Ops[] = { Op1, Op2 };
4776  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4777}
4778
4779MachineSDNode *
4780SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4781                             SDValue Op1, SDValue Op2, SDValue Op3) {
4782  SDVTList VTs = getVTList(VT);
4783  SDValue Ops[] = { Op1, Op2, Op3 };
4784  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4785}
4786
4787MachineSDNode *
4788SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4789                             const SDValue *Ops, unsigned NumOps) {
4790  SDVTList VTs = getVTList(VT);
4791  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4792}
4793
4794MachineSDNode *
4795SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4796  SDVTList VTs = getVTList(VT1, VT2);
4797  return getMachineNode(Opcode, dl, VTs, 0, 0);
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802                             EVT VT1, EVT VT2, SDValue Op1) {
4803  SDVTList VTs = getVTList(VT1, VT2);
4804  SDValue Ops[] = { Op1 };
4805  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4811  SDVTList VTs = getVTList(VT1, VT2);
4812  SDValue Ops[] = { Op1, Op2 };
4813  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4814}
4815
4816MachineSDNode *
4817SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818                             EVT VT1, EVT VT2, SDValue Op1,
4819                             SDValue Op2, SDValue Op3) {
4820  SDVTList VTs = getVTList(VT1, VT2);
4821  SDValue Ops[] = { Op1, Op2, Op3 };
4822  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4823}
4824
4825MachineSDNode *
4826SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4827                             EVT VT1, EVT VT2,
4828                             const SDValue *Ops, unsigned NumOps) {
4829  SDVTList VTs = getVTList(VT1, VT2);
4830  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4831}
4832
4833MachineSDNode *
4834SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4835                             EVT VT1, EVT VT2, EVT VT3,
4836                             SDValue Op1, SDValue Op2) {
4837  SDVTList VTs = getVTList(VT1, VT2, VT3);
4838  SDValue Ops[] = { Op1, Op2 };
4839  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4840}
4841
4842MachineSDNode *
4843SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4844                             EVT VT1, EVT VT2, EVT VT3,
4845                             SDValue Op1, SDValue Op2, SDValue Op3) {
4846  SDVTList VTs = getVTList(VT1, VT2, VT3);
4847  SDValue Ops[] = { Op1, Op2, Op3 };
4848  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4849}
4850
4851MachineSDNode *
4852SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4853                             EVT VT1, EVT VT2, EVT VT3,
4854                             const SDValue *Ops, unsigned NumOps) {
4855  SDVTList VTs = getVTList(VT1, VT2, VT3);
4856  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4857}
4858
4859MachineSDNode *
4860SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4861                             EVT VT2, EVT VT3, EVT VT4,
4862                             const SDValue *Ops, unsigned NumOps) {
4863  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4864  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4865}
4866
4867MachineSDNode *
4868SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4869                             const std::vector<EVT> &ResultTys,
4870                             const SDValue *Ops, unsigned NumOps) {
4871  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4872  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4873}
4874
4875MachineSDNode *
4876SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4877                             const SDValue *Ops, unsigned NumOps) {
4878  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4879  MachineSDNode *N;
4880  void *IP;
4881
4882  if (DoCSE) {
4883    FoldingSetNodeID ID;
4884    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4885    IP = 0;
4886    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4887      return cast<MachineSDNode>(E);
4888  }
4889
4890  // Allocate a new MachineSDNode.
4891  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4892
4893  // Initialize the operands list.
4894  if (NumOps > array_lengthof(N->LocalOperands))
4895    // We're creating a final node that will live unmorphed for the
4896    // remainder of the current SelectionDAG iteration, so we can allocate
4897    // the operands directly out of a pool with no recycling metadata.
4898    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4899                    Ops, NumOps);
4900  else
4901    N->InitOperands(N->LocalOperands, Ops, NumOps);
4902  N->OperandsNeedDelete = false;
4903
4904  if (DoCSE)
4905    CSEMap.InsertNode(N, IP);
4906
4907  AllNodes.push_back(N);
4908#ifndef NDEBUG
4909  VerifyNode(N);
4910#endif
4911  return N;
4912}
4913
4914/// getTargetExtractSubreg - A convenience function for creating
4915/// TargetOpcode::EXTRACT_SUBREG nodes.
4916SDValue
4917SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4918                                     SDValue Operand) {
4919  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4920  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4921                                  VT, Operand, SRIdxVal);
4922  return SDValue(Subreg, 0);
4923}
4924
4925/// getTargetInsertSubreg - A convenience function for creating
4926/// TargetOpcode::INSERT_SUBREG nodes.
4927SDValue
4928SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4929                                    SDValue Operand, SDValue Subreg) {
4930  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4931  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4932                                  VT, Operand, Subreg, SRIdxVal);
4933  return SDValue(Result, 0);
4934}
4935
4936/// getNodeIfExists - Get the specified node if it's already available, or
4937/// else return NULL.
4938SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4939                                      const SDValue *Ops, unsigned NumOps) {
4940  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4941    FoldingSetNodeID ID;
4942    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4943    void *IP = 0;
4944    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4945      return E;
4946  }
4947  return NULL;
4948}
4949
4950/// getDbgValue - Creates a SDDbgValue node.
4951///
4952SDDbgValue *
4953SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4954                          DebugLoc DL, unsigned O) {
4955  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4956}
4957
4958SDDbgValue *
4959SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4960                          DebugLoc DL, unsigned O) {
4961  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4962}
4963
4964SDDbgValue *
4965SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4966                          DebugLoc DL, unsigned O) {
4967  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4968}
4969
4970namespace {
4971
4972/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4973/// pointed to by a use iterator is deleted, increment the use iterator
4974/// so that it doesn't dangle.
4975///
4976/// This class also manages a "downlink" DAGUpdateListener, to forward
4977/// messages to ReplaceAllUsesWith's callers.
4978///
4979class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4980  SelectionDAG::DAGUpdateListener *DownLink;
4981  SDNode::use_iterator &UI;
4982  SDNode::use_iterator &UE;
4983
4984  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4985    // Increment the iterator as needed.
4986    while (UI != UE && N == *UI)
4987      ++UI;
4988
4989    // Then forward the message.
4990    if (DownLink) DownLink->NodeDeleted(N, E);
4991  }
4992
4993  virtual void NodeUpdated(SDNode *N) {
4994    // Just forward the message.
4995    if (DownLink) DownLink->NodeUpdated(N);
4996  }
4997
4998public:
4999  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5000                     SDNode::use_iterator &ui,
5001                     SDNode::use_iterator &ue)
5002    : DownLink(dl), UI(ui), UE(ue) {}
5003};
5004
5005}
5006
5007/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5008/// This can cause recursive merging of nodes in the DAG.
5009///
5010/// This version assumes From has a single result value.
5011///
5012void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5013                                      DAGUpdateListener *UpdateListener) {
5014  SDNode *From = FromN.getNode();
5015  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5016         "Cannot replace with this method!");
5017  assert(From != To.getNode() && "Cannot replace uses of with self");
5018
5019  // Iterate over all the existing uses of From. New uses will be added
5020  // to the beginning of the use list, which we avoid visiting.
