SelectionDAG.cpp revision 276dcbdc8db6614cfd5004dc7dc35e437ddf9c58
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // Anything can be extended to ppc long double.
78  if (VT == MVT::ppcf128)
79    return true;
80
81  // PPC long double cannot be shrunk to anything though.
82  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  return Val2.convert(*MVTToAPFloatSemantics(VT),
88                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
89}
90
91//===----------------------------------------------------------------------===//
92//                              ISD Namespace
93//===----------------------------------------------------------------------===//
94
95/// isBuildVectorAllOnes - Return true if the specified node is a
96/// BUILD_VECTOR where all of the elements are ~0 or undef.
97bool ISD::isBuildVectorAllOnes(const SDNode *N) {
98  // Look through a bit convert.
99  if (N->getOpcode() == ISD::BIT_CONVERT)
100    N = N->getOperand(0).Val;
101
102  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
103
104  unsigned i = 0, e = N->getNumOperands();
105
106  // Skip over all of the undef values.
107  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
108    ++i;
109
110  // Do not accept an all-undef vector.
111  if (i == e) return false;
112
113  // Do not accept build_vectors that aren't all constants or which have non-~0
114  // elements.
115  SDOperand NotZero = N->getOperand(i);
116  if (isa<ConstantSDNode>(NotZero)) {
117    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
118      return false;
119  } else if (isa<ConstantFPSDNode>(NotZero)) {
120    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
121                convertToAPInt().isAllOnesValue())
122      return false;
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// isScalarToVector - Return true if the specified node is a
176/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
177/// element is not an undef.
178bool ISD::isScalarToVector(const SDNode *N) {
179  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
180    return true;
181
182  if (N->getOpcode() != ISD::BUILD_VECTOR)
183    return false;
184  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
185    return false;
186  unsigned NumElems = N->getNumOperands();
187  for (unsigned i = 1; i < NumElems; ++i) {
188    SDOperand V = N->getOperand(i);
189    if (V.getOpcode() != ISD::UNDEF)
190      return false;
191  }
192  return true;
193}
194
195
196/// isDebugLabel - Return true if the specified node represents a debug
197/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
198/// is 0).
199bool ISD::isDebugLabel(const SDNode *N) {
200  SDOperand Zero;
201  if (N->getOpcode() == ISD::LABEL)
202    Zero = N->getOperand(2);
203  else if (N->isTargetOpcode() &&
204           N->getTargetOpcode() == TargetInstrInfo::LABEL)
205    // Chain moved to last operand.
206    Zero = N->getOperand(1);
207  else
208    return false;
209  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
210}
211
212/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
213/// when given the operation for (X op Y).
214ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
215  // To perform this operation, we just need to swap the L and G bits of the
216  // operation.
217  unsigned OldL = (Operation >> 2) & 1;
218  unsigned OldG = (Operation >> 1) & 1;
219  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
220                       (OldL << 1) |       // New G bit
221                       (OldG << 2));        // New L bit.
222}
223
224/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
225/// 'op' is a valid SetCC operation.
226ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
227  unsigned Operation = Op;
228  if (isInteger)
229    Operation ^= 7;   // Flip L, G, E bits, but not U.
230  else
231    Operation ^= 15;  // Flip all of the condition bits.
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;     // Don't let N and U bits get set.
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308const TargetMachine &SelectionDAG::getTarget() const {
309  return TLI.getTargetMachine();
310}
311
312//===----------------------------------------------------------------------===//
313//                           SDNode Profile Support
314//===----------------------------------------------------------------------===//
315
316/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
317///
318static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
319  ID.AddInteger(OpC);
320}
321
322/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
323/// solely with their pointer.
324void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
325  ID.AddPointer(VTList.VTs);
326}
327
328/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
329///
330static void AddNodeIDOperands(FoldingSetNodeID &ID,
331                              const SDOperand *Ops, unsigned NumOps) {
332  for (; NumOps; --NumOps, ++Ops) {
333    ID.AddPointer(Ops->Val);
334    ID.AddInteger(Ops->ResNo);
335  }
336}
337
338static void AddNodeIDNode(FoldingSetNodeID &ID,
339                          unsigned short OpC, SDVTList VTList,
340                          const SDOperand *OpList, unsigned N) {
341  AddNodeIDOpcode(ID, OpC);
342  AddNodeIDValueTypes(ID, VTList);
343  AddNodeIDOperands(ID, OpList, N);
344}
345
346/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
347/// data.
348static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
349  AddNodeIDOpcode(ID, N->getOpcode());
350  // Add the return value info.
351  AddNodeIDValueTypes(ID, N->getVTList());
352  // Add the operand info.
353  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
354
355  // Handle SDNode leafs with special info.
356  switch (N->getOpcode()) {
357  default: break;  // Normal nodes don't need extra info.
358  case ISD::ARG_FLAGS:
359    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
360    break;
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::MEMOPERAND: {
389    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
390    ID.AddPointer(MO.getValue());
391    ID.AddInteger(MO.getFlags());
392    ID.AddInteger(MO.getOffset());
393    ID.AddInteger(MO.getSize());
394    ID.AddInteger(MO.getAlignment());
395    break;
396  }
397  case ISD::FrameIndex:
398  case ISD::TargetFrameIndex:
399    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
400    break;
401  case ISD::JumpTable:
402  case ISD::TargetJumpTable:
403    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
404    break;
405  case ISD::ConstantPool:
406  case ISD::TargetConstantPool: {
407    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
408    ID.AddInteger(CP->getAlignment());
409    ID.AddInteger(CP->getOffset());
410    if (CP->isMachineConstantPoolEntry())
411      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
412    else
413      ID.AddPointer(CP->getConstVal());
414    break;
415  }
416  case ISD::LOAD: {
417    LoadSDNode *LD = cast<LoadSDNode>(N);
418    ID.AddInteger(LD->getAddressingMode());
419    ID.AddInteger(LD->getExtensionType());
420    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
421    ID.AddInteger(LD->getAlignment());
422    ID.AddInteger(LD->isVolatile());
423    break;
424  }
425  case ISD::STORE: {
426    StoreSDNode *ST = cast<StoreSDNode>(N);
427    ID.AddInteger(ST->getAddressingMode());
428    ID.AddInteger(ST->isTruncatingStore());
429    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
430    ID.AddInteger(ST->getAlignment());
431    ID.AddInteger(ST->isVolatile());
432    break;
433  }
434  }
435}
436
437//===----------------------------------------------------------------------===//
438//                              SelectionDAG Class
439//===----------------------------------------------------------------------===//
440
441/// RemoveDeadNodes - This method deletes all unreachable nodes in the
442/// SelectionDAG.
443void SelectionDAG::RemoveDeadNodes() {
444  // Create a dummy node (which is not added to allnodes), that adds a reference
445  // to the root node, preventing it from being deleted.
446  HandleSDNode Dummy(getRoot());
447
448  SmallVector<SDNode*, 128> DeadNodes;
449
450  // Add all obviously-dead nodes to the DeadNodes worklist.
451  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
452    if (I->use_empty())
453      DeadNodes.push_back(I);
454
455  // Process the worklist, deleting the nodes and adding their uses to the
456  // worklist.
457  while (!DeadNodes.empty()) {
458    SDNode *N = DeadNodes.back();
459    DeadNodes.pop_back();
460
461    // Take the node out of the appropriate CSE map.
462    RemoveNodeFromCSEMaps(N);
463
464    // Next, brutally remove the operand list.  This is safe to do, as there are
465    // no cycles in the graph.
466    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
467      SDNode *Operand = I->Val;
468      Operand->removeUser(N);
469
470      // Now that we removed this operand, see if there are no uses of it left.
471      if (Operand->use_empty())
472        DeadNodes.push_back(Operand);
473    }
474    if (N->OperandsNeedDelete)
475      delete[] N->OperandList;
476    N->OperandList = 0;
477    N->NumOperands = 0;
478
479    // Finally, remove N itself.
480    AllNodes.erase(N);
481  }
482
483  // If the root changed (e.g. it was a dead load, update the root).
484  setRoot(Dummy.getValue());
485}
486
487void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
488  SmallVector<SDNode*, 16> DeadNodes;
489  DeadNodes.push_back(N);
490
491  // Process the worklist, deleting the nodes and adding their uses to the
492  // worklist.
493  while (!DeadNodes.empty()) {
494    SDNode *N = DeadNodes.back();
495    DeadNodes.pop_back();
496
497    if (UpdateListener)
498      UpdateListener->NodeDeleted(N);
499
500    // Take the node out of the appropriate CSE map.
501    RemoveNodeFromCSEMaps(N);
502
503    // Next, brutally remove the operand list.  This is safe to do, as there are
504    // no cycles in the graph.
505    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
506      SDNode *Operand = I->Val;
507      Operand->removeUser(N);
508
509      // Now that we removed this operand, see if there are no uses of it left.
510      if (Operand->use_empty())
511        DeadNodes.push_back(Operand);
512    }
513    if (N->OperandsNeedDelete)
514      delete[] N->OperandList;
515    N->OperandList = 0;
516    N->NumOperands = 0;
517
518    // Finally, remove N itself.
519    AllNodes.erase(N);
520  }
521}
522
523void SelectionDAG::DeleteNode(SDNode *N) {
524  assert(N->use_empty() && "Cannot delete a node that is not dead!");
525
526  // First take this out of the appropriate CSE map.
527  RemoveNodeFromCSEMaps(N);
528
529  // Finally, remove uses due to operands of this node, remove from the
530  // AllNodes list, and delete the node.
531  DeleteNodeNotInCSEMaps(N);
532}
533
534void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
535
536  // Remove it from the AllNodes list.
537  AllNodes.remove(N);
538
539  // Drop all of the operands and decrement used nodes use counts.
540  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
541    I->Val->removeUser(N);
542  if (N->OperandsNeedDelete)
543    delete[] N->OperandList;
544  N->OperandList = 0;
545  N->NumOperands = 0;
546
547  delete N;
548}
549
550/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
551/// correspond to it.  This is useful when we're about to delete or repurpose
552/// the node.  We don't want future request for structurally identical nodes
553/// to return N anymore.
554void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
555  bool Erased = false;
556  switch (N->getOpcode()) {
557  case ISD::HANDLENODE: return;  // noop.
558  case ISD::STRING:
559    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
560    break;
561  case ISD::CONDCODE:
562    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
563           "Cond code doesn't exist!");
564    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
565    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
566    break;
567  case ISD::ExternalSymbol:
568    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
569    break;
570  case ISD::TargetExternalSymbol:
571    Erased =
572      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
573    break;
574  case ISD::VALUETYPE: {
575    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
576    if (MVT::isExtendedVT(VT)) {
577      Erased = ExtendedValueTypeNodes.erase(VT);
578    } else {
579      Erased = ValueTypeNodes[VT] != 0;
580      ValueTypeNodes[VT] = 0;
581    }
582    break;
583  }
584  default:
585    // Remove it from the CSE Map.
586    Erased = CSEMap.RemoveNode(N);
587    break;
588  }
589#ifndef NDEBUG
590  // Verify that the node was actually in one of the CSE maps, unless it has a
591  // flag result (which cannot be CSE'd) or is one of the special cases that are
592  // not subject to CSE.
593  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
594      !N->isTargetOpcode()) {
595    N->dump(this);
596    cerr << "\n";
597    assert(0 && "Node is not in map!");
598  }
599#endif
600}
601
602/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
603/// has been taken out and modified in some way.  If the specified node already
604/// exists in the CSE maps, do not modify the maps, but return the existing node
605/// instead.  If it doesn't exist, add it and return null.
606///
607SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
608  assert(N->getNumOperands() && "This is a leaf node!");
609  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
610    return 0;    // Never add these nodes.
611
612  // Check that remaining values produced are not flags.
613  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
614    if (N->getValueType(i) == MVT::Flag)
615      return 0;   // Never CSE anything that produces a flag.
616
617  SDNode *New = CSEMap.GetOrInsertNode(N);
618  if (New != N) return New;  // Node already existed.
619  return 0;
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
627                                           void *&InsertPos) {
628  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
629    return 0;    // Never add these nodes.
630
631  // Check that remaining values produced are not flags.
632  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
633    if (N->getValueType(i) == MVT::Flag)
634      return 0;   // Never CSE anything that produces a flag.
635
636  SDOperand Ops[] = { Op };
637  FoldingSetNodeID ID;
638  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
639  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
640}
641
642/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
643/// were replaced with those specified.  If this node is never memoized,
644/// return null, otherwise return a pointer to the slot it would take.  If a
645/// node already exists with these operands, the slot will be non-null.
646SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
647                                           SDOperand Op1, SDOperand Op2,
648                                           void *&InsertPos) {
649  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
650    return 0;    // Never add these nodes.
651
652  // Check that remaining values produced are not flags.
653  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
654    if (N->getValueType(i) == MVT::Flag)
655      return 0;   // Never CSE anything that produces a flag.
656
657  SDOperand Ops[] = { Op1, Op2 };
658  FoldingSetNodeID ID;
659  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
660  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
661}
662
663
664/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
665/// were replaced with those specified.  If this node is never memoized,
666/// return null, otherwise return a pointer to the slot it would take.  If a
667/// node already exists with these operands, the slot will be non-null.
668SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
669                                           const SDOperand *Ops,unsigned NumOps,
670                                           void *&InsertPos) {
671  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
672    return 0;    // Never add these nodes.
673
674  // Check that remaining values produced are not flags.
675  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
676    if (N->getValueType(i) == MVT::Flag)
677      return 0;   // Never CSE anything that produces a flag.
678
679  FoldingSetNodeID ID;
680  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
681
682  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
683    ID.AddInteger(LD->getAddressingMode());
684    ID.AddInteger(LD->getExtensionType());
685    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
686    ID.AddInteger(LD->getAlignment());
687    ID.AddInteger(LD->isVolatile());
688  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
689    ID.AddInteger(ST->getAddressingMode());
690    ID.AddInteger(ST->isTruncatingStore());
691    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
692    ID.AddInteger(ST->getAlignment());
693    ID.AddInteger(ST->isVolatile());
694  }
695
696  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
697}
698
699
700SelectionDAG::~SelectionDAG() {
701  while (!AllNodes.empty()) {
702    SDNode *N = AllNodes.begin();
703    N->SetNextInBucket(0);
704    if (N->OperandsNeedDelete)
705      delete [] N->OperandList;
706    N->OperandList = 0;
707    N->NumOperands = 0;
708    AllNodes.pop_front();
709  }
710}
711
712SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
713  if (Op.getValueType() == VT) return Op;
714  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
715                                   MVT::getSizeInBits(VT));
716  return getNode(ISD::AND, Op.getValueType(), Op,
717                 getConstant(Imm, Op.getValueType()));
718}
719
720SDOperand SelectionDAG::getString(const std::string &Val) {
721  StringSDNode *&N = StringNodes[Val];
722  if (!N) {
723    N = new StringSDNode(Val);
724    AllNodes.push_back(N);
725  }
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
730  MVT::ValueType EltVT =
731    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
732
733  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
734}
735
736SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
737  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
743         "APInt size does not match type size!");
744
745  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.Add(Val);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantSDNode(isT, Val, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
770  return getConstant(Val, TLI.getPointerTy(), isTarget);
771}
772
773
774SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
775                                      bool isTarget) {
776  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
777
778  MVT::ValueType EltVT =
779    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
780
781  // Do the map lookup using the actual bit pattern for the floating point
782  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
783  // we don't have issues with SNANs.
