SelectionDAG.cpp revision 28b77e968d2b01fc9da724762bd8ddcd80650e32
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX:
436  case ISD::ATOMIC_LOAD:
437  case ISD::ATOMIC_STORE: {
438    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439    ID.AddInteger(AT->getMemoryVT().getRawBits());
440    ID.AddInteger(AT->getRawSubclassData());
441    break;
442  }
443  case ISD::VECTOR_SHUFFLE: {
444    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446         i != e; ++i)
447      ID.AddInteger(SVN->getMaskElt(i));
448    break;
449  }
450  case ISD::TargetBlockAddress:
451  case ISD::BlockAddress: {
452    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454    break;
455  }
456  } // end switch (N->getOpcode())
457}
458
459/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460/// data.
461static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462  AddNodeIDOpcode(ID, N->getOpcode());
463  // Add the return value info.
464  AddNodeIDValueTypes(ID, N->getVTList());
465  // Add the operand info.
466  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468  // Handle SDNode leafs with special info.
469  AddNodeIDCustom(ID, N);
470}
471
472/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473/// the CSE map that carries volatility, temporalness, indexing mode, and
474/// extension/truncation information.
475///
476static inline unsigned
477encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478                     bool isNonTemporal) {
479  assert((ConvType & 3) == ConvType &&
480         "ConvType may not require more than 2 bits!");
481  assert((AM & 7) == AM &&
482         "AM may not require more than 3 bits!");
483  return ConvType |
484         (AM << 2) |
485         (isVolatile << 5) |
486         (isNonTemporal << 6);
487}
488
489//===----------------------------------------------------------------------===//
490//                              SelectionDAG Class
491//===----------------------------------------------------------------------===//
492
493/// doNotCSE - Return true if CSE should not be performed for this node.
494static bool doNotCSE(SDNode *N) {
495  if (N->getValueType(0) == MVT::Glue)
496    return true; // Never CSE anything that produces a flag.
497
498  switch (N->getOpcode()) {
499  default: break;
500  case ISD::HANDLENODE:
501  case ISD::EH_LABEL:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Glue)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598
599  // Remove the ordering of this node.
600  Ordering->remove(N);
601
602  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
603  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
604  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
605    DbgVals[i]->setIsInvalidated();
606}
607
608/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
609/// correspond to it.  This is useful when we're about to delete or repurpose
610/// the node.  We don't want future request for structurally identical nodes
611/// to return N anymore.
612bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
613  bool Erased = false;
614  switch (N->getOpcode()) {
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
645    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748#ifndef NDEBUG
749/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
750static void VerifyNodeCommon(SDNode *N) {
751  switch (N->getOpcode()) {
752  default:
753    break;
754  case ISD::BUILD_PAIR: {
755    EVT VT = N->getValueType(0);
756    assert(N->getNumValues() == 1 && "Too many results!");
757    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
758           "Wrong return type!");
759    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
760    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
761           "Mismatched operand types!");
762    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
763           "Wrong operand type!");
764    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
765           "Wrong return type size");
766    break;
767  }
768  case ISD::BUILD_VECTOR: {
769    assert(N->getNumValues() == 1 && "Too many results!");
770    assert(N->getValueType(0).isVector() && "Wrong return type!");
771    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
772           "Wrong number of operands!");
773    EVT EltVT = N->getValueType(0).getVectorElementType();
774    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
775      assert((I->getValueType() == EltVT ||
776             (EltVT.isInteger() && I->getValueType().isInteger() &&
777              EltVT.bitsLE(I->getValueType()))) &&
778            "Wrong operand type!");
779    break;
780  }
781  }
782}
783
784/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
785static void VerifySDNode(SDNode *N) {
786  // The SDNode allocators cannot be used to allocate nodes with fields that are
787  // not present in an SDNode!
788  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
789  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
790  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
791  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
792  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
793  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
794  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
795  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
796  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
797  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
798  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
799  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
800  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
801  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
802  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
803  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
804  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
805  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
806  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
807
808  VerifyNodeCommon(N);
809}
810
811/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
812/// invalid.
813static void VerifyMachineNode(SDNode *N) {
814  // The MachineNode allocators cannot be used to allocate nodes with fields
815  // that are not present in a MachineNode!
816  // Currently there are no such nodes.
817
818  VerifyNodeCommon(N);
819}
820#endif // NDEBUG
821
822/// getEVTAlignment - Compute the default alignment value for the
823/// given type.
824///
825unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
826  Type *Ty = VT == MVT::iPTR ?
827                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
828                   VT.getTypeForEVT(*getContext());
829
830  return TLI.getTargetData()->getABITypeAlignment(Ty);
831}
832
833// EntryNode could meaningfully have debug info if we can find it...
834SelectionDAG::SelectionDAG(const TargetMachine &tm)
835  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
836    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
837    Root(getEntryNode()), Ordering(0) {
838  AllNodes.push_back(&EntryNode);
839  Ordering = new SDNodeOrdering();
840  DbgInfo = new SDDbgInfo();
841}
842
843void SelectionDAG::init(MachineFunction &mf) {
844  MF = &mf;
845  Context = &mf.getFunction()->getContext();
846}
847
848SelectionDAG::~SelectionDAG() {
849  allnodes_clear();
850  delete Ordering;
851  delete DbgInfo;
852}
853
854void SelectionDAG::allnodes_clear() {
855  assert(&*AllNodes.begin() == &EntryNode);
856  AllNodes.remove(AllNodes.begin());
857  while (!AllNodes.empty())
858    DeallocateNode(AllNodes.begin());
859}
860
861void SelectionDAG::clear() {
862  allnodes_clear();
863  OperandAllocator.Reset();
864  CSEMap.clear();
865
866  ExtendedValueTypeNodes.clear();
867  ExternalSymbols.clear();
868  TargetExternalSymbols.clear();
869  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
870            static_cast<CondCodeSDNode*>(0));
871  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
872            static_cast<SDNode*>(0));
873
874  EntryNode.UseList = 0;
875  AllNodes.push_back(&EntryNode);
876  Root = getEntryNode();
877  Ordering->clear();
878  DbgInfo->clear();
879}
880
881SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
882  return VT.bitsGT(Op.getValueType()) ?
883    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
884    getNode(ISD::TRUNCATE, DL, VT, Op);
885}
886
887SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
888  return VT.bitsGT(Op.getValueType()) ?
889    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
890    getNode(ISD::TRUNCATE, DL, VT, Op);
891}
892
893SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
894  assert(!VT.isVector() &&
895         "getZeroExtendInReg should use the vector element type instead of "
896         "the vector type!");
897  if (Op.getValueType() == VT) return Op;
898  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
899  APInt Imm = APInt::getLowBitsSet(BitWidth,
900                                   VT.getSizeInBits());
901  return getNode(ISD::AND, DL, Op.getValueType(), Op,
902                 getConstant(Imm, Op.getValueType()));
903}
904
905/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
906///
907SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
908  EVT EltVT = VT.getScalarType();
909  SDValue NegOne =
910    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
911  return getNode(ISD::XOR, DL, VT, Val, NegOne);
912}
913
914SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
915  EVT EltVT = VT.getScalarType();
916  assert((EltVT.getSizeInBits() >= 64 ||
917         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
918         "getConstant with a uint64_t value that doesn't fit in the type!");
919  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
920}
921
922SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
923  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
924}
925
926SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
927  assert(VT.isInteger() && "Cannot create FP integer constant!");
928
929  EVT EltVT = VT.getScalarType();
930  const ConstantInt *Elt = &Val;
931
932  // In some cases the vector type is legal but the element type is illegal and
933  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
934  // inserted value (the type does not need to match the vector element type).
935  // Any extra bits introduced will be truncated away.
936  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
937      TargetLowering::TypePromoteInteger) {
938   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
939   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
940   Elt = ConstantInt::get(*getContext(), NewVal);
941  }
942
943  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
944         "APInt size does not match type size!");
945  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
946  FoldingSetNodeID ID;
947  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
948  ID.AddPointer(Elt);
949  void *IP = 0;
950  SDNode *N = NULL;
951  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
952    if (!VT.isVector())
953      return SDValue(N, 0);
954
955  if (!N) {
956    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
957    CSEMap.InsertNode(N, IP);
958    AllNodes.push_back(N);
959  }
960
961  SDValue Result(N, 0);
962  if (VT.isVector()) {
963    SmallVector<SDValue, 8> Ops;
964    Ops.assign(VT.getVectorNumElements(), Result);
965    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
966  }
967  return Result;
968}
969
970SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
971  return getConstant(Val, TLI.getPointerTy(), isTarget);
972}
973
974
975SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
976  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
977}
978
979SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
980  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
981
982  EVT EltVT = VT.getScalarType();
983
984  // Do the map lookup using the actual bit pattern for the floating point
985  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
986  // we don't have issues with SNANs.
987  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
988  FoldingSetNodeID ID;
989  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
990  ID.AddPointer(&V);
991  void *IP = 0;
992  SDNode *N = NULL;
993  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
994    if (!VT.isVector())
995      return SDValue(N, 0);
996
997  if (!N) {
998    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
999    CSEMap.InsertNode(N, IP);
1000    AllNodes.push_back(N);
1001  }
1002
1003  SDValue Result(N, 0);
1004  if (VT.isVector()) {
1005    SmallVector<SDValue, 8> Ops;
1006    Ops.assign(VT.getVectorNumElements(), Result);
1007    // FIXME DebugLoc info might be appropriate here
1008    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1009  }
1010  return Result;
1011}
1012
1013SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1014  EVT EltVT = VT.getScalarType();
1015  if (EltVT==MVT::f32)
1016    return getConstantFP(APFloat((float)Val), VT, isTarget);
1017  else if (EltVT==MVT::f64)
1018    return getConstantFP(APFloat(Val), VT, isTarget);
1019  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1020    bool ignored;
1021    APFloat apf = APFloat(Val);
1022    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1023                &ignored);
1024    return getConstantFP(apf, VT, isTarget);
1025  } else {
1026    assert(0 && "Unsupported type in getConstantFP");
1027    return SDValue();
1028  }
1029}
1030
1031SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1032                                       EVT VT, int64_t Offset,
1033                                       bool isTargetGA,
1034                                       unsigned char TargetFlags) {
1035  assert((TargetFlags == 0 || isTargetGA) &&
1036         "Cannot set target flags on target-independent globals");
1037
1038  // Truncate (with sign-extension) the offset value to the pointer size.
1039  EVT PTy = TLI.getPointerTy();
1040  unsigned BitWidth = PTy.getSizeInBits();
1041  if (BitWidth < 64)
1042    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1043
1044  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1045  if (!GVar) {
1046    // If GV is an alias then use the aliasee for determining thread-localness.
1047    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1048      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1049  }
1050
1051  unsigned Opc;
1052  if (GVar && GVar->isThreadLocal())
1053    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1054  else
1055    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1056
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddPointer(GV);
1060  ID.AddInteger(Offset);
1061  ID.AddInteger(TargetFlags);
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065
1066  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1067                                                      Offset, TargetFlags);
1068  CSEMap.InsertNode(N, IP);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1074  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1075  FoldingSetNodeID ID;
1076  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1077  ID.AddInteger(FI);
1078  void *IP = 0;
1079  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1080    return SDValue(E, 0);
1081
1082  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1083  CSEMap.InsertNode(N, IP);
1084  AllNodes.push_back(N);
1085  return SDValue(N, 0);
1086}
1087
1088SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1089                                   unsigned char TargetFlags) {
1090  assert((TargetFlags == 0 || isTarget) &&
1091         "Cannot set target flags on target-independent jump tables");
1092  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1095  ID.AddInteger(JTI);
1096  ID.AddInteger(TargetFlags);
1097  void *IP = 0;
1098  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099    return SDValue(E, 0);
1100
1101  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1102                                                  TargetFlags);
1103  CSEMap.InsertNode(N, IP);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1109                                      unsigned Alignment, int Offset,
1110                                      bool isTarget,
1111                                      unsigned char TargetFlags) {
1112  assert((TargetFlags == 0 || isTarget) &&
1113         "Cannot set target flags on target-independent globals");
1114  if (Alignment == 0)
1115    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1116  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1117  FoldingSetNodeID ID;
1118  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1119  ID.AddInteger(Alignment);
1120  ID.AddInteger(Offset);
1121  ID.AddPointer(C);
1122  ID.AddInteger(TargetFlags);
1123  void *IP = 0;
1124  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1125    return SDValue(E, 0);
1126
1127  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1128                                                     Alignment, TargetFlags);
1129  CSEMap.InsertNode(N, IP);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134
1135SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1136                                      unsigned Alignment, int Offset,
1137                                      bool isTarget,
1138                                      unsigned char TargetFlags) {
1139  assert((TargetFlags == 0 || isTarget) &&
1140         "Cannot set target flags on target-independent globals");
1141  if (Alignment == 0)
1142    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1143  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1144  FoldingSetNodeID ID;
1145  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1146  ID.AddInteger(Alignment);
1147  ID.AddInteger(Offset);
1148  C->AddSelectionDAGCSEId(ID);
1149  ID.AddInteger(TargetFlags);
1150  void *IP = 0;
1151  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1152    return SDValue(E, 0);
1153
1154  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1155                                                     Alignment, TargetFlags);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1162  FoldingSetNodeID ID;
1163  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1164  ID.AddPointer(MBB);
1165  void *IP = 0;
1166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1167    return SDValue(E, 0);
1168
1169  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1170  CSEMap.InsertNode(N, IP);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getValueType(EVT VT) {
1176  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1177      ValueTypeNodes.size())
1178    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1179
1180  SDNode *&N = VT.isExtended() ?
1181    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1182
1183  if (N) return SDValue(N, 0);
1184  N = new (NodeAllocator) VTSDNode(VT);
1185  AllNodes.push_back(N);
1186  return SDValue(N, 0);
1187}
1188
1189SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1190  SDNode *&N = ExternalSymbols[Sym];
1191  if (N) return SDValue(N, 0);
1192  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1193  AllNodes.push_back(N);
1194  return SDValue(N, 0);
1195}
1196
1197SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1198                                              unsigned char TargetFlags) {
1199  SDNode *&N =
1200    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1201                                                               TargetFlags)];
1202  if (N) return SDValue(N, 0);
1203  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1204  AllNodes.push_back(N);
1205  return SDValue(N, 0);
1206}
1207
1208SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1209  if ((unsigned)Cond >= CondCodeNodes.size())
1210    CondCodeNodes.resize(Cond+1);
1211
1212  if (CondCodeNodes[Cond] == 0) {
1213    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1214    CondCodeNodes[Cond] = N;
1215    AllNodes.push_back(N);
1216  }
1217
1218  return SDValue(CondCodeNodes[Cond], 0);
1219}
1220
1221// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1222// the shuffle mask M that point at N1 to point at N2, and indices that point
1223// N2 to point at N1.
1224static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1225  std::swap(N1, N2);
1226  int NElts = M.size();
1227  for (int i = 0; i != NElts; ++i) {
1228    if (M[i] >= NElts)
1229      M[i] -= NElts;
1230    else if (M[i] >= 0)
1231      M[i] += NElts;
1232  }
1233}
1234
1235SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1236                                       SDValue N2, const int *Mask) {
1237  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1238  assert(VT.isVector() && N1.getValueType().isVector() &&
1239         "Vector Shuffle VTs must be a vectors");
1240  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1241         && "Vector Shuffle VTs must have same element type");
1242
1243  // Canonicalize shuffle undef, undef -> undef
1244  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1245    return getUNDEF(VT);
1246
1247  // Validate that all indices in Mask are within the range of the elements
1248  // input to the shuffle.
1249  unsigned NElts = VT.getVectorNumElements();
1250  SmallVector<int, 8> MaskVec;
1251  for (unsigned i = 0; i != NElts; ++i) {
1252    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1253    MaskVec.push_back(Mask[i]);
1254  }
1255
1256  // Canonicalize shuffle v, v -> v, undef
1257  if (N1 == N2) {
1258    N2 = getUNDEF(VT);
1259    for (unsigned i = 0; i != NElts; ++i)
1260      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1261  }
1262
1263  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1264  if (N1.getOpcode() == ISD::UNDEF)
1265    commuteShuffle(N1, N2, MaskVec);
1266
1267  // Canonicalize all index into lhs, -> shuffle lhs, undef
1268  // Canonicalize all index into rhs, -> shuffle rhs, undef
1269  bool AllLHS = true, AllRHS = true;
1270  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1271  for (unsigned i = 0; i != NElts; ++i) {
1272    if (MaskVec[i] >= (int)NElts) {
1273      if (N2Undef)
1274        MaskVec[i] = -1;
1275      else
1276        AllLHS = false;
1277    } else if (MaskVec[i] >= 0) {
1278      AllRHS = false;
1279    }
1280  }
1281  if (AllLHS && AllRHS)
1282    return getUNDEF(VT);
1283  if (AllLHS && !N2Undef)
1284    N2 = getUNDEF(VT);
1285  if (AllRHS) {
1286    N1 = getUNDEF(VT);
1287    commuteShuffle(N1, N2, MaskVec);
1288  }
1289
1290  // If Identity shuffle, or all shuffle in to undef, return that node.
1291  bool AllUndef = true;
1292  bool Identity = true;
1293  for (unsigned i = 0; i != NElts; ++i) {
1294    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1295    if (MaskVec[i] >= 0) AllUndef = false;
1296  }
1297  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1298    return N1;
1299  if (AllUndef)
1300    return getUNDEF(VT);
1301
1302  FoldingSetNodeID ID;
1303  SDValue Ops[2] = { N1, N2 };
1304  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1305  for (unsigned i = 0; i != NElts; ++i)
1306    ID.AddInteger(MaskVec[i]);
1307
1308  void* IP = 0;
1309  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1310    return SDValue(E, 0);
1311
1312  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1313  // SDNode doesn't have access to it.  This memory will be "leaked" when
1314  // the node is deallocated, but recovered when the NodeAllocator is released.
1315  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1316  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1317
1318  ShuffleVectorSDNode *N =
1319    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1320  CSEMap.InsertNode(N, IP);
1321  AllNodes.push_back(N);
1322  return SDValue(N, 0);
1323}
1324
1325SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1326                                       SDValue Val, SDValue DTy,
1327                                       SDValue STy, SDValue Rnd, SDValue Sat,
1328                                       ISD::CvtCode Code) {
1329  // If the src and dest types are the same and the conversion is between
1330  // integer types of the same sign or two floats, no conversion is necessary.
1331  if (DTy == STy &&
1332      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1333    return Val;
1334
1335  FoldingSetNodeID ID;
1336  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1337  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1338  void* IP = 0;
1339  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1340    return SDValue(E, 0);
1341
1342  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1343                                                           Code);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1352  ID.AddInteger(RegNo);
1353  void *IP = 0;
1354  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355    return SDValue(E, 0);
1356
1357  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1358  CSEMap.InsertNode(N, IP);
1359  AllNodes.push_back(N);
1360  return SDValue(N, 0);
1361}
1362
1363SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1364  FoldingSetNodeID ID;
1365  SDValue Ops[] = { Root };
1366  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1367  ID.AddPointer(Label);
1368  void *IP = 0;
1369  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1370    return SDValue(E, 0);
1371
1372  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1373  CSEMap.InsertNode(N, IP);
1374  AllNodes.push_back(N);
1375  return SDValue(N, 0);
1376}
1377
1378
1379SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1380                                      bool isTarget,
1381                                      unsigned char TargetFlags) {
1382  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1383
1384  FoldingSetNodeID ID;
1385  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1386  ID.AddPointer(BA);
1387  ID.AddInteger(TargetFlags);
1388  void *IP = 0;
1389  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1390    return SDValue(E, 0);
1391
1392  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1393  CSEMap.InsertNode(N, IP);
1394  AllNodes.push_back(N);
1395  return SDValue(N, 0);
1396}
1397
1398SDValue SelectionDAG::getSrcValue(const Value *V) {
1399  assert((!V || V->getType()->isPointerTy()) &&
1400         "SrcValue is not a pointer?");
1401
1402  FoldingSetNodeID ID;
1403  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1404  ID.AddPointer(V);
1405
1406  void *IP = 0;
1407  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1408    return SDValue(E, 0);
1409
1410  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1411  CSEMap.InsertNode(N, IP);
1412  AllNodes.push_back(N);
1413  return SDValue(N, 0);
1414}
1415
1416/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1417SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1418  FoldingSetNodeID ID;
1419  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1420  ID.AddPointer(MD);
1421
1422  void *IP = 0;
1423  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1424    return SDValue(E, 0);
1425
1426  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1427  CSEMap.InsertNode(N, IP);
1428  AllNodes.push_back(N);
1429  return SDValue(N, 0);
1430}
1431
1432
1433/// getShiftAmountOperand - Return the specified value casted to
1434/// the target's desired shift amount type.
1435SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1436  EVT OpTy = Op.getValueType();
1437  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1438  if (OpTy == ShTy || OpTy.isVector()) return Op;
1439
1440  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1441  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1442}
1443
1444/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1445/// specified value type.
1446SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1447  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1448  unsigned ByteSize = VT.getStoreSize();
1449  Type *Ty = VT.getTypeForEVT(*getContext());
1450  unsigned StackAlign =
1451  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1452
1453  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1454  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1455}
1456
1457/// CreateStackTemporary - Create a stack temporary suitable for holding
1458/// either of the specified value types.
1459SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1460  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1461                            VT2.getStoreSizeInBits())/8;
1462  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1463  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1464  const TargetData *TD = TLI.getTargetData();
1465  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1466                            TD->getPrefTypeAlignment(Ty2));
1467
1468  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1469  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1470  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1471}
1472
1473SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1474                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1475  // These setcc operations always fold.
1476  switch (Cond) {
1477  default: break;
1478  case ISD::SETFALSE:
1479  case ISD::SETFALSE2: return getConstant(0, VT);
1480  case ISD::SETTRUE:
1481  case ISD::SETTRUE2:  return getConstant(1, VT);
1482
1483  case ISD::SETOEQ:
1484  case ISD::SETOGT:
1485  case ISD::SETOGE:
1486  case ISD::SETOLT:
1487  case ISD::SETOLE:
1488  case ISD::SETONE:
1489  case ISD::SETO:
1490  case ISD::SETUO:
1491  case ISD::SETUEQ:
1492  case ISD::SETUNE:
1493    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1494    break;
1495  }
1496
1497  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1498    const APInt &C2 = N2C->getAPIntValue();
1499    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1500      const APInt &C1 = N1C->getAPIntValue();
1501
1502      switch (Cond) {
1503      default: llvm_unreachable("Unknown integer setcc!");
1504      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1505      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1506      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1507      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1508      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1509      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1510      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1511      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1512      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1513      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1514      }
1515    }
1516  }
1517  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1518    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1519      // No compile time operations on this type yet.