5021  // This specifically avoids visiting uses of From that arise while the
5022  // replacement is happening, because any such uses would be the result
5023  // of CSE: If an existing node looks like From after one of its operands
5024  // is replaced by To, we don't want to replace of all its users with To
5025  // too. See PR3018 for more info.
5026  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5027  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5028  while (UI != UE) {
5029    SDNode *User = *UI;
5030
5031    // This node is about to morph, remove its old self from the CSE maps.
5032    RemoveNodeFromCSEMaps(User);
5033
5034    // A user can appear in a use list multiple times, and when this
5035    // happens the uses are usually next to each other in the list.
5036    // To help reduce the number of CSE recomputations, process all
5037    // the uses of this user that we can find this way.
5038    do {
5039      SDUse &Use = UI.getUse();
5040      ++UI;
5041      Use.set(To);
5042    } while (UI != UE && *UI == User);
5043
5044    // Now that we have modified User, add it back to the CSE maps.  If it
5045    // already exists there, recursively merge the results together.
5046    AddModifiedNodeToCSEMaps(User, &Listener);
5047  }
5048}
5049
5050/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5051/// This can cause recursive merging of nodes in the DAG.
5052///
5053/// This version assumes that for each value of From, there is a
5054/// corresponding value in To in the same position with the same type.
5055///
5056void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5057                                      DAGUpdateListener *UpdateListener) {
5058#ifndef NDEBUG
5059  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5060    assert((!From->hasAnyUseOfValue(i) ||
5061            From->getValueType(i) == To->getValueType(i)) &&
5062           "Cannot use this version of ReplaceAllUsesWith!");
5063#endif
5064
5065  // Handle the trivial case.
5066  if (From == To)
5067    return;
5068
5069  // Iterate over just the existing users of From. See the comments in
5070  // the ReplaceAllUsesWith above.
5071  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5072  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5073  while (UI != UE) {
5074    SDNode *User = *UI;
5075
5076    // This node is about to morph, remove its old self from the CSE maps.
5077    RemoveNodeFromCSEMaps(User);
5078
5079    // A user can appear in a use list multiple times, and when this
5080    // happens the uses are usually next to each other in the list.
5081    // To help reduce the number of CSE recomputations, process all
5082    // the uses of this user that we can find this way.
5083    do {
5084      SDUse &Use = UI.getUse();
5085      ++UI;
5086      Use.setNode(To);
5087    } while (UI != UE && *UI == User);
5088
5089    // Now that we have modified User, add it back to the CSE maps.  If it
5090    // already exists there, recursively merge the results together.
5091    AddModifiedNodeToCSEMaps(User, &Listener);
5092  }
5093}
5094
5095/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5096/// This can cause recursive merging of nodes in the DAG.
5097///
5098/// This version can replace From with any result values.  To must match the
5099/// number and types of values returned by From.
5100void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5101                                      const SDValue *To,
5102                                      DAGUpdateListener *UpdateListener) {
5103  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5104    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5105
5106  // Iterate over just the existing users of From. See the comments in
5107  // the ReplaceAllUsesWith above.
5108  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5109  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5110  while (UI != UE) {
5111    SDNode *User = *UI;
5112
5113    // This node is about to morph, remove its old self from the CSE maps.
5114    RemoveNodeFromCSEMaps(User);
5115
5116    // A user can appear in a use list multiple times, and when this
5117    // happens the uses are usually next to each other in the list.
5118    // To help reduce the number of CSE recomputations, process all
5119    // the uses of this user that we can find this way.
5120    do {
5121      SDUse &Use = UI.getUse();
5122      const SDValue &ToOp = To[Use.getResNo()];
5123      ++UI;
5124      Use.set(ToOp);
5125    } while (UI != UE && *UI == User);
5126
5127    // Now that we have modified User, add it back to the CSE maps.  If it
5128    // already exists there, recursively merge the results together.
5129    AddModifiedNodeToCSEMaps(User, &Listener);
5130  }
5131}
5132
5133/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5134/// uses of other values produced by From.getNode() alone.  The Deleted
5135/// vector is handled the same way as for ReplaceAllUsesWith.
5136void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5137                                             DAGUpdateListener *UpdateListener){
5138  // Handle the really simple, really trivial case efficiently.
5139  if (From == To) return;
5140
5141  // Handle the simple, trivial, case efficiently.
5142  if (From.getNode()->getNumValues() == 1) {
5143    ReplaceAllUsesWith(From, To, UpdateListener);
5144    return;
5145  }
5146
5147  // Iterate over just the existing users of From. See the comments in
5148  // the ReplaceAllUsesWith above.
5149  SDNode::use_iterator UI = From.getNode()->use_begin(),
5150                       UE = From.getNode()->use_end();
5151  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5152  while (UI != UE) {
5153    SDNode *User = *UI;
5154    bool UserRemovedFromCSEMaps = false;
5155
5156    // A user can appear in a use list multiple times, and when this
5157    // happens the uses are usually next to each other in the list.
5158    // To help reduce the number of CSE recomputations, process all
5159    // the uses of this user that we can find this way.
5160    do {
5161      SDUse &Use = UI.getUse();
5162
5163      // Skip uses of different values from the same node.
5164      if (Use.getResNo() != From.getResNo()) {
5165        ++UI;
5166        continue;
5167      }
5168
5169      // If this node hasn't been modified yet, it's still in the CSE maps,
5170      // so remove its old self from the CSE maps.
5171      if (!UserRemovedFromCSEMaps) {
5172        RemoveNodeFromCSEMaps(User);
5173        UserRemovedFromCSEMaps = true;
5174      }
5175
5176      ++UI;
5177      Use.set(To);
5178    } while (UI != UE && *UI == User);
5179
5180    // We are iterating over all uses of the From node, so if a use
5181    // doesn't use the specific value, no changes are made.
5182    if (!UserRemovedFromCSEMaps)
5183      continue;
5184
5185    // Now that we have modified User, add it back to the CSE maps.  If it
5186    // already exists there, recursively merge the results together.
5187    AddModifiedNodeToCSEMaps(User, &Listener);
5188  }
5189}
5190
5191namespace {
5192  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5193  /// to record information about a use.
5194  struct UseMemo {
5195    SDNode *User;
5196    unsigned Index;
5197    SDUse *Use;
5198  };
5199
5200  /// operator< - Sort Memos by User.
5201  bool operator<(const UseMemo &L, const UseMemo &R) {
5202    return (intptr_t)L.User < (intptr_t)R.User;
5203  }
5204}
5205
5206/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5207/// uses of other values produced by From.getNode() alone.  The same value
5208/// may appear in both the From and To list.  The Deleted vector is
5209/// handled the same way as for ReplaceAllUsesWith.
5210void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5211                                              const SDValue *To,
5212                                              unsigned Num,
5213                                              DAGUpdateListener *UpdateListener){
5214  // Handle the simple, trivial case efficiently.
5215  if (Num == 1)
5216    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5217
5218  // Read up all the uses and make records of them. This helps
5219  // processing new uses that are introduced during the
5220  // replacement process.
