SelectionDAG.cpp revision 27b7db549e4c5bff4579d209304de5628513edeb
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
48  switch (VT) {
49  default: assert(0 && "Unknown FP format");
50  case MVT::f32:     return &APFloat::IEEEsingle;
51  case MVT::f64:     return &APFloat::IEEEdouble;
52  case MVT::f80:     return &APFloat::x87DoubleExtended;
53  case MVT::f128:    return &APFloat::IEEEquad;
54  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
55  }
56}
57
58SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
59
60//===----------------------------------------------------------------------===//
61//                              ConstantFPSDNode Class
62//===----------------------------------------------------------------------===//
63
64/// isExactlyValue - We don't rely on operator== working on double values, as
65/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
66/// As such, this method can be used to do an exact bit-for-bit comparison of
67/// two floating point values.
68bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
69  return Value.bitwiseIsEqual(V);
70}
71
72bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
73                                           const APFloat& Val) {
74  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
75
76  // Anything can be extended to ppc long double.
77  if (VT == MVT::ppcf128)
78    return true;
79
80  // PPC long double cannot be shrunk to anything though.
81  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).Val;
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDOperand NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).Val;
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDOperand Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDOperand V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
197/// is 0).
198bool ISD::isDebugLabel(const SDNode *N) {
199  SDOperand Zero;
200  if (N->getOpcode() == ISD::LABEL)
201    Zero = N->getOperand(2);
202  else if (N->isTargetOpcode() &&
203           N->getTargetOpcode() == TargetInstrInfo::LABEL)
204    // Chain moved to last operand.
205    Zero = N->getOperand(1);
206  else
207    return false;
208  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));        // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;     // Don't let N and U bits get set.
233  return ISD::CondCode(Operation);
234}
235
236
237/// isSignedOp - For an integer comparison, return 1 if the comparison is a
238/// signed operation and 2 if the result is an unsigned comparison.  Return zero
239/// if the operation does not depend on the sign of the input (setne and seteq).
240static int isSignedOp(ISD::CondCode Opcode) {
241  switch (Opcode) {
242  default: assert(0 && "Illegal integer setcc operation!");
243  case ISD::SETEQ:
244  case ISD::SETNE: return 0;
245  case ISD::SETLT:
246  case ISD::SETLE:
247  case ISD::SETGT:
248  case ISD::SETGE: return 1;
249  case ISD::SETULT:
250  case ISD::SETULE:
251  case ISD::SETUGT:
252  case ISD::SETUGE: return 2;
253  }
254}
255
256/// getSetCCOrOperation - Return the result of a logical OR between different
257/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
258/// returns SETCC_INVALID if it is not possible to represent the resultant
259/// comparison.
260ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
261                                       bool isInteger) {
262  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
263    // Cannot fold a signed integer setcc with an unsigned integer setcc.
264    return ISD::SETCC_INVALID;
265
266  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
267
268  // If the N and U bits get set then the resultant comparison DOES suddenly
269  // care about orderedness, and is true when ordered.
270  if (Op > ISD::SETTRUE2)
271    Op &= ~16;     // Clear the U bit if the N bit is set.
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
275    Op = ISD::SETNE;
276
277  return ISD::CondCode(Op);
278}
279
280/// getSetCCAndOperation - Return the result of a logical AND between different
281/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
282/// function returns zero if it is not possible to represent the resultant
283/// comparison.
284ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
285                                        bool isInteger) {
286  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
287    // Cannot fold a signed setcc with an unsigned setcc.
288    return ISD::SETCC_INVALID;
289
290  // Combine all of the condition bits.
291  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
292
293  // Canonicalize illegal integer setcc's.
294  if (isInteger) {
295    switch (Result) {
296    default: break;
297    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return TLI.getTargetMachine();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDOperand *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->Val);
333    ID.AddInteger(Ops->ResNo);
334  }
335}
336
337static void AddNodeIDNode(FoldingSetNodeID &ID,
338                          unsigned short OpC, SDVTList VTList,
339                          const SDOperand *OpList, unsigned N) {
340  AddNodeIDOpcode(ID, OpC);
341  AddNodeIDValueTypes(ID, VTList);
342  AddNodeIDOperands(ID, OpList, N);
343}
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::TargetConstant:
358  case ISD::Constant:
359    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
360    break;
361  case ISD::TargetConstantFP:
362  case ISD::ConstantFP: {
363    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
364    break;
365  }
366  case ISD::TargetGlobalAddress:
367  case ISD::GlobalAddress:
368  case ISD::TargetGlobalTLSAddress:
369  case ISD::GlobalTLSAddress: {
370    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
371    ID.AddPointer(GA->getGlobal());
372    ID.AddInteger(GA->getOffset());
373    break;
374  }
375  case ISD::BasicBlock:
376    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
377    break;
378  case ISD::Register:
379    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
380    break;
381  case ISD::SRCVALUE:
382    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
383    break;
384  case ISD::MEMOPERAND: {
385    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
386    ID.AddPointer(MO.getValue());
387    ID.AddInteger(MO.getFlags());
388    ID.AddInteger(MO.getOffset());
389    ID.AddInteger(MO.getSize());
390    ID.AddInteger(MO.getAlignment());
391    break;
392  }
393  case ISD::FrameIndex:
394  case ISD::TargetFrameIndex:
395    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
396    break;
397  case ISD::JumpTable:
398  case ISD::TargetJumpTable:
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    break;
411  }
412  case ISD::LOAD: {
413    LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getAddressingMode());
415    ID.AddInteger(LD->getExtensionType());
416    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
417    ID.AddInteger(LD->getAlignment());
418    ID.AddInteger(LD->isVolatile());
419    break;
420  }
421  case ISD::STORE: {
422    StoreSDNode *ST = cast<StoreSDNode>(N);
423    ID.AddInteger(ST->getAddressingMode());
424    ID.AddInteger(ST->isTruncatingStore());
425    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
426    ID.AddInteger(ST->getAlignment());
427    ID.AddInteger(ST->isVolatile());
428    break;
429  }
430  }
431}
432
433//===----------------------------------------------------------------------===//
434//                              SelectionDAG Class
435//===----------------------------------------------------------------------===//
436
437/// RemoveDeadNodes - This method deletes all unreachable nodes in the
438/// SelectionDAG.
439void SelectionDAG::RemoveDeadNodes() {
440  // Create a dummy node (which is not added to allnodes), that adds a reference
441  // to the root node, preventing it from being deleted.
442  HandleSDNode Dummy(getRoot());
443
444  SmallVector<SDNode*, 128> DeadNodes;
445
446  // Add all obviously-dead nodes to the DeadNodes worklist.
447  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
448    if (I->use_empty())
449      DeadNodes.push_back(I);
450
451  // Process the worklist, deleting the nodes and adding their uses to the
452  // worklist.
453  while (!DeadNodes.empty()) {
454    SDNode *N = DeadNodes.back();
455    DeadNodes.pop_back();
456
457    // Take the node out of the appropriate CSE map.
458    RemoveNodeFromCSEMaps(N);
459
460    // Next, brutally remove the operand list.  This is safe to do, as there are
461    // no cycles in the graph.
462    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
463      SDNode *Operand = I->Val;
464      Operand->removeUser(N);
465
466      // Now that we removed this operand, see if there are no uses of it left.
467      if (Operand->use_empty())
468        DeadNodes.push_back(Operand);
469    }
470    if (N->OperandsNeedDelete)
471      delete[] N->OperandList;
472    N->OperandList = 0;
473    N->NumOperands = 0;
474
475    // Finally, remove N itself.
476    AllNodes.erase(N);
477  }
478
479  // If the root changed (e.g. it was a dead load, update the root).
480  setRoot(Dummy.getValue());
481}
482
483void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
484  SmallVector<SDNode*, 16> DeadNodes;
485  DeadNodes.push_back(N);
486
487  // Process the worklist, deleting the nodes and adding their uses to the
488  // worklist.
489  while (!DeadNodes.empty()) {
490    SDNode *N = DeadNodes.back();
491    DeadNodes.pop_back();
492
493    if (UpdateListener)
494      UpdateListener->NodeDeleted(N);
495
496    // Take the node out of the appropriate CSE map.
497    RemoveNodeFromCSEMaps(N);
498
499    // Next, brutally remove the operand list.  This is safe to do, as there are
500    // no cycles in the graph.
501    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
502      SDNode *Operand = I->Val;
503      Operand->removeUser(N);
504
505      // Now that we removed this operand, see if there are no uses of it left.
506      if (Operand->use_empty())
507        DeadNodes.push_back(Operand);
508    }
509    if (N->OperandsNeedDelete)
510      delete[] N->OperandList;
511    N->OperandList = 0;
512    N->NumOperands = 0;
513
514    // Finally, remove N itself.
515    AllNodes.erase(N);
516  }
517}
518
519void SelectionDAG::DeleteNode(SDNode *N) {
520  assert(N->use_empty() && "Cannot delete a node that is not dead!");
521
522  // First take this out of the appropriate CSE map.
523  RemoveNodeFromCSEMaps(N);
524
525  // Finally, remove uses due to operands of this node, remove from the
526  // AllNodes list, and delete the node.
527  DeleteNodeNotInCSEMaps(N);
528}
529
530void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
531
532  // Remove it from the AllNodes list.
533  AllNodes.remove(N);
534
535  // Drop all of the operands and decrement used nodes use counts.
536  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
537    I->Val->removeUser(N);
538  if (N->OperandsNeedDelete)
539    delete[] N->OperandList;
540  N->OperandList = 0;
541  N->NumOperands = 0;
542
543  delete N;
544}
545
546/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
547/// correspond to it.  This is useful when we're about to delete or repurpose
548/// the node.  We don't want future request for structurally identical nodes
549/// to return N anymore.
550void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
551  bool Erased = false;
552  switch (N->getOpcode()) {
553  case ISD::HANDLENODE: return;  // noop.
554  case ISD::STRING:
555    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
556    break;
557  case ISD::CONDCODE:
558    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
559           "Cond code doesn't exist!");
560    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
561    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
562    break;
563  case ISD::ExternalSymbol:
564    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
565    break;
566  case ISD::TargetExternalSymbol:
567    Erased =
568      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
569    break;
570  case ISD::VALUETYPE: {
571    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
572    if (MVT::isExtendedVT(VT)) {
573      Erased = ExtendedValueTypeNodes.erase(VT);
574    } else {
575      Erased = ValueTypeNodes[VT] != 0;
576      ValueTypeNodes[VT] = 0;
577    }
578    break;
579  }
580  default:
581    // Remove it from the CSE Map.
582    Erased = CSEMap.RemoveNode(N);
583    break;
584  }
585#ifndef NDEBUG
586  // Verify that the node was actually in one of the CSE maps, unless it has a
587  // flag result (which cannot be CSE'd) or is one of the special cases that are
588  // not subject to CSE.
589  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
590      !N->isTargetOpcode()) {
591    N->dump(this);
592    cerr << "\n";
593    assert(0 && "Node is not in map!");
594  }
595#endif
596}
597
598/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
599/// has been taken out and modified in some way.  If the specified node already
600/// exists in the CSE maps, do not modify the maps, but return the existing node
601/// instead.  If it doesn't exist, add it and return null.
602///
603SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
604  assert(N->getNumOperands() && "This is a leaf node!");
605  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
606    return 0;    // Never add these nodes.
607
608  // Check that remaining values produced are not flags.
609  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
610    if (N->getValueType(i) == MVT::Flag)
611      return 0;   // Never CSE anything that produces a flag.
612
613  SDNode *New = CSEMap.GetOrInsertNode(N);
614  if (New != N) return New;  // Node already existed.
615  return 0;
616}
617
618/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
619/// were replaced with those specified.  If this node is never memoized,
620/// return null, otherwise return a pointer to the slot it would take.  If a
621/// node already exists with these operands, the slot will be non-null.
622SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
623                                           void *&InsertPos) {
624  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
625    return 0;    // Never add these nodes.
626
627  // Check that remaining values produced are not flags.
628  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
629    if (N->getValueType(i) == MVT::Flag)
630      return 0;   // Never CSE anything that produces a flag.
631
632  SDOperand Ops[] = { Op };
633  FoldingSetNodeID ID;
634  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
635  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
636}
637
638/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
639/// were replaced with those specified.  If this node is never memoized,
640/// return null, otherwise return a pointer to the slot it would take.  If a
641/// node already exists with these operands, the slot will be non-null.
642SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
643                                           SDOperand Op1, SDOperand Op2,
644                                           void *&InsertPos) {
645  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
646    return 0;    // Never add these nodes.
647
648  // Check that remaining values produced are not flags.
649  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
650    if (N->getValueType(i) == MVT::Flag)
651      return 0;   // Never CSE anything that produces a flag.
652
653  SDOperand Ops[] = { Op1, Op2 };
654  FoldingSetNodeID ID;
655  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
656  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
657}
658
659
660/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
661/// were replaced with those specified.  If this node is never memoized,
662/// return null, otherwise return a pointer to the slot it would take.  If a
663/// node already exists with these operands, the slot will be non-null.
664SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
665                                           const SDOperand *Ops,unsigned NumOps,
666                                           void *&InsertPos) {
667  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
668    return 0;    // Never add these nodes.
669
670  // Check that remaining values produced are not flags.
671  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
672    if (N->getValueType(i) == MVT::Flag)
673      return 0;   // Never CSE anything that produces a flag.
674
675  FoldingSetNodeID ID;
676  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
677
678  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
679    ID.AddInteger(LD->getAddressingMode());
680    ID.AddInteger(LD->getExtensionType());
681    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
682    ID.AddInteger(LD->getAlignment());
683    ID.AddInteger(LD->isVolatile());
684  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
685    ID.AddInteger(ST->getAddressingMode());
686    ID.AddInteger(ST->isTruncatingStore());
687    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
688    ID.AddInteger(ST->getAlignment());
689    ID.AddInteger(ST->isVolatile());
690  }
691
692  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
693}
694
695
696SelectionDAG::~SelectionDAG() {
697  while (!AllNodes.empty()) {
698    SDNode *N = AllNodes.begin();
699    N->SetNextInBucket(0);
700    if (N->OperandsNeedDelete)
701      delete [] N->OperandList;
702    N->OperandList = 0;
703    N->NumOperands = 0;
704    AllNodes.pop_front();
705  }
706}
707
708SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
709  if (Op.getValueType() == VT) return Op;
710  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
711                                   MVT::getSizeInBits(VT));
712  return getNode(ISD::AND, Op.getValueType(), Op,
713                 getConstant(Imm, Op.getValueType()));
714}
715
716SDOperand SelectionDAG::getString(const std::string &Val) {
717  StringSDNode *&N = StringNodes[Val];
718  if (!N) {
719    N = new StringSDNode(Val);
720    AllNodes.push_back(N);
721  }
722  return SDOperand(N, 0);
723}
724
725SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
726  MVT::ValueType EltVT =
727    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
728
729  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
730}
731
732SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
733  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
734
735  MVT::ValueType EltVT =
736    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
737
738  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
739         "APInt size does not match type size!");
740
741  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
744  ID.Add(Val);
745  void *IP = 0;
746  SDNode *N = NULL;
747  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
748    if (!MVT::isVector(VT))
749      return SDOperand(N, 0);
750  if (!N) {
751    N = new ConstantSDNode(isT, Val, EltVT);
752    CSEMap.InsertNode(N, IP);
753    AllNodes.push_back(N);
754  }
755
756  SDOperand Result(N, 0);
757  if (MVT::isVector(VT)) {
758    SmallVector<SDOperand, 8> Ops;
759    Ops.assign(MVT::getVectorNumElements(VT), Result);
760    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
761  }
762  return Result;
763}
764
765SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
766  return getConstant(Val, TLI.getPointerTy(), isTarget);
767}
768
769
770SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
771                                      bool isTarget) {
772  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
773
774  MVT::ValueType EltVT =
775    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
776
777  // Do the map lookup using the actual bit pattern for the floating point
778  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
779  // we don't have issues with SNANs.
