SelectionDAG.cpp revision 255f20f7f76e4ca1ac1c73294852cb6fcb18c77d
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli), DW(0),
797    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798              getVTList(MVT::Other)),
799    Root(getEntryNode()), Ordering(0) {
800  AllNodes.push_back(&EntryNode);
801  Ordering = new SDNodeOrdering();
802  DbgInfo = new SDDbgInfo();
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815  delete Ordering;
816  DbgInfo->clear();
817  delete DbgInfo;
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty())
824    DeallocateNode(AllNodes.begin());
825}
826
827void SelectionDAG::clear() {
828  allnodes_clear();
829  OperandAllocator.Reset();
830  CSEMap.clear();
831
832  ExtendedValueTypeNodes.clear();
833  ExternalSymbols.clear();
834  TargetExternalSymbols.clear();
835  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
836            static_cast<CondCodeSDNode*>(0));
837  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
838            static_cast<SDNode*>(0));
839
840  EntryNode.UseList = 0;
841  AllNodes.push_back(&EntryNode);
842  Root = getEntryNode();
843  delete Ordering;
844  Ordering = new SDNodeOrdering();
845  DbgInfo->clear();
846  delete DbgInfo;
847  DbgInfo = new SDDbgInfo();
848}
849
850SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
851  return VT.bitsGT(Op.getValueType()) ?
852    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
853    getNode(ISD::TRUNCATE, DL, VT, Op);
854}
855
856SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
857  return VT.bitsGT(Op.getValueType()) ?
858    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
859    getNode(ISD::TRUNCATE, DL, VT, Op);
860}
861
862SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
863  assert(!VT.isVector() &&
864         "getZeroExtendInReg should use the vector element type instead of "
865         "the vector type!");
866  if (Op.getValueType() == VT) return Op;
867  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
868  APInt Imm = APInt::getLowBitsSet(BitWidth,
869                                   VT.getSizeInBits());
870  return getNode(ISD::AND, DL, Op.getValueType(), Op,
871                 getConstant(Imm, Op.getValueType()));
872}
873
874/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
875///
876SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
877  EVT EltVT = VT.getScalarType();
878  SDValue NegOne =
879    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
880  return getNode(ISD::XOR, DL, VT, Val, NegOne);
881}
882
883SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
884  EVT EltVT = VT.getScalarType();
885  assert((EltVT.getSizeInBits() >= 64 ||
886         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
887         "getConstant with a uint64_t value that doesn't fit in the type!");
888  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
892  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
893}
894
895SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
896  assert(VT.isInteger() && "Cannot create FP integer constant!");
897
898  EVT EltVT = VT.getScalarType();
899  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
900         "APInt size does not match type size!");
901
902  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
905  ID.AddPointer(&Val);
906  void *IP = 0;
907  SDNode *N = NULL;
908  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
909    if (!VT.isVector())
910      return SDValue(N, 0);
911
912  if (!N) {
913    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
914    CSEMap.InsertNode(N, IP);
915    AllNodes.push_back(N);
916  }
917
918  SDValue Result(N, 0);
919  if (VT.isVector()) {
920    SmallVector<SDValue, 8> Ops;
921    Ops.assign(VT.getVectorNumElements(), Result);
922    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
923                     VT, &Ops[0], Ops.size());
924  }
925  return Result;
926}
927
928SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
929  return getConstant(Val, TLI.getPointerTy(), isTarget);
930}
931
932
933SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
934  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
935}
936
937SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
938  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
939
940  EVT EltVT = VT.getScalarType();
941
942  // Do the map lookup using the actual bit pattern for the floating point
943  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
944  // we don't have issues with SNANs.
945  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
946  FoldingSetNodeID ID;
947  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
948  ID.AddPointer(&V);
949  void *IP = 0;
950  SDNode *N = NULL;
951  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
952    if (!VT.isVector())
953      return SDValue(N, 0);
954
955  if (!N) {
956    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
957    CSEMap.InsertNode(N, IP);
958    AllNodes.push_back(N);
959  }
960
961  SDValue Result(N, 0);
962  if (VT.isVector()) {
963    SmallVector<SDValue, 8> Ops;
964    Ops.assign(VT.getVectorNumElements(), Result);
965    // FIXME DebugLoc info might be appropriate here
966    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
967                     VT, &Ops[0], Ops.size());
968  }
969  return Result;
970}
971
972SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
973  EVT EltVT = VT.getScalarType();
974  if (EltVT==MVT::f32)
975    return getConstantFP(APFloat((float)Val), VT, isTarget);
976  else
977    return getConstantFP(APFloat(Val), VT, isTarget);
978}
979
980SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
981                                       EVT VT, int64_t Offset,
982                                       bool isTargetGA,
983                                       unsigned char TargetFlags) {
984  assert((TargetFlags == 0 || isTargetGA) &&
985         "Cannot set target flags on target-independent globals");
986
987  // Truncate (with sign-extension) the offset value to the pointer size.
988  EVT PTy = TLI.getPointerTy();
989  unsigned BitWidth = PTy.getSizeInBits();
990  if (BitWidth < 64)
991    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
992
993  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
994  if (!GVar) {
995    // If GV is an alias then use the aliasee for determining thread-localness.
996    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
997      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
998  }
999
1000  unsigned Opc;
1001  if (GVar && GVar->isThreadLocal())
1002    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1003  else
1004    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1005
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddPointer(GV);
1009  ID.AddInteger(Offset);
1010  ID.AddInteger(TargetFlags);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014
1015  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1016                                                      Offset, TargetFlags);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1023  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(FI);
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDValue(E, 0);
1030
1031  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDValue(N, 0);
1035}
1036
1037SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1038                                   unsigned char TargetFlags) {
1039  assert((TargetFlags == 0 || isTarget) &&
1040         "Cannot set target flags on target-independent jump tables");
1041  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(JTI);
1045  ID.AddInteger(TargetFlags);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049
1050  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1051                                                  TargetFlags);
1052  CSEMap.InsertNode(N, IP);
1053  AllNodes.push_back(N);
1054  return SDValue(N, 0);
1055}
1056
1057SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1058                                      unsigned Alignment, int Offset,
1059                                      bool isTarget,
1060                                      unsigned char TargetFlags) {
1061  assert((TargetFlags == 0 || isTarget) &&
1062         "Cannot set target flags on target-independent globals");
1063  if (Alignment == 0)
1064    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1065  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068  ID.AddInteger(Alignment);
1069  ID.AddInteger(Offset);
1070  ID.AddPointer(C);
1071  ID.AddInteger(TargetFlags);
1072  void *IP = 0;
1073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1074    return SDValue(E, 0);
1075
1076  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1077                                                     Alignment, TargetFlags);
1078  CSEMap.InsertNode(N, IP);
1079  AllNodes.push_back(N);
1080  return SDValue(N, 0);
1081}
1082
1083
1084SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1085                                      unsigned Alignment, int Offset,
1086                                      bool isTarget,
1087                                      unsigned char TargetFlags) {
1088  assert((TargetFlags == 0 || isTarget) &&
1089         "Cannot set target flags on target-independent globals");
1090  if (Alignment == 0)
1091    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1092  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1095  ID.AddInteger(Alignment);
1096  ID.AddInteger(Offset);
1097  C->AddSelectionDAGCSEId(ID);
1098  ID.AddInteger(TargetFlags);
1099  void *IP = 0;
1100  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1101    return SDValue(E, 0);
1102
1103  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1104                                                     Alignment, TargetFlags);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1111  FoldingSetNodeID ID;
1112  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1113  ID.AddPointer(MBB);
1114  void *IP = 0;
1115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1116    return SDValue(E, 0);
1117
1118  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(EVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1126      ValueTypeNodes.size())
1127    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1128
1129  SDNode *&N = VT.isExtended() ?
1130    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1131
1132  if (N) return SDValue(N, 0);
1133  N = new (NodeAllocator) VTSDNode(VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1139  SDNode *&N = ExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1147                                              unsigned char TargetFlags) {
1148  SDNode *&N =
1149    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1150                                                               TargetFlags)];
1151  if (N) return SDValue(N, 0);
1152  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1158  if ((unsigned)Cond >= CondCodeNodes.size())
1159    CondCodeNodes.resize(Cond+1);
1160
1161  if (CondCodeNodes[Cond] == 0) {
1162    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1163    CondCodeNodes[Cond] = N;
1164    AllNodes.push_back(N);
1165  }
1166
1167  return SDValue(CondCodeNodes[Cond], 0);
1168}
1169
1170// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1171// the shuffle mask M that point at N1 to point at N2, and indices that point
1172// N2 to point at N1.
1173static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1174  std::swap(N1, N2);
1175  int NElts = M.size();
1176  for (int i = 0; i != NElts; ++i) {
1177    if (M[i] >= NElts)
1178      M[i] -= NElts;
1179    else if (M[i] >= 0)
1180      M[i] += NElts;
1181  }
1182}
1183
1184SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1185                                       SDValue N2, const int *Mask) {
1186  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1187  assert(VT.isVector() && N1.getValueType().isVector() &&
1188         "Vector Shuffle VTs must be a vectors");
1189  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1190         && "Vector Shuffle VTs must have same element type");
1191
1192  // Canonicalize shuffle undef, undef -> undef
1193  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1194    return getUNDEF(VT);
1195
1196  // Validate that all indices in Mask are within the range of the elements
1197  // input to the shuffle.
1198  unsigned NElts = VT.getVectorNumElements();
1199  SmallVector<int, 8> MaskVec;
1200  for (unsigned i = 0; i != NElts; ++i) {
1201    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1202    MaskVec.push_back(Mask[i]);
1203  }
1204
1205  // Canonicalize shuffle v, v -> v, undef
1206  if (N1 == N2) {
1207    N2 = getUNDEF(VT);
1208    for (unsigned i = 0; i != NElts; ++i)
1209      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1210  }
1211
1212  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1213  if (N1.getOpcode() == ISD::UNDEF)
1214    commuteShuffle(N1, N2, MaskVec);
1215
1216  // Canonicalize all index into lhs, -> shuffle lhs, undef
1217  // Canonicalize all index into rhs, -> shuffle rhs, undef
1218  bool AllLHS = true, AllRHS = true;
1219  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1220  for (unsigned i = 0; i != NElts; ++i) {
1221    if (MaskVec[i] >= (int)NElts) {
1222      if (N2Undef)
1223        MaskVec[i] = -1;
1224      else
1225        AllLHS = false;
1226    } else if (MaskVec[i] >= 0) {
1227      AllRHS = false;
1228    }
1229  }
1230  if (AllLHS && AllRHS)
1231    return getUNDEF(VT);
1232  if (AllLHS && !N2Undef)
1233    N2 = getUNDEF(VT);
1234  if (AllRHS) {
1235    N1 = getUNDEF(VT);
1236    commuteShuffle(N1, N2, MaskVec);
1237  }
1238
1239  // If Identity shuffle, or all shuffle in to undef, return that node.
1240  bool AllUndef = true;
1241  bool Identity = true;
1242  for (unsigned i = 0; i != NElts; ++i) {
1243    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1244    if (MaskVec[i] >= 0) AllUndef = false;
1245  }
1246  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1247    return N1;
1248  if (AllUndef)
1249    return getUNDEF(VT);
1250
1251  FoldingSetNodeID ID;
1252  SDValue Ops[2] = { N1, N2 };
1253  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1254  for (unsigned i = 0; i != NElts; ++i)
1255    ID.AddInteger(MaskVec[i]);
1256
1257  void* IP = 0;
1258  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1259    return SDValue(E, 0);
1260
1261  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1262  // SDNode doesn't have access to it.  This memory will be "leaked" when
1263  // the node is deallocated, but recovered when the NodeAllocator is released.
1264  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1265  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1266
1267  ShuffleVectorSDNode *N =
1268    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1269  CSEMap.InsertNode(N, IP);
1270  AllNodes.push_back(N);
1271  return SDValue(N, 0);
1272}
1273
1274SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1275                                       SDValue Val, SDValue DTy,
1276                                       SDValue STy, SDValue Rnd, SDValue Sat,
1277                                       ISD::CvtCode Code) {
1278  // If the src and dest types are the same and the conversion is between
1279  // integer types of the same sign or two floats, no conversion is necessary.
1280  if (DTy == STy &&
1281      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1282    return Val;
1283
1284  FoldingSetNodeID ID;
1285  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1286  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1287  void* IP = 0;
1288  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1289    return SDValue(E, 0);
1290
1291  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1292                                                           Code);
1293  CSEMap.InsertNode(N, IP);
1294  AllNodes.push_back(N);
1295  return SDValue(N, 0);
1296}
1297
1298SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1299  FoldingSetNodeID ID;
1300  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1301  ID.AddInteger(RegNo);
1302  void *IP = 0;
1303  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1304    return SDValue(E, 0);
1305
1306  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1307  CSEMap.InsertNode(N, IP);
1308  AllNodes.push_back(N);
1309  return SDValue(N, 0);
1310}
1311
1312SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1313  FoldingSetNodeID ID;
1314  SDValue Ops[] = { Root };
1315  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1316  ID.AddPointer(Label);
1317  void *IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320
1321  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327
1328SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1329                                      bool isTarget,
1330                                      unsigned char TargetFlags) {
1331  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1332
1333  FoldingSetNodeID ID;
1334  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335  ID.AddPointer(BA);
1336  ID.AddInteger(TargetFlags);
1337  void *IP = 0;
1338  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339    return SDValue(E, 0);
1340
1341  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342  CSEMap.InsertNode(N, IP);
1343  AllNodes.push_back(N);
1344  return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
1348  assert((!V || V->getType()->isPointerTy()) &&
1349         "SrcValue is not a pointer?");
1350
1351  FoldingSetNodeID ID;
1352  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353  ID.AddPointer(V);
1354
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getScalarType().getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getScalarType().getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getScalarType().getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getScalarType().getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue().abs();
1929      if (RA.isPowerOf2()) {
1930        APInt LowBits = RA - 1;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // The low bits of the first operand are unchanged by the srem.
1935        KnownZero = KnownZero2 & LowBits;
1936        KnownOne = KnownOne2 & LowBits;
1937
1938        // If the first operand is non-negative or has all low bits zero, then
1939        // the upper bits are all zero.
1940        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1941          KnownZero |= ~LowBits;
1942
1943        // If the first operand is negative and not all low bits are zero, then
1944        // the upper bits are all one.
1945        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1946          KnownOne |= ~LowBits;
1947
1948        KnownZero &= Mask;
1949        KnownOne &= Mask;
1950
1951        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1952      }
1953    }
1954    return;
1955  case ISD::UREM: {
1956    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1957      const APInt &RA = Rem->getAPIntValue();
1958      if (RA.isPowerOf2()) {
1959        APInt LowBits = (RA - 1);
1960        APInt Mask2 = LowBits & Mask;
1961        KnownZero |= ~LowBits & Mask;
1962        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1963        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1964        break;
1965      }
1966    }
1967
1968    // Since the result is less than or equal to either operand, any leading
1969    // zero bits in either operand must also exist in the result.
1970    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1971    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1972                      Depth+1);
1973    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1974                      Depth+1);
1975
1976    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1977                                KnownZero2.countLeadingOnes());
1978    KnownOne.clear();
1979    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1980    return;
1981  }
1982  default:
1983    // Allow the target to implement this method for its nodes.
1984    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1985  case ISD::INTRINSIC_WO_CHAIN:
1986  case ISD::INTRINSIC_W_CHAIN:
1987  case ISD::INTRINSIC_VOID:
1988      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1989                                         Depth);
1990    }
1991    return;
1992  }
1993}
1994
1995/// ComputeNumSignBits - Return the number of times the sign bit of the
1996/// register is replicated into the other bits.  We know that at least 1 bit
1997/// is always equal to the sign bit (itself), but other cases can give us
1998/// information.  For example, immediately after an "SRA X, 2", we know that
1999/// the top 3 bits are all equal to each other, so we return 3.
2000unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2001  EVT VT = Op.getValueType();
2002  assert(VT.isInteger() && "Invalid VT!");
2003  unsigned VTBits = VT.getScalarType().getSizeInBits();
2004  unsigned Tmp, Tmp2;
2005  unsigned FirstAnswer = 1;
2006
2007  if (Depth == 6)
2008    return 1;  // Limit search depth.
2009
2010  switch (Op.getOpcode()) {
2011  default: break;
2012  case ISD::AssertSext:
2013    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2014    return VTBits-Tmp+1;
2015  case ISD::AssertZext:
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    return VTBits-Tmp;
2018
2019  case ISD::Constant: {
2020    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2021    // If negative, return # leading ones.
2022    if (Val.isNegative())
2023      return Val.countLeadingOnes();
2024
2025    // Return # leading zeros.
2026    return Val.countLeadingZeros();
2027  }
2028
2029  case ISD::SIGN_EXTEND:
2030    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2031    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2032
2033  case ISD::SIGN_EXTEND_INREG:
2034    // Max of the input and what this extends.
2035    Tmp =
2036      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2037    Tmp = VTBits-Tmp+1;
2038
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2040    return std::max(Tmp, Tmp2);
2041
2042  case ISD::SRA:
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    // SRA X, C   -> adds C sign bits.
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      Tmp += C->getZExtValue();
2047      if (Tmp > VTBits) Tmp = VTBits;
2048    }
2049    return Tmp;
2050  case ISD::SHL:
2051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2052      // shl destroys sign bits.
2053      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2055          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2056      return Tmp - C->getZExtValue();
2057    }
2058    break;
2059  case ISD::AND:
2060  case ISD::OR:
2061  case ISD::XOR:    // NOT is handled here.
2062    // Logical binary ops preserve the number of sign bits at the worst.
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    if (Tmp != 1) {
2065      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2066      FirstAnswer = std::min(Tmp, Tmp2);
2067      // We computed what we know about the sign bits as our first
2068      // answer. Now proceed to the generic code that uses
2069      // ComputeMaskedBits, and pick whichever answer is better.
2070    }
2071    break;
2072
2073  case ISD::SELECT:
2074    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075    if (Tmp == 1) return 1;  // Early out.
2076    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2077    return std::min(Tmp, Tmp2);
2078
2079  case ISD::SADDO:
2080  case ISD::UADDO:
2081  case ISD::SSUBO:
2082  case ISD::USUBO:
2083  case ISD::SMULO:
2084  case ISD::UMULO:
2085    if (Op.getResNo() != 1)
2086      break;
2087    // The boolean result conforms to getBooleanContents.  Fall through.
2088  case ISD::SETCC:
2089    // If setcc returns 0/-1, all bits are sign bits.
2090    if (TLI.getBooleanContents() ==
2091        TargetLowering::ZeroOrNegativeOneBooleanContent)
2092      return VTBits;
2093    break;
2094  case ISD::ROTL:
2095  case ISD::ROTR:
2096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2097      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2098
2099      // Handle rotate right by N like a rotate left by 32-N.
2100      if (Op.getOpcode() == ISD::ROTR)
2101        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2102
2103      // If we aren't rotating out all of the known-in sign bits, return the
2104      // number that are left.  This handles rotl(sext(x), 1) for example.
2105      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2107    }
2108    break;
2109  case ISD::ADD:
2110    // Add can have at most one carry bit.  Thus we know that the output
2111    // is, at worst, one more bit than the inputs.
2112    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2113    if (Tmp == 1) return 1;  // Early out.
2114
2115    // Special case decrementing a value (ADD X, -1):
2116    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2117      if (CRHS->isAllOnesValue()) {
2118        APInt KnownZero, KnownOne;
2119        APInt Mask = APInt::getAllOnesValue(VTBits);
2120        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2121
2122        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2123        // sign bits set.