5221  SmallVector<UseMemo, 4> Uses;
5222  for (unsigned i = 0; i != Num; ++i) {
5223    unsigned FromResNo = From[i].getResNo();
5224    SDNode *FromNode = From[i].getNode();
5225    for (SDNode::use_iterator UI = FromNode->use_begin(),
5226         E = FromNode->use_end(); UI != E; ++UI) {
5227      SDUse &Use = UI.getUse();
5228      if (Use.getResNo() == FromResNo) {
5229        UseMemo Memo = { *UI, i, &Use };
5230        Uses.push_back(Memo);
5231      }
5232    }
5233  }
5234
5235  // Sort the uses, so that all the uses from a given User are together.
5236  std::sort(Uses.begin(), Uses.end());
5237
5238  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5239       UseIndex != UseIndexEnd; ) {
5240    // We know that this user uses some value of From.  If it is the right
5241    // value, update it.
5242    SDNode *User = Uses[UseIndex].User;
5243
5244    // This node is about to morph, remove its old self from the CSE maps.
5245    RemoveNodeFromCSEMaps(User);
5246
5247    // The Uses array is sorted, so all the uses for a given User
5248    // are next to each other in the list.
5249    // To help reduce the number of CSE recomputations, process all
5250    // the uses of this user that we can find this way.
5251    do {
5252      unsigned i = Uses[UseIndex].Index;
5253      SDUse &Use = *Uses[UseIndex].Use;
5254      ++UseIndex;
5255
5256      Use.set(To[i]);
5257    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5258
5259    // Now that we have modified User, add it back to the CSE maps.  If it
5260    // already exists there, recursively merge the results together.
5261    AddModifiedNodeToCSEMaps(User, UpdateListener);
5262  }
5263}
5264
5265/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5266/// based on their topological order. It returns the maximum id and a vector
5267/// of the SDNodes* in assigned order by reference.
5268unsigned SelectionDAG::AssignTopologicalOrder() {
5269
5270  unsigned DAGSize = 0;
5271
5272  // SortedPos tracks the progress of the algorithm. Nodes before it are
5273  // sorted, nodes after it are unsorted. When the algorithm completes
5274  // it is at the end of the list.
5275  allnodes_iterator SortedPos = allnodes_begin();
5276
5277  // Visit all the nodes. Move nodes with no operands to the front of
5278  // the list immediately. Annotate nodes that do have operands with their
5279  // operand count. Before we do this, the Node Id fields of the nodes
5280  // may contain arbitrary values. After, the Node Id fields for nodes
5281  // before SortedPos will contain the topological sort index, and the
5282  // Node Id fields for nodes At SortedPos and after will contain the
5283  // count of outstanding operands.
5284  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5285    SDNode *N = I++;
5286    checkForCycles(N);
5287    unsigned Degree = N->getNumOperands();
5288    if (Degree == 0) {
5289      // A node with no uses, add it to the result array immediately.
5290      N->setNodeId(DAGSize++);
5291      allnodes_iterator Q = N;
5292      if (Q != SortedPos)
5293        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5294      assert(SortedPos != AllNodes.end() && "Overran node list");
5295      ++SortedPos;
5296    } else {
5297      // Temporarily use the Node Id as scratch space for the degree count.
5298      N->setNodeId(Degree);
5299    }
5300  }
5301
5302  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5303  // such that by the time the end is reached all nodes will be sorted.
5304  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5305    SDNode *N = I;
5306    checkForCycles(N);
5307    // N is in sorted position, so all its uses have one less operand
5308    // that needs to be sorted.
5309    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5310         UI != UE; ++UI) {
5311      SDNode *P = *UI;
5312      unsigned Degree = P->getNodeId();
5313      assert(Degree != 0 && "Invalid node degree");
5314      --Degree;
5315      if (Degree == 0) {
5316        // All of P's operands are sorted, so P may sorted now.
5317        P->setNodeId(DAGSize++);
5318        if (P != SortedPos)
5319          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5320        assert(SortedPos != AllNodes.end() && "Overran node list");
5321        ++SortedPos;
5322      } else {
5323        // Update P's outstanding operand count.
5324        P->setNodeId(Degree);
5325      }
5326    }
5327    if (I == SortedPos) {
5328#ifndef NDEBUG
5329      SDNode *S = ++I;
5330      dbgs() << "Overran sorted position:\n";
5331      S->dumprFull();
5332#endif
5333      llvm_unreachable(0);
5334    }
5335  }
5336
5337  assert(SortedPos == AllNodes.end() &&
5338         "Topological sort incomplete!");
5339  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5340         "First node in topological sort is not the entry token!");
5341  assert(AllNodes.front().getNodeId() == 0 &&
5342         "First node in topological sort has non-zero id!");
5343  assert(AllNodes.front().getNumOperands() == 0 &&
5344         "First node in topological sort has operands!");
5345  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5346         "Last node in topologic sort has unexpected id!");
5347  assert(AllNodes.back().use_empty() &&
5348         "Last node in topologic sort has users!");
5349  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5350  return DAGSize;
5351}
5352
5353/// AssignOrdering - Assign an order to the SDNode.
5354void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5355  assert(SD && "Trying to assign an order to a null node!");
5356  Ordering->add(SD, Order);
5357}
5358
5359/// GetOrdering - Get the order for the SDNode.
5360unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5361  assert(SD && "Trying to get the order of a null node!");
5362  return Ordering->getOrder(SD);
5363}
5364
5365/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5366/// value is produced by SD.
5367void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5368  DbgInfo->add(DB, SD, isParameter);
5369  if (SD)
5370    SD->setHasDebugValue(true);
5371}
5372
5373//===----------------------------------------------------------------------===//
5374//                              SDNode Class
5375//===----------------------------------------------------------------------===//
5376
5377HandleSDNode::~HandleSDNode() {
5378  DropOperands();
5379}
5380
5381GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5382                                         EVT VT, int64_t o, unsigned char TF)
5383  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5384  TheGlobal = GA;
5385}
5386
5387MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5388                     MachineMemOperand *mmo)
5389 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5390  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5391                                      MMO->isNonTemporal());
5392  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5393  assert(isNonTemporal() == MMO->isNonTemporal() &&
5394         "Non-temporal encoding error!");
5395  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5396}
5397
5398MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5399                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5400                     MachineMemOperand *mmo)
5401   : SDNode(Opc, dl, VTs, Ops, NumOps),
5402     MemoryVT(memvt), MMO(mmo) {
5403  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5404                                      MMO->isNonTemporal());
5405  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5406  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5407}
5408
5409/// Profile - Gather unique data for the node.
5410///
5411void SDNode::Profile(FoldingSetNodeID &ID) const {
5412  AddNodeIDNode(ID, this);
5413}
5414
5415namespace {
5416  struct EVTArray {
5417    std::vector<EVT> VTs;
5418
5419    EVTArray() {
5420      VTs.reserve(MVT::LAST_VALUETYPE);
5421      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5422        VTs.push_back(MVT((MVT::SimpleValueType)i));
5423    }
5424  };
5425}
5426
5427static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5428static ManagedStatic<EVTArray> SimpleVTArray;
5429static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5430
5431/// getValueTypeList - Return a pointer to the specified value type.