780  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
781  FoldingSetNodeID ID;
782  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
783  ID.Add(V);
784  void *IP = 0;
785  SDNode *N = NULL;
786  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
787    if (!MVT::isVector(VT))
788      return SDOperand(N, 0);
789  if (!N) {
790    N = new ConstantFPSDNode(isTarget, V, EltVT);
791    CSEMap.InsertNode(N, IP);
792    AllNodes.push_back(N);
793  }
794
795  SDOperand Result(N, 0);
796  if (MVT::isVector(VT)) {
797    SmallVector<SDOperand, 8> Ops;
798    Ops.assign(MVT::getVectorNumElements(VT), Result);
799    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
800  }
801  return Result;
802}
803
804SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
805                                      bool isTarget) {
806  MVT::ValueType EltVT =
807    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
808  if (EltVT==MVT::f32)
809    return getConstantFP(APFloat((float)Val), VT, isTarget);
810  else
811    return getConstantFP(APFloat(Val), VT, isTarget);
812}
813
814SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
815                                         MVT::ValueType VT, int Offset,
816                                         bool isTargetGA) {
817  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
818  unsigned Opc;
819  if (GVar && GVar->isThreadLocal())
820    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
821  else
822    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
823  FoldingSetNodeID ID;
824  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
825  ID.AddPointer(GV);
826  ID.AddInteger(Offset);
827  void *IP = 0;
828  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
829   return SDOperand(E, 0);
830  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
831  CSEMap.InsertNode(N, IP);
832  AllNodes.push_back(N);
833  return SDOperand(N, 0);
834}
835
836SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
837                                      bool isTarget) {
838  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
839  FoldingSetNodeID ID;
840  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
841  ID.AddInteger(FI);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
852  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
855  ID.AddInteger(JTI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
866                                        unsigned Alignment, int Offset,
867                                        bool isTarget) {
868  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
871  ID.AddInteger(Alignment);
872  ID.AddInteger(Offset);
873  ID.AddPointer(C);
874  void *IP = 0;
875  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
876    return SDOperand(E, 0);
877  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
878  CSEMap.InsertNode(N, IP);
879  AllNodes.push_back(N);
880  return SDOperand(N, 0);
881}
882
883
884SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
885                                        MVT::ValueType VT,
886                                        unsigned Alignment, int Offset,
887                                        bool isTarget) {
888  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
889  FoldingSetNodeID ID;
890  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
891  ID.AddInteger(Alignment);
892  ID.AddInteger(Offset);
893  C->AddSelectionDAGCSEId(ID);
894  void *IP = 0;
895  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
896    return SDOperand(E, 0);
897  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
898  CSEMap.InsertNode(N, IP);
899  AllNodes.push_back(N);
900  return SDOperand(N, 0);
901}
902
903
904SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
905  FoldingSetNodeID ID;
906  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
907  ID.AddPointer(MBB);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new BasicBlockSDNode(MBB);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
918  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
919    ValueTypeNodes.resize(VT+1);
920
921  SDNode *&N = MVT::isExtendedVT(VT) ?
922    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
923
924  if (N) return SDOperand(N, 0);
925  N = new VTSDNode(VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
931  SDNode *&N = ExternalSymbols[Sym];
932  if (N) return SDOperand(N, 0);
933  N = new ExternalSymbolSDNode(false, Sym, VT);
934  AllNodes.push_back(N);
935  return SDOperand(N, 0);
936}
937
938SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
939                                                MVT::ValueType VT) {
940  SDNode *&N = TargetExternalSymbols[Sym];
941  if (N) return SDOperand(N, 0);
942  N = new ExternalSymbolSDNode(true, Sym, VT);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
948  if ((unsigned)Cond >= CondCodeNodes.size())
949    CondCodeNodes.resize(Cond+1);
950
951  if (CondCodeNodes[Cond] == 0) {
952    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
953    AllNodes.push_back(CondCodeNodes[Cond]);
954  }
955  return SDOperand(CondCodeNodes[Cond], 0);
956}
957
958SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
959  FoldingSetNodeID ID;
960  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
961  ID.AddInteger(RegNo);
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965  SDNode *N = new RegisterSDNode(RegNo, VT);
966  CSEMap.InsertNode(N, IP);
967  AllNodes.push_back(N);
968  return SDOperand(N, 0);
969}
970
971SDOperand SelectionDAG::getSrcValue(const Value *V) {
972  assert((!V || isa<PointerType>(V->getType())) &&
973         "SrcValue is not a pointer?");
974
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
977  ID.AddPointer(V);
978
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981    return SDOperand(E, 0);
982
983  SDNode *N = new SrcValueSDNode(V);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDOperand(N, 0);
987}
988
989SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
990  const Value *v = MO.getValue();
991  assert((!v || isa<PointerType>(v->getType())) &&
992         "SrcValue is not a pointer?");
993
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
996  ID.AddPointer(v);
997  ID.AddInteger(MO.getFlags());
998  ID.AddInteger(MO.getOffset());
999  ID.AddInteger(MO.getSize());
1000  ID.AddInteger(MO.getAlignment());
1001
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDOperand(E, 0);
1005
1006  SDNode *N = new MemOperandSDNode(MO);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDOperand(N, 0);
1010}
1011
1012/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1013/// specified value type.
1014SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1015  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1016  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1017  const Type *Ty = MVT::getTypeForValueType(VT);
1018  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1019  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1020  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1021}
1022
1023
1024SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1025                                  SDOperand N2, ISD::CondCode Cond) {
1026  // These setcc operations always fold.
1027  switch (Cond) {
1028  default: break;
1029  case ISD::SETFALSE:
1030  case ISD::SETFALSE2: return getConstant(0, VT);
1031  case ISD::SETTRUE:
1032  case ISD::SETTRUE2:  return getConstant(1, VT);
1033
1034  case ISD::SETOEQ:
1035  case ISD::SETOGT:
1036  case ISD::SETOGE:
1037  case ISD::SETOLT:
1038  case ISD::SETOLE:
1039  case ISD::SETONE:
1040  case ISD::SETO:
1041  case ISD::SETUO:
1042  case ISD::SETUEQ:
1043  case ISD::SETUNE:
1044    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1045    break;
1046  }
1047
1048  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1049    const APInt &C2 = N2C->getAPIntValue();
1050    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1051      const APInt &C1 = N1C->getAPIntValue();
1052
1053      switch (Cond) {
1054      default: assert(0 && "Unknown integer setcc!");
1055      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1056      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1057      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1058      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1059      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1060      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1061      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1062      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1063      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1064      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1065      }
1066    }
1067  }
1068  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1069    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1070      // No compile time operations on this type yet.
1071      if (N1C->getValueType(0) == MVT::ppcf128)
1072        return SDOperand();
1073
1074      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1075      switch (Cond) {
1076      default: break;
1077      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1078                          return getNode(ISD::UNDEF, VT);
1079                        // fall through
1080      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1081      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1082                          return getNode(ISD::UNDEF, VT);
1083                        // fall through
1084      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1085                                           R==APFloat::cmpLessThan, VT);
1086      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1087                          return getNode(ISD::UNDEF, VT);
1088                        // fall through
1089      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1090      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1091                          return getNode(ISD::UNDEF, VT);
1092                        // fall through
1093      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1094      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1095                          return getNode(ISD::UNDEF, VT);
1096                        // fall through
1097      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1098                                           R==APFloat::cmpEqual, VT);
1099      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1100                          return getNode(ISD::UNDEF, VT);
1101                        // fall through
1102      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1103                                           R==APFloat::cmpEqual, VT);
1104      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1105      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1106      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1107                                           R==APFloat::cmpEqual, VT);
1108      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1109      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1110                                           R==APFloat::cmpLessThan, VT);
1111      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpUnordered, VT);
1113      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1114      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1115      }
1116    } else {
1117      // Ensure that the constant occurs on the RHS.
1118      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1119    }
1120  }
1121
1122  // Could not fold it.
1123  return SDOperand();
1124}
1125
1126/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1127/// use this predicate to simplify operations downstream.
1128bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1129  unsigned BitWidth = Op.getValueSizeInBits();
1130  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1131}
1132
1133/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1134/// this predicate to simplify operations downstream.  Mask is known to be zero
1135/// for bits that V cannot have.
1136bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1137                                     unsigned Depth) const {
1138  APInt KnownZero, KnownOne;
1139  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1140  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1141  return (KnownZero & Mask) == Mask;
1142}
1143
1144/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1145/// known to be either zero or one and return them in the KnownZero/KnownOne
1146/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1147/// processing.
1148void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1149                                     APInt &KnownZero, APInt &KnownOne,
1150                                     unsigned Depth) const {
1151  unsigned BitWidth = Mask.getBitWidth();
1152  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1153         "Mask size mismatches value type size!");
1154
1155  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1156  if (Depth == 6 || Mask == 0)
1157    return;  // Limit search depth.
1158
1159  APInt KnownZero2, KnownOne2;
1160
1161  switch (Op.getOpcode()) {
1162  case ISD::Constant:
1163    // We know all of the bits for a constant!
1164    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1165    KnownZero = ~KnownOne & Mask;
1166    return;
1167  case ISD::AND:
1168    // If either the LHS or the RHS are Zero, the result is zero.
1169    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1170    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1171                      KnownZero2, KnownOne2, Depth+1);
1172    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1173    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1174
1175    // Output known-1 bits are only known if set in both the LHS & RHS.
1176    KnownOne &= KnownOne2;
1177    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1178    KnownZero |= KnownZero2;
1179    return;
1180  case ISD::OR:
1181    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1182    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1183                      KnownZero2, KnownOne2, Depth+1);
1184    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1185    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1186
1187    // Output known-0 bits are only known if clear in both the LHS & RHS.
1188    KnownZero &= KnownZero2;
1189    // Output known-1 are known to be set if set in either the LHS | RHS.
1190    KnownOne |= KnownOne2;
1191    return;
1192  case ISD::XOR: {
1193    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1194    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1195    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1197
1198    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1199    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1200    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1201    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1202    KnownZero = KnownZeroOut;
1203    return;
1204  }
1205  case ISD::SELECT:
1206    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1207    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1208    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1209    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1210
1211    // Only known if known in both the LHS and RHS.
1212    KnownOne &= KnownOne2;
1213    KnownZero &= KnownZero2;
1214    return;
1215  case ISD::SELECT_CC:
1216    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1217    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1218    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    return;
1225  case ISD::SETCC:
1226    // If we know the result of a setcc has the top bits zero, use this info.
1227    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1228        BitWidth > 1)
1229      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1230    return;
1231  case ISD::SHL:
1232    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1233    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1234      unsigned ShAmt = SA->getValue();
1235
1236      // If the shift count is an invalid immediate, don't do anything.
1237      if (ShAmt >= BitWidth)
1238        return;
1239
1240      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1241                        KnownZero, KnownOne, Depth+1);
1242      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243      KnownZero <<= ShAmt;
1244      KnownOne  <<= ShAmt;
1245      // low bits known zero.
1246      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1247    }
1248    return;
1249  case ISD::SRL:
1250    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1251    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1252      unsigned ShAmt = SA->getValue();
1253
1254      // If the shift count is an invalid immediate, don't do anything.
1255      if (ShAmt >= BitWidth)
1256        return;
1257
1258      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1259                        KnownZero, KnownOne, Depth+1);
1260      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261      KnownZero = KnownZero.lshr(ShAmt);
1262      KnownOne  = KnownOne.lshr(ShAmt);
1263
1264      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1265      KnownZero |= HighBits;  // High bits known zero.
1266    }
1267    return;
1268  case ISD::SRA:
1269    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1270      unsigned ShAmt = SA->getValue();
1271
1272      // If the shift count is an invalid immediate, don't do anything.
1273      if (ShAmt >= BitWidth)
1274        return;
1275
1276      APInt InDemandedMask = (Mask << ShAmt);
1277      // If any of the demanded bits are produced by the sign extension, we also
1278      // demand the input sign bit.
1279      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1280      if (HighBits.getBoolValue())
1281        InDemandedMask |= APInt::getSignBit(BitWidth);
1282
1283      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1284                        Depth+1);
1285      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1286      KnownZero = KnownZero.lshr(ShAmt);
1287      KnownOne  = KnownOne.lshr(ShAmt);
1288
1289      // Handle the sign bits.
1290      APInt SignBit = APInt::getSignBit(BitWidth);
1291      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1292
1293      if (KnownZero.intersects(SignBit)) {
1294        KnownZero |= HighBits;  // New bits are known zero.
1295      } else if (KnownOne.intersects(SignBit)) {
1296        KnownOne  |= HighBits;  // New bits are known one.
1297      }
1298    }
1299    return;
1300  case ISD::SIGN_EXTEND_INREG: {
1301    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1302    unsigned EBits = MVT::getSizeInBits(EVT);
1303
1304    // Sign extension.  Compute the demanded bits in the result that are not
1305    // present in the input.
1306    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1307
1308    APInt InSignBit = APInt::getSignBit(EBits);
1309    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1310
1311    // If the sign extended bits are demanded, we know that the sign
1312    // bit is demanded.
1313    InSignBit.zext(BitWidth);
1314    if (NewBits.getBoolValue())
1315      InputDemandedBits |= InSignBit;
1316
1317    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1318                      KnownZero, KnownOne, Depth+1);
1319    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1320
1321    // If the sign bit of the input is known set or clear, then we know the
1322    // top bits of the result.
1323    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1324      KnownZero |= NewBits;
1325      KnownOne  &= ~NewBits;
1326    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1327      KnownOne  |= NewBits;
1328      KnownZero &= ~NewBits;
1329    } else {                              // Input sign bit unknown
1330      KnownZero &= ~NewBits;
1331      KnownOne  &= ~NewBits;
1332    }
1333    return;
1334  }
1335  case ISD::CTTZ:
1336  case ISD::CTLZ:
1337  case ISD::CTPOP: {
1338    unsigned LowBits = Log2_32(BitWidth)+1;
1339    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1340    KnownOne  = APInt(BitWidth, 0);
1341    return;
1342  }
1343  case ISD::LOAD: {
1344    if (ISD::isZEXTLoad(Op.Val)) {
1345      LoadSDNode *LD = cast<LoadSDNode>(Op);
1346      MVT::ValueType VT = LD->getMemoryVT();
1347      unsigned MemBits = MVT::getSizeInBits(VT);
1348      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1349    }
1350    return;
1351  }
1352  case ISD::ZERO_EXTEND: {
1353    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1354    unsigned InBits = MVT::getSizeInBits(InVT);
1355    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1356    APInt InMask    = Mask;
1357    InMask.trunc(InBits);
1358    KnownZero.trunc(InBits);
1359    KnownOne.trunc(InBits);
1360    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1361    KnownZero.zext(BitWidth);
1362    KnownOne.zext(BitWidth);
1363    KnownZero |= NewBits;
1364    return;
1365  }
1366  case ISD::SIGN_EXTEND: {
1367    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1368    unsigned InBits = MVT::getSizeInBits(InVT);
1369    APInt InSignBit = APInt::getSignBit(InBits);
1370    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1371    APInt InMask = Mask;
1372    InMask.trunc(InBits);
1373
1374    // If any of the sign extended bits are demanded, we know that the sign
1375    // bit is demanded. Temporarily set this bit in the mask for our callee.