1520      if (N1C->getValueType(0) == MVT::ppcf128)
1521        return SDValue();
1522
1523      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1524      switch (Cond) {
1525      default: break;
1526      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1527                          return getUNDEF(VT);
1528                        // fall through
1529      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1530      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1531                          return getUNDEF(VT);
1532                        // fall through
1533      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1534                                           R==APFloat::cmpLessThan, VT);
1535      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1536                          return getUNDEF(VT);
1537                        // fall through
1538      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1539      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1540                          return getUNDEF(VT);
1541                        // fall through
1542      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1543      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1544                          return getUNDEF(VT);
1545                        // fall through
1546      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1547                                           R==APFloat::cmpEqual, VT);
1548      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1549                          return getUNDEF(VT);
1550                        // fall through
1551      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1552                                           R==APFloat::cmpEqual, VT);
1553      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1554      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1555      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1556                                           R==APFloat::cmpEqual, VT);
1557      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1558      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1559                                           R==APFloat::cmpLessThan, VT);
1560      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1561                                           R==APFloat::cmpUnordered, VT);
1562      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1563      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1564      }
1565    } else {
1566      // Ensure that the constant occurs on the RHS.
1567      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1568    }
1569  }
1570
1571  // Could not fold it.
1572  return SDValue();
1573}
1574
1575/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1576/// use this predicate to simplify operations downstream.
1577bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1578  // This predicate is not safe for vector operations.
1579  if (Op.getValueType().isVector())
1580    return false;
1581
1582  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1583  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1584}
1585
1586/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1587/// this predicate to simplify operations downstream.  Mask is known to be zero
1588/// for bits that V cannot have.
1589bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1590                                     unsigned Depth) const {
1591  APInt KnownZero, KnownOne;
1592  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1593  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594  return (KnownZero & Mask) == Mask;
1595}
1596
1597/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1598/// known to be either zero or one and return them in the KnownZero/KnownOne
1599/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1600/// processing.
1601void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1602                                     APInt &KnownZero, APInt &KnownOne,
1603                                     unsigned Depth) const {
1604  unsigned BitWidth = Mask.getBitWidth();
1605  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1606         "Mask size mismatches value type size!");
1607
1608  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1609  if (Depth == 6 || Mask == 0)
1610    return;  // Limit search depth.
1611
1612  APInt KnownZero2, KnownOne2;
1613
1614  switch (Op.getOpcode()) {
1615  case ISD::Constant:
1616    // We know all of the bits for a constant!
1617    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1618    KnownZero = ~KnownOne & Mask;
1619    return;
1620  case ISD::AND:
1621    // If either the LHS or the RHS are Zero, the result is zero.
1622    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1623    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1624                      KnownZero2, KnownOne2, Depth+1);
1625    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1627
1628    // Output known-1 bits are only known if set in both the LHS & RHS.
1629    KnownOne &= KnownOne2;
1630    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1631    KnownZero |= KnownZero2;
1632    return;
1633  case ISD::OR:
1634    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1635    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1636                      KnownZero2, KnownOne2, Depth+1);
1637    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1638    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1639
1640    // Output known-0 bits are only known if clear in both the LHS & RHS.
1641    KnownZero &= KnownZero2;
1642    // Output known-1 are known to be set if set in either the LHS | RHS.
1643    KnownOne |= KnownOne2;
1644    return;
1645  case ISD::XOR: {
1646    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1652    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1653    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1654    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1655    KnownZero = KnownZeroOut;
1656    return;
1657  }
1658  case ISD::MUL: {
1659    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1660    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1661    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1662    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1663    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1664
1665    // If low bits are zero in either operand, output low known-0 bits.
1666    // Also compute a conserative estimate for high known-0 bits.
1667    // More trickiness is possible, but this is sufficient for the
1668    // interesting case of alignment computation.
1669    KnownOne.clearAllBits();
1670    unsigned TrailZ = KnownZero.countTrailingOnes() +
1671                      KnownZero2.countTrailingOnes();
1672    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1673                               KnownZero2.countLeadingOnes(),
1674                               BitWidth) - BitWidth;
1675
1676    TrailZ = std::min(TrailZ, BitWidth);
1677    LeadZ = std::min(LeadZ, BitWidth);
1678    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1679                APInt::getHighBitsSet(BitWidth, LeadZ);
1680    KnownZero &= Mask;
1681    return;
1682  }
1683  case ISD::UDIV: {
1684    // For the purposes of computing leading zeros we can conservatively
1685    // treat a udiv as a logical right shift by the power of 2 known to
1686    // be less than the denominator.
1687    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1688    ComputeMaskedBits(Op.getOperand(0),
1689                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1690    unsigned LeadZ = KnownZero2.countLeadingOnes();
1691
1692    KnownOne2.clearAllBits();
1693    KnownZero2.clearAllBits();
1694    ComputeMaskedBits(Op.getOperand(1),
1695                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1696    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1697    if (RHSUnknownLeadingOnes != BitWidth)
1698      LeadZ = std::min(BitWidth,
1699                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1700
1701    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1702    return;
1703  }
1704  case ISD::SELECT:
1705    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1706    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1707    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1709
1710    // Only known if known in both the LHS and RHS.
1711    KnownOne &= KnownOne2;
1712    KnownZero &= KnownZero2;
1713    return;
1714  case ISD::SELECT_CC:
1715    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1716    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1717    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1719
1720    // Only known if known in both the LHS and RHS.
1721    KnownOne &= KnownOne2;
1722    KnownZero &= KnownZero2;
1723    return;
1724  case ISD::SADDO:
1725  case ISD::UADDO:
1726  case ISD::SSUBO:
1727  case ISD::USUBO:
1728  case ISD::SMULO:
1729  case ISD::UMULO:
1730    if (Op.getResNo() != 1)
1731      return;
1732    // The boolean result conforms to getBooleanContents.  Fall through.
1733  case ISD::SETCC:
1734    // If we know the result of a setcc has the top bits zero, use this info.
1735    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1736        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1737      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1738    return;
1739  case ISD::SHL:
1740    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1741    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1742      unsigned ShAmt = SA->getZExtValue();
1743
1744      // If the shift count is an invalid immediate, don't do anything.
1745      if (ShAmt >= BitWidth)
1746        return;
1747
1748      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1749                        KnownZero, KnownOne, Depth+1);
1750      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1751      KnownZero <<= ShAmt;
1752      KnownOne  <<= ShAmt;
1753      // low bits known zero.
1754      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1755    }
1756    return;
1757  case ISD::SRL:
1758    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1759    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1760      unsigned ShAmt = SA->getZExtValue();
1761
1762      // If the shift count is an invalid immediate, don't do anything.
1763      if (ShAmt >= BitWidth)
1764        return;
1765
1766      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1767                        KnownZero, KnownOne, Depth+1);
1768      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1769      KnownZero = KnownZero.lshr(ShAmt);
1770      KnownOne  = KnownOne.lshr(ShAmt);
1771
1772      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1773      KnownZero |= HighBits;  // High bits known zero.
1774    }
1775    return;
1776  case ISD::SRA:
1777    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1778      unsigned ShAmt = SA->getZExtValue();
1779
1780      // If the shift count is an invalid immediate, don't do anything.
1781      if (ShAmt >= BitWidth)
1782        return;
1783
1784      APInt InDemandedMask = (Mask << ShAmt);
1785      // If any of the demanded bits are produced by the sign extension, we also
1786      // demand the input sign bit.
1787      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1788      if (HighBits.getBoolValue())
1789        InDemandedMask |= APInt::getSignBit(BitWidth);
1790
1791      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1792                        Depth+1);
1793      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1794      KnownZero = KnownZero.lshr(ShAmt);
1795      KnownOne  = KnownOne.lshr(ShAmt);
1796
1797      // Handle the sign bits.
1798      APInt SignBit = APInt::getSignBit(BitWidth);
1799      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1800
1801      if (KnownZero.intersects(SignBit)) {
1802        KnownZero |= HighBits;  // New bits are known zero.
1803      } else if (KnownOne.intersects(SignBit)) {
1804        KnownOne  |= HighBits;  // New bits are known one.
1805      }
1806    }
1807    return;
1808  case ISD::SIGN_EXTEND_INREG: {
1809    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1810    unsigned EBits = EVT.getScalarType().getSizeInBits();
1811
1812    // Sign extension.  Compute the demanded bits in the result that are not
1813    // present in the input.
1814    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1815
1816    APInt InSignBit = APInt::getSignBit(EBits);
1817    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1818
1819    // If the sign extended bits are demanded, we know that the sign
1820    // bit is demanded.
1821    InSignBit = InSignBit.zext(BitWidth);
1822    if (NewBits.getBoolValue())
1823      InputDemandedBits |= InSignBit;
1824
1825    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1826                      KnownZero, KnownOne, Depth+1);
1827    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1828
1829    // If the sign bit of the input is known set or clear, then we know the
1830    // top bits of the result.
1831    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1832      KnownZero |= NewBits;
1833      KnownOne  &= ~NewBits;
1834    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1835      KnownOne  |= NewBits;
1836      KnownZero &= ~NewBits;
1837    } else {                              // Input sign bit unknown
1838      KnownZero &= ~NewBits;
1839      KnownOne  &= ~NewBits;
1840    }
1841    return;
1842  }
1843  case ISD::CTTZ:
1844  case ISD::CTLZ:
1845  case ISD::CTPOP: {
1846    unsigned LowBits = Log2_32(BitWidth)+1;
1847    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1848    KnownOne.clearAllBits();
1849    return;
1850  }
1851  case ISD::LOAD: {
1852    if (ISD::isZEXTLoad(Op.getNode())) {
1853      LoadSDNode *LD = cast<LoadSDNode>(Op);
1854      EVT VT = LD->getMemoryVT();
1855      unsigned MemBits = VT.getScalarType().getSizeInBits();
1856      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1857    }
1858    return;
1859  }
1860  case ISD::ZERO_EXTEND: {
1861    EVT InVT = Op.getOperand(0).getValueType();
1862    unsigned InBits = InVT.getScalarType().getSizeInBits();
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask    = Mask.trunc(InBits);
1865    KnownZero = KnownZero.trunc(InBits);
1866    KnownOne = KnownOne.trunc(InBits);
1867    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1868    KnownZero = KnownZero.zext(BitWidth);
1869    KnownOne = KnownOne.zext(BitWidth);
1870    KnownZero |= NewBits;
1871    return;
1872  }
1873  case ISD::SIGN_EXTEND: {
1874    EVT InVT = Op.getOperand(0).getValueType();
1875    unsigned InBits = InVT.getScalarType().getSizeInBits();
1876    APInt InSignBit = APInt::getSignBit(InBits);
1877    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1878    APInt InMask = Mask.trunc(InBits);
1879
1880    // If any of the sign extended bits are demanded, we know that the sign
1881    // bit is demanded. Temporarily set this bit in the mask for our callee.
1882    if (NewBits.getBoolValue())
1883      InMask |= InSignBit;
1884
1885    KnownZero = KnownZero.trunc(InBits);
1886    KnownOne = KnownOne.trunc(InBits);
1887    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1888
1889    // Note if the sign bit is known to be zero or one.
1890    bool SignBitKnownZero = KnownZero.isNegative();
1891    bool SignBitKnownOne  = KnownOne.isNegative();
1892    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1893           "Sign bit can't be known to be both zero and one!");
1894
1895    // If the sign bit wasn't actually demanded by our caller, we don't
1896    // want it set in the KnownZero and KnownOne result values. Reset the
1897    // mask and reapply it to the result values.
1898    InMask = Mask.trunc(InBits);
1899    KnownZero &= InMask;
1900    KnownOne  &= InMask;
1901
1902    KnownZero = KnownZero.zext(BitWidth);
1903    KnownOne = KnownOne.zext(BitWidth);
1904
1905    // If the sign bit is known zero or one, the top bits match.
1906    if (SignBitKnownZero)
1907      KnownZero |= NewBits;
1908    else if (SignBitKnownOne)
1909      KnownOne  |= NewBits;
1910    return;
1911  }
1912  case ISD::ANY_EXTEND: {
1913    EVT InVT = Op.getOperand(0).getValueType();
1914    unsigned InBits = InVT.getScalarType().getSizeInBits();
1915    APInt InMask = Mask.trunc(InBits);
1916    KnownZero = KnownZero.trunc(InBits);
1917    KnownOne = KnownOne.trunc(InBits);
1918    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1919    KnownZero = KnownZero.zext(BitWidth);
1920    KnownOne = KnownOne.zext(BitWidth);
1921    return;
1922  }
1923  case ISD::TRUNCATE: {
1924    EVT InVT = Op.getOperand(0).getValueType();
1925    unsigned InBits = InVT.getScalarType().getSizeInBits();
1926    APInt InMask = Mask.zext(InBits);
1927    KnownZero = KnownZero.zext(InBits);
1928    KnownOne = KnownOne.zext(InBits);
1929    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1930    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1931    KnownZero = KnownZero.trunc(BitWidth);
1932    KnownOne = KnownOne.trunc(BitWidth);
1933    break;
1934  }
1935  case ISD::AssertZext: {
1936    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1937    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1938    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1939                      KnownOne, Depth+1);
1940    KnownZero |= (~InMask) & Mask;
1941    return;
1942  }
1943  case ISD::FGETSIGN:
1944    // All bits are zero except the low bit.
1945    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1946    return;
1947
1948  case ISD::SUB: {
1949    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1950      // We know that the top bits of C-X are clear if X contains less bits
1951      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1952      // positive if we can prove that X is >= 0 and < 16.
1953      if (CLHS->getAPIntValue().isNonNegative()) {
1954        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1955        // NLZ can't be BitWidth with no sign bit
1956        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1957        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1958                          Depth+1);
1959
1960        // If all of the MaskV bits are known to be zero, then we know the
1961        // output top bits are zero, because we now know that the output is
1962        // from [0-C].
1963        if ((KnownZero2 & MaskV) == MaskV) {
1964          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1965          // Top bits known zero.
1966          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1967        }
1968      }
1969    }
1970  }
1971  // fall through
1972  case ISD::ADD:
1973  case ISD::ADDE: {
1974    // Output known-0 bits are known if clear or set in both the low clear bits
1975    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1976    // low 3 bits clear.
1977    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1978                                       BitWidth - Mask.countLeadingZeros());
1979    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1980    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1981    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1982
1983    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1984    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1985    KnownZeroOut = std::min(KnownZeroOut,
1986                            KnownZero2.countTrailingOnes());
1987
1988    if (Op.getOpcode() == ISD::ADD) {
1989      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1990      return;
1991    }
1992
1993    // With ADDE, a carry bit may be added in, so we can only use this
1994    // information if we know (at least) that the low two bits are clear.  We
1995    // then return to the caller that the low bit is unknown but that other bits
1996    // are known zero.
1997    if (KnownZeroOut >= 2) // ADDE
1998      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1999    return;
2000  }
2001  case ISD::SREM:
2002    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2003      const APInt &RA = Rem->getAPIntValue().abs();
2004      if (RA.isPowerOf2()) {
2005        APInt LowBits = RA - 1;
2006        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2007        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
2008
2009        // The low bits of the first operand are unchanged by the srem.
2010        KnownZero = KnownZero2 & LowBits;
2011        KnownOne = KnownOne2 & LowBits;
2012
2013        // If the first operand is non-negative or has all low bits zero, then
2014        // the upper bits are all zero.
2015        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2016          KnownZero |= ~LowBits;
2017
2018        // If the first operand is negative and not all low bits are zero, then
2019        // the upper bits are all one.
2020        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2021          KnownOne |= ~LowBits;
2022
2023        KnownZero &= Mask;
2024        KnownOne &= Mask;
2025
2026        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2027      }
2028    }
2029    return;
2030  case ISD::UREM: {
2031    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2032      const APInt &RA = Rem->getAPIntValue();
2033      if (RA.isPowerOf2()) {
2034        APInt LowBits = (RA - 1);
2035        APInt Mask2 = LowBits & Mask;
2036        KnownZero |= ~LowBits & Mask;
2037        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2038        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2039        break;
2040      }
2041    }
2042
2043    // Since the result is less than or equal to either operand, any leading
2044    // zero bits in either operand must also exist in the result.
2045    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2046    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2047                      Depth+1);
2048    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2049                      Depth+1);
2050
2051    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2052                                KnownZero2.countLeadingOnes());
2053    KnownOne.clearAllBits();
2054    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2055    return;
2056  }
2057  case ISD::FrameIndex:
2058  case ISD::TargetFrameIndex:
2059    if (unsigned Align = InferPtrAlignment(Op)) {
2060      // The low bits are known zero if the pointer is aligned.
2061      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2062      return;
2063    }
2064    break;
2065
2066  default:
2067    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2068      break;
2069    // Fallthrough
2070  case ISD::INTRINSIC_WO_CHAIN:
2071  case ISD::INTRINSIC_W_CHAIN:
2072  case ISD::INTRINSIC_VOID:
2073    // Allow the target to implement this method for its nodes.
2074    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2075                                       Depth);
2076    return;
2077  }
2078}
2079
2080/// ComputeNumSignBits - Return the number of times the sign bit of the
2081/// register is replicated into the other bits.  We know that at least 1 bit
2082/// is always equal to the sign bit (itself), but other cases can give us
2083/// information.  For example, immediately after an "SRA X, 2", we know that
2084/// the top 3 bits are all equal to each other, so we return 3.
2085unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2086  EVT VT = Op.getValueType();
2087  assert(VT.isInteger() && "Invalid VT!");
2088  unsigned VTBits = VT.getScalarType().getSizeInBits();
2089  unsigned Tmp, Tmp2;
2090  unsigned FirstAnswer = 1;
2091
2092  if (Depth == 6)
2093    return 1;  // Limit search depth.
2094
2095  switch (Op.getOpcode()) {
2096  default: break;
2097  case ISD::AssertSext:
2098    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2099    return VTBits-Tmp+1;
2100  case ISD::AssertZext:
2101    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2102    return VTBits-Tmp;
2103
2104  case ISD::Constant: {
2105    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2106    return Val.getNumSignBits();
2107  }
2108
2109  case ISD::SIGN_EXTEND:
2110    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2111    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2112
2113  case ISD::SIGN_EXTEND_INREG:
2114    // Max of the input and what this extends.
2115    Tmp =
2116      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2117    Tmp = VTBits-Tmp+1;
2118
2119    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120    return std::max(Tmp, Tmp2);
2121
2122  case ISD::SRA:
2123    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124    // SRA X, C   -> adds C sign bits.
2125    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2126      Tmp += C->getZExtValue();
2127      if (Tmp > VTBits) Tmp = VTBits;
2128    }
2129    return Tmp;
2130  case ISD::SHL:
2131    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2132      // shl destroys sign bits.
2133      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2135          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2136      return Tmp - C->getZExtValue();
2137    }
2138    break;
2139  case ISD::AND:
2140  case ISD::OR:
2141  case ISD::XOR:    // NOT is handled here.
2142    // Logical binary ops preserve the number of sign bits at the worst.
2143    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2144    if (Tmp != 1) {
2145      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2146      FirstAnswer = std::min(Tmp, Tmp2);
2147      // We computed what we know about the sign bits as our first
2148      // answer. Now proceed to the generic code that uses
2149      // ComputeMaskedBits, and pick whichever answer is better.
2150    }
2151    break;
2152
2153  case ISD::SELECT:
2154    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155    if (Tmp == 1) return 1;  // Early out.
2156    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2157    return std::min(Tmp, Tmp2);
2158
2159  case ISD::SADDO:
2160  case ISD::UADDO:
2161  case ISD::SSUBO:
2162  case ISD::USUBO:
2163  case ISD::SMULO:
2164  case ISD::UMULO:
2165    if (Op.getResNo() != 1)
2166      break;
2167    // The boolean result conforms to getBooleanContents.  Fall through.
2168  case ISD::SETCC:
2169    // If setcc returns 0/-1, all bits are sign bits.
2170    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2171        TargetLowering::ZeroOrNegativeOneBooleanContent)
2172      return VTBits;
2173    break;
2174  case ISD::ROTL:
2175  case ISD::ROTR:
2176    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2177      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2178
2179      // Handle rotate right by N like a rotate left by 32-N.
2180      if (Op.getOpcode() == ISD::ROTR)
2181        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2182
2183      // If we aren't rotating out all of the known-in sign bits, return the
2184      // number that are left.  This handles rotl(sext(x), 1) for example.
2185      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2186      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2187    }
2188    break;
2189  case ISD::ADD:
2190    // Add can have at most one carry bit.  Thus we know that the output
2191    // is, at worst, one more bit than the inputs.
2192    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2193    if (Tmp == 1) return 1;  // Early out.
2194
2195    // Special case decrementing a value (ADD X, -1):
2196    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2197      if (CRHS->isAllOnesValue()) {
2198        APInt KnownZero, KnownOne;
2199        APInt Mask = APInt::getAllOnesValue(VTBits);
2200        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2201
2202        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2203        // sign bits set.
2204        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2205          return VTBits;
2206
2207        // If we are subtracting one from a positive number, there is no carry
2208        // out of the result.
2209        if (KnownZero.isNegative())
2210          return Tmp;
2211      }
2212
2213    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2214    if (Tmp2 == 1) return 1;
2215      return std::min(Tmp, Tmp2)-1;
2216    break;
2217
2218  case ISD::SUB:
2219    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2220    if (Tmp2 == 1) return 1;
2221
2222    // Handle NEG.
2223    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2224      if (CLHS->isNullValue()) {
2225        APInt KnownZero, KnownOne;
2226        APInt Mask = APInt::getAllOnesValue(VTBits);
2227        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2228        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2229        // sign bits set.
2230        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2231          return VTBits;
2232
2233        // If the input is known to be positive (the sign bit is known clear),
2234        // the output of the NEG has the same number of sign bits as the input.
2235        if (KnownZero.isNegative())
2236          return Tmp2;
2237
2238        // Otherwise, we treat this like a SUB.
2239      }
2240
2241    // Sub can have at most one carry bit.  Thus we know that the output
2242    // is, at worst, one more bit than the inputs.
2243    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2244    if (Tmp == 1) return 1;  // Early out.
2245      return std::min(Tmp, Tmp2)-1;
2246    break;
2247  case ISD::TRUNCATE:
2248    // FIXME: it's tricky to do anything useful for this, but it is an important
2249    // case for targets like X86.
2250    break;
2251  }
2252
2253  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2254  if (Op.getOpcode() == ISD::LOAD) {
2255    LoadSDNode *LD = cast<LoadSDNode>(Op);
2256    unsigned ExtType = LD->getExtensionType();
2257    switch (ExtType) {
2258    default: break;
2259    case ISD::SEXTLOAD:    // '17' bits known
2260      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2261      return VTBits-Tmp+1;
2262    case ISD::ZEXTLOAD:    // '16' bits known
2263      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2264      return VTBits-Tmp;
2265    }
2266  }
2267
2268  // Allow the target to implement this method for its nodes.
2269  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2270      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2271      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2272      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2273    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2274    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2275  }
2276
2277  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2278  // use this information.