784  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
787  ID.Add(V);
788  void *IP = 0;
789  SDNode *N = NULL;
790  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
791    if (!MVT::isVector(VT))
792      return SDOperand(N, 0);
793  if (!N) {
794    N = new ConstantFPSDNode(isTarget, V, EltVT);
795    CSEMap.InsertNode(N, IP);
796    AllNodes.push_back(N);
797  }
798
799  SDOperand Result(N, 0);
800  if (MVT::isVector(VT)) {
801    SmallVector<SDOperand, 8> Ops;
802    Ops.assign(MVT::getVectorNumElements(VT), Result);
803    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
804  }
805  return Result;
806}
807
808SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
809                                      bool isTarget) {
810  MVT::ValueType EltVT =
811    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT::ValueType VT, int Offset,
820                                         bool isTargetGA) {
821  unsigned Opc;
822
823  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
824  if (!GVar) {
825    // If GV is an alias - use aliasee for determing thread-localness
826    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
827      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
828  }
829
830  if (GVar && GVar->isThreadLocal())
831    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
832  else
833    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
834
835  FoldingSetNodeID ID;
836  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
837  ID.AddPointer(GV);
838  ID.AddInteger(Offset);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841   return SDOperand(E, 0);
842  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
849                                      bool isTarget) {
850  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
851  FoldingSetNodeID ID;
852  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
853  ID.AddInteger(FI);
854  void *IP = 0;
855  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
856    return SDOperand(E, 0);
857  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
858  CSEMap.InsertNode(N, IP);
859  AllNodes.push_back(N);
860  return SDOperand(N, 0);
861}
862
863SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
864  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
865  FoldingSetNodeID ID;
866  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
867  ID.AddInteger(JTI);
868  void *IP = 0;
869  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
870    return SDOperand(E, 0);
871  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
872  CSEMap.InsertNode(N, IP);
873  AllNodes.push_back(N);
874  return SDOperand(N, 0);
875}
876
877SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
878                                        unsigned Alignment, int Offset,
879                                        bool isTarget) {
880  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
881  FoldingSetNodeID ID;
882  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
883  ID.AddInteger(Alignment);
884  ID.AddInteger(Offset);
885  ID.AddPointer(C);
886  void *IP = 0;
887  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
888    return SDOperand(E, 0);
889  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
890  CSEMap.InsertNode(N, IP);
891  AllNodes.push_back(N);
892  return SDOperand(N, 0);
893}
894
895
896SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
897                                        MVT::ValueType VT,
898                                        unsigned Alignment, int Offset,
899                                        bool isTarget) {
900  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
901  FoldingSetNodeID ID;
902  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
903  ID.AddInteger(Alignment);
904  ID.AddInteger(Offset);
905  C->AddSelectionDAGCSEId(ID);
906  void *IP = 0;
907  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
908    return SDOperand(E, 0);
909  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
910  CSEMap.InsertNode(N, IP);
911  AllNodes.push_back(N);
912  return SDOperand(N, 0);
913}
914
915
916SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
917  FoldingSetNodeID ID;
918  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
919  ID.AddPointer(MBB);
920  void *IP = 0;
921  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
922    return SDOperand(E, 0);
923  SDNode *N = new BasicBlockSDNode(MBB);
924  CSEMap.InsertNode(N, IP);
925  AllNodes.push_back(N);
926  return SDOperand(N, 0);
927}
928
929SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
930  FoldingSetNodeID ID;
931  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
932  ID.AddInteger(Flags.getRawBits());
933  void *IP = 0;
934  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
935    return SDOperand(E, 0);
936  SDNode *N = new ARG_FLAGSSDNode(Flags);
937  CSEMap.InsertNode(N, IP);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
943  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
944    ValueTypeNodes.resize(VT+1);
945
946  SDNode *&N = MVT::isExtendedVT(VT) ?
947    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
948
949  if (N) return SDOperand(N, 0);
950  N = new VTSDNode(VT);
951  AllNodes.push_back(N);
952  return SDOperand(N, 0);
953}
954
955SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
956  SDNode *&N = ExternalSymbols[Sym];
957  if (N) return SDOperand(N, 0);
958  N = new ExternalSymbolSDNode(false, Sym, VT);
959  AllNodes.push_back(N);
960  return SDOperand(N, 0);
961}
962
963SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
964                                                MVT::ValueType VT) {
965  SDNode *&N = TargetExternalSymbols[Sym];
966  if (N) return SDOperand(N, 0);
967  N = new ExternalSymbolSDNode(true, Sym, VT);
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
973  if ((unsigned)Cond >= CondCodeNodes.size())
974    CondCodeNodes.resize(Cond+1);
975
976  if (CondCodeNodes[Cond] == 0) {
977    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
978    AllNodes.push_back(CondCodeNodes[Cond]);
979  }
980  return SDOperand(CondCodeNodes[Cond], 0);
981}
982
983SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
984  FoldingSetNodeID ID;
985  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
986  ID.AddInteger(RegNo);
987  void *IP = 0;
988  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
989    return SDOperand(E, 0);
990  SDNode *N = new RegisterSDNode(RegNo, VT);
991  CSEMap.InsertNode(N, IP);
992  AllNodes.push_back(N);
993  return SDOperand(N, 0);
994}
995
996SDOperand SelectionDAG::getSrcValue(const Value *V) {
997  assert((!V || isa<PointerType>(V->getType())) &&
998         "SrcValue is not a pointer?");
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1002  ID.AddPointer(V);
1003
1004  void *IP = 0;
1005  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1006    return SDOperand(E, 0);
1007
1008  SDNode *N = new SrcValueSDNode(V);
1009  CSEMap.InsertNode(N, IP);
1010  AllNodes.push_back(N);
1011  return SDOperand(N, 0);
1012}
1013
1014SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
1015  const Value *v = MO.getValue();
1016  assert((!v || isa<PointerType>(v->getType())) &&
1017         "SrcValue is not a pointer?");
1018
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1021  ID.AddPointer(v);
1022  ID.AddInteger(MO.getFlags());
1023  ID.AddInteger(MO.getOffset());
1024  ID.AddInteger(MO.getSize());
1025  ID.AddInteger(MO.getAlignment());
1026
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDOperand(E, 0);
1030
1031  SDNode *N = new MemOperandSDNode(MO);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDOperand(N, 0);
1035}
1036
1037/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1038/// specified value type.
1039SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1040  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1041  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1042  const Type *Ty = MVT::getTypeForValueType(VT);
1043  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1044  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1045  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1046}
1047
1048
1049SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1050                                  SDOperand N2, ISD::CondCode Cond) {
1051  // These setcc operations always fold.
1052  switch (Cond) {
1053  default: break;
1054  case ISD::SETFALSE:
1055  case ISD::SETFALSE2: return getConstant(0, VT);
1056  case ISD::SETTRUE:
1057  case ISD::SETTRUE2:  return getConstant(1, VT);
1058
1059  case ISD::SETOEQ:
1060  case ISD::SETOGT:
1061  case ISD::SETOGE:
1062  case ISD::SETOLT:
1063  case ISD::SETOLE:
1064  case ISD::SETONE:
1065  case ISD::SETO:
1066  case ISD::SETUO:
1067  case ISD::SETUEQ:
1068  case ISD::SETUNE:
1069    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1070    break;
1071  }
1072
1073  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1074    const APInt &C2 = N2C->getAPIntValue();
1075    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1076      const APInt &C1 = N1C->getAPIntValue();
1077
1078      switch (Cond) {
1079      default: assert(0 && "Unknown integer setcc!");
1080      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1081      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1082      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1083      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1084      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1085      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1086      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1087      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1088      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1089      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1090      }
1091    }
1092  }
1093  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1094    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1095      // No compile time operations on this type yet.
1096      if (N1C->getValueType(0) == MVT::ppcf128)
1097        return SDOperand();
1098
1099      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1100      switch (Cond) {
1101      default: break;
1102      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1103                          return getNode(ISD::UNDEF, VT);
1104                        // fall through
1105      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1106      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1107                          return getNode(ISD::UNDEF, VT);
1108                        // fall through
1109      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1110                                           R==APFloat::cmpLessThan, VT);
1111      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1112                          return getNode(ISD::UNDEF, VT);
1113                        // fall through
1114      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1115      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1116                          return getNode(ISD::UNDEF, VT);
1117                        // fall through
1118      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1119      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1120                          return getNode(ISD::UNDEF, VT);
1121                        // fall through
1122      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1123                                           R==APFloat::cmpEqual, VT);
1124      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1125                          return getNode(ISD::UNDEF, VT);
1126                        // fall through
1127      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1128                                           R==APFloat::cmpEqual, VT);
1129      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1130      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1131      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1132                                           R==APFloat::cmpEqual, VT);
1133      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1134      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1135                                           R==APFloat::cmpLessThan, VT);
1136      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1137                                           R==APFloat::cmpUnordered, VT);
1138      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1139      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1140      }
1141    } else {
1142      // Ensure that the constant occurs on the RHS.
1143      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1144    }
1145  }
1146
1147  // Could not fold it.
1148  return SDOperand();
1149}
1150
1151/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1152/// use this predicate to simplify operations downstream.
1153bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1154  unsigned BitWidth = Op.getValueSizeInBits();
1155  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1156}
1157
1158/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1159/// this predicate to simplify operations downstream.  Mask is known to be zero
1160/// for bits that V cannot have.
1161bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1162                                     unsigned Depth) const {
1163  APInt KnownZero, KnownOne;
1164  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1165  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1166  return (KnownZero & Mask) == Mask;
1167}
1168
1169/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1170/// known to be either zero or one and return them in the KnownZero/KnownOne
1171/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1172/// processing.
1173void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1174                                     APInt &KnownZero, APInt &KnownOne,
1175                                     unsigned Depth) const {
1176  unsigned BitWidth = Mask.getBitWidth();
1177  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1178         "Mask size mismatches value type size!");
1179
1180  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1181  if (Depth == 6 || Mask == 0)
1182    return;  // Limit search depth.
1183
1184  APInt KnownZero2, KnownOne2;
1185
1186  switch (Op.getOpcode()) {
1187  case ISD::Constant:
1188    // We know all of the bits for a constant!
1189    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1190    KnownZero = ~KnownOne & Mask;
1191    return;
1192  case ISD::AND:
1193    // If either the LHS or the RHS are Zero, the result is zero.
1194    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1195    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1196                      KnownZero2, KnownOne2, Depth+1);
1197    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1198    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1199
1200    // Output known-1 bits are only known if set in both the LHS & RHS.
1201    KnownOne &= KnownOne2;
1202    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1203    KnownZero |= KnownZero2;
1204    return;
1205  case ISD::OR:
1206    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1207    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1208                      KnownZero2, KnownOne2, Depth+1);
1209    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1210    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1211
1212    // Output known-0 bits are only known if clear in both the LHS & RHS.
1213    KnownZero &= KnownZero2;
1214    // Output known-1 are known to be set if set in either the LHS | RHS.
1215    KnownOne |= KnownOne2;
1216    return;
1217  case ISD::XOR: {
1218    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1219    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1220    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1221    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1222
1223    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1224    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1225    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1226    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1227    KnownZero = KnownZeroOut;
1228    return;
1229  }
1230  case ISD::SELECT:
1231    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1232    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1233    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1234    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1235
1236    // Only known if known in both the LHS and RHS.
1237    KnownOne &= KnownOne2;
1238    KnownZero &= KnownZero2;
1239    return;
1240  case ISD::SELECT_CC:
1241    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1242    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1243    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1244    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1245
1246    // Only known if known in both the LHS and RHS.
1247    KnownOne &= KnownOne2;
1248    KnownZero &= KnownZero2;
1249    return;
1250  case ISD::SETCC:
1251    // If we know the result of a setcc has the top bits zero, use this info.
1252    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1253        BitWidth > 1)
1254      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1255    return;
1256  case ISD::SHL:
1257    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1258    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1259      unsigned ShAmt = SA->getValue();
1260
1261      // If the shift count is an invalid immediate, don't do anything.
1262      if (ShAmt >= BitWidth)
1263        return;
1264
1265      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1266                        KnownZero, KnownOne, Depth+1);
1267      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1268      KnownZero <<= ShAmt;
1269      KnownOne  <<= ShAmt;
1270      // low bits known zero.
1271      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1272    }
1273    return;
1274  case ISD::SRL:
1275    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1276    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1277      unsigned ShAmt = SA->getValue();
1278
1279      // If the shift count is an invalid immediate, don't do anything.
1280      if (ShAmt >= BitWidth)
1281        return;
1282
1283      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1284                        KnownZero, KnownOne, Depth+1);
1285      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1286      KnownZero = KnownZero.lshr(ShAmt);
1287      KnownOne  = KnownOne.lshr(ShAmt);
1288
1289      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1290      KnownZero |= HighBits;  // High bits known zero.
1291    }
1292    return;
1293  case ISD::SRA:
1294    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1295      unsigned ShAmt = SA->getValue();
1296
1297      // If the shift count is an invalid immediate, don't do anything.
1298      if (ShAmt >= BitWidth)
1299        return;
1300
1301      APInt InDemandedMask = (Mask << ShAmt);
1302      // If any of the demanded bits are produced by the sign extension, we also
1303      // demand the input sign bit.
1304      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1305      if (HighBits.getBoolValue())
1306        InDemandedMask |= APInt::getSignBit(BitWidth);
1307
1308      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1309                        Depth+1);
1310      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311      KnownZero = KnownZero.lshr(ShAmt);
1312      KnownOne  = KnownOne.lshr(ShAmt);
1313
1314      // Handle the sign bits.
1315      APInt SignBit = APInt::getSignBit(BitWidth);
1316      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1317
1318      if (KnownZero.intersects(SignBit)) {
1319        KnownZero |= HighBits;  // New bits are known zero.
1320      } else if (KnownOne.intersects(SignBit)) {
1321        KnownOne  |= HighBits;  // New bits are known one.
1322      }
1323    }
1324    return;
1325  case ISD::SIGN_EXTEND_INREG: {
1326    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1327    unsigned EBits = MVT::getSizeInBits(EVT);
1328
1329    // Sign extension.  Compute the demanded bits in the result that are not
1330    // present in the input.
1331    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1332
1333    APInt InSignBit = APInt::getSignBit(EBits);
1334    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1335
1336    // If the sign extended bits are demanded, we know that the sign
1337    // bit is demanded.
1338    InSignBit.zext(BitWidth);
1339    if (NewBits.getBoolValue())
1340      InputDemandedBits |= InSignBit;
1341
1342    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1343                      KnownZero, KnownOne, Depth+1);
1344    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1345
1346    // If the sign bit of the input is known set or clear, then we know the
1347    // top bits of the result.