1376    if (NewBits.getBoolValue())
1377      InMask |= InSignBit;
1378
1379    KnownZero.trunc(InBits);
1380    KnownOne.trunc(InBits);
1381    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1382
1383    // Note if the sign bit is known to be zero or one.
1384    bool SignBitKnownZero = KnownZero.isNegative();
1385    bool SignBitKnownOne  = KnownOne.isNegative();
1386    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1387           "Sign bit can't be known to be both zero and one!");
1388
1389    // If the sign bit wasn't actually demanded by our caller, we don't
1390    // want it set in the KnownZero and KnownOne result values. Reset the
1391    // mask and reapply it to the result values.
1392    InMask = Mask;
1393    InMask.trunc(InBits);
1394    KnownZero &= InMask;
1395    KnownOne  &= InMask;
1396
1397    KnownZero.zext(BitWidth);
1398    KnownOne.zext(BitWidth);
1399
1400    // If the sign bit is known zero or one, the top bits match.
1401    if (SignBitKnownZero)
1402      KnownZero |= NewBits;
1403    else if (SignBitKnownOne)
1404      KnownOne  |= NewBits;
1405    return;
1406  }
1407  case ISD::ANY_EXTEND: {
1408    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1409    unsigned InBits = MVT::getSizeInBits(InVT);
1410    APInt InMask = Mask;
1411    InMask.trunc(InBits);
1412    KnownZero.trunc(InBits);
1413    KnownOne.trunc(InBits);
1414    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1415    KnownZero.zext(BitWidth);
1416    KnownOne.zext(BitWidth);
1417    return;
1418  }
1419  case ISD::TRUNCATE: {
1420    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1421    unsigned InBits = MVT::getSizeInBits(InVT);
1422    APInt InMask = Mask;
1423    InMask.zext(InBits);
1424    KnownZero.zext(InBits);
1425    KnownOne.zext(InBits);
1426    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    KnownZero.trunc(BitWidth);
1429    KnownOne.trunc(BitWidth);
1430    break;
1431  }
1432  case ISD::AssertZext: {
1433    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1434    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1435    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1436                      KnownOne, Depth+1);
1437    KnownZero |= (~InMask) & Mask;
1438    return;
1439  }
1440  case ISD::FGETSIGN:
1441    // All bits are zero except the low bit.
1442    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1443    return;
1444
1445  case ISD::ADD: {
1446    // If either the LHS or the RHS are Zero, the result is zero.
1447    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1448    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1449    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1450    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1451
1452    // Output known-0 bits are known if clear or set in both the low clear bits
1453    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1454    // low 3 bits clear.
1455    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1456                                     KnownZero2.countTrailingOnes());
1457
1458    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1459    KnownOne = APInt(BitWidth, 0);
1460    return;
1461  }
1462  case ISD::SUB: {
1463    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1464    if (!CLHS) return;
1465
1466    // We know that the top bits of C-X are clear if X contains less bits
1467    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1468    // positive if we can prove that X is >= 0 and < 16.
1469    if (CLHS->getAPIntValue().isNonNegative()) {
1470      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1471      // NLZ can't be BitWidth with no sign bit
1472      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1473      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1474
1475      // If all of the MaskV bits are known to be zero, then we know the output
1476      // top bits are zero, because we now know that the output is from [0-C].
1477      if ((KnownZero & MaskV) == MaskV) {
1478        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1479        // Top bits known zero.
1480        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1481        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1482      } else {
1483        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1484      }
1485    }
1486    return;
1487  }
1488  default:
1489    // Allow the target to implement this method for its nodes.
1490    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1491  case ISD::INTRINSIC_WO_CHAIN:
1492  case ISD::INTRINSIC_W_CHAIN:
1493  case ISD::INTRINSIC_VOID:
1494      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1495    }
1496    return;
1497  }
1498}
1499
1500/// ComputeNumSignBits - Return the number of times the sign bit of the
1501/// register is replicated into the other bits.  We know that at least 1 bit
1502/// is always equal to the sign bit (itself), but other cases can give us
1503/// information.  For example, immediately after an "SRA X, 2", we know that
1504/// the top 3 bits are all equal to each other, so we return 3.
1505unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1506  MVT::ValueType VT = Op.getValueType();
1507  assert(MVT::isInteger(VT) && "Invalid VT!");
1508  unsigned VTBits = MVT::getSizeInBits(VT);
1509  unsigned Tmp, Tmp2;
1510
1511  if (Depth == 6)
1512    return 1;  // Limit search depth.
1513
1514  switch (Op.getOpcode()) {
1515  default: break;
1516  case ISD::AssertSext:
1517    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1518    return VTBits-Tmp+1;
1519  case ISD::AssertZext:
1520    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1521    return VTBits-Tmp;
1522
1523  case ISD::Constant: {
1524    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1525    // If negative, return # leading ones.
1526    if (Val.isNegative())
1527      return Val.countLeadingOnes();
1528
1529    // Return # leading zeros.
1530    return Val.countLeadingZeros();
1531  }
1532
1533  case ISD::SIGN_EXTEND:
1534    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1535    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1536
1537  case ISD::SIGN_EXTEND_INREG:
1538    // Max of the input and what this extends.
1539    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1540    Tmp = VTBits-Tmp+1;
1541
1542    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543    return std::max(Tmp, Tmp2);
1544
1545  case ISD::SRA:
1546    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1547    // SRA X, C   -> adds C sign bits.
1548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1549      Tmp += C->getValue();
1550      if (Tmp > VTBits) Tmp = VTBits;
1551    }
1552    return Tmp;
1553  case ISD::SHL:
1554    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      // shl destroys sign bits.
1556      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1557      if (C->getValue() >= VTBits ||      // Bad shift.
1558          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1559      return Tmp - C->getValue();
1560    }
1561    break;
1562  case ISD::AND:
1563  case ISD::OR:
1564  case ISD::XOR:    // NOT is handled here.
1565    // Logical binary ops preserve the number of sign bits.
1566    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1567    if (Tmp == 1) return 1;  // Early out.
1568    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1569    return std::min(Tmp, Tmp2);
1570
1571  case ISD::SELECT:
1572    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1573    if (Tmp == 1) return 1;  // Early out.
1574    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1575    return std::min(Tmp, Tmp2);
1576
1577  case ISD::SETCC:
1578    // If setcc returns 0/-1, all bits are sign bits.
1579    if (TLI.getSetCCResultContents() ==
1580        TargetLowering::ZeroOrNegativeOneSetCCResult)
1581      return VTBits;
1582    break;
1583  case ISD::ROTL:
1584  case ISD::ROTR:
1585    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1586      unsigned RotAmt = C->getValue() & (VTBits-1);
1587
1588      // Handle rotate right by N like a rotate left by 32-N.
1589      if (Op.getOpcode() == ISD::ROTR)
1590        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1591
1592      // If we aren't rotating out all of the known-in sign bits, return the
1593      // number that are left.  This handles rotl(sext(x), 1) for example.
1594      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1595      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1596    }
1597    break;
1598  case ISD::ADD:
1599    // Add can have at most one carry bit.  Thus we know that the output
1600    // is, at worst, one more bit than the inputs.
1601    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1602    if (Tmp == 1) return 1;  // Early out.
1603
1604    // Special case decrementing a value (ADD X, -1):
1605    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1606      if (CRHS->isAllOnesValue()) {
1607        APInt KnownZero, KnownOne;
1608        APInt Mask = APInt::getAllOnesValue(VTBits);
1609        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1610
1611        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1612        // sign bits set.
1613        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1614          return VTBits;
1615
1616        // If we are subtracting one from a positive number, there is no carry
1617        // out of the result.
1618        if (KnownZero.isNegative())
1619          return Tmp;
1620      }
1621
1622    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1623    if (Tmp2 == 1) return 1;
1624      return std::min(Tmp, Tmp2)-1;
1625    break;
1626
1627  case ISD::SUB:
1628    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1629    if (Tmp2 == 1) return 1;
1630
1631    // Handle NEG.
1632    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1633      if (CLHS->getValue() == 0) {
1634        APInt KnownZero, KnownOne;
1635        APInt Mask = APInt::getAllOnesValue(VTBits);
1636        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1637        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1638        // sign bits set.
1639        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1640          return VTBits;
1641
1642        // If the input is known to be positive (the sign bit is known clear),
1643        // the output of the NEG has the same number of sign bits as the input.
1644        if (KnownZero.isNegative())
1645          return Tmp2;
1646
1647        // Otherwise, we treat this like a SUB.
1648      }
1649
1650    // Sub can have at most one carry bit.  Thus we know that the output
1651    // is, at worst, one more bit than the inputs.
1652    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1653    if (Tmp == 1) return 1;  // Early out.
1654      return std::min(Tmp, Tmp2)-1;
1655    break;
1656  case ISD::TRUNCATE:
1657    // FIXME: it's tricky to do anything useful for this, but it is an important
1658    // case for targets like X86.
1659    break;
1660  }
1661
1662  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1663  if (Op.getOpcode() == ISD::LOAD) {
1664    LoadSDNode *LD = cast<LoadSDNode>(Op);
1665    unsigned ExtType = LD->getExtensionType();
1666    switch (ExtType) {
1667    default: break;
1668    case ISD::SEXTLOAD:    // '17' bits known
1669      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1670      return VTBits-Tmp+1;
1671    case ISD::ZEXTLOAD:    // '16' bits known
1672      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1673      return VTBits-Tmp;
1674    }
1675  }
1676
1677  // Allow the target to implement this method for its nodes.
1678  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1679      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1680      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1681      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1682    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1683    if (NumBits > 1) return NumBits;
1684  }
1685
1686  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1687  // use this information.
1688  APInt KnownZero, KnownOne;
1689  APInt Mask = APInt::getAllOnesValue(VTBits);
1690  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1691
1692  if (KnownZero.isNegative()) {        // sign bit is 0
1693    Mask = KnownZero;
1694  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1695    Mask = KnownOne;
1696  } else {
1697    // Nothing known.
1698    return 1;
1699  }
1700
1701  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1702  // the number of identical bits in the top of the input value.
1703  Mask = ~Mask;
1704  Mask <<= Mask.getBitWidth()-VTBits;
1705  // Return # leading zeros.  We use 'min' here in case Val was zero before
1706  // shifting.  We don't want to return '64' as for an i32 "0".
1707  return std::min(VTBits, Mask.countLeadingZeros());
1708}
1709
1710
1711bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1712  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1713  if (!GA) return false;
1714  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1715  if (!GV) return false;
1716  MachineModuleInfo *MMI = getMachineModuleInfo();
1717  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1718}
1719
1720
1721/// getNode - Gets or creates the specified node.
1722///
1723SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1724  FoldingSetNodeID ID;
1725  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1726  void *IP = 0;
1727  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1728    return SDOperand(E, 0);
1729  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1730  CSEMap.InsertNode(N, IP);
1731
1732  AllNodes.push_back(N);
1733  return SDOperand(N, 0);
1734}
1735
1736SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1737                                SDOperand Operand) {
1738  // Constant fold unary operations with an integer constant operand.
1739  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1740    const APInt &Val = C->getAPIntValue();
1741    unsigned BitWidth = MVT::getSizeInBits(VT);
1742    switch (Opcode) {
1743    default: break;
1744    case ISD::SIGN_EXTEND:
1745      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1746    case ISD::ANY_EXTEND:
1747    case ISD::ZERO_EXTEND:
1748    case ISD::TRUNCATE:
1749      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1750    case ISD::UINT_TO_FP:
1751    case ISD::SINT_TO_FP: {
1752      const uint64_t zero[] = {0, 0};
1753      // No compile time operations on this type.
1754      if (VT==MVT::ppcf128)
1755        break;
1756      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1757      (void)apf.convertFromAPInt(Val,
1758                                 Opcode==ISD::SINT_TO_FP,
1759                                 APFloat::rmNearestTiesToEven);
1760      return getConstantFP(apf, VT);
1761    }
1762    case ISD::BIT_CONVERT:
1763      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1764        return getConstantFP(Val.bitsToFloat(), VT);
1765      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1766        return getConstantFP(Val.bitsToDouble(), VT);
1767      break;
1768    case ISD::BSWAP:
1769      return getConstant(Val.byteSwap(), VT);
1770    case ISD::CTPOP:
1771      return getConstant(Val.countPopulation(), VT);
1772    case ISD::CTLZ:
1773      return getConstant(Val.countLeadingZeros(), VT);
1774    case ISD::CTTZ:
1775      return getConstant(Val.countTrailingZeros(), VT);
1776    }
1777  }
1778
1779  // Constant fold unary operations with a floating point constant operand.
1780  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1781    APFloat V = C->getValueAPF();    // make copy
1782    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1783      switch (Opcode) {
1784      case ISD::FNEG:
1785        V.changeSign();
1786        return getConstantFP(V, VT);
1787      case ISD::FABS:
1788        V.clearSign();
1789        return getConstantFP(V, VT);
1790      case ISD::FP_ROUND:
1791      case ISD::FP_EXTEND:
1792        // This can return overflow, underflow, or inexact; we don't care.
1793        // FIXME need to be more flexible about rounding mode.
1794        (void)V.convert(*MVTToAPFloatSemantics(VT),
1795                        APFloat::rmNearestTiesToEven);
1796        return getConstantFP(V, VT);
1797      case ISD::FP_TO_SINT:
1798      case ISD::FP_TO_UINT: {
1799        integerPart x;
1800        assert(integerPartWidth >= 64);
1801        // FIXME need to be more flexible about rounding mode.
1802        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1803                              Opcode==ISD::FP_TO_SINT,
1804                              APFloat::rmTowardZero);
1805        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1806          break;
1807        return getConstant(x, VT);
1808      }
1809      case ISD::BIT_CONVERT:
1810        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1811          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1812        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1813          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1814        break;
1815      }
1816    }
1817  }
1818
1819  unsigned OpOpcode = Operand.Val->getOpcode();
1820  switch (Opcode) {
1821  case ISD::TokenFactor:
1822    return Operand;         // Factor of one node?  No factor.