2279  APInt KnownZero, KnownOne;
2280  APInt Mask = APInt::getAllOnesValue(VTBits);
2281  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2282
2283  if (KnownZero.isNegative()) {        // sign bit is 0
2284    Mask = KnownZero;
2285  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2286    Mask = KnownOne;
2287  } else {
2288    // Nothing known.
2289    return FirstAnswer;
2290  }
2291
2292  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2293  // the number of identical bits in the top of the input value.
2294  Mask = ~Mask;
2295  Mask <<= Mask.getBitWidth()-VTBits;
2296  // Return # leading zeros.  We use 'min' here in case Val was zero before
2297  // shifting.  We don't want to return '64' as for an i32 "0".
2298  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2299}
2300
2301/// isBaseWithConstantOffset - Return true if the specified operand is an
2302/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2303/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2304/// semantics as an ADD.  This handles the equivalence:
2305///     X|Cst == X+Cst iff X&Cst = 0.
2306bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2307  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2308      !isa<ConstantSDNode>(Op.getOperand(1)))
2309    return false;
2310
2311  if (Op.getOpcode() == ISD::OR &&
2312      !MaskedValueIsZero(Op.getOperand(0),
2313                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2314    return false;
2315
2316  return true;
2317}
2318
2319
2320bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2321  // If we're told that NaNs won't happen, assume they won't.
2322  if (NoNaNsFPMath)
2323    return true;
2324
2325  // If the value is a constant, we can obviously see if it is a NaN or not.
2326  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2327    return !C->getValueAPF().isNaN();
2328
2329  // TODO: Recognize more cases here.
2330
2331  return false;
2332}
2333
2334bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2335  // If the value is a constant, we can obviously see if it is a zero or not.
2336  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2337    return !C->isZero();
2338
2339  // TODO: Recognize more cases here.
2340  switch (Op.getOpcode()) {
2341  default: break;
2342  case ISD::OR:
2343    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2344      return !C->isNullValue();
2345    break;
2346  }
2347
2348  return false;
2349}
2350
2351bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2352  // Check the obvious case.
2353  if (A == B) return true;
2354
2355  // For for negative and positive zero.
2356  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2357    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2358      if (CA->isZero() && CB->isZero()) return true;
2359
2360  // Otherwise they may not be equal.
2361  return false;
2362}
2363
2364/// getNode - Gets or creates the specified node.
2365///
2366SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2367  FoldingSetNodeID ID;
2368  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2369  void *IP = 0;
2370  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2371    return SDValue(E, 0);
2372
2373  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2374  CSEMap.InsertNode(N, IP);
2375
2376  AllNodes.push_back(N);
2377#ifndef NDEBUG
2378  VerifySDNode(N);
2379#endif
2380  return SDValue(N, 0);
2381}
2382
2383SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2384                              EVT VT, SDValue Operand) {
2385  // Constant fold unary operations with an integer constant operand.
2386  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2387    const APInt &Val = C->getAPIntValue();
2388    switch (Opcode) {
2389    default: break;
2390    case ISD::SIGN_EXTEND:
2391      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2392    case ISD::ANY_EXTEND:
2393    case ISD::ZERO_EXTEND:
2394    case ISD::TRUNCATE:
2395      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2396    case ISD::UINT_TO_FP:
2397    case ISD::SINT_TO_FP: {
2398      // No compile time operations on ppcf128.
2399      if (VT == MVT::ppcf128) break;
2400      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2401      (void)apf.convertFromAPInt(Val,
2402                                 Opcode==ISD::SINT_TO_FP,
2403                                 APFloat::rmNearestTiesToEven);
2404      return getConstantFP(apf, VT);
2405    }
2406    case ISD::BITCAST:
2407      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2408        return getConstantFP(Val.bitsToFloat(), VT);
2409      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2410        return getConstantFP(Val.bitsToDouble(), VT);
2411      break;
2412    case ISD::BSWAP:
2413      return getConstant(Val.byteSwap(), VT);
2414    case ISD::CTPOP:
2415      return getConstant(Val.countPopulation(), VT);
2416    case ISD::CTLZ:
2417      return getConstant(Val.countLeadingZeros(), VT);
2418    case ISD::CTTZ:
2419      return getConstant(Val.countTrailingZeros(), VT);
2420    }
2421  }
2422
2423  // Constant fold unary operations with a floating point constant operand.
2424  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2425    APFloat V = C->getValueAPF();    // make copy
2426    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2427      switch (Opcode) {
2428      case ISD::FNEG:
2429        V.changeSign();
2430        return getConstantFP(V, VT);
2431      case ISD::FABS:
2432        V.clearSign();
2433        return getConstantFP(V, VT);
2434      case ISD::FP_ROUND:
2435      case ISD::FP_EXTEND: {
2436        bool ignored;
2437        // This can return overflow, underflow, or inexact; we don't care.
2438        // FIXME need to be more flexible about rounding mode.
2439        (void)V.convert(*EVTToAPFloatSemantics(VT),
2440                        APFloat::rmNearestTiesToEven, &ignored);
2441        return getConstantFP(V, VT);
2442      }
2443      case ISD::FP_TO_SINT:
2444      case ISD::FP_TO_UINT: {
2445        integerPart x[2];
2446        bool ignored;
2447        assert(integerPartWidth >= 64);
2448        // FIXME need to be more flexible about rounding mode.
2449        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2450                              Opcode==ISD::FP_TO_SINT,
2451                              APFloat::rmTowardZero, &ignored);
2452        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2453          break;
2454        APInt api(VT.getSizeInBits(), x);
2455        return getConstant(api, VT);
2456      }
2457      case ISD::BITCAST:
2458        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2459          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2460        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2461          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2462        break;
2463      }
2464    }
2465  }
2466
2467  unsigned OpOpcode = Operand.getNode()->getOpcode();
2468  switch (Opcode) {
2469  case ISD::TokenFactor:
2470  case ISD::MERGE_VALUES:
2471  case ISD::CONCAT_VECTORS:
2472    return Operand;         // Factor, merge or concat of one node?  No need.
2473  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2474  case ISD::FP_EXTEND:
2475    assert(VT.isFloatingPoint() &&
2476           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2477    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2478    assert((!VT.isVector() ||
2479            VT.getVectorNumElements() ==
2480            Operand.getValueType().getVectorNumElements()) &&
2481           "Vector element count mismatch!");
2482    if (Operand.getOpcode() == ISD::UNDEF)
2483      return getUNDEF(VT);
2484    break;
2485  case ISD::SIGN_EXTEND:
2486    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2487           "Invalid SIGN_EXTEND!");
2488    if (Operand.getValueType() == VT) return Operand;   // noop extension
2489    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2490           "Invalid sext node, dst < src!");
2491    assert((!VT.isVector() ||
2492            VT.getVectorNumElements() ==
2493            Operand.getValueType().getVectorNumElements()) &&
2494           "Vector element count mismatch!");
2495    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2496      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2497    else if (OpOpcode == ISD::UNDEF)
2498      // sext(undef) = 0, because the top bits will all be the same.
2499      return getConstant(0, VT);
2500    break;
2501  case ISD::ZERO_EXTEND:
2502    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2503           "Invalid ZERO_EXTEND!");
2504    if (Operand.getValueType() == VT) return Operand;   // noop extension
2505    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2506           "Invalid zext node, dst < src!");
2507    assert((!VT.isVector() ||
2508            VT.getVectorNumElements() ==
2509            Operand.getValueType().getVectorNumElements()) &&
2510           "Vector element count mismatch!");
2511    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2512      return getNode(ISD::ZERO_EXTEND, DL, VT,
2513                     Operand.getNode()->getOperand(0));
2514    else if (OpOpcode == ISD::UNDEF)
2515      // zext(undef) = 0, because the top bits will be zero.
2516      return getConstant(0, VT);
2517    break;
2518  case ISD::ANY_EXTEND:
2519    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2520           "Invalid ANY_EXTEND!");
2521    if (Operand.getValueType() == VT) return Operand;   // noop extension
2522    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2523           "Invalid anyext node, dst < src!");
2524    assert((!VT.isVector() ||
2525            VT.getVectorNumElements() ==
2526            Operand.getValueType().getVectorNumElements()) &&
2527           "Vector element count mismatch!");
2528
2529    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2530        OpOpcode == ISD::ANY_EXTEND)
2531      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2532      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2533    else if (OpOpcode == ISD::UNDEF)
2534      return getUNDEF(VT);
2535
2536    // (ext (trunx x)) -> x
2537    if (OpOpcode == ISD::TRUNCATE) {
2538      SDValue OpOp = Operand.getNode()->getOperand(0);
2539      if (OpOp.getValueType() == VT)
2540        return OpOp;
2541    }
2542    break;
2543  case ISD::TRUNCATE:
2544    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2545           "Invalid TRUNCATE!");
2546    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2547    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2548           "Invalid truncate node, src < dst!");
2549    assert((!VT.isVector() ||
2550            VT.getVectorNumElements() ==
2551            Operand.getValueType().getVectorNumElements()) &&
2552           "Vector element count mismatch!");
2553    if (OpOpcode == ISD::TRUNCATE)
2554      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2555    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2556             OpOpcode == ISD::ANY_EXTEND) {
2557      // If the source is smaller than the dest, we still need an extend.
2558      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2559            .bitsLT(VT.getScalarType()))
2560        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2561      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2562        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2563      else
2564        return Operand.getNode()->getOperand(0);
2565    }
2566    break;
2567  case ISD::BITCAST:
2568    // Basic sanity checking.
2569    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2570           && "Cannot BITCAST between types of different sizes!");
2571    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2572    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2573      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2574    if (OpOpcode == ISD::UNDEF)
2575      return getUNDEF(VT);
2576    break;
2577  case ISD::SCALAR_TO_VECTOR:
2578    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2579           (VT.getVectorElementType() == Operand.getValueType() ||
2580            (VT.getVectorElementType().isInteger() &&
2581             Operand.getValueType().isInteger() &&
2582             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2583           "Illegal SCALAR_TO_VECTOR node!");
2584    if (OpOpcode == ISD::UNDEF)
2585      return getUNDEF(VT);
2586    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2587    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2588        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2589        Operand.getConstantOperandVal(1) == 0 &&
2590        Operand.getOperand(0).getValueType() == VT)
2591      return Operand.getOperand(0);
2592    break;
2593  case ISD::FNEG:
2594    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2595    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2596      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2597                     Operand.getNode()->getOperand(0));
2598    if (OpOpcode == ISD::FNEG)  // --X -> X
2599      return Operand.getNode()->getOperand(0);
2600    break;
2601  case ISD::FABS:
2602    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2603      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2604    break;
2605  }
2606
2607  SDNode *N;
2608  SDVTList VTs = getVTList(VT);
2609  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2610    FoldingSetNodeID ID;
2611    SDValue Ops[1] = { Operand };
2612    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2613    void *IP = 0;
2614    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2615      return SDValue(E, 0);
2616
2617    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2618    CSEMap.InsertNode(N, IP);
2619  } else {
2620    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2621  }
2622
2623  AllNodes.push_back(N);
2624#ifndef NDEBUG
2625  VerifySDNode(N);
2626#endif
2627  return SDValue(N, 0);
2628}
2629
2630SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2631                                             EVT VT,
2632                                             ConstantSDNode *Cst1,
2633                                             ConstantSDNode *Cst2) {
2634  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2635
2636  switch (Opcode) {
2637  case ISD::ADD:  return getConstant(C1 + C2, VT);
2638  case ISD::SUB:  return getConstant(C1 - C2, VT);
2639  case ISD::MUL:  return getConstant(C1 * C2, VT);
2640  case ISD::UDIV:
2641    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2642    break;
2643  case ISD::UREM:
2644    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2645    break;
2646  case ISD::SDIV:
2647    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2648    break;
2649  case ISD::SREM:
2650    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2651    break;
2652  case ISD::AND:  return getConstant(C1 & C2, VT);
2653  case ISD::OR:   return getConstant(C1 | C2, VT);
2654  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2655  case ISD::SHL:  return getConstant(C1 << C2, VT);
2656  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2657  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2658  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2659  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2660  default: break;
2661  }
2662
2663  return SDValue();
2664}
2665
2666SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2667                              SDValue N1, SDValue N2) {
2668  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2669  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2670  switch (Opcode) {
2671  default: break;
2672  case ISD::TokenFactor:
2673    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2674           N2.getValueType() == MVT::Other && "Invalid token factor!");
2675    // Fold trivial token factors.
2676    if (N1.getOpcode() == ISD::EntryToken) return N2;
2677    if (N2.getOpcode() == ISD::EntryToken) return N1;
2678    if (N1 == N2) return N1;
2679    break;
2680  case ISD::CONCAT_VECTORS:
2681    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2682    // one big BUILD_VECTOR.
2683    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2684        N2.getOpcode() == ISD::BUILD_VECTOR) {
2685      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2686                                    N1.getNode()->op_end());
2687      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2688      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2689    }
2690    break;
2691  case ISD::AND:
2692    assert(VT.isInteger() && "This operator does not apply to FP types!");
2693    assert(N1.getValueType() == N2.getValueType() &&
2694           N1.getValueType() == VT && "Binary operator types must match!");
2695    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2696    // worth handling here.
2697    if (N2C && N2C->isNullValue())
2698      return N2;
2699    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2700      return N1;
2701    break;
2702  case ISD::OR:
2703  case ISD::XOR:
2704  case ISD::ADD:
2705  case ISD::SUB:
2706    assert(VT.isInteger() && "This operator does not apply to FP types!");
2707    assert(N1.getValueType() == N2.getValueType() &&
2708           N1.getValueType() == VT && "Binary operator types must match!");
2709    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2710    // it's worth handling here.
2711    if (N2C && N2C->isNullValue())
2712      return N1;
2713    break;
2714  case ISD::UDIV:
2715  case ISD::UREM:
2716  case ISD::MULHU:
2717  case ISD::MULHS:
2718  case ISD::MUL:
2719  case ISD::SDIV:
2720  case ISD::SREM:
2721    assert(VT.isInteger() && "This operator does not apply to FP types!");
2722    assert(N1.getValueType() == N2.getValueType() &&
2723           N1.getValueType() == VT && "Binary operator types must match!");
2724    break;
2725  case ISD::FADD:
2726  case ISD::FSUB:
2727  case ISD::FMUL:
2728  case ISD::FDIV:
2729  case ISD::FREM:
2730    if (UnsafeFPMath) {
2731      if (Opcode == ISD::FADD) {
2732        // 0+x --> x
2733        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2734          if (CFP->getValueAPF().isZero())
2735            return N2;
2736        // x+0 --> x
2737        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2738          if (CFP->getValueAPF().isZero())
2739            return N1;
2740      } else if (Opcode == ISD::FSUB) {
2741        // x-0 --> x
2742        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2743          if (CFP->getValueAPF().isZero())
2744            return N1;
2745      }
2746    }
2747    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2748    assert(N1.getValueType() == N2.getValueType() &&
2749           N1.getValueType() == VT && "Binary operator types must match!");
2750    break;
2751  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2752    assert(N1.getValueType() == VT &&
2753           N1.getValueType().isFloatingPoint() &&
2754           N2.getValueType().isFloatingPoint() &&
2755           "Invalid FCOPYSIGN!");
2756    break;
2757  case ISD::SHL:
2758  case ISD::SRA:
2759  case ISD::SRL:
2760  case ISD::ROTL:
2761  case ISD::ROTR:
2762    assert(VT == N1.getValueType() &&
2763           "Shift operators return type must be the same as their first arg");
2764    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2765           "Shifts only work on integers");
2766    // Verify that the shift amount VT is bit enough to hold valid shift
2767    // amounts.  This catches things like trying to shift an i1024 value by an
2768    // i8, which is easy to fall into in generic code that uses
2769    // TLI.getShiftAmount().
2770    assert(N2.getValueType().getSizeInBits() >=
2771                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2772           "Invalid use of small shift amount with oversized value!");
2773
2774    // Always fold shifts of i1 values so the code generator doesn't need to
2775    // handle them.  Since we know the size of the shift has to be less than the
2776    // size of the value, the shift/rotate count is guaranteed to be zero.
2777    if (VT == MVT::i1)
2778      return N1;
2779    if (N2C && N2C->isNullValue())
2780      return N1;
2781    break;
2782  case ISD::FP_ROUND_INREG: {
2783    EVT EVT = cast<VTSDNode>(N2)->getVT();
2784    assert(VT == N1.getValueType() && "Not an inreg round!");
2785    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2786           "Cannot FP_ROUND_INREG integer types");
2787    assert(EVT.isVector() == VT.isVector() &&
2788           "FP_ROUND_INREG type should be vector iff the operand "
2789           "type is vector!");
2790    assert((!EVT.isVector() ||
2791            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2792           "Vector element counts must match in FP_ROUND_INREG");
2793    assert(EVT.bitsLE(VT) && "Not rounding down!");
2794    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2795    break;
2796  }
2797  case ISD::FP_ROUND:
2798    assert(VT.isFloatingPoint() &&
2799           N1.getValueType().isFloatingPoint() &&
2800           VT.bitsLE(N1.getValueType()) &&
2801           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2802    if (N1.getValueType() == VT) return N1;  // noop conversion.
2803    break;
2804  case ISD::AssertSext:
2805  case ISD::AssertZext: {
2806    EVT EVT = cast<VTSDNode>(N2)->getVT();
2807    assert(VT == N1.getValueType() && "Not an inreg extend!");
2808    assert(VT.isInteger() && EVT.isInteger() &&
2809           "Cannot *_EXTEND_INREG FP types");
2810    assert(!EVT.isVector() &&
2811           "AssertSExt/AssertZExt type should be the vector element type "
2812           "rather than the vector type!");
2813    assert(EVT.bitsLE(VT) && "Not extending!");
2814    if (VT == EVT) return N1; // noop assertion.
2815    break;
2816  }
2817  case ISD::SIGN_EXTEND_INREG: {
2818    EVT EVT = cast<VTSDNode>(N2)->getVT();
2819    assert(VT == N1.getValueType() && "Not an inreg extend!");
2820    assert(VT.isInteger() && EVT.isInteger() &&
2821           "Cannot *_EXTEND_INREG FP types");
2822    assert(EVT.isVector() == VT.isVector() &&
2823           "SIGN_EXTEND_INREG type should be vector iff the operand "
2824           "type is vector!");
2825    assert((!EVT.isVector() ||
2826            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2827           "Vector element counts must match in SIGN_EXTEND_INREG");
2828    assert(EVT.bitsLE(VT) && "Not extending!");
2829    if (EVT == VT) return N1;  // Not actually extending
2830
2831    if (N1C) {
2832      APInt Val = N1C->getAPIntValue();
2833      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2834      Val <<= Val.getBitWidth()-FromBits;
2835      Val = Val.ashr(Val.getBitWidth()-FromBits);
2836      return getConstant(Val, VT);
2837    }
2838    break;
2839  }
2840  case ISD::EXTRACT_VECTOR_ELT:
2841    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2842    if (N1.getOpcode() == ISD::UNDEF)
2843      return getUNDEF(VT);
2844
2845    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2846    // expanding copies of large vectors from registers.
2847    if (N2C &&
2848        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2849        N1.getNumOperands() > 0) {
2850      unsigned Factor =
2851        N1.getOperand(0).getValueType().getVectorNumElements();
2852      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2853                     N1.getOperand(N2C->getZExtValue() / Factor),
2854                     getConstant(N2C->getZExtValue() % Factor,
2855                                 N2.getValueType()));
2856    }
2857
2858    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2859    // expanding large vector constants.
2860    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2861      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2862      EVT VEltTy = N1.getValueType().getVectorElementType();
2863      if (Elt.getValueType() != VEltTy) {
2864        // If the vector element type is not legal, the BUILD_VECTOR operands
2865        // are promoted and implicitly truncated.  Make that explicit here.
2866        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2867      }
2868      if (VT != VEltTy) {
2869        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2870        // result is implicitly extended.
2871        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2872      }
2873      return Elt;
2874    }
2875
2876    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2877    // operations are lowered to scalars.
2878    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2879      // If the indices are the same, return the inserted element else
2880      // if the indices are known different, extract the element from
2881      // the original vector.
2882      SDValue N1Op2 = N1.getOperand(2);
2883      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2884
2885      if (N1Op2C && N2C) {
2886        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2887          if (VT == N1.getOperand(1).getValueType())
2888            return N1.getOperand(1);
2889          else
2890            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2891        }
2892
2893        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2894      }
2895    }
2896    break;
2897  case ISD::EXTRACT_ELEMENT:
2898    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2899    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2900           (N1.getValueType().isInteger() == VT.isInteger()) &&
2901           N1.getValueType() != VT &&
2902           "Wrong types for EXTRACT_ELEMENT!");
2903
2904    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2905    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2906    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2907    if (N1.getOpcode() == ISD::BUILD_PAIR)
2908      return N1.getOperand(N2C->getZExtValue());
2909
2910    // EXTRACT_ELEMENT of a constant int is also very common.
2911    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2912      unsigned ElementSize = VT.getSizeInBits();
2913      unsigned Shift = ElementSize * N2C->getZExtValue();
2914      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2915      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2916    }
2917    break;
2918  case ISD::EXTRACT_SUBVECTOR: {
2919    SDValue Index = N2;
2920    if (VT.isSimple() && N1.getValueType().isSimple()) {
2921      assert(VT.isVector() && N1.getValueType().isVector() &&
2922             "Extract subvector VTs must be a vectors!");
2923      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2924             "Extract subvector VTs must have the same element type!");
2925      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2926             "Extract subvector must be from larger vector to smaller vector!");
2927
2928      if (isa<ConstantSDNode>(Index.getNode())) {
2929        assert((VT.getVectorNumElements() +
2930                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2931                <= N1.getValueType().getVectorNumElements())
2932               && "Extract subvector overflow!");
2933      }
2934
2935      // Trivial extraction.
2936      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2937        return N1;
2938    }
2939    break;
2940  }
2941  }
2942
2943  if (N1C) {
2944    if (N2C) {
2945      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2946      if (SV.getNode()) return SV;
2947    } else {      // Cannonicalize constant to RHS if commutative
2948      if (isCommutativeBinOp(Opcode)) {
2949        std::swap(N1C, N2C);
2950        std::swap(N1, N2);
2951      }
2952    }
2953  }
2954
2955  // Constant fold FP operations.