1348    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1349      KnownZero |= NewBits;
1350      KnownOne  &= ~NewBits;
1351    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1352      KnownOne  |= NewBits;
1353      KnownZero &= ~NewBits;
1354    } else {                              // Input sign bit unknown
1355      KnownZero &= ~NewBits;
1356      KnownOne  &= ~NewBits;
1357    }
1358    return;
1359  }
1360  case ISD::CTTZ:
1361  case ISD::CTLZ:
1362  case ISD::CTPOP: {
1363    unsigned LowBits = Log2_32(BitWidth)+1;
1364    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1365    KnownOne  = APInt(BitWidth, 0);
1366    return;
1367  }
1368  case ISD::LOAD: {
1369    if (ISD::isZEXTLoad(Op.Val)) {
1370      LoadSDNode *LD = cast<LoadSDNode>(Op);
1371      MVT::ValueType VT = LD->getMemoryVT();
1372      unsigned MemBits = MVT::getSizeInBits(VT);
1373      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1374    }
1375    return;
1376  }
1377  case ISD::ZERO_EXTEND: {
1378    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1379    unsigned InBits = MVT::getSizeInBits(InVT);
1380    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1381    APInt InMask    = Mask;
1382    InMask.trunc(InBits);
1383    KnownZero.trunc(InBits);
1384    KnownOne.trunc(InBits);
1385    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1386    KnownZero.zext(BitWidth);
1387    KnownOne.zext(BitWidth);
1388    KnownZero |= NewBits;
1389    return;
1390  }
1391  case ISD::SIGN_EXTEND: {
1392    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1393    unsigned InBits = MVT::getSizeInBits(InVT);
1394    APInt InSignBit = APInt::getSignBit(InBits);
1395    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1396    APInt InMask = Mask;
1397    InMask.trunc(InBits);
1398
1399    // If any of the sign extended bits are demanded, we know that the sign
1400    // bit is demanded. Temporarily set this bit in the mask for our callee.
1401    if (NewBits.getBoolValue())
1402      InMask |= InSignBit;
1403
1404    KnownZero.trunc(InBits);
1405    KnownOne.trunc(InBits);
1406    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1407
1408    // Note if the sign bit is known to be zero or one.
1409    bool SignBitKnownZero = KnownZero.isNegative();
1410    bool SignBitKnownOne  = KnownOne.isNegative();
1411    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1412           "Sign bit can't be known to be both zero and one!");
1413
1414    // If the sign bit wasn't actually demanded by our caller, we don't
1415    // want it set in the KnownZero and KnownOne result values. Reset the
1416    // mask and reapply it to the result values.
1417    InMask = Mask;
1418    InMask.trunc(InBits);
1419    KnownZero &= InMask;
1420    KnownOne  &= InMask;
1421
1422    KnownZero.zext(BitWidth);
1423    KnownOne.zext(BitWidth);
1424
1425    // If the sign bit is known zero or one, the top bits match.
1426    if (SignBitKnownZero)
1427      KnownZero |= NewBits;
1428    else if (SignBitKnownOne)
1429      KnownOne  |= NewBits;
1430    return;
1431  }
1432  case ISD::ANY_EXTEND: {
1433    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1434    unsigned InBits = MVT::getSizeInBits(InVT);
1435    APInt InMask = Mask;
1436    InMask.trunc(InBits);
1437    KnownZero.trunc(InBits);
1438    KnownOne.trunc(InBits);
1439    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1440    KnownZero.zext(BitWidth);
1441    KnownOne.zext(BitWidth);
1442    return;
1443  }
1444  case ISD::TRUNCATE: {
1445    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1446    unsigned InBits = MVT::getSizeInBits(InVT);
1447    APInt InMask = Mask;
1448    InMask.zext(InBits);
1449    KnownZero.zext(InBits);
1450    KnownOne.zext(InBits);
1451    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1452    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1453    KnownZero.trunc(BitWidth);
1454    KnownOne.trunc(BitWidth);
1455    break;
1456  }
1457  case ISD::AssertZext: {
1458    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1459    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1460    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1461                      KnownOne, Depth+1);
1462    KnownZero |= (~InMask) & Mask;
1463    return;
1464  }
1465  case ISD::FGETSIGN:
1466    // All bits are zero except the low bit.
1467    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1468    return;
1469
1470  case ISD::ADD: {
1471    // If either the LHS or the RHS are Zero, the result is zero.
1472    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1473    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1474    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1475    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1476
1477    // Output known-0 bits are known if clear or set in both the low clear bits
1478    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1479    // low 3 bits clear.
1480    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1481                                     KnownZero2.countTrailingOnes());
1482
1483    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1484    KnownOne = APInt(BitWidth, 0);
1485    return;
1486  }
1487  case ISD::SUB: {
1488    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1489    if (!CLHS) return;
1490
1491    // We know that the top bits of C-X are clear if X contains less bits
1492    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1493    // positive if we can prove that X is >= 0 and < 16.
1494    if (CLHS->getAPIntValue().isNonNegative()) {
1495      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1496      // NLZ can't be BitWidth with no sign bit
1497      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1498      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1499
1500      // If all of the MaskV bits are known to be zero, then we know the output
1501      // top bits are zero, because we now know that the output is from [0-C].
1502      if ((KnownZero & MaskV) == MaskV) {
1503        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1504        // Top bits known zero.
1505        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1506        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1507      } else {
1508        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1509      }
1510    }
1511    return;
1512  }
1513  default:
1514    // Allow the target to implement this method for its nodes.
1515    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1516  case ISD::INTRINSIC_WO_CHAIN:
1517  case ISD::INTRINSIC_W_CHAIN:
1518  case ISD::INTRINSIC_VOID:
1519      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1520    }
1521    return;
1522  }
1523}
1524
1525/// ComputeNumSignBits - Return the number of times the sign bit of the
1526/// register is replicated into the other bits.  We know that at least 1 bit
1527/// is always equal to the sign bit (itself), but other cases can give us
1528/// information.  For example, immediately after an "SRA X, 2", we know that
1529/// the top 3 bits are all equal to each other, so we return 3.
1530unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1531  MVT::ValueType VT = Op.getValueType();
1532  assert(MVT::isInteger(VT) && "Invalid VT!");
1533  unsigned VTBits = MVT::getSizeInBits(VT);
1534  unsigned Tmp, Tmp2;
1535
1536  if (Depth == 6)
1537    return 1;  // Limit search depth.
1538
1539  switch (Op.getOpcode()) {
1540  default: break;
1541  case ISD::AssertSext:
1542    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1543    return VTBits-Tmp+1;
1544  case ISD::AssertZext:
1545    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1546    return VTBits-Tmp;
1547
1548  case ISD::Constant: {
1549    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1550    // If negative, return # leading ones.
1551    if (Val.isNegative())
1552      return Val.countLeadingOnes();
1553
1554    // Return # leading zeros.
1555    return Val.countLeadingZeros();
1556  }
1557
1558  case ISD::SIGN_EXTEND:
1559    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1560    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1561
1562  case ISD::SIGN_EXTEND_INREG:
1563    // Max of the input and what this extends.
1564    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1565    Tmp = VTBits-Tmp+1;
1566
1567    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1568    return std::max(Tmp, Tmp2);
1569
1570  case ISD::SRA:
1571    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1572    // SRA X, C   -> adds C sign bits.
1573    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1574      Tmp += C->getValue();
1575      if (Tmp > VTBits) Tmp = VTBits;
1576    }
1577    return Tmp;
1578  case ISD::SHL:
1579    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1580      // shl destroys sign bits.
1581      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1582      if (C->getValue() >= VTBits ||      // Bad shift.
1583          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1584      return Tmp - C->getValue();
1585    }
1586    break;
1587  case ISD::AND:
1588  case ISD::OR:
1589  case ISD::XOR:    // NOT is handled here.
1590    // Logical binary ops preserve the number of sign bits.
1591    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1592    if (Tmp == 1) return 1;  // Early out.
1593    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1594    return std::min(Tmp, Tmp2);
1595
1596  case ISD::SELECT:
1597    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1598    if (Tmp == 1) return 1;  // Early out.
1599    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1600    return std::min(Tmp, Tmp2);
1601
1602  case ISD::SETCC:
1603    // If setcc returns 0/-1, all bits are sign bits.
1604    if (TLI.getSetCCResultContents() ==
1605        TargetLowering::ZeroOrNegativeOneSetCCResult)
1606      return VTBits;
1607    break;
1608  case ISD::ROTL:
1609  case ISD::ROTR:
1610    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1611      unsigned RotAmt = C->getValue() & (VTBits-1);
1612
1613      // Handle rotate right by N like a rotate left by 32-N.
1614      if (Op.getOpcode() == ISD::ROTR)
1615        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1616
1617      // If we aren't rotating out all of the known-in sign bits, return the
1618      // number that are left.  This handles rotl(sext(x), 1) for example.
1619      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1620      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1621    }
1622    break;
1623  case ISD::ADD:
1624    // Add can have at most one carry bit.  Thus we know that the output
1625    // is, at worst, one more bit than the inputs.
1626    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1627    if (Tmp == 1) return 1;  // Early out.
1628
1629    // Special case decrementing a value (ADD X, -1):
1630    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1631      if (CRHS->isAllOnesValue()) {
1632        APInt KnownZero, KnownOne;
1633        APInt Mask = APInt::getAllOnesValue(VTBits);
1634        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1635
1636        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1637        // sign bits set.
1638        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1639          return VTBits;
1640
1641        // If we are subtracting one from a positive number, there is no carry
1642        // out of the result.
1643        if (KnownZero.isNegative())
1644          return Tmp;
1645      }
1646
1647    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1648    if (Tmp2 == 1) return 1;
1649      return std::min(Tmp, Tmp2)-1;
1650    break;
1651
1652  case ISD::SUB:
1653    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1654    if (Tmp2 == 1) return 1;
1655
1656    // Handle NEG.
1657    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1658      if (CLHS->isNullValue()) {
1659        APInt KnownZero, KnownOne;
1660        APInt Mask = APInt::getAllOnesValue(VTBits);
1661        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1662        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1663        // sign bits set.
1664        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1665          return VTBits;
1666
1667        // If the input is known to be positive (the sign bit is known clear),
1668        // the output of the NEG has the same number of sign bits as the input.
1669        if (KnownZero.isNegative())
1670          return Tmp2;
1671
1672        // Otherwise, we treat this like a SUB.
1673      }
1674
1675    // Sub can have at most one carry bit.  Thus we know that the output
1676    // is, at worst, one more bit than the inputs.
1677    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1678    if (Tmp == 1) return 1;  // Early out.
1679      return std::min(Tmp, Tmp2)-1;
1680    break;
1681  case ISD::TRUNCATE:
1682    // FIXME: it's tricky to do anything useful for this, but it is an important
1683    // case for targets like X86.
1684    break;
1685  }
1686
1687  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1688  if (Op.getOpcode() == ISD::LOAD) {
1689    LoadSDNode *LD = cast<LoadSDNode>(Op);
1690    unsigned ExtType = LD->getExtensionType();
1691    switch (ExtType) {
1692    default: break;
1693    case ISD::SEXTLOAD:    // '17' bits known
1694      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1695      return VTBits-Tmp+1;
1696    case ISD::ZEXTLOAD:    // '16' bits known
1697      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1698      return VTBits-Tmp;
1699    }
1700  }
1701
1702  // Allow the target to implement this method for its nodes.
1703  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1704      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1705      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1706      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1707    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1708    if (NumBits > 1) return NumBits;
1709  }
1710
1711  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1712  // use this information.
1713  APInt KnownZero, KnownOne;
1714  APInt Mask = APInt::getAllOnesValue(VTBits);
1715  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1716
1717  if (KnownZero.isNegative()) {        // sign bit is 0
1718    Mask = KnownZero;
1719  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1720    Mask = KnownOne;
1721  } else {
1722    // Nothing known.
1723    return 1;
1724  }
1725
1726  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1727  // the number of identical bits in the top of the input value.
1728  Mask = ~Mask;
1729  Mask <<= Mask.getBitWidth()-VTBits;
1730  // Return # leading zeros.  We use 'min' here in case Val was zero before
1731  // shifting.  We don't want to return '64' as for an i32 "0".
1732  return std::min(VTBits, Mask.countLeadingZeros());
1733}
1734
1735
1736bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1737  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1738  if (!GA) return false;
1739  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1740  if (!GV) return false;
1741  MachineModuleInfo *MMI = getMachineModuleInfo();
1742  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1743}
1744
1745
1746/// getNode - Gets or creates the specified node.
1747///
1748SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1749  FoldingSetNodeID ID;
1750  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1751  void *IP = 0;
1752  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1753    return SDOperand(E, 0);
1754  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1755  CSEMap.InsertNode(N, IP);
1756
1757  AllNodes.push_back(N);
1758  return SDOperand(N, 0);
1759}
1760
1761SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1762                                SDOperand Operand) {
1763  // Constant fold unary operations with an integer constant operand.
1764  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1765    const APInt &Val = C->getAPIntValue();
1766    unsigned BitWidth = MVT::getSizeInBits(VT);
1767    switch (Opcode) {
1768    default: break;
1769    case ISD::SIGN_EXTEND:
1770      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1771    case ISD::ANY_EXTEND:
1772    case ISD::ZERO_EXTEND:
1773    case ISD::TRUNCATE:
1774      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1775    case ISD::UINT_TO_FP:
1776    case ISD::SINT_TO_FP: {
1777      const uint64_t zero[] = {0, 0};
1778      // No compile time operations on this type.
1779      if (VT==MVT::ppcf128)
1780        break;
1781      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1782      (void)apf.convertFromAPInt(Val,
1783                                 Opcode==ISD::SINT_TO_FP,
1784                                 APFloat::rmNearestTiesToEven);
1785      return getConstantFP(apf, VT);
1786    }
1787    case ISD::BIT_CONVERT:
1788      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1789        return getConstantFP(Val.bitsToFloat(), VT);
1790      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1791        return getConstantFP(Val.bitsToDouble(), VT);
1792      break;
1793    case ISD::BSWAP:
1794      return getConstant(Val.byteSwap(), VT);
1795    case ISD::CTPOP:
1796      return getConstant(Val.countPopulation(), VT);
1797    case ISD::CTLZ:
1798      return getConstant(Val.countLeadingZeros(), VT);
1799    case ISD::CTTZ:
1800      return getConstant(Val.countTrailingZeros(), VT);
1801    }
1802  }
1803
1804  // Constant fold unary operations with a floating point constant operand.
1805  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1806    APFloat V = C->getValueAPF();    // make copy
1807    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1808      switch (Opcode) {
1809      case ISD::FNEG:
1810        V.changeSign();
1811        return getConstantFP(V, VT);
1812      case ISD::FABS:
1813        V.clearSign();
1814        return getConstantFP(V, VT);
1815      case ISD::FP_ROUND:
1816      case ISD::FP_EXTEND:
1817        // This can return overflow, underflow, or inexact; we don't care.
1818        // FIXME need to be more flexible about rounding mode.
1819        (void)V.convert(*MVTToAPFloatSemantics(VT),
1820                        APFloat::rmNearestTiesToEven);
1821        return getConstantFP(V, VT);
1822      case ISD::FP_TO_SINT:
1823      case ISD::FP_TO_UINT: {
1824        integerPart x;
1825        assert(integerPartWidth >= 64);
1826        // FIXME need to be more flexible about rounding mode.
1827        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1828                              Opcode==ISD::FP_TO_SINT,
1829                              APFloat::rmTowardZero);
1830        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1831          break;
1832        return getConstant(x, VT);
1833      }
1834      case ISD::BIT_CONVERT:
1835        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1836          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1837        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1838          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1839        break;
1840      }
1841    }
1842  }
1843
1844  unsigned OpOpcode = Operand.Val->getOpcode();
1845  switch (Opcode) {
1846  case ISD::TokenFactor:
1847    return Operand;         // Factor of one node?  No factor.