2124        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2125          return VTBits;
2126
2127        // If we are subtracting one from a positive number, there is no carry
2128        // out of the result.
2129        if (KnownZero.isNegative())
2130          return Tmp;
2131      }
2132
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135      return std::min(Tmp, Tmp2)-1;
2136    break;
2137
2138  case ISD::SUB:
2139    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp2 == 1) return 1;
2141
2142    // Handle NEG.
2143    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2144      if (CLHS->isNullValue()) {
2145        APInt KnownZero, KnownOne;
2146        APInt Mask = APInt::getAllOnesValue(VTBits);
2147        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2148        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2149        // sign bits set.
2150        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2151          return VTBits;
2152
2153        // If the input is known to be positive (the sign bit is known clear),
2154        // the output of the NEG has the same number of sign bits as the input.
2155        if (KnownZero.isNegative())
2156          return Tmp2;
2157
2158        // Otherwise, we treat this like a SUB.
2159      }
2160
2161    // Sub can have at most one carry bit.  Thus we know that the output
2162    // is, at worst, one more bit than the inputs.
2163    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165      return std::min(Tmp, Tmp2)-1;
2166    break;
2167  case ISD::TRUNCATE:
2168    // FIXME: it's tricky to do anything useful for this, but it is an important
2169    // case for targets like X86.
2170    break;
2171  }
2172
2173  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2174  if (Op.getOpcode() == ISD::LOAD) {
2175    LoadSDNode *LD = cast<LoadSDNode>(Op);
2176    unsigned ExtType = LD->getExtensionType();
2177    switch (ExtType) {
2178    default: break;
2179    case ISD::SEXTLOAD:    // '17' bits known
2180      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2181      return VTBits-Tmp+1;
2182    case ISD::ZEXTLOAD:    // '16' bits known
2183      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2184      return VTBits-Tmp;
2185    }
2186  }
2187
2188  // Allow the target to implement this method for its nodes.
2189  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2190      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2191      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2193    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2194    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2195  }
2196
2197  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2198  // use this information.
2199  APInt KnownZero, KnownOne;
2200  APInt Mask = APInt::getAllOnesValue(VTBits);
2201  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2202
2203  if (KnownZero.isNegative()) {        // sign bit is 0
2204    Mask = KnownZero;
2205  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2206    Mask = KnownOne;
2207  } else {
2208    // Nothing known.
2209    return FirstAnswer;
2210  }
2211
2212  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2213  // the number of identical bits in the top of the input value.
2214  Mask = ~Mask;
2215  Mask <<= Mask.getBitWidth()-VTBits;
2216  // Return # leading zeros.  We use 'min' here in case Val was zero before
2217  // shifting.  We don't want to return '64' as for an i32 "0".
2218  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2219}
2220
2221bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2222  // If we're told that NaNs won't happen, assume they won't.
2223  if (FiniteOnlyFPMath())
2224    return true;
2225
2226  // If the value is a constant, we can obviously see if it is a NaN or not.
2227  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2228    return !C->getValueAPF().isNaN();
2229
2230  // TODO: Recognize more cases here.
2231
2232  return false;
2233}
2234
2235bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2236  // If the value is a constant, we can obviously see if it is a zero or not.
2237  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2238    return !C->isZero();
2239
2240  // TODO: Recognize more cases here.
2241
2242  return false;
2243}
2244
2245bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2246  // Check the obvious case.
2247  if (A == B) return true;
2248
2249  // For for negative and positive zero.
2250  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2251    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2252      if (CA->isZero() && CB->isZero()) return true;
2253
2254  // Otherwise they may not be equal.
2255  return false;
2256}
2257
2258bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2259  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2260  if (!GA) return false;
2261  if (GA->getOffset() != 0) return false;
2262  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2263  if (!GV) return false;
2264  MachineModuleInfo *MMI = getMachineModuleInfo();
2265  return MMI && MMI->hasDebugInfo();
2266}
2267
2268
2269/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2270/// element of the result of the vector shuffle.
2271SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2272                                          unsigned i) {
2273  EVT VT = N->getValueType(0);
2274  DebugLoc dl = N->getDebugLoc();
2275  if (N->getMaskElt(i) < 0)
2276    return getUNDEF(VT.getVectorElementType());
2277  unsigned Index = N->getMaskElt(i);
2278  unsigned NumElems = VT.getVectorNumElements();
2279  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2280  Index %= NumElems;
2281
2282  if (V.getOpcode() == ISD::BIT_CONVERT) {
2283    V = V.getOperand(0);
2284    EVT VVT = V.getValueType();
2285    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2286      return SDValue();
2287  }
2288  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2289    return (Index == 0) ? V.getOperand(0)
2290                      : getUNDEF(VT.getVectorElementType());
2291  if (V.getOpcode() == ISD::BUILD_VECTOR)
2292    return V.getOperand(Index);
2293  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2294    return getShuffleScalarElt(SVN, Index);
2295  return SDValue();
2296}
2297
2298
2299/// getNode - Gets or creates the specified node.
2300///
2301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2302  FoldingSetNodeID ID;
2303  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2304  void *IP = 0;
2305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2306    return SDValue(E, 0);
2307
2308  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2309  CSEMap.InsertNode(N, IP);
2310
2311  AllNodes.push_back(N);
2312#ifndef NDEBUG
2313  VerifyNode(N);
2314#endif
2315  return SDValue(N, 0);
2316}
2317
2318SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2319                              EVT VT, SDValue Operand) {
2320  // Constant fold unary operations with an integer constant operand.
2321  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2322    const APInt &Val = C->getAPIntValue();
2323    switch (Opcode) {
2324    default: break;
2325    case ISD::SIGN_EXTEND:
2326      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2327    case ISD::ANY_EXTEND:
2328    case ISD::ZERO_EXTEND:
2329    case ISD::TRUNCATE:
2330      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2331    case ISD::UINT_TO_FP:
2332    case ISD::SINT_TO_FP: {
2333      const uint64_t zero[] = {0, 0};
2334      // No compile time operations on ppcf128.
2335      if (VT == MVT::ppcf128) break;
2336      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2337      (void)apf.convertFromAPInt(Val,
2338                                 Opcode==ISD::SINT_TO_FP,
2339                                 APFloat::rmNearestTiesToEven);
2340      return getConstantFP(apf, VT);
2341    }
2342    case ISD::BIT_CONVERT:
2343      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2344        return getConstantFP(Val.bitsToFloat(), VT);
2345      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2346        return getConstantFP(Val.bitsToDouble(), VT);
2347      break;
2348    case ISD::BSWAP:
2349      return getConstant(Val.byteSwap(), VT);
2350    case ISD::CTPOP:
2351      return getConstant(Val.countPopulation(), VT);
2352    case ISD::CTLZ:
2353      return getConstant(Val.countLeadingZeros(), VT);
2354    case ISD::CTTZ:
2355      return getConstant(Val.countTrailingZeros(), VT);
2356    }
2357  }
2358
2359  // Constant fold unary operations with a floating point constant operand.
2360  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2361    APFloat V = C->getValueAPF();    // make copy
2362    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2363      switch (Opcode) {
2364      case ISD::FNEG:
2365        V.changeSign();
2366        return getConstantFP(V, VT);
2367      case ISD::FABS:
2368        V.clearSign();
2369        return getConstantFP(V, VT);
2370      case ISD::FP_ROUND:
2371      case ISD::FP_EXTEND: {
2372        bool ignored;
2373        // This can return overflow, underflow, or inexact; we don't care.
2374        // FIXME need to be more flexible about rounding mode.
2375        (void)V.convert(*EVTToAPFloatSemantics(VT),
2376                        APFloat::rmNearestTiesToEven, &ignored);
2377        return getConstantFP(V, VT);
2378      }
2379      case ISD::FP_TO_SINT:
2380      case ISD::FP_TO_UINT: {
2381        integerPart x[2];
2382        bool ignored;
2383        assert(integerPartWidth >= 64);
2384        // FIXME need to be more flexible about rounding mode.
2385        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2386                              Opcode==ISD::FP_TO_SINT,
2387                              APFloat::rmTowardZero, &ignored);
2388        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2389          break;
2390        APInt api(VT.getSizeInBits(), 2, x);
2391        return getConstant(api, VT);
2392      }
2393      case ISD::BIT_CONVERT:
2394        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2395          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2396        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2397          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2398        break;
2399      }
2400    }
2401  }
2402
2403  unsigned OpOpcode = Operand.getNode()->getOpcode();
2404  switch (Opcode) {
2405  case ISD::TokenFactor:
2406  case ISD::MERGE_VALUES:
2407  case ISD::CONCAT_VECTORS:
2408    return Operand;         // Factor, merge or concat of one node?  No need.
2409  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2410  case ISD::FP_EXTEND:
2411    assert(VT.isFloatingPoint() &&
2412           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2413    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2414    assert((!VT.isVector() ||
2415            VT.getVectorNumElements() ==
2416            Operand.getValueType().getVectorNumElements()) &&
2417           "Vector element count mismatch!");
2418    if (Operand.getOpcode() == ISD::UNDEF)
2419      return getUNDEF(VT);
2420    break;
2421  case ISD::SIGN_EXTEND:
2422    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423           "Invalid SIGN_EXTEND!");
2424    if (Operand.getValueType() == VT) return Operand;   // noop extension
2425    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426           "Invalid sext node, dst < src!");
2427    assert((!VT.isVector() ||
2428            VT.getVectorNumElements() ==
2429            Operand.getValueType().getVectorNumElements()) &&
2430           "Vector element count mismatch!");
2431    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2432      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2433    break;
2434  case ISD::ZERO_EXTEND:
2435    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2436           "Invalid ZERO_EXTEND!");
2437    if (Operand.getValueType() == VT) return Operand;   // noop extension
2438    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2439           "Invalid zext node, dst < src!");
2440    assert((!VT.isVector() ||
2441            VT.getVectorNumElements() ==
2442            Operand.getValueType().getVectorNumElements()) &&
2443           "Vector element count mismatch!");
2444    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2445      return getNode(ISD::ZERO_EXTEND, DL, VT,
2446                     Operand.getNode()->getOperand(0));
2447    break;
2448  case ISD::ANY_EXTEND:
2449    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2450           "Invalid ANY_EXTEND!");
2451    if (Operand.getValueType() == VT) return Operand;   // noop extension
2452    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2453           "Invalid anyext node, dst < src!");
2454    assert((!VT.isVector() ||
2455            VT.getVectorNumElements() ==
2456            Operand.getValueType().getVectorNumElements()) &&
2457           "Vector element count mismatch!");
2458    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2459      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2460      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2461    break;
2462  case ISD::TRUNCATE:
2463    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2464           "Invalid TRUNCATE!");
2465    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2466    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2467           "Invalid truncate node, src < dst!");
2468    assert((!VT.isVector() ||
2469            VT.getVectorNumElements() ==
2470            Operand.getValueType().getVectorNumElements()) &&
2471           "Vector element count mismatch!");
2472    if (OpOpcode == ISD::TRUNCATE)
2473      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2474    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2475             OpOpcode == ISD::ANY_EXTEND) {
2476      // If the source is smaller than the dest, we still need an extend.
2477      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2478            .bitsLT(VT.getScalarType()))
2479        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2480      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2481        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2482      else
2483        return Operand.getNode()->getOperand(0);
2484    }
2485    break;
2486  case ISD::BIT_CONVERT:
2487    // Basic sanity checking.
2488    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2489           && "Cannot BIT_CONVERT between types of different sizes!");
2490    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2491    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2492      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2493    if (OpOpcode == ISD::UNDEF)
2494      return getUNDEF(VT);
2495    break;
2496  case ISD::SCALAR_TO_VECTOR:
2497    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2498           (VT.getVectorElementType() == Operand.getValueType() ||
2499            (VT.getVectorElementType().isInteger() &&
2500             Operand.getValueType().isInteger() &&
2501             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2502           "Illegal SCALAR_TO_VECTOR node!");
2503    if (OpOpcode == ISD::UNDEF)
2504      return getUNDEF(VT);
2505    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2506    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2507        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2508        Operand.getConstantOperandVal(1) == 0 &&
2509        Operand.getOperand(0).getValueType() == VT)
2510      return Operand.getOperand(0);
2511    break;
2512  case ISD::FNEG:
2513    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2514    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2515      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2516                     Operand.getNode()->getOperand(0));
2517    if (OpOpcode == ISD::FNEG)  // --X -> X
2518      return Operand.getNode()->getOperand(0);
2519    break;
2520  case ISD::FABS:
2521    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2522      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2523    break;
2524  }
2525
2526  SDNode *N;
2527  SDVTList VTs = getVTList(VT);
2528  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2529    FoldingSetNodeID ID;
2530    SDValue Ops[1] = { Operand };
2531    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2532    void *IP = 0;
2533    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2534      return SDValue(E, 0);
2535
2536    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2537    CSEMap.InsertNode(N, IP);
2538  } else {
2539    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2540  }
2541
2542  AllNodes.push_back(N);
2543#ifndef NDEBUG
2544  VerifyNode(N);
2545#endif
2546  return SDValue(N, 0);
2547}
2548
2549SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2550                                             EVT VT,
2551                                             ConstantSDNode *Cst1,
2552                                             ConstantSDNode *Cst2) {
2553  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2554
2555  switch (Opcode) {
2556  case ISD::ADD:  return getConstant(C1 + C2, VT);
2557  case ISD::SUB:  return getConstant(C1 - C2, VT);
2558  case ISD::MUL:  return getConstant(C1 * C2, VT);
2559  case ISD::UDIV:
2560    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2561    break;
2562  case ISD::UREM:
2563    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2564    break;
2565  case ISD::SDIV:
2566    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2567    break;
2568  case ISD::SREM:
2569    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2570    break;
2571  case ISD::AND:  return getConstant(C1 & C2, VT);
2572  case ISD::OR:   return getConstant(C1 | C2, VT);
2573  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2574  case ISD::SHL:  return getConstant(C1 << C2, VT);
2575  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2576  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2577  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2578  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2579  default: break;
2580  }
2581
2582  return SDValue();
2583}
2584
2585SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2586                              SDValue N1, SDValue N2) {
2587  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2588  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2589  switch (Opcode) {
2590  default: break;
2591  case ISD::TokenFactor:
2592    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2593           N2.getValueType() == MVT::Other && "Invalid token factor!");
2594    // Fold trivial token factors.
2595    if (N1.getOpcode() == ISD::EntryToken) return N2;
2596    if (N2.getOpcode() == ISD::EntryToken) return N1;
2597    if (N1 == N2) return N1;
2598    break;
2599  case ISD::CONCAT_VECTORS:
2600    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2601    // one big BUILD_VECTOR.
2602    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2603        N2.getOpcode() == ISD::BUILD_VECTOR) {
2604      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2605      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2606      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2607    }
2608    break;
2609  case ISD::AND:
2610    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2611           N1.getValueType() == VT && "Binary operator types must match!");
2612    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2613    // worth handling here.
2614    if (N2C && N2C->isNullValue())
2615      return N2;
2616    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2617      return N1;
2618    break;
2619  case ISD::OR:
2620  case ISD::XOR:
2621  case ISD::ADD:
2622  case ISD::SUB:
2623    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2624           N1.getValueType() == VT && "Binary operator types must match!");
2625    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2626    // it's worth handling here.
2627    if (N2C && N2C->isNullValue())
2628      return N1;
2629    break;
2630  case ISD::UDIV:
2631  case ISD::UREM:
2632  case ISD::MULHU:
2633  case ISD::MULHS:
2634  case ISD::MUL:
2635  case ISD::SDIV:
2636  case ISD::SREM:
2637    assert(VT.isInteger() && "This operator does not apply to FP types!");
2638    // fall through
2639  case ISD::FADD:
2640  case ISD::FSUB:
2641  case ISD::FMUL:
2642  case ISD::FDIV:
2643  case ISD::FREM:
2644    if (UnsafeFPMath) {
2645      if (Opcode == ISD::FADD) {
2646        // 0+x --> x
2647        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2648          if (CFP->getValueAPF().isZero())
2649            return N2;
2650        // x+0 --> x
2651        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2652          if (CFP->getValueAPF().isZero())
2653            return N1;
2654      } else if (Opcode == ISD::FSUB) {
2655        // x-0 --> x
2656        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2657          if (CFP->getValueAPF().isZero())
2658            return N1;
2659      }
2660    }
2661    assert(N1.getValueType() == N2.getValueType() &&
2662           N1.getValueType() == VT && "Binary operator types must match!");
2663    break;
2664  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2665    assert(N1.getValueType() == VT &&
2666           N1.getValueType().isFloatingPoint() &&
2667           N2.getValueType().isFloatingPoint() &&
2668           "Invalid FCOPYSIGN!");
2669    break;
2670  case ISD::SHL:
2671  case ISD::SRA:
2672  case ISD::SRL:
2673  case ISD::ROTL:
2674  case ISD::ROTR:
2675    assert(VT == N1.getValueType() &&
2676           "Shift operators return type must be the same as their first arg");
2677    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2678           "Shifts only work on integers");
2679
2680    // Always fold shifts of i1 values so the code generator doesn't need to
2681    // handle them.  Since we know the size of the shift has to be less than the
2682    // size of the value, the shift/rotate count is guaranteed to be zero.
2683    if (VT == MVT::i1)
2684      return N1;
2685    if (N2C && N2C->isNullValue())
2686      return N1;
2687    break;
2688  case ISD::FP_ROUND_INREG: {
2689    EVT EVT = cast<VTSDNode>(N2)->getVT();
2690    assert(VT == N1.getValueType() && "Not an inreg round!");
2691    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2692           "Cannot FP_ROUND_INREG integer types");
2693    assert(EVT.isVector() == VT.isVector() &&
2694           "FP_ROUND_INREG type should be vector iff the operand "
2695           "type is vector!");
2696    assert((!EVT.isVector() ||
2697            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2698           "Vector element counts must match in FP_ROUND_INREG");
2699    assert(EVT.bitsLE(VT) && "Not rounding down!");
2700    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2701    break;
2702  }
2703  case ISD::FP_ROUND:
2704    assert(VT.isFloatingPoint() &&
2705           N1.getValueType().isFloatingPoint() &&
2706           VT.bitsLE(N1.getValueType()) &&
2707           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2708    if (N1.getValueType() == VT) return N1;  // noop conversion.
2709    break;
2710  case ISD::AssertSext:
2711  case ISD::AssertZext: {
2712    EVT EVT = cast<VTSDNode>(N2)->getVT();
2713    assert(VT == N1.getValueType() && "Not an inreg extend!");
2714    assert(VT.isInteger() && EVT.isInteger() &&
2715           "Cannot *_EXTEND_INREG FP types");
2716    assert(!EVT.isVector() &&
2717           "AssertSExt/AssertZExt type should be the vector element type "
2718           "rather than the vector type!");
2719    assert(EVT.bitsLE(VT) && "Not extending!");
2720    if (VT == EVT) return N1; // noop assertion.