2956  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2957  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2958  if (N1CFP) {
2959    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2960      // Cannonicalize constant to RHS if commutative
2961      std::swap(N1CFP, N2CFP);
2962      std::swap(N1, N2);
2963    } else if (N2CFP && VT != MVT::ppcf128) {
2964      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2965      APFloat::opStatus s;
2966      switch (Opcode) {
2967      case ISD::FADD:
2968        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2969        if (s != APFloat::opInvalidOp)
2970          return getConstantFP(V1, VT);
2971        break;
2972      case ISD::FSUB:
2973        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2974        if (s!=APFloat::opInvalidOp)
2975          return getConstantFP(V1, VT);
2976        break;
2977      case ISD::FMUL:
2978        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2979        if (s!=APFloat::opInvalidOp)
2980          return getConstantFP(V1, VT);
2981        break;
2982      case ISD::FDIV:
2983        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2984        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2985          return getConstantFP(V1, VT);
2986        break;
2987      case ISD::FREM :
2988        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2989        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2990          return getConstantFP(V1, VT);
2991        break;
2992      case ISD::FCOPYSIGN:
2993        V1.copySign(V2);
2994        return getConstantFP(V1, VT);
2995      default: break;
2996      }
2997    }
2998  }
2999
3000  // Canonicalize an UNDEF to the RHS, even over a constant.
3001  if (N1.getOpcode() == ISD::UNDEF) {
3002    if (isCommutativeBinOp(Opcode)) {
3003      std::swap(N1, N2);
3004    } else {
3005      switch (Opcode) {
3006      case ISD::FP_ROUND_INREG:
3007      case ISD::SIGN_EXTEND_INREG:
3008      case ISD::SUB:
3009      case ISD::FSUB:
3010      case ISD::FDIV:
3011      case ISD::FREM:
3012      case ISD::SRA:
3013        return N1;     // fold op(undef, arg2) -> undef
3014      case ISD::UDIV:
3015      case ISD::SDIV:
3016      case ISD::UREM:
3017      case ISD::SREM:
3018      case ISD::SRL:
3019      case ISD::SHL:
3020        if (!VT.isVector())
3021          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3022        // For vectors, we can't easily build an all zero vector, just return
3023        // the LHS.
3024        return N2;
3025      }
3026    }
3027  }
3028
3029  // Fold a bunch of operators when the RHS is undef.
3030  if (N2.getOpcode() == ISD::UNDEF) {
3031    switch (Opcode) {
3032    case ISD::XOR:
3033      if (N1.getOpcode() == ISD::UNDEF)
3034        // Handle undef ^ undef -> 0 special case. This is a common
3035        // idiom (misuse).
3036        return getConstant(0, VT);
3037      // fallthrough
3038    case ISD::ADD:
3039    case ISD::ADDC:
3040    case ISD::ADDE:
3041    case ISD::SUB:
3042    case ISD::UDIV:
3043    case ISD::SDIV:
3044    case ISD::UREM:
3045    case ISD::SREM:
3046      return N2;       // fold op(arg1, undef) -> undef
3047    case ISD::FADD:
3048    case ISD::FSUB:
3049    case ISD::FMUL:
3050    case ISD::FDIV:
3051    case ISD::FREM:
3052      if (UnsafeFPMath)
3053        return N2;
3054      break;
3055    case ISD::MUL:
3056    case ISD::AND:
3057    case ISD::SRL:
3058    case ISD::SHL:
3059      if (!VT.isVector())
3060        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3061      // For vectors, we can't easily build an all zero vector, just return
3062      // the LHS.
3063      return N1;
3064    case ISD::OR:
3065      if (!VT.isVector())
3066        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3067      // For vectors, we can't easily build an all one vector, just return
3068      // the LHS.
3069      return N1;
3070    case ISD::SRA:
3071      return N1;
3072    }
3073  }
3074
3075  // Memoize this node if possible.
3076  SDNode *N;
3077  SDVTList VTs = getVTList(VT);
3078  if (VT != MVT::Glue) {
3079    SDValue Ops[] = { N1, N2 };
3080    FoldingSetNodeID ID;
3081    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3082    void *IP = 0;
3083    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3084      return SDValue(E, 0);
3085
3086    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3087    CSEMap.InsertNode(N, IP);
3088  } else {
3089    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3090  }
3091
3092  AllNodes.push_back(N);
3093#ifndef NDEBUG
3094  VerifySDNode(N);
3095#endif
3096  return SDValue(N, 0);
3097}
3098
3099SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3100                              SDValue N1, SDValue N2, SDValue N3) {
3101  // Perform various simplifications.
3102  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3103  switch (Opcode) {
3104  case ISD::CONCAT_VECTORS:
3105    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3106    // one big BUILD_VECTOR.
3107    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3108        N2.getOpcode() == ISD::BUILD_VECTOR &&
3109        N3.getOpcode() == ISD::BUILD_VECTOR) {
3110      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3111                                    N1.getNode()->op_end());
3112      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3113      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3114      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3115    }
3116    break;
3117  case ISD::SETCC: {
3118    // Use FoldSetCC to simplify SETCC's.
3119    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3120    if (Simp.getNode()) return Simp;
3121    break;
3122  }
3123  case ISD::SELECT:
3124    if (N1C) {
3125     if (N1C->getZExtValue())
3126        return N2;             // select true, X, Y -> X
3127      else
3128        return N3;             // select false, X, Y -> Y
3129    }
3130
3131    if (N2 == N3) return N2;   // select C, X, X -> X
3132    break;
3133  case ISD::VECTOR_SHUFFLE:
3134    llvm_unreachable("should use getVectorShuffle constructor!");
3135    break;
3136  case ISD::INSERT_SUBVECTOR: {
3137    SDValue Index = N3;
3138    if (VT.isSimple() && N1.getValueType().isSimple()
3139        && N2.getValueType().isSimple()) {
3140      assert(VT.isVector() && N1.getValueType().isVector() &&
3141             N2.getValueType().isVector() &&
3142             "Insert subvector VTs must be a vectors");
3143      assert(VT == N1.getValueType() &&
3144             "Dest and insert subvector source types must match!");
3145      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3146             "Insert subvector must be from smaller vector to larger vector!");
3147      if (isa<ConstantSDNode>(Index.getNode())) {
3148        assert((N2.getValueType().getVectorNumElements() +
3149                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3150                <= VT.getVectorNumElements())
3151               && "Insert subvector overflow!");
3152      }
3153
3154      // Trivial insertion.
3155      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3156        return N2;
3157    }
3158    break;
3159  }
3160  case ISD::BITCAST:
3161    // Fold bit_convert nodes from a type to themselves.
3162    if (N1.getValueType() == VT)
3163      return N1;
3164    break;
3165  }
3166
3167  // Memoize node if it doesn't produce a flag.
3168  SDNode *N;
3169  SDVTList VTs = getVTList(VT);
3170  if (VT != MVT::Glue) {
3171    SDValue Ops[] = { N1, N2, N3 };
3172    FoldingSetNodeID ID;
3173    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3174    void *IP = 0;
3175    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3176      return SDValue(E, 0);
3177
3178    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3179    CSEMap.InsertNode(N, IP);
3180  } else {
3181    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3182  }
3183
3184  AllNodes.push_back(N);
3185#ifndef NDEBUG
3186  VerifySDNode(N);
3187#endif
3188  return SDValue(N, 0);
3189}
3190
3191SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3192                              SDValue N1, SDValue N2, SDValue N3,
3193                              SDValue N4) {
3194  SDValue Ops[] = { N1, N2, N3, N4 };
3195  return getNode(Opcode, DL, VT, Ops, 4);
3196}
3197
3198SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3199                              SDValue N1, SDValue N2, SDValue N3,
3200                              SDValue N4, SDValue N5) {
3201  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3202  return getNode(Opcode, DL, VT, Ops, 5);
3203}
3204
3205/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3206/// the incoming stack arguments to be loaded from the stack.
3207SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3208  SmallVector<SDValue, 8> ArgChains;
3209
3210  // Include the original chain at the beginning of the list. When this is
3211  // used by target LowerCall hooks, this helps legalize find the
3212  // CALLSEQ_BEGIN node.
3213  ArgChains.push_back(Chain);
3214
3215  // Add a chain value for each stack argument.
3216  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3217       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3218    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3219      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3220        if (FI->getIndex() < 0)
3221          ArgChains.push_back(SDValue(L, 1));
3222
3223  // Build a tokenfactor for all the chains.
3224  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3225                 &ArgChains[0], ArgChains.size());
3226}
3227
3228/// SplatByte - Distribute ByteVal over NumBits bits.
3229static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3230  APInt Val = APInt(NumBits, ByteVal);
3231  unsigned Shift = 8;
3232  for (unsigned i = NumBits; i > 8; i >>= 1) {
3233    Val = (Val << Shift) | Val;
3234    Shift <<= 1;
3235  }
3236  return Val;
3237}
3238
3239/// getMemsetValue - Vectorized representation of the memset value
3240/// operand.
3241static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3242                              DebugLoc dl) {
3243  assert(Value.getOpcode() != ISD::UNDEF);
3244
3245  unsigned NumBits = VT.getScalarType().getSizeInBits();
3246  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3247    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3248    if (VT.isInteger())
3249      return DAG.getConstant(Val, VT);
3250    return DAG.getConstantFP(APFloat(Val), VT);
3251  }
3252
3253  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3254  if (NumBits > 8) {
3255    // Use a multiplication with 0x010101... to extend the input to the
3256    // required length.
3257    APInt Magic = SplatByte(NumBits, 0x01);
3258    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3259  }
3260
3261  return Value;
3262}
3263
3264/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3265/// used when a memcpy is turned into a memset when the source is a constant
3266/// string ptr.
3267static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3268                                  const TargetLowering &TLI,
3269                                  std::string &Str, unsigned Offset) {
3270  // Handle vector with all elements zero.
3271  if (Str.empty()) {
3272    if (VT.isInteger())
3273      return DAG.getConstant(0, VT);
3274    else if (VT == MVT::f32 || VT == MVT::f64)
3275      return DAG.getConstantFP(0.0, VT);
3276    else if (VT.isVector()) {
3277      unsigned NumElts = VT.getVectorNumElements();
3278      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3279      return DAG.getNode(ISD::BITCAST, dl, VT,
3280                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3281                                                             EltVT, NumElts)));
3282    } else
3283      llvm_unreachable("Expected type!");
3284  }
3285
3286  assert(!VT.isVector() && "Can't handle vector type here!");
3287  unsigned NumBits = VT.getSizeInBits();
3288  unsigned MSB = NumBits / 8;
3289  uint64_t Val = 0;
3290  if (TLI.isLittleEndian())
3291    Offset = Offset + MSB - 1;
3292  for (unsigned i = 0; i != MSB; ++i) {
3293    Val = (Val << 8) | (unsigned char)Str[Offset];
3294    Offset += TLI.isLittleEndian() ? -1 : 1;
3295  }
3296  return DAG.getConstant(Val, VT);
3297}
3298
3299/// getMemBasePlusOffset - Returns base and offset node for the
3300///
3301static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3302                                      SelectionDAG &DAG) {
3303  EVT VT = Base.getValueType();
3304  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3305                     VT, Base, DAG.getConstant(Offset, VT));
3306}
3307
3308/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3309///
3310static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3311  unsigned SrcDelta = 0;
3312  GlobalAddressSDNode *G = NULL;
3313  if (Src.getOpcode() == ISD::GlobalAddress)
3314    G = cast<GlobalAddressSDNode>(Src);
3315  else if (Src.getOpcode() == ISD::ADD &&
3316           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3317           Src.getOperand(1).getOpcode() == ISD::Constant) {
3318    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3319    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3320  }
3321  if (!G)
3322    return false;
3323
3324  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3325  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3326    return true;
3327
3328  return false;
3329}
3330
3331/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3332/// to replace the memset / memcpy. Return true if the number of memory ops
3333/// is below the threshold. It returns the types of the sequence of
3334/// memory ops to perform memset / memcpy by reference.
3335static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3336                                     unsigned Limit, uint64_t Size,
3337                                     unsigned DstAlign, unsigned SrcAlign,
3338                                     bool NonScalarIntSafe,
3339                                     bool MemcpyStrSrc,
3340                                     SelectionDAG &DAG,
3341                                     const TargetLowering &TLI) {
3342  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3343         "Expecting memcpy / memset source to meet alignment requirement!");
3344  // If 'SrcAlign' is zero, that means the memory operation does not need to
3345  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3346  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3347  // is the specified alignment of the memory operation. If it is zero, that
3348  // means it's possible to change the alignment of the destination.
3349  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3350  // not need to be loaded.
3351  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3352                                   NonScalarIntSafe, MemcpyStrSrc,
3353                                   DAG.getMachineFunction());
3354
3355  if (VT == MVT::Other) {
3356    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3357        TLI.allowsUnalignedMemoryAccesses(VT)) {
3358      VT = TLI.getPointerTy();
3359    } else {
3360      switch (DstAlign & 7) {
3361      case 0:  VT = MVT::i64; break;
3362      case 4:  VT = MVT::i32; break;
3363      case 2:  VT = MVT::i16; break;
3364      default: VT = MVT::i8;  break;
3365      }
3366    }
3367
3368    MVT LVT = MVT::i64;
3369    while (!TLI.isTypeLegal(LVT))
3370      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3371    assert(LVT.isInteger());
3372
3373    if (VT.bitsGT(LVT))
3374      VT = LVT;
3375  }
3376
3377  unsigned NumMemOps = 0;
3378  while (Size != 0) {
3379    unsigned VTSize = VT.getSizeInBits() / 8;
3380    while (VTSize > Size) {
3381      // For now, only use non-vector load / store's for the left-over pieces.
3382      if (VT.isVector() || VT.isFloatingPoint()) {
3383        VT = MVT::i64;
3384        while (!TLI.isTypeLegal(VT))
3385          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3386        VTSize = VT.getSizeInBits() / 8;
3387      } else {
3388        // This can result in a type that is not legal on the target, e.g.
3389        // 1 or 2 bytes on PPC.
3390        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3391        VTSize >>= 1;
3392      }
3393    }
3394
3395    if (++NumMemOps > Limit)
3396      return false;
3397    MemOps.push_back(VT);
3398    Size -= VTSize;
3399  }
3400
3401  return true;
3402}
3403
3404static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3405                                       SDValue Chain, SDValue Dst,
3406                                       SDValue Src, uint64_t Size,
3407                                       unsigned Align, bool isVol,
3408                                       bool AlwaysInline,
3409                                       MachinePointerInfo DstPtrInfo,
3410                                       MachinePointerInfo SrcPtrInfo) {
3411  // Turn a memcpy of undef to nop.
3412  if (Src.getOpcode() == ISD::UNDEF)
3413    return Chain;
3414
3415  // Expand memcpy to a series of load and store ops if the size operand falls
3416  // below a certain threshold.
3417  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3418  // rather than maybe a humongous number of loads and stores.
3419  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420  std::vector<EVT> MemOps;
3421  bool DstAlignCanChange = false;
3422  MachineFunction &MF = DAG.getMachineFunction();
3423  MachineFrameInfo *MFI = MF.getFrameInfo();
3424  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3425  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3426  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3427    DstAlignCanChange = true;
3428  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3429  if (Align > SrcAlign)
3430    SrcAlign = Align;
3431  std::string Str;
3432  bool CopyFromStr = isMemSrcFromString(Src, Str);
3433  bool isZeroStr = CopyFromStr && Str.empty();
3434  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3435
3436  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3437                                (DstAlignCanChange ? 0 : Align),
3438                                (isZeroStr ? 0 : SrcAlign),
3439                                true, CopyFromStr, DAG, TLI))
3440    return SDValue();
3441
3442  if (DstAlignCanChange) {
3443    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3444    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3445    if (NewAlign > Align) {
3446      // Give the stack frame object a larger alignment if needed.
3447      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3448        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3449      Align = NewAlign;
3450    }
3451  }
3452
3453  SmallVector<SDValue, 8> OutChains;
3454  unsigned NumMemOps = MemOps.size();
3455  uint64_t SrcOff = 0, DstOff = 0;
3456  for (unsigned i = 0; i != NumMemOps; ++i) {
3457    EVT VT = MemOps[i];
3458    unsigned VTSize = VT.getSizeInBits() / 8;
3459    SDValue Value, Store;
3460
3461    if (CopyFromStr &&
3462        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3463      // It's unlikely a store of a vector immediate can be done in a single
3464      // instruction. It would require a load from a constantpool first.
3465      // We only handle zero vectors here.
3466      // FIXME: Handle other cases where store of vector immediate is done in
3467      // a single instruction.
3468      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3469      Store = DAG.getStore(Chain, dl, Value,
3470                           getMemBasePlusOffset(Dst, DstOff, DAG),
3471                           DstPtrInfo.getWithOffset(DstOff), isVol,
3472                           false, Align);
3473    } else {
3474      // The type might not be legal for the target.  This should only happen
3475      // if the type is smaller than a legal type, as on PPC, so the right
3476      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3477      // to Load/Store if NVT==VT.
3478      // FIXME does the case above also need this?
3479      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3480      assert(NVT.bitsGE(VT));
3481      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3482                             getMemBasePlusOffset(Src, SrcOff, DAG),
3483                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3484                             MinAlign(SrcAlign, SrcOff));
3485      Store = DAG.getTruncStore(Chain, dl, Value,
3486                                getMemBasePlusOffset(Dst, DstOff, DAG),
3487                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3488                                false, Align);
3489    }
3490    OutChains.push_back(Store);
3491    SrcOff += VTSize;
3492    DstOff += VTSize;
3493  }
3494
3495  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3496                     &OutChains[0], OutChains.size());
3497}
3498
3499static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3500                                        SDValue Chain, SDValue Dst,
3501                                        SDValue Src, uint64_t Size,
3502                                        unsigned Align,  bool isVol,
3503                                        bool AlwaysInline,
3504                                        MachinePointerInfo DstPtrInfo,
3505                                        MachinePointerInfo SrcPtrInfo) {
3506  // Turn a memmove of undef to nop.
3507  if (Src.getOpcode() == ISD::UNDEF)
3508    return Chain;
3509
3510  // Expand memmove to a series of load and store ops if the size operand falls
3511  // below a certain threshold.
3512  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3513  std::vector<EVT> MemOps;
3514  bool DstAlignCanChange = false;
3515  MachineFunction &MF = DAG.getMachineFunction();
3516  MachineFrameInfo *MFI = MF.getFrameInfo();
3517  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3518  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3519  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3520    DstAlignCanChange = true;
3521  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3522  if (Align > SrcAlign)
3523    SrcAlign = Align;
3524  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3525
3526  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3527                                (DstAlignCanChange ? 0 : Align),
3528                                SrcAlign, true, false, DAG, TLI))
3529    return SDValue();
3530
3531  if (DstAlignCanChange) {
3532    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3533    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3534    if (NewAlign > Align) {
3535      // Give the stack frame object a larger alignment if needed.
3536      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3537        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3538      Align = NewAlign;
3539    }
3540  }
3541
3542  uint64_t SrcOff = 0, DstOff = 0;
3543  SmallVector<SDValue, 8> LoadValues;
3544  SmallVector<SDValue, 8> LoadChains;
3545  SmallVector<SDValue, 8> OutChains;
3546  unsigned NumMemOps = MemOps.size();
3547  for (unsigned i = 0; i < NumMemOps; i++) {
3548    EVT VT = MemOps[i];
3549    unsigned VTSize = VT.getSizeInBits() / 8;
3550    SDValue Value, Store;
3551
3552    Value = DAG.getLoad(VT, dl, Chain,
3553                        getMemBasePlusOffset(Src, SrcOff, DAG),
3554                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3555                        false, SrcAlign);
3556    LoadValues.push_back(Value);
3557    LoadChains.push_back(Value.getValue(1));
3558    SrcOff += VTSize;
3559  }
3560  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3561                      &LoadChains[0], LoadChains.size());
3562  OutChains.clear();
3563  for (unsigned i = 0; i < NumMemOps; i++) {
3564    EVT VT = MemOps[i];
3565    unsigned VTSize = VT.getSizeInBits() / 8;
3566    SDValue Value, Store;
3567
3568    Store = DAG.getStore(Chain, dl, LoadValues[i],
3569                         getMemBasePlusOffset(Dst, DstOff, DAG),
3570                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3571    OutChains.push_back(Store);
3572    DstOff += VTSize;
3573  }
3574
3575  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3576                     &OutChains[0], OutChains.size());
3577}
3578
3579static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3580                               SDValue Chain, SDValue Dst,
3581                               SDValue Src, uint64_t Size,
3582                               unsigned Align, bool isVol,
3583                               MachinePointerInfo DstPtrInfo) {
3584  // Turn a memset of undef to nop.
3585  if (Src.getOpcode() == ISD::UNDEF)
3586    return Chain;
3587
3588  // Expand memset to a series of load/store ops if the size operand
3589  // falls below a certain threshold.
3590  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3591  std::vector<EVT> MemOps;
3592  bool DstAlignCanChange = false;
3593  MachineFunction &MF = DAG.getMachineFunction();
3594  MachineFrameInfo *MFI = MF.getFrameInfo();
3595  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3596  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3597  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3598    DstAlignCanChange = true;
3599  bool NonScalarIntSafe =
3600    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3601  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3602                                Size, (DstAlignCanChange ? 0 : Align), 0,
3603                                NonScalarIntSafe, false, DAG, TLI))
3604    return SDValue();
3605
3606  if (DstAlignCanChange) {
3607    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3608    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3609    if (NewAlign > Align) {
3610      // Give the stack frame object a larger alignment if needed.
3611      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3612        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3613      Align = NewAlign;
3614    }
3615  }
3616
3617  SmallVector<SDValue, 8> OutChains;
3618  uint64_t DstOff = 0;
3619  unsigned NumMemOps = MemOps.size();
3620
3621  // Find the largest store and generate the bit pattern for it.
3622  EVT LargestVT = MemOps[0];
3623  for (unsigned i = 1; i < NumMemOps; i++)
3624    if (MemOps[i].bitsGT(LargestVT))
3625      LargestVT = MemOps[i];
3626  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3627
3628  for (unsigned i = 0; i < NumMemOps; i++) {
3629    EVT VT = MemOps[i];
3630
3631    // If this store is smaller than the largest store see whether we can get
3632    // the smaller value for free with a truncate.
3633    SDValue Value = MemSetValue;
3634    if (VT.bitsLT(LargestVT)) {
3635      if (!LargestVT.isVector() && !VT.isVector() &&
3636          TLI.isTruncateFree(LargestVT, VT))
3637        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3638      else
3639        Value = getMemsetValue(Src, VT, DAG, dl);
3640    }
3641    assert(Value.getValueType() == VT && "Value with wrong type.");
3642    SDValue Store = DAG.getStore(Chain, dl, Value,
3643                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3644                                 DstPtrInfo.getWithOffset(DstOff),
3645                                 isVol, false, Align);
3646    OutChains.push_back(Store);
3647    DstOff += VT.getSizeInBits() / 8;
3648  }
3649
3650  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3651                     &OutChains[0], OutChains.size());
3652}
3653
3654SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3655                                SDValue Src, SDValue Size,
3656                                unsigned Align, bool isVol, bool AlwaysInline,
3657                                MachinePointerInfo DstPtrInfo,
3658                                MachinePointerInfo SrcPtrInfo) {
3659
3660  // Check to see if we should lower the memcpy to loads and stores first.
3661  // For cases within the target-specified limits, this is the best choice.