1848  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1849  case ISD::FP_EXTEND:
1850    assert(MVT::isFloatingPoint(VT) &&
1851           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1852    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1853    if (Operand.getOpcode() == ISD::UNDEF)
1854      return getNode(ISD::UNDEF, VT);
1855    break;
1856  case ISD::SIGN_EXTEND:
1857    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1858           "Invalid SIGN_EXTEND!");
1859    if (Operand.getValueType() == VT) return Operand;   // noop extension
1860    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1861           && "Invalid sext node, dst < src!");
1862    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1863      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1864    break;
1865  case ISD::ZERO_EXTEND:
1866    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1867           "Invalid ZERO_EXTEND!");
1868    if (Operand.getValueType() == VT) return Operand;   // noop extension
1869    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1870           && "Invalid zext node, dst < src!");
1871    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1872      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1873    break;
1874  case ISD::ANY_EXTEND:
1875    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1876           "Invalid ANY_EXTEND!");
1877    if (Operand.getValueType() == VT) return Operand;   // noop extension
1878    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1879           && "Invalid anyext node, dst < src!");
1880    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1881      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1882      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1883    break;
1884  case ISD::TRUNCATE:
1885    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1886           "Invalid TRUNCATE!");
1887    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1888    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1889           && "Invalid truncate node, src < dst!");
1890    if (OpOpcode == ISD::TRUNCATE)
1891      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1892    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1893             OpOpcode == ISD::ANY_EXTEND) {
1894      // If the source is smaller than the dest, we still need an extend.
1895      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1896          < MVT::getSizeInBits(VT))
1897        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1898      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1899               > MVT::getSizeInBits(VT))
1900        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1901      else
1902        return Operand.Val->getOperand(0);
1903    }
1904    break;
1905  case ISD::BIT_CONVERT:
1906    // Basic sanity checking.
1907    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1908           && "Cannot BIT_CONVERT between types of different sizes!");
1909    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1910    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1911      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1912    if (OpOpcode == ISD::UNDEF)
1913      return getNode(ISD::UNDEF, VT);
1914    break;
1915  case ISD::SCALAR_TO_VECTOR:
1916    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1917           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1918           "Illegal SCALAR_TO_VECTOR node!");
1919    if (OpOpcode == ISD::UNDEF)
1920      return getNode(ISD::UNDEF, VT);
1921    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1922    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1923        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1924        Operand.getConstantOperandVal(1) == 0 &&
1925        Operand.getOperand(0).getValueType() == VT)
1926      return Operand.getOperand(0);
1927    break;
1928  case ISD::FNEG:
1929    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1930      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1931                     Operand.Val->getOperand(0));
1932    if (OpOpcode == ISD::FNEG)  // --X -> X
1933      return Operand.Val->getOperand(0);
1934    break;
1935  case ISD::FABS:
1936    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1937      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1938    break;
1939  }
1940
1941  SDNode *N;
1942  SDVTList VTs = getVTList(VT);
1943  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1944    FoldingSetNodeID ID;
1945    SDOperand Ops[1] = { Operand };
1946    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1947    void *IP = 0;
1948    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1949      return SDOperand(E, 0);
1950    N = new UnarySDNode(Opcode, VTs, Operand);
1951    CSEMap.InsertNode(N, IP);
1952  } else {
1953    N = new UnarySDNode(Opcode, VTs, Operand);
1954  }
1955  AllNodes.push_back(N);
1956  return SDOperand(N, 0);
1957}
1958
1959
1960
1961SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1962                                SDOperand N1, SDOperand N2) {
1963  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1964  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1965  switch (Opcode) {
1966  default: break;
1967  case ISD::TokenFactor:
1968    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1969           N2.getValueType() == MVT::Other && "Invalid token factor!");
1970    // Fold trivial token factors.
1971    if (N1.getOpcode() == ISD::EntryToken) return N2;
1972    if (N2.getOpcode() == ISD::EntryToken) return N1;
1973    break;
1974  case ISD::AND:
1975    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1976           N1.getValueType() == VT && "Binary operator types must match!");
1977    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1978    // worth handling here.
1979    if (N2C && N2C->isNullValue())
1980      return N2;
1981    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1982      return N1;
1983    break;
1984  case ISD::OR:
1985  case ISD::XOR:
1986    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1987           N1.getValueType() == VT && "Binary operator types must match!");
1988    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1989    // worth handling here.
1990    if (N2C && N2C->isNullValue())
1991      return N1;
1992    break;
1993  case ISD::UDIV:
1994  case ISD::UREM:
1995  case ISD::MULHU:
1996  case ISD::MULHS:
1997    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1998    // fall through
1999  case ISD::ADD:
2000  case ISD::SUB:
2001  case ISD::MUL:
2002  case ISD::SDIV:
2003  case ISD::SREM:
2004  case ISD::FADD:
2005  case ISD::FSUB:
2006  case ISD::FMUL:
2007  case ISD::FDIV:
2008  case ISD::FREM:
2009    assert(N1.getValueType() == N2.getValueType() &&
2010           N1.getValueType() == VT && "Binary operator types must match!");
2011    break;
2012  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2013    assert(N1.getValueType() == VT &&
2014           MVT::isFloatingPoint(N1.getValueType()) &&
2015           MVT::isFloatingPoint(N2.getValueType()) &&
2016           "Invalid FCOPYSIGN!");
2017    break;
2018  case ISD::SHL:
2019  case ISD::SRA:
2020  case ISD::SRL:
2021  case ISD::ROTL:
2022  case ISD::ROTR:
2023    assert(VT == N1.getValueType() &&
2024           "Shift operators return type must be the same as their first arg");
2025    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2026           VT != MVT::i1 && "Shifts only work on integers");
2027    break;
2028  case ISD::FP_ROUND_INREG: {
2029    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2030    assert(VT == N1.getValueType() && "Not an inreg round!");
2031    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2032           "Cannot FP_ROUND_INREG integer types");
2033    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2034           "Not rounding down!");
2035    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2036    break;
2037  }
2038  case ISD::FP_ROUND:
2039    assert(MVT::isFloatingPoint(VT) &&
2040           MVT::isFloatingPoint(N1.getValueType()) &&
2041           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2042           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2043    if (N1.getValueType() == VT) return N1;  // noop conversion.
2044    break;
2045  case ISD::AssertSext:
2046  case ISD::AssertZext: {
2047    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2048    assert(VT == N1.getValueType() && "Not an inreg extend!");
2049    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2050           "Cannot *_EXTEND_INREG FP types");
2051    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2052           "Not extending!");
2053    if (VT == EVT) return N1; // noop assertion.
2054    break;
2055  }
2056  case ISD::SIGN_EXTEND_INREG: {
2057    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2058    assert(VT == N1.getValueType() && "Not an inreg extend!");
2059    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2060           "Cannot *_EXTEND_INREG FP types");
2061    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2062           "Not extending!");
2063    if (EVT == VT) return N1;  // Not actually extending
2064
2065    if (N1C) {
2066      APInt Val = N1C->getAPIntValue();
2067      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2068      Val <<= Val.getBitWidth()-FromBits;
2069      Val = Val.ashr(Val.getBitWidth()-FromBits);
2070      return getConstant(Val, VT);
2071    }
2072    break;
2073  }
2074  case ISD::EXTRACT_VECTOR_ELT:
2075    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2076
2077    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2078    if (N1.getOpcode() == ISD::UNDEF)
2079      return getNode(ISD::UNDEF, VT);
2080
2081    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2082    // expanding copies of large vectors from registers.
2083    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2084        N1.getNumOperands() > 0) {
2085      unsigned Factor =
2086        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2087      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2088                     N1.getOperand(N2C->getValue() / Factor),
2089                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2090    }
2091
2092    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2093    // expanding large vector constants.
2094    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2095      return N1.getOperand(N2C->getValue());
2096
2097    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2098    // operations are lowered to scalars.
2099    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2100      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2101        if (IEC == N2C)
2102          return N1.getOperand(1);
2103        else
2104          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2105      }
2106    break;
2107  case ISD::EXTRACT_ELEMENT:
2108    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2109    assert(!MVT::isVector(N1.getValueType()) &&
2110           MVT::isInteger(N1.getValueType()) &&
2111           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2112           "EXTRACT_ELEMENT only applies to integers!");
2113
2114    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2115    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2116    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2117    if (N1.getOpcode() == ISD::BUILD_PAIR)
2118      return N1.getOperand(N2C->getValue());
2119
2120    // EXTRACT_ELEMENT of a constant int is also very common.
2121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2122      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2123      return getConstant(C->getValue() >> Shift, VT);
2124    }
2125    break;
2126  case ISD::EXTRACT_SUBVECTOR:
2127    if (N1.getValueType() == VT) // Trivial extraction.
2128      return N1;
2129    break;
2130  }
2131
2132  if (N1C) {
2133    if (N2C) {
2134      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2135      switch (Opcode) {
2136      case ISD::ADD: return getConstant(C1 + C2, VT);
2137      case ISD::SUB: return getConstant(C1 - C2, VT);
2138      case ISD::MUL: return getConstant(C1 * C2, VT);
2139      case ISD::UDIV:
2140        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2141        break;
2142      case ISD::UREM :
2143        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2144        break;
2145      case ISD::SDIV :
2146        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2147        break;
2148      case ISD::SREM :
2149        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2150        break;
2151      case ISD::AND  : return getConstant(C1 & C2, VT);
2152      case ISD::OR   : return getConstant(C1 | C2, VT);
2153      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2154      case ISD::SHL  : return getConstant(C1 << C2, VT);
2155      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2156      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2157      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2158      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2159      default: break;
2160      }
2161    } else {      // Cannonicalize constant to RHS if commutative
2162      if (isCommutativeBinOp(Opcode)) {
2163        std::swap(N1C, N2C);
2164        std::swap(N1, N2);
2165      }
2166    }
2167  }
2168
2169  // Constant fold FP operations.
2170  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2171  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2172  if (N1CFP) {
2173    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2174      // Cannonicalize constant to RHS if commutative
2175      std::swap(N1CFP, N2CFP);
2176      std::swap(N1, N2);
2177    } else if (N2CFP && VT != MVT::ppcf128) {
2178      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2179      APFloat::opStatus s;
2180      switch (Opcode) {
2181      case ISD::FADD:
2182        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2183        if (s != APFloat::opInvalidOp)
2184          return getConstantFP(V1, VT);
2185        break;
2186      case ISD::FSUB:
2187        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2188        if (s!=APFloat::opInvalidOp)
2189          return getConstantFP(V1, VT);
2190        break;
2191      case ISD::FMUL:
2192        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2193        if (s!=APFloat::opInvalidOp)
2194          return getConstantFP(V1, VT);
2195        break;
2196      case ISD::FDIV:
2197        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2198        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2199          return getConstantFP(V1, VT);
2200        break;
2201      case ISD::FREM :
2202        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2203        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2204          return getConstantFP(V1, VT);
2205        break;
2206      case ISD::FCOPYSIGN:
2207        V1.copySign(V2);
2208        return getConstantFP(V1, VT);
2209      default: break;
2210      }
2211    }
2212  }
2213
2214  // Canonicalize an UNDEF to the RHS, even over a constant.
2215  if (N1.getOpcode() == ISD::UNDEF) {
2216    if (isCommutativeBinOp(Opcode)) {
2217      std::swap(N1, N2);
2218    } else {
2219      switch (Opcode) {
2220      case ISD::FP_ROUND_INREG:
2221      case ISD::SIGN_EXTEND_INREG:
2222      case ISD::SUB:
2223      case ISD::FSUB:
2224      case ISD::FDIV:
2225      case ISD::FREM:
2226      case ISD::SRA:
2227        return N1;     // fold op(undef, arg2) -> undef
2228      case ISD::UDIV:
2229      case ISD::SDIV:
2230      case ISD::UREM:
2231      case ISD::SREM:
2232      case ISD::SRL:
2233      case ISD::SHL:
2234        if (!MVT::isVector(VT))
2235          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2236        // For vectors, we can't easily build an all zero vector, just return
2237        // the LHS.
2238        return N2;
2239      }
2240    }
2241  }
2242
2243  // Fold a bunch of operators when the RHS is undef.
2244  if (N2.getOpcode() == ISD::UNDEF) {
2245    switch (Opcode) {
2246    case ISD::ADD:
2247    case ISD::ADDC:
2248    case ISD::ADDE:
2249    case ISD::SUB:
2250    case ISD::FADD:
2251    case ISD::FSUB:
2252    case ISD::FMUL:
2253    case ISD::FDIV:
2254    case ISD::FREM:
2255    case ISD::UDIV:
2256    case ISD::SDIV:
2257    case ISD::UREM:
2258    case ISD::SREM:
2259    case ISD::XOR:
2260      return N2;       // fold op(arg1, undef) -> undef
2261    case ISD::MUL:
2262    case ISD::AND:
2263    case ISD::SRL:
2264    case ISD::SHL:
2265      if (!MVT::isVector(VT))
2266        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2267      // For vectors, we can't easily build an all zero vector, just return
2268      // the LHS.
2269      return N1;
2270    case ISD::OR:
2271      if (!MVT::isVector(VT))
2272        return getConstant(MVT::getIntVTBitMask(VT), VT);
2273      // For vectors, we can't easily build an all one vector, just return
2274      // the LHS.
2275      return N1;
2276    case ISD::SRA:
2277      return N1;
2278    }
2279  }
2280
2281  // Memoize this node if possible.
2282  SDNode *N;
2283  SDVTList VTs = getVTList(VT);
2284  if (VT != MVT::Flag) {
2285    SDOperand Ops[] = { N1, N2 };
2286    FoldingSetNodeID ID;
2287    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2288    void *IP = 0;
2289    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2290      return SDOperand(E, 0);
2291    N = new BinarySDNode(Opcode, VTs, N1, N2);
2292    CSEMap.InsertNode(N, IP);
2293  } else {
2294    N = new BinarySDNode(Opcode, VTs, N1, N2);
2295  }
2296
2297  AllNodes.push_back(N);
2298  return SDOperand(N, 0);
2299}
2300
2301SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2302                                SDOperand N1, SDOperand N2, SDOperand N3) {
2303  // Perform various simplifications.
2304  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2305  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2306  switch (Opcode) {
2307  case ISD::SETCC: {
2308    // Use FoldSetCC to simplify SETCC's.
2309    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2310    if (Simp.Val) return Simp;
2311    break;
2312  }
2313  case ISD::SELECT:
2314    if (N1C) {
2315     if (N1C->getValue())
2316        return N2;             // select true, X, Y -> X
2317      else
2318        return N3;             // select false, X, Y -> Y
2319    }
2320
2321    if (N2 == N3) return N2;   // select C, X, X -> X
2322    break;
2323  case ISD::BRCOND:
2324    if (N2C) {
2325      if (N2C->getValue()) // Unconditional branch
2326        return getNode(ISD::BR, MVT::Other, N1, N3);
2327      else
2328        return N1;         // Never-taken branch
2329    }
2330    break;
2331  case ISD::VECTOR_SHUFFLE:
2332    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2333           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2334           N3.getOpcode() == ISD::BUILD_VECTOR &&
2335           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2336           "Illegal VECTOR_SHUFFLE node!");
2337    break;
2338  case ISD::BIT_CONVERT:
2339    // Fold bit_convert nodes from a type to themselves.
2340    if (N1.getValueType() == VT)
2341      return N1;
2342    break;
2343  }
2344
2345  // Memoize node if it doesn't produce a flag.