1823  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1824  case ISD::FP_EXTEND:
1825    assert(MVT::isFloatingPoint(VT) &&
1826           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1827    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1828    break;
1829    case ISD::SIGN_EXTEND:
1830    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1831           "Invalid SIGN_EXTEND!");
1832    if (Operand.getValueType() == VT) return Operand;   // noop extension
1833    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1834           && "Invalid sext node, dst < src!");
1835    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1836      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1837    break;
1838  case ISD::ZERO_EXTEND:
1839    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1840           "Invalid ZERO_EXTEND!");
1841    if (Operand.getValueType() == VT) return Operand;   // noop extension
1842    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1843           && "Invalid zext node, dst < src!");
1844    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1845      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1846    break;
1847  case ISD::ANY_EXTEND:
1848    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1849           "Invalid ANY_EXTEND!");
1850    if (Operand.getValueType() == VT) return Operand;   // noop extension
1851    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1852           && "Invalid anyext node, dst < src!");
1853    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1854      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1855      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1856    break;
1857  case ISD::TRUNCATE:
1858    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1859           "Invalid TRUNCATE!");
1860    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1861    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1862           && "Invalid truncate node, src < dst!");
1863    if (OpOpcode == ISD::TRUNCATE)
1864      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1865    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1866             OpOpcode == ISD::ANY_EXTEND) {
1867      // If the source is smaller than the dest, we still need an extend.
1868      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1869          < MVT::getSizeInBits(VT))
1870        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1871      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1872               > MVT::getSizeInBits(VT))
1873        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1874      else
1875        return Operand.Val->getOperand(0);
1876    }
1877    break;
1878  case ISD::BIT_CONVERT:
1879    // Basic sanity checking.
1880    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1881           && "Cannot BIT_CONVERT between types of different sizes!");
1882    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1883    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1884      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1885    if (OpOpcode == ISD::UNDEF)
1886      return getNode(ISD::UNDEF, VT);
1887    break;
1888  case ISD::SCALAR_TO_VECTOR:
1889    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1890           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1891           "Illegal SCALAR_TO_VECTOR node!");
1892    break;
1893  case ISD::FNEG:
1894    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1895      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1896                     Operand.Val->getOperand(0));
1897    if (OpOpcode == ISD::FNEG)  // --X -> X
1898      return Operand.Val->getOperand(0);
1899    break;
1900  case ISD::FABS:
1901    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1902      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1903    break;
1904  }
1905
1906  SDNode *N;
1907  SDVTList VTs = getVTList(VT);
1908  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1909    FoldingSetNodeID ID;
1910    SDOperand Ops[1] = { Operand };
1911    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1912    void *IP = 0;
1913    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1914      return SDOperand(E, 0);
1915    N = new UnarySDNode(Opcode, VTs, Operand);
1916    CSEMap.InsertNode(N, IP);
1917  } else {
1918    N = new UnarySDNode(Opcode, VTs, Operand);
1919  }
1920  AllNodes.push_back(N);
1921  return SDOperand(N, 0);
1922}
1923
1924
1925
1926SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1927                                SDOperand N1, SDOperand N2) {
1928  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1929  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1930  switch (Opcode) {
1931  default: break;
1932  case ISD::TokenFactor:
1933    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1934           N2.getValueType() == MVT::Other && "Invalid token factor!");
1935    // Fold trivial token factors.
1936    if (N1.getOpcode() == ISD::EntryToken) return N2;
1937    if (N2.getOpcode() == ISD::EntryToken) return N1;
1938    break;
1939  case ISD::AND:
1940    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1941           N1.getValueType() == VT && "Binary operator types must match!");
1942    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1943    // worth handling here.
1944    if (N2C && N2C->getValue() == 0)
1945      return N2;
1946    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1947      return N1;
1948    break;
1949  case ISD::OR:
1950  case ISD::XOR:
1951    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1952           N1.getValueType() == VT && "Binary operator types must match!");
1953    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1954    // worth handling here.
1955    if (N2C && N2C->getValue() == 0)
1956      return N1;
1957    break;
1958  case ISD::UDIV:
1959  case ISD::UREM:
1960  case ISD::MULHU:
1961  case ISD::MULHS:
1962    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1963    // fall through
1964  case ISD::ADD:
1965  case ISD::SUB:
1966  case ISD::MUL:
1967  case ISD::SDIV:
1968  case ISD::SREM:
1969  case ISD::FADD:
1970  case ISD::FSUB:
1971  case ISD::FMUL:
1972  case ISD::FDIV:
1973  case ISD::FREM:
1974    assert(N1.getValueType() == N2.getValueType() &&
1975           N1.getValueType() == VT && "Binary operator types must match!");
1976    break;
1977  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1978    assert(N1.getValueType() == VT &&
1979           MVT::isFloatingPoint(N1.getValueType()) &&
1980           MVT::isFloatingPoint(N2.getValueType()) &&
1981           "Invalid FCOPYSIGN!");
1982    break;
1983  case ISD::SHL:
1984  case ISD::SRA:
1985  case ISD::SRL:
1986  case ISD::ROTL:
1987  case ISD::ROTR:
1988    assert(VT == N1.getValueType() &&
1989           "Shift operators return type must be the same as their first arg");
1990    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1991           VT != MVT::i1 && "Shifts only work on integers");
1992    break;
1993  case ISD::FP_ROUND_INREG: {
1994    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1995    assert(VT == N1.getValueType() && "Not an inreg round!");
1996    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1997           "Cannot FP_ROUND_INREG integer types");
1998    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1999           "Not rounding down!");
2000    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2001    break;
2002  }
2003  case ISD::FP_ROUND:
2004    assert(MVT::isFloatingPoint(VT) &&
2005           MVT::isFloatingPoint(N1.getValueType()) &&
2006           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2007           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2008    if (N1.getValueType() == VT) return N1;  // noop conversion.
2009    break;
2010  case ISD::AssertSext:
2011  case ISD::AssertZext: {
2012    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2013    assert(VT == N1.getValueType() && "Not an inreg extend!");
2014    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2015           "Cannot *_EXTEND_INREG FP types");
2016    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2017           "Not extending!");
2018    if (VT == EVT) return N1; // noop assertion.
2019    break;
2020  }
2021  case ISD::SIGN_EXTEND_INREG: {
2022    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2023    assert(VT == N1.getValueType() && "Not an inreg extend!");
2024    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2025           "Cannot *_EXTEND_INREG FP types");
2026    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2027           "Not extending!");
2028    if (EVT == VT) return N1;  // Not actually extending
2029
2030    if (N1C) {
2031      APInt Val = N1C->getAPIntValue();
2032      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2033      Val <<= Val.getBitWidth()-FromBits;
2034      Val = Val.ashr(Val.getBitWidth()-FromBits);
2035      return getConstant(Val, VT);
2036    }
2037    break;
2038  }
2039  case ISD::EXTRACT_VECTOR_ELT:
2040    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2041
2042    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2043    // expanding copies of large vectors from registers.
2044    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2045        N1.getNumOperands() > 0) {
2046      unsigned Factor =
2047        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2048      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2049                     N1.getOperand(N2C->getValue() / Factor),
2050                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2051    }
2052
2053    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2054    // expanding large vector constants.
2055    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2056      return N1.getOperand(N2C->getValue());
2057
2058    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2059    // operations are lowered to scalars.
2060    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2061      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2062        if (IEC == N2C)
2063          return N1.getOperand(1);
2064        else
2065          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2066      }
2067    break;
2068  case ISD::EXTRACT_ELEMENT:
2069    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2070
2071    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2072    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2073    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2074    if (N1.getOpcode() == ISD::BUILD_PAIR)
2075      return N1.getOperand(N2C->getValue());
2076
2077    // EXTRACT_ELEMENT of a constant int is also very common.
2078    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2079      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2080      return getConstant(C->getValue() >> Shift, VT);
2081    }
2082    break;
2083  case ISD::EXTRACT_SUBVECTOR:
2084    if (N1.getValueType() == VT) // Trivial extraction.
2085      return N1;
2086    break;
2087  }
2088
2089  if (N1C) {
2090    if (N2C) {
2091      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2092      switch (Opcode) {
2093      case ISD::ADD: return getConstant(C1 + C2, VT);
2094      case ISD::SUB: return getConstant(C1 - C2, VT);
2095      case ISD::MUL: return getConstant(C1 * C2, VT);
2096      case ISD::UDIV:
2097        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2098        break;
2099      case ISD::UREM :
2100        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2101        break;
2102      case ISD::SDIV :
2103        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2104        break;
2105      case ISD::SREM :
2106        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2107        break;
2108      case ISD::AND  : return getConstant(C1 & C2, VT);
2109      case ISD::OR   : return getConstant(C1 | C2, VT);
2110      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2111      case ISD::SHL  : return getConstant(C1 << C2, VT);
2112      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2113      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2114      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2115      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2116      default: break;
2117      }
2118    } else {      // Cannonicalize constant to RHS if commutative
2119      if (isCommutativeBinOp(Opcode)) {
2120        std::swap(N1C, N2C);
2121        std::swap(N1, N2);
2122      }
2123    }
2124  }
2125
2126  // Constant fold FP operations.
2127  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2128  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2129  if (N1CFP) {
2130    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2131      // Cannonicalize constant to RHS if commutative
2132      std::swap(N1CFP, N2CFP);
2133      std::swap(N1, N2);
2134    } else if (N2CFP && VT != MVT::ppcf128) {
2135      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2136      APFloat::opStatus s;
2137      switch (Opcode) {
2138      case ISD::FADD:
2139        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2140        if (s != APFloat::opInvalidOp)
2141          return getConstantFP(V1, VT);
2142        break;
2143      case ISD::FSUB:
2144        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2145        if (s!=APFloat::opInvalidOp)
2146          return getConstantFP(V1, VT);
2147        break;
2148      case ISD::FMUL:
2149        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2150        if (s!=APFloat::opInvalidOp)
2151          return getConstantFP(V1, VT);
2152        break;
2153      case ISD::FDIV:
2154        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2155        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2156          return getConstantFP(V1, VT);
2157        break;
2158      case ISD::FREM :
2159        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2160        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2161          return getConstantFP(V1, VT);
2162        break;
2163      case ISD::FCOPYSIGN:
2164        V1.copySign(V2);
2165        return getConstantFP(V1, VT);
2166      default: break;
2167      }
2168    }
2169  }
2170
2171  // Canonicalize an UNDEF to the RHS, even over a constant.
2172  if (N1.getOpcode() == ISD::UNDEF) {
2173    if (isCommutativeBinOp(Opcode)) {
2174      std::swap(N1, N2);
2175    } else {
2176      switch (Opcode) {
2177      case ISD::FP_ROUND_INREG:
2178      case ISD::SIGN_EXTEND_INREG:
2179      case ISD::SUB:
2180      case ISD::FSUB:
2181      case ISD::FDIV:
2182      case ISD::FREM:
2183      case ISD::SRA:
2184        return N1;     // fold op(undef, arg2) -> undef
2185      case ISD::UDIV:
2186      case ISD::SDIV:
2187      case ISD::UREM:
2188      case ISD::SREM:
2189      case ISD::SRL:
2190      case ISD::SHL:
2191        if (!MVT::isVector(VT))
2192          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2193        // For vectors, we can't easily build an all zero vector, just return
2194        // the LHS.
2195        return N2;
2196      }
2197    }
2198  }
2199
2200  // Fold a bunch of operators when the RHS is undef.
2201  if (N2.getOpcode() == ISD::UNDEF) {
2202    switch (Opcode) {
2203    case ISD::ADD:
2204    case ISD::ADDC:
2205    case ISD::ADDE:
2206    case ISD::SUB:
2207    case ISD::FADD:
2208    case ISD::FSUB:
2209    case ISD::FMUL:
2210    case ISD::FDIV:
2211    case ISD::FREM:
2212    case ISD::UDIV:
2213    case ISD::SDIV:
2214    case ISD::UREM:
2215    case ISD::SREM:
2216    case ISD::XOR:
2217      return N2;       // fold op(arg1, undef) -> undef
2218    case ISD::MUL:
2219    case ISD::AND:
2220    case ISD::SRL:
2221    case ISD::SHL:
2222      if (!MVT::isVector(VT))
2223        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2224      // For vectors, we can't easily build an all zero vector, just return
2225      // the LHS.
2226      return N1;
2227    case ISD::OR:
2228      if (!MVT::isVector(VT))
2229        return getConstant(MVT::getIntVTBitMask(VT), VT);
2230      // For vectors, we can't easily build an all one vector, just return
2231      // the LHS.
2232      return N1;
2233    case ISD::SRA:
2234      return N1;
2235    }
2236  }
2237
2238  // Memoize this node if possible.
2239  SDNode *N;
2240  SDVTList VTs = getVTList(VT);
2241  if (VT != MVT::Flag) {
2242    SDOperand Ops[] = { N1, N2 };
2243    FoldingSetNodeID ID;
2244    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2245    void *IP = 0;
2246    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2247      return SDOperand(E, 0);
2248    N = new BinarySDNode(Opcode, VTs, N1, N2);
2249    CSEMap.InsertNode(N, IP);
2250  } else {
2251    N = new BinarySDNode(Opcode, VTs, N1, N2);
2252  }
2253
2254  AllNodes.push_back(N);
2255  return SDOperand(N, 0);
2256}
2257
2258SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2259                                SDOperand N1, SDOperand N2, SDOperand N3) {
2260  // Perform various simplifications.
2261  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2262  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2263  switch (Opcode) {
2264  case ISD::SETCC: {
2265    // Use FoldSetCC to simplify SETCC's.
2266    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2267    if (Simp.Val) return Simp;
2268    break;
2269  }
2270  case ISD::SELECT:
2271    if (N1C) {
2272     if (N1C->getValue())
2273        return N2;             // select true, X, Y -> X
2274      else
2275        return N3;             // select false, X, Y -> Y
2276    }
2277
2278    if (N2 == N3) return N2;   // select C, X, X -> X
2279    break;
2280  case ISD::BRCOND:
2281    if (N2C) {
2282      if (N2C->getValue()) // Unconditional branch
2283        return getNode(ISD::BR, MVT::Other, N1, N3);
2284      else
2285        return N1;         // Never-taken branch
2286    }
2287    break;
2288  case ISD::VECTOR_SHUFFLE:
2289    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2290           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2291           N3.getOpcode() == ISD::BUILD_VECTOR &&
2292           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2293           "Illegal VECTOR_SHUFFLE node!");
2294    break;
2295  case ISD::BIT_CONVERT:
2296    // Fold bit_convert nodes from a type to themselves.
2297    if (N1.getValueType() == VT)
2298      return N1;
2299    break;
2300  }
2301
2302  // Memoize node if it doesn't produce a flag.