3662  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3663  if (ConstantSize) {
3664    // Memcpy with size zero? Just return the original chain.
3665    if (ConstantSize->isNullValue())
3666      return Chain;
3667
3668    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3669                                             ConstantSize->getZExtValue(),Align,
3670                                isVol, false, DstPtrInfo, SrcPtrInfo);
3671    if (Result.getNode())
3672      return Result;
3673  }
3674
3675  // Then check to see if we should lower the memcpy with target-specific
3676  // code. If the target chooses to do this, this is the next best.
3677  SDValue Result =
3678    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3679                                isVol, AlwaysInline,
3680                                DstPtrInfo, SrcPtrInfo);
3681  if (Result.getNode())
3682    return Result;
3683
3684  // If we really need inline code and the target declined to provide it,
3685  // use a (potentially long) sequence of loads and stores.
3686  if (AlwaysInline) {
3687    assert(ConstantSize && "AlwaysInline requires a constant size!");
3688    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3689                                   ConstantSize->getZExtValue(), Align, isVol,
3690                                   true, DstPtrInfo, SrcPtrInfo);
3691  }
3692
3693  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3694  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3695  // respect volatile, so they may do things like read or write memory
3696  // beyond the given memory regions. But fixing this isn't easy, and most
3697  // people don't care.
3698
3699  // Emit a library call.
3700  TargetLowering::ArgListTy Args;
3701  TargetLowering::ArgListEntry Entry;
3702  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3703  Entry.Node = Dst; Args.push_back(Entry);
3704  Entry.Node = Src; Args.push_back(Entry);
3705  Entry.Node = Size; Args.push_back(Entry);
3706  // FIXME: pass in DebugLoc
3707  std::pair<SDValue,SDValue> CallResult =
3708    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3709                    false, false, false, false, 0,
3710                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3711                    /*isReturnValueUsed=*/false,
3712                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3713                                      TLI.getPointerTy()),
3714                    Args, *this, dl);
3715  return CallResult.second;
3716}
3717
3718SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3719                                 SDValue Src, SDValue Size,
3720                                 unsigned Align, bool isVol,
3721                                 MachinePointerInfo DstPtrInfo,
3722                                 MachinePointerInfo SrcPtrInfo) {
3723
3724  // Check to see if we should lower the memmove to loads and stores first.
3725  // For cases within the target-specified limits, this is the best choice.
3726  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3727  if (ConstantSize) {
3728    // Memmove with size zero? Just return the original chain.
3729    if (ConstantSize->isNullValue())
3730      return Chain;
3731
3732    SDValue Result =
3733      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3734                               ConstantSize->getZExtValue(), Align, isVol,
3735                               false, DstPtrInfo, SrcPtrInfo);
3736    if (Result.getNode())
3737      return Result;
3738  }
3739
3740  // Then check to see if we should lower the memmove with target-specific
3741  // code. If the target chooses to do this, this is the next best.
3742  SDValue Result =
3743    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3744                                 DstPtrInfo, SrcPtrInfo);
3745  if (Result.getNode())
3746    return Result;
3747
3748  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3749  // not be safe.  See memcpy above for more details.
3750
3751  // Emit a library call.
3752  TargetLowering::ArgListTy Args;
3753  TargetLowering::ArgListEntry Entry;
3754  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3755  Entry.Node = Dst; Args.push_back(Entry);
3756  Entry.Node = Src; Args.push_back(Entry);
3757  Entry.Node = Size; Args.push_back(Entry);
3758  // FIXME:  pass in DebugLoc
3759  std::pair<SDValue,SDValue> CallResult =
3760    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3761                    false, false, false, false, 0,
3762                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3763                    /*isReturnValueUsed=*/false,
3764                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3765                                      TLI.getPointerTy()),
3766                    Args, *this, dl);
3767  return CallResult.second;
3768}
3769
3770SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3771                                SDValue Src, SDValue Size,
3772                                unsigned Align, bool isVol,
3773                                MachinePointerInfo DstPtrInfo) {
3774
3775  // Check to see if we should lower the memset to stores first.
3776  // For cases within the target-specified limits, this is the best choice.
3777  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3778  if (ConstantSize) {
3779    // Memset with size zero? Just return the original chain.
3780    if (ConstantSize->isNullValue())
3781      return Chain;
3782
3783    SDValue Result =
3784      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3785                      Align, isVol, DstPtrInfo);
3786
3787    if (Result.getNode())
3788      return Result;
3789  }
3790
3791  // Then check to see if we should lower the memset with target-specific
3792  // code. If the target chooses to do this, this is the next best.
3793  SDValue Result =
3794    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3795                                DstPtrInfo);
3796  if (Result.getNode())
3797    return Result;
3798
3799  // Emit a library call.
3800  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3801  TargetLowering::ArgListTy Args;
3802  TargetLowering::ArgListEntry Entry;
3803  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3804  Args.push_back(Entry);
3805  // Extend or truncate the argument to be an i32 value for the call.
3806  if (Src.getValueType().bitsGT(MVT::i32))
3807    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3808  else
3809    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3810  Entry.Node = Src;
3811  Entry.Ty = Type::getInt32Ty(*getContext());
3812  Entry.isSExt = true;
3813  Args.push_back(Entry);
3814  Entry.Node = Size;
3815  Entry.Ty = IntPtrTy;
3816  Entry.isSExt = false;
3817  Args.push_back(Entry);
3818  // FIXME: pass in DebugLoc
3819  std::pair<SDValue,SDValue> CallResult =
3820    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3821                    false, false, false, false, 0,
3822                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3823                    /*isReturnValueUsed=*/false,
3824                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3825                                      TLI.getPointerTy()),
3826                    Args, *this, dl);
3827  return CallResult.second;
3828}
3829
3830SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3831                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3832                                SDValue Swp, MachinePointerInfo PtrInfo,
3833                                unsigned Alignment,
3834                                AtomicOrdering Ordering,
3835                                SynchronizationScope SynchScope) {
3836  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3837    Alignment = getEVTAlignment(MemVT);
3838
3839  MachineFunction &MF = getMachineFunction();
3840  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3841
3842  // For now, atomics are considered to be volatile always.
3843  Flags |= MachineMemOperand::MOVolatile;
3844
3845  MachineMemOperand *MMO =
3846    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3847
3848  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3849                   Ordering, SynchScope);
3850}
3851
3852SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3853                                SDValue Chain,
3854                                SDValue Ptr, SDValue Cmp,
3855                                SDValue Swp, MachineMemOperand *MMO,
3856                                AtomicOrdering Ordering,
3857                                SynchronizationScope SynchScope) {
3858  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3859  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3860
3861  EVT VT = Cmp.getValueType();
3862
3863  SDVTList VTs = getVTList(VT, MVT::Other);
3864  FoldingSetNodeID ID;
3865  ID.AddInteger(MemVT.getRawBits());
3866  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3867  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3868  void* IP = 0;
3869  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3870    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3871    return SDValue(E, 0);
3872  }
3873  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3874                                               Ptr, Cmp, Swp, MMO, Ordering,
3875                                               SynchScope);
3876  CSEMap.InsertNode(N, IP);
3877  AllNodes.push_back(N);
3878  return SDValue(N, 0);
3879}
3880
3881SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3882                                SDValue Chain,
3883                                SDValue Ptr, SDValue Val,
3884                                const Value* PtrVal,
3885                                unsigned Alignment,
3886                                AtomicOrdering Ordering,
3887                                SynchronizationScope SynchScope) {
3888  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3889    Alignment = getEVTAlignment(MemVT);
3890
3891  MachineFunction &MF = getMachineFunction();
3892  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3893
3894  // For now, atomics are considered to be volatile always.
3895  Flags |= MachineMemOperand::MOVolatile;
3896
3897  MachineMemOperand *MMO =
3898    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3899                            MemVT.getStoreSize(), Alignment);
3900
3901  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3902                   Ordering, SynchScope);
3903}
3904
3905SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3906                                SDValue Chain,
3907                                SDValue Ptr, SDValue Val,
3908                                MachineMemOperand *MMO,
3909                                AtomicOrdering Ordering,
3910                                SynchronizationScope SynchScope) {
3911  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3912          Opcode == ISD::ATOMIC_LOAD_SUB ||
3913          Opcode == ISD::ATOMIC_LOAD_AND ||
3914          Opcode == ISD::ATOMIC_LOAD_OR ||
3915          Opcode == ISD::ATOMIC_LOAD_XOR ||
3916          Opcode == ISD::ATOMIC_LOAD_NAND ||
3917          Opcode == ISD::ATOMIC_LOAD_MIN ||
3918          Opcode == ISD::ATOMIC_LOAD_MAX ||
3919          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3920          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3921          Opcode == ISD::ATOMIC_SWAP ||
3922          Opcode == ISD::ATOMIC_STORE) &&
3923         "Invalid Atomic Op");
3924
3925  EVT VT = Val.getValueType();
3926
3927  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3928                                               getVTList(VT, MVT::Other);
3929  FoldingSetNodeID ID;
3930  ID.AddInteger(MemVT.getRawBits());
3931  SDValue Ops[] = {Chain, Ptr, Val};
3932  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3933  void* IP = 0;
3934  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3935    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3936    return SDValue(E, 0);
3937  }
3938  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3939                                               Ptr, Val, MMO,
3940                                               Ordering, SynchScope);
3941  CSEMap.InsertNode(N, IP);
3942  AllNodes.push_back(N);
3943  return SDValue(N, 0);
3944}
3945
3946SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3947                                EVT VT, SDValue Chain,
3948                                SDValue Ptr,
3949                                const Value* PtrVal,
3950                                unsigned Alignment,
3951                                AtomicOrdering Ordering,
3952                                SynchronizationScope SynchScope) {
3953  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3954    Alignment = getEVTAlignment(MemVT);
3955
3956  MachineFunction &MF = getMachineFunction();
3957  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3958
3959  // For now, atomics are considered to be volatile always.
3960  Flags |= MachineMemOperand::MOVolatile;
3961
3962  MachineMemOperand *MMO =
3963    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3964                            MemVT.getStoreSize(), Alignment);
3965
3966  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3967                   Ordering, SynchScope);
3968}
3969
3970SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3971                                EVT VT, SDValue Chain,
3972                                SDValue Ptr,
3973                                MachineMemOperand *MMO,
3974                                AtomicOrdering Ordering,
3975                                SynchronizationScope SynchScope) {
3976  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
3977
3978  SDVTList VTs = getVTList(VT, MVT::Other);
3979  FoldingSetNodeID ID;
3980  ID.AddInteger(MemVT.getRawBits());
3981  SDValue Ops[] = {Chain, Ptr};
3982  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3983  void* IP = 0;
3984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3985    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3986    return SDValue(E, 0);
3987  }
3988  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3989                                               Ptr, MMO, Ordering, SynchScope);
3990  CSEMap.InsertNode(N, IP);
3991  AllNodes.push_back(N);
3992  return SDValue(N, 0);
3993}
3994
3995/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3996SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3997                                     DebugLoc dl) {
3998  if (NumOps == 1)
3999    return Ops[0];
4000
4001  SmallVector<EVT, 4> VTs;
4002  VTs.reserve(NumOps);
4003  for (unsigned i = 0; i < NumOps; ++i)
4004    VTs.push_back(Ops[i].getValueType());
4005  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4006                 Ops, NumOps);
4007}
4008
4009SDValue
4010SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4011                                  const EVT *VTs, unsigned NumVTs,
4012                                  const SDValue *Ops, unsigned NumOps,
4013                                  EVT MemVT, MachinePointerInfo PtrInfo,
4014                                  unsigned Align, bool Vol,
4015                                  bool ReadMem, bool WriteMem) {
4016  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4017                             MemVT, PtrInfo, Align, Vol,
4018                             ReadMem, WriteMem);
4019}
4020
4021SDValue
4022SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4023                                  const SDValue *Ops, unsigned NumOps,
4024                                  EVT MemVT, MachinePointerInfo PtrInfo,
4025                                  unsigned Align, bool Vol,
4026                                  bool ReadMem, bool WriteMem) {
4027  if (Align == 0)  // Ensure that codegen never sees alignment 0
4028    Align = getEVTAlignment(MemVT);
4029
4030  MachineFunction &MF = getMachineFunction();
4031  unsigned Flags = 0;
4032  if (WriteMem)
4033    Flags |= MachineMemOperand::MOStore;
4034  if (ReadMem)
4035    Flags |= MachineMemOperand::MOLoad;
4036  if (Vol)
4037    Flags |= MachineMemOperand::MOVolatile;
4038  MachineMemOperand *MMO =
4039    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4040
4041  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4042}
4043
4044SDValue
4045SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4046                                  const SDValue *Ops, unsigned NumOps,
4047                                  EVT MemVT, MachineMemOperand *MMO) {
4048  assert((Opcode == ISD::INTRINSIC_VOID ||
4049          Opcode == ISD::INTRINSIC_W_CHAIN ||
4050          Opcode == ISD::PREFETCH ||
4051          (Opcode <= INT_MAX &&
4052           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4053         "Opcode is not a memory-accessing opcode!");
4054
4055  // Memoize the node unless it returns a flag.
4056  MemIntrinsicSDNode *N;
4057  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4058    FoldingSetNodeID ID;
4059    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4060    void *IP = 0;
4061    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4062      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4063      return SDValue(E, 0);
4064    }
4065
4066    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4067                                               MemVT, MMO);
4068    CSEMap.InsertNode(N, IP);
4069  } else {
4070    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4071                                               MemVT, MMO);
4072  }
4073  AllNodes.push_back(N);
4074  return SDValue(N, 0);
4075}
4076
4077/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4078/// MachinePointerInfo record from it.  This is particularly useful because the
4079/// code generator has many cases where it doesn't bother passing in a
4080/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4081static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4082  // If this is FI+Offset, we can model it.
4083  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4084    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4085
4086  // If this is (FI+Offset1)+Offset2, we can model it.
4087  if (Ptr.getOpcode() != ISD::ADD ||
4088      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4089      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4090    return MachinePointerInfo();
4091
4092  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4093  return MachinePointerInfo::getFixedStack(FI, Offset+
4094                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4095}
4096
4097/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4098/// MachinePointerInfo record from it.  This is particularly useful because the
4099/// code generator has many cases where it doesn't bother passing in a
4100/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4101static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4102  // If the 'Offset' value isn't a constant, we can't handle this.
4103  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4104    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4105  if (OffsetOp.getOpcode() == ISD::UNDEF)
4106    return InferPointerInfo(Ptr);
4107  return MachinePointerInfo();
4108}
4109
4110
4111SDValue
4112SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4113                      EVT VT, DebugLoc dl, SDValue Chain,
4114                      SDValue Ptr, SDValue Offset,
4115                      MachinePointerInfo PtrInfo, EVT MemVT,
4116                      bool isVolatile, bool isNonTemporal,
4117                      unsigned Alignment, const MDNode *TBAAInfo) {
4118  assert(Chain.getValueType() == MVT::Other &&
4119        "Invalid chain type");
4120  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4121    Alignment = getEVTAlignment(VT);
4122
4123  unsigned Flags = MachineMemOperand::MOLoad;
4124  if (isVolatile)
4125    Flags |= MachineMemOperand::MOVolatile;
4126  if (isNonTemporal)
4127    Flags |= MachineMemOperand::MONonTemporal;
4128
4129  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4130  // clients.
4131  if (PtrInfo.V == 0)
4132    PtrInfo = InferPointerInfo(Ptr, Offset);
4133
4134  MachineFunction &MF = getMachineFunction();
4135  MachineMemOperand *MMO =
4136    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4137                            TBAAInfo);
4138  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4139}
4140
4141SDValue
4142SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4143                      EVT VT, DebugLoc dl, SDValue Chain,
4144                      SDValue Ptr, SDValue Offset, EVT MemVT,
4145                      MachineMemOperand *MMO) {
4146  if (VT == MemVT) {
4147    ExtType = ISD::NON_EXTLOAD;
4148  } else if (ExtType == ISD::NON_EXTLOAD) {
4149    assert(VT == MemVT && "Non-extending load from different memory type!");
4150  } else {
4151    // Extending load.
4152    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4153           "Should only be an extending load, not truncating!");
4154    assert(VT.isInteger() == MemVT.isInteger() &&
4155           "Cannot convert from FP to Int or Int -> FP!");
4156    assert(VT.isVector() == MemVT.isVector() &&
4157           "Cannot use trunc store to convert to or from a vector!");
4158    assert((!VT.isVector() ||
4159            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4160           "Cannot use trunc store to change the number of vector elements!");
4161  }
4162
4163  bool Indexed = AM != ISD::UNINDEXED;
4164  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4165         "Unindexed load with an offset!");
4166
4167  SDVTList VTs = Indexed ?
4168    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4169  SDValue Ops[] = { Chain, Ptr, Offset };
4170  FoldingSetNodeID ID;
4171  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4172  ID.AddInteger(MemVT.getRawBits());
4173  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4174                                     MMO->isNonTemporal()));
4175  void *IP = 0;
4176  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4177    cast<LoadSDNode>(E)->refineAlignment(MMO);
4178    return SDValue(E, 0);
4179  }
4180  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4181                                             MemVT, MMO);
4182  CSEMap.InsertNode(N, IP);
4183  AllNodes.push_back(N);
4184  return SDValue(N, 0);
4185}
4186
4187SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4188                              SDValue Chain, SDValue Ptr,
4189                              MachinePointerInfo PtrInfo,
4190                              bool isVolatile, bool isNonTemporal,
4191                              unsigned Alignment, const MDNode *TBAAInfo) {
4192  SDValue Undef = getUNDEF(Ptr.getValueType());
4193  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4194                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4195}
4196
4197SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4198                                 SDValue Chain, SDValue Ptr,
4199                                 MachinePointerInfo PtrInfo, EVT MemVT,
4200                                 bool isVolatile, bool isNonTemporal,
4201                                 unsigned Alignment, const MDNode *TBAAInfo) {
4202  SDValue Undef = getUNDEF(Ptr.getValueType());
4203  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4204                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4205                 TBAAInfo);
4206}
4207
4208
4209SDValue
4210SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4211                             SDValue Offset, ISD::MemIndexedMode AM) {
4212  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4213  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4214         "Load is already a indexed load!");
4215  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4216                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4217                 LD->getMemoryVT(),
4218                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4219}
4220
4221SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4222                               SDValue Ptr, MachinePointerInfo PtrInfo,
4223                               bool isVolatile, bool isNonTemporal,
4224                               unsigned Alignment, const MDNode *TBAAInfo) {
4225  assert(Chain.getValueType() == MVT::Other &&
4226        "Invalid chain type");
4227  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4228    Alignment = getEVTAlignment(Val.getValueType());
4229
4230  unsigned Flags = MachineMemOperand::MOStore;
4231  if (isVolatile)
4232    Flags |= MachineMemOperand::MOVolatile;
4233  if (isNonTemporal)
4234    Flags |= MachineMemOperand::MONonTemporal;
4235
4236  if (PtrInfo.V == 0)
4237    PtrInfo = InferPointerInfo(Ptr);
4238
4239  MachineFunction &MF = getMachineFunction();
4240  MachineMemOperand *MMO =
4241    MF.getMachineMemOperand(PtrInfo, Flags,
4242                            Val.getValueType().getStoreSize(), Alignment,
4243                            TBAAInfo);
4244
4245  return getStore(Chain, dl, Val, Ptr, MMO);
4246}
4247
4248SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4249                               SDValue Ptr, MachineMemOperand *MMO) {
4250  assert(Chain.getValueType() == MVT::Other &&
4251        "Invalid chain type");
4252  EVT VT = Val.getValueType();
4253  SDVTList VTs = getVTList(MVT::Other);
4254  SDValue Undef = getUNDEF(Ptr.getValueType());
4255  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4256  FoldingSetNodeID ID;
4257  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4258  ID.AddInteger(VT.getRawBits());
4259  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4260                                     MMO->isNonTemporal()));
4261  void *IP = 0;
4262  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4263    cast<StoreSDNode>(E)->refineAlignment(MMO);
4264    return SDValue(E, 0);
4265  }
4266  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4267                                              false, VT, MMO);
4268  CSEMap.InsertNode(N, IP);
4269  AllNodes.push_back(N);
4270  return SDValue(N, 0);
4271}
4272
4273SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4274                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4275                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4276                                    unsigned Alignment,
4277                                    const MDNode *TBAAInfo) {
4278  assert(Chain.getValueType() == MVT::Other &&
4279        "Invalid chain type");
4280  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4281    Alignment = getEVTAlignment(SVT);
4282
4283  unsigned Flags = MachineMemOperand::MOStore;
4284  if (isVolatile)
4285    Flags |= MachineMemOperand::MOVolatile;
4286  if (isNonTemporal)
4287    Flags |= MachineMemOperand::MONonTemporal;
4288
4289  if (PtrInfo.V == 0)
4290    PtrInfo = InferPointerInfo(Ptr);
4291
4292  MachineFunction &MF = getMachineFunction();
4293  MachineMemOperand *MMO =
4294    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4295                            TBAAInfo);
4296
4297  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4298}
4299
4300SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4301                                    SDValue Ptr, EVT SVT,
4302                                    MachineMemOperand *MMO) {
4303  EVT VT = Val.getValueType();
4304
4305  assert(Chain.getValueType() == MVT::Other &&
4306        "Invalid chain type");
4307  if (VT == SVT)
4308    return getStore(Chain, dl, Val, Ptr, MMO);
4309
4310  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4311         "Should only be a truncating store, not extending!");
4312  assert(VT.isInteger() == SVT.isInteger() &&
4313         "Can't do FP-INT conversion!");
4314  assert(VT.isVector() == SVT.isVector() &&
4315         "Cannot use trunc store to convert to or from a vector!");
4316  assert((!VT.isVector() ||
4317          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4318         "Cannot use trunc store to change the number of vector elements!");
4319
4320  SDVTList VTs = getVTList(MVT::Other);
4321  SDValue Undef = getUNDEF(Ptr.getValueType());
4322  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4323  FoldingSetNodeID ID;
4324  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4325  ID.AddInteger(SVT.getRawBits());
4326  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4327                                     MMO->isNonTemporal()));
4328  void *IP = 0;
4329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4330    cast<StoreSDNode>(E)->refineAlignment(MMO);
4331    return SDValue(E, 0);
4332  }
4333  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4334                                              true, SVT, MMO);
4335  CSEMap.InsertNode(N, IP);
4336  AllNodes.push_back(N);
4337  return SDValue(N, 0);
4338}
4339
4340SDValue
4341SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4342                              SDValue Offset, ISD::MemIndexedMode AM) {
4343  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4344  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4345         "Store is already a indexed store!");
4346  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4347  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4348  FoldingSetNodeID ID;
4349  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4350  ID.AddInteger(ST->getMemoryVT().getRawBits());
4351  ID.AddInteger(ST->getRawSubclassData());
4352  void *IP = 0;
4353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4354    return SDValue(E, 0);
4355
4356  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4357                                              ST->isTruncatingStore(),
4358                                              ST->getMemoryVT(),
4359                                              ST->getMemOperand());
4360  CSEMap.InsertNode(N, IP);
4361  AllNodes.push_back(N);
4362  return SDValue(N, 0);
4363}
4364
4365SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4366                               SDValue Chain, SDValue Ptr,
4367                               SDValue SV,
4368                               unsigned Align) {
4369  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4370  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4371}
4372
4373SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4374                              const SDUse *Ops, unsigned NumOps) {
4375  switch (NumOps) {
4376  case 0: return getNode(Opcode, DL, VT);
4377  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4378  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4379  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4380  default: break;
4381  }
4382
4383  // Copy from an SDUse array into an SDValue array for use with
4384  // the regular getNode logic.