5432///
5433const EVT *SDNode::getValueTypeList(EVT VT) {
5434  if (VT.isExtended()) {
5435    sys::SmartScopedLock<true> Lock(*VTMutex);
5436    return &(*EVTs->insert(VT).first);
5437  } else {
5438    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5439           "Value type out of range!");
5440    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5441  }
5442}
5443
5444/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5445/// indicated value.  This method ignores uses of other values defined by this
5446/// operation.
5447bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5448  assert(Value < getNumValues() && "Bad value!");
5449
5450  // TODO: Only iterate over uses of a given value of the node
5451  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5452    if (UI.getUse().getResNo() == Value) {
5453      if (NUses == 0)
5454        return false;
5455      --NUses;
5456    }
5457  }
5458
5459  // Found exactly the right number of uses?
5460  return NUses == 0;
5461}
5462
5463
5464/// hasAnyUseOfValue - Return true if there are any use of the indicated
5465/// value. This method ignores uses of other values defined by this operation.
5466bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5467  assert(Value < getNumValues() && "Bad value!");
5468
5469  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5470    if (UI.getUse().getResNo() == Value)
5471      return true;
5472
5473  return false;
5474}
5475
5476
5477/// isOnlyUserOf - Return true if this node is the only use of N.
5478///
5479bool SDNode::isOnlyUserOf(SDNode *N) const {
5480  bool Seen = false;
5481  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5482    SDNode *User = *I;
5483    if (User == this)
5484      Seen = true;
5485    else
5486      return false;
5487  }
5488
5489  return Seen;
5490}
5491
5492/// isOperand - Return true if this node is an operand of N.
5493///
5494bool SDValue::isOperandOf(SDNode *N) const {
5495  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5496    if (*this == N->getOperand(i))
5497      return true;
5498  return false;
5499}
5500
5501bool SDNode::isOperandOf(SDNode *N) const {
5502  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5503    if (this == N->OperandList[i].getNode())
5504      return true;
5505  return false;
5506}
5507
5508/// reachesChainWithoutSideEffects - Return true if this operand (which must
5509/// be a chain) reaches the specified operand without crossing any
5510/// side-effecting instructions.  In practice, this looks through token
5511/// factors and non-volatile loads.  In order to remain efficient, this only
5512/// looks a couple of nodes in, it does not do an exhaustive search.
5513bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5514                                               unsigned Depth) const {
5515  if (*this == Dest) return true;
5516
5517  // Don't search too deeply, we just want to be able to see through
5518  // TokenFactor's etc.
5519  if (Depth == 0) return false;
5520
5521  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5522  // of the operands of the TF reach dest, then we can do the xform.
5523  if (getOpcode() == ISD::TokenFactor) {
5524    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5525      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5526        return true;
5527    return false;
5528  }
5529
5530  // Loads don't have side effects, look through them.
5531  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5532    if (!Ld->isVolatile())
5533      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5534  }
5535  return false;
5536}
5537
5538/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5539/// is either an operand of N or it can be reached by traversing up the operands.
5540/// NOTE: this is an expensive method. Use it carefully.
5541bool SDNode::isPredecessorOf(SDNode *N) const {
5542  SmallPtrSet<SDNode *, 32> Visited;
5543  SmallVector<SDNode *, 16> Worklist;
5544  Worklist.push_back(N);
5545
5546  do {
5547    N = Worklist.pop_back_val();
5548    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5549      SDNode *Op = N->getOperand(i).getNode();
5550      if (Op == this)
5551        return true;
5552      if (Visited.insert(Op))
5553        Worklist.push_back(Op);
5554    }
5555  } while (!Worklist.empty());
5556
5557  return false;
5558}
5559
5560uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5561  assert(Num < NumOperands && "Invalid child # of SDNode!");
5562  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5563}
5564
5565std::string SDNode::getOperationName(const SelectionDAG *G) const {
5566  switch (getOpcode()) {
5567  default:
5568    if (getOpcode() < ISD::BUILTIN_OP_END)
5569      return "<<Unknown DAG Node>>";
5570    if (isMachineOpcode()) {
5571      if (G)
5572        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5573          if (getMachineOpcode() < TII->getNumOpcodes())
5574            return TII->get(getMachineOpcode()).getName();
5575      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5576    }
5577    if (G) {
5578      const TargetLowering &TLI = G->getTargetLoweringInfo();
5579      const char *Name = TLI.getTargetNodeName(getOpcode());
5580      if (Name) return Name;
5581      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5582    }
5583    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5584
5585#ifndef NDEBUG
5586  case ISD::DELETED_NODE:
5587    return "<<Deleted Node!>>";
5588#endif
5589  case ISD::PREFETCH:      return "Prefetch";
5590  case ISD::MEMBARRIER:    return "MemBarrier";
5591  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5592  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5593  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5594  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5595  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5596  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5597  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5598  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5599  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5600  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5601  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5602  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5603  case ISD::PCMARKER:      return "PCMarker";
5604  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5605  case ISD::SRCVALUE:      return "SrcValue";
5606  case ISD::MDNODE_SDNODE: return "MDNode";
5607  case ISD::EntryToken:    return "EntryToken";
5608  case ISD::TokenFactor:   return "TokenFactor";
5609  case ISD::AssertSext:    return "AssertSext";
5610  case ISD::AssertZext:    return "AssertZext";
5611
5612  case ISD::BasicBlock:    return "BasicBlock";
5613  case ISD::VALUETYPE:     return "ValueType";
5614  case ISD::Register:      return "Register";
5615
5616  case ISD::Constant:      return "Constant";
5617  case ISD::ConstantFP:    return "ConstantFP";
5618  case ISD::GlobalAddress: return "GlobalAddress";
5619  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5620  case ISD::FrameIndex:    return "FrameIndex";
5621  case ISD::JumpTable:     return "JumpTable";
5622  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5623  case ISD::RETURNADDR: return "RETURNADDR";
5624  case ISD::FRAMEADDR: return "FRAMEADDR";
5625  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5626  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5627  case ISD::LSDAADDR: return "LSDAADDR";
5628  case ISD::EHSELECTION: return "EHSELECTION";
5629  case ISD::EH_RETURN: return "EH_RETURN";
5630  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5631  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5632  case ISD::ConstantPool:  return "ConstantPool";