2303  SDNode *N;
2304  SDVTList VTs = getVTList(VT);
2305  if (VT != MVT::Flag) {
2306    SDOperand Ops[] = { N1, N2, N3 };
2307    FoldingSetNodeID ID;
2308    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2309    void *IP = 0;
2310    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2311      return SDOperand(E, 0);
2312    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2313    CSEMap.InsertNode(N, IP);
2314  } else {
2315    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2316  }
2317  AllNodes.push_back(N);
2318  return SDOperand(N, 0);
2319}
2320
2321SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2322                                SDOperand N1, SDOperand N2, SDOperand N3,
2323                                SDOperand N4) {
2324  SDOperand Ops[] = { N1, N2, N3, N4 };
2325  return getNode(Opcode, VT, Ops, 4);
2326}
2327
2328SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2329                                SDOperand N1, SDOperand N2, SDOperand N3,
2330                                SDOperand N4, SDOperand N5) {
2331  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2332  return getNode(Opcode, VT, Ops, 5);
2333}
2334
2335SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2336                                  SDOperand Src, SDOperand Size,
2337                                  SDOperand Align,
2338                                  SDOperand AlwaysInline) {
2339  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2340  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2341}
2342
2343SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2344                                  SDOperand Src, SDOperand Size,
2345                                  SDOperand Align,
2346                                  SDOperand AlwaysInline) {
2347  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2348  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2349}
2350
2351SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2352                                  SDOperand Src, SDOperand Size,
2353                                  SDOperand Align,
2354                                  SDOperand AlwaysInline) {
2355  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2356  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2357}
2358
2359SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2360                                  SDOperand Ptr, SDOperand Cmp,
2361                                  SDOperand Swp, MVT::ValueType VT) {
2362  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2363  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2364  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2365  FoldingSetNodeID ID;
2366  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2367  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2368  ID.AddInteger((unsigned int)VT);
2369  void* IP = 0;
2370  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2371    return SDOperand(E, 0);
2372  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2373  CSEMap.InsertNode(N, IP);
2374  AllNodes.push_back(N);
2375  return SDOperand(N, 0);
2376}
2377
2378SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2379                                  SDOperand Ptr, SDOperand Val,
2380                                  MVT::ValueType VT) {
2381  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2382         && "Invalid Atomic Op");
2383  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2384  FoldingSetNodeID ID;
2385  SDOperand Ops[] = {Chain, Ptr, Val};
2386  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2387  ID.AddInteger((unsigned int)VT);
2388  void* IP = 0;
2389  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2390    return SDOperand(E, 0);
2391  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2392  CSEMap.InsertNode(N, IP);
2393  AllNodes.push_back(N);
2394  return SDOperand(N, 0);
2395}
2396
2397SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2398                                SDOperand Chain, SDOperand Ptr,
2399                                const Value *SV, int SVOffset,
2400                                bool isVolatile, unsigned Alignment) {
2401  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2402    const Type *Ty = 0;
2403    if (VT != MVT::iPTR) {
2404      Ty = MVT::getTypeForValueType(VT);
2405    } else if (SV) {
2406      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2407      assert(PT && "Value for load must be a pointer");
2408      Ty = PT->getElementType();
2409    }
2410    assert(Ty && "Could not get type information for load");
2411    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2412  }
2413  SDVTList VTs = getVTList(VT, MVT::Other);
2414  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2415  SDOperand Ops[] = { Chain, Ptr, Undef };
2416  FoldingSetNodeID ID;
2417  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2418  ID.AddInteger(ISD::UNINDEXED);
2419  ID.AddInteger(ISD::NON_EXTLOAD);
2420  ID.AddInteger((unsigned int)VT);
2421  ID.AddInteger(Alignment);
2422  ID.AddInteger(isVolatile);
2423  void *IP = 0;
2424  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2425    return SDOperand(E, 0);
2426  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2427                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2428                             isVolatile);
2429  CSEMap.InsertNode(N, IP);
2430  AllNodes.push_back(N);
2431  return SDOperand(N, 0);
2432}
2433
2434SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2435                                   SDOperand Chain, SDOperand Ptr,
2436                                   const Value *SV,
2437                                   int SVOffset, MVT::ValueType EVT,
2438                                   bool isVolatile, unsigned Alignment) {
2439  // If they are asking for an extending load from/to the same thing, return a
2440  // normal load.
2441  if (VT == EVT)
2442    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2443
2444  if (MVT::isVector(VT))
2445    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2446  else
2447    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2448           "Should only be an extending load, not truncating!");
2449  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2450         "Cannot sign/zero extend a FP/Vector load!");
2451  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2452         "Cannot convert from FP to Int or Int -> FP!");
2453
2454  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2455    const Type *Ty = 0;
2456    if (VT != MVT::iPTR) {
2457      Ty = MVT::getTypeForValueType(VT);
2458    } else if (SV) {
2459      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2460      assert(PT && "Value for load must be a pointer");
2461      Ty = PT->getElementType();
2462    }
2463    assert(Ty && "Could not get type information for load");
2464    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2465  }
2466  SDVTList VTs = getVTList(VT, MVT::Other);
2467  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2468  SDOperand Ops[] = { Chain, Ptr, Undef };
2469  FoldingSetNodeID ID;
2470  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2471  ID.AddInteger(ISD::UNINDEXED);
2472  ID.AddInteger(ExtType);
2473  ID.AddInteger((unsigned int)EVT);
2474  ID.AddInteger(Alignment);
2475  ID.AddInteger(isVolatile);
2476  void *IP = 0;
2477  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2478    return SDOperand(E, 0);
2479  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2480                             SV, SVOffset, Alignment, isVolatile);
2481  CSEMap.InsertNode(N, IP);
2482  AllNodes.push_back(N);
2483  return SDOperand(N, 0);
2484}
2485
2486SDOperand
2487SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2488                             SDOperand Offset, ISD::MemIndexedMode AM) {
2489  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2490  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2491         "Load is already a indexed load!");
2492  MVT::ValueType VT = OrigLoad.getValueType();
2493  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2494  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2495  FoldingSetNodeID ID;
2496  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2497  ID.AddInteger(AM);
2498  ID.AddInteger(LD->getExtensionType());
2499  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2500  ID.AddInteger(LD->getAlignment());
2501  ID.AddInteger(LD->isVolatile());
2502  void *IP = 0;
2503  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2504    return SDOperand(E, 0);
2505  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2506                             LD->getExtensionType(), LD->getMemoryVT(),
2507                             LD->getSrcValue(), LD->getSrcValueOffset(),
2508                             LD->getAlignment(), LD->isVolatile());
2509  CSEMap.InsertNode(N, IP);
2510  AllNodes.push_back(N);
2511  return SDOperand(N, 0);
2512}
2513
2514SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2515                                 SDOperand Ptr, const Value *SV, int SVOffset,
2516                                 bool isVolatile, unsigned Alignment) {
2517  MVT::ValueType VT = Val.getValueType();
2518
2519  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2520    const Type *Ty = 0;
2521    if (VT != MVT::iPTR) {
2522      Ty = MVT::getTypeForValueType(VT);
2523    } else if (SV) {
2524      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2525      assert(PT && "Value for store must be a pointer");
2526      Ty = PT->getElementType();
2527    }
2528    assert(Ty && "Could not get type information for store");
2529    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2530  }
2531  SDVTList VTs = getVTList(MVT::Other);
2532  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2533  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2534  FoldingSetNodeID ID;
2535  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2536  ID.AddInteger(ISD::UNINDEXED);
2537  ID.AddInteger(false);
2538  ID.AddInteger((unsigned int)VT);
2539  ID.AddInteger(Alignment);
2540  ID.AddInteger(isVolatile);
2541  void *IP = 0;
2542  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2543    return SDOperand(E, 0);
2544  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2545                              VT, SV, SVOffset, Alignment, isVolatile);
2546  CSEMap.InsertNode(N, IP);
2547  AllNodes.push_back(N);
2548  return SDOperand(N, 0);
2549}
2550
2551SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2552                                      SDOperand Ptr, const Value *SV,
2553                                      int SVOffset, MVT::ValueType SVT,
2554                                      bool isVolatile, unsigned Alignment) {
2555  MVT::ValueType VT = Val.getValueType();
2556
2557  if (VT == SVT)
2558    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2559
2560  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2561         "Not a truncation?");
2562  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2563         "Can't do FP-INT conversion!");
2564
2565  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2566    const Type *Ty = 0;
2567    if (VT != MVT::iPTR) {
2568      Ty = MVT::getTypeForValueType(VT);
2569    } else if (SV) {
2570      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2571      assert(PT && "Value for store must be a pointer");
2572      Ty = PT->getElementType();
2573    }
2574    assert(Ty && "Could not get type information for store");
2575    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2576  }
2577  SDVTList VTs = getVTList(MVT::Other);
2578  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2579  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2580  FoldingSetNodeID ID;
2581  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2582  ID.AddInteger(ISD::UNINDEXED);
2583  ID.AddInteger(1);
2584  ID.AddInteger((unsigned int)SVT);
2585  ID.AddInteger(Alignment);
2586  ID.AddInteger(isVolatile);
2587  void *IP = 0;
2588  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2589    return SDOperand(E, 0);
2590  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2591                              SVT, SV, SVOffset, Alignment, isVolatile);
2592  CSEMap.InsertNode(N, IP);
2593  AllNodes.push_back(N);
2594  return SDOperand(N, 0);
2595}
2596
2597SDOperand
2598SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2599                              SDOperand Offset, ISD::MemIndexedMode AM) {
2600  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2601  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2602         "Store is already a indexed store!");
2603  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2604  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2605  FoldingSetNodeID ID;
2606  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2607  ID.AddInteger(AM);
2608  ID.AddInteger(ST->isTruncatingStore());
2609  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2610  ID.AddInteger(ST->getAlignment());
2611  ID.AddInteger(ST->isVolatile());
2612  void *IP = 0;
2613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2614    return SDOperand(E, 0);
2615  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2616                              ST->isTruncatingStore(), ST->getMemoryVT(),
2617                              ST->getSrcValue(), ST->getSrcValueOffset(),
2618                              ST->getAlignment(), ST->isVolatile());
2619  CSEMap.InsertNode(N, IP);
2620  AllNodes.push_back(N);
2621  return SDOperand(N, 0);
2622}
2623
2624SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2625                                 SDOperand Chain, SDOperand Ptr,
2626                                 SDOperand SV) {
2627  SDOperand Ops[] = { Chain, Ptr, SV };
2628  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2629}
2630
2631SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2632                                const SDOperand *Ops, unsigned NumOps) {
2633  switch (NumOps) {
2634  case 0: return getNode(Opcode, VT);
2635  case 1: return getNode(Opcode, VT, Ops[0]);
2636  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2637  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2638  default: break;
2639  }
2640
2641  switch (Opcode) {
2642  default: break;
2643  case ISD::SELECT_CC: {
2644    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2645    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2646           "LHS and RHS of condition must have same type!");
2647    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2648           "True and False arms of SelectCC must have same type!");
2649    assert(Ops[2].getValueType() == VT &&
2650           "select_cc node must be of same type as true and false value!");
2651    break;
2652  }
2653  case ISD::BR_CC: {
2654    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2655    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2656           "LHS/RHS of comparison should match types!");
2657    break;
2658  }
2659  }
2660
2661  // Memoize nodes.
2662  SDNode *N;
2663  SDVTList VTs = getVTList(VT);
2664  if (VT != MVT::Flag) {
2665    FoldingSetNodeID ID;
2666    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2667    void *IP = 0;
2668    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2669      return SDOperand(E, 0);
2670    N = new SDNode(Opcode, VTs, Ops, NumOps);
2671    CSEMap.InsertNode(N, IP);
2672  } else {
2673    N = new SDNode(Opcode, VTs, Ops, NumOps);
2674  }
2675  AllNodes.push_back(N);
2676  return SDOperand(N, 0);
2677}
2678
2679SDOperand SelectionDAG::getNode(unsigned Opcode,
2680                                std::vector<MVT::ValueType> &ResultTys,
2681                                const SDOperand *Ops, unsigned NumOps) {
2682  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2683                 Ops, NumOps);
2684}
2685
2686SDOperand SelectionDAG::getNode(unsigned Opcode,
2687                                const MVT::ValueType *VTs, unsigned NumVTs,
2688                                const SDOperand *Ops, unsigned NumOps) {
2689  if (NumVTs == 1)
2690    return getNode(Opcode, VTs[0], Ops, NumOps);
2691  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2692}
2693
2694SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2695                                const SDOperand *Ops, unsigned NumOps) {
2696  if (VTList.NumVTs == 1)
2697    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2698
2699  switch (Opcode) {
2700  // FIXME: figure out how to safely handle things like
2701  // int foo(int x) { return 1 << (x & 255); }
2702  // int bar() { return foo(256); }
2703#if 0
2704  case ISD::SRA_PARTS:
2705  case ISD::SRL_PARTS:
2706  case ISD::SHL_PARTS:
2707    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2708        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2709      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2710    else if (N3.getOpcode() == ISD::AND)
2711      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2712        // If the and is only masking out bits that cannot effect the shift,
2713        // eliminate the and.
2714        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2715        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2716          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2717      }
2718    break;
2719#endif
2720  }
2721
2722  // Memoize the node unless it returns a flag.
2723  SDNode *N;
2724  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2725    FoldingSetNodeID ID;
2726    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2727    void *IP = 0;
2728    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2729      return SDOperand(E, 0);
2730    if (NumOps == 1)
2731      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2732    else if (NumOps == 2)
2733      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2734    else if (NumOps == 3)
2735      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2736    else
2737      N = new SDNode(Opcode, VTList, Ops, NumOps);
2738    CSEMap.InsertNode(N, IP);
2739  } else {
2740    if (NumOps == 1)
2741      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2742    else if (NumOps == 2)
2743      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2744    else if (NumOps == 3)
2745      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2746    else
2747      N = new SDNode(Opcode, VTList, Ops, NumOps);
2748  }
2749  AllNodes.push_back(N);
2750  return SDOperand(N, 0);
2751}
2752
2753SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2754  return getNode(Opcode, VTList, 0, 0);
2755}
2756
2757SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2758                                SDOperand N1) {
2759  SDOperand Ops[] = { N1 };
2760  return getNode(Opcode, VTList, Ops, 1);
2761}
2762
2763SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2764                                SDOperand N1, SDOperand N2) {
2765  SDOperand Ops[] = { N1, N2 };
2766  return getNode(Opcode, VTList, Ops, 2);
2767}
2768
2769SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2770                                SDOperand N1, SDOperand N2, SDOperand N3) {
2771  SDOperand Ops[] = { N1, N2, N3 };
2772  return getNode(Opcode, VTList, Ops, 3);
2773}
2774
2775SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2776                                SDOperand N1, SDOperand N2, SDOperand N3,
2777                                SDOperand N4) {
2778  SDOperand Ops[] = { N1, N2, N3, N4 };
2779  return getNode(Opcode, VTList, Ops, 4);
2780}
2781
2782SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2783                                SDOperand N1, SDOperand N2, SDOperand N3,
2784                                SDOperand N4, SDOperand N5) {
2785  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2786  return getNode(Opcode, VTList, Ops, 5);
2787}
2788
2789SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2790  return makeVTList(SDNode::getValueTypeList(VT), 1);
2791}
2792
2793SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2794  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2795       E = VTList.end(); I != E; ++I) {
2796    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2797      return makeVTList(&(*I)[0], 2);
2798  }
2799  std::vector<MVT::ValueType> V;
2800  V.push_back(VT1);
2801  V.push_back(VT2);
2802  VTList.push_front(V);
2803  return makeVTList(&(*VTList.begin())[0], 2);
2804}
2805SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2806                                 MVT::ValueType VT3) {
2807  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2808       E = VTList.end(); I != E; ++I) {
2809    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2810        (*I)[2] == VT3)
2811      return makeVTList(&(*I)[0], 3);
2812  }
2813  std::vector<MVT::ValueType> V;
2814  V.push_back(VT1);
2815  V.push_back(VT2);
2816  V.push_back(VT3);
2817  VTList.push_front(V);
2818  return makeVTList(&(*VTList.begin())[0], 3);
2819}
2820
2821SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2822  switch (NumVTs) {
2823    case 0: assert(0 && "Cannot have nodes without results!");
2824    case 1: return getVTList(VTs[0]);
2825    case 2: return getVTList(VTs[0], VTs[1]);
2826    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2827    default: break;
2828  }
2829
2830  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2831       E = VTList.end(); I != E; ++I) {
2832    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2833
2834    bool NoMatch = false;
2835    for (unsigned i = 2; i != NumVTs; ++i)
2836      if (VTs[i] != (*I)[i]) {
2837        NoMatch = true;
2838        break;
2839      }
2840    if (!NoMatch)
2841      return makeVTList(&*I->begin(), NumVTs);
2842  }
2843
2844  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2845  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2846}
2847
2848
2849/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2850/// specified operands.  If the resultant node already exists in the DAG,
2851/// this does not modify the specified node, instead it returns the node that
2852/// already exists.  If the resultant node does not exist in the DAG, the
2853/// input node is returned.  As a degenerate case, if you specify the same
2854/// input operands as the node already has, the input node is returned.