4385  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4386  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4387}
4388
4389SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4390                              const SDValue *Ops, unsigned NumOps) {
4391  switch (NumOps) {
4392  case 0: return getNode(Opcode, DL, VT);
4393  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4394  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4395  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4396  default: break;
4397  }
4398
4399  switch (Opcode) {
4400  default: break;
4401  case ISD::SELECT_CC: {
4402    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4403    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4404           "LHS and RHS of condition must have same type!");
4405    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4406           "True and False arms of SelectCC must have same type!");
4407    assert(Ops[2].getValueType() == VT &&
4408           "select_cc node must be of same type as true and false value!");
4409    break;
4410  }
4411  case ISD::BR_CC: {
4412    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4413    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4414           "LHS/RHS of comparison should match types!");
4415    break;
4416  }
4417  }
4418
4419  // Memoize nodes.
4420  SDNode *N;
4421  SDVTList VTs = getVTList(VT);
4422
4423  if (VT != MVT::Glue) {
4424    FoldingSetNodeID ID;
4425    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4426    void *IP = 0;
4427
4428    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4429      return SDValue(E, 0);
4430
4431    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4432    CSEMap.InsertNode(N, IP);
4433  } else {
4434    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4435  }
4436
4437  AllNodes.push_back(N);
4438#ifndef NDEBUG
4439  VerifySDNode(N);
4440#endif
4441  return SDValue(N, 0);
4442}
4443
4444SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4445                              const std::vector<EVT> &ResultTys,
4446                              const SDValue *Ops, unsigned NumOps) {
4447  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4448                 Ops, NumOps);
4449}
4450
4451SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4452                              const EVT *VTs, unsigned NumVTs,
4453                              const SDValue *Ops, unsigned NumOps) {
4454  if (NumVTs == 1)
4455    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4456  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4457}
4458
4459SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4460                              const SDValue *Ops, unsigned NumOps) {
4461  if (VTList.NumVTs == 1)
4462    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4463
4464#if 0
4465  switch (Opcode) {
4466  // FIXME: figure out how to safely handle things like
4467  // int foo(int x) { return 1 << (x & 255); }
4468  // int bar() { return foo(256); }
4469  case ISD::SRA_PARTS:
4470  case ISD::SRL_PARTS:
4471  case ISD::SHL_PARTS:
4472    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4473        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4474      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4475    else if (N3.getOpcode() == ISD::AND)
4476      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4477        // If the and is only masking out bits that cannot effect the shift,
4478        // eliminate the and.
4479        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4480        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4481          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4482      }
4483    break;
4484  }
4485#endif
4486
4487  // Memoize the node unless it returns a flag.
4488  SDNode *N;
4489  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4490    FoldingSetNodeID ID;
4491    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4492    void *IP = 0;
4493    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4494      return SDValue(E, 0);
4495
4496    if (NumOps == 1) {
4497      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4498    } else if (NumOps == 2) {
4499      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4500    } else if (NumOps == 3) {
4501      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4502                                            Ops[2]);
4503    } else {
4504      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4505    }
4506    CSEMap.InsertNode(N, IP);
4507  } else {
4508    if (NumOps == 1) {
4509      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4510    } else if (NumOps == 2) {
4511      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4512    } else if (NumOps == 3) {
4513      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4514                                            Ops[2]);
4515    } else {
4516      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4517    }
4518  }
4519  AllNodes.push_back(N);
4520#ifndef NDEBUG
4521  VerifySDNode(N);
4522#endif
4523  return SDValue(N, 0);
4524}
4525
4526SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4527  return getNode(Opcode, DL, VTList, 0, 0);
4528}
4529
4530SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4531                              SDValue N1) {
4532  SDValue Ops[] = { N1 };
4533  return getNode(Opcode, DL, VTList, Ops, 1);
4534}
4535
4536SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4537                              SDValue N1, SDValue N2) {
4538  SDValue Ops[] = { N1, N2 };
4539  return getNode(Opcode, DL, VTList, Ops, 2);
4540}
4541
4542SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4543                              SDValue N1, SDValue N2, SDValue N3) {
4544  SDValue Ops[] = { N1, N2, N3 };
4545  return getNode(Opcode, DL, VTList, Ops, 3);
4546}
4547
4548SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4549                              SDValue N1, SDValue N2, SDValue N3,
4550                              SDValue N4) {
4551  SDValue Ops[] = { N1, N2, N3, N4 };
4552  return getNode(Opcode, DL, VTList, Ops, 4);
4553}
4554
4555SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4556                              SDValue N1, SDValue N2, SDValue N3,
4557                              SDValue N4, SDValue N5) {
4558  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4559  return getNode(Opcode, DL, VTList, Ops, 5);
4560}
4561
4562SDVTList SelectionDAG::getVTList(EVT VT) {
4563  return makeVTList(SDNode::getValueTypeList(VT), 1);
4564}
4565
4566SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4567  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4568       E = VTList.rend(); I != E; ++I)
4569    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4570      return *I;
4571
4572  EVT *Array = Allocator.Allocate<EVT>(2);
4573  Array[0] = VT1;
4574  Array[1] = VT2;
4575  SDVTList Result = makeVTList(Array, 2);
4576  VTList.push_back(Result);
4577  return Result;
4578}
4579
4580SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4581  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4582       E = VTList.rend(); I != E; ++I)
4583    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4584                          I->VTs[2] == VT3)
4585      return *I;
4586
4587  EVT *Array = Allocator.Allocate<EVT>(3);
4588  Array[0] = VT1;
4589  Array[1] = VT2;
4590  Array[2] = VT3;
4591  SDVTList Result = makeVTList(Array, 3);
4592  VTList.push_back(Result);
4593  return Result;
4594}
4595
4596SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4597  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4598       E = VTList.rend(); I != E; ++I)
4599    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4600                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4601      return *I;
4602
4603  EVT *Array = Allocator.Allocate<EVT>(4);
4604  Array[0] = VT1;
4605  Array[1] = VT2;
4606  Array[2] = VT3;
4607  Array[3] = VT4;
4608  SDVTList Result = makeVTList(Array, 4);
4609  VTList.push_back(Result);
4610  return Result;
4611}
4612
4613SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4614  switch (NumVTs) {
4615    case 0: llvm_unreachable("Cannot have nodes without results!");
4616    case 1: return getVTList(VTs[0]);
4617    case 2: return getVTList(VTs[0], VTs[1]);
4618    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4619    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4620    default: break;
4621  }
4622
4623  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4624       E = VTList.rend(); I != E; ++I) {
4625    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4626      continue;
4627
4628    bool NoMatch = false;
4629    for (unsigned i = 2; i != NumVTs; ++i)
4630      if (VTs[i] != I->VTs[i]) {
4631        NoMatch = true;
4632        break;
4633      }
4634    if (!NoMatch)
4635      return *I;
4636  }
4637
4638  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4639  std::copy(VTs, VTs+NumVTs, Array);
4640  SDVTList Result = makeVTList(Array, NumVTs);
4641  VTList.push_back(Result);
4642  return Result;
4643}
4644
4645
4646/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4647/// specified operands.  If the resultant node already exists in the DAG,
4648/// this does not modify the specified node, instead it returns the node that
4649/// already exists.  If the resultant node does not exist in the DAG, the
4650/// input node is returned.  As a degenerate case, if you specify the same
4651/// input operands as the node already has, the input node is returned.
4652SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4653  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4654
4655  // Check to see if there is no change.
4656  if (Op == N->getOperand(0)) return N;
4657
4658  // See if the modified node already exists.
4659  void *InsertPos = 0;
4660  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4661    return Existing;
4662
4663  // Nope it doesn't.  Remove the node from its current place in the maps.
4664  if (InsertPos)
4665    if (!RemoveNodeFromCSEMaps(N))
4666      InsertPos = 0;
4667
4668  // Now we update the operands.
4669  N->OperandList[0].set(Op);
4670
4671  // If this gets put into a CSE map, add it.
4672  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4673  return N;
4674}
4675
4676SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4677  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4678
4679  // Check to see if there is no change.
4680  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4681    return N;   // No operands changed, just return the input node.
4682
4683  // See if the modified node already exists.
4684  void *InsertPos = 0;
4685  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4686    return Existing;
4687
4688  // Nope it doesn't.  Remove the node from its current place in the maps.
4689  if (InsertPos)
4690    if (!RemoveNodeFromCSEMaps(N))
4691      InsertPos = 0;
4692
4693  // Now we update the operands.
4694  if (N->OperandList[0] != Op1)
4695    N->OperandList[0].set(Op1);
4696  if (N->OperandList[1] != Op2)
4697    N->OperandList[1].set(Op2);
4698
4699  // If this gets put into a CSE map, add it.
4700  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4701  return N;
4702}
4703
4704SDNode *SelectionDAG::
4705UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4706  SDValue Ops[] = { Op1, Op2, Op3 };
4707  return UpdateNodeOperands(N, Ops, 3);
4708}
4709
4710SDNode *SelectionDAG::
4711UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4712                   SDValue Op3, SDValue Op4) {
4713  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4714  return UpdateNodeOperands(N, Ops, 4);
4715}
4716
4717SDNode *SelectionDAG::
4718UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4719                   SDValue Op3, SDValue Op4, SDValue Op5) {
4720  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4721  return UpdateNodeOperands(N, Ops, 5);
4722}
4723
4724SDNode *SelectionDAG::
4725UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4726  assert(N->getNumOperands() == NumOps &&
4727         "Update with wrong number of operands");
4728
4729  // Check to see if there is no change.
4730  bool AnyChange = false;
4731  for (unsigned i = 0; i != NumOps; ++i) {
4732    if (Ops[i] != N->getOperand(i)) {
4733      AnyChange = true;
4734      break;
4735    }
4736  }
4737
4738  // No operands changed, just return the input node.
4739  if (!AnyChange) return N;
4740
4741  // See if the modified node already exists.
4742  void *InsertPos = 0;
4743  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4744    return Existing;
4745
4746  // Nope it doesn't.  Remove the node from its current place in the maps.
4747  if (InsertPos)
4748    if (!RemoveNodeFromCSEMaps(N))
4749      InsertPos = 0;
4750
4751  // Now we update the operands.
4752  for (unsigned i = 0; i != NumOps; ++i)
4753    if (N->OperandList[i] != Ops[i])
4754      N->OperandList[i].set(Ops[i]);
4755
4756  // If this gets put into a CSE map, add it.
4757  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4758  return N;
4759}
4760
4761/// DropOperands - Release the operands and set this node to have
4762/// zero operands.
4763void SDNode::DropOperands() {
4764  // Unlike the code in MorphNodeTo that does this, we don't need to
4765  // watch for dead nodes here.
4766  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4767    SDUse &Use = *I++;
4768    Use.set(SDValue());
4769  }
4770}
4771
4772/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4773/// machine opcode.
4774///
4775SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4776                                   EVT VT) {
4777  SDVTList VTs = getVTList(VT);
4778  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4779}
4780
4781SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4782                                   EVT VT, SDValue Op1) {
4783  SDVTList VTs = getVTList(VT);
4784  SDValue Ops[] = { Op1 };
4785  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4786}
4787
4788SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4789                                   EVT VT, SDValue Op1,
4790                                   SDValue Op2) {
4791  SDVTList VTs = getVTList(VT);
4792  SDValue Ops[] = { Op1, Op2 };
4793  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4794}
4795
4796SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4797                                   EVT VT, SDValue Op1,
4798                                   SDValue Op2, SDValue Op3) {
4799  SDVTList VTs = getVTList(VT);
4800  SDValue Ops[] = { Op1, Op2, Op3 };
4801  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4802}
4803
4804SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4805                                   EVT VT, const SDValue *Ops,
4806                                   unsigned NumOps) {
4807  SDVTList VTs = getVTList(VT);
4808  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4809}
4810
4811SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4812                                   EVT VT1, EVT VT2, const SDValue *Ops,
4813                                   unsigned NumOps) {
4814  SDVTList VTs = getVTList(VT1, VT2);
4815  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4816}
4817
4818SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4819                                   EVT VT1, EVT VT2) {
4820  SDVTList VTs = getVTList(VT1, VT2);
4821  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4822}
4823
4824SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4825                                   EVT VT1, EVT VT2, EVT VT3,
4826                                   const SDValue *Ops, unsigned NumOps) {
4827  SDVTList VTs = getVTList(VT1, VT2, VT3);
4828  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4829}
4830
4831SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4832                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4833                                   const SDValue *Ops, unsigned NumOps) {
4834  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4835  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4836}
4837
4838SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4839                                   EVT VT1, EVT VT2,
4840                                   SDValue Op1) {
4841  SDVTList VTs = getVTList(VT1, VT2);
4842  SDValue Ops[] = { Op1 };
4843  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4844}
4845
4846SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4847                                   EVT VT1, EVT VT2,
4848                                   SDValue Op1, SDValue Op2) {
4849  SDVTList VTs = getVTList(VT1, VT2);
4850  SDValue Ops[] = { Op1, Op2 };
4851  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4852}
4853
4854SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4855                                   EVT VT1, EVT VT2,
4856                                   SDValue Op1, SDValue Op2,
4857                                   SDValue Op3) {
4858  SDVTList VTs = getVTList(VT1, VT2);
4859  SDValue Ops[] = { Op1, Op2, Op3 };
4860  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4861}
4862
4863SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4864                                   EVT VT1, EVT VT2, EVT VT3,
4865                                   SDValue Op1, SDValue Op2,
4866                                   SDValue Op3) {
4867  SDVTList VTs = getVTList(VT1, VT2, VT3);
4868  SDValue Ops[] = { Op1, Op2, Op3 };
4869  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4870}
4871
4872SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4873                                   SDVTList VTs, const SDValue *Ops,
4874                                   unsigned NumOps) {
4875  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4876  // Reset the NodeID to -1.
4877  N->setNodeId(-1);
4878  return N;
4879}
4880
4881/// MorphNodeTo - This *mutates* the specified node to have the specified
4882/// return type, opcode, and operands.
4883///
4884/// Note that MorphNodeTo returns the resultant node.  If there is already a
4885/// node of the specified opcode and operands, it returns that node instead of
4886/// the current one.  Note that the DebugLoc need not be the same.
4887///
4888/// Using MorphNodeTo is faster than creating a new node and swapping it in
4889/// with ReplaceAllUsesWith both because it often avoids allocating a new
4890/// node, and because it doesn't require CSE recalculation for any of
4891/// the node's users.
4892///
4893SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4894                                  SDVTList VTs, const SDValue *Ops,
4895                                  unsigned NumOps) {
4896  // If an identical node already exists, use it.
4897  void *IP = 0;
4898  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4899    FoldingSetNodeID ID;
4900    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4901    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4902      return ON;
4903  }
4904
4905  if (!RemoveNodeFromCSEMaps(N))
4906    IP = 0;
4907
4908  // Start the morphing.
4909  N->NodeType = Opc;
4910  N->ValueList = VTs.VTs;
4911  N->NumValues = VTs.NumVTs;
4912
4913  // Clear the operands list, updating used nodes to remove this from their
4914  // use list.  Keep track of any operands that become dead as a result.
4915  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4916  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4917    SDUse &Use = *I++;
4918    SDNode *Used = Use.getNode();
4919    Use.set(SDValue());
4920    if (Used->use_empty())
4921      DeadNodeSet.insert(Used);
4922  }
4923
4924  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4925    // Initialize the memory references information.
4926    MN->setMemRefs(0, 0);
4927    // If NumOps is larger than the # of operands we can have in a
4928    // MachineSDNode, reallocate the operand list.
4929    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4930      if (MN->OperandsNeedDelete)
4931        delete[] MN->OperandList;
4932      if (NumOps > array_lengthof(MN->LocalOperands))
4933        // We're creating a final node that will live unmorphed for the
4934        // remainder of the current SelectionDAG iteration, so we can allocate
4935        // the operands directly out of a pool with no recycling metadata.
4936        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4937                         Ops, NumOps);
4938      else
4939        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4940      MN->OperandsNeedDelete = false;
4941    } else
4942      MN->InitOperands(MN->OperandList, Ops, NumOps);
4943  } else {
4944    // If NumOps is larger than the # of operands we currently have, reallocate
4945    // the operand list.
4946    if (NumOps > N->NumOperands) {
4947      if (N->OperandsNeedDelete)
4948        delete[] N->OperandList;
4949      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4950      N->OperandsNeedDelete = true;
4951    } else
4952      N->InitOperands(N->OperandList, Ops, NumOps);
4953  }
4954
4955  // Delete any nodes that are still dead after adding the uses for the
4956  // new operands.
4957  if (!DeadNodeSet.empty()) {
4958    SmallVector<SDNode *, 16> DeadNodes;
4959    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4960         E = DeadNodeSet.end(); I != E; ++I)
4961      if ((*I)->use_empty())
4962        DeadNodes.push_back(*I);
4963    RemoveDeadNodes(DeadNodes);
4964  }
4965
4966  if (IP)
4967    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4968  return N;
4969}
4970
4971
4972/// getMachineNode - These are used for target selectors to create a new node
4973/// with specified return type(s), MachineInstr opcode, and operands.
4974///
4975/// Note that getMachineNode returns the resultant node.  If there is already a
4976/// node of the specified opcode and operands, it returns that node instead of
4977/// the current one.
4978MachineSDNode *
4979SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4980  SDVTList VTs = getVTList(VT);
4981  return getMachineNode(Opcode, dl, VTs, 0, 0);
4982}
4983
4984MachineSDNode *
4985SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4986  SDVTList VTs = getVTList(VT);
4987  SDValue Ops[] = { Op1 };
4988  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4989}
4990
4991MachineSDNode *
4992SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4993                             SDValue Op1, SDValue Op2) {
4994  SDVTList VTs = getVTList(VT);
4995  SDValue Ops[] = { Op1, Op2 };
4996  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4997}
4998
4999MachineSDNode *
5000SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5001                             SDValue Op1, SDValue Op2, SDValue Op3) {
5002  SDVTList VTs = getVTList(VT);
5003  SDValue Ops[] = { Op1, Op2, Op3 };
5004  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5005}
5006
5007MachineSDNode *
5008SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5009                             const SDValue *Ops, unsigned NumOps) {
5010  SDVTList VTs = getVTList(VT);
5011  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5012}
5013
5014MachineSDNode *
5015SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5016  SDVTList VTs = getVTList(VT1, VT2);
5017  return getMachineNode(Opcode, dl, VTs, 0, 0);
5018}
5019
5020MachineSDNode *
5021SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5022                             EVT VT1, EVT VT2, SDValue Op1) {
5023  SDVTList VTs = getVTList(VT1, VT2);
5024  SDValue Ops[] = { Op1 };
5025  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5026}
5027
5028MachineSDNode *
5029SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5030                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5031  SDVTList VTs = getVTList(VT1, VT2);
5032  SDValue Ops[] = { Op1, Op2 };
5033  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5034}
5035
5036MachineSDNode *
5037SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5038                             EVT VT1, EVT VT2, SDValue Op1,
5039                             SDValue Op2, SDValue Op3) {
5040  SDVTList VTs = getVTList(VT1, VT2);
5041  SDValue Ops[] = { Op1, Op2, Op3 };
5042  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5043}
5044
5045MachineSDNode *
5046SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5047                             EVT VT1, EVT VT2,
5048                             const SDValue *Ops, unsigned NumOps) {
5049  SDVTList VTs = getVTList(VT1, VT2);
5050  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5051}
5052
5053MachineSDNode *
5054SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5055                             EVT VT1, EVT VT2, EVT VT3,
5056                             SDValue Op1, SDValue Op2) {
5057  SDVTList VTs = getVTList(VT1, VT2, VT3);
5058  SDValue Ops[] = { Op1, Op2 };
5059  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5060}
5061
5062MachineSDNode *
5063SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5064                             EVT VT1, EVT VT2, EVT VT3,
5065                             SDValue Op1, SDValue Op2, SDValue Op3) {
5066  SDVTList VTs = getVTList(VT1, VT2, VT3);
5067  SDValue Ops[] = { Op1, Op2, Op3 };
5068  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5069}
5070
5071MachineSDNode *
5072SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5073                             EVT VT1, EVT VT2, EVT VT3,
5074                             const SDValue *Ops, unsigned NumOps) {
5075  SDVTList VTs = getVTList(VT1, VT2, VT3);
5076  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5077}
5078
5079MachineSDNode *
5080SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5081                             EVT VT2, EVT VT3, EVT VT4,
5082                             const SDValue *Ops, unsigned NumOps) {
5083  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5084  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5085}
5086
5087MachineSDNode *
5088SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5089                             const std::vector<EVT> &ResultTys,
5090                             const SDValue *Ops, unsigned NumOps) {
5091  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5092  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5093}
5094
5095MachineSDNode *
5096SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5097                             const SDValue *Ops, unsigned NumOps) {
5098  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5099  MachineSDNode *N;
5100  void *IP = 0;
5101
5102  if (DoCSE) {
5103    FoldingSetNodeID ID;
5104    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5105    IP = 0;
5106    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5107      return cast<MachineSDNode>(E);
5108  }
5109
5110  // Allocate a new MachineSDNode.
5111  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5112
5113  // Initialize the operands list.
5114  if (NumOps > array_lengthof(N->LocalOperands))
5115    // We're creating a final node that will live unmorphed for the
5116    // remainder of the current SelectionDAG iteration, so we can allocate
5117    // the operands directly out of a pool with no recycling metadata.
5118    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5119                    Ops, NumOps);
5120  else
5121    N->InitOperands(N->LocalOperands, Ops, NumOps);
5122  N->OperandsNeedDelete = false;
5123
5124  if (DoCSE)
5125    CSEMap.InsertNode(N, IP);
5126
5127  AllNodes.push_back(N);
5128#ifndef NDEBUG
5129  VerifyMachineNode(N);
5130#endif
5131  return N;
5132}
5133
5134/// getTargetExtractSubreg - A convenience function for creating
5135/// TargetOpcode::EXTRACT_SUBREG nodes.
5136SDValue
5137SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5138                                     SDValue Operand) {
5139  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5140  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5141                                  VT, Operand, SRIdxVal);
5142  return SDValue(Subreg, 0);
5143}
5144
5145/// getTargetInsertSubreg - A convenience function for creating
5146/// TargetOpcode::INSERT_SUBREG nodes.