5633  case ISD::ExternalSymbol: return "ExternalSymbol";
5634  case ISD::BlockAddress:  return "BlockAddress";
5635  case ISD::INTRINSIC_WO_CHAIN:
5636  case ISD::INTRINSIC_VOID:
5637  case ISD::INTRINSIC_W_CHAIN: {
5638    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5639    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5640    if (IID < Intrinsic::num_intrinsics)
5641      return Intrinsic::getName((Intrinsic::ID)IID);
5642    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5643      return TII->getName(IID);
5644    llvm_unreachable("Invalid intrinsic ID");
5645  }
5646
5647  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5648  case ISD::TargetConstant: return "TargetConstant";
5649  case ISD::TargetConstantFP:return "TargetConstantFP";
5650  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5651  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5652  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5653  case ISD::TargetJumpTable:  return "TargetJumpTable";
5654  case ISD::TargetConstantPool:  return "TargetConstantPool";
5655  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5656  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5657
5658  case ISD::CopyToReg:     return "CopyToReg";
5659  case ISD::CopyFromReg:   return "CopyFromReg";
5660  case ISD::UNDEF:         return "undef";
5661  case ISD::MERGE_VALUES:  return "merge_values";
5662  case ISD::INLINEASM:     return "inlineasm";
5663  case ISD::EH_LABEL:      return "eh_label";
5664  case ISD::HANDLENODE:    return "handlenode";
5665
5666  // Unary operators
5667  case ISD::FABS:   return "fabs";
5668  case ISD::FNEG:   return "fneg";
5669  case ISD::FSQRT:  return "fsqrt";
5670  case ISD::FSIN:   return "fsin";
5671  case ISD::FCOS:   return "fcos";
5672  case ISD::FPOWI:  return "fpowi";
5673  case ISD::FPOW:   return "fpow";
5674  case ISD::FTRUNC: return "ftrunc";
5675  case ISD::FFLOOR: return "ffloor";
5676  case ISD::FCEIL:  return "fceil";
5677  case ISD::FRINT:  return "frint";
5678  case ISD::FNEARBYINT: return "fnearbyint";
5679
5680  // Binary operators
5681  case ISD::ADD:    return "add";
5682  case ISD::SUB:    return "sub";
5683  case ISD::MUL:    return "mul";
5684  case ISD::MULHU:  return "mulhu";
5685  case ISD::MULHS:  return "mulhs";
5686  case ISD::SDIV:   return "sdiv";
5687  case ISD::UDIV:   return "udiv";
5688  case ISD::SREM:   return "srem";
5689  case ISD::UREM:   return "urem";
5690  case ISD::SMUL_LOHI:  return "smul_lohi";
5691  case ISD::UMUL_LOHI:  return "umul_lohi";
5692  case ISD::SDIVREM:    return "sdivrem";
5693  case ISD::UDIVREM:    return "udivrem";
5694  case ISD::AND:    return "and";
5695  case ISD::OR:     return "or";
5696  case ISD::XOR:    return "xor";
5697  case ISD::SHL:    return "shl";
5698  case ISD::SRA:    return "sra";
5699  case ISD::SRL:    return "srl";
5700  case ISD::ROTL:   return "rotl";
5701  case ISD::ROTR:   return "rotr";
5702  case ISD::FADD:   return "fadd";
5703  case ISD::FSUB:   return "fsub";
5704  case ISD::FMUL:   return "fmul";
5705  case ISD::FDIV:   return "fdiv";
5706  case ISD::FREM:   return "frem";
5707  case ISD::FCOPYSIGN: return "fcopysign";
5708  case ISD::FGETSIGN:  return "fgetsign";
5709
5710  case ISD::SETCC:       return "setcc";
5711  case ISD::VSETCC:      return "vsetcc";
5712  case ISD::SELECT:      return "select";
5713  case ISD::SELECT_CC:   return "select_cc";
5714  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5715  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5716  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5717  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5718  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5719  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5720  case ISD::CARRY_FALSE:         return "carry_false";
5721  case ISD::ADDC:        return "addc";
5722  case ISD::ADDE:        return "adde";
5723  case ISD::SADDO:       return "saddo";
5724  case ISD::UADDO:       return "uaddo";
5725  case ISD::SSUBO:       return "ssubo";
5726  case ISD::USUBO:       return "usubo";
5727  case ISD::SMULO:       return "smulo";
5728  case ISD::UMULO:       return "umulo";
5729  case ISD::SUBC:        return "subc";
5730  case ISD::SUBE:        return "sube";
5731  case ISD::SHL_PARTS:   return "shl_parts";
5732  case ISD::SRA_PARTS:   return "sra_parts";
5733  case ISD::SRL_PARTS:   return "srl_parts";
5734
5735  // Conversion operators.
5736  case ISD::SIGN_EXTEND: return "sign_extend";
5737  case ISD::ZERO_EXTEND: return "zero_extend";
5738  case ISD::ANY_EXTEND:  return "any_extend";
5739  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5740  case ISD::TRUNCATE:    return "truncate";
5741  case ISD::FP_ROUND:    return "fp_round";
5742  case ISD::FLT_ROUNDS_: return "flt_rounds";
5743  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5744  case ISD::FP_EXTEND:   return "fp_extend";
5745
5746  case ISD::SINT_TO_FP:  return "sint_to_fp";
5747  case ISD::UINT_TO_FP:  return "uint_to_fp";
5748  case ISD::FP_TO_SINT:  return "fp_to_sint";
5749  case ISD::FP_TO_UINT:  return "fp_to_uint";
5750  case ISD::BIT_CONVERT: return "bit_convert";
5751  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5752  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5753
5754  case ISD::CONVERT_RNDSAT: {
5755    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5756    default: llvm_unreachable("Unknown cvt code!");
5757    case ISD::CVT_FF:  return "cvt_ff";
5758    case ISD::CVT_FS:  return "cvt_fs";
5759    case ISD::CVT_FU:  return "cvt_fu";
5760    case ISD::CVT_SF:  return "cvt_sf";
5761    case ISD::CVT_UF:  return "cvt_uf";
5762    case ISD::CVT_SS:  return "cvt_ss";
5763    case ISD::CVT_SU:  return "cvt_su";
5764    case ISD::CVT_US:  return "cvt_us";
5765    case ISD::CVT_UU:  return "cvt_uu";
5766    }
5767  }
5768
5769    // Control flow instructions
5770  case ISD::BR:      return "br";
5771  case ISD::BRIND:   return "brind";
5772  case ISD::BR_JT:   return "br_jt";
5773  case ISD::BRCOND:  return "brcond";
5774  case ISD::BR_CC:   return "br_cc";
5775  case ISD::CALLSEQ_START:  return "callseq_start";
5776  case ISD::CALLSEQ_END:    return "callseq_end";
5777
5778    // Other operators
5779  case ISD::LOAD:               return "load";
5780  case ISD::STORE:              return "store";
5781  case ISD::VAARG:              return "vaarg";
5782  case ISD::VACOPY:             return "vacopy";
5783  case ISD::VAEND:              return "vaend";
5784  case ISD::VASTART:            return "vastart";
5785  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5786  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5787  case ISD::BUILD_PAIR:         return "build_pair";
5788  case ISD::STACKSAVE:          return "stacksave";
5789  case ISD::STACKRESTORE:       return "stackrestore";
5790  case ISD::TRAP:               return "trap";
5791
5792  // Bit manipulation
5793  case ISD::BSWAP:   return "bswap";
5794  case ISD::CTPOP:   return "ctpop";
5795  case ISD::CTTZ:    return "cttz";
5796  case ISD::CTLZ:    return "ctlz";
5797
5798  // Trampolines
5799  case ISD::TRAMPOLINE: return "trampoline";
5800
5801  case ISD::CONDCODE:
5802    switch (cast<CondCodeSDNode>(this)->get()) {
5803    default: llvm_unreachable("Unknown setcc condition!");
5804    case ISD::SETOEQ:  return "setoeq";
5805    case ISD::SETOGT:  return "setogt";
5806    case ISD::SETOGE:  return "setoge";
5807    case ISD::SETOLT:  return "setolt";
5808    case ISD::SETOLE:  return "setole";
5809    case ISD::SETONE:  return "setone";
5810
5811    case ISD::SETO:    return "seto";
5812    case ISD::SETUO:   return "setuo";