2721    break;
2722  }
2723  case ISD::SIGN_EXTEND_INREG: {
2724    EVT EVT = cast<VTSDNode>(N2)->getVT();
2725    assert(VT == N1.getValueType() && "Not an inreg extend!");
2726    assert(VT.isInteger() && EVT.isInteger() &&
2727           "Cannot *_EXTEND_INREG FP types");
2728    assert(EVT.isVector() == VT.isVector() &&
2729           "SIGN_EXTEND_INREG type should be vector iff the operand "
2730           "type is vector!");
2731    assert((!EVT.isVector() ||
2732            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2733           "Vector element counts must match in SIGN_EXTEND_INREG");
2734    assert(EVT.bitsLE(VT) && "Not extending!");
2735    if (EVT == VT) return N1;  // Not actually extending
2736
2737    if (N1C) {
2738      APInt Val = N1C->getAPIntValue();
2739      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2740      Val <<= Val.getBitWidth()-FromBits;
2741      Val = Val.ashr(Val.getBitWidth()-FromBits);
2742      return getConstant(Val, VT);
2743    }
2744    break;
2745  }
2746  case ISD::EXTRACT_VECTOR_ELT:
2747    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748    if (N1.getOpcode() == ISD::UNDEF)
2749      return getUNDEF(VT);
2750
2751    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752    // expanding copies of large vectors from registers.
2753    if (N2C &&
2754        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2755        N1.getNumOperands() > 0) {
2756      unsigned Factor =
2757        N1.getOperand(0).getValueType().getVectorNumElements();
2758      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2759                     N1.getOperand(N2C->getZExtValue() / Factor),
2760                     getConstant(N2C->getZExtValue() % Factor,
2761                                 N2.getValueType()));
2762    }
2763
2764    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765    // expanding large vector constants.
2766    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2767      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2768      EVT VEltTy = N1.getValueType().getVectorElementType();
2769      if (Elt.getValueType() != VEltTy) {
2770        // If the vector element type is not legal, the BUILD_VECTOR operands
2771        // are promoted and implicitly truncated.  Make that explicit here.
2772        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2773      }
2774      if (VT != VEltTy) {
2775        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776        // result is implicitly extended.
2777        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2778      }
2779      return Elt;
2780    }
2781
2782    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783    // operations are lowered to scalars.
2784    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2785      // If the indices are the same, return the inserted element else
2786      // if the indices are known different, extract the element from
2787      // the original vector.
2788      if (N1.getOperand(2) == N2) {
2789        if (VT == N1.getOperand(1).getValueType())
2790          return N1.getOperand(1);
2791        else
2792          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2793      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2794                 isa<ConstantSDNode>(N2))
2795        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2796    }
2797    break;
2798  case ISD::EXTRACT_ELEMENT:
2799    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2800    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2801           (N1.getValueType().isInteger() == VT.isInteger()) &&
2802           "Wrong types for EXTRACT_ELEMENT!");
2803
2804    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2805    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2806    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2807    if (N1.getOpcode() == ISD::BUILD_PAIR)
2808      return N1.getOperand(N2C->getZExtValue());
2809
2810    // EXTRACT_ELEMENT of a constant int is also very common.
2811    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2812      unsigned ElementSize = VT.getSizeInBits();
2813      unsigned Shift = ElementSize * N2C->getZExtValue();
2814      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2815      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2816    }
2817    break;
2818  case ISD::EXTRACT_SUBVECTOR:
2819    if (N1.getValueType() == VT) // Trivial extraction.
2820      return N1;
2821    break;
2822  }
2823
2824  if (N1C) {
2825    if (N2C) {
2826      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2827      if (SV.getNode()) return SV;
2828    } else {      // Cannonicalize constant to RHS if commutative
2829      if (isCommutativeBinOp(Opcode)) {
2830        std::swap(N1C, N2C);
2831        std::swap(N1, N2);
2832      }
2833    }
2834  }
2835
2836  // Constant fold FP operations.
2837  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2838  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2839  if (N1CFP) {
2840    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2841      // Cannonicalize constant to RHS if commutative
2842      std::swap(N1CFP, N2CFP);
2843      std::swap(N1, N2);
2844    } else if (N2CFP && VT != MVT::ppcf128) {
2845      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2846      APFloat::opStatus s;
2847      switch (Opcode) {
2848      case ISD::FADD:
2849        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2850        if (s != APFloat::opInvalidOp)
2851          return getConstantFP(V1, VT);
2852        break;
2853      case ISD::FSUB:
2854        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2855        if (s!=APFloat::opInvalidOp)
2856          return getConstantFP(V1, VT);
2857        break;
2858      case ISD::FMUL:
2859        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2860        if (s!=APFloat::opInvalidOp)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FDIV:
2864        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FREM :
2869        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2870        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2871          return getConstantFP(V1, VT);
2872        break;
2873      case ISD::FCOPYSIGN:
2874        V1.copySign(V2);
2875        return getConstantFP(V1, VT);
2876      default: break;
2877      }
2878    }
2879  }
2880
2881  // Canonicalize an UNDEF to the RHS, even over a constant.
2882  if (N1.getOpcode() == ISD::UNDEF) {
2883    if (isCommutativeBinOp(Opcode)) {
2884      std::swap(N1, N2);
2885    } else {
2886      switch (Opcode) {
2887      case ISD::FP_ROUND_INREG:
2888      case ISD::SIGN_EXTEND_INREG:
2889      case ISD::SUB:
2890      case ISD::FSUB:
2891      case ISD::FDIV:
2892      case ISD::FREM:
2893      case ISD::SRA:
2894        return N1;     // fold op(undef, arg2) -> undef
2895      case ISD::UDIV:
2896      case ISD::SDIV:
2897      case ISD::UREM:
2898      case ISD::SREM:
2899      case ISD::SRL:
2900      case ISD::SHL:
2901        if (!VT.isVector())
2902          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2903        // For vectors, we can't easily build an all zero vector, just return
2904        // the LHS.
2905        return N2;
2906      }
2907    }
2908  }
2909
2910  // Fold a bunch of operators when the RHS is undef.
2911  if (N2.getOpcode() == ISD::UNDEF) {
2912    switch (Opcode) {
2913    case ISD::XOR:
2914      if (N1.getOpcode() == ISD::UNDEF)
2915        // Handle undef ^ undef -> 0 special case. This is a common
2916        // idiom (misuse).
2917        return getConstant(0, VT);
2918      // fallthrough
2919    case ISD::ADD:
2920    case ISD::ADDC:
2921    case ISD::ADDE:
2922    case ISD::SUB:
2923    case ISD::UDIV:
2924    case ISD::SDIV:
2925    case ISD::UREM:
2926    case ISD::SREM:
2927      return N2;       // fold op(arg1, undef) -> undef
2928    case ISD::FADD:
2929    case ISD::FSUB:
2930    case ISD::FMUL:
2931    case ISD::FDIV:
2932    case ISD::FREM:
2933      if (UnsafeFPMath)
2934        return N2;
2935      break;
2936    case ISD::MUL:
2937    case ISD::AND:
2938    case ISD::SRL:
2939    case ISD::SHL:
2940      if (!VT.isVector())
2941        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2942      // For vectors, we can't easily build an all zero vector, just return
2943      // the LHS.
2944      return N1;
2945    case ISD::OR:
2946      if (!VT.isVector())
2947        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2948      // For vectors, we can't easily build an all one vector, just return
2949      // the LHS.
2950      return N1;
2951    case ISD::SRA:
2952      return N1;
2953    }
2954  }
2955
2956  // Memoize this node if possible.
2957  SDNode *N;
2958  SDVTList VTs = getVTList(VT);
2959  if (VT != MVT::Flag) {
2960    SDValue Ops[] = { N1, N2 };
2961    FoldingSetNodeID ID;
2962    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2963    void *IP = 0;
2964    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2965      return SDValue(E, 0);
2966
2967    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2968    CSEMap.InsertNode(N, IP);
2969  } else {
2970    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2971  }
2972
2973  AllNodes.push_back(N);
2974#ifndef NDEBUG
2975  VerifyNode(N);
2976#endif
2977  return SDValue(N, 0);
2978}
2979
2980SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2981                              SDValue N1, SDValue N2, SDValue N3) {
2982  // Perform various simplifications.
2983  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2984  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2985  switch (Opcode) {
2986  case ISD::CONCAT_VECTORS:
2987    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2988    // one big BUILD_VECTOR.
2989    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2990        N2.getOpcode() == ISD::BUILD_VECTOR &&
2991        N3.getOpcode() == ISD::BUILD_VECTOR) {
2992      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2993      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2994      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2995      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2996    }
2997    break;
2998  case ISD::SETCC: {
2999    // Use FoldSetCC to simplify SETCC's.
3000    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3001    if (Simp.getNode()) return Simp;
3002    break;
3003  }
3004  case ISD::SELECT:
3005    if (N1C) {
3006     if (N1C->getZExtValue())
3007        return N2;             // select true, X, Y -> X
3008      else
3009        return N3;             // select false, X, Y -> Y
3010    }
3011
3012    if (N2 == N3) return N2;   // select C, X, X -> X
3013    break;
3014  case ISD::BRCOND:
3015    if (N2C) {
3016      if (N2C->getZExtValue()) // Unconditional branch
3017        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3018      else
3019        return N1;         // Never-taken branch
3020    }
3021    break;
3022  case ISD::VECTOR_SHUFFLE:
3023    llvm_unreachable("should use getVectorShuffle constructor!");
3024    break;
3025  case ISD::BIT_CONVERT:
3026    // Fold bit_convert nodes from a type to themselves.
3027    if (N1.getValueType() == VT)
3028      return N1;
3029    break;
3030  }
3031
3032  // Memoize node if it doesn't produce a flag.
3033  SDNode *N;
3034  SDVTList VTs = getVTList(VT);
3035  if (VT != MVT::Flag) {
3036    SDValue Ops[] = { N1, N2, N3 };
3037    FoldingSetNodeID ID;
3038    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3039    void *IP = 0;
3040    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3041      return SDValue(E, 0);
3042
3043    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3044    CSEMap.InsertNode(N, IP);
3045  } else {
3046    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3047  }
3048
3049  AllNodes.push_back(N);
3050#ifndef NDEBUG
3051  VerifyNode(N);
3052#endif
3053  return SDValue(N, 0);
3054}
3055
3056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3057                              SDValue N1, SDValue N2, SDValue N3,
3058                              SDValue N4) {
3059  SDValue Ops[] = { N1, N2, N3, N4 };
3060  return getNode(Opcode, DL, VT, Ops, 4);
3061}
3062
3063SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3064                              SDValue N1, SDValue N2, SDValue N3,
3065                              SDValue N4, SDValue N5) {
3066  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3067  return getNode(Opcode, DL, VT, Ops, 5);
3068}
3069
3070/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3071/// the incoming stack arguments to be loaded from the stack.
3072SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3073  SmallVector<SDValue, 8> ArgChains;
3074
3075  // Include the original chain at the beginning of the list. When this is
3076  // used by target LowerCall hooks, this helps legalize find the
3077  // CALLSEQ_BEGIN node.
3078  ArgChains.push_back(Chain);
3079
3080  // Add a chain value for each stack argument.
3081  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3082       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3083    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3084      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3085        if (FI->getIndex() < 0)
3086          ArgChains.push_back(SDValue(L, 1));
3087
3088  // Build a tokenfactor for all the chains.
3089  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3090                 &ArgChains[0], ArgChains.size());
3091}
3092
3093/// getMemsetValue - Vectorized representation of the memset value
3094/// operand.
3095static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3096                              DebugLoc dl) {
3097  unsigned NumBits = VT.getScalarType().getSizeInBits();
3098  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3099    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3100    unsigned Shift = 8;
3101    for (unsigned i = NumBits; i > 8; i >>= 1) {
3102      Val = (Val << Shift) | Val;
3103      Shift <<= 1;
3104    }
3105    if (VT.isInteger())
3106      return DAG.getConstant(Val, VT);
3107    return DAG.getConstantFP(APFloat(Val), VT);
3108  }
3109
3110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3111  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3112  unsigned Shift = 8;
3113  for (unsigned i = NumBits; i > 8; i >>= 1) {
3114    Value = DAG.getNode(ISD::OR, dl, VT,
3115                        DAG.getNode(ISD::SHL, dl, VT, Value,
3116                                    DAG.getConstant(Shift,
3117                                                    TLI.getShiftAmountTy())),
3118                        Value);
3119    Shift <<= 1;
3120  }
3121
3122  return Value;
3123}
3124
3125/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3126/// used when a memcpy is turned into a memset when the source is a constant
3127/// string ptr.
3128static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3129                                  const TargetLowering &TLI,
3130                                  std::string &Str, unsigned Offset) {
3131  // Handle vector with all elements zero.
3132  if (Str.empty()) {
3133    if (VT.isInteger())
3134      return DAG.getConstant(0, VT);
3135    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3136             VT.getSimpleVT().SimpleTy == MVT::f64)
3137      return DAG.getConstantFP(0.0, VT);
3138    else if (VT.isVector()) {
3139      unsigned NumElts = VT.getVectorNumElements();
3140      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3141      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3142                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3143                                                             EltVT, NumElts)));
3144    } else
3145      llvm_unreachable("Expected type!");
3146  }
3147
3148  assert(!VT.isVector() && "Can't handle vector type here!");
3149  unsigned NumBits = VT.getSizeInBits();
3150  unsigned MSB = NumBits / 8;
3151  uint64_t Val = 0;
3152  if (TLI.isLittleEndian())
3153    Offset = Offset + MSB - 1;
3154  for (unsigned i = 0; i != MSB; ++i) {
3155    Val = (Val << 8) | (unsigned char)Str[Offset];
3156    Offset += TLI.isLittleEndian() ? -1 : 1;
3157  }
3158  return DAG.getConstant(Val, VT);
3159}
3160
3161/// getMemBasePlusOffset - Returns base and offset node for the
3162///
3163static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3164                                      SelectionDAG &DAG) {
3165  EVT VT = Base.getValueType();
3166  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3167                     VT, Base, DAG.getConstant(Offset, VT));
3168}
3169
3170/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3171///
3172static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3173  unsigned SrcDelta = 0;
3174  GlobalAddressSDNode *G = NULL;
3175  if (Src.getOpcode() == ISD::GlobalAddress)
3176    G = cast<GlobalAddressSDNode>(Src);
3177  else if (Src.getOpcode() == ISD::ADD &&
3178           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3179           Src.getOperand(1).getOpcode() == ISD::Constant) {
3180    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3181    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3182  }
3183  if (!G)
3184    return false;
3185
3186  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3187  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3188    return true;
3189
3190  return false;
3191}
3192
3193/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3194/// to replace the memset / memcpy. Return true if the number of memory ops
3195/// is below the threshold. It returns the types of the sequence of
3196/// memory ops to perform memset / memcpy by reference.
3197static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3198                                     SDValue Dst, SDValue Src,
3199                                     unsigned Limit, uint64_t Size,
3200                                     unsigned DstAlign, unsigned SrcAlign,
3201                                     SelectionDAG &DAG,
3202                                     const TargetLowering &TLI) {
3203  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3204         "Expecting memcpy / memset source to meet alignment requirement!");
3205  // If 'SrcAlign' is zero, that means the memory operation does not need load
3206  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3207  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3208  // specified alignment of the memory operation. If it is zero, that means
3209  // it's possible to change the alignment of the destination.
3210  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, DAG);
3211
3212  if (VT == MVT::Other) {
3213    VT = TLI.getPointerTy();
3214    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3215    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3216        TLI.allowsUnalignedMemoryAccesses(VT)) {
3217      VT = MVT::i64;
3218    } else {
3219      switch (DstAlign & 7) {
3220      case 0:  VT = MVT::i64; break;
3221      case 4:  VT = MVT::i32; break;
3222      case 2:  VT = MVT::i16; break;
3223      default: VT = MVT::i8;  break;
3224      }
3225    }
3226
3227    MVT LVT = MVT::i64;
3228    while (!TLI.isTypeLegal(LVT))
3229      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3230    assert(LVT.isInteger());
3231
3232    if (VT.bitsGT(LVT))
3233      VT = LVT;
3234  }
3235
3236  unsigned NumMemOps = 0;
3237  while (Size != 0) {
3238    unsigned VTSize = VT.getSizeInBits() / 8;
3239    while (VTSize > Size) {
3240      // For now, only use non-vector load / store's for the left-over pieces.
3241      if (VT.isVector() || VT.isFloatingPoint()) {
3242        VT = MVT::i64;
3243        while (!TLI.isTypeLegal(VT))
3244          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3245        VTSize = VT.getSizeInBits() / 8;
3246      } else {
3247        // This can result in a type that is not legal on the target, e.g.
3248        // 1 or 2 bytes on PPC.
3249        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3250        VTSize >>= 1;
3251      }
3252    }
3253
3254    if (++NumMemOps > Limit)
3255      return false;
3256    MemOps.push_back(VT);
3257    Size -= VTSize;
3258  }
3259
3260  return true;
3261}
3262
3263static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3264                                       SDValue Chain, SDValue Dst,
3265                                       SDValue Src, uint64_t Size,
3266                                       unsigned Align, bool AlwaysInline,
3267                                       const Value *DstSV, uint64_t DstSVOff,
3268                                       const Value *SrcSV, uint64_t SrcSVOff) {
3269  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3270
3271  // Expand memcpy to a series of load and store ops if the size operand falls
3272  // below a certain threshold.
3273  std::vector<EVT> MemOps;
3274  uint64_t Limit = -1ULL;
3275  if (!AlwaysInline)
3276    Limit = TLI.getMaxStoresPerMemcpy();
3277  bool DstAlignCanChange = false;
3278  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3279  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3280  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3281    DstAlignCanChange = true;
3282  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3283  if (Align > SrcAlign)
3284    SrcAlign = Align;
3285  std::string Str;
3286  bool CopyFromStr = isMemSrcFromString(Src, Str);
3287  bool isZeroStr = CopyFromStr && Str.empty();
3288  if (!FindOptimalMemOpLowering(MemOps, Dst, Src, Limit, Size,
3289                                (DstAlignCanChange ? 0 : Align),
3290                                (isZeroStr ? 0 : SrcAlign), DAG, TLI))
3291    return SDValue();
3292
3293  if (DstAlignCanChange) {
3294    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3295    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3296    if (NewAlign > Align) {
3297      // Give the stack frame object a larger alignment if needed.
3298      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3299        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3300      Align = NewAlign;
3301    }
3302  }
3303
3304  SmallVector<SDValue, 8> OutChains;
3305  unsigned NumMemOps = MemOps.size();
3306  uint64_t SrcOff = 0, DstOff = 0;
3307  for (unsigned i = 0; i != NumMemOps; ++i) {
3308    EVT VT = MemOps[i];
3309    unsigned VTSize = VT.getSizeInBits() / 8;
3310    SDValue Value, Store;
3311
3312    if (CopyFromStr &&
3313        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3314      // It's unlikely a store of a vector immediate can be done in a single
3315      // instruction. It would require a load from a constantpool first.
3316      // We only handle zero vectors here.
3317      // FIXME: Handle other cases where store of vector immediate is done in
3318      // a single instruction.
3319      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3320      Store = DAG.getStore(Chain, dl, Value,
3321                           getMemBasePlusOffset(Dst, DstOff, DAG),
3322                           DstSV, DstSVOff + DstOff, false, false, Align);
3323    } else {
3324      // The type might not be legal for the target.  This should only happen
3325      // if the type is smaller than a legal type, as on PPC, so the right
3326      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3327      // to Load/Store if NVT==VT.
3328      // FIXME does the case above also need this?