2855SDOperand SelectionDAG::
2856UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2857  SDNode *N = InN.Val;
2858  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2859
2860  // Check to see if there is no change.
2861  if (Op == N->getOperand(0)) return InN;
2862
2863  // See if the modified node already exists.
2864  void *InsertPos = 0;
2865  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2866    return SDOperand(Existing, InN.ResNo);
2867
2868  // Nope it doesn't.  Remove the node from it's current place in the maps.
2869  if (InsertPos)
2870    RemoveNodeFromCSEMaps(N);
2871
2872  // Now we update the operands.
2873  N->OperandList[0].Val->removeUser(N);
2874  Op.Val->addUser(N);
2875  N->OperandList[0] = Op;
2876
2877  // If this gets put into a CSE map, add it.
2878  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2879  return InN;
2880}
2881
2882SDOperand SelectionDAG::
2883UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2884  SDNode *N = InN.Val;
2885  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2886
2887  // Check to see if there is no change.
2888  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2889    return InN;   // No operands changed, just return the input node.
2890
2891  // See if the modified node already exists.
2892  void *InsertPos = 0;
2893  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2894    return SDOperand(Existing, InN.ResNo);
2895
2896  // Nope it doesn't.  Remove the node from it's current place in the maps.
2897  if (InsertPos)
2898    RemoveNodeFromCSEMaps(N);
2899
2900  // Now we update the operands.
2901  if (N->OperandList[0] != Op1) {
2902    N->OperandList[0].Val->removeUser(N);
2903    Op1.Val->addUser(N);
2904    N->OperandList[0] = Op1;
2905  }
2906  if (N->OperandList[1] != Op2) {
2907    N->OperandList[1].Val->removeUser(N);
2908    Op2.Val->addUser(N);
2909    N->OperandList[1] = Op2;
2910  }
2911
2912  // If this gets put into a CSE map, add it.
2913  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2914  return InN;
2915}
2916
2917SDOperand SelectionDAG::
2918UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2919  SDOperand Ops[] = { Op1, Op2, Op3 };
2920  return UpdateNodeOperands(N, Ops, 3);
2921}
2922
2923SDOperand SelectionDAG::
2924UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2925                   SDOperand Op3, SDOperand Op4) {
2926  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2927  return UpdateNodeOperands(N, Ops, 4);
2928}
2929
2930SDOperand SelectionDAG::
2931UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2932                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2933  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2934  return UpdateNodeOperands(N, Ops, 5);
2935}
2936
2937
2938SDOperand SelectionDAG::
2939UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2940  SDNode *N = InN.Val;
2941  assert(N->getNumOperands() == NumOps &&
2942         "Update with wrong number of operands");
2943
2944  // Check to see if there is no change.
2945  bool AnyChange = false;
2946  for (unsigned i = 0; i != NumOps; ++i) {
2947    if (Ops[i] != N->getOperand(i)) {
2948      AnyChange = true;
2949      break;
2950    }
2951  }
2952
2953  // No operands changed, just return the input node.
2954  if (!AnyChange) return InN;
2955
2956  // See if the modified node already exists.
2957  void *InsertPos = 0;
2958  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2959    return SDOperand(Existing, InN.ResNo);
2960
2961  // Nope it doesn't.  Remove the node from it's current place in the maps.
2962  if (InsertPos)
2963    RemoveNodeFromCSEMaps(N);
2964
2965  // Now we update the operands.
2966  for (unsigned i = 0; i != NumOps; ++i) {
2967    if (N->OperandList[i] != Ops[i]) {
2968      N->OperandList[i].Val->removeUser(N);
2969      Ops[i].Val->addUser(N);
2970      N->OperandList[i] = Ops[i];
2971    }
2972  }
2973
2974  // If this gets put into a CSE map, add it.
2975  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2976  return InN;
2977}
2978
2979
2980/// MorphNodeTo - This frees the operands of the current node, resets the
2981/// opcode, types, and operands to the specified value.  This should only be
2982/// used by the SelectionDAG class.
2983void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2984                         const SDOperand *Ops, unsigned NumOps) {
2985  NodeType = Opc;
2986  ValueList = L.VTs;
2987  NumValues = L.NumVTs;
2988
2989  // Clear the operands list, updating used nodes to remove this from their
2990  // use list.
2991  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2992    I->Val->removeUser(this);
2993
2994  // If NumOps is larger than the # of operands we currently have, reallocate
2995  // the operand list.
2996  if (NumOps > NumOperands) {
2997    if (OperandsNeedDelete)
2998      delete [] OperandList;
2999    OperandList = new SDOperand[NumOps];
3000    OperandsNeedDelete = true;
3001  }
3002
3003  // Assign the new operands.
3004  NumOperands = NumOps;
3005
3006  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3007    OperandList[i] = Ops[i];
3008    SDNode *N = OperandList[i].Val;
3009    N->Uses.push_back(this);
3010  }
3011}
3012
3013/// SelectNodeTo - These are used for target selectors to *mutate* the
3014/// specified node to have the specified return type, Target opcode, and
3015/// operands.  Note that target opcodes are stored as
3016/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3017///
3018/// Note that SelectNodeTo returns the resultant node.  If there is already a
3019/// node of the specified opcode and operands, it returns that node instead of
3020/// the current one.
3021SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3022                                   MVT::ValueType VT) {
3023  SDVTList VTs = getVTList(VT);
3024  FoldingSetNodeID ID;
3025  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3026  void *IP = 0;
3027  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3028    return ON;
3029
3030  RemoveNodeFromCSEMaps(N);
3031
3032  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3033
3034  CSEMap.InsertNode(N, IP);
3035  return N;
3036}
3037
3038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3039                                   MVT::ValueType VT, SDOperand Op1) {
3040  // If an identical node already exists, use it.
3041  SDVTList VTs = getVTList(VT);
3042  SDOperand Ops[] = { Op1 };
3043
3044  FoldingSetNodeID ID;
3045  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3046  void *IP = 0;
3047  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3048    return ON;
3049
3050  RemoveNodeFromCSEMaps(N);
3051  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3052  CSEMap.InsertNode(N, IP);
3053  return N;
3054}
3055
3056SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3057                                   MVT::ValueType VT, SDOperand Op1,
3058                                   SDOperand Op2) {
3059  // If an identical node already exists, use it.
3060  SDVTList VTs = getVTList(VT);
3061  SDOperand Ops[] = { Op1, Op2 };
3062
3063  FoldingSetNodeID ID;
3064  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3065  void *IP = 0;
3066  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3067    return ON;
3068
3069  RemoveNodeFromCSEMaps(N);
3070
3071  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3072
3073  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3074  return N;
3075}
3076
3077SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3078                                   MVT::ValueType VT, SDOperand Op1,
3079                                   SDOperand Op2, SDOperand Op3) {
3080  // If an identical node already exists, use it.
3081  SDVTList VTs = getVTList(VT);
3082  SDOperand Ops[] = { Op1, Op2, Op3 };
3083  FoldingSetNodeID ID;
3084  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3085  void *IP = 0;
3086  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3087    return ON;
3088
3089  RemoveNodeFromCSEMaps(N);
3090
3091  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3092
3093  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3094  return N;
3095}
3096
3097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3098                                   MVT::ValueType VT, const SDOperand *Ops,
3099                                   unsigned NumOps) {
3100  // If an identical node already exists, use it.
3101  SDVTList VTs = getVTList(VT);
3102  FoldingSetNodeID ID;
3103  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3104  void *IP = 0;
3105  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3106    return ON;
3107
3108  RemoveNodeFromCSEMaps(N);
3109  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3110
3111  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3112  return N;
3113}
3114
3115SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3116                                   MVT::ValueType VT1, MVT::ValueType VT2,
3117                                   SDOperand Op1, SDOperand Op2) {
3118  SDVTList VTs = getVTList(VT1, VT2);
3119  FoldingSetNodeID ID;
3120  SDOperand Ops[] = { Op1, Op2 };
3121  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3122  void *IP = 0;
3123  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3124    return ON;
3125
3126  RemoveNodeFromCSEMaps(N);
3127  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3128  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3129  return N;
3130}
3131
3132SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3133                                   MVT::ValueType VT1, MVT::ValueType VT2,
3134                                   SDOperand Op1, SDOperand Op2,
3135                                   SDOperand Op3) {
3136  // If an identical node already exists, use it.
3137  SDVTList VTs = getVTList(VT1, VT2);
3138  SDOperand Ops[] = { Op1, Op2, Op3 };
3139  FoldingSetNodeID ID;
3140  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3141  void *IP = 0;
3142  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3143    return ON;
3144
3145  RemoveNodeFromCSEMaps(N);
3146
3147  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3148  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3149  return N;
3150}
3151
3152
3153/// getTargetNode - These are used for target selectors to create a new node
3154/// with specified return type(s), target opcode, and operands.
3155///
3156/// Note that getTargetNode returns the resultant node.  If there is already a
3157/// node of the specified opcode and operands, it returns that node instead of
3158/// the current one.
3159SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3160  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3161}
3162SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3163                                    SDOperand Op1) {
3164  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3165}
3166SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3167                                    SDOperand Op1, SDOperand Op2) {
3168  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3169}
3170SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3171                                    SDOperand Op1, SDOperand Op2,
3172                                    SDOperand Op3) {
3173  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3174}
3175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3176                                    const SDOperand *Ops, unsigned NumOps) {
3177  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3178}
3179SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3180                                    MVT::ValueType VT2) {
3181  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3182  SDOperand Op;
3183  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3184}
3185SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3186                                    MVT::ValueType VT2, SDOperand Op1) {
3187  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3188  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3189}
3190SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3191                                    MVT::ValueType VT2, SDOperand Op1,
3192                                    SDOperand Op2) {
3193  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3194  SDOperand Ops[] = { Op1, Op2 };
3195  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3196}
3197SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3198                                    MVT::ValueType VT2, SDOperand Op1,
3199                                    SDOperand Op2, SDOperand Op3) {
3200  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3201  SDOperand Ops[] = { Op1, Op2, Op3 };
3202  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3203}
3204SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3205                                    MVT::ValueType VT2,
3206                                    const SDOperand *Ops, unsigned NumOps) {
3207  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3208  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3209}
3210SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3211                                    MVT::ValueType VT2, MVT::ValueType VT3,
3212                                    SDOperand Op1, SDOperand Op2) {
3213  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3214  SDOperand Ops[] = { Op1, Op2 };
3215  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3216}
3217SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3218                                    MVT::ValueType VT2, MVT::ValueType VT3,
3219                                    SDOperand Op1, SDOperand Op2,
3220                                    SDOperand Op3) {
3221  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3222  SDOperand Ops[] = { Op1, Op2, Op3 };
3223  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3224}
3225SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3226                                    MVT::ValueType VT2, MVT::ValueType VT3,
3227                                    const SDOperand *Ops, unsigned NumOps) {
3228  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3229  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3230}
3231SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3232                                    MVT::ValueType VT2, MVT::ValueType VT3,
3233                                    MVT::ValueType VT4,
3234                                    const SDOperand *Ops, unsigned NumOps) {
3235  std::vector<MVT::ValueType> VTList;
3236  VTList.push_back(VT1);
3237  VTList.push_back(VT2);
3238  VTList.push_back(VT3);
3239  VTList.push_back(VT4);
3240  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3241  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3242}
3243SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3244                                    std::vector<MVT::ValueType> &ResultTys,
3245                                    const SDOperand *Ops, unsigned NumOps) {
3246  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3247  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3248                 Ops, NumOps).Val;
3249}
3250
3251
3252/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3253/// This can cause recursive merging of nodes in the DAG.
3254///
3255/// This version assumes From has a single result value.
3256///
3257void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3258                                      DAGUpdateListener *UpdateListener) {
3259  SDNode *From = FromN.Val;
3260  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3261         "Cannot replace with this method!");
3262  assert(From != To.Val && "Cannot replace uses of with self");
3263
3264  while (!From->use_empty()) {
3265    // Process users until they are all gone.
3266    SDNode *U = *From->use_begin();
3267
3268    // This node is about to morph, remove its old self from the CSE maps.
3269    RemoveNodeFromCSEMaps(U);
3270
3271    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3272         I != E; ++I)
3273      if (I->Val == From) {
3274        From->removeUser(U);
3275        *I = To;
3276        To.Val->addUser(U);
3277      }
3278
3279    // Now that we have modified U, add it back to the CSE maps.  If it already
3280    // exists there, recursively merge the results together.
3281    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3282      ReplaceAllUsesWith(U, Existing, UpdateListener);
3283      // U is now dead.  Inform the listener if it exists and delete it.
3284      if (UpdateListener)
3285        UpdateListener->NodeDeleted(U);
3286      DeleteNodeNotInCSEMaps(U);
3287    } else {
3288      // If the node doesn't already exist, we updated it.  Inform a listener if
3289      // it exists.
3290      if (UpdateListener)
3291        UpdateListener->NodeUpdated(U);
3292    }
3293  }
3294}
3295
3296/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3297/// This can cause recursive merging of nodes in the DAG.
3298///
3299/// This version assumes From/To have matching types and numbers of result
3300/// values.
3301///
3302void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3303                                      DAGUpdateListener *UpdateListener) {
3304  assert(From != To && "Cannot replace uses of with self");
3305  assert(From->getNumValues() == To->getNumValues() &&
3306         "Cannot use this version of ReplaceAllUsesWith!");
3307  if (From->getNumValues() == 1)   // If possible, use the faster version.
3308    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3309                              UpdateListener);
3310
3311  while (!From->use_empty()) {
3312    // Process users until they are all gone.
3313    SDNode *U = *From->use_begin();
3314
3315    // This node is about to morph, remove its old self from the CSE maps.
3316    RemoveNodeFromCSEMaps(U);
3317
3318    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3319         I != E; ++I)
3320      if (I->Val == From) {
3321        From->removeUser(U);
3322        I->Val = To;
3323        To->addUser(U);
3324      }
3325
3326    // Now that we have modified U, add it back to the CSE maps.  If it already
3327    // exists there, recursively merge the results together.