5813    case ISD::SETUEQ:  return "setue";
5814    case ISD::SETUGT:  return "setugt";
5815    case ISD::SETUGE:  return "setuge";
5816    case ISD::SETULT:  return "setult";
5817    case ISD::SETULE:  return "setule";
5818    case ISD::SETUNE:  return "setune";
5819
5820    case ISD::SETEQ:   return "seteq";
5821    case ISD::SETGT:   return "setgt";
5822    case ISD::SETGE:   return "setge";
5823    case ISD::SETLT:   return "setlt";
5824    case ISD::SETLE:   return "setle";
5825    case ISD::SETNE:   return "setne";
5826    }
5827  }
5828}
5829
5830const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5831  switch (AM) {
5832  default:
5833    return "";
5834  case ISD::PRE_INC:
5835    return "<pre-inc>";
5836  case ISD::PRE_DEC:
5837    return "<pre-dec>";
5838  case ISD::POST_INC:
5839    return "<post-inc>";
5840  case ISD::POST_DEC:
5841    return "<post-dec>";
5842  }
5843}
5844
5845std::string ISD::ArgFlagsTy::getArgFlagsString() {
5846  std::string S = "< ";
5847
5848  if (isZExt())
5849    S += "zext ";
5850  if (isSExt())
5851    S += "sext ";
5852  if (isInReg())
5853    S += "inreg ";
5854  if (isSRet())
5855    S += "sret ";
5856  if (isByVal())
5857    S += "byval ";
5858  if (isNest())
5859    S += "nest ";
5860  if (getByValAlign())
5861    S += "byval-align:" + utostr(getByValAlign()) + " ";
5862  if (getOrigAlign())
5863    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5864  if (getByValSize())
5865    S += "byval-size:" + utostr(getByValSize()) + " ";
5866  return S + ">";
5867}
5868
5869void SDNode::dump() const { dump(0); }
5870void SDNode::dump(const SelectionDAG *G) const {
5871  print(dbgs(), G);
5872}
5873
5874void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5875  OS << (void*)this << ": ";
5876
5877  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5878    if (i) OS << ",";
5879    if (getValueType(i) == MVT::Other)
5880      OS << "ch";
5881    else
5882      OS << getValueType(i).getEVTString();
5883  }
5884  OS << " = " << getOperationName(G);
5885}
5886
5887void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5888  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5889    if (!MN->memoperands_empty()) {
5890      OS << "<";
5891      OS << "Mem:";
5892      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5893           e = MN->memoperands_end(); i != e; ++i) {
5894        OS << **i;
5895        if (next(i) != e)
5896          OS << " ";
5897      }
5898      OS << ">";
5899    }
5900  } else if (const ShuffleVectorSDNode *SVN =
5901               dyn_cast<ShuffleVectorSDNode>(this)) {
5902    OS << "<";
5903    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5904      int Idx = SVN->getMaskElt(i);
5905      if (i) OS << ",";
5906      if (Idx < 0)
5907        OS << "u";
5908      else
5909        OS << Idx;
5910    }
5911    OS << ">";
5912  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5913    OS << '<' << CSDN->getAPIntValue() << '>';
5914  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5915    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5916      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5917    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5918      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5919    else {
5920      OS << "<APFloat(";
5921      CSDN->getValueAPF().bitcastToAPInt().dump();
5922      OS << ")>";
5923    }
5924  } else if (const GlobalAddressSDNode *GADN =
5925             dyn_cast<GlobalAddressSDNode>(this)) {
5926    int64_t offset = GADN->getOffset();
5927    OS << '<';
5928    WriteAsOperand(OS, GADN->getGlobal());
5929    OS << '>';
5930    if (offset > 0)
5931      OS << " + " << offset;
5932    else
5933      OS << " " << offset;
5934    if (unsigned int TF = GADN->getTargetFlags())
5935      OS << " [TF=" << TF << ']';
5936  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5937    OS << "<" << FIDN->getIndex() << ">";
5938  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5939    OS << "<" << JTDN->getIndex() << ">";
5940    if (unsigned int TF = JTDN->getTargetFlags())
5941      OS << " [TF=" << TF << ']';
5942  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5943    int offset = CP->getOffset();
5944    if (CP->isMachineConstantPoolEntry())
5945      OS << "<" << *CP->getMachineCPVal() << ">";
5946    else
5947      OS << "<" << *CP->getConstVal() << ">";
5948    if (offset > 0)
5949      OS << " + " << offset;
5950    else
5951      OS << " " << offset;
5952    if (unsigned int TF = CP->getTargetFlags())
5953      OS << " [TF=" << TF << ']';
5954  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5955    OS << "<";
5956    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5957    if (LBB)
5958      OS << LBB->getName() << " ";
5959    OS << (const void*)BBDN->getBasicBlock() << ">";
5960  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5961    if (G && R->getReg() &&
5962        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5963      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5964    } else {
5965      OS << " %reg" << R->getReg();
5966    }
5967  } else if (const ExternalSymbolSDNode *ES =
5968             dyn_cast<ExternalSymbolSDNode>(this)) {
5969    OS << "'" << ES->getSymbol() << "'";
5970    if (unsigned int TF = ES->getTargetFlags())
5971      OS << " [TF=" << TF << ']';
5972  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5973    if (M->getValue())
5974      OS << "<" << M->getValue() << ">";
5975    else
5976      OS << "<null>";
5977  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5978    if (MD->getMD())
5979      OS << "<" << MD->getMD() << ">";
5980    else
5981      OS << "<null>";
5982  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5983    OS << ":" << N->getVT().getEVTString();
5984  }
5985  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5986    OS << "<" << *LD->getMemOperand();
5987
5988    bool doExt = true;
5989    switch (LD->getExtensionType()) {
5990    default: doExt = false; break;
5991    case ISD::EXTLOAD: OS << ", anyext"; break;
5992    case ISD::SEXTLOAD: OS << ", sext"; break;
5993    case ISD::ZEXTLOAD: OS << ", zext"; break;
5994    }
5995    if (doExt)
5996      OS << " from " << LD->getMemoryVT().getEVTString();
5997
5998    const char *AM = getIndexedModeName(LD->getAddressingMode());
5999    if (*AM)
6000      OS << ", " << AM;
6001
6002    OS << ">";
6003  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6004    OS << "<" << *ST->getMemOperand();
6005
6006    if (ST->isTruncatingStore())
6007      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6008
6009    const char *AM = getIndexedModeName(ST->getAddressingMode());
6010    if (*AM)
6011      OS << ", " << AM;
6012
6013    OS << ">";
6014  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6015    OS << "<" << *M->getMemOperand() << ">";
6016  } else if (const BlockAddressSDNode *BA =
6017               dyn_cast<BlockAddressSDNode>(this)) {
6018    OS << "<";
6019    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6020    OS << ", ";
6021    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6022    OS << ">";
6023    if (unsigned int TF = BA->getTargetFlags())
6024      OS << " [TF=" << TF << ']';
6025  }
6026
6027  if (G)
6028    if (unsigned Order = G->GetOrdering(this))
6029      OS << " [ORD=" << Order << ']';
6030
6031  if (getNodeId() != -1)
6032    OS << " [ID=" << getNodeId() << ']';
6033
6034  DebugLoc dl = getDebugLoc();
6035  if (G && !dl.isUnknown()) {
6036    DIScope
6037      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6038    OS << " dbg:";
6039    // Omit the directory, since it's usually long and uninteresting.