2346  SDNode *N;
2347  SDVTList VTs = getVTList(VT);
2348  if (VT != MVT::Flag) {
2349    SDOperand Ops[] = { N1, N2, N3 };
2350    FoldingSetNodeID ID;
2351    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2352    void *IP = 0;
2353    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2354      return SDOperand(E, 0);
2355    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2356    CSEMap.InsertNode(N, IP);
2357  } else {
2358    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2359  }
2360  AllNodes.push_back(N);
2361  return SDOperand(N, 0);
2362}
2363
2364SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2365                                SDOperand N1, SDOperand N2, SDOperand N3,
2366                                SDOperand N4) {
2367  SDOperand Ops[] = { N1, N2, N3, N4 };
2368  return getNode(Opcode, VT, Ops, 4);
2369}
2370
2371SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2372                                SDOperand N1, SDOperand N2, SDOperand N3,
2373                                SDOperand N4, SDOperand N5) {
2374  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2375  return getNode(Opcode, VT, Ops, 5);
2376}
2377
2378SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2379                                  SDOperand Src, SDOperand Size,
2380                                  SDOperand Align,
2381                                  SDOperand AlwaysInline) {
2382  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2383  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2384}
2385
2386SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2387                                  SDOperand Src, SDOperand Size,
2388                                  SDOperand Align,
2389                                  SDOperand AlwaysInline) {
2390  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2391  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2392}
2393
2394SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2395                                  SDOperand Src, SDOperand Size,
2396                                  SDOperand Align,
2397                                  SDOperand AlwaysInline) {
2398  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2399  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2400}
2401
2402SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2403                                  SDOperand Ptr, SDOperand Cmp,
2404                                  SDOperand Swp, MVT::ValueType VT) {
2405  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2406  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2407  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2408  FoldingSetNodeID ID;
2409  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2410  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2411  ID.AddInteger((unsigned int)VT);
2412  void* IP = 0;
2413  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2414    return SDOperand(E, 0);
2415  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2416  CSEMap.InsertNode(N, IP);
2417  AllNodes.push_back(N);
2418  return SDOperand(N, 0);
2419}
2420
2421SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2422                                  SDOperand Ptr, SDOperand Val,
2423                                  MVT::ValueType VT) {
2424  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2425         && "Invalid Atomic Op");
2426  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2427  FoldingSetNodeID ID;
2428  SDOperand Ops[] = {Chain, Ptr, Val};
2429  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2430  ID.AddInteger((unsigned int)VT);
2431  void* IP = 0;
2432  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2433    return SDOperand(E, 0);
2434  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2435  CSEMap.InsertNode(N, IP);
2436  AllNodes.push_back(N);
2437  return SDOperand(N, 0);
2438}
2439
2440SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2441                                SDOperand Chain, SDOperand Ptr,
2442                                const Value *SV, int SVOffset,
2443                                bool isVolatile, unsigned Alignment) {
2444  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2445    const Type *Ty = 0;
2446    if (VT != MVT::iPTR) {
2447      Ty = MVT::getTypeForValueType(VT);
2448    } else if (SV) {
2449      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2450      assert(PT && "Value for load must be a pointer");
2451      Ty = PT->getElementType();
2452    }
2453    assert(Ty && "Could not get type information for load");
2454    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2455  }
2456  SDVTList VTs = getVTList(VT, MVT::Other);
2457  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2458  SDOperand Ops[] = { Chain, Ptr, Undef };
2459  FoldingSetNodeID ID;
2460  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2461  ID.AddInteger(ISD::UNINDEXED);
2462  ID.AddInteger(ISD::NON_EXTLOAD);
2463  ID.AddInteger((unsigned int)VT);
2464  ID.AddInteger(Alignment);
2465  ID.AddInteger(isVolatile);
2466  void *IP = 0;
2467  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2468    return SDOperand(E, 0);
2469  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2470                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2471                             isVolatile);
2472  CSEMap.InsertNode(N, IP);
2473  AllNodes.push_back(N);
2474  return SDOperand(N, 0);
2475}
2476
2477SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2478                                   SDOperand Chain, SDOperand Ptr,
2479                                   const Value *SV,
2480                                   int SVOffset, MVT::ValueType EVT,
2481                                   bool isVolatile, unsigned Alignment) {
2482  // If they are asking for an extending load from/to the same thing, return a
2483  // normal load.
2484  if (VT == EVT)
2485    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2486
2487  if (MVT::isVector(VT))
2488    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2489  else
2490    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2491           "Should only be an extending load, not truncating!");
2492  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2493         "Cannot sign/zero extend a FP/Vector load!");
2494  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2495         "Cannot convert from FP to Int or Int -> FP!");
2496
2497  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2498    const Type *Ty = 0;
2499    if (VT != MVT::iPTR) {
2500      Ty = MVT::getTypeForValueType(VT);
2501    } else if (SV) {
2502      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2503      assert(PT && "Value for load must be a pointer");
2504      Ty = PT->getElementType();
2505    }
2506    assert(Ty && "Could not get type information for load");
2507    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2508  }
2509  SDVTList VTs = getVTList(VT, MVT::Other);
2510  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2511  SDOperand Ops[] = { Chain, Ptr, Undef };
2512  FoldingSetNodeID ID;
2513  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2514  ID.AddInteger(ISD::UNINDEXED);
2515  ID.AddInteger(ExtType);
2516  ID.AddInteger((unsigned int)EVT);
2517  ID.AddInteger(Alignment);
2518  ID.AddInteger(isVolatile);
2519  void *IP = 0;
2520  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2521    return SDOperand(E, 0);
2522  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2523                             SV, SVOffset, Alignment, isVolatile);
2524  CSEMap.InsertNode(N, IP);
2525  AllNodes.push_back(N);
2526  return SDOperand(N, 0);
2527}
2528
2529SDOperand
2530SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2531                             SDOperand Offset, ISD::MemIndexedMode AM) {
2532  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2533  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2534         "Load is already a indexed load!");
2535  MVT::ValueType VT = OrigLoad.getValueType();
2536  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2537  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2538  FoldingSetNodeID ID;
2539  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2540  ID.AddInteger(AM);
2541  ID.AddInteger(LD->getExtensionType());
2542  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2543  ID.AddInteger(LD->getAlignment());
2544  ID.AddInteger(LD->isVolatile());
2545  void *IP = 0;
2546  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2547    return SDOperand(E, 0);
2548  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2549                             LD->getExtensionType(), LD->getMemoryVT(),
2550                             LD->getSrcValue(), LD->getSrcValueOffset(),
2551                             LD->getAlignment(), LD->isVolatile());
2552  CSEMap.InsertNode(N, IP);
2553  AllNodes.push_back(N);
2554  return SDOperand(N, 0);
2555}
2556
2557SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2558                                 SDOperand Ptr, const Value *SV, int SVOffset,
2559                                 bool isVolatile, unsigned Alignment) {
2560  MVT::ValueType VT = Val.getValueType();
2561
2562  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2563    const Type *Ty = 0;
2564    if (VT != MVT::iPTR) {
2565      Ty = MVT::getTypeForValueType(VT);
2566    } else if (SV) {
2567      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2568      assert(PT && "Value for store must be a pointer");
2569      Ty = PT->getElementType();
2570    }
2571    assert(Ty && "Could not get type information for store");
2572    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2573  }
2574  SDVTList VTs = getVTList(MVT::Other);
2575  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2576  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2577  FoldingSetNodeID ID;
2578  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2579  ID.AddInteger(ISD::UNINDEXED);
2580  ID.AddInteger(false);
2581  ID.AddInteger((unsigned int)VT);
2582  ID.AddInteger(Alignment);
2583  ID.AddInteger(isVolatile);
2584  void *IP = 0;
2585  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2586    return SDOperand(E, 0);
2587  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2588                              VT, SV, SVOffset, Alignment, isVolatile);
2589  CSEMap.InsertNode(N, IP);
2590  AllNodes.push_back(N);
2591  return SDOperand(N, 0);
2592}
2593
2594SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2595                                      SDOperand Ptr, const Value *SV,
2596                                      int SVOffset, MVT::ValueType SVT,
2597                                      bool isVolatile, unsigned Alignment) {
2598  MVT::ValueType VT = Val.getValueType();
2599
2600  if (VT == SVT)
2601    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2602
2603  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2604         "Not a truncation?");
2605  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2606         "Can't do FP-INT conversion!");
2607
2608  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2609    const Type *Ty = 0;
2610    if (VT != MVT::iPTR) {
2611      Ty = MVT::getTypeForValueType(VT);
2612    } else if (SV) {
2613      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2614      assert(PT && "Value for store must be a pointer");
2615      Ty = PT->getElementType();
2616    }
2617    assert(Ty && "Could not get type information for store");
2618    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2619  }
2620  SDVTList VTs = getVTList(MVT::Other);
2621  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2622  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2623  FoldingSetNodeID ID;
2624  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2625  ID.AddInteger(ISD::UNINDEXED);
2626  ID.AddInteger(1);
2627  ID.AddInteger((unsigned int)SVT);
2628  ID.AddInteger(Alignment);
2629  ID.AddInteger(isVolatile);
2630  void *IP = 0;
2631  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2632    return SDOperand(E, 0);
2633  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2634                              SVT, SV, SVOffset, Alignment, isVolatile);
2635  CSEMap.InsertNode(N, IP);
2636  AllNodes.push_back(N);
2637  return SDOperand(N, 0);
2638}
2639
2640SDOperand
2641SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2642                              SDOperand Offset, ISD::MemIndexedMode AM) {
2643  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2644  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2645         "Store is already a indexed store!");
2646  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2647  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2648  FoldingSetNodeID ID;
2649  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2650  ID.AddInteger(AM);
2651  ID.AddInteger(ST->isTruncatingStore());
2652  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2653  ID.AddInteger(ST->getAlignment());
2654  ID.AddInteger(ST->isVolatile());
2655  void *IP = 0;
2656  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2657    return SDOperand(E, 0);
2658  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2659                              ST->isTruncatingStore(), ST->getMemoryVT(),
2660                              ST->getSrcValue(), ST->getSrcValueOffset(),
2661                              ST->getAlignment(), ST->isVolatile());
2662  CSEMap.InsertNode(N, IP);
2663  AllNodes.push_back(N);
2664  return SDOperand(N, 0);
2665}
2666
2667SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2668                                 SDOperand Chain, SDOperand Ptr,
2669                                 SDOperand SV) {
2670  SDOperand Ops[] = { Chain, Ptr, SV };
2671  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2672}
2673
2674SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2675                                const SDOperand *Ops, unsigned NumOps) {
2676  switch (NumOps) {
2677  case 0: return getNode(Opcode, VT);
2678  case 1: return getNode(Opcode, VT, Ops[0]);
2679  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2680  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2681  default: break;
2682  }
2683
2684  switch (Opcode) {
2685  default: break;
2686  case ISD::SELECT_CC: {
2687    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2688    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2689           "LHS and RHS of condition must have same type!");
2690    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2691           "True and False arms of SelectCC must have same type!");
2692    assert(Ops[2].getValueType() == VT &&
2693           "select_cc node must be of same type as true and false value!");
2694    break;
2695  }
2696  case ISD::BR_CC: {
2697    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2698    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2699           "LHS/RHS of comparison should match types!");
2700    break;
2701  }
2702  }
2703
2704  // Memoize nodes.
2705  SDNode *N;
2706  SDVTList VTs = getVTList(VT);
2707  if (VT != MVT::Flag) {
2708    FoldingSetNodeID ID;
2709    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2710    void *IP = 0;
2711    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2712      return SDOperand(E, 0);
2713    N = new SDNode(Opcode, VTs, Ops, NumOps);
2714    CSEMap.InsertNode(N, IP);
2715  } else {
2716    N = new SDNode(Opcode, VTs, Ops, NumOps);
2717  }
2718  AllNodes.push_back(N);
2719  return SDOperand(N, 0);
2720}
2721
2722SDOperand SelectionDAG::getNode(unsigned Opcode,
2723                                std::vector<MVT::ValueType> &ResultTys,
2724                                const SDOperand *Ops, unsigned NumOps) {
2725  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2726                 Ops, NumOps);
2727}
2728
2729SDOperand SelectionDAG::getNode(unsigned Opcode,
2730                                const MVT::ValueType *VTs, unsigned NumVTs,
2731                                const SDOperand *Ops, unsigned NumOps) {
2732  if (NumVTs == 1)
2733    return getNode(Opcode, VTs[0], Ops, NumOps);
2734  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2735}
2736
2737SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2738                                const SDOperand *Ops, unsigned NumOps) {
2739  if (VTList.NumVTs == 1)
2740    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2741
2742  switch (Opcode) {
2743  // FIXME: figure out how to safely handle things like
2744  // int foo(int x) { return 1 << (x & 255); }
2745  // int bar() { return foo(256); }
2746#if 0
2747  case ISD::SRA_PARTS:
2748  case ISD::SRL_PARTS:
2749  case ISD::SHL_PARTS:
2750    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2751        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2752      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2753    else if (N3.getOpcode() == ISD::AND)
2754      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2755        // If the and is only masking out bits that cannot effect the shift,
2756        // eliminate the and.
2757        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2758        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2759          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2760      }
2761    break;
2762#endif
2763  }
2764
2765  // Memoize the node unless it returns a flag.
2766  SDNode *N;
2767  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2768    FoldingSetNodeID ID;
2769    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2770    void *IP = 0;
2771    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2772      return SDOperand(E, 0);
2773    if (NumOps == 1)
2774      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2775    else if (NumOps == 2)
2776      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2777    else if (NumOps == 3)
2778      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2779    else
2780      N = new SDNode(Opcode, VTList, Ops, NumOps);
2781    CSEMap.InsertNode(N, IP);
2782  } else {
2783    if (NumOps == 1)
2784      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2785    else if (NumOps == 2)
2786      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2787    else if (NumOps == 3)
2788      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2789    else
2790      N = new SDNode(Opcode, VTList, Ops, NumOps);
2791  }
2792  AllNodes.push_back(N);
2793  return SDOperand(N, 0);
2794}
2795
2796SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2797  return getNode(Opcode, VTList, 0, 0);
2798}
2799
2800SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2801                                SDOperand N1) {
2802  SDOperand Ops[] = { N1 };
2803  return getNode(Opcode, VTList, Ops, 1);
2804}
2805
2806SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2807                                SDOperand N1, SDOperand N2) {
2808  SDOperand Ops[] = { N1, N2 };
2809  return getNode(Opcode, VTList, Ops, 2);
2810}
2811
2812SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2813                                SDOperand N1, SDOperand N2, SDOperand N3) {
2814  SDOperand Ops[] = { N1, N2, N3 };
2815  return getNode(Opcode, VTList, Ops, 3);
2816}
2817
2818SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2819                                SDOperand N1, SDOperand N2, SDOperand N3,
2820                                SDOperand N4) {
2821  SDOperand Ops[] = { N1, N2, N3, N4 };
2822  return getNode(Opcode, VTList, Ops, 4);
2823}
2824
2825SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2826                                SDOperand N1, SDOperand N2, SDOperand N3,
2827                                SDOperand N4, SDOperand N5) {
2828  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2829  return getNode(Opcode, VTList, Ops, 5);
2830}
2831
2832SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2833  return makeVTList(SDNode::getValueTypeList(VT), 1);
2834}
2835
2836SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2837  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2838       E = VTList.end(); I != E; ++I) {
2839    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2840      return makeVTList(&(*I)[0], 2);
2841  }
2842  std::vector<MVT::ValueType> V;
2843  V.push_back(VT1);
2844  V.push_back(VT2);
2845  VTList.push_front(V);
2846  return makeVTList(&(*VTList.begin())[0], 2);
2847}
2848SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2849                                 MVT::ValueType VT3) {
2850  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2851       E = VTList.end(); I != E; ++I) {
2852    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2853        (*I)[2] == VT3)
2854      return makeVTList(&(*I)[0], 3);
2855  }
2856  std::vector<MVT::ValueType> V;
2857  V.push_back(VT1);
2858  V.push_back(VT2);
2859  V.push_back(VT3);
2860  VTList.push_front(V);
2861  return makeVTList(&(*VTList.begin())[0], 3);
2862}
2863
2864SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2865  switch (NumVTs) {
2866    case 0: assert(0 && "Cannot have nodes without results!");
2867    case 1: return getVTList(VTs[0]);
2868    case 2: return getVTList(VTs[0], VTs[1]);
2869    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2870    default: break;
2871  }
2872
2873  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2874       E = VTList.end(); I != E; ++I) {
2875    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2876
2877    bool NoMatch = false;
2878    for (unsigned i = 2; i != NumVTs; ++i)
2879      if (VTs[i] != (*I)[i]) {
2880        NoMatch = true;
2881        break;
2882      }
2883    if (!NoMatch)
2884      return makeVTList(&*I->begin(), NumVTs);
2885  }
2886
2887  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2888  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2889}
2890
2891
2892/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2893/// specified operands.  If the resultant node already exists in the DAG,
2894/// this does not modify the specified node, instead it returns the node that
2895/// already exists.  If the resultant node does not exist in the DAG, the
2896/// input node is returned.  As a degenerate case, if you specify the same
2897/// input operands as the node already has, the input node is returned.