3328    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3329      ReplaceAllUsesWith(U, Existing, UpdateListener);
3330      // U is now dead.  Inform the listener if it exists and delete it.
3331      if (UpdateListener)
3332        UpdateListener->NodeDeleted(U);
3333      DeleteNodeNotInCSEMaps(U);
3334    } else {
3335      // If the node doesn't already exist, we updated it.  Inform a listener if
3336      // it exists.
3337      if (UpdateListener)
3338        UpdateListener->NodeUpdated(U);
3339    }
3340  }
3341}
3342
3343/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3344/// This can cause recursive merging of nodes in the DAG.
3345///
3346/// This version can replace From with any result values.  To must match the
3347/// number and types of values returned by From.
3348void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3349                                      const SDOperand *To,
3350                                      DAGUpdateListener *UpdateListener) {
3351  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3352    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3353
3354  while (!From->use_empty()) {
3355    // Process users until they are all gone.
3356    SDNode *U = *From->use_begin();
3357
3358    // This node is about to morph, remove its old self from the CSE maps.
3359    RemoveNodeFromCSEMaps(U);
3360
3361    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3362         I != E; ++I)
3363      if (I->Val == From) {
3364        const SDOperand &ToOp = To[I->ResNo];
3365        From->removeUser(U);
3366        *I = ToOp;
3367        ToOp.Val->addUser(U);
3368      }
3369
3370    // Now that we have modified U, add it back to the CSE maps.  If it already
3371    // exists there, recursively merge the results together.
3372    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3373      ReplaceAllUsesWith(U, Existing, UpdateListener);
3374      // U is now dead.  Inform the listener if it exists and delete it.
3375      if (UpdateListener)
3376        UpdateListener->NodeDeleted(U);
3377      DeleteNodeNotInCSEMaps(U);
3378    } else {
3379      // If the node doesn't already exist, we updated it.  Inform a listener if
3380      // it exists.
3381      if (UpdateListener)
3382        UpdateListener->NodeUpdated(U);
3383    }
3384  }
3385}
3386
3387namespace {
3388  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3389  /// any deleted nodes from the set passed into its constructor and recursively
3390  /// notifies another update listener if specified.
3391  class ChainedSetUpdaterListener :
3392  public SelectionDAG::DAGUpdateListener {
3393    SmallSetVector<SDNode*, 16> &Set;
3394    SelectionDAG::DAGUpdateListener *Chain;
3395  public:
3396    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3397                              SelectionDAG::DAGUpdateListener *chain)
3398      : Set(set), Chain(chain) {}
3399
3400    virtual void NodeDeleted(SDNode *N) {
3401      Set.remove(N);
3402      if (Chain) Chain->NodeDeleted(N);
3403    }
3404    virtual void NodeUpdated(SDNode *N) {
3405      if (Chain) Chain->NodeUpdated(N);
3406    }
3407  };
3408}
3409
3410/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3411/// uses of other values produced by From.Val alone.  The Deleted vector is
3412/// handled the same way as for ReplaceAllUsesWith.
3413void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3414                                             DAGUpdateListener *UpdateListener){
3415  assert(From != To && "Cannot replace a value with itself");
3416
3417  // Handle the simple, trivial, case efficiently.
3418  if (From.Val->getNumValues() == 1) {
3419    ReplaceAllUsesWith(From, To, UpdateListener);
3420    return;
3421  }
3422
3423  if (From.use_empty()) return;
3424
3425  // Get all of the users of From.Val.  We want these in a nice,
3426  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3427  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3428
3429  // When one of the recursive merges deletes nodes from the graph, we need to
3430  // make sure that UpdateListener is notified *and* that the node is removed
3431  // from Users if present.  CSUL does this.
3432  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3433
3434  while (!Users.empty()) {
3435    // We know that this user uses some value of From.  If it is the right
3436    // value, update it.
3437    SDNode *User = Users.back();
3438    Users.pop_back();
3439
3440    // Scan for an operand that matches From.
3441    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3442    for (; Op != E; ++Op)
3443      if (*Op == From) break;
3444
3445    // If there are no matches, the user must use some other result of From.
3446    if (Op == E) continue;
3447
3448    // Okay, we know this user needs to be updated.  Remove its old self
3449    // from the CSE maps.
3450    RemoveNodeFromCSEMaps(User);
3451
3452    // Update all operands that match "From" in case there are multiple uses.
3453    for (; Op != E; ++Op) {
3454      if (*Op == From) {
3455        From.Val->removeUser(User);
3456        *Op = To;
3457        To.Val->addUser(User);
3458      }
3459    }
3460
3461    // Now that we have modified User, add it back to the CSE maps.  If it
3462    // already exists there, recursively merge the results together.
3463    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3464    if (!Existing) {
3465      if (UpdateListener) UpdateListener->NodeUpdated(User);
3466      continue;  // Continue on to next user.
3467    }
3468
3469    // If there was already an existing matching node, use ReplaceAllUsesWith
3470    // to replace the dead one with the existing one.  This can cause
3471    // recursive merging of other unrelated nodes down the line.  The merging
3472    // can cause deletion of nodes that used the old value.  To handle this, we
3473    // use CSUL to remove them from the Users set.
3474    ReplaceAllUsesWith(User, Existing, &CSUL);
3475
3476    // User is now dead.  Notify a listener if present.
3477    if (UpdateListener) UpdateListener->NodeDeleted(User);
3478    DeleteNodeNotInCSEMaps(User);
3479  }
3480}
3481
3482
3483/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3484/// their allnodes order. It returns the maximum id.
3485unsigned SelectionDAG::AssignNodeIds() {
3486  unsigned Id = 0;
3487  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3488    SDNode *N = I;
3489    N->setNodeId(Id++);
3490  }
3491  return Id;
3492}
3493
3494/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3495/// based on their topological order. It returns the maximum id and a vector
3496/// of the SDNodes* in assigned order by reference.
3497unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3498  unsigned DAGSize = AllNodes.size();
3499  std::vector<unsigned> InDegree(DAGSize);
3500  std::vector<SDNode*> Sources;
3501
3502  // Use a two pass approach to avoid using a std::map which is slow.
3503  unsigned Id = 0;
3504  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3505    SDNode *N = I;
3506    N->setNodeId(Id++);
3507    unsigned Degree = N->use_size();
3508    InDegree[N->getNodeId()] = Degree;
3509    if (Degree == 0)
3510      Sources.push_back(N);
3511  }
3512
3513  TopOrder.clear();
3514  while (!Sources.empty()) {
3515    SDNode *N = Sources.back();
3516    Sources.pop_back();
3517    TopOrder.push_back(N);
3518    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3519      SDNode *P = I->Val;
3520      unsigned Degree = --InDegree[P->getNodeId()];
3521      if (Degree == 0)
3522        Sources.push_back(P);
3523    }
3524  }
3525
3526  // Second pass, assign the actual topological order as node ids.
3527  Id = 0;
3528  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3529       TI != TE; ++TI)
3530    (*TI)->setNodeId(Id++);
3531
3532  return Id;
3533}
3534
3535
3536
3537//===----------------------------------------------------------------------===//
3538//                              SDNode Class
3539//===----------------------------------------------------------------------===//
3540
3541// Out-of-line virtual method to give class a home.
3542void SDNode::ANCHOR() {}
3543void UnarySDNode::ANCHOR() {}
3544void BinarySDNode::ANCHOR() {}
3545void TernarySDNode::ANCHOR() {}
3546void HandleSDNode::ANCHOR() {}
3547void StringSDNode::ANCHOR() {}
3548void ConstantSDNode::ANCHOR() {}
3549void ConstantFPSDNode::ANCHOR() {}
3550void GlobalAddressSDNode::ANCHOR() {}
3551void FrameIndexSDNode::ANCHOR() {}
3552void JumpTableSDNode::ANCHOR() {}
3553void ConstantPoolSDNode::ANCHOR() {}
3554void BasicBlockSDNode::ANCHOR() {}
3555void SrcValueSDNode::ANCHOR() {}
3556void MemOperandSDNode::ANCHOR() {}
3557void RegisterSDNode::ANCHOR() {}
3558void ExternalSymbolSDNode::ANCHOR() {}
3559void CondCodeSDNode::ANCHOR() {}
3560void VTSDNode::ANCHOR() {}
3561void LoadSDNode::ANCHOR() {}
3562void StoreSDNode::ANCHOR() {}
3563void AtomicSDNode::ANCHOR() {}
3564
3565HandleSDNode::~HandleSDNode() {
3566  SDVTList VTs = { 0, 0 };
3567  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3568}
3569
3570GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3571                                         MVT::ValueType VT, int o)
3572  : SDNode(isa<GlobalVariable>(GA) &&
3573           cast<GlobalVariable>(GA)->isThreadLocal() ?
3574           // Thread Local
3575           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3576           // Non Thread Local
3577           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3578           getSDVTList(VT)), Offset(o) {
3579  TheGlobal = const_cast<GlobalValue*>(GA);
3580}
3581
3582/// getMemOperand - Return a MemOperand object describing the memory
3583/// reference performed by this load or store.
3584MemOperand LSBaseSDNode::getMemOperand() const {
3585  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3586  int Flags =
3587    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3588  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3589
3590  // Check if the load references a frame index, and does not have
3591  // an SV attached.
3592  const FrameIndexSDNode *FI =
3593    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3594  if (!getSrcValue() && FI)
3595    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3596                      FI->getIndex(), Size, Alignment);
3597  else
3598    return MemOperand(getSrcValue(), Flags,
3599                      getSrcValueOffset(), Size, Alignment);
3600}
3601
3602/// Profile - Gather unique data for the node.
3603///
3604void SDNode::Profile(FoldingSetNodeID &ID) {
3605  AddNodeIDNode(ID, this);
3606}
3607
3608/// getValueTypeList - Return a pointer to the specified value type.
3609///
3610const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3611  if (MVT::isExtendedVT(VT)) {
3612    static std::set<MVT::ValueType> EVTs;
3613    return &(*EVTs.insert(VT).first);
3614  } else {
3615    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3616    VTs[VT] = VT;
3617    return &VTs[VT];
3618  }
3619}
3620
3621/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3622/// indicated value.  This method ignores uses of other values defined by this
3623/// operation.
3624bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3625  assert(Value < getNumValues() && "Bad value!");
3626
3627  // If there is only one value, this is easy.
3628  if (getNumValues() == 1)
3629    return use_size() == NUses;
3630  if (use_size() < NUses) return false;
3631
3632  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3633
3634  SmallPtrSet<SDNode*, 32> UsersHandled;
3635
3636  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3637    SDNode *User = *UI;
3638    if (User->getNumOperands() == 1 ||
3639        UsersHandled.insert(User))     // First time we've seen this?
3640      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3641        if (User->getOperand(i) == TheValue) {
3642          if (NUses == 0)
3643            return false;   // too many uses
3644          --NUses;
3645        }
3646  }
3647
3648  // Found exactly the right number of uses?
3649  return NUses == 0;
3650}
3651
3652
3653/// hasAnyUseOfValue - Return true if there are any use of the indicated
3654/// value. This method ignores uses of other values defined by this operation.
3655bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3656  assert(Value < getNumValues() && "Bad value!");
3657
3658  if (use_empty()) return false;
3659
3660  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3661
3662  SmallPtrSet<SDNode*, 32> UsersHandled;
3663
3664  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3665    SDNode *User = *UI;
3666    if (User->getNumOperands() == 1 ||
3667        UsersHandled.insert(User))     // First time we've seen this?
3668      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3669        if (User->getOperand(i) == TheValue) {
3670          return true;
3671        }
3672  }
3673
3674  return false;
3675}
3676
3677
3678/// isOnlyUseOf - Return true if this node is the only use of N.
3679///
3680bool SDNode::isOnlyUseOf(SDNode *N) const {
3681  bool Seen = false;
3682  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3683    SDNode *User = *I;
3684    if (User == this)
3685      Seen = true;
3686    else
3687      return false;
3688  }
3689
3690  return Seen;
3691}
3692
3693/// isOperand - Return true if this node is an operand of N.
3694///
3695bool SDOperand::isOperandOf(SDNode *N) const {
3696  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3697    if (*this == N->getOperand(i))
3698      return true;
3699  return false;
3700}
3701
3702bool SDNode::isOperandOf(SDNode *N) const {
3703  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3704    if (this == N->OperandList[i].Val)
3705      return true;
3706  return false;
3707}
3708
3709/// reachesChainWithoutSideEffects - Return true if this operand (which must
3710/// be a chain) reaches the specified operand without crossing any
3711/// side-effecting instructions.  In practice, this looks through token
3712/// factors and non-volatile loads.  In order to remain efficient, this only
3713/// looks a couple of nodes in, it does not do an exhaustive search.
3714bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3715                                               unsigned Depth) const {
3716  if (*this == Dest) return true;
3717
3718  // Don't search too deeply, we just want to be able to see through
3719  // TokenFactor's etc.
3720  if (Depth == 0) return false;
3721
3722  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3723  // of the operands of the TF reach dest, then we can do the xform.
3724  if (getOpcode() == ISD::TokenFactor) {
3725    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3726      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3727        return true;
3728    return false;
3729  }
3730
3731  // Loads don't have side effects, look through them.
3732  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3733    if (!Ld->isVolatile())
3734      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3735  }
3736  return false;
3737}
3738
3739
3740static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3741                            SmallPtrSet<SDNode *, 32> &Visited) {
3742  if (found || !Visited.insert(N))
3743    return;
3744
3745  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3746    SDNode *Op = N->getOperand(i).Val;
3747    if (Op == P) {
3748      found = true;
3749      return;
3750    }
3751    findPredecessor(Op, P, found, Visited);
3752  }
3753}
3754
3755/// isPredecessorOf - Return true if this node is a predecessor of N. This node
3756/// is either an operand of N or it can be reached by recursively traversing
3757/// up the operands.
3758/// NOTE: this is an expensive method. Use it carefully.