6040    if (Scope.Verify())
6041      OS << Scope.getFilename();
6042    else
6043      OS << "<unknown>";
6044    OS << ':' << dl.getLine();
6045    if (dl.getCol() != 0)
6046      OS << ':' << dl.getCol();
6047  }
6048}
6049
6050void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6051  print_types(OS, G);
6052  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6053    if (i) OS << ", "; else OS << " ";
6054    OS << (void*)getOperand(i).getNode();
6055    if (unsigned RN = getOperand(i).getResNo())
6056      OS << ":" << RN;
6057  }
6058  print_details(OS, G);
6059}
6060
6061static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6062                                  const SelectionDAG *G, unsigned depth,
6063                                  unsigned indent)
6064{
6065  if (depth == 0)
6066    return;
6067
6068  OS.indent(indent);
6069
6070  N->print(OS, G);
6071
6072  if (depth < 1)
6073    return;
6074
6075  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6076    OS << '\n';
6077    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6078  }
6079}
6080
6081void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6082                            unsigned depth) const {
6083  printrWithDepthHelper(OS, this, G, depth, 0);
6084}
6085
6086void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6087  // Don't print impossibly deep things.
6088  printrWithDepth(OS, G, 100);
6089}
6090
6091void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6092  printrWithDepth(dbgs(), G, depth);
6093}
6094
6095void SDNode::dumprFull(const SelectionDAG *G) const {
6096  // Don't print impossibly deep things.
6097  dumprWithDepth(G, 100);
6098}
6099
6100static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6101  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6102    if (N->getOperand(i).getNode()->hasOneUse())
6103      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6104    else
6105      dbgs() << "\n" << std::string(indent+2, ' ')
6106           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6107
6108
6109  dbgs() << "\n";
6110  dbgs().indent(indent);
6111  N->dump(G);
6112}
6113
6114SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6115  assert(N->getNumValues() == 1 &&
6116         "Can't unroll a vector with multiple results!");
6117
6118  EVT VT = N->getValueType(0);
6119  unsigned NE = VT.getVectorNumElements();
6120  EVT EltVT = VT.getVectorElementType();
6121  DebugLoc dl = N->getDebugLoc();
6122
6123  SmallVector<SDValue, 8> Scalars;
6124  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6125
6126  // If ResNE is 0, fully unroll the vector op.
6127  if (ResNE == 0)
6128    ResNE = NE;
6129  else if (NE > ResNE)
6130    NE = ResNE;
6131
6132  unsigned i;
6133  for (i= 0; i != NE; ++i) {
6134    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6135      SDValue Operand = N->getOperand(j);
6136      EVT OperandVT = Operand.getValueType();
6137      if (OperandVT.isVector()) {
6138        // A vector operand; extract a single element.
6139        EVT OperandEltVT = OperandVT.getVectorElementType();
6140        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6141                              OperandEltVT,
6142                              Operand,
6143                              getConstant(i, MVT::i32));
6144      } else {
6145        // A scalar operand; just use it as is.
6146        Operands[j] = Operand;
6147      }
6148    }
6149
6150    switch (N->getOpcode()) {
6151    default:
6152      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6153                                &Operands[0], Operands.size()));
6154      break;
6155    case ISD::SHL:
6156    case ISD::SRA:
6157    case ISD::SRL:
6158    case ISD::ROTL:
6159    case ISD::ROTR:
6160      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6161                                getShiftAmountOperand(Operands[1])));
6162      break;
6163    case ISD::SIGN_EXTEND_INREG:
6164    case ISD::FP_ROUND_INREG: {
6165      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6166      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6167                                Operands[0],
6168                                getValueType(ExtVT)));
6169    }
6170    }
6171  }
6172
6173  for (; i < ResNE; ++i)
6174    Scalars.push_back(getUNDEF(EltVT));
6175
6176  return getNode(ISD::BUILD_VECTOR, dl,
6177                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6178                 &Scalars[0], Scalars.size());
6179}
6180
6181
6182/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6183/// location that is 'Dist' units away from the location that the 'Base' load
6184/// is loading from.
6185bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6186                                     unsigned Bytes, int Dist) const {
6187  if (LD->getChain() != Base->getChain())
6188    return false;
6189  EVT VT = LD->getValueType(0);
6190  if (VT.getSizeInBits() / 8 != Bytes)
6191    return false;
6192
6193  SDValue Loc = LD->getOperand(1);
6194  SDValue BaseLoc = Base->getOperand(1);
6195  if (Loc.getOpcode() == ISD::FrameIndex) {
6196    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6197      return false;
6198    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6199    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6200    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6201    int FS  = MFI->getObjectSize(FI);
6202    int BFS = MFI->getObjectSize(BFI);
6203    if (FS != BFS || FS != (int)Bytes) return false;
6204    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6205  }
6206  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6207    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6208    if (V && (V->getSExtValue() == Dist*Bytes))
6209      return true;
6210  }
6211
6212  const GlobalValue *GV1 = NULL;
6213  const GlobalValue *GV2 = NULL;
6214  int64_t Offset1 = 0;
6215  int64_t Offset2 = 0;
6216  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6217  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6218  if (isGA1 && isGA2 && GV1 == GV2)
6219    return Offset1 == (Offset2 + Dist*Bytes);
6220  return false;
6221}
6222
6223
6224/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6225/// it cannot be inferred.
6226unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6227  // If this is a GlobalAddress + cst, return the alignment.
6228  const GlobalValue *GV;
6229  int64_t GVOffset = 0;
6230  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6231    // If GV has specified alignment, then use it. Otherwise, use the preferred
6232    // alignment.
6233    unsigned Align = GV->getAlignment();
6234    if (!Align) {
6235      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6236        if (GVar->hasInitializer()) {
6237          const TargetData *TD = TLI.getTargetData();
6238          Align = TD->getPreferredAlignment(GVar);
6239        }
6240      }
6241    }
6242    return MinAlign(Align, GVOffset);
6243  }
6244
6245  // If this is a direct reference to a stack slot, use information about the
6246  // stack slot's alignment.