3329      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3330      assert(NVT.bitsGE(VT));
3331      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3332                             getMemBasePlusOffset(Src, SrcOff, DAG),
3333                             SrcSV, SrcSVOff + SrcOff, VT, false, false,
3334                             MinAlign(SrcAlign, SrcOff));
3335      Store = DAG.getTruncStore(Chain, dl, Value,
3336                                getMemBasePlusOffset(Dst, DstOff, DAG),
3337                                DstSV, DstSVOff + DstOff, VT, false, false,
3338                                Align);
3339    }
3340    OutChains.push_back(Store);
3341    SrcOff += VTSize;
3342    DstOff += VTSize;
3343  }
3344
3345  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3346                     &OutChains[0], OutChains.size());
3347}
3348
3349static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3350                                        SDValue Chain, SDValue Dst,
3351                                        SDValue Src, uint64_t Size,
3352                                        unsigned Align,bool AlwaysInline,
3353                                        const Value *DstSV, uint64_t DstSVOff,
3354                                        const Value *SrcSV, uint64_t SrcSVOff) {
3355  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3356
3357  // Expand memmove to a series of load and store ops if the size operand falls
3358  // below a certain threshold.
3359  std::vector<EVT> MemOps;
3360  uint64_t Limit = -1ULL;
3361  if (!AlwaysInline)
3362    Limit = TLI.getMaxStoresPerMemmove();
3363  bool DstAlignCanChange = false;
3364  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3365  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3366  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3367    DstAlignCanChange = true;
3368  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3369  if (Align > SrcAlign)
3370    SrcAlign = Align;
3371
3372  if (!FindOptimalMemOpLowering(MemOps, Dst, Src, Limit, Size,
3373                                (DstAlignCanChange ? 0 : Align),
3374                                SrcAlign, DAG, TLI))
3375    return SDValue();
3376
3377  if (DstAlignCanChange) {
3378    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3379    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3380    if (NewAlign > Align) {
3381      // Give the stack frame object a larger alignment if needed.
3382      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3383        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3384      Align = NewAlign;
3385    }
3386  }
3387
3388  uint64_t SrcOff = 0, DstOff = 0;
3389  SmallVector<SDValue, 8> LoadValues;
3390  SmallVector<SDValue, 8> LoadChains;
3391  SmallVector<SDValue, 8> OutChains;
3392  unsigned NumMemOps = MemOps.size();
3393  for (unsigned i = 0; i < NumMemOps; i++) {
3394    EVT VT = MemOps[i];
3395    unsigned VTSize = VT.getSizeInBits() / 8;
3396    SDValue Value, Store;
3397
3398    Value = DAG.getLoad(VT, dl, Chain,
3399                        getMemBasePlusOffset(Src, SrcOff, DAG),
3400                        SrcSV, SrcSVOff + SrcOff, false, false, SrcAlign);
3401    LoadValues.push_back(Value);
3402    LoadChains.push_back(Value.getValue(1));
3403    SrcOff += VTSize;
3404  }
3405  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3406                      &LoadChains[0], LoadChains.size());
3407  OutChains.clear();
3408  for (unsigned i = 0; i < NumMemOps; i++) {
3409    EVT VT = MemOps[i];
3410    unsigned VTSize = VT.getSizeInBits() / 8;
3411    SDValue Value, Store;
3412
3413    Store = DAG.getStore(Chain, dl, LoadValues[i],
3414                         getMemBasePlusOffset(Dst, DstOff, DAG),
3415                         DstSV, DstSVOff + DstOff, false, false, Align);
3416    OutChains.push_back(Store);
3417    DstOff += VTSize;
3418  }
3419
3420  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3421                     &OutChains[0], OutChains.size());
3422}
3423
3424static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3425                               SDValue Chain, SDValue Dst,
3426                               SDValue Src, uint64_t Size,
3427                               unsigned Align,
3428                               const Value *DstSV, uint64_t DstSVOff) {
3429  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430
3431  // Expand memset to a series of load/store ops if the size operand
3432  // falls below a certain threshold.
3433  std::vector<EVT> MemOps;
3434  bool DstAlignCanChange = false;
3435  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3436  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3437  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3438    DstAlignCanChange = true;
3439  if (!FindOptimalMemOpLowering(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3440                                Size, (DstAlignCanChange ? 0 : Align), 0,
3441                                DAG, TLI))
3442    return SDValue();
3443
3444  if (DstAlignCanChange) {
3445    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3446    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3447    if (NewAlign > Align) {
3448      // Give the stack frame object a larger alignment if needed.
3449      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3450        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3451      Align = NewAlign;
3452    }
3453  }
3454
3455  SmallVector<SDValue, 8> OutChains;
3456  uint64_t DstOff = 0;
3457  unsigned NumMemOps = MemOps.size();
3458  for (unsigned i = 0; i < NumMemOps; i++) {
3459    EVT VT = MemOps[i];
3460    unsigned VTSize = VT.getSizeInBits() / 8;
3461    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3462    SDValue Store = DAG.getStore(Chain, dl, Value,
3463                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3464                                 DstSV, DstSVOff + DstOff, false, false, 0);
3465    OutChains.push_back(Store);
3466    DstOff += VTSize;
3467  }
3468
3469  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3470                     &OutChains[0], OutChains.size());
3471}
3472
3473SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3474                                SDValue Src, SDValue Size,
3475                                unsigned Align, bool AlwaysInline,
3476                                const Value *DstSV, uint64_t DstSVOff,
3477                                const Value *SrcSV, uint64_t SrcSVOff) {
3478
3479  // Check to see if we should lower the memcpy to loads and stores first.
3480  // For cases within the target-specified limits, this is the best choice.
3481  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3482  if (ConstantSize) {
3483    // Memcpy with size zero? Just return the original chain.
3484    if (ConstantSize->isNullValue())
3485      return Chain;
3486
3487    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3488                                             ConstantSize->getZExtValue(),Align,
3489                                       false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3490    if (Result.getNode())
3491      return Result;
3492  }
3493
3494  // Then check to see if we should lower the memcpy with target-specific
3495  // code. If the target chooses to do this, this is the next best.
3496  SDValue Result =
3497    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3498                                AlwaysInline,
3499                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3500  if (Result.getNode())
3501    return Result;
3502
3503  // If we really need inline code and the target declined to provide it,
3504  // use a (potentially long) sequence of loads and stores.
3505  if (AlwaysInline) {
3506    assert(ConstantSize && "AlwaysInline requires a constant size!");
3507    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3508                                   ConstantSize->getZExtValue(), Align, true,
3509                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3510  }
3511
3512  // Emit a library call.
3513  TargetLowering::ArgListTy Args;
3514  TargetLowering::ArgListEntry Entry;
3515  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3516  Entry.Node = Dst; Args.push_back(Entry);
3517  Entry.Node = Src; Args.push_back(Entry);
3518  Entry.Node = Size; Args.push_back(Entry);
3519  // FIXME: pass in DebugLoc
3520  std::pair<SDValue,SDValue> CallResult =
3521    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3522                    false, false, false, false, 0,
3523                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3524                    /*isReturnValueUsed=*/false,
3525                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3526                                      TLI.getPointerTy()),
3527                    Args, *this, dl);
3528  return CallResult.second;
3529}
3530
3531SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3532                                 SDValue Src, SDValue Size,
3533                                 unsigned Align,
3534                                 const Value *DstSV, uint64_t DstSVOff,
3535                                 const Value *SrcSV, uint64_t SrcSVOff) {
3536
3537  // Check to see if we should lower the memmove to loads and stores first.
3538  // For cases within the target-specified limits, this is the best choice.
3539  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3540  if (ConstantSize) {
3541    // Memmove with size zero? Just return the original chain.
3542    if (ConstantSize->isNullValue())
3543      return Chain;
3544
3545    SDValue Result =
3546      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3547                               ConstantSize->getZExtValue(),
3548                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3549    if (Result.getNode())
3550      return Result;
3551  }
3552
3553  // Then check to see if we should lower the memmove with target-specific
3554  // code. If the target chooses to do this, this is the next best.
3555  SDValue Result =
3556    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3557                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3558  if (Result.getNode())
3559    return Result;
3560
3561  // Emit a library call.
3562  TargetLowering::ArgListTy Args;
3563  TargetLowering::ArgListEntry Entry;
3564  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3565  Entry.Node = Dst; Args.push_back(Entry);
3566  Entry.Node = Src; Args.push_back(Entry);
3567  Entry.Node = Size; Args.push_back(Entry);
3568  // FIXME:  pass in DebugLoc
3569  std::pair<SDValue,SDValue> CallResult =
3570    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3571                    false, false, false, false, 0,
3572                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3573                    /*isReturnValueUsed=*/false,
3574                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3575                                      TLI.getPointerTy()),
3576                    Args, *this, dl);
3577  return CallResult.second;
3578}
3579
3580SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3581                                SDValue Src, SDValue Size,
3582                                unsigned Align,
3583                                const Value *DstSV, uint64_t DstSVOff) {
3584
3585  // Check to see if we should lower the memset to stores first.
3586  // For cases within the target-specified limits, this is the best choice.
3587  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3588  if (ConstantSize) {
3589    // Memset with size zero? Just return the original chain.
3590    if (ConstantSize->isNullValue())
3591      return Chain;
3592
3593    SDValue Result =
3594      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3595                      Align, DstSV, DstSVOff);
3596    if (Result.getNode())
3597      return Result;
3598  }
3599
3600  // Then check to see if we should lower the memset with target-specific
3601  // code. If the target chooses to do this, this is the next best.
3602  SDValue Result =
3603    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3604                                DstSV, DstSVOff);
3605  if (Result.getNode())
3606    return Result;
3607
3608  // Emit a library call.
3609  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3610  TargetLowering::ArgListTy Args;
3611  TargetLowering::ArgListEntry Entry;
3612  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3613  Args.push_back(Entry);
3614  // Extend or truncate the argument to be an i32 value for the call.
3615  if (Src.getValueType().bitsGT(MVT::i32))
3616    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3617  else
3618    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3619  Entry.Node = Src;
3620  Entry.Ty = Type::getInt32Ty(*getContext());
3621  Entry.isSExt = true;
3622  Args.push_back(Entry);
3623  Entry.Node = Size;
3624  Entry.Ty = IntPtrTy;
3625  Entry.isSExt = false;
3626  Args.push_back(Entry);
3627  // FIXME: pass in DebugLoc
3628  std::pair<SDValue,SDValue> CallResult =
3629    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3630                    false, false, false, false, 0,
3631                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3632                    /*isReturnValueUsed=*/false,
3633                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3634                                      TLI.getPointerTy()),
3635                    Args, *this, dl);
3636  return CallResult.second;
3637}
3638
3639SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3640                                SDValue Chain,
3641                                SDValue Ptr, SDValue Cmp,
3642                                SDValue Swp, const Value* PtrVal,
3643                                unsigned Alignment) {
3644  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3645    Alignment = getEVTAlignment(MemVT);
3646
3647  // Check if the memory reference references a frame index
3648  if (!PtrVal)
3649    if (const FrameIndexSDNode *FI =
3650          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3651      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3652
3653  MachineFunction &MF = getMachineFunction();
3654  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3655
3656  // For now, atomics are considered to be volatile always.
3657  Flags |= MachineMemOperand::MOVolatile;
3658
3659  MachineMemOperand *MMO =
3660    MF.getMachineMemOperand(PtrVal, Flags, 0,
3661                            MemVT.getStoreSize(), Alignment);
3662
3663  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3664}
3665
3666SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3667                                SDValue Chain,
3668                                SDValue Ptr, SDValue Cmp,
3669                                SDValue Swp, MachineMemOperand *MMO) {
3670  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3671  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3672
3673  EVT VT = Cmp.getValueType();
3674
3675  SDVTList VTs = getVTList(VT, MVT::Other);
3676  FoldingSetNodeID ID;
3677  ID.AddInteger(MemVT.getRawBits());
3678  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3679  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3680  void* IP = 0;
3681  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3682    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3683    return SDValue(E, 0);
3684  }
3685  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3686                                               Ptr, Cmp, Swp, MMO);
3687  CSEMap.InsertNode(N, IP);
3688  AllNodes.push_back(N);
3689  return SDValue(N, 0);
3690}
3691
3692SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3693                                SDValue Chain,
3694                                SDValue Ptr, SDValue Val,
3695                                const Value* PtrVal,
3696                                unsigned Alignment) {
3697  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3698    Alignment = getEVTAlignment(MemVT);
3699
3700  // Check if the memory reference references a frame index
3701  if (!PtrVal)
3702    if (const FrameIndexSDNode *FI =
3703          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3704      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3705
3706  MachineFunction &MF = getMachineFunction();
3707  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3708
3709  // For now, atomics are considered to be volatile always.
3710  Flags |= MachineMemOperand::MOVolatile;
3711
3712  MachineMemOperand *MMO =
3713    MF.getMachineMemOperand(PtrVal, Flags, 0,
3714                            MemVT.getStoreSize(), Alignment);
3715
3716  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3717}
3718
3719SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3720                                SDValue Chain,
3721                                SDValue Ptr, SDValue Val,
3722                                MachineMemOperand *MMO) {
3723  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3724          Opcode == ISD::ATOMIC_LOAD_SUB ||
3725          Opcode == ISD::ATOMIC_LOAD_AND ||
3726          Opcode == ISD::ATOMIC_LOAD_OR ||
3727          Opcode == ISD::ATOMIC_LOAD_XOR ||
3728          Opcode == ISD::ATOMIC_LOAD_NAND ||
3729          Opcode == ISD::ATOMIC_LOAD_MIN ||
3730          Opcode == ISD::ATOMIC_LOAD_MAX ||
3731          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3732          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3733          Opcode == ISD::ATOMIC_SWAP) &&
3734         "Invalid Atomic Op");
3735
3736  EVT VT = Val.getValueType();
3737
3738  SDVTList VTs = getVTList(VT, MVT::Other);
3739  FoldingSetNodeID ID;
3740  ID.AddInteger(MemVT.getRawBits());
3741  SDValue Ops[] = {Chain, Ptr, Val};
3742  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3743  void* IP = 0;
3744  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3745    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3746    return SDValue(E, 0);
3747  }
3748  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3749                                               Ptr, Val, MMO);
3750  CSEMap.InsertNode(N, IP);
3751  AllNodes.push_back(N);
3752  return SDValue(N, 0);
3753}
3754
3755/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3756/// Allowed to return something different (and simpler) if Simplify is true.
3757SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3758                                     DebugLoc dl) {
3759  if (NumOps == 1)
3760    return Ops[0];
3761
3762  SmallVector<EVT, 4> VTs;
3763  VTs.reserve(NumOps);
3764  for (unsigned i = 0; i < NumOps; ++i)
3765    VTs.push_back(Ops[i].getValueType());
3766  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3767                 Ops, NumOps);
3768}
3769
3770SDValue
3771SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3772                                  const EVT *VTs, unsigned NumVTs,
3773                                  const SDValue *Ops, unsigned NumOps,
3774                                  EVT MemVT, const Value *srcValue, int SVOff,
3775                                  unsigned Align, bool Vol,
3776                                  bool ReadMem, bool WriteMem) {
3777  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3778                             MemVT, srcValue, SVOff, Align, Vol,
3779                             ReadMem, WriteMem);
3780}
3781
3782SDValue
3783SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3784                                  const SDValue *Ops, unsigned NumOps,
3785                                  EVT MemVT, const Value *srcValue, int SVOff,
3786                                  unsigned Align, bool Vol,
3787                                  bool ReadMem, bool WriteMem) {
3788  if (Align == 0)  // Ensure that codegen never sees alignment 0
3789    Align = getEVTAlignment(MemVT);
3790
3791  MachineFunction &MF = getMachineFunction();
3792  unsigned Flags = 0;
3793  if (WriteMem)
3794    Flags |= MachineMemOperand::MOStore;
3795  if (ReadMem)
3796    Flags |= MachineMemOperand::MOLoad;
3797  if (Vol)
3798    Flags |= MachineMemOperand::MOVolatile;
3799  MachineMemOperand *MMO =
3800    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3801                            MemVT.getStoreSize(), Align);
3802
3803  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3804}
3805
3806SDValue
3807SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3808                                  const SDValue *Ops, unsigned NumOps,
3809                                  EVT MemVT, MachineMemOperand *MMO) {
3810  assert((Opcode == ISD::INTRINSIC_VOID ||
3811          Opcode == ISD::INTRINSIC_W_CHAIN ||
3812          (Opcode <= INT_MAX &&
3813           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3814         "Opcode is not a memory-accessing opcode!");
3815
3816  // Memoize the node unless it returns a flag.
3817  MemIntrinsicSDNode *N;
3818  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3819    FoldingSetNodeID ID;
3820    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3821    void *IP = 0;
3822    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3823      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3824      return SDValue(E, 0);
3825    }
3826
3827    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3828                                               MemVT, MMO);
3829    CSEMap.InsertNode(N, IP);
3830  } else {
3831    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3832                                               MemVT, MMO);
3833  }
3834  AllNodes.push_back(N);
3835  return SDValue(N, 0);
3836}
3837
3838SDValue
3839SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3840                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3841                      SDValue Ptr, SDValue Offset,
3842                      const Value *SV, int SVOffset, EVT MemVT,
3843                      bool isVolatile, bool isNonTemporal,
3844                      unsigned Alignment) {
3845  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3846    Alignment = getEVTAlignment(VT);
3847
3848  // Check if the memory reference references a frame index
3849  if (!SV)
3850    if (const FrameIndexSDNode *FI =
3851          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3852      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3853
3854  MachineFunction &MF = getMachineFunction();
3855  unsigned Flags = MachineMemOperand::MOLoad;
3856  if (isVolatile)
3857    Flags |= MachineMemOperand::MOVolatile;
3858  if (isNonTemporal)
3859    Flags |= MachineMemOperand::MONonTemporal;
3860  MachineMemOperand *MMO =
3861    MF.getMachineMemOperand(SV, Flags, SVOffset,
3862                            MemVT.getStoreSize(), Alignment);
3863  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3864}
3865
3866SDValue
3867SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3868                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3869                      SDValue Ptr, SDValue Offset, EVT MemVT,
3870                      MachineMemOperand *MMO) {
3871  if (VT == MemVT) {
3872    ExtType = ISD::NON_EXTLOAD;
3873  } else if (ExtType == ISD::NON_EXTLOAD) {
3874    assert(VT == MemVT && "Non-extending load from different memory type!");
3875  } else {
3876    // Extending load.