2898SDOperand SelectionDAG::
2899UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2900  SDNode *N = InN.Val;
2901  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2902
2903  // Check to see if there is no change.
2904  if (Op == N->getOperand(0)) return InN;
2905
2906  // See if the modified node already exists.
2907  void *InsertPos = 0;
2908  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2909    return SDOperand(Existing, InN.ResNo);
2910
2911  // Nope it doesn't.  Remove the node from it's current place in the maps.
2912  if (InsertPos)
2913    RemoveNodeFromCSEMaps(N);
2914
2915  // Now we update the operands.
2916  N->OperandList[0].Val->removeUser(N);
2917  Op.Val->addUser(N);
2918  N->OperandList[0] = Op;
2919
2920  // If this gets put into a CSE map, add it.
2921  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2922  return InN;
2923}
2924
2925SDOperand SelectionDAG::
2926UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2927  SDNode *N = InN.Val;
2928  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2929
2930  // Check to see if there is no change.
2931  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2932    return InN;   // No operands changed, just return the input node.
2933
2934  // See if the modified node already exists.
2935  void *InsertPos = 0;
2936  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2937    return SDOperand(Existing, InN.ResNo);
2938
2939  // Nope it doesn't.  Remove the node from it's current place in the maps.
2940  if (InsertPos)
2941    RemoveNodeFromCSEMaps(N);
2942
2943  // Now we update the operands.
2944  if (N->OperandList[0] != Op1) {
2945    N->OperandList[0].Val->removeUser(N);
2946    Op1.Val->addUser(N);
2947    N->OperandList[0] = Op1;
2948  }
2949  if (N->OperandList[1] != Op2) {
2950    N->OperandList[1].Val->removeUser(N);
2951    Op2.Val->addUser(N);
2952    N->OperandList[1] = Op2;
2953  }
2954
2955  // If this gets put into a CSE map, add it.
2956  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2957  return InN;
2958}
2959
2960SDOperand SelectionDAG::
2961UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2962  SDOperand Ops[] = { Op1, Op2, Op3 };
2963  return UpdateNodeOperands(N, Ops, 3);
2964}
2965
2966SDOperand SelectionDAG::
2967UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2968                   SDOperand Op3, SDOperand Op4) {
2969  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2970  return UpdateNodeOperands(N, Ops, 4);
2971}
2972
2973SDOperand SelectionDAG::
2974UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2975                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2976  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2977  return UpdateNodeOperands(N, Ops, 5);
2978}
2979
2980
2981SDOperand SelectionDAG::
2982UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2983  SDNode *N = InN.Val;
2984  assert(N->getNumOperands() == NumOps &&
2985         "Update with wrong number of operands");
2986
2987  // Check to see if there is no change.
2988  bool AnyChange = false;
2989  for (unsigned i = 0; i != NumOps; ++i) {
2990    if (Ops[i] != N->getOperand(i)) {
2991      AnyChange = true;
2992      break;
2993    }
2994  }
2995
2996  // No operands changed, just return the input node.
2997  if (!AnyChange) return InN;
2998
2999  // See if the modified node already exists.
3000  void *InsertPos = 0;
3001  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3002    return SDOperand(Existing, InN.ResNo);
3003
3004  // Nope it doesn't.  Remove the node from it's current place in the maps.
3005  if (InsertPos)
3006    RemoveNodeFromCSEMaps(N);
3007
3008  // Now we update the operands.
3009  for (unsigned i = 0; i != NumOps; ++i) {
3010    if (N->OperandList[i] != Ops[i]) {
3011      N->OperandList[i].Val->removeUser(N);
3012      Ops[i].Val->addUser(N);
3013      N->OperandList[i] = Ops[i];
3014    }
3015  }
3016
3017  // If this gets put into a CSE map, add it.
3018  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3019  return InN;
3020}
3021
3022
3023/// MorphNodeTo - This frees the operands of the current node, resets the
3024/// opcode, types, and operands to the specified value.  This should only be
3025/// used by the SelectionDAG class.
3026void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3027                         const SDOperand *Ops, unsigned NumOps) {
3028  NodeType = Opc;
3029  ValueList = L.VTs;
3030  NumValues = L.NumVTs;
3031
3032  // Clear the operands list, updating used nodes to remove this from their
3033  // use list.
3034  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3035    I->Val->removeUser(this);
3036
3037  // If NumOps is larger than the # of operands we currently have, reallocate
3038  // the operand list.
3039  if (NumOps > NumOperands) {
3040    if (OperandsNeedDelete)
3041      delete [] OperandList;
3042    OperandList = new SDOperand[NumOps];
3043    OperandsNeedDelete = true;
3044  }
3045
3046  // Assign the new operands.
3047  NumOperands = NumOps;
3048
3049  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3050    OperandList[i] = Ops[i];
3051    SDNode *N = OperandList[i].Val;
3052    N->Uses.push_back(this);
3053  }
3054}
3055
3056/// SelectNodeTo - These are used for target selectors to *mutate* the
3057/// specified node to have the specified return type, Target opcode, and
3058/// operands.  Note that target opcodes are stored as
3059/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3060///
3061/// Note that SelectNodeTo returns the resultant node.  If there is already a
3062/// node of the specified opcode and operands, it returns that node instead of
3063/// the current one.
3064SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3065                                   MVT::ValueType VT) {
3066  SDVTList VTs = getVTList(VT);
3067  FoldingSetNodeID ID;
3068  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3069  void *IP = 0;
3070  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3071    return ON;
3072
3073  RemoveNodeFromCSEMaps(N);
3074
3075  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3076
3077  CSEMap.InsertNode(N, IP);
3078  return N;
3079}
3080
3081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3082                                   MVT::ValueType VT, SDOperand Op1) {
3083  // If an identical node already exists, use it.
3084  SDVTList VTs = getVTList(VT);
3085  SDOperand Ops[] = { Op1 };
3086
3087  FoldingSetNodeID ID;
3088  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3089  void *IP = 0;
3090  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3091    return ON;
3092
3093  RemoveNodeFromCSEMaps(N);
3094  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3095  CSEMap.InsertNode(N, IP);
3096  return N;
3097}
3098
3099SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3100                                   MVT::ValueType VT, SDOperand Op1,
3101                                   SDOperand Op2) {
3102  // If an identical node already exists, use it.
3103  SDVTList VTs = getVTList(VT);
3104  SDOperand Ops[] = { Op1, Op2 };
3105
3106  FoldingSetNodeID ID;
3107  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3108  void *IP = 0;
3109  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3110    return ON;
3111
3112  RemoveNodeFromCSEMaps(N);
3113
3114  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3115
3116  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3117  return N;
3118}
3119
3120SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3121                                   MVT::ValueType VT, SDOperand Op1,
3122                                   SDOperand Op2, SDOperand Op3) {
3123  // If an identical node already exists, use it.
3124  SDVTList VTs = getVTList(VT);
3125  SDOperand Ops[] = { Op1, Op2, Op3 };
3126  FoldingSetNodeID ID;
3127  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3128  void *IP = 0;
3129  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3130    return ON;
3131
3132  RemoveNodeFromCSEMaps(N);
3133
3134  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3135
3136  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3137  return N;
3138}
3139
3140SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3141                                   MVT::ValueType VT, const SDOperand *Ops,
3142                                   unsigned NumOps) {
3143  // If an identical node already exists, use it.
3144  SDVTList VTs = getVTList(VT);
3145  FoldingSetNodeID ID;
3146  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3147  void *IP = 0;
3148  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3149    return ON;
3150
3151  RemoveNodeFromCSEMaps(N);
3152  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3153
3154  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3155  return N;
3156}
3157
3158SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3159                                   MVT::ValueType VT1, MVT::ValueType VT2,
3160                                   SDOperand Op1, SDOperand Op2) {
3161  SDVTList VTs = getVTList(VT1, VT2);
3162  FoldingSetNodeID ID;
3163  SDOperand Ops[] = { Op1, Op2 };
3164  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3165  void *IP = 0;
3166  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3167    return ON;
3168
3169  RemoveNodeFromCSEMaps(N);
3170  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3171  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3172  return N;
3173}
3174
3175SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3176                                   MVT::ValueType VT1, MVT::ValueType VT2,
3177                                   SDOperand Op1, SDOperand Op2,
3178                                   SDOperand Op3) {
3179  // If an identical node already exists, use it.
3180  SDVTList VTs = getVTList(VT1, VT2);
3181  SDOperand Ops[] = { Op1, Op2, Op3 };
3182  FoldingSetNodeID ID;
3183  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3184  void *IP = 0;
3185  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3186    return ON;
3187
3188  RemoveNodeFromCSEMaps(N);
3189
3190  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3191  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3192  return N;
3193}
3194
3195
3196/// getTargetNode - These are used for target selectors to create a new node
3197/// with specified return type(s), target opcode, and operands.
3198///
3199/// Note that getTargetNode returns the resultant node.  If there is already a
3200/// node of the specified opcode and operands, it returns that node instead of
3201/// the current one.
3202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3203  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3204}
3205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3206                                    SDOperand Op1) {
3207  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3208}
3209SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3210                                    SDOperand Op1, SDOperand Op2) {
3211  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3212}
3213SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3214                                    SDOperand Op1, SDOperand Op2,
3215                                    SDOperand Op3) {
3216  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3217}
3218SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3219                                    const SDOperand *Ops, unsigned NumOps) {
3220  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3221}
3222SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3223                                    MVT::ValueType VT2) {
3224  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3225  SDOperand Op;
3226  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3227}
3228SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3229                                    MVT::ValueType VT2, SDOperand Op1) {
3230  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3231  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3232}
3233SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3234                                    MVT::ValueType VT2, SDOperand Op1,
3235                                    SDOperand Op2) {
3236  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3237  SDOperand Ops[] = { Op1, Op2 };
3238  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3239}
3240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3241                                    MVT::ValueType VT2, SDOperand Op1,
3242                                    SDOperand Op2, SDOperand Op3) {
3243  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3244  SDOperand Ops[] = { Op1, Op2, Op3 };
3245  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3246}
3247SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3248                                    MVT::ValueType VT2,
3249                                    const SDOperand *Ops, unsigned NumOps) {
3250  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3251  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3252}
3253SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3254                                    MVT::ValueType VT2, MVT::ValueType VT3,
3255                                    SDOperand Op1, SDOperand Op2) {
3256  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3257  SDOperand Ops[] = { Op1, Op2 };
3258  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3259}
3260SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3261                                    MVT::ValueType VT2, MVT::ValueType VT3,
3262                                    SDOperand Op1, SDOperand Op2,
3263                                    SDOperand Op3) {
3264  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3265  SDOperand Ops[] = { Op1, Op2, Op3 };
3266  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3267}
3268SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3269                                    MVT::ValueType VT2, MVT::ValueType VT3,
3270                                    const SDOperand *Ops, unsigned NumOps) {
3271  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3272  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3273}
3274SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3275                                    MVT::ValueType VT2, MVT::ValueType VT3,
3276                                    MVT::ValueType VT4,
3277                                    const SDOperand *Ops, unsigned NumOps) {
3278  std::vector<MVT::ValueType> VTList;
3279  VTList.push_back(VT1);
3280  VTList.push_back(VT2);
3281  VTList.push_back(VT3);
3282  VTList.push_back(VT4);
3283  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3284  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3285}
3286SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3287                                    std::vector<MVT::ValueType> &ResultTys,
3288                                    const SDOperand *Ops, unsigned NumOps) {
3289  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3290  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3291                 Ops, NumOps).Val;
3292}
3293
3294
3295/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3296/// This can cause recursive merging of nodes in the DAG.
3297///
3298/// This version assumes From has a single result value.
3299///
3300void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3301                                      DAGUpdateListener *UpdateListener) {
3302  SDNode *From = FromN.Val;
3303  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3304         "Cannot replace with this method!");
3305  assert(From != To.Val && "Cannot replace uses of with self");
3306
3307  while (!From->use_empty()) {
3308    // Process users until they are all gone.
3309    SDNode *U = *From->use_begin();
3310
3311    // This node is about to morph, remove its old self from the CSE maps.
3312    RemoveNodeFromCSEMaps(U);
3313
3314    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3315         I != E; ++I)
3316      if (I->Val == From) {
3317        From->removeUser(U);
3318        *I = To;
3319        To.Val->addUser(U);
3320      }
3321
3322    // Now that we have modified U, add it back to the CSE maps.  If it already
3323    // exists there, recursively merge the results together.
3324    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3325      ReplaceAllUsesWith(U, Existing, UpdateListener);
3326      // U is now dead.  Inform the listener if it exists and delete it.
3327      if (UpdateListener)
3328        UpdateListener->NodeDeleted(U);
3329      DeleteNodeNotInCSEMaps(U);
3330    } else {
3331      // If the node doesn't already exist, we updated it.  Inform a listener if
3332      // it exists.
3333      if (UpdateListener)
3334        UpdateListener->NodeUpdated(U);
3335    }
3336  }
3337}
3338
3339/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3340/// This can cause recursive merging of nodes in the DAG.
3341///
3342/// This version assumes From/To have matching types and numbers of result
3343/// values.
3344///
3345void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3346                                      DAGUpdateListener *UpdateListener) {
3347  assert(From != To && "Cannot replace uses of with self");
3348  assert(From->getNumValues() == To->getNumValues() &&
3349         "Cannot use this version of ReplaceAllUsesWith!");
3350  if (From->getNumValues() == 1)   // If possible, use the faster version.
3351    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3352                              UpdateListener);
3353
3354  while (!From->use_empty()) {
3355    // Process users until they are all gone.
3356    SDNode *U = *From->use_begin();
3357
3358    // This node is about to morph, remove its old self from the CSE maps.
3359    RemoveNodeFromCSEMaps(U);
3360
3361    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3362         I != E; ++I)
3363      if (I->Val == From) {
3364        From->removeUser(U);
3365        I->Val = To;
3366        To->addUser(U);
3367      }
3368
3369    // Now that we have modified U, add it back to the CSE maps.  If it already
3370    // exists there, recursively merge the results together.
3371    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3372      ReplaceAllUsesWith(U, Existing, UpdateListener);
3373      // U is now dead.  Inform the listener if it exists and delete it.