5147SDValue
5148SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5149                                    SDValue Operand, SDValue Subreg) {
5150  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5151  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5152                                  VT, Operand, Subreg, SRIdxVal);
5153  return SDValue(Result, 0);
5154}
5155
5156/// getNodeIfExists - Get the specified node if it's already available, or
5157/// else return NULL.
5158SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5159                                      const SDValue *Ops, unsigned NumOps) {
5160  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5161    FoldingSetNodeID ID;
5162    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5163    void *IP = 0;
5164    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5165      return E;
5166  }
5167  return NULL;
5168}
5169
5170/// getDbgValue - Creates a SDDbgValue node.
5171///
5172SDDbgValue *
5173SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5174                          DebugLoc DL, unsigned O) {
5175  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5176}
5177
5178SDDbgValue *
5179SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5180                          DebugLoc DL, unsigned O) {
5181  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5182}
5183
5184SDDbgValue *
5185SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5186                          DebugLoc DL, unsigned O) {
5187  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5188}
5189
5190namespace {
5191
5192/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5193/// pointed to by a use iterator is deleted, increment the use iterator
5194/// so that it doesn't dangle.
5195///
5196/// This class also manages a "downlink" DAGUpdateListener, to forward
5197/// messages to ReplaceAllUsesWith's callers.
5198///
5199class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5200  SelectionDAG::DAGUpdateListener *DownLink;
5201  SDNode::use_iterator &UI;
5202  SDNode::use_iterator &UE;
5203
5204  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5205    // Increment the iterator as needed.
5206    while (UI != UE && N == *UI)
5207      ++UI;
5208
5209    // Then forward the message.
5210    if (DownLink) DownLink->NodeDeleted(N, E);
5211  }
5212
5213  virtual void NodeUpdated(SDNode *N) {
5214    // Just forward the message.
5215    if (DownLink) DownLink->NodeUpdated(N);
5216  }
5217
5218public:
5219  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5220                     SDNode::use_iterator &ui,
5221                     SDNode::use_iterator &ue)
5222    : DownLink(dl), UI(ui), UE(ue) {}
5223};
5224
5225}
5226
5227/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5228/// This can cause recursive merging of nodes in the DAG.
5229///
5230/// This version assumes From has a single result value.
5231///
5232void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5233                                      DAGUpdateListener *UpdateListener) {
5234  SDNode *From = FromN.getNode();
5235  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5236         "Cannot replace with this method!");
5237  assert(From != To.getNode() && "Cannot replace uses of with self");
5238
5239  // Iterate over all the existing uses of From. New uses will be added
5240  // to the beginning of the use list, which we avoid visiting.
5241  // This specifically avoids visiting uses of From that arise while the
5242  // replacement is happening, because any such uses would be the result
5243  // of CSE: If an existing node looks like From after one of its operands
5244  // is replaced by To, we don't want to replace of all its users with To
5245  // too. See PR3018 for more info.
5246  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5247  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5248  while (UI != UE) {
5249    SDNode *User = *UI;
5250
5251    // This node is about to morph, remove its old self from the CSE maps.
5252    RemoveNodeFromCSEMaps(User);
5253
5254    // A user can appear in a use list multiple times, and when this
5255    // happens the uses are usually next to each other in the list.
5256    // To help reduce the number of CSE recomputations, process all
5257    // the uses of this user that we can find this way.
5258    do {
5259      SDUse &Use = UI.getUse();
5260      ++UI;
5261      Use.set(To);
5262    } while (UI != UE && *UI == User);
5263
5264    // Now that we have modified User, add it back to the CSE maps.  If it
5265    // already exists there, recursively merge the results together.
5266    AddModifiedNodeToCSEMaps(User, &Listener);
5267  }
5268}
5269
5270/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5271/// This can cause recursive merging of nodes in the DAG.
5272///
5273/// This version assumes that for each value of From, there is a
5274/// corresponding value in To in the same position with the same type.
5275///
5276void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5277                                      DAGUpdateListener *UpdateListener) {
5278#ifndef NDEBUG
5279  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5280    assert((!From->hasAnyUseOfValue(i) ||
5281            From->getValueType(i) == To->getValueType(i)) &&
5282           "Cannot use this version of ReplaceAllUsesWith!");
5283#endif
5284
5285  // Handle the trivial case.
5286  if (From == To)
5287    return;
5288
5289  // Iterate over just the existing users of From. See the comments in
5290  // the ReplaceAllUsesWith above.
5291  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5292  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5293  while (UI != UE) {
5294    SDNode *User = *UI;
5295
5296    // This node is about to morph, remove its old self from the CSE maps.
5297    RemoveNodeFromCSEMaps(User);
5298
5299    // A user can appear in a use list multiple times, and when this
5300    // happens the uses are usually next to each other in the list.
5301    // To help reduce the number of CSE recomputations, process all
5302    // the uses of this user that we can find this way.
5303    do {
5304      SDUse &Use = UI.getUse();
5305      ++UI;
5306      Use.setNode(To);
5307    } while (UI != UE && *UI == User);
5308
5309    // Now that we have modified User, add it back to the CSE maps.  If it
5310    // already exists there, recursively merge the results together.
5311    AddModifiedNodeToCSEMaps(User, &Listener);
5312  }
5313}
5314
5315/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5316/// This can cause recursive merging of nodes in the DAG.
5317///
5318/// This version can replace From with any result values.  To must match the
5319/// number and types of values returned by From.
5320void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5321                                      const SDValue *To,
5322                                      DAGUpdateListener *UpdateListener) {
5323  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5324    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5325
5326  // Iterate over just the existing users of From. See the comments in
5327  // the ReplaceAllUsesWith above.
5328  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5329  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5330  while (UI != UE) {
5331    SDNode *User = *UI;
5332
5333    // This node is about to morph, remove its old self from the CSE maps.
5334    RemoveNodeFromCSEMaps(User);
5335
5336    // A user can appear in a use list multiple times, and when this
5337    // happens the uses are usually next to each other in the list.
5338    // To help reduce the number of CSE recomputations, process all
5339    // the uses of this user that we can find this way.
5340    do {
5341      SDUse &Use = UI.getUse();
5342      const SDValue &ToOp = To[Use.getResNo()];
5343      ++UI;
5344      Use.set(ToOp);
5345    } while (UI != UE && *UI == User);
5346
5347    // Now that we have modified User, add it back to the CSE maps.  If it
5348    // already exists there, recursively merge the results together.
5349    AddModifiedNodeToCSEMaps(User, &Listener);
5350  }
5351}
5352
5353/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5354/// uses of other values produced by From.getNode() alone.  The Deleted
5355/// vector is handled the same way as for ReplaceAllUsesWith.
5356void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5357                                             DAGUpdateListener *UpdateListener){
5358  // Handle the really simple, really trivial case efficiently.
5359  if (From == To) return;
5360
5361  // Handle the simple, trivial, case efficiently.
5362  if (From.getNode()->getNumValues() == 1) {
5363    ReplaceAllUsesWith(From, To, UpdateListener);
5364    return;
5365  }
5366
5367  // Iterate over just the existing users of From. See the comments in
5368  // the ReplaceAllUsesWith above.
5369  SDNode::use_iterator UI = From.getNode()->use_begin(),
5370                       UE = From.getNode()->use_end();
5371  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5372  while (UI != UE) {
5373    SDNode *User = *UI;
5374    bool UserRemovedFromCSEMaps = false;
5375
5376    // A user can appear in a use list multiple times, and when this
5377    // happens the uses are usually next to each other in the list.
5378    // To help reduce the number of CSE recomputations, process all
5379    // the uses of this user that we can find this way.
5380    do {
5381      SDUse &Use = UI.getUse();
5382
5383      // Skip uses of different values from the same node.
5384      if (Use.getResNo() != From.getResNo()) {
5385        ++UI;
5386        continue;
5387      }
5388
5389      // If this node hasn't been modified yet, it's still in the CSE maps,
5390      // so remove its old self from the CSE maps.
5391      if (!UserRemovedFromCSEMaps) {
5392        RemoveNodeFromCSEMaps(User);
5393        UserRemovedFromCSEMaps = true;
5394      }
5395
5396      ++UI;
5397      Use.set(To);
5398    } while (UI != UE && *UI == User);
5399
5400    // We are iterating over all uses of the From node, so if a use
5401    // doesn't use the specific value, no changes are made.
5402    if (!UserRemovedFromCSEMaps)
5403      continue;
5404
5405    // Now that we have modified User, add it back to the CSE maps.  If it
5406    // already exists there, recursively merge the results together.
5407    AddModifiedNodeToCSEMaps(User, &Listener);
5408  }
5409}
5410
5411namespace {
5412  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5413  /// to record information about a use.
5414  struct UseMemo {
5415    SDNode *User;
5416    unsigned Index;
5417    SDUse *Use;
5418  };
5419
5420  /// operator< - Sort Memos by User.
5421  bool operator<(const UseMemo &L, const UseMemo &R) {
5422    return (intptr_t)L.User < (intptr_t)R.User;
5423  }
5424}
5425
5426/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5427/// uses of other values produced by From.getNode() alone.  The same value
5428/// may appear in both the From and To list.  The Deleted vector is
5429/// handled the same way as for ReplaceAllUsesWith.
5430void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5431                                              const SDValue *To,
5432                                              unsigned Num,
5433                                              DAGUpdateListener *UpdateListener){
5434  // Handle the simple, trivial case efficiently.
5435  if (Num == 1)
5436    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5437
5438  // Read up all the uses and make records of them. This helps
5439  // processing new uses that are introduced during the
5440  // replacement process.
5441  SmallVector<UseMemo, 4> Uses;
5442  for (unsigned i = 0; i != Num; ++i) {
5443    unsigned FromResNo = From[i].getResNo();
5444    SDNode *FromNode = From[i].getNode();
5445    for (SDNode::use_iterator UI = FromNode->use_begin(),
5446         E = FromNode->use_end(); UI != E; ++UI) {
5447      SDUse &Use = UI.getUse();
5448      if (Use.getResNo() == FromResNo) {
5449        UseMemo Memo = { *UI, i, &Use };
5450        Uses.push_back(Memo);
5451      }
5452    }
5453  }
5454
5455  // Sort the uses, so that all the uses from a given User are together.
5456  std::sort(Uses.begin(), Uses.end());
5457
5458  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5459       UseIndex != UseIndexEnd; ) {
5460    // We know that this user uses some value of From.  If it is the right
5461    // value, update it.
5462    SDNode *User = Uses[UseIndex].User;
5463
5464    // This node is about to morph, remove its old self from the CSE maps.
5465    RemoveNodeFromCSEMaps(User);
5466
5467    // The Uses array is sorted, so all the uses for a given User
5468    // are next to each other in the list.
5469    // To help reduce the number of CSE recomputations, process all
5470    // the uses of this user that we can find this way.
5471    do {
5472      unsigned i = Uses[UseIndex].Index;
5473      SDUse &Use = *Uses[UseIndex].Use;
5474      ++UseIndex;
5475
5476      Use.set(To[i]);
5477    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5478
5479    // Now that we have modified User, add it back to the CSE maps.  If it
5480    // already exists there, recursively merge the results together.
5481    AddModifiedNodeToCSEMaps(User, UpdateListener);
5482  }
5483}
5484
5485/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5486/// based on their topological order. It returns the maximum id and a vector
5487/// of the SDNodes* in assigned order by reference.
5488unsigned SelectionDAG::AssignTopologicalOrder() {
5489
5490  unsigned DAGSize = 0;
5491
5492  // SortedPos tracks the progress of the algorithm. Nodes before it are
5493  // sorted, nodes after it are unsorted. When the algorithm completes
5494  // it is at the end of the list.
5495  allnodes_iterator SortedPos = allnodes_begin();
5496
5497  // Visit all the nodes. Move nodes with no operands to the front of
5498  // the list immediately. Annotate nodes that do have operands with their
5499  // operand count. Before we do this, the Node Id fields of the nodes
5500  // may contain arbitrary values. After, the Node Id fields for nodes
5501  // before SortedPos will contain the topological sort index, and the
5502  // Node Id fields for nodes At SortedPos and after will contain the
5503  // count of outstanding operands.
5504  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5505    SDNode *N = I++;
5506    checkForCycles(N);
5507    unsigned Degree = N->getNumOperands();
5508    if (Degree == 0) {
5509      // A node with no uses, add it to the result array immediately.
5510      N->setNodeId(DAGSize++);
5511      allnodes_iterator Q = N;
5512      if (Q != SortedPos)
5513        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5514      assert(SortedPos != AllNodes.end() && "Overran node list");
5515      ++SortedPos;
5516    } else {
5517      // Temporarily use the Node Id as scratch space for the degree count.
5518      N->setNodeId(Degree);
5519    }
5520  }
5521
5522  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5523  // such that by the time the end is reached all nodes will be sorted.
5524  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5525    SDNode *N = I;
5526    checkForCycles(N);
5527    // N is in sorted position, so all its uses have one less operand
5528    // that needs to be sorted.
5529    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5530         UI != UE; ++UI) {
5531      SDNode *P = *UI;
5532      unsigned Degree = P->getNodeId();
5533      assert(Degree != 0 && "Invalid node degree");
5534      --Degree;
5535      if (Degree == 0) {
5536        // All of P's operands are sorted, so P may sorted now.
5537        P->setNodeId(DAGSize++);
5538        if (P != SortedPos)
5539          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5540        assert(SortedPos != AllNodes.end() && "Overran node list");
5541        ++SortedPos;
5542      } else {
5543        // Update P's outstanding operand count.
5544        P->setNodeId(Degree);
5545      }
5546    }
5547    if (I == SortedPos) {
5548#ifndef NDEBUG
5549      SDNode *S = ++I;
5550      dbgs() << "Overran sorted position:\n";
5551      S->dumprFull();
5552#endif
5553      llvm_unreachable(0);
5554    }
5555  }
5556
5557  assert(SortedPos == AllNodes.end() &&
5558         "Topological sort incomplete!");
5559  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5560         "First node in topological sort is not the entry token!");
5561  assert(AllNodes.front().getNodeId() == 0 &&
5562         "First node in topological sort has non-zero id!");
5563  assert(AllNodes.front().getNumOperands() == 0 &&
5564         "First node in topological sort has operands!");
5565  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5566         "Last node in topologic sort has unexpected id!");
5567  assert(AllNodes.back().use_empty() &&
5568         "Last node in topologic sort has users!");
5569  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5570  return DAGSize;
5571}
5572
5573/// AssignOrdering - Assign an order to the SDNode.
5574void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5575  assert(SD && "Trying to assign an order to a null node!");
5576  Ordering->add(SD, Order);
5577}
5578
5579/// GetOrdering - Get the order for the SDNode.
5580unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5581  assert(SD && "Trying to get the order of a null node!");
5582  return Ordering->getOrder(SD);
5583}
5584
5585/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5586/// value is produced by SD.
5587void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5588  DbgInfo->add(DB, SD, isParameter);
5589  if (SD)
5590    SD->setHasDebugValue(true);
5591}
5592
5593/// TransferDbgValues - Transfer SDDbgValues.
5594void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5595  if (From == To || !From.getNode()->getHasDebugValue())
5596    return;
5597  SDNode *FromNode = From.getNode();
5598  SDNode *ToNode = To.getNode();
5599  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5600  SmallVector<SDDbgValue *, 2> ClonedDVs;
5601  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5602       I != E; ++I) {
5603    SDDbgValue *Dbg = *I;
5604    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5605      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5606                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5607                                      Dbg->getOrder());
5608      ClonedDVs.push_back(Clone);
5609    }
5610  }
5611  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5612         E = ClonedDVs.end(); I != E; ++I)
5613    AddDbgValue(*I, ToNode, false);
5614}
5615
5616//===----------------------------------------------------------------------===//
5617//                              SDNode Class
5618//===----------------------------------------------------------------------===//
5619
5620HandleSDNode::~HandleSDNode() {
5621  DropOperands();
5622}
5623
5624GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5625                                         const GlobalValue *GA,
5626                                         EVT VT, int64_t o, unsigned char TF)
5627  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5628  TheGlobal = GA;
5629}
5630
5631MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5632                     MachineMemOperand *mmo)
5633 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5634  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5635                                      MMO->isNonTemporal());
5636  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5637  assert(isNonTemporal() == MMO->isNonTemporal() &&
5638         "Non-temporal encoding error!");
5639  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5640}
5641
5642MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5643                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5644                     MachineMemOperand *mmo)
5645   : SDNode(Opc, dl, VTs, Ops, NumOps),
5646     MemoryVT(memvt), MMO(mmo) {
5647  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5648                                      MMO->isNonTemporal());
5649  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5650  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5651}
5652
5653/// Profile - Gather unique data for the node.
5654///
5655void SDNode::Profile(FoldingSetNodeID &ID) const {
5656  AddNodeIDNode(ID, this);
5657}
5658
5659namespace {
5660  struct EVTArray {
5661    std::vector<EVT> VTs;
5662
5663    EVTArray() {
5664      VTs.reserve(MVT::LAST_VALUETYPE);
5665      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5666        VTs.push_back(MVT((MVT::SimpleValueType)i));
5667    }
5668  };
5669}
5670
5671static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5672static ManagedStatic<EVTArray> SimpleVTArray;
5673static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5674
5675/// getValueTypeList - Return a pointer to the specified value type.
5676///
5677const EVT *SDNode::getValueTypeList(EVT VT) {
5678  if (VT.isExtended()) {
5679    sys::SmartScopedLock<true> Lock(*VTMutex);
5680    return &(*EVTs->insert(VT).first);
5681  } else {
5682    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5683           "Value type out of range!");
5684    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5685  }
5686}
5687
5688/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5689/// indicated value.  This method ignores uses of other values defined by this
5690/// operation.
5691bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5692  assert(Value < getNumValues() && "Bad value!");
5693
5694  // TODO: Only iterate over uses of a given value of the node
5695  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5696    if (UI.getUse().getResNo() == Value) {
5697      if (NUses == 0)
5698        return false;
5699      --NUses;
5700    }
5701  }
5702
5703  // Found exactly the right number of uses?
5704  return NUses == 0;
5705}
5706
5707
5708/// hasAnyUseOfValue - Return true if there are any use of the indicated
5709/// value. This method ignores uses of other values defined by this operation.
5710bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5711  assert(Value < getNumValues() && "Bad value!");
5712
5713  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5714    if (UI.getUse().getResNo() == Value)
5715      return true;
5716
5717  return false;
5718}
5719
5720
5721/// isOnlyUserOf - Return true if this node is the only use of N.
5722///
5723bool SDNode::isOnlyUserOf(SDNode *N) const {
5724  bool Seen = false;
5725  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5726    SDNode *User = *I;
5727    if (User == this)
5728      Seen = true;
5729    else
5730      return false;
5731  }
5732
5733  return Seen;
5734}
5735
5736/// isOperand - Return true if this node is an operand of N.
5737///
5738bool SDValue::isOperandOf(SDNode *N) const {
5739  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5740    if (*this == N->getOperand(i))
5741      return true;
5742  return false;
5743}
5744
5745bool SDNode::isOperandOf(SDNode *N) const {
5746  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5747    if (this == N->OperandList[i].getNode())
5748      return true;
5749  return false;
5750}
5751
5752/// reachesChainWithoutSideEffects - Return true if this operand (which must
5753/// be a chain) reaches the specified operand without crossing any
5754/// side-effecting instructions on any chain path.  In practice, this looks
5755/// through token factors and non-volatile loads.  In order to remain efficient,
5756/// this only looks a couple of nodes in, it does not do an exhaustive search.
5757bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5758                                               unsigned Depth) const {
5759  if (*this == Dest) return true;
5760
5761  // Don't search too deeply, we just want to be able to see through
5762  // TokenFactor's etc.
5763  if (Depth == 0) return false;
5764
5765  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5766  // of the operands of the TF does not reach dest, then we cannot do the xform.
5767  if (getOpcode() == ISD::TokenFactor) {
5768    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5769      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5770        return false;
5771    return true;
5772  }
5773
5774  // Loads don't have side effects, look through them.
5775  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5776    if (!Ld->isVolatile())
5777      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5778  }
5779  return false;
5780}
5781
5782/// hasPredecessor - Return true if N is a predecessor of this node.
5783/// N is either an operand of this node, or can be reached by recursively
5784/// traversing up the operands.
5785/// NOTE: This is an expensive method. Use it carefully.
5786bool SDNode::hasPredecessor(const SDNode *N) const {
5787  SmallPtrSet<const SDNode *, 32> Visited;
5788  SmallVector<const SDNode *, 16> Worklist;
5789  return hasPredecessorHelper(N, Visited, Worklist);
5790}
5791
5792bool SDNode::hasPredecessorHelper(const SDNode *N,
5793                                  SmallPtrSet<const SDNode *, 32> &Visited,
5794                                  SmallVector<const SDNode *, 16> &Worklist) const {
5795  if (Visited.empty()) {
5796    Worklist.push_back(this);
5797  } else {
5798    // Take a look in the visited set. If we've already encountered this node
5799    // we needn't search further.
5800    if (Visited.count(N))
5801      return true;
5802  }
5803
5804  // Haven't visited N yet. Continue the search.