3877    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3878           "Should only be an extending load, not truncating!");
3879    assert(VT.isInteger() == MemVT.isInteger() &&
3880           "Cannot convert from FP to Int or Int -> FP!");
3881    assert(VT.isVector() == MemVT.isVector() &&
3882           "Cannot use trunc store to convert to or from a vector!");
3883    assert((!VT.isVector() ||
3884            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3885           "Cannot use trunc store to change the number of vector elements!");
3886  }
3887
3888  bool Indexed = AM != ISD::UNINDEXED;
3889  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3890         "Unindexed load with an offset!");
3891
3892  SDVTList VTs = Indexed ?
3893    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3894  SDValue Ops[] = { Chain, Ptr, Offset };
3895  FoldingSetNodeID ID;
3896  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3897  ID.AddInteger(MemVT.getRawBits());
3898  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3899                                     MMO->isNonTemporal()));
3900  void *IP = 0;
3901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3902    cast<LoadSDNode>(E)->refineAlignment(MMO);
3903    return SDValue(E, 0);
3904  }
3905  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3906                                             MemVT, MMO);
3907  CSEMap.InsertNode(N, IP);
3908  AllNodes.push_back(N);
3909  return SDValue(N, 0);
3910}
3911
3912SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3913                              SDValue Chain, SDValue Ptr,
3914                              const Value *SV, int SVOffset,
3915                              bool isVolatile, bool isNonTemporal,
3916                              unsigned Alignment) {
3917  SDValue Undef = getUNDEF(Ptr.getValueType());
3918  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3919                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3920}
3921
3922SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3923                                 SDValue Chain, SDValue Ptr,
3924                                 const Value *SV,
3925                                 int SVOffset, EVT MemVT,
3926                                 bool isVolatile, bool isNonTemporal,
3927                                 unsigned Alignment) {
3928  SDValue Undef = getUNDEF(Ptr.getValueType());
3929  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3930                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3931}
3932
3933SDValue
3934SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3935                             SDValue Offset, ISD::MemIndexedMode AM) {
3936  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3937  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3938         "Load is already a indexed load!");
3939  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3940                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3941                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3942                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3943}
3944
3945SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3946                               SDValue Ptr, const Value *SV, int SVOffset,
3947                               bool isVolatile, bool isNonTemporal,
3948                               unsigned Alignment) {
3949  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3950    Alignment = getEVTAlignment(Val.getValueType());
3951
3952  // Check if the memory reference references a frame index
3953  if (!SV)
3954    if (const FrameIndexSDNode *FI =
3955          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3956      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3957
3958  MachineFunction &MF = getMachineFunction();
3959  unsigned Flags = MachineMemOperand::MOStore;
3960  if (isVolatile)
3961    Flags |= MachineMemOperand::MOVolatile;
3962  if (isNonTemporal)
3963    Flags |= MachineMemOperand::MONonTemporal;
3964  MachineMemOperand *MMO =
3965    MF.getMachineMemOperand(SV, Flags, SVOffset,
3966                            Val.getValueType().getStoreSize(), Alignment);
3967
3968  return getStore(Chain, dl, Val, Ptr, MMO);
3969}
3970
3971SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3972                               SDValue Ptr, MachineMemOperand *MMO) {
3973  EVT VT = Val.getValueType();
3974  SDVTList VTs = getVTList(MVT::Other);
3975  SDValue Undef = getUNDEF(Ptr.getValueType());
3976  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3977  FoldingSetNodeID ID;
3978  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3979  ID.AddInteger(VT.getRawBits());
3980  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3981                                     MMO->isNonTemporal()));
3982  void *IP = 0;
3983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3984    cast<StoreSDNode>(E)->refineAlignment(MMO);
3985    return SDValue(E, 0);
3986  }
3987  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
3988                                              false, VT, MMO);
3989  CSEMap.InsertNode(N, IP);
3990  AllNodes.push_back(N);
3991  return SDValue(N, 0);
3992}
3993
3994SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3995                                    SDValue Ptr, const Value *SV,
3996                                    int SVOffset, EVT SVT,
3997                                    bool isVolatile, bool isNonTemporal,
3998                                    unsigned Alignment) {
3999  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4000    Alignment = getEVTAlignment(SVT);
4001
4002  // Check if the memory reference references a frame index
4003  if (!SV)
4004    if (const FrameIndexSDNode *FI =
4005          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4006      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4007
4008  MachineFunction &MF = getMachineFunction();
4009  unsigned Flags = MachineMemOperand::MOStore;
4010  if (isVolatile)
4011    Flags |= MachineMemOperand::MOVolatile;
4012  if (isNonTemporal)
4013    Flags |= MachineMemOperand::MONonTemporal;
4014  MachineMemOperand *MMO =
4015    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4016
4017  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4018}
4019
4020SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4021                                    SDValue Ptr, EVT SVT,
4022                                    MachineMemOperand *MMO) {
4023  EVT VT = Val.getValueType();
4024
4025  if (VT == SVT)
4026    return getStore(Chain, dl, Val, Ptr, MMO);
4027
4028  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4029         "Should only be a truncating store, not extending!");
4030  assert(VT.isInteger() == SVT.isInteger() &&
4031         "Can't do FP-INT conversion!");
4032  assert(VT.isVector() == SVT.isVector() &&
4033         "Cannot use trunc store to convert to or from a vector!");
4034  assert((!VT.isVector() ||
4035          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4036         "Cannot use trunc store to change the number of vector elements!");
4037
4038  SDVTList VTs = getVTList(MVT::Other);
4039  SDValue Undef = getUNDEF(Ptr.getValueType());
4040  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4041  FoldingSetNodeID ID;
4042  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4043  ID.AddInteger(SVT.getRawBits());
4044  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4045                                     MMO->isNonTemporal()));
4046  void *IP = 0;
4047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4048    cast<StoreSDNode>(E)->refineAlignment(MMO);
4049    return SDValue(E, 0);
4050  }
4051  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4052                                              true, SVT, MMO);
4053  CSEMap.InsertNode(N, IP);
4054  AllNodes.push_back(N);
4055  return SDValue(N, 0);
4056}
4057
4058SDValue
4059SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4060                              SDValue Offset, ISD::MemIndexedMode AM) {
4061  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4062  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4063         "Store is already a indexed store!");
4064  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4065  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4066  FoldingSetNodeID ID;
4067  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4068  ID.AddInteger(ST->getMemoryVT().getRawBits());
4069  ID.AddInteger(ST->getRawSubclassData());
4070  void *IP = 0;
4071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4072    return SDValue(E, 0);
4073
4074  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4075                                              ST->isTruncatingStore(),
4076                                              ST->getMemoryVT(),
4077                                              ST->getMemOperand());
4078  CSEMap.InsertNode(N, IP);
4079  AllNodes.push_back(N);
4080  return SDValue(N, 0);
4081}
4082
4083SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4084                               SDValue Chain, SDValue Ptr,
4085                               SDValue SV) {
4086  SDValue Ops[] = { Chain, Ptr, SV };
4087  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4088}
4089
4090SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4091                              const SDUse *Ops, unsigned NumOps) {
4092  switch (NumOps) {
4093  case 0: return getNode(Opcode, DL, VT);
4094  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4095  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4096  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4097  default: break;
4098  }
4099
4100  // Copy from an SDUse array into an SDValue array for use with
4101  // the regular getNode logic.
4102  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4103  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4104}
4105
4106SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4107                              const SDValue *Ops, unsigned NumOps) {
4108  switch (NumOps) {
4109  case 0: return getNode(Opcode, DL, VT);
4110  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4111  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4112  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4113  default: break;
4114  }
4115
4116  switch (Opcode) {
4117  default: break;
4118  case ISD::SELECT_CC: {
4119    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4120    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4121           "LHS and RHS of condition must have same type!");
4122    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4123           "True and False arms of SelectCC must have same type!");
4124    assert(Ops[2].getValueType() == VT &&
4125           "select_cc node must be of same type as true and false value!");
4126    break;
4127  }
4128  case ISD::BR_CC: {
4129    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4130    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4131           "LHS/RHS of comparison should match types!");
4132    break;
4133  }
4134  }
4135
4136  // Memoize nodes.
4137  SDNode *N;
4138  SDVTList VTs = getVTList(VT);
4139
4140  if (VT != MVT::Flag) {
4141    FoldingSetNodeID ID;
4142    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4143    void *IP = 0;
4144
4145    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4146      return SDValue(E, 0);
4147
4148    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4149    CSEMap.InsertNode(N, IP);
4150  } else {
4151    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4152  }
4153
4154  AllNodes.push_back(N);
4155#ifndef NDEBUG
4156  VerifyNode(N);
4157#endif
4158  return SDValue(N, 0);
4159}
4160
4161SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4162                              const std::vector<EVT> &ResultTys,
4163                              const SDValue *Ops, unsigned NumOps) {
4164  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4165                 Ops, NumOps);
4166}
4167
4168SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4169                              const EVT *VTs, unsigned NumVTs,
4170                              const SDValue *Ops, unsigned NumOps) {
4171  if (NumVTs == 1)
4172    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4173  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4174}
4175
4176SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4177                              const SDValue *Ops, unsigned NumOps) {
4178  if (VTList.NumVTs == 1)
4179    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4180
4181#if 0
4182  switch (Opcode) {
4183  // FIXME: figure out how to safely handle things like
4184  // int foo(int x) { return 1 << (x & 255); }
4185  // int bar() { return foo(256); }
4186  case ISD::SRA_PARTS:
4187  case ISD::SRL_PARTS:
4188  case ISD::SHL_PARTS:
4189    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4190        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4191      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4192    else if (N3.getOpcode() == ISD::AND)
4193      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4194        // If the and is only masking out bits that cannot effect the shift,
4195        // eliminate the and.
4196        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4197        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4198          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4199      }
4200    break;
4201  }
4202#endif
4203
4204  // Memoize the node unless it returns a flag.
4205  SDNode *N;
4206  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4207    FoldingSetNodeID ID;
4208    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4209    void *IP = 0;
4210    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4211      return SDValue(E, 0);
4212
4213    if (NumOps == 1) {
4214      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4215    } else if (NumOps == 2) {
4216      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4217    } else if (NumOps == 3) {
4218      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4219                                            Ops[2]);
4220    } else {
4221      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4222    }
4223    CSEMap.InsertNode(N, IP);
4224  } else {
4225    if (NumOps == 1) {
4226      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4227    } else if (NumOps == 2) {
4228      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4229    } else if (NumOps == 3) {
4230      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4231                                            Ops[2]);
4232    } else {
4233      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4234    }
4235  }
4236  AllNodes.push_back(N);
4237#ifndef NDEBUG
4238  VerifyNode(N);
4239#endif
4240  return SDValue(N, 0);
4241}
4242
4243SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4244  return getNode(Opcode, DL, VTList, 0, 0);
4245}
4246
4247SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4248                              SDValue N1) {
4249  SDValue Ops[] = { N1 };
4250  return getNode(Opcode, DL, VTList, Ops, 1);
4251}
4252
4253SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4254                              SDValue N1, SDValue N2) {
4255  SDValue Ops[] = { N1, N2 };
4256  return getNode(Opcode, DL, VTList, Ops, 2);
4257}
4258
4259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4260                              SDValue N1, SDValue N2, SDValue N3) {
4261  SDValue Ops[] = { N1, N2, N3 };
4262  return getNode(Opcode, DL, VTList, Ops, 3);
4263}
4264
4265SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4266                              SDValue N1, SDValue N2, SDValue N3,
4267                              SDValue N4) {
4268  SDValue Ops[] = { N1, N2, N3, N4 };
4269  return getNode(Opcode, DL, VTList, Ops, 4);
4270}
4271
4272SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4273                              SDValue N1, SDValue N2, SDValue N3,
4274                              SDValue N4, SDValue N5) {
4275  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4276  return getNode(Opcode, DL, VTList, Ops, 5);
4277}
4278
4279SDVTList SelectionDAG::getVTList(EVT VT) {
4280  return makeVTList(SDNode::getValueTypeList(VT), 1);
4281}
4282
4283SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4284  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4285       E = VTList.rend(); I != E; ++I)
4286    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4287      return *I;
4288
4289  EVT *Array = Allocator.Allocate<EVT>(2);
4290  Array[0] = VT1;
4291  Array[1] = VT2;
4292  SDVTList Result = makeVTList(Array, 2);
4293  VTList.push_back(Result);
4294  return Result;
4295}
4296
4297SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4298  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4299       E = VTList.rend(); I != E; ++I)
4300    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4301                          I->VTs[2] == VT3)
4302      return *I;
4303
4304  EVT *Array = Allocator.Allocate<EVT>(3);
4305  Array[0] = VT1;
4306  Array[1] = VT2;
4307  Array[2] = VT3;
4308  SDVTList Result = makeVTList(Array, 3);
4309  VTList.push_back(Result);
4310  return Result;
4311}
4312
4313SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4314  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4315       E = VTList.rend(); I != E; ++I)
4316    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4317                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4318      return *I;
4319
4320  EVT *Array = Allocator.Allocate<EVT>(4);
4321  Array[0] = VT1;
4322  Array[1] = VT2;
4323  Array[2] = VT3;
4324  Array[3] = VT4;
4325  SDVTList Result = makeVTList(Array, 4);
4326  VTList.push_back(Result);
4327  return Result;
4328}
4329
4330SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4331  switch (NumVTs) {
4332    case 0: llvm_unreachable("Cannot have nodes without results!");
4333    case 1: return getVTList(VTs[0]);
4334    case 2: return getVTList(VTs[0], VTs[1]);
4335    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4336    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4337    default: break;
4338  }
4339
4340  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4341       E = VTList.rend(); I != E; ++I) {
4342    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4343      continue;
4344
4345    bool NoMatch = false;
4346    for (unsigned i = 2; i != NumVTs; ++i)
4347      if (VTs[i] != I->VTs[i]) {
4348        NoMatch = true;
4349        break;
4350      }
4351    if (!NoMatch)
4352      return *I;
4353  }
4354
4355  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4356  std::copy(VTs, VTs+NumVTs, Array);
4357  SDVTList Result = makeVTList(Array, NumVTs);
4358  VTList.push_back(Result);
4359  return Result;
4360}
4361
4362
4363/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4364/// specified operands.  If the resultant node already exists in the DAG,
4365/// this does not modify the specified node, instead it returns the node that
4366/// already exists.  If the resultant node does not exist in the DAG, the
4367/// input node is returned.  As a degenerate case, if you specify the same
4368/// input operands as the node already has, the input node is returned.
4369SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4370  SDNode *N = InN.getNode();
4371  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4372
4373  // Check to see if there is no change.
4374  if (Op == N->getOperand(0)) return InN;
4375
4376  // See if the modified node already exists.
4377  void *InsertPos = 0;
4378  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4379    return SDValue(Existing, InN.getResNo());
4380
4381  // Nope it doesn't.  Remove the node from its current place in the maps.
4382  if (InsertPos)
4383    if (!RemoveNodeFromCSEMaps(N))
4384      InsertPos = 0;
4385
4386  // Now we update the operands.
4387  N->OperandList[0].set(Op);
4388
4389  // If this gets put into a CSE map, add it.
4390  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4391  return InN;
4392}
4393
4394SDValue SelectionDAG::
4395UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4396  SDNode *N = InN.getNode();
4397  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4398
4399  // Check to see if there is no change.
4400  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4401    return InN;   // No operands changed, just return the input node.
4402
4403  // See if the modified node already exists.
4404  void *InsertPos = 0;
4405  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4406    return SDValue(Existing, InN.getResNo());
4407
4408  // Nope it doesn't.  Remove the node from its current place in the maps.
4409  if (InsertPos)
4410    if (!RemoveNodeFromCSEMaps(N))
4411      InsertPos = 0;
4412
4413  // Now we update the operands.
4414  if (N->OperandList[0] != Op1)
4415    N->OperandList[0].set(Op1);
4416  if (N->OperandList[1] != Op2)
4417    N->OperandList[1].set(Op2);
4418
4419  // If this gets put into a CSE map, add it.
4420  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4421  return InN;
4422}
4423
4424SDValue SelectionDAG::
4425UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4426  SDValue Ops[] = { Op1, Op2, Op3 };
4427  return UpdateNodeOperands(N, Ops, 3);
4428}
4429
4430SDValue SelectionDAG::
4431UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4432                   SDValue Op3, SDValue Op4) {
4433  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4434  return UpdateNodeOperands(N, Ops, 4);
4435}
4436
4437SDValue SelectionDAG::
4438UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4439                   SDValue Op3, SDValue Op4, SDValue Op5) {
4440  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4441  return UpdateNodeOperands(N, Ops, 5);
4442}
4443
4444SDValue SelectionDAG::
4445UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4446  SDNode *N = InN.getNode();
4447  assert(N->getNumOperands() == NumOps &&
4448         "Update with wrong number of operands");
4449
4450  // Check to see if there is no change.
4451  bool AnyChange = false;
4452  for (unsigned i = 0; i != NumOps; ++i) {
4453    if (Ops[i] != N->getOperand(i)) {
4454      AnyChange = true;
4455      break;
4456    }
4457  }
4458
4459  // No operands changed, just return the input node.
4460  if (!AnyChange) return InN;
4461
4462  // See if the modified node already exists.
4463  void *InsertPos = 0;
4464  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4465    return SDValue(Existing, InN.getResNo());
4466
4467  // Nope it doesn't.  Remove the node from its current place in the maps.
4468  if (InsertPos)
4469    if (!RemoveNodeFromCSEMaps(N))
4470      InsertPos = 0;
4471
4472  // Now we update the operands.
4473  for (unsigned i = 0; i != NumOps; ++i)
4474    if (N->OperandList[i] != Ops[i])
4475      N->OperandList[i].set(Ops[i]);
4476
4477  // If this gets put into a CSE map, add it.
4478  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4479  return InN;
4480}
4481
4482/// DropOperands - Release the operands and set this node to have
4483/// zero operands.
4484void SDNode::DropOperands() {
4485  // Unlike the code in MorphNodeTo that does this, we don't need to
4486  // watch for dead nodes here.
4487  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4488    SDUse &Use = *I++;
4489    Use.set(SDValue());
4490  }
4491}
4492
4493/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4494/// machine opcode.
4495///
4496SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4497                                   EVT VT) {
4498  SDVTList VTs = getVTList(VT);
4499  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4500}
4501
4502SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4503                                   EVT VT, SDValue Op1) {
4504  SDVTList VTs = getVTList(VT);
4505  SDValue Ops[] = { Op1 };
4506  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4507}
4508
4509SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4510                                   EVT VT, SDValue Op1,
4511                                   SDValue Op2) {
4512  SDVTList VTs = getVTList(VT);
4513  SDValue Ops[] = { Op1, Op2 };
4514  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4515}
4516
4517SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4518                                   EVT VT, SDValue Op1,
4519                                   SDValue Op2, SDValue Op3) {
4520  SDVTList VTs = getVTList(VT);
4521  SDValue Ops[] = { Op1, Op2, Op3 };
4522  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526                                   EVT VT, const SDValue *Ops,
4527                                   unsigned NumOps) {
4528  SDVTList VTs = getVTList(VT);
4529  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   EVT VT1, EVT VT2, const SDValue *Ops,
4534                                   unsigned NumOps) {
4535  SDVTList VTs = getVTList(VT1, VT2);
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT1, EVT VT2) {
4541  SDVTList VTs = getVTList(VT1, VT2);
4542  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4543}
4544
4545SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4546                                   EVT VT1, EVT VT2, EVT VT3,
4547                                   const SDValue *Ops, unsigned NumOps) {
4548  SDVTList VTs = getVTList(VT1, VT2, VT3);
4549  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4550}
4551
4552SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4553                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4554                                   const SDValue *Ops, unsigned NumOps) {
4555  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4556  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT1, EVT VT2,
4561                                   SDValue Op1) {
4562  SDVTList VTs = getVTList(VT1, VT2);
4563  SDValue Ops[] = { Op1 };
4564  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT1, EVT VT2,
4569                                   SDValue Op1, SDValue Op2) {
4570  SDVTList VTs = getVTList(VT1, VT2);
4571  SDValue Ops[] = { Op1, Op2 };
4572  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4573}
4574
4575SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576                                   EVT VT1, EVT VT2,
4577                                   SDValue Op1, SDValue Op2,
4578                                   SDValue Op3) {
4579  SDVTList VTs = getVTList(VT1, VT2);
4580  SDValue Ops[] = { Op1, Op2, Op3 };
4581  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   EVT VT1, EVT VT2, EVT VT3,
4586                                   SDValue Op1, SDValue Op2,
4587                                   SDValue Op3) {
4588  SDVTList VTs = getVTList(VT1, VT2, VT3);
4589  SDValue Ops[] = { Op1, Op2, Op3 };
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   SDVTList VTs, const SDValue *Ops,
4595                                   unsigned NumOps) {
4596  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4597  // Reset the NodeID to -1.