3374      if (UpdateListener)
3375        UpdateListener->NodeDeleted(U);
3376      DeleteNodeNotInCSEMaps(U);
3377    } else {
3378      // If the node doesn't already exist, we updated it.  Inform a listener if
3379      // it exists.
3380      if (UpdateListener)
3381        UpdateListener->NodeUpdated(U);
3382    }
3383  }
3384}
3385
3386/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3387/// This can cause recursive merging of nodes in the DAG.
3388///
3389/// This version can replace From with any result values.  To must match the
3390/// number and types of values returned by From.
3391void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3392                                      const SDOperand *To,
3393                                      DAGUpdateListener *UpdateListener) {
3394  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3395    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3396
3397  while (!From->use_empty()) {
3398    // Process users until they are all gone.
3399    SDNode *U = *From->use_begin();
3400
3401    // This node is about to morph, remove its old self from the CSE maps.
3402    RemoveNodeFromCSEMaps(U);
3403
3404    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3405         I != E; ++I)
3406      if (I->Val == From) {
3407        const SDOperand &ToOp = To[I->ResNo];
3408        From->removeUser(U);
3409        *I = ToOp;
3410        ToOp.Val->addUser(U);
3411      }
3412
3413    // Now that we have modified U, add it back to the CSE maps.  If it already
3414    // exists there, recursively merge the results together.
3415    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3416      ReplaceAllUsesWith(U, Existing, UpdateListener);
3417      // U is now dead.  Inform the listener if it exists and delete it.
3418      if (UpdateListener)
3419        UpdateListener->NodeDeleted(U);
3420      DeleteNodeNotInCSEMaps(U);
3421    } else {
3422      // If the node doesn't already exist, we updated it.  Inform a listener if
3423      // it exists.
3424      if (UpdateListener)
3425        UpdateListener->NodeUpdated(U);
3426    }
3427  }
3428}
3429
3430namespace {
3431  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3432  /// any deleted nodes from the set passed into its constructor and recursively
3433  /// notifies another update listener if specified.
3434  class ChainedSetUpdaterListener :
3435  public SelectionDAG::DAGUpdateListener {
3436    SmallSetVector<SDNode*, 16> &Set;
3437    SelectionDAG::DAGUpdateListener *Chain;
3438  public:
3439    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3440                              SelectionDAG::DAGUpdateListener *chain)
3441      : Set(set), Chain(chain) {}
3442
3443    virtual void NodeDeleted(SDNode *N) {
3444      Set.remove(N);
3445      if (Chain) Chain->NodeDeleted(N);
3446    }
3447    virtual void NodeUpdated(SDNode *N) {
3448      if (Chain) Chain->NodeUpdated(N);
3449    }
3450  };
3451}
3452
3453/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3454/// uses of other values produced by From.Val alone.  The Deleted vector is
3455/// handled the same way as for ReplaceAllUsesWith.
3456void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3457                                             DAGUpdateListener *UpdateListener){
3458  assert(From != To && "Cannot replace a value with itself");
3459
3460  // Handle the simple, trivial, case efficiently.
3461  if (From.Val->getNumValues() == 1) {
3462    ReplaceAllUsesWith(From, To, UpdateListener);
3463    return;
3464  }
3465
3466  if (From.use_empty()) return;
3467
3468  // Get all of the users of From.Val.  We want these in a nice,
3469  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3470  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3471
3472  // When one of the recursive merges deletes nodes from the graph, we need to
3473  // make sure that UpdateListener is notified *and* that the node is removed
3474  // from Users if present.  CSUL does this.
3475  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3476
3477  while (!Users.empty()) {
3478    // We know that this user uses some value of From.  If it is the right
3479    // value, update it.
3480    SDNode *User = Users.back();
3481    Users.pop_back();
3482
3483    // Scan for an operand that matches From.
3484    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3485    for (; Op != E; ++Op)
3486      if (*Op == From) break;
3487
3488    // If there are no matches, the user must use some other result of From.
3489    if (Op == E) continue;
3490
3491    // Okay, we know this user needs to be updated.  Remove its old self
3492    // from the CSE maps.
3493    RemoveNodeFromCSEMaps(User);
3494
3495    // Update all operands that match "From" in case there are multiple uses.
3496    for (; Op != E; ++Op) {
3497      if (*Op == From) {
3498        From.Val->removeUser(User);
3499        *Op = To;
3500        To.Val->addUser(User);
3501      }
3502    }
3503
3504    // Now that we have modified User, add it back to the CSE maps.  If it
3505    // already exists there, recursively merge the results together.
3506    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3507    if (!Existing) {
3508      if (UpdateListener) UpdateListener->NodeUpdated(User);
3509      continue;  // Continue on to next user.
3510    }
3511
3512    // If there was already an existing matching node, use ReplaceAllUsesWith
3513    // to replace the dead one with the existing one.  This can cause
3514    // recursive merging of other unrelated nodes down the line.  The merging
3515    // can cause deletion of nodes that used the old value.  To handle this, we
3516    // use CSUL to remove them from the Users set.
3517    ReplaceAllUsesWith(User, Existing, &CSUL);
3518
3519    // User is now dead.  Notify a listener if present.
3520    if (UpdateListener) UpdateListener->NodeDeleted(User);
3521    DeleteNodeNotInCSEMaps(User);
3522  }
3523}
3524
3525
3526/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3527/// their allnodes order. It returns the maximum id.
3528unsigned SelectionDAG::AssignNodeIds() {
3529  unsigned Id = 0;
3530  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3531    SDNode *N = I;
3532    N->setNodeId(Id++);
3533  }
3534  return Id;
3535}
3536
3537/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3538/// based on their topological order. It returns the maximum id and a vector
3539/// of the SDNodes* in assigned order by reference.
3540unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3541  unsigned DAGSize = AllNodes.size();
3542  std::vector<unsigned> InDegree(DAGSize);
3543  std::vector<SDNode*> Sources;
3544
3545  // Use a two pass approach to avoid using a std::map which is slow.
3546  unsigned Id = 0;
3547  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3548    SDNode *N = I;
3549    N->setNodeId(Id++);
3550    unsigned Degree = N->use_size();
3551    InDegree[N->getNodeId()] = Degree;
3552    if (Degree == 0)
3553      Sources.push_back(N);
3554  }
3555
3556  TopOrder.clear();
3557  while (!Sources.empty()) {
3558    SDNode *N = Sources.back();
3559    Sources.pop_back();
3560    TopOrder.push_back(N);
3561    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3562      SDNode *P = I->Val;
3563      unsigned Degree = --InDegree[P->getNodeId()];
3564      if (Degree == 0)
3565        Sources.push_back(P);
3566    }
3567  }
3568
3569  // Second pass, assign the actual topological order as node ids.
3570  Id = 0;
3571  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3572       TI != TE; ++TI)
3573    (*TI)->setNodeId(Id++);
3574
3575  return Id;
3576}
3577
3578
3579
3580//===----------------------------------------------------------------------===//
3581//                              SDNode Class
3582//===----------------------------------------------------------------------===//
3583
3584// Out-of-line virtual method to give class a home.
3585void SDNode::ANCHOR() {}
3586void UnarySDNode::ANCHOR() {}
3587void BinarySDNode::ANCHOR() {}
3588void TernarySDNode::ANCHOR() {}
3589void HandleSDNode::ANCHOR() {}
3590void StringSDNode::ANCHOR() {}
3591void ConstantSDNode::ANCHOR() {}
3592void ConstantFPSDNode::ANCHOR() {}
3593void GlobalAddressSDNode::ANCHOR() {}
3594void FrameIndexSDNode::ANCHOR() {}
3595void JumpTableSDNode::ANCHOR() {}
3596void ConstantPoolSDNode::ANCHOR() {}
3597void BasicBlockSDNode::ANCHOR() {}
3598void SrcValueSDNode::ANCHOR() {}
3599void MemOperandSDNode::ANCHOR() {}
3600void RegisterSDNode::ANCHOR() {}
3601void ExternalSymbolSDNode::ANCHOR() {}
3602void CondCodeSDNode::ANCHOR() {}
3603void ARG_FLAGSSDNode::ANCHOR() {}
3604void VTSDNode::ANCHOR() {}
3605void LoadSDNode::ANCHOR() {}
3606void StoreSDNode::ANCHOR() {}
3607void AtomicSDNode::ANCHOR() {}
3608
3609HandleSDNode::~HandleSDNode() {
3610  SDVTList VTs = { 0, 0 };
3611  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3612}
3613
3614GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3615                                         MVT::ValueType VT, int o)
3616  : SDNode(isa<GlobalVariable>(GA) &&
3617           cast<GlobalVariable>(GA)->isThreadLocal() ?
3618           // Thread Local
3619           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3620           // Non Thread Local
3621           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3622           getSDVTList(VT)), Offset(o) {
3623  TheGlobal = const_cast<GlobalValue*>(GA);
3624}
3625
3626/// getMemOperand - Return a MemOperand object describing the memory
3627/// reference performed by this load or store.
3628MemOperand LSBaseSDNode::getMemOperand() const {
3629  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3630  int Flags =
3631    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3632  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3633
3634  // Check if the load references a frame index, and does not have
3635  // an SV attached.
3636  const FrameIndexSDNode *FI =
3637    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3638  if (!getSrcValue() && FI)
3639    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3640                      FI->getIndex(), Size, Alignment);
3641  else
3642    return MemOperand(getSrcValue(), Flags,
3643                      getSrcValueOffset(), Size, Alignment);
3644}
3645
3646/// Profile - Gather unique data for the node.
3647///
3648void SDNode::Profile(FoldingSetNodeID &ID) {
3649  AddNodeIDNode(ID, this);
3650}
3651
3652/// getValueTypeList - Return a pointer to the specified value type.
3653///
3654const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3655  if (MVT::isExtendedVT(VT)) {
3656    static std::set<MVT::ValueType> EVTs;
3657    return &(*EVTs.insert(VT).first);
3658  } else {
3659    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3660    VTs[VT] = VT;
3661    return &VTs[VT];
3662  }
3663}
3664
3665/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3666/// indicated value.  This method ignores uses of other values defined by this
3667/// operation.
3668bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3669  assert(Value < getNumValues() && "Bad value!");
3670
3671  // If there is only one value, this is easy.
3672  if (getNumValues() == 1)
3673    return use_size() == NUses;
3674  if (use_size() < NUses) return false;
3675
3676  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3677
3678  SmallPtrSet<SDNode*, 32> UsersHandled;
3679
3680  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3681    SDNode *User = *UI;
3682    if (User->getNumOperands() == 1 ||
3683        UsersHandled.insert(User))     // First time we've seen this?
3684      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3685        if (User->getOperand(i) == TheValue) {
3686          if (NUses == 0)
3687            return false;   // too many uses
3688          --NUses;
3689        }
3690  }
3691
3692  // Found exactly the right number of uses?
3693  return NUses == 0;
3694}
3695
3696
3697/// hasAnyUseOfValue - Return true if there are any use of the indicated
3698/// value. This method ignores uses of other values defined by this operation.
3699bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3700  assert(Value < getNumValues() && "Bad value!");
3701
3702  if (use_empty()) return false;
3703
3704  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3705
3706  SmallPtrSet<SDNode*, 32> UsersHandled;
3707
3708  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3709    SDNode *User = *UI;
3710    if (User->getNumOperands() == 1 ||
3711        UsersHandled.insert(User))     // First time we've seen this?
3712      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3713        if (User->getOperand(i) == TheValue) {
3714          return true;
3715        }
3716  }
3717
3718  return false;
3719}
3720
3721
3722/// isOnlyUseOf - Return true if this node is the only use of N.
3723///
3724bool SDNode::isOnlyUseOf(SDNode *N) const {
3725  bool Seen = false;
3726  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3727    SDNode *User = *I;
3728    if (User == this)
3729      Seen = true;
3730    else
3731      return false;
3732  }
3733
3734  return Seen;
3735}
3736
3737/// isOperand - Return true if this node is an operand of N.
3738///
3739bool SDOperand::isOperandOf(SDNode *N) const {
3740  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3741    if (*this == N->getOperand(i))
3742      return true;
3743  return false;
3744}
3745
3746bool SDNode::isOperandOf(SDNode *N) const {
3747  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3748    if (this == N->OperandList[i].Val)
3749      return true;
3750  return false;
3751}
3752
3753/// reachesChainWithoutSideEffects - Return true if this operand (which must
3754/// be a chain) reaches the specified operand without crossing any
3755/// side-effecting instructions.  In practice, this looks through token
3756/// factors and non-volatile loads.  In order to remain efficient, this only
3757/// looks a couple of nodes in, it does not do an exhaustive search.
3758bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3759                                               unsigned Depth) const {
3760  if (*this == Dest) return true;
3761
3762  // Don't search too deeply, we just want to be able to see through
3763  // TokenFactor's etc.
3764  if (Depth == 0) return false;
3765
3766  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3767  // of the operands of the TF reach dest, then we can do the xform.
3768  if (getOpcode() == ISD::TokenFactor) {
3769    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3770      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3771        return true;
3772    return false;
3773  }
3774
3775  // Loads don't have side effects, look through them.
3776  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3777    if (!Ld->isVolatile())
3778      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3779  }
3780  return false;
3781}
3782
3783
3784static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3785                            SmallPtrSet<SDNode *, 32> &Visited) {
3786  if (found || !Visited.insert(N))
3787    return;
3788
3789  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3790    SDNode *Op = N->getOperand(i).Val;
3791    if (Op == P) {
3792      found = true;
3793      return;
3794    }
3795    findPredecessor(Op, P, found, Visited);
3796  }
3797}
3798
3799/// isPredecessorOf - Return true if this node is a predecessor of N. This node
3800/// is either an operand of N or it can be reached by recursively traversing
3801/// up the operands.
3802/// NOTE: this is an expensive method. Use it carefully.