5805  while (!Worklist.empty()) {
5806    const SDNode *M = Worklist.pop_back_val();
5807    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5808      SDNode *Op = M->getOperand(i).getNode();
5809      if (Visited.insert(Op))
5810        Worklist.push_back(Op);
5811      if (Op == N)
5812        return true;
5813    }
5814  }
5815
5816  return false;
5817}
5818
5819uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5820  assert(Num < NumOperands && "Invalid child # of SDNode!");
5821  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5822}
5823
5824std::string SDNode::getOperationName(const SelectionDAG *G) const {
5825  switch (getOpcode()) {
5826  default:
5827    if (getOpcode() < ISD::BUILTIN_OP_END)
5828      return "<<Unknown DAG Node>>";
5829    if (isMachineOpcode()) {
5830      if (G)
5831        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5832          if (getMachineOpcode() < TII->getNumOpcodes())
5833            return TII->get(getMachineOpcode()).getName();
5834      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5835    }
5836    if (G) {
5837      const TargetLowering &TLI = G->getTargetLoweringInfo();
5838      const char *Name = TLI.getTargetNodeName(getOpcode());
5839      if (Name) return Name;
5840      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5841    }
5842    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5843
5844#ifndef NDEBUG
5845  case ISD::DELETED_NODE:
5846    return "<<Deleted Node!>>";
5847#endif
5848  case ISD::PREFETCH:      return "Prefetch";
5849  case ISD::MEMBARRIER:    return "MemBarrier";
5850  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5851  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5852  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5853  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5854  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5855  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5856  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5857  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5858  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5859  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5860  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5861  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5862  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5863  case ISD::ATOMIC_LOAD:        return "AtomicLoad";
5864  case ISD::ATOMIC_STORE:       return "AtomicStore";
5865  case ISD::PCMARKER:      return "PCMarker";
5866  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5867  case ISD::SRCVALUE:      return "SrcValue";
5868  case ISD::MDNODE_SDNODE: return "MDNode";
5869  case ISD::EntryToken:    return "EntryToken";
5870  case ISD::TokenFactor:   return "TokenFactor";
5871  case ISD::AssertSext:    return "AssertSext";
5872  case ISD::AssertZext:    return "AssertZext";
5873
5874  case ISD::BasicBlock:    return "BasicBlock";
5875  case ISD::VALUETYPE:     return "ValueType";
5876  case ISD::Register:      return "Register";
5877
5878  case ISD::Constant:      return "Constant";
5879  case ISD::ConstantFP:    return "ConstantFP";
5880  case ISD::GlobalAddress: return "GlobalAddress";
5881  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5882  case ISD::FrameIndex:    return "FrameIndex";
5883  case ISD::JumpTable:     return "JumpTable";
5884  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5885  case ISD::RETURNADDR: return "RETURNADDR";
5886  case ISD::FRAMEADDR: return "FRAMEADDR";
5887  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5888  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5889  case ISD::LSDAADDR: return "LSDAADDR";
5890  case ISD::EHSELECTION: return "EHSELECTION";
5891  case ISD::EH_RETURN: return "EH_RETURN";
5892  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5893  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5894  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5895  case ISD::ConstantPool:  return "ConstantPool";
5896  case ISD::ExternalSymbol: return "ExternalSymbol";
5897  case ISD::BlockAddress:  return "BlockAddress";
5898  case ISD::INTRINSIC_WO_CHAIN:
5899  case ISD::INTRINSIC_VOID:
5900  case ISD::INTRINSIC_W_CHAIN: {
5901    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5902    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5903    if (IID < Intrinsic::num_intrinsics)
5904      return Intrinsic::getName((Intrinsic::ID)IID);
5905    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5906      return TII->getName(IID);
5907    llvm_unreachable("Invalid intrinsic ID");
5908  }
5909
5910  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5911  case ISD::TargetConstant: return "TargetConstant";
5912  case ISD::TargetConstantFP:return "TargetConstantFP";
5913  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5914  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5915  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5916  case ISD::TargetJumpTable:  return "TargetJumpTable";
5917  case ISD::TargetConstantPool:  return "TargetConstantPool";
5918  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5919  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5920
5921  case ISD::CopyToReg:     return "CopyToReg";
5922  case ISD::CopyFromReg:   return "CopyFromReg";
5923  case ISD::UNDEF:         return "undef";
5924  case ISD::MERGE_VALUES:  return "merge_values";
5925  case ISD::INLINEASM:     return "inlineasm";
5926  case ISD::EH_LABEL:      return "eh_label";
5927  case ISD::HANDLENODE:    return "handlenode";
5928
5929  // Unary operators
5930  case ISD::FABS:   return "fabs";
5931  case ISD::FNEG:   return "fneg";
5932  case ISD::FSQRT:  return "fsqrt";
5933  case ISD::FSIN:   return "fsin";
5934  case ISD::FCOS:   return "fcos";
5935  case ISD::FTRUNC: return "ftrunc";
5936  case ISD::FFLOOR: return "ffloor";
5937  case ISD::FCEIL:  return "fceil";
5938  case ISD::FRINT:  return "frint";
5939  case ISD::FNEARBYINT: return "fnearbyint";
5940  case ISD::FEXP:   return "fexp";
5941  case ISD::FEXP2:  return "fexp2";
5942  case ISD::FLOG:   return "flog";
5943  case ISD::FLOG2:  return "flog2";
5944  case ISD::FLOG10: return "flog10";
5945
5946  // Binary operators
5947  case ISD::ADD:    return "add";
5948  case ISD::SUB:    return "sub";
5949  case ISD::MUL:    return "mul";
5950  case ISD::MULHU:  return "mulhu";
5951  case ISD::MULHS:  return "mulhs";
5952  case ISD::SDIV:   return "sdiv";
5953  case ISD::UDIV:   return "udiv";
5954  case ISD::SREM:   return "srem";
5955  case ISD::UREM:   return "urem";
5956  case ISD::SMUL_LOHI:  return "smul_lohi";
5957  case ISD::UMUL_LOHI:  return "umul_lohi";
5958  case ISD::SDIVREM:    return "sdivrem";
5959  case ISD::UDIVREM:    return "udivrem";
5960  case ISD::AND:    return "and";
5961  case ISD::OR:     return "or";
5962  case ISD::XOR:    return "xor";
5963  case ISD::SHL:    return "shl";
5964  case ISD::SRA:    return "sra";
5965  case ISD::SRL:    return "srl";
5966  case ISD::ROTL:   return "rotl";
5967  case ISD::ROTR:   return "rotr";
5968  case ISD::FADD:   return "fadd";
5969  case ISD::FSUB:   return "fsub";
5970  case ISD::FMUL:   return "fmul";
5971  case ISD::FDIV:   return "fdiv";
5972  case ISD::FMA:    return "fma";
5973  case ISD::FREM:   return "frem";
5974  case ISD::FCOPYSIGN: return "fcopysign";
5975  case ISD::FGETSIGN:  return "fgetsign";
5976  case ISD::FPOW:   return "fpow";
5977
5978  case ISD::FPOWI:  return "fpowi";
5979  case ISD::SETCC:       return "setcc";
5980  case ISD::SELECT:      return "select";
5981  case ISD::VSELECT:     return "vselect";
5982  case ISD::SELECT_CC:   return "select_cc";
5983  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5984  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5985  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5986  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5987  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5988  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5989  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5990  case ISD::CARRY_FALSE:         return "carry_false";
5991  case ISD::ADDC:        return "addc";
5992  case ISD::ADDE:        return "adde";
5993  case ISD::SADDO:       return "saddo";
5994  case ISD::UADDO:       return "uaddo";
5995  case ISD::SSUBO:       return "ssubo";
5996  case ISD::USUBO:       return "usubo";
5997  case ISD::SMULO:       return "smulo";
5998  case ISD::UMULO:       return "umulo";
5999  case ISD::SUBC:        return "subc";
6000  case ISD::SUBE:        return "sube";
6001  case ISD::SHL_PARTS:   return "shl_parts";
6002  case ISD::SRA_PARTS:   return "sra_parts";
6003  case ISD::SRL_PARTS:   return "srl_parts";
6004
6005  // Conversion operators.
6006  case ISD::SIGN_EXTEND: return "sign_extend";
6007  case ISD::ZERO_EXTEND: return "zero_extend";
6008  case ISD::ANY_EXTEND:  return "any_extend";
6009  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
6010  case ISD::TRUNCATE:    return "truncate";
6011  case ISD::FP_ROUND:    return "fp_round";
6012  case ISD::FLT_ROUNDS_: return "flt_rounds";
6013  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6014  case ISD::FP_EXTEND:   return "fp_extend";
6015
6016  case ISD::SINT_TO_FP:  return "sint_to_fp";
6017  case ISD::UINT_TO_FP:  return "uint_to_fp";
6018  case ISD::FP_TO_SINT:  return "fp_to_sint";
6019  case ISD::FP_TO_UINT:  return "fp_to_uint";
6020  case ISD::BITCAST:     return "bitcast";
6021  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6022  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6023
6024  case ISD::CONVERT_RNDSAT: {
6025    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6026    default: llvm_unreachable("Unknown cvt code!");
6027    case ISD::CVT_FF:  return "cvt_ff";
6028    case ISD::CVT_FS:  return "cvt_fs";
6029    case ISD::CVT_FU:  return "cvt_fu";
6030    case ISD::CVT_SF:  return "cvt_sf";
6031    case ISD::CVT_UF:  return "cvt_uf";
6032    case ISD::CVT_SS:  return "cvt_ss";
6033    case ISD::CVT_SU:  return "cvt_su";
6034    case ISD::CVT_US:  return "cvt_us";
6035    case ISD::CVT_UU:  return "cvt_uu";
6036    }
6037  }
6038
6039    // Control flow instructions
6040  case ISD::BR:      return "br";
6041  case ISD::BRIND:   return "brind";
6042  case ISD::BR_JT:   return "br_jt";
6043  case ISD::BRCOND:  return "brcond";
6044  case ISD::BR_CC:   return "br_cc";
6045  case ISD::CALLSEQ_START:  return "callseq_start";
6046  case ISD::CALLSEQ_END:    return "callseq_end";
6047
6048    // Other operators
6049  case ISD::LOAD:               return "load";
6050  case ISD::STORE:              return "store";
6051  case ISD::VAARG:              return "vaarg";
6052  case ISD::VACOPY:             return "vacopy";
6053  case ISD::VAEND:              return "vaend";
6054  case ISD::VASTART:            return "vastart";
6055  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6056  case ISD::EXTRACT_ELEMENT:    return "extract_element";
6057  case ISD::BUILD_PAIR:         return "build_pair";
6058  case ISD::STACKSAVE:          return "stacksave";
6059  case ISD::STACKRESTORE:       return "stackrestore";
6060  case ISD::TRAP:               return "trap";
6061
6062  // Bit manipulation
6063  case ISD::BSWAP:   return "bswap";
6064  case ISD::CTPOP:   return "ctpop";
6065  case ISD::CTTZ:    return "cttz";
6066  case ISD::CTLZ:    return "ctlz";
6067
6068  // Trampolines
6069  case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6070  case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6071
6072  case ISD::CONDCODE:
6073    switch (cast<CondCodeSDNode>(this)->get()) {
6074    default: llvm_unreachable("Unknown setcc condition!");
6075    case ISD::SETOEQ:  return "setoeq";
6076    case ISD::SETOGT:  return "setogt";
6077    case ISD::SETOGE:  return "setoge";
6078    case ISD::SETOLT:  return "setolt";
6079    case ISD::SETOLE:  return "setole";
6080    case ISD::SETONE:  return "setone";
6081
6082    case ISD::SETO:    return "seto";
6083    case ISD::SETUO:   return "setuo";
6084    case ISD::SETUEQ:  return "setue";
6085    case ISD::SETUGT:  return "setugt";
6086    case ISD::SETUGE:  return "setuge";
6087    case ISD::SETULT:  return "setult";
6088    case ISD::SETULE:  return "setule";
6089    case ISD::SETUNE:  return "setune";
6090
6091    case ISD::SETEQ:   return "seteq";
6092    case ISD::SETGT:   return "setgt";
6093    case ISD::SETGE:   return "setge";
6094    case ISD::SETLT:   return "setlt";
6095    case ISD::SETLE:   return "setle";
6096    case ISD::SETNE:   return "setne";
6097    }
6098  }
6099}
6100
6101const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6102  switch (AM) {
6103  default:
6104    return "";
6105  case ISD::PRE_INC:
6106    return "<pre-inc>";
6107  case ISD::PRE_DEC:
6108    return "<pre-dec>";
6109  case ISD::POST_INC:
6110    return "<post-inc>";
6111  case ISD::POST_DEC:
6112    return "<post-dec>";
6113  }
6114}
6115
6116std::string ISD::ArgFlagsTy::getArgFlagsString() {
6117  std::string S = "< ";
6118
6119  if (isZExt())
6120    S += "zext ";
6121  if (isSExt())
6122    S += "sext ";
6123  if (isInReg())
6124    S += "inreg ";
6125  if (isSRet())
6126    S += "sret ";
6127  if (isByVal())
6128    S += "byval ";
6129  if (isNest())
6130    S += "nest ";
6131  if (getByValAlign())
6132    S += "byval-align:" + utostr(getByValAlign()) + " ";
6133  if (getOrigAlign())
6134    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6135  if (getByValSize())
6136    S += "byval-size:" + utostr(getByValSize()) + " ";
6137  return S + ">";
6138}
6139
6140void SDNode::dump() const { dump(0); }
6141void SDNode::dump(const SelectionDAG *G) const {
6142  print(dbgs(), G);
6143  dbgs() << '\n';
6144}
6145
6146void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6147  OS << (void*)this << ": ";
6148
6149  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6150    if (i) OS << ",";
6151    if (getValueType(i) == MVT::Other)
6152      OS << "ch";
6153    else
6154      OS << getValueType(i).getEVTString();
6155  }
6156  OS << " = " << getOperationName(G);
6157}
6158
6159void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6160  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6161    if (!MN->memoperands_empty()) {
6162      OS << "<";
6163      OS << "Mem:";
6164      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6165           e = MN->memoperands_end(); i != e; ++i) {
6166        OS << **i;
6167        if (llvm::next(i) != e)
6168          OS << " ";
6169      }
6170      OS << ">";
6171    }
6172  } else if (const ShuffleVectorSDNode *SVN =
6173               dyn_cast<ShuffleVectorSDNode>(this)) {
6174    OS << "<";
6175    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6176      int Idx = SVN->getMaskElt(i);
6177      if (i) OS << ",";
6178      if (Idx < 0)
6179        OS << "u";
6180      else
6181        OS << Idx;
6182    }
6183    OS << ">";
6184  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6185    OS << '<' << CSDN->getAPIntValue() << '>';
6186  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6187    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6188      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6189    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6190      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6191    else {
6192      OS << "<APFloat(";
6193      CSDN->getValueAPF().bitcastToAPInt().dump();
6194      OS << ")>";
6195    }
6196  } else if (const GlobalAddressSDNode *GADN =
6197             dyn_cast<GlobalAddressSDNode>(this)) {
6198    int64_t offset = GADN->getOffset();
6199    OS << '<';
6200    WriteAsOperand(OS, GADN->getGlobal());
6201    OS << '>';
6202    if (offset > 0)
6203      OS << " + " << offset;
6204    else
6205      OS << " " << offset;
6206    if (unsigned int TF = GADN->getTargetFlags())
6207      OS << " [TF=" << TF << ']';
6208  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6209    OS << "<" << FIDN->getIndex() << ">";
6210  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6211    OS << "<" << JTDN->getIndex() << ">";
6212    if (unsigned int TF = JTDN->getTargetFlags())
6213      OS << " [TF=" << TF << ']';
6214  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6215    int offset = CP->getOffset();
6216    if (CP->isMachineConstantPoolEntry())
6217      OS << "<" << *CP->getMachineCPVal() << ">";
6218    else
6219      OS << "<" << *CP->getConstVal() << ">";
6220    if (offset > 0)
6221      OS << " + " << offset;
6222    else
6223      OS << " " << offset;
6224    if (unsigned int TF = CP->getTargetFlags())
6225      OS << " [TF=" << TF << ']';
6226  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6227    OS << "<";
6228    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6229    if (LBB)
6230      OS << LBB->getName() << " ";
6231    OS << (const void*)BBDN->getBasicBlock() << ">";
6232  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6233    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6234  } else if (const ExternalSymbolSDNode *ES =
6235             dyn_cast<ExternalSymbolSDNode>(this)) {
6236    OS << "'" << ES->getSymbol() << "'";
6237    if (unsigned int TF = ES->getTargetFlags())
6238      OS << " [TF=" << TF << ']';
6239  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6240    if (M->getValue())
6241      OS << "<" << M->getValue() << ">";
6242    else
6243      OS << "<null>";
6244  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6245    if (MD->getMD())
6246      OS << "<" << MD->getMD() << ">";
6247    else
6248      OS << "<null>";
6249  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6250    OS << ":" << N->getVT().getEVTString();
6251  }
6252  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6253    OS << "<" << *LD->getMemOperand();
6254
6255    bool doExt = true;
6256    switch (LD->getExtensionType()) {
6257    default: doExt = false; break;
6258    case ISD::EXTLOAD: OS << ", anyext"; break;
6259    case ISD::SEXTLOAD: OS << ", sext"; break;
6260    case ISD::ZEXTLOAD: OS << ", zext"; break;
6261    }
6262    if (doExt)
6263      OS << " from " << LD->getMemoryVT().getEVTString();
6264
6265    const char *AM = getIndexedModeName(LD->getAddressingMode());
6266    if (*AM)
6267      OS << ", " << AM;
6268
6269    OS << ">";
6270  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6271    OS << "<" << *ST->getMemOperand();
6272
6273    if (ST->isTruncatingStore())
6274      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6275
6276    const char *AM = getIndexedModeName(ST->getAddressingMode());
6277    if (*AM)
6278      OS << ", " << AM;
6279
6280    OS << ">";
6281  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6282    OS << "<" << *M->getMemOperand() << ">";
6283  } else if (const BlockAddressSDNode *BA =
6284               dyn_cast<BlockAddressSDNode>(this)) {
6285    OS << "<";
6286    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6287    OS << ", ";
6288    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6289    OS << ">";
6290    if (unsigned int TF = BA->getTargetFlags())
6291      OS << " [TF=" << TF << ']';
6292  }
6293
6294  if (G)
6295    if (unsigned Order = G->GetOrdering(this))
6296      OS << " [ORD=" << Order << ']';
6297
6298  if (getNodeId() != -1)
6299    OS << " [ID=" << getNodeId() << ']';
6300
6301  DebugLoc dl = getDebugLoc();
6302  if (G && !dl.isUnknown()) {
6303    DIScope
6304      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6305    OS << " dbg:";
6306    // Omit the directory, since it's usually long and uninteresting.
6307    if (Scope.Verify())
6308      OS << Scope.getFilename();
6309    else
6310      OS << "<unknown>";
6311    OS << ':' << dl.getLine();
6312    if (dl.getCol() != 0)
6313      OS << ':' << dl.getCol();
6314  }
6315}
6316
6317void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6318  print_types(OS, G);
6319  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6320    if (i) OS << ", "; else OS << " ";
6321    OS << (void*)getOperand(i).getNode();
6322    if (unsigned RN = getOperand(i).getResNo())
6323      OS << ":" << RN;
6324  }
6325  print_details(OS, G);
6326}
6327
6328static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6329                                  const SelectionDAG *G, unsigned depth,
6330                                  unsigned indent)
6331{
6332  if (depth == 0)
6333    return;
6334
6335  OS.indent(indent);
6336
6337  N->print(OS, G);
6338
6339  if (depth < 1)
6340    return;
6341
6342  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6343    // Don't follow chain operands.
6344    if (N->getOperand(i).getValueType() == MVT::Other)
6345      continue;
6346    OS << '\n';
6347    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6348  }
6349}
6350
6351void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6352                            unsigned depth) const {
6353  printrWithDepthHelper(OS, this, G, depth, 0);
6354}
6355
6356void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6357  // Don't print impossibly deep things.
6358  printrWithDepth(OS, G, 10);
6359}
6360
6361void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6362  printrWithDepth(dbgs(), G, depth);
6363}
6364
6365void SDNode::dumprFull(const SelectionDAG *G) const {
6366  // Don't print impossibly deep things.
6367  dumprWithDepth(G, 10);
6368}
6369
6370static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6371  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6372    if (N->getOperand(i).getNode()->hasOneUse())
6373      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6374    else
6375      dbgs() << "\n" << std::string(indent+2, ' ')
6376           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6377
6378
6379  dbgs() << "\n";
6380  dbgs().indent(indent);
6381  N->dump(G);
6382}
6383
6384SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6385  assert(N->getNumValues() == 1 &&
6386         "Can't unroll a vector with multiple results!");
6387
6388  EVT VT = N->getValueType(0);
6389  unsigned NE = VT.getVectorNumElements();
6390  EVT EltVT = VT.getVectorElementType();
6391  DebugLoc dl = N->getDebugLoc();
6392
6393  SmallVector<SDValue, 8> Scalars;
6394  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6395
6396  // If ResNE is 0, fully unroll the vector op.
6397  if (ResNE == 0)
6398    ResNE = NE;
6399  else if (NE > ResNE)
6400    NE = ResNE;
6401
6402  unsigned i;
6403  for (i= 0; i != NE; ++i) {
6404    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6405      SDValue Operand = N->getOperand(j);
6406      EVT OperandVT = Operand.getValueType();
6407      if (OperandVT.isVector()) {
6408        // A vector operand; extract a single element.
6409        EVT OperandEltVT = OperandVT.getVectorElementType();
6410        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6411                              OperandEltVT,
6412                              Operand,
6413                              getConstant(i, TLI.getPointerTy()));
6414      } else {
6415        // A scalar operand; just use it as is.
6416        Operands[j] = Operand;
6417      }
6418    }
6419
6420    switch (N->getOpcode()) {
6421    default:
6422      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6423                                &Operands[0], Operands.size()));
6424      break;
6425    case ISD::SHL:
6426    case ISD::SRA:
6427    case ISD::SRL:
6428    case ISD::ROTL:
6429    case ISD::ROTR:
6430      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6431                                getShiftAmountOperand(Operands[0].getValueType(),
6432                                                      Operands[1])));
6433      break;
6434    case ISD::SIGN_EXTEND_INREG:
6435    case ISD::FP_ROUND_INREG: {
6436      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6437      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6438                                Operands[0],
6439                                getValueType(ExtVT)));
6440    }
6441    }
6442  }
6443
6444  for (; i < ResNE; ++i)
6445    Scalars.push_back(getUNDEF(EltVT));
6446
6447  return getNode(ISD::BUILD_VECTOR, dl,
6448                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6449                 &Scalars[0], Scalars.size());
6450}
6451
6452
6453/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6454/// location that is 'Dist' units away from the location that the 'Base' load
6455/// is loading from.
6456bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6457                                     unsigned Bytes, int Dist) const {
6458  if (LD->getChain() != Base->getChain())
6459    return false;
6460  EVT VT = LD->getValueType(0);
6461  if (VT.getSizeInBits() / 8 != Bytes)
6462    return false;
6463
6464  SDValue Loc = LD->getOperand(1);
6465  SDValue BaseLoc = Base->getOperand(1);
6466  if (Loc.getOpcode() == ISD::FrameIndex) {
6467    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6468      return false;
6469    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6470    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6471    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6472    int FS  = MFI->getObjectSize(FI);
6473    int BFS = MFI->getObjectSize(BFI);
6474    if (FS != BFS || FS != (int)Bytes) return false;
6475    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6476  }
6477
6478  // Handle X+C
6479  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6480      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6481    return true;
6482
6483  const GlobalValue *GV1 = NULL;
6484  const GlobalValue *GV2 = NULL;
6485  int64_t Offset1 = 0;
6486  int64_t Offset2 = 0;
6487  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6488  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6489  if (isGA1 && isGA2 && GV1 == GV2)
6490    return Offset1 == (Offset2 + Dist*Bytes);
6491  return false;
6492}
6493
6494
6495/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6496/// it cannot be inferred.
6497unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6498  // If this is a GlobalAddress + cst, return the alignment.
6499  const GlobalValue *GV;
6500  int64_t GVOffset = 0;
6501  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6502    // If GV has specified alignment, then use it. Otherwise, use the preferred
6503    // alignment.
6504    unsigned Align = GV->getAlignment();
6505    if (!Align) {
6506      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6507        if (GVar->hasInitializer()) {
6508          const TargetData *TD = TLI.getTargetData