4598  N->setNodeId(-1);
4599  return N;
4600}
4601
4602/// MorphNodeTo - This *mutates* the specified node to have the specified
4603/// return type, opcode, and operands.
4604///
4605/// Note that MorphNodeTo returns the resultant node.  If there is already a
4606/// node of the specified opcode and operands, it returns that node instead of
4607/// the current one.  Note that the DebugLoc need not be the same.
4608///
4609/// Using MorphNodeTo is faster than creating a new node and swapping it in
4610/// with ReplaceAllUsesWith both because it often avoids allocating a new
4611/// node, and because it doesn't require CSE recalculation for any of
4612/// the node's users.
4613///
4614SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4615                                  SDVTList VTs, const SDValue *Ops,
4616                                  unsigned NumOps) {
4617  // If an identical node already exists, use it.
4618  void *IP = 0;
4619  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4620    FoldingSetNodeID ID;
4621    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4622    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4623      return ON;
4624  }
4625
4626  if (!RemoveNodeFromCSEMaps(N))
4627    IP = 0;
4628
4629  // Start the morphing.
4630  N->NodeType = Opc;
4631  N->ValueList = VTs.VTs;
4632  N->NumValues = VTs.NumVTs;
4633
4634  // Clear the operands list, updating used nodes to remove this from their
4635  // use list.  Keep track of any operands that become dead as a result.
4636  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4637  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4638    SDUse &Use = *I++;
4639    SDNode *Used = Use.getNode();
4640    Use.set(SDValue());
4641    if (Used->use_empty())
4642      DeadNodeSet.insert(Used);
4643  }
4644
4645  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4646    // Initialize the memory references information.
4647    MN->setMemRefs(0, 0);
4648    // If NumOps is larger than the # of operands we can have in a
4649    // MachineSDNode, reallocate the operand list.
4650    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4651      if (MN->OperandsNeedDelete)
4652        delete[] MN->OperandList;
4653      if (NumOps > array_lengthof(MN->LocalOperands))
4654        // We're creating a final node that will live unmorphed for the
4655        // remainder of the current SelectionDAG iteration, so we can allocate
4656        // the operands directly out of a pool with no recycling metadata.
4657        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4658                         Ops, NumOps);
4659      else
4660        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4661      MN->OperandsNeedDelete = false;
4662    } else
4663      MN->InitOperands(MN->OperandList, Ops, NumOps);
4664  } else {
4665    // If NumOps is larger than the # of operands we currently have, reallocate
4666    // the operand list.
4667    if (NumOps > N->NumOperands) {
4668      if (N->OperandsNeedDelete)
4669        delete[] N->OperandList;
4670      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4671      N->OperandsNeedDelete = true;
4672    } else
4673      N->InitOperands(N->OperandList, Ops, NumOps);
4674  }
4675
4676  // Delete any nodes that are still dead after adding the uses for the
4677  // new operands.
4678  if (!DeadNodeSet.empty()) {
4679    SmallVector<SDNode *, 16> DeadNodes;
4680    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4681         E = DeadNodeSet.end(); I != E; ++I)
4682      if ((*I)->use_empty())
4683        DeadNodes.push_back(*I);
4684    RemoveDeadNodes(DeadNodes);
4685  }
4686
4687  if (IP)
4688    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4689  return N;
4690}
4691
4692
4693/// getMachineNode - These are used for target selectors to create a new node
4694/// with specified return type(s), MachineInstr opcode, and operands.
4695///
4696/// Note that getMachineNode returns the resultant node.  If there is already a
4697/// node of the specified opcode and operands, it returns that node instead of
4698/// the current one.
4699MachineSDNode *
4700SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4701  SDVTList VTs = getVTList(VT);
4702  return getMachineNode(Opcode, dl, VTs, 0, 0);
4703}
4704
4705MachineSDNode *
4706SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4707  SDVTList VTs = getVTList(VT);
4708  SDValue Ops[] = { Op1 };
4709  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4710}
4711
4712MachineSDNode *
4713SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4714                             SDValue Op1, SDValue Op2) {
4715  SDVTList VTs = getVTList(VT);
4716  SDValue Ops[] = { Op1, Op2 };
4717  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4718}
4719
4720MachineSDNode *
4721SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4722                             SDValue Op1, SDValue Op2, SDValue Op3) {
4723  SDVTList VTs = getVTList(VT);
4724  SDValue Ops[] = { Op1, Op2, Op3 };
4725  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4730                             const SDValue *Ops, unsigned NumOps) {
4731  SDVTList VTs = getVTList(VT);
4732  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4737  SDVTList VTs = getVTList(VT1, VT2);
4738  return getMachineNode(Opcode, dl, VTs, 0, 0);
4739}
4740
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4743                             EVT VT1, EVT VT2, SDValue Op1) {
4744  SDVTList VTs = getVTList(VT1, VT2);
4745  SDValue Ops[] = { Op1 };
4746  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4747}
4748
4749MachineSDNode *
4750SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4751                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4752  SDVTList VTs = getVTList(VT1, VT2);
4753  SDValue Ops[] = { Op1, Op2 };
4754  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4755}
4756
4757MachineSDNode *
4758SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4759                             EVT VT1, EVT VT2, SDValue Op1,
4760                             SDValue Op2, SDValue Op3) {
4761  SDVTList VTs = getVTList(VT1, VT2);
4762  SDValue Ops[] = { Op1, Op2, Op3 };
4763  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4764}
4765
4766MachineSDNode *
4767SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4768                             EVT VT1, EVT VT2,
4769                             const SDValue *Ops, unsigned NumOps) {
4770  SDVTList VTs = getVTList(VT1, VT2);
4771  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4776                             EVT VT1, EVT VT2, EVT VT3,
4777                             SDValue Op1, SDValue Op2) {
4778  SDVTList VTs = getVTList(VT1, VT2, VT3);
4779  SDValue Ops[] = { Op1, Op2 };
4780  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4785                             EVT VT1, EVT VT2, EVT VT3,
4786                             SDValue Op1, SDValue Op2, SDValue Op3) {
4787  SDVTList VTs = getVTList(VT1, VT2, VT3);
4788  SDValue Ops[] = { Op1, Op2, Op3 };
4789  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4790}
4791
4792MachineSDNode *
4793SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4794                             EVT VT1, EVT VT2, EVT VT3,
4795                             const SDValue *Ops, unsigned NumOps) {
4796  SDVTList VTs = getVTList(VT1, VT2, VT3);
4797  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4802                             EVT VT2, EVT VT3, EVT VT4,
4803                             const SDValue *Ops, unsigned NumOps) {
4804  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4805  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810                             const std::vector<EVT> &ResultTys,
4811                             const SDValue *Ops, unsigned NumOps) {
4812  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4813  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4814}
4815
4816MachineSDNode *
4817SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4818                             const SDValue *Ops, unsigned NumOps) {
4819  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4820  MachineSDNode *N;
4821  void *IP;
4822
4823  if (DoCSE) {
4824    FoldingSetNodeID ID;
4825    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4826    IP = 0;
4827    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4828      return cast<MachineSDNode>(E);
4829  }
4830
4831  // Allocate a new MachineSDNode.
4832  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4833
4834  // Initialize the operands list.
4835  if (NumOps > array_lengthof(N->LocalOperands))
4836    // We're creating a final node that will live unmorphed for the
4837    // remainder of the current SelectionDAG iteration, so we can allocate
4838    // the operands directly out of a pool with no recycling metadata.
4839    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4840                    Ops, NumOps);
4841  else
4842    N->InitOperands(N->LocalOperands, Ops, NumOps);
4843  N->OperandsNeedDelete = false;
4844
4845  if (DoCSE)
4846    CSEMap.InsertNode(N, IP);
4847
4848  AllNodes.push_back(N);
4849#ifndef NDEBUG
4850  VerifyNode(N);
4851#endif
4852  return N;
4853}
4854
4855/// getTargetExtractSubreg - A convenience function for creating
4856/// TargetOpcode::EXTRACT_SUBREG nodes.
4857SDValue
4858SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4859                                     SDValue Operand) {
4860  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4861  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4862                                  VT, Operand, SRIdxVal);
4863  return SDValue(Subreg, 0);
4864}
4865
4866/// getTargetInsertSubreg - A convenience function for creating
4867/// TargetOpcode::INSERT_SUBREG nodes.
4868SDValue
4869SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4870                                    SDValue Operand, SDValue Subreg) {
4871  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4872  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4873                                  VT, Operand, Subreg, SRIdxVal);
4874  return SDValue(Result, 0);
4875}
4876
4877/// getNodeIfExists - Get the specified node if it's already available, or
4878/// else return NULL.
4879SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4880                                      const SDValue *Ops, unsigned NumOps) {
4881  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4882    FoldingSetNodeID ID;
4883    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4884    void *IP = 0;
4885    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4886      return E;
4887  }
4888  return NULL;
4889}
4890
4891/// getDbgValue - Creates a SDDbgValue node.
4892///
4893SDDbgValue *
4894SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4895                          DebugLoc DL, unsigned O) {
4896  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4897}
4898
4899SDDbgValue *
4900SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4901                          DebugLoc DL, unsigned O) {
4902  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4903}
4904
4905SDDbgValue *
4906SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4907                          DebugLoc DL, unsigned O) {
4908  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4909}
4910
4911namespace {
4912
4913/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4914/// pointed to by a use iterator is deleted, increment the use iterator
4915/// so that it doesn't dangle.
4916///
4917/// This class also manages a "downlink" DAGUpdateListener, to forward
4918/// messages to ReplaceAllUsesWith's callers.
4919///
4920class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4921  SelectionDAG::DAGUpdateListener *DownLink;
4922  SDNode::use_iterator &UI;
4923  SDNode::use_iterator &UE;
4924
4925  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4926    // Increment the iterator as needed.
4927    while (UI != UE && N == *UI)
4928      ++UI;
4929
4930    // Then forward the message.
4931    if (DownLink) DownLink->NodeDeleted(N, E);
4932  }
4933
4934  virtual void NodeUpdated(SDNode *N) {
4935    // Just forward the message.
4936    if (DownLink) DownLink->NodeUpdated(N);
4937  }
4938
4939public:
4940  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4941                     SDNode::use_iterator &ui,
4942                     SDNode::use_iterator &ue)
4943    : DownLink(dl), UI(ui), UE(ue) {}
4944};
4945
4946}
4947
4948/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4949/// This can cause recursive merging of nodes in the DAG.
4950///
4951/// This version assumes From has a single result value.
4952///
4953void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4954                                      DAGUpdateListener *UpdateListener) {
4955  SDNode *From = FromN.getNode();
4956  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4957         "Cannot replace with this method!");
4958  assert(From != To.getNode() && "Cannot replace uses of with self");
4959
4960  // Iterate over all the existing uses of From. New uses will be added
4961  // to the beginning of the use list, which we avoid visiting.
4962  // This specifically avoids visiting uses of From that arise while the
4963  // replacement is happening, because any such uses would be the result
4964  // of CSE: If an existing node looks like From after one of its operands
4965  // is replaced by To, we don't want to replace of all its users with To
4966  // too. See PR3018 for more info.
4967  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4968  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4969  while (UI != UE) {
4970    SDNode *User = *UI;
4971
4972    // This node is about to morph, remove its old self from the CSE maps.
4973    RemoveNodeFromCSEMaps(User);
4974
4975    // A user can appear in a use list multiple times, and when this
4976    // happens the uses are usually next to each other in the list.
4977    // To help reduce the number of CSE recomputations, process all
4978    // the uses of this user that we can find this way.
4979    do {
4980      SDUse &Use = UI.getUse();
4981      ++UI;
4982      Use.set(To);
4983    } while (UI != UE && *UI == User);
4984
4985    // Now that we have modified User, add it back to the CSE maps.  If it
4986    // already exists there, recursively merge the results together.
4987    AddModifiedNodeToCSEMaps(User, &Listener);
4988  }
4989}
4990
4991/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4992/// This can cause recursive merging of nodes in the DAG.
4993///
4994/// This version assumes that for each value of From, there is a
4995/// corresponding value in To in the same position with the same type.
4996///
4997void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4998                                      DAGUpdateListener *UpdateListener) {
4999#ifndef NDEBUG
5000  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5001    assert((!From->hasAnyUseOfValue(i) ||
5002            From->getValueType(i) == To->getValueType(i)) &&
5003           "Cannot use this version of ReplaceAllUsesWith!");
5004#endif
5005
5006  // Handle the trivial case.
5007  if (From == To)
5008    return;
5009
5010  // Iterate over just the existing users of From. See the comments in
5011  // the ReplaceAllUsesWith above.
5012  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5013  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5014  while (UI != UE) {
5015    SDNode *User = *UI;
5016
5017    // This node is about to morph, remove its old self from the CSE maps.
5018    RemoveNodeFromCSEMaps(User);
5019
5020    // A user can appear in a use list multiple times, and when this
5021    // happens the uses are usually next to each other in the list.
5022    // To help reduce the number of CSE recomputations, process all
5023    // the uses of this user that we can find this way.
5024    do {
5025      SDUse &Use = UI.getUse();
5026      ++UI;
5027      Use.setNode(To);
5028    } while (UI != UE && *UI == User);
5029
5030    // Now that we have modified User, add it back to the CSE maps.  If it
5031    // already exists there, recursively merge the results together.
5032    AddModifiedNodeToCSEMaps(User, &Listener);
5033  }
5034}
5035
5036/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5037/// This can cause recursive merging of nodes in the DAG.
5038///
5039/// This version can replace From with any result values.  To must match the
5040/// number and types of values returned by From.
5041void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5042                                      const SDValue *To,
5043                                      DAGUpdateListener *UpdateListener) {
5044  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5045    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5046
5047  // Iterate over just the existing users of From. See the comments in
5048  // the ReplaceAllUsesWith above.
5049  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5050  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5051  while (UI != UE) {
5052    SDNode *User = *UI;
5053
5054    // This node is about to morph, remove its old self from the CSE maps.
5055    RemoveNodeFromCSEMaps(User);
5056
5057    // A user can appear in a use list multiple times, and when this
5058    // happens the uses are usually next to each other in the list.
5059    // To help reduce the number of CSE recomputations, process all
5060    // the uses of this user that we can find this way.
5061    do {
5062      SDUse &Use = UI.getUse();
5063      const SDValue &ToOp = To[Use.getResNo()];
5064      ++UI;
5065      Use.set(ToOp);
5066    } while (UI != UE && *UI == User);
5067
5068    // Now that we have modified User, add it back to the CSE maps.  If it
5069    // already exists there, recursively merge the results together.
5070    AddModifiedNodeToCSEMaps(User, &Listener);
5071  }
5072}
5073
5074/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5075/// uses of other values produced by From.getNode() alone.  The Deleted
5076/// vector is handled the same way as for ReplaceAllUsesWith.
5077void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5078                                             DAGUpdateListener *UpdateListener){
5079  // Handle the really simple, really trivial case efficiently.
5080  if (From == To) return;
5081
5082  // Handle the simple, trivial, case efficiently.
5083  if (From.getNode()->getNumValues() == 1) {
5084    ReplaceAllUsesWith(From, To, UpdateListener);
5085    return;
5086  }
5087
5088  // Iterate over just the existing users of From. See the comments in
5089  // the ReplaceAllUsesWith above.
5090  SDNode::use_iterator UI = From.getNode()->use_begin(),
5091                       UE = From.getNode()->use_end();
5092  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5093  while (UI != UE) {
5094    SDNode *User = *UI;
5095    bool UserRemovedFromCSEMaps = false;
5096
5097    // A user can appear in a use list multiple times, and when this
5098    // happens the uses are usually next to each other in the list.
5099    // To help reduce the number of CSE recomputations, process all
5100    // the uses of this user that we can find this way.
5101    do {
5102      SDUse &Use = UI.getUse();
5103
5104      // Skip uses of different values from the same node.
5105      if (Use.getResNo() != From.getResNo()) {
5106        ++UI;
5107        continue;
5108      }
5109
5110      // If this node hasn't been modified yet, it's still in the CSE maps,
5111      // so remove its old self from the CSE maps.
5112      if (!UserRemovedFromCSEMaps) {
5113        RemoveNodeFromCSEMaps(User);
5114        UserRemovedFromCSEMaps = true;
5115      }
5116
5117      ++UI;
5118      Use.set(To);
5119    } while (UI != UE && *UI == User);
5120
5121    // We are iterating over all uses of the From node, so if a use
5122    // doesn't use the specific value, no changes are made.
5123    if (!UserRemovedFromCSEMaps)
5124      continue;
5125
5126    // Now that we have modified User, add it back to the CSE maps.  If it
5127    // already exists there, recursively merge the results together.
5128    AddModifiedNodeToCSEMaps(User, &Listener);
5129  }
5130}
5131
5132namespace {
5133  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5134  /// to record information about a use.
5135  struct UseMemo {
5136    SDNode *User;
5137    unsigned Index;
5138    SDUse *Use;
5139  };
5140
5141  /// operator< - Sort Memos by User.
5142  bool operator<(const UseMemo &L, const UseMemo &R) {
5143    return (intptr_t)L.User < (intptr_t)R.User;
5144  }
5145}
5146
5147/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5148/// uses of other values produced by From.getNode() alone.  The same value
5149/// may appear in both the From and To list.  The Deleted vector is
5150/// handled the same way as for ReplaceAllUsesWith.
5151void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5152                                              const SDValue *To,
5153                                              unsigned Num,
5154                                              DAGUpdateListener *UpdateListener){
5155  // Handle the simple, trivial case efficiently.
5156  if (Num == 1)
5157    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5158
5159  // Read up all the uses and make records of them. This helps
5160  // processing new uses that are introduced during the
5161  // replacement process.
5162  SmallVector<UseMemo, 4> Uses;
5163  for (unsigned i = 0; i != Num; ++i) {
5164    unsigned FromResNo = From[i].getResNo();
5165    SDNode *FromNode = From[i].getNode();
5166    for (SDNode::use_iterator UI = FromNode->use_begin(),
5167         E = FromNode->use_end(); UI != E; ++UI) {
5168      SDUse &Use = UI.getUse();
5169      if (Use.getResNo() == FromResNo) {
5170        UseMemo Memo = { *UI, i, &Use };
5171        Uses.push_back(Memo);
5172      }
5173    }
5174  }
5175
5176  // Sort the uses, so that all the uses from a given User are together.
5177  std::sort(Uses.begin(), Uses.end());
5178
5179  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5180       UseIndex != UseIndexEnd; ) {
5181    // We know that this user uses some value of From.  If it is the right
5182    // value, update it.
5183    SDNode *User = Uses[UseIndex].User;
5184
5185    // This node is about to morph, remove its old self from the CSE maps.
5186    RemoveNodeFromCSEMaps(User);
5187
5188    // The Uses array is sorted, so all the uses for a given User
5189    // are next to each other in the list.
5190    // To help reduce the number of CSE recomputations, process all
5191    // the uses of this user that we can find this way.
5192    do {
5193      unsigned i = Uses[UseIndex].Index;
5194      SDUse &Use = *Uses[UseIndex].Use;
5195      ++UseIndex;
5196
5197      Use.set(To[i]);
5198    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5199
5200    // Now that we have modified User, add it back to the CSE maps.  If it
5201    // already exists there, recursively merge the results together.
5202    AddModifiedNodeToCSEMaps(User, UpdateListener);
5203  }
5204}
5205
5206/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5207/// based on their topological order. It returns the maximum id and a vector
5208/// of the SDNodes* in assigned order by reference.