3759bool SDNode::isPredecessorOf(SDNode *N) const {
3760  SmallPtrSet<SDNode *, 32> Visited;
3761  bool found = false;
3762  findPredecessor(N, this, found, Visited);
3763  return found;
3764}
3765
3766uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3767  assert(Num < NumOperands && "Invalid child # of SDNode!");
3768  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3769}
3770
3771std::string SDNode::getOperationName(const SelectionDAG *G) const {
3772  switch (getOpcode()) {
3773  default:
3774    if (getOpcode() < ISD::BUILTIN_OP_END)
3775      return "<<Unknown DAG Node>>";
3776    else {
3777      if (G) {
3778        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3779          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3780            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3781
3782        TargetLowering &TLI = G->getTargetLoweringInfo();
3783        const char *Name =
3784          TLI.getTargetNodeName(getOpcode());
3785        if (Name) return Name;
3786      }
3787
3788      return "<<Unknown Target Node>>";
3789    }
3790
3791  case ISD::PREFETCH:      return "Prefetch";
3792  case ISD::MEMBARRIER:    return "MemBarrier";
3793  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3794  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3795  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3796  case ISD::PCMARKER:      return "PCMarker";
3797  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3798  case ISD::SRCVALUE:      return "SrcValue";
3799  case ISD::MEMOPERAND:    return "MemOperand";
3800  case ISD::EntryToken:    return "EntryToken";
3801  case ISD::TokenFactor:   return "TokenFactor";
3802  case ISD::AssertSext:    return "AssertSext";
3803  case ISD::AssertZext:    return "AssertZext";
3804
3805  case ISD::STRING:        return "String";
3806  case ISD::BasicBlock:    return "BasicBlock";
3807  case ISD::VALUETYPE:     return "ValueType";
3808  case ISD::Register:      return "Register";
3809
3810  case ISD::Constant:      return "Constant";
3811  case ISD::ConstantFP:    return "ConstantFP";
3812  case ISD::GlobalAddress: return "GlobalAddress";
3813  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3814  case ISD::FrameIndex:    return "FrameIndex";
3815  case ISD::JumpTable:     return "JumpTable";
3816  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3817  case ISD::RETURNADDR: return "RETURNADDR";
3818  case ISD::FRAMEADDR: return "FRAMEADDR";
3819  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3820  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3821  case ISD::EHSELECTION: return "EHSELECTION";
3822  case ISD::EH_RETURN: return "EH_RETURN";
3823  case ISD::ConstantPool:  return "ConstantPool";
3824  case ISD::ExternalSymbol: return "ExternalSymbol";
3825  case ISD::INTRINSIC_WO_CHAIN: {
3826    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3827    return Intrinsic::getName((Intrinsic::ID)IID);
3828  }
3829  case ISD::INTRINSIC_VOID:
3830  case ISD::INTRINSIC_W_CHAIN: {
3831    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3832    return Intrinsic::getName((Intrinsic::ID)IID);
3833  }
3834
3835  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3836  case ISD::TargetConstant: return "TargetConstant";
3837  case ISD::TargetConstantFP:return "TargetConstantFP";
3838  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3839  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3840  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3841  case ISD::TargetJumpTable:  return "TargetJumpTable";
3842  case ISD::TargetConstantPool:  return "TargetConstantPool";
3843  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3844
3845  case ISD::CopyToReg:     return "CopyToReg";
3846  case ISD::CopyFromReg:   return "CopyFromReg";
3847  case ISD::UNDEF:         return "undef";
3848  case ISD::MERGE_VALUES:  return "merge_values";
3849  case ISD::INLINEASM:     return "inlineasm";
3850  case ISD::LABEL:         return "label";
3851  case ISD::DECLARE:       return "declare";
3852  case ISD::HANDLENODE:    return "handlenode";
3853  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3854  case ISD::CALL:          return "call";
3855
3856  // Unary operators
3857  case ISD::FABS:   return "fabs";
3858  case ISD::FNEG:   return "fneg";
3859  case ISD::FSQRT:  return "fsqrt";
3860  case ISD::FSIN:   return "fsin";
3861  case ISD::FCOS:   return "fcos";
3862  case ISD::FPOWI:  return "fpowi";
3863  case ISD::FPOW:   return "fpow";
3864
3865  // Binary operators
3866  case ISD::ADD:    return "add";
3867  case ISD::SUB:    return "sub";
3868  case ISD::MUL:    return "mul";
3869  case ISD::MULHU:  return "mulhu";
3870  case ISD::MULHS:  return "mulhs";
3871  case ISD::SDIV:   return "sdiv";
3872  case ISD::UDIV:   return "udiv";
3873  case ISD::SREM:   return "srem";
3874  case ISD::UREM:   return "urem";
3875  case ISD::SMUL_LOHI:  return "smul_lohi";
3876  case ISD::UMUL_LOHI:  return "umul_lohi";
3877  case ISD::SDIVREM:    return "sdivrem";
3878  case ISD::UDIVREM:    return "divrem";
3879  case ISD::AND:    return "and";
3880  case ISD::OR:     return "or";
3881  case ISD::XOR:    return "xor";
3882  case ISD::SHL:    return "shl";
3883  case ISD::SRA:    return "sra";
3884  case ISD::SRL:    return "srl";
3885  case ISD::ROTL:   return "rotl";
3886  case ISD::ROTR:   return "rotr";
3887  case ISD::FADD:   return "fadd";
3888  case ISD::FSUB:   return "fsub";
3889  case ISD::FMUL:   return "fmul";
3890  case ISD::FDIV:   return "fdiv";
3891  case ISD::FREM:   return "frem";
3892  case ISD::FCOPYSIGN: return "fcopysign";
3893  case ISD::FGETSIGN:  return "fgetsign";
3894
3895  case ISD::SETCC:       return "setcc";
3896  case ISD::SELECT:      return "select";
3897  case ISD::SELECT_CC:   return "select_cc";
3898  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3899  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3900  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3901  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3902  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3903  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3904  case ISD::CARRY_FALSE:         return "carry_false";
3905  case ISD::ADDC:        return "addc";
3906  case ISD::ADDE:        return "adde";
3907  case ISD::SUBC:        return "subc";
3908  case ISD::SUBE:        return "sube";
3909  case ISD::SHL_PARTS:   return "shl_parts";
3910  case ISD::SRA_PARTS:   return "sra_parts";
3911  case ISD::SRL_PARTS:   return "srl_parts";
3912
3913  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3914  case ISD::INSERT_SUBREG:      return "insert_subreg";
3915
3916  // Conversion operators.
3917  case ISD::SIGN_EXTEND: return "sign_extend";
3918  case ISD::ZERO_EXTEND: return "zero_extend";
3919  case ISD::ANY_EXTEND:  return "any_extend";
3920  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3921  case ISD::TRUNCATE:    return "truncate";
3922  case ISD::FP_ROUND:    return "fp_round";
3923  case ISD::FLT_ROUNDS_: return "flt_rounds";
3924  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3925  case ISD::FP_EXTEND:   return "fp_extend";
3926
3927  case ISD::SINT_TO_FP:  return "sint_to_fp";
3928  case ISD::UINT_TO_FP:  return "uint_to_fp";
3929  case ISD::FP_TO_SINT:  return "fp_to_sint";
3930  case ISD::FP_TO_UINT:  return "fp_to_uint";
3931  case ISD::BIT_CONVERT: return "bit_convert";
3932
3933    // Control flow instructions
3934  case ISD::BR:      return "br";
3935  case ISD::BRIND:   return "brind";
3936  case ISD::BR_JT:   return "br_jt";
3937  case ISD::BRCOND:  return "brcond";
3938  case ISD::BR_CC:   return "br_cc";
3939  case ISD::RET:     return "ret";
3940  case ISD::CALLSEQ_START:  return "callseq_start";
3941  case ISD::CALLSEQ_END:    return "callseq_end";
3942
3943    // Other operators
3944  case ISD::LOAD:               return "load";
3945  case ISD::STORE:              return "store";
3946  case ISD::VAARG:              return "vaarg";
3947  case ISD::VACOPY:             return "vacopy";
3948  case ISD::VAEND:              return "vaend";
3949  case ISD::VASTART:            return "vastart";
3950  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3951  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3952  case ISD::BUILD_PAIR:         return "build_pair";
3953  case ISD::STACKSAVE:          return "stacksave";
3954  case ISD::STACKRESTORE:       return "stackrestore";
3955  case ISD::TRAP:               return "trap";
3956
3957  // Block memory operations.
3958  case ISD::MEMSET:  return "memset";
3959  case ISD::MEMCPY:  return "memcpy";
3960  case ISD::MEMMOVE: return "memmove";
3961
3962  // Bit manipulation
3963  case ISD::BSWAP:   return "bswap";
3964  case ISD::CTPOP:   return "ctpop";
3965  case ISD::CTTZ:    return "cttz";
3966  case ISD::CTLZ:    return "ctlz";
3967
3968  // Debug info
3969  case ISD::LOCATION: return "location";
3970  case ISD::DEBUG_LOC: return "debug_loc";
3971
3972  // Trampolines
3973  case ISD::TRAMPOLINE: return "trampoline";
3974
3975  case ISD::CONDCODE:
3976    switch (cast<CondCodeSDNode>(this)->get()) {
3977    default: assert(0 && "Unknown setcc condition!");
3978    case ISD::SETOEQ:  return "setoeq";
3979    case ISD::SETOGT:  return "setogt";
3980    case ISD::SETOGE:  return "setoge";
3981    case ISD::SETOLT:  return "setolt";
3982    case ISD::SETOLE:  return "setole";
3983    case ISD::SETONE:  return "setone";
3984
3985    case ISD::SETO:    return "seto";
3986    case ISD::SETUO:   return "setuo";
3987    case ISD::SETUEQ:  return "setue";
3988    case ISD::SETUGT:  return "setugt";
3989    case ISD::SETUGE:  return "setuge";
3990    case ISD::SETULT:  return "setult";
3991    case ISD::SETULE:  return "setule";
3992    case ISD::SETUNE:  return "setune";
3993
3994    case ISD::SETEQ:   return "seteq";
3995    case ISD::SETGT:   return "setgt";
3996    case ISD::SETGE:   return "setge";
3997    case ISD::SETLT:   return "setlt";
3998    case ISD::SETLE:   return "setle";
3999    case ISD::SETNE:   return "setne";
4000    }
4001  }
4002}
4003
4004const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4005  switch (AM) {
4006  default:
4007    return "";
4008  case ISD::PRE_INC:
4009    return "<pre-inc>";
4010  case ISD::PRE_DEC:
4011    return "<pre-dec>";
4012  case ISD::POST_INC:
4013    return "<post-inc>";
4014  case ISD::POST_DEC:
4015    return "<post-dec>";
4016  }
4017}
4018
4019void SDNode::dump() const { dump(0); }
4020void SDNode::dump(const SelectionDAG *G) const {
4021  cerr << (void*)this << ": ";
4022
4023  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4024    if (i) cerr << ",";
4025    if (getValueType(i) == MVT::Other)
4026      cerr << "ch";
4027    else
4028      cerr << MVT::getValueTypeString(getValueType(i));
4029  }
4030  cerr << " = " << getOperationName(G);
4031
4032  cerr << " ";
4033  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4034    if (i) cerr << ", ";
4035    cerr << (void*)getOperand(i).Val;
4036    if (unsigned RN = getOperand(i).ResNo)
4037      cerr << ":" << RN;
4038  }
4039
4040  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4041    SDNode *Mask = getOperand(2).Val;
4042    cerr << "<";
4043    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4044      if (i) cerr << ",";
4045      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4046        cerr << "u";
4047      else
4048        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4049    }
4050    cerr << ">";
4051  }
4052
4053  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4054    cerr << "<" << CSDN->getValue() << ">";
4055  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4056    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4057      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4058    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4059      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4060    else {
4061      cerr << "<APFloat(";
4062      CSDN->getValueAPF().convertToAPInt().dump();
4063      cerr << ")>";
4064    }
4065  } else if (const GlobalAddressSDNode *GADN =
4066             dyn_cast<GlobalAddressSDNode>(this)) {
4067    int offset = GADN->getOffset();
4068    cerr << "<";
4069    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4070    if (offset > 0)
4071      cerr << " + " << offset;
4072    else
4073      cerr << " " << offset;
4074  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4075    cerr << "<" << FIDN->getIndex() << ">";
4076  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4077    cerr << "<" << JTDN->getIndex() << ">";
4078  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4079    int offset = CP->getOffset();
4080    if (CP->isMachineConstantPoolEntry())
4081      cerr << "<" << *CP->getMachineCPVal() << ">";
4082    else
4083      cerr << "<" << *CP->getConstVal() << ">";
4084    if (offset > 0)
4085      cerr << " + " << offset;
4086    else
4087      cerr << " " << offset;
4088  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4089    cerr << "<";
4090    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4091    if (LBB)
4092      cerr << LBB->getName() << " ";
4093    cerr << (const void*)BBDN->getBasicBlock() << ">";
4094  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4095    if (G && R->getReg() &&
4096        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4097      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4098    } else {
4099      cerr << " #" << R->getReg();
4100    }
4101  } else if (const ExternalSymbolSDNode *ES =
4102             dyn_cast<ExternalSymbolSDNode>(this)) {
4103    cerr << "'" << ES->getSymbol() << "'";
4104  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4105    if (M->getValue())
4106      cerr << "<" << M->getValue() << ">";
4107    else
4108      cerr << "<null>";
4109  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4110    if (M->MO.getValue())
4111      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4112    else
4113      cerr << "<null:" << M->MO.getOffset() << ">";
4114  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4115    cerr << ":" << MVT::getValueTypeString(N->getVT());
4116  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4117    const Value *SrcValue = LD->getSrcValue();
4118    int SrcOffset = LD->getSrcValueOffset();
4119    cerr << " <";
4120    if (SrcValue)
4121      cerr << SrcValue;
4122    else
4123      cerr << "null";
4124    cerr << ":" << SrcOffset << ">";
4125
4126    bool doExt = true;
4127    switch (LD->getExtensionType()) {
4128    default: doExt = false; break;
4129    case ISD::EXTLOAD:
4130      cerr << " <anyext ";
4131      break;
4132    case ISD::SEXTLOAD:
4133      cerr << " <sext ";
4134      break;
4135    case ISD::ZEXTLOAD:
4136      cerr << " <zext ";
4137      break;
4138    }
4139    if (doExt)
4140      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4141
4142    const char *AM = getIndexedModeName(LD->getAddressingMode());
4143    if (*AM)
4144      cerr << " " << AM;
4145    if (LD->isVolatile())
4146      cerr << " <volatile>";
4147    cerr << " alignment=" << LD->getAlignment();
4148  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4149    const Value *SrcValue = ST->getSrcValue();
4150    int SrcOffset = ST->getSrcValueOffset();
4151    cerr << " <";
4152    if (SrcValue)
4153      cerr << SrcValue;
4154    else
4155      cerr << "null";
4156    cerr << ":" << SrcOffset << ">";
4157
4158    if (ST->isTruncatingStore())
4159      cerr << " <trunc "
4160           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4161
4162    const char *AM = getIndexedModeName(ST->getAddressingMode());
4163    if (*AM)
4164      cerr << " " << AM;
4165    if (ST->isVolatile())
4166      cerr << " <volatile>";
4167    cerr << " alignment=" << ST->getAlignment();
4168  }
4169}
4170
4171static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4172  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4173    if (N->getOperand(i).Val->hasOneUse())
4174      DumpNodes(N->getOperand(i).Val, indent+2, G);
4175    else
4176      cerr << "\n" << std::string(indent+2, ' ')
4177           << (void*)N->getOperand(i).Val << ": <multiple use>";
4178
4179
4180  cerr << "\n" << std::string(indent, ' ');
4181  N->dump(G);
4182}
4183
4184void SelectionDAG::dump() const {
4185  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4186  std::vector<const SDNode*> Nodes;
4187  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4188       I != E; ++I)
4189    Nodes.push_back(I);
4190
4191  std::sort(Nodes.begin(), Nodes.end());
4192
4193  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4194    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4195      DumpNodes(Nodes[i], 2, this);
4196  }
4197
4198  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4199
4200  cerr << "\n\n";
4201}
4202
4203const Type *ConstantPoolSDNode::getType() const {
4204  if (isMachineConstantPoolEntry())
4205    return Val.MachineCPVal->getType();
4206  return Val.ConstVal->getType();
4207}
4208