3803bool SDNode::isPredecessorOf(SDNode *N) const {
3804  SmallPtrSet<SDNode *, 32> Visited;
3805  bool found = false;
3806  findPredecessor(N, this, found, Visited);
3807  return found;
3808}
3809
3810uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3811  assert(Num < NumOperands && "Invalid child # of SDNode!");
3812  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3813}
3814
3815std::string SDNode::getOperationName(const SelectionDAG *G) const {
3816  switch (getOpcode()) {
3817  default:
3818    if (getOpcode() < ISD::BUILTIN_OP_END)
3819      return "<<Unknown DAG Node>>";
3820    else {
3821      if (G) {
3822        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3823          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3824            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3825
3826        TargetLowering &TLI = G->getTargetLoweringInfo();
3827        const char *Name =
3828          TLI.getTargetNodeName(getOpcode());
3829        if (Name) return Name;
3830      }
3831
3832      return "<<Unknown Target Node>>";
3833    }
3834
3835  case ISD::PREFETCH:      return "Prefetch";
3836  case ISD::MEMBARRIER:    return "MemBarrier";
3837  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3838  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3839  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3840  case ISD::PCMARKER:      return "PCMarker";
3841  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3842  case ISD::SRCVALUE:      return "SrcValue";
3843  case ISD::MEMOPERAND:    return "MemOperand";
3844  case ISD::EntryToken:    return "EntryToken";
3845  case ISD::TokenFactor:   return "TokenFactor";
3846  case ISD::AssertSext:    return "AssertSext";
3847  case ISD::AssertZext:    return "AssertZext";
3848
3849  case ISD::STRING:        return "String";
3850  case ISD::BasicBlock:    return "BasicBlock";
3851  case ISD::ARG_FLAGS:     return "ArgFlags";
3852  case ISD::VALUETYPE:     return "ValueType";
3853  case ISD::Register:      return "Register";
3854
3855  case ISD::Constant:      return "Constant";
3856  case ISD::ConstantFP:    return "ConstantFP";
3857  case ISD::GlobalAddress: return "GlobalAddress";
3858  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3859  case ISD::FrameIndex:    return "FrameIndex";
3860  case ISD::JumpTable:     return "JumpTable";
3861  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3862  case ISD::RETURNADDR: return "RETURNADDR";
3863  case ISD::FRAMEADDR: return "FRAMEADDR";
3864  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3865  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3866  case ISD::EHSELECTION: return "EHSELECTION";
3867  case ISD::EH_RETURN: return "EH_RETURN";
3868  case ISD::ConstantPool:  return "ConstantPool";
3869  case ISD::ExternalSymbol: return "ExternalSymbol";
3870  case ISD::INTRINSIC_WO_CHAIN: {
3871    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3872    return Intrinsic::getName((Intrinsic::ID)IID);
3873  }
3874  case ISD::INTRINSIC_VOID:
3875  case ISD::INTRINSIC_W_CHAIN: {
3876    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3877    return Intrinsic::getName((Intrinsic::ID)IID);
3878  }
3879
3880  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3881  case ISD::TargetConstant: return "TargetConstant";
3882  case ISD::TargetConstantFP:return "TargetConstantFP";
3883  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3884  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3885  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3886  case ISD::TargetJumpTable:  return "TargetJumpTable";
3887  case ISD::TargetConstantPool:  return "TargetConstantPool";
3888  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3889
3890  case ISD::CopyToReg:     return "CopyToReg";
3891  case ISD::CopyFromReg:   return "CopyFromReg";
3892  case ISD::UNDEF:         return "undef";
3893  case ISD::MERGE_VALUES:  return "merge_values";
3894  case ISD::INLINEASM:     return "inlineasm";
3895  case ISD::LABEL:         return "label";
3896  case ISD::DECLARE:       return "declare";
3897  case ISD::HANDLENODE:    return "handlenode";
3898  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3899  case ISD::CALL:          return "call";
3900
3901  // Unary operators
3902  case ISD::FABS:   return "fabs";
3903  case ISD::FNEG:   return "fneg";
3904  case ISD::FSQRT:  return "fsqrt";
3905  case ISD::FSIN:   return "fsin";
3906  case ISD::FCOS:   return "fcos";
3907  case ISD::FPOWI:  return "fpowi";
3908  case ISD::FPOW:   return "fpow";
3909
3910  // Binary operators
3911  case ISD::ADD:    return "add";
3912  case ISD::SUB:    return "sub";
3913  case ISD::MUL:    return "mul";
3914  case ISD::MULHU:  return "mulhu";
3915  case ISD::MULHS:  return "mulhs";
3916  case ISD::SDIV:   return "sdiv";
3917  case ISD::UDIV:   return "udiv";
3918  case ISD::SREM:   return "srem";
3919  case ISD::UREM:   return "urem";
3920  case ISD::SMUL_LOHI:  return "smul_lohi";
3921  case ISD::UMUL_LOHI:  return "umul_lohi";
3922  case ISD::SDIVREM:    return "sdivrem";
3923  case ISD::UDIVREM:    return "divrem";
3924  case ISD::AND:    return "and";
3925  case ISD::OR:     return "or";
3926  case ISD::XOR:    return "xor";
3927  case ISD::SHL:    return "shl";
3928  case ISD::SRA:    return "sra";
3929  case ISD::SRL:    return "srl";
3930  case ISD::ROTL:   return "rotl";
3931  case ISD::ROTR:   return "rotr";
3932  case ISD::FADD:   return "fadd";
3933  case ISD::FSUB:   return "fsub";
3934  case ISD::FMUL:   return "fmul";
3935  case ISD::FDIV:   return "fdiv";
3936  case ISD::FREM:   return "frem";
3937  case ISD::FCOPYSIGN: return "fcopysign";
3938  case ISD::FGETSIGN:  return "fgetsign";
3939
3940  case ISD::SETCC:       return "setcc";
3941  case ISD::SELECT:      return "select";
3942  case ISD::SELECT_CC:   return "select_cc";
3943  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3944  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3945  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3946  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3947  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3948  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3949  case ISD::CARRY_FALSE:         return "carry_false";
3950  case ISD::ADDC:        return "addc";
3951  case ISD::ADDE:        return "adde";
3952  case ISD::SUBC:        return "subc";
3953  case ISD::SUBE:        return "sube";
3954  case ISD::SHL_PARTS:   return "shl_parts";
3955  case ISD::SRA_PARTS:   return "sra_parts";
3956  case ISD::SRL_PARTS:   return "srl_parts";
3957
3958  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3959  case ISD::INSERT_SUBREG:      return "insert_subreg";
3960
3961  // Conversion operators.
3962  case ISD::SIGN_EXTEND: return "sign_extend";
3963  case ISD::ZERO_EXTEND: return "zero_extend";
3964  case ISD::ANY_EXTEND:  return "any_extend";
3965  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3966  case ISD::TRUNCATE:    return "truncate";
3967  case ISD::FP_ROUND:    return "fp_round";
3968  case ISD::FLT_ROUNDS_: return "flt_rounds";
3969  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3970  case ISD::FP_EXTEND:   return "fp_extend";
3971
3972  case ISD::SINT_TO_FP:  return "sint_to_fp";
3973  case ISD::UINT_TO_FP:  return "uint_to_fp";
3974  case ISD::FP_TO_SINT:  return "fp_to_sint";
3975  case ISD::FP_TO_UINT:  return "fp_to_uint";
3976  case ISD::BIT_CONVERT: return "bit_convert";
3977
3978    // Control flow instructions
3979  case ISD::BR:      return "br";
3980  case ISD::BRIND:   return "brind";
3981  case ISD::BR_JT:   return "br_jt";
3982  case ISD::BRCOND:  return "brcond";
3983  case ISD::BR_CC:   return "br_cc";
3984  case ISD::RET:     return "ret";
3985  case ISD::CALLSEQ_START:  return "callseq_start";
3986  case ISD::CALLSEQ_END:    return "callseq_end";
3987
3988    // Other operators
3989  case ISD::LOAD:               return "load";
3990  case ISD::STORE:              return "store";
3991  case ISD::VAARG:              return "vaarg";
3992  case ISD::VACOPY:             return "vacopy";
3993  case ISD::VAEND:              return "vaend";
3994  case ISD::VASTART:            return "vastart";
3995  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3996  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3997  case ISD::BUILD_PAIR:         return "build_pair";
3998  case ISD::STACKSAVE:          return "stacksave";
3999  case ISD::STACKRESTORE:       return "stackrestore";
4000  case ISD::TRAP:               return "trap";
4001
4002  // Block memory operations.
4003  case ISD::MEMSET:  return "memset";
4004  case ISD::MEMCPY:  return "memcpy";
4005  case ISD::MEMMOVE: return "memmove";
4006
4007  // Bit manipulation
4008  case ISD::BSWAP:   return "bswap";
4009  case ISD::CTPOP:   return "ctpop";
4010  case ISD::CTTZ:    return "cttz";
4011  case ISD::CTLZ:    return "ctlz";
4012
4013  // Debug info
4014  case ISD::LOCATION: return "location";
4015  case ISD::DEBUG_LOC: return "debug_loc";
4016
4017  // Trampolines
4018  case ISD::TRAMPOLINE: return "trampoline";
4019
4020  case ISD::CONDCODE:
4021    switch (cast<CondCodeSDNode>(this)->get()) {
4022    default: assert(0 && "Unknown setcc condition!");
4023    case ISD::SETOEQ:  return "setoeq";
4024    case ISD::SETOGT:  return "setogt";
4025    case ISD::SETOGE:  return "setoge";
4026    case ISD::SETOLT:  return "setolt";
4027    case ISD::SETOLE:  return "setole";
4028    case ISD::SETONE:  return "setone";
4029
4030    case ISD::SETO:    return "seto";
4031    case ISD::SETUO:   return "setuo";
4032    case ISD::SETUEQ:  return "setue";
4033    case ISD::SETUGT:  return "setugt";
4034    case ISD::SETUGE:  return "setuge";
4035    case ISD::SETULT:  return "setult";
4036    case ISD::SETULE:  return "setule";
4037    case ISD::SETUNE:  return "setune";
4038
4039    case ISD::SETEQ:   return "seteq";
4040    case ISD::SETGT:   return "setgt";
4041    case ISD::SETGE:   return "setge";
4042    case ISD::SETLT:   return "setlt";
4043    case ISD::SETLE:   return "setle";
4044    case ISD::SETNE:   return "setne";
4045    }
4046  }
4047}
4048
4049const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4050  switch (AM) {
4051  default:
4052    return "";
4053  case ISD::PRE_INC:
4054    return "<pre-inc>";
4055  case ISD::PRE_DEC:
4056    return "<pre-dec>";
4057  case ISD::POST_INC:
4058    return "<post-inc>";
4059  case ISD::POST_DEC:
4060    return "<post-dec>";
4061  }
4062}
4063
4064std::string ISD::ArgFlagsTy::getArgFlagsString() {
4065  std::string S = "< ";
4066
4067  if (isZExt())
4068    S += "zext ";
4069  if (isSExt())
4070    S += "sext ";
4071  if (isInReg())
4072    S += "inreg ";
4073  if (isSRet())
4074    S += "sret ";
4075  if (isByVal())
4076    S += "byval ";
4077  if (isNest())
4078    S += "nest ";
4079  if (getByValAlign())
4080    S += "byval-align:" + utostr(getByValAlign()) + " ";
4081  if (getOrigAlign())
4082    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4083  if (getByValSize())
4084    S += "byval-size:" + utostr(getByValSize()) + " ";
4085  return S + ">";
4086}
4087
4088void SDNode::dump() const { dump(0); }
4089void SDNode::dump(const SelectionDAG *G) const {
4090  cerr << (void*)this << ": ";
4091
4092  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4093    if (i) cerr << ",";
4094    if (getValueType(i) == MVT::Other)
4095      cerr << "ch";
4096    else
4097      cerr << MVT::getValueTypeString(getValueType(i));
4098  }
4099  cerr << " = " << getOperationName(G);
4100
4101  cerr << " ";
4102  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4103    if (i) cerr << ", ";
4104    cerr << (void*)getOperand(i).Val;
4105    if (unsigned RN = getOperand(i).ResNo)
4106      cerr << ":" << RN;
4107  }
4108
4109  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4110    SDNode *Mask = getOperand(2).Val;
4111    cerr << "<";
4112    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4113      if (i) cerr << ",";
4114      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4115        cerr << "u";
4116      else
4117        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4118    }
4119    cerr << ">";
4120  }
4121
4122  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4123    cerr << "<" << CSDN->getValue() << ">";
4124  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4125    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4126      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4127    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4128      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4129    else {
4130      cerr << "<APFloat(";
4131      CSDN->getValueAPF().convertToAPInt().dump();
4132      cerr << ")>";
4133    }
4134  } else if (const GlobalAddressSDNode *GADN =
4135             dyn_cast<GlobalAddressSDNode>(this)) {
4136    int offset = GADN->getOffset();
4137    cerr << "<";
4138    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4139    if (offset > 0)
4140      cerr << " + " << offset;
4141    else
4142      cerr << " " << offset;
4143  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4144    cerr << "<" << FIDN->getIndex() << ">";
4145  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4146    cerr << "<" << JTDN->getIndex() << ">";
4147  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4148    int offset = CP->getOffset();
4149    if (CP->isMachineConstantPoolEntry())
4150      cerr << "<" << *CP->getMachineCPVal() << ">";
4151    else
4152      cerr << "<" << *CP->getConstVal() << ">";
4153    if (offset > 0)
4154      cerr << " + " << offset;
4155    else
4156      cerr << " " << offset;
4157  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4158    cerr << "<";
4159    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4160    if (LBB)
4161      cerr << LBB->getName() << " ";
4162    cerr << (const void*)BBDN->getBasicBlock() << ">";
4163  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4164    if (G && R->getReg() &&
4165        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4166      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4167    } else {
4168      cerr << " #" << R->getReg();
4169    }
4170  } else if (const ExternalSymbolSDNode *ES =
4171             dyn_cast<ExternalSymbolSDNode>(this)) {
4172    cerr << "'" << ES->getSymbol() << "'";
4173  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4174    if (M->getValue())
4175      cerr << "<" << M->getValue() << ">";
4176    else
4177      cerr << "<null>";
4178  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4179    if (M->MO.getValue())
4180      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4181    else
4182      cerr << "<null:" << M->MO.getOffset() << ">";
4183  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4184    cerr << N->getArgFlags().getArgFlagsString();
4185  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4186    cerr << ":" << MVT::getValueTypeString(N->getVT());
4187  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4188    const Value *SrcValue = LD->getSrcValue();
4189    int SrcOffset = LD->getSrcValueOffset();
4190    cerr << " <";
4191    if (SrcValue)
4192      cerr << SrcValue;
4193    else
4194      cerr << "null";
4195    cerr << ":" << SrcOffset << ">";
4196
4197    bool doExt = true;
4198    switch (LD->getExtensionType()) {
4199    default: doExt = false; break;
4200    case ISD::EXTLOAD:
4201      cerr << " <anyext ";
4202      break;
4203    case ISD::SEXTLOAD:
4204      cerr << " <sext ";
4205      break;
4206    case ISD::ZEXTLOAD:
4207      cerr << " <zext ";
4208      break;
4209    }
4210    if (doExt)
4211      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4212
4213    const char *AM = getIndexedModeName(LD->getAddressingMode());
4214    if (*AM)
4215      cerr << " " << AM;
4216    if (LD->isVolatile())
4217      cerr << " <volatile>";
4218    cerr << " alignment=" << LD->getAlignment();
4219  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4220    const Value *SrcValue = ST->getSrcValue();
4221    int SrcOffset = ST->getSrcValueOffset();
4222    cerr << " <";
4223    if (SrcValue)
4224      cerr << SrcValue;
4225    else
4226      cerr << "null";
4227    cerr << ":" << SrcOffset << ">";
4228
4229    if (ST->isTruncatingStore())
4230      cerr << " <trunc "
4231           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4232
4233    const char *AM = getIndexedModeName(ST->getAddressingMode());
4234    if (*AM)
4235      cerr << " " << AM;
4236    if (ST->isVolatile())
4237      cerr << " <volatile>";
4238    cerr << " alignment=" << ST->getAlignment();
4239  }
4240}
4241
4242static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4243  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4244    if (N->getOperand(i).Val->hasOneUse())
4245      DumpNodes(N->getOperand(i).Val, indent+2, G);
4246    else
4247      cerr << "\n" << std::string(indent+2, ' ')
4248           << (void*)N->getOperand(i).Val << ": <multiple use>";
4249
4250
4251  cerr << "\n" << std::string(indent, ' ');
4252  N->dump(G);
4253}
4254
4255void SelectionDAG::dump() const {
4256  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4257  std::vector<const SDNode*> Nodes;
4258  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4259       I != E; ++I)
4260    Nodes.push_back(I);
4261
4262  std::sort(Nodes.begin(), Nodes.end());
4263
4264  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4265    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4266      DumpNodes(Nodes[i], 2, this);
4267  }
4268
4269  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4270
4271  cerr << "\n\n";
4272}
4273
4274const Type *ConstantPoolSDNode::getType() const {
4275  if (isMachineConstantPoolEntry())
4276    return Val.MachineCPVal->getType();
4277  return Val.ConstVal->getType();
4278}
4279