5209unsigned SelectionDAG::AssignTopologicalOrder() {
5210
5211  unsigned DAGSize = 0;
5212
5213  // SortedPos tracks the progress of the algorithm. Nodes before it are
5214  // sorted, nodes after it are unsorted. When the algorithm completes
5215  // it is at the end of the list.
5216  allnodes_iterator SortedPos = allnodes_begin();
5217
5218  // Visit all the nodes. Move nodes with no operands to the front of
5219  // the list immediately. Annotate nodes that do have operands with their
5220  // operand count. Before we do this, the Node Id fields of the nodes
5221  // may contain arbitrary values. After, the Node Id fields for nodes
5222  // before SortedPos will contain the topological sort index, and the
5223  // Node Id fields for nodes At SortedPos and after will contain the
5224  // count of outstanding operands.
5225  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5226    SDNode *N = I++;
5227    checkForCycles(N);
5228    unsigned Degree = N->getNumOperands();
5229    if (Degree == 0) {
5230      // A node with no uses, add it to the result array immediately.
5231      N->setNodeId(DAGSize++);
5232      allnodes_iterator Q = N;
5233      if (Q != SortedPos)
5234        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5235      assert(SortedPos != AllNodes.end() && "Overran node list");
5236      ++SortedPos;
5237    } else {
5238      // Temporarily use the Node Id as scratch space for the degree count.
5239      N->setNodeId(Degree);
5240    }
5241  }
5242
5243  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5244  // such that by the time the end is reached all nodes will be sorted.
5245  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5246    SDNode *N = I;
5247    checkForCycles(N);
5248    // N is in sorted position, so all its uses have one less operand
5249    // that needs to be sorted.
5250    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5251         UI != UE; ++UI) {
5252      SDNode *P = *UI;
5253      unsigned Degree = P->getNodeId();
5254      assert(Degree != 0 && "Invalid node degree");
5255      --Degree;
5256      if (Degree == 0) {
5257        // All of P's operands are sorted, so P may sorted now.
5258        P->setNodeId(DAGSize++);
5259        if (P != SortedPos)
5260          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5261        assert(SortedPos != AllNodes.end() && "Overran node list");
5262        ++SortedPos;
5263      } else {
5264        // Update P's outstanding operand count.
5265        P->setNodeId(Degree);
5266      }
5267    }
5268    if (I == SortedPos) {
5269#ifndef NDEBUG
5270      SDNode *S = ++I;
5271      dbgs() << "Overran sorted position:\n";
5272      S->dumprFull();
5273#endif
5274      llvm_unreachable(0);
5275    }
5276  }
5277
5278  assert(SortedPos == AllNodes.end() &&
5279         "Topological sort incomplete!");
5280  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5281         "First node in topological sort is not the entry token!");
5282  assert(AllNodes.front().getNodeId() == 0 &&
5283         "First node in topological sort has non-zero id!");
5284  assert(AllNodes.front().getNumOperands() == 0 &&
5285         "First node in topological sort has operands!");
5286  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5287         "Last node in topologic sort has unexpected id!");
5288  assert(AllNodes.back().use_empty() &&
5289         "Last node in topologic sort has users!");
5290  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5291  return DAGSize;
5292}
5293
5294/// AssignOrdering - Assign an order to the SDNode.
5295void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5296  assert(SD && "Trying to assign an order to a null node!");
5297  Ordering->add(SD, Order);
5298}
5299
5300/// GetOrdering - Get the order for the SDNode.
5301unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5302  assert(SD && "Trying to get the order of a null node!");
5303  return Ordering->getOrder(SD);
5304}
5305
5306/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5307/// value is produced by SD.
5308void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5309  DbgInfo->add(DB, SD);
5310  if (SD)
5311    SD->setHasDebugValue(true);
5312}
5313
5314//===----------------------------------------------------------------------===//
5315//                              SDNode Class
5316//===----------------------------------------------------------------------===//
5317
5318HandleSDNode::~HandleSDNode() {
5319  DropOperands();
5320}
5321
5322GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5323                                         EVT VT, int64_t o, unsigned char TF)
5324  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5325    Offset(o), TargetFlags(TF) {
5326  TheGlobal = const_cast<GlobalValue*>(GA);
5327}
5328
5329MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5330                     MachineMemOperand *mmo)
5331 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5332  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5333                                      MMO->isNonTemporal());
5334  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5335  assert(isNonTemporal() == MMO->isNonTemporal() &&
5336         "Non-temporal encoding error!");
5337  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5338}
5339
5340MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5341                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5342                     MachineMemOperand *mmo)
5343   : SDNode(Opc, dl, VTs, Ops, NumOps),
5344     MemoryVT(memvt), MMO(mmo) {
5345  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5346                                      MMO->isNonTemporal());
5347  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5348  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5349}
5350
5351/// Profile - Gather unique data for the node.
5352///
5353void SDNode::Profile(FoldingSetNodeID &ID) const {
5354  AddNodeIDNode(ID, this);
5355}
5356
5357namespace {
5358  struct EVTArray {
5359    std::vector<EVT> VTs;
5360
5361    EVTArray() {
5362      VTs.reserve(MVT::LAST_VALUETYPE);
5363      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5364        VTs.push_back(MVT((MVT::SimpleValueType)i));
5365    }
5366  };
5367}
5368
5369static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5370static ManagedStatic<EVTArray> SimpleVTArray;
5371static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5372
5373/// getValueTypeList - Return a pointer to the specified value type.
5374///
5375const EVT *SDNode::getValueTypeList(EVT VT) {
5376  if (VT.isExtended()) {
5377    sys::SmartScopedLock<true> Lock(*VTMutex);
5378    return &(*EVTs->insert(VT).first);
5379  } else {
5380    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5381  }
5382}
5383
5384/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5385/// indicated value.  This method ignores uses of other values defined by this
5386/// operation.
5387bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5388  assert(Value < getNumValues() && "Bad value!");
5389
5390  // TODO: Only iterate over uses of a given value of the node
5391  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5392    if (UI.getUse().getResNo() == Value) {
5393      if (NUses == 0)
5394        return false;
5395      --NUses;
5396    }
5397  }
5398
5399  // Found exactly the right number of uses?
5400  return NUses == 0;
5401}
5402
5403
5404/// hasAnyUseOfValue - Return true if there are any use of the indicated
5405/// value. This method ignores uses of other values defined by this operation.
5406bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5407  assert(Value < getNumValues() && "Bad value!");
5408
5409  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5410    if (UI.getUse().getResNo() == Value)
5411      return true;
5412
5413  return false;
5414}
5415
5416
5417/// isOnlyUserOf - Return true if this node is the only use of N.
5418///
5419bool SDNode::isOnlyUserOf(SDNode *N) const {
5420  bool Seen = false;
5421  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5422    SDNode *User = *I;
5423    if (User == this)
5424      Seen = true;
5425    else
5426      return false;
5427  }
5428
5429  return Seen;
5430}
5431
5432/// isOperand - Return true if this node is an operand of N.
5433///
5434bool SDValue::isOperandOf(SDNode *N) const {
5435  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5436    if (*this == N->getOperand(i))
5437      return true;
5438  return false;
5439}
5440
5441bool SDNode::isOperandOf(SDNode *N) const {
5442  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5443    if (this == N->OperandList[i].getNode())
5444      return true;
5445  return false;
5446}
5447
5448/// reachesChainWithoutSideEffects - Return true if this operand (which must
5449/// be a chain) reaches the specified operand without crossing any
5450/// side-effecting instructions.  In practice, this looks through token
5451/// factors and non-volatile loads.  In order to remain efficient, this only
5452/// looks a couple of nodes in, it does not do an exhaustive search.
5453bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5454                                               unsigned Depth) const {
5455  if (*this == Dest) return true;
5456
5457  // Don't search too deeply, we just want to be able to see through
5458  // TokenFactor's etc.
5459  if (Depth == 0) return false;
5460
5461  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5462  // of the operands of the TF reach dest, then we can do the xform.
5463  if (getOpcode() == ISD::TokenFactor) {
5464    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5465      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5466        return true;
5467    return false;
5468  }
5469
5470  // Loads don't have side effects, look through them.
5471  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5472    if (!Ld->isVolatile())
5473      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5474  }
5475  return false;
5476}
5477
5478/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5479/// is either an operand of N or it can be reached by traversing up the operands.
5480/// NOTE: this is an expensive method. Use it carefully.
5481bool SDNode::isPredecessorOf(SDNode *N) const {
5482  SmallPtrSet<SDNode *, 32> Visited;
5483  SmallVector<SDNode *, 16> Worklist;
5484  Worklist.push_back(N);
5485
5486  do {
5487    N = Worklist.pop_back_val();
5488    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5489      SDNode *Op = N->getOperand(i).getNode();
5490      if (Op == this)
5491        return true;
5492      if (Visited.insert(Op))
5493        Worklist.push_back(Op);
5494    }
5495  } while (!Worklist.empty());
5496
5497  return false;
5498}
5499
5500uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5501  assert(Num < NumOperands && "Invalid child # of SDNode!");
5502  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5503}
5504
5505std::string SDNode::getOperationName(const SelectionDAG *G) const {
5506  switch (getOpcode()) {
5507  default:
5508    if (getOpcode() < ISD::BUILTIN_OP_END)
5509      return "<<Unknown DAG Node>>";
5510    if (isMachineOpcode()) {
5511      if (G)
5512        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5513          if (getMachineOpcode() < TII->getNumOpcodes())
5514            return TII->get(getMachineOpcode()).getName();
5515      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5516    }
5517    if (G) {
5518      const TargetLowering &TLI = G->getTargetLoweringInfo();
5519      const char *Name = TLI.getTargetNodeName(getOpcode());
5520      if (Name) return Name;
5521      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5522    }
5523    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5524
5525#ifndef NDEBUG
5526  case ISD::DELETED_NODE:
5527    return "<<Deleted Node!>>";
5528#endif
5529  case ISD::PREFETCH:      return "Prefetch";
5530  case ISD::MEMBARRIER:    return "MemBarrier";
5531  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5532  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5533  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5534  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5535  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5536  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5537  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5538  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5539  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5540  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5541  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5542  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5543  case ISD::PCMARKER:      return "PCMarker";
5544  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5545  case ISD::SRCVALUE:      return "SrcValue";
5546  case ISD::EntryToken:    return "EntryToken";
5547  case ISD::TokenFactor:   return "TokenFactor";
5548  case ISD::AssertSext:    return "AssertSext";
5549  case ISD::AssertZext:    return "AssertZext";
5550
5551  case ISD::BasicBlock:    return "BasicBlock";
5552  case ISD::VALUETYPE:     return "ValueType";
5553  case ISD::Register:      return "Register";
5554
5555  case ISD::Constant:      return "Constant";
5556  case ISD::ConstantFP:    return "ConstantFP";
5557  case ISD::GlobalAddress: return "GlobalAddress";
5558  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5559  case ISD::FrameIndex:    return "FrameIndex";
5560  case ISD::JumpTable:     return "JumpTable";
5561  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5562  case ISD::RETURNADDR: return "RETURNADDR";
5563  case ISD::FRAMEADDR: return "FRAMEADDR";
5564  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5565  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5566  case ISD::LSDAADDR: return "LSDAADDR";
5567  case ISD::EHSELECTION: return "EHSELECTION";
5568  case ISD::EH_RETURN: return "EH_RETURN";
5569  case ISD::ConstantPool:  return "ConstantPool";
5570  case ISD::ExternalSymbol: return "ExternalSymbol";
5571  case ISD::BlockAddress:  return "BlockAddress";
5572  case ISD::INTRINSIC_WO_CHAIN:
5573  case ISD::INTRINSIC_VOID:
5574  case ISD::INTRINSIC_W_CHAIN: {
5575    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5576    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5577    if (IID < Intrinsic::num_intrinsics)
5578      return Intrinsic::getName((Intrinsic::ID)IID);
5579    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5580      return TII->getName(IID);
5581    llvm_unreachable("Invalid intrinsic ID");
5582  }
5583
5584  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5585  case ISD::TargetConstant: return "TargetConstant";
5586  case ISD::TargetConstantFP:return "TargetConstantFP";
5587  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5588  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5589  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5590  case ISD::TargetJumpTable:  return "TargetJumpTable";
5591  case ISD::TargetConstantPool:  return "TargetConstantPool";
5592  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5593  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5594
5595  case ISD::CopyToReg:     return "CopyToReg";
5596  case ISD::CopyFromReg:   return "CopyFromReg";
5597  case ISD::UNDEF:         return "undef";
5598  case ISD::MERGE_VALUES:  return "merge_values";
5599  case ISD::INLINEASM:     return "inlineasm";
5600  case ISD::EH_LABEL:      return "eh_label";
5601  case ISD::HANDLENODE:    return "handlenode";
5602
5603  // Unary operators
5604  case ISD::FABS:   return "fabs";
5605  case ISD::FNEG:   return "fneg";
5606  case ISD::FSQRT:  return "fsqrt";
5607  case ISD::FSIN:   return "fsin";
5608  case ISD::FCOS:   return "fcos";
5609  case ISD::FPOWI:  return "fpowi";
5610  case ISD::FPOW:   return "fpow";
5611  case ISD::FTRUNC: return "ftrunc";
5612  case ISD::FFLOOR: return "ffloor";
5613  case ISD::FCEIL:  return "fceil";
5614  case ISD::FRINT:  return "frint";
5615  case ISD::FNEARBYINT: return "fnearbyint";
5616
5617  // Binary operators
5618  case ISD::ADD:    return "add";
5619  case ISD::SUB:    return "sub";
5620  case ISD::MUL:    return "mul";
5621  case ISD::MULHU:  return "mulhu";
5622  case ISD::MULHS:  return "mulhs";
5623  case ISD::SDIV:   return "sdiv";
5624  case ISD::UDIV:   return "udiv";
5625  case ISD::SREM:   return "srem";
5626  case ISD::UREM:   return "urem";
5627  case ISD::SMUL_LOHI:  return "smul_lohi";
5628  case ISD::UMUL_LOHI:  return "umul_lohi";
5629  case ISD::SDIVREM:    return "sdivrem";
5630  case ISD::UDIVREM:    return "udivrem";
5631  case ISD::AND:    return "and";
5632  case ISD::OR:     return "or";
5633  case ISD::XOR:    return "xor";
5634  case ISD::SHL:    return "shl";
5635  case ISD::SRA:    return "sra";
5636  case ISD::SRL:    return "srl";
5637  case ISD::ROTL:   return "rotl";
5638  case ISD::ROTR:   return "rotr";
5639  case ISD::FADD:   return "fadd";
5640  case ISD::FSUB:   return "fsub";
5641  case ISD::FMUL:   return "fmul";
5642  case ISD::FDIV:   return "fdiv";
5643  case ISD::FREM:   return "frem";
5644  case ISD::FCOPYSIGN: return "fcopysign";
5645  case ISD::FGETSIGN:  return "fgetsign";
5646
5647  case ISD::SETCC:       return "setcc";
5648  case ISD::VSETCC:      return "vsetcc";
5649  case ISD::SELECT:      return "select";
5650  case ISD::SELECT_CC:   return "select_cc";
5651  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5652  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5653  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5654  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5655  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5656  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5657  case ISD::CARRY_FALSE:         return "carry_false";
5658  case ISD::ADDC:        return "addc";
5659  case ISD::ADDE:        return "adde";
5660  case ISD::SADDO:       return "saddo";
5661  case ISD::UADDO:       return "uaddo";
5662  case ISD::SSUBO:       return "ssubo";
5663  case ISD::USUBO:       return "usubo";
5664  case ISD::SMULO:       return "smulo";
5665  case ISD::UMULO:       return "umulo";
5666  case ISD::SUBC:        return "subc";
5667  case ISD::SUBE:        return "sube";
5668  case ISD::SHL_PARTS:   return "shl_parts";
5669  case ISD::SRA_PARTS:   return "sra_parts";
5670  case ISD::SRL_PARTS:   return "srl_parts";
5671
5672  // Conversion operators.