6247  int FrameIdx = 1 << 31;
6248  int64_t FrameOffset = 0;
6249  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6250    FrameIdx = FI->getIndex();
6251  } else if (Ptr.getOpcode() == ISD::ADD &&
6252             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6253             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6254    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6255    FrameOffset = Ptr.getConstantOperandVal(1);
6256  }
6257
6258  if (FrameIdx != (1 << 31)) {
6259    // FIXME: Handle FI+CST.
6260    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6261    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6262                                    FrameOffset);
6263    if (MFI.isFixedObjectIndex(FrameIdx)) {
6264      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6265
6266      // The alignment of the frame index can be determined from its offset from
6267      // the incoming frame position.  If the frame object is at offset 32 and
6268      // the stack is guaranteed to be 16-byte aligned, then we know that the
6269      // object is 16-byte aligned.
6270      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6271      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6272
6273      // Finally, the frame object itself may have a known alignment.  Factor
6274      // the alignment + offset into a new alignment.  For example, if we know
6275      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6276      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6277      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6278      return std::max(Align, FIInfoAlign);
6279    }
6280    return FIInfoAlign;
6281  }
6282
6283  return 0;
6284}
6285
6286void SelectionDAG::dump() const {
6287  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6288
6289  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6290       I != E; ++I) {
6291    const SDNode *N = I;
6292    if (!N->hasOneUse() && N != getRoot().getNode())
6293      DumpNodes(N, 2, this);
6294  }
6295
6296  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6297
6298  dbgs() << "\n\n";
6299}
6300
6301void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6302  print_types(OS, G);
6303  print_details(OS, G);
6304}
6305
6306typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6307static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6308                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6309  if (!once.insert(N))          // If we've been here before, return now.
6310    return;
6311
6312  // Dump the current SDNode, but don't end the line yet.
6313  OS << std::string(indent, ' ');
6314  N->printr(OS, G);
6315
6316  // Having printed this SDNode, walk the children:
6317  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6318    const SDNode *child = N->getOperand(i).getNode();
6319
6320    if (i) OS << ",";
6321    OS << " ";
6322
6323    if (child->getNumOperands() == 0) {
6324      // This child has no grandchildren; print it inline right here.
6325      child->printr(OS, G);
6326      once.insert(child);
6327    } else {         // Just the address. FIXME: also print the child's opcode.
6328      OS << (void*)child;
6329      if (unsigned RN = N->getOperand(i).getResNo())
6330        OS << ":" << RN;
6331    }
6332  }
6333
6334  OS << "\n";
6335
6336  // Dump children that have grandchildren on their own line(s).
6337  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6338    const SDNode *child = N->getOperand(i).getNode();
6339    DumpNodesr(OS, child, indent+2, G, once);
6340  }
6341}
6342
6343void SDNode::dumpr() const {
6344  VisitedSDNodeSet once;
6345  DumpNodesr(dbgs(), this, 0, 0, once);
6346}
6347
6348void SDNode::dumpr(const SelectionDAG *G) const {
6349  VisitedSDNodeSet once;
6350  DumpNodesr(dbgs(), this, 0, G, once);
6351}
6352
6353
6354// getAddressSpace - Return the address space this GlobalAddress belongs to.
6355unsigned GlobalAddressSDNode::getAddressSpace() const {
6356  return getGlobal()->getType()->getAddressSpace();
6357}
6358
6359
6360const Type *ConstantPoolSDNode::getType() const {
6361  if (isMachineConstantPoolEntry())
6362    return Val.MachineCPVal->getType();
6363  return Val.ConstVal->getType();
6364}
6365
6366bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6367                                        APInt &SplatUndef,
6368                                        unsigned &SplatBitSize,
6369                                        bool &HasAnyUndefs,
6370                                        unsigned MinSplatBits,
6371                                        bool isBigEndian) {
6372  EVT VT = getValueType(0);
6373  assert(VT.isVector() && "Expected a vector type");
6374  unsigned sz = VT.getSizeInBits();
6375  if (MinSplatBits > sz)
6376    return false;
6377
6378  SplatValue = APInt(sz, 0);
6379  SplatUndef = APInt(sz, 0);
6380
6381  // Get the bits.  Bits with undefined values (when the corresponding element
6382  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6383  // in SplatValue.  If any of the values are not constant, give up and return
6384  // false.
6385  unsigned int nOps = getNumOperands();
6386  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6387  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6388
6389  for (unsigned j = 0; j < nOps; ++j) {
6390    unsigned i = isBigEndian ? nOps-1-j : j;
6391    SDValue OpVal = getOperand(i);
6392    unsigned BitPos = j * EltBitSize;
6393
6394    if (OpVal.getOpcode() == ISD::UNDEF)
6395      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6396    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6397      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6398                    zextOrTrunc(sz) << BitPos;
6399    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6400      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6401     else
6402      return false;
6403  }
6404
6405  // The build_vector is all constants or undefs.  Find the smallest element
6406  // size that splats the vector.
6407
6408  HasAnyUndefs = (SplatUndef != 0);
6409  while (sz > 8) {
6410
6411    unsigned HalfSize = sz / 2;
6412    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6413    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6414    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6415    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6416
6417    // If the two halves do not match (ignoring undef bits), stop here.
6418    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6419        MinSplatBits > HalfSize)
6420      break;
6421
6422    SplatValue = HighValue | LowValue;
6423    SplatUndef = HighUndef & LowUndef;
6424
6425    sz = HalfSize;
6426  }
6427
6428  SplatBitSize = sz;
6429  return true;
6430}
6431
6432bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6433  // Find the first non-undef value in the shuffle mask.
6434  unsigned i, e;
6435  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6436    /* search */;
6437
6438  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6439
6440  // Make sure all remaining elements are either undef or the same as the first
6441  // non-undef value.
6442  for (int Idx = Mask[i]; i != e; ++i)
6443    if (Mask[i] >= 0 && Mask[i] != Idx)
6444      return false;
6445  return true;
6446}
6447
6448#ifdef XDEBUG
6449static void checkForCyclesHelper(const SDNode *N,
6450                                 SmallPtrSet<const SDNode*, 32> &Visited,
6451                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6452  // If this node has already been checked, don't check it again.
6453  if (Checked.count(N))
6454    return;
6455
6456  // If a node has already been visited on this depth-first walk, reject it as
6457  // a cycle.
6458  if (!Visited.insert(N)) {
6459    dbgs() << "Offending node:\n";
6460    N->dumprFull();
6461    errs() << "Detected cycle in SelectionDAG\n";
6462    abort();
6463  }
6464
6465  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6466    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6467
6468  Checked.insert(N);
6469  Visited.erase(N);
6470}
6471#endif
6472
6473void llvm::checkForCycles(const llvm::SDNode *N) {
6474#ifdef XDEBUG
6475  assert(N && "Checking nonexistant SDNode");
6476  SmallPtrSet<const SDNode*, 32> visited;
6477  SmallPtrSet<const SDNode*, 32> checked;
6478  checkForCyclesHelper(N, visited, checked);
6479#endif
6480}
6481
6482void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6483  checkForCycles(DAG->getRoot().getNode());
6484}
6485