5673  case ISD::SIGN_EXTEND: return "sign_extend";
5674  case ISD::ZERO_EXTEND: return "zero_extend";
5675  case ISD::ANY_EXTEND:  return "any_extend";
5676  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5677  case ISD::TRUNCATE:    return "truncate";
5678  case ISD::FP_ROUND:    return "fp_round";
5679  case ISD::FLT_ROUNDS_: return "flt_rounds";
5680  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5681  case ISD::FP_EXTEND:   return "fp_extend";
5682
5683  case ISD::SINT_TO_FP:  return "sint_to_fp";
5684  case ISD::UINT_TO_FP:  return "uint_to_fp";
5685  case ISD::FP_TO_SINT:  return "fp_to_sint";
5686  case ISD::FP_TO_UINT:  return "fp_to_uint";
5687  case ISD::BIT_CONVERT: return "bit_convert";
5688  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5689  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5690
5691  case ISD::CONVERT_RNDSAT: {
5692    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5693    default: llvm_unreachable("Unknown cvt code!");
5694    case ISD::CVT_FF:  return "cvt_ff";
5695    case ISD::CVT_FS:  return "cvt_fs";
5696    case ISD::CVT_FU:  return "cvt_fu";
5697    case ISD::CVT_SF:  return "cvt_sf";
5698    case ISD::CVT_UF:  return "cvt_uf";
5699    case ISD::CVT_SS:  return "cvt_ss";
5700    case ISD::CVT_SU:  return "cvt_su";
5701    case ISD::CVT_US:  return "cvt_us";
5702    case ISD::CVT_UU:  return "cvt_uu";
5703    }
5704  }
5705
5706    // Control flow instructions
5707  case ISD::BR:      return "br";
5708  case ISD::BRIND:   return "brind";
5709  case ISD::BR_JT:   return "br_jt";
5710  case ISD::BRCOND:  return "brcond";
5711  case ISD::BR_CC:   return "br_cc";
5712  case ISD::CALLSEQ_START:  return "callseq_start";
5713  case ISD::CALLSEQ_END:    return "callseq_end";
5714
5715    // Other operators
5716  case ISD::LOAD:               return "load";
5717  case ISD::STORE:              return "store";
5718  case ISD::VAARG:              return "vaarg";
5719  case ISD::VACOPY:             return "vacopy";
5720  case ISD::VAEND:              return "vaend";
5721  case ISD::VASTART:            return "vastart";
5722  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5723  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5724  case ISD::BUILD_PAIR:         return "build_pair";
5725  case ISD::STACKSAVE:          return "stacksave";
5726  case ISD::STACKRESTORE:       return "stackrestore";
5727  case ISD::TRAP:               return "trap";
5728
5729  // Bit manipulation
5730  case ISD::BSWAP:   return "bswap";
5731  case ISD::CTPOP:   return "ctpop";
5732  case ISD::CTTZ:    return "cttz";
5733  case ISD::CTLZ:    return "ctlz";
5734
5735  // Trampolines
5736  case ISD::TRAMPOLINE: return "trampoline";
5737
5738  case ISD::CONDCODE:
5739    switch (cast<CondCodeSDNode>(this)->get()) {
5740    default: llvm_unreachable("Unknown setcc condition!");
5741    case ISD::SETOEQ:  return "setoeq";
5742    case ISD::SETOGT:  return "setogt";
5743    case ISD::SETOGE:  return "setoge";
5744    case ISD::SETOLT:  return "setolt";
5745    case ISD::SETOLE:  return "setole";
5746    case ISD::SETONE:  return "setone";
5747
5748    case ISD::SETO:    return "seto";
5749    case ISD::SETUO:   return "setuo";
5750    case ISD::SETUEQ:  return "setue";
5751    case ISD::SETUGT:  return "setugt";
5752    case ISD::SETUGE:  return "setuge";
5753    case ISD::SETULT:  return "setult";
5754    case ISD::SETULE:  return "setule";
5755    case ISD::SETUNE:  return "setune";
5756
5757    case ISD::SETEQ:   return "seteq";
5758    case ISD::SETGT:   return "setgt";
5759    case ISD::SETGE:   return "setge";
5760    case ISD::SETLT:   return "setlt";
5761    case ISD::SETLE:   return "setle";
5762    case ISD::SETNE:   return "setne";
5763    }
5764  }
5765}
5766
5767const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5768  switch (AM) {
5769  default:
5770    return "";
5771  case ISD::PRE_INC:
5772    return "<pre-inc>";
5773  case ISD::PRE_DEC:
5774    return "<pre-dec>";
5775  case ISD::POST_INC:
5776    return "<post-inc>";
5777  case ISD::POST_DEC:
5778    return "<post-dec>";
5779  }
5780}
5781
5782std::string ISD::ArgFlagsTy::getArgFlagsString() {
5783  std::string S = "< ";
5784
5785  if (isZExt())
5786    S += "zext ";
5787  if (isSExt())
5788    S += "sext ";
5789  if (isInReg())
5790    S += "inreg ";
5791  if (isSRet())
5792    S += "sret ";
5793  if (isByVal())
5794    S += "byval ";
5795  if (isNest())
5796    S += "nest ";
5797  if (getByValAlign())
5798    S += "byval-align:" + utostr(getByValAlign()) + " ";
5799  if (getOrigAlign())
5800    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5801  if (getByValSize())
5802    S += "byval-size:" + utostr(getByValSize()) + " ";
5803  return S + ">";
5804}
5805
5806void SDNode::dump() const { dump(0); }
5807void SDNode::dump(const SelectionDAG *G) const {
5808  print(dbgs(), G);
5809}
5810
5811void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5812  OS << (void*)this << ": ";
5813
5814  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5815    if (i) OS << ",";
5816    if (getValueType(i) == MVT::Other)
5817      OS << "ch";
5818    else
5819      OS << getValueType(i).getEVTString();
5820  }
5821  OS << " = " << getOperationName(G);
5822}
5823
5824void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5825  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5826    if (!MN->memoperands_empty()) {
5827      OS << "<";
5828      OS << "Mem:";
5829      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5830           e = MN->memoperands_end(); i != e; ++i) {
5831        OS << **i;
5832        if (next(i) != e)
5833          OS << " ";
5834      }
5835      OS << ">";
5836    }
5837  } else if (const ShuffleVectorSDNode *SVN =
5838               dyn_cast<ShuffleVectorSDNode>(this)) {
5839    OS << "<";
5840    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5841      int Idx = SVN->getMaskElt(i);
5842      if (i) OS << ",";
5843      if (Idx < 0)
5844        OS << "u";
5845      else
5846        OS << Idx;
5847    }
5848    OS << ">";
5849  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5850    OS << '<' << CSDN->getAPIntValue() << '>';
5851  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5852    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5853      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5854    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5855      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5856    else {
5857      OS << "<APFloat(";
5858      CSDN->getValueAPF().bitcastToAPInt().dump();
5859      OS << ")>";
5860    }
5861  } else if (const GlobalAddressSDNode *GADN =
5862             dyn_cast<GlobalAddressSDNode>(this)) {
5863    int64_t offset = GADN->getOffset();
5864    OS << '<';
5865    WriteAsOperand(OS, GADN->getGlobal());
5866    OS << '>';
5867    if (offset > 0)
5868      OS << " + " << offset;
5869    else
5870      OS << " " << offset;
5871    if (unsigned int TF = GADN->getTargetFlags())
5872      OS << " [TF=" << TF << ']';
5873  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5874    OS << "<" << FIDN->getIndex() << ">";
5875  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5876    OS << "<" << JTDN->getIndex() << ">";
5877    if (unsigned int TF = JTDN->getTargetFlags())
5878      OS << " [TF=" << TF << ']';
5879  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5880    int offset = CP->getOffset();
5881    if (CP->isMachineConstantPoolEntry())
5882      OS << "<" << *CP->getMachineCPVal() << ">";
5883    else
5884      OS << "<" << *CP->getConstVal() << ">";
5885    if (offset > 0)
5886      OS << " + " << offset;
5887    else
5888      OS << " " << offset;
5889    if (unsigned int TF = CP->getTargetFlags())
5890      OS << " [TF=" << TF << ']';
5891  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5892    OS << "<";
5893    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5894    if (LBB)
5895      OS << LBB->getName() << " ";
5896    OS << (const void*)BBDN->getBasicBlock() << ">";
5897  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5898    if (G && R->getReg() &&
5899        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5900      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5901    } else {
5902      OS << " %reg" << R->getReg();
5903    }
5904  } else if (const ExternalSymbolSDNode *ES =
5905             dyn_cast<ExternalSymbolSDNode>(this)) {
5906    OS << "'" << ES->getSymbol() << "'";
5907    if (unsigned int TF = ES->getTargetFlags())
5908      OS << " [TF=" << TF << ']';
5909  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5910    if (M->getValue())
5911      OS << "<" << M->getValue() << ">";
5912    else
5913      OS << "<null>";
5914  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5915    OS << ":" << N->getVT().getEVTString();
5916  }
5917  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5918    OS << "<" << *LD->getMemOperand();
5919
5920    bool doExt = true;
5921    switch (LD->getExtensionType()) {
5922    default: doExt = false; break;
5923    case ISD::EXTLOAD: OS << ", anyext"; break;
5924    case ISD::SEXTLOAD: OS << ", sext"; break;
5925    case ISD::ZEXTLOAD: OS << ", zext"; break;
5926    }
5927    if (doExt)
5928      OS << " from " << LD->getMemoryVT().getEVTString();
5929
5930    const char *AM = getIndexedModeName(LD->getAddressingMode());
5931    if (*AM)
5932      OS << ", " << AM;
5933
5934    OS << ">";
5935  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5936    OS << "<" << *ST->getMemOperand();
5937
5938    if (ST->isTruncatingStore())
5939      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5940
5941    const char *AM = getIndexedModeName(ST->getAddressingMode());
5942    if (*AM)
5943      OS << ", " << AM;
5944
5945    OS << ">";
5946  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5947    OS << "<" << *M->getMemOperand() << ">";
5948  } else if (const BlockAddressSDNode *BA =
5949               dyn_cast<BlockAddressSDNode>(this)) {
5950    OS << "<";
5951    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5952    OS << ", ";
5953    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5954    OS << ">";
5955    if (unsigned int TF = BA->getTargetFlags())
5956      OS << " [TF=" << TF << ']';
5957  }
5958
5959  if (G)
5960    if (unsigned Order = G->GetOrdering(this))
5961      OS << " [ORD=" << Order << ']';
5962
5963  if (getNodeId() != -1)
5964    OS << " [ID=" << getNodeId() << ']';
5965}
5966
5967void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5968  print_types(OS, G);
5969  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5970    if (i) OS << ", "; else OS << " ";
5971    OS << (void*)getOperand(i).getNode();
5972    if (unsigned RN = getOperand(i).getResNo())
5973      OS << ":" << RN;
5974  }
5975  print_details(OS, G);
5976}
5977
5978static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5979                                  const SelectionDAG *G, unsigned depth,
5980                                  unsigned indent)
5981{
5982  if (depth == 0)
5983    return;
5984
5985  OS.indent(indent);
5986
5987  N->print(OS, G);
5988
5989  if (depth < 1)
5990    return;
5991
5992  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5993    OS << '\n';
5994    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5995  }
5996}
5997
5998void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5999                            unsigned depth) const {
6000  printrWithDepthHelper(OS, this, G, depth, 0);
6001}
6002
6003void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6004  // Don't print impossibly deep things.
6005  printrWithDepth(OS, G, 100);
6006}
6007
6008void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6009  printrWithDepth(dbgs(), G, depth);
6010}
6011
6012void SDNode::dumprFull(const SelectionDAG *G) const {
6013  // Don't print impossibly deep things.
6014  dumprWithDepth(G, 100);
6015}
6016
6017static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6018  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6019    if (N->getOperand(i).getNode()->hasOneUse())
6020      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6021    else
6022      dbgs() << "\n" << std::string(indent+2, ' ')
6023           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6024
6025
6026  dbgs() << "\n";
6027  dbgs().indent(indent);
6028  N->dump(G);
6029}
6030
6031SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6032  assert(N->getNumValues() == 1 &&
6033         "Can't unroll a vector with multiple results!");
6034
6035  EVT VT = N->getValueType(0);
6036  unsigned NE = VT.getVectorNumElements();
6037  EVT EltVT = VT.getVectorElementType();
6038  DebugLoc dl = N->getDebugLoc();
6039
6040  SmallVector<SDValue, 8> Scalars;
6041  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6042
6043  // If ResNE is 0, fully unroll the vector op.
6044  if (ResNE == 0)
6045    ResNE = NE;
6046  else if (NE > ResNE)
6047    NE = ResNE;
6048
6049  unsigned i;
6050  for (i= 0; i != NE; ++i) {
6051    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6052      SDValue Operand = N->getOperand(j);
6053      EVT OperandVT = Operand.getValueType();
6054      if (OperandVT.isVector()) {
6055        // A vector operand; extract a single element.
6056        EVT OperandEltVT = OperandVT.getVectorElementType();
6057        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6058                              OperandEltVT,
6059                              Operand,
6060                              getConstant(i, MVT::i32));
6061      } else {
6062        // A scalar operand; just use it as is.
6063        Operands[j] = Operand;
6064      }
6065    }
6066
6067    switch (N->getOpcode()) {
6068    default:
6069      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6070                                &Operands[0], Operands.size()));
6071      break;
6072    case ISD::SHL:
6073    case ISD::SRA:
6074    case ISD::SRL:
6075    case ISD::ROTL:
6076    case ISD::ROTR:
6077      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6078                                getShiftAmountOperand(Operands[1])));
6079      break;
6080    case ISD::SIGN_EXTEND_INREG:
6081    case ISD::FP_ROUND_INREG: {
6082      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6083      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6084                                Operands[0],
6085                                getValueType(ExtVT)));
6086    }
6087    }
6088  }
6089
6090  for (; i < ResNE; ++i)
6091    Scalars.push_back(getUNDEF(EltVT));
6092
6093  return getNode(ISD::BUILD_VECTOR, dl,
6094                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6095                 &Scalars[0], Scalars.size());
6096}
6097
6098
6099/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6100/// location that is 'Dist' units away from the location that the 'Base' load
6101/// is loading from.
6102bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6103                                     unsigned Bytes, int Dist) const {
6104  if (LD->getChain() != Base->getChain())
6105    return false;
6106  EVT VT = LD->getValueType(0);
6107  if (VT.getSizeInBits() / 8 != Bytes)
6108    return false;
6109
6110  SDValue Loc = LD->getOperand(1);
6111  SDValue BaseLoc = Base->getOperand(1);
6112  if (Loc.getOpcode() == ISD::FrameIndex) {
6113    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6114      return false;
6115    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6116    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6117    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6118    int FS  = MFI->getObjectSize(FI);
6119    int BFS = MFI->getObjectSize(BFI);
6120    if (FS != BFS || FS != (int)Bytes) return false;
6121    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6122  }
6123  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6124    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6125    if (V && (V->getSExtValue() == Dist*Bytes))
6126      return true;
6127  }
6128
6129  GlobalValue *GV1 = NULL;
6130  GlobalValue *GV2 = NULL;
6131  int64_t Offset1 = 0;
6132  int64_t Offset2 = 0;
6133  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6134  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6135  if (isGA1 && isGA2 && GV1 == GV2)
6136    return Offset1 == (Offset2 + Dist*Bytes);
6137  return false;
6138}
6139
6140
6141/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6142/// it cannot be inferred.
6143unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6144  // If this is a GlobalAddress + cst, return the alignment.
6145  GlobalValue *GV;
6146  int64_t GVOffset = 0;
6147  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6148    // If GV has specified alignment, then use it. Otherwise, use the preferred
6149    // alignment.
6150    unsigned Align = GV->getAlignment();
6151    if (!Align) {
6152      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6153        const TargetData *TD = TLI.getTargetData();
6154        Align = TD->getPreferredAlignment(GVar);
6155      }
6156    }
6157    return MinAlign(Align, GVOffset);
6158  }
6159
6160  // If this is a direct reference to a stack slot, use information about the
6161  // stack slot's alignment.
6162  int FrameIdx = 1 << 31;
6163  int64_t FrameOffset = 0;
6164  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6165    FrameIdx = FI->getIndex();
6166  } else if (Ptr.getOpcode() == ISD::ADD &&
6167             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6168             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6169    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6170    FrameOffset = Ptr.getConstantOperandVal(1);
6171  }
6172
6173  if (FrameIdx != (1 << 31)) {
6174    // FIXME: Handle FI+CST.
6175    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6176    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6177                                    FrameOffset);
6178    if (MFI.isFixedObjectIndex(FrameIdx)) {
6179      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6180
6181      // The alignment of the frame index can be determined from its offset from
6182      // the incoming frame position.  If the frame object is at offset 32 and
6183      // the stack is guaranteed to be 16-byte aligned, then we know that the
6184      // object is 16-byte aligned.
6185      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6186      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6187
6188      // Finally, the frame object itself may have a known alignment.  Factor
6189      // the alignment + offset into a new alignment.  For example, if we know
6190      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6191      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6192      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6193      return std::max(Align, FIInfoAlign);
6194    }
6195    return FIInfoAlign;
6196  }
6197
6198  return 0;
6199}
6200
6201void SelectionDAG::dump() const {
6202  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6203
6204  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6205       I != E; ++I) {
6206    const SDNode *N = I;
6207    if (!N->hasOneUse() && N != getRoot().getNode())
6208      DumpNodes(N, 2, this);
6209  }
6210
6211  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6212
6213  dbgs() << "\n\n";
6214}
6215
6216void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6217  print_types(OS, G);
6218  print_details(OS, G);
6219}
6220
6221typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6222static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6223                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6224  if (!once.insert(N))          // If we've been here before, return now.
6225    return;
6226
6227  // Dump the current SDNode, but don't end the line yet.
6228  OS << std::string(indent, ' ');
6229  N->printr(OS, G);
6230
6231  // Having printed this SDNode, walk the children:
6232  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6233    const SDNode *child = N->getOperand(i).getNode();
6234
6235    if (i) OS << ",";
6236    OS << " ";
6237
6238    if (child->getNumOperands() == 0) {
6239      // This child has no grandchildren; print it inline right here.
6240      child->printr(OS, G);
6241      once.insert(child);
6242    } else {         // Just the address. FIXME: also print the child's opcode.
6243      OS << (void*)child;
6244      if (unsigned RN = N->getOperand(i).getResNo())
6245        OS << ":" << RN;
6246    }
6247  }
6248
6249  OS << "\n";
6250
6251  // Dump children that have grandchildren on their own line(s).
6252  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6253    const SDNode *child = N->getOperand(i).getNode();
6254    DumpNodesr(OS, child, indent+2, G, once);
6255  }
6256}
6257
6258void SDNode::dumpr() const {
6259  VisitedSDNodeSet once;
6260  DumpNodesr(dbgs(), this, 0, 0, once);
6261}
6262
6263void SDNode::dumpr(const SelectionDAG *G) const {
6264  VisitedSDNodeSet once;
6265  DumpNodesr(dbgs(), this, 0, G, once);
6266}
6267
6268
6269// getAddressSpace - Return the address space this GlobalAddress belongs to.
6270unsigned GlobalAddressSDNode::getAddressSpace() const {
6271  return getGlobal()->getType()->getAddressSpace();
6272}
6273
6274
6275const Type *ConstantPoolSDNode::getType() const {
6276  if (isMachineConstantPoolEntry())
6277    return Val.MachineCPVal->getType();
6278  return Val.ConstVal->getType();
6279}
6280
6281bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6282                                        APInt &SplatUndef,
6283                                        unsigned &SplatBitSize,
6284                                        bool &HasAnyUndefs,
6285                                        unsigned MinSplatBits,
6286                                        bool isBigEndian) {
6287  EVT VT = getValueType(0);
6288  assert(VT.isVector() && "Expected a vector type");
6289  unsigned sz = VT.getSizeInBits();
6290  if (MinSplatBits > sz)
6291    return false;
6292
6293  SplatValue = APInt(sz, 0);
6294  SplatUndef = APInt(sz, 0);
6295
6296  // Get the bits.  Bits with undefined values (when the corresponding element
6297  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6298  // in SplatValue.  If any of the values are not constant, give up and return
6299  // false.
6300  unsigned int nOps = getNumOperands();
6301  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6302  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6303
6304  for (unsigned j = 0; j < nOps; ++j) {
6305    unsigned i = isBigEndian ? nOps-1-j : j;
6306    SDValue OpVal = getOperand(i);
6307    unsigned BitPos = j * EltBitSize;
6308
6309    if (OpVal.getOpcode() == ISD::UNDEF)
6310      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6311    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6312      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6313                     zextOrTrunc(sz) << BitPos);
6314    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6315      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6316     else
6317      return false;
6318  }
6319
6320  // The build_vector is all constants or undefs.  Find the smallest element
6321  // size that splats the vector.
6322
6323  HasAnyUndefs = (SplatUndef != 0);
6324  while (sz > 8) {
6325
6326    unsigned HalfSize = sz / 2;
6327    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6328    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6329    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6330    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6331
6332    // If the two halves do not match (ignoring undef bits), stop here.
6333    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6334        MinSplatBits > HalfSize)
6335      break;
6336
6337    SplatValue = HighValue | LowValue;
6338    SplatUndef = HighUndef & LowUndef;
6339
6340    sz = HalfSize;
6341  }
6342
6343  SplatBitSize = sz;
6344  return true;
6345}
6346
6347bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6348  // Find the first non-undef value in the shuffle mask.
6349  unsigned i, e;
6350  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6351    /* search */;
6352
6353  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6354
6355  // Make sure all remaining elements are either undef or the same as the first
6356  // non-undef value.
6357  for (int Idx = Mask[i]; i != e; ++i)
6358    if (Mask[i] >= 0 && Mask[i] != Idx)
6359      return false;
6360  return true;
6361}
6362
6363#ifdef XDEBUG
6364static void checkForCyclesHelper(const SDNode *N,
6365                                 SmallPtrSet<const SDNode*, 32> &Visited,
6366                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6367  // If this node has already been checked, don't check it again.
6368  if (Checked.count(N))
6369    return;
6370
6371  // If a node has already been visited on this depth-first walk, reject it as
6372  // a cycle.
6373  if (!Visited.insert(N)) {
6374    dbgs() << "Offending node:\n";
6375    N->dumprFull();
6376    errs() << "Detected cycle in SelectionDAG\n";
6377    abort();
6378  }
6379
6380  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6381    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6382
6383  Checked.insert(N);
6384  Visited.erase(N);
6385}
6386#endif
6387
6388void llvm::checkForCycles(const llvm::SDNode *N) {
6389#ifdef XDEBUG
6390  assert(N && "Checking nonexistant SDNode");
6391  SmallPtrSet<const SDNode*, 32> visited;
6392  SmallPtrSet<const SDNode*, 32> checked;
6393  checkForCyclesHelper(N, visited, checked);
6394#endif
6395}
6396
6397void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6398  checkForCycles(DAG->getRoot().getNode());
6399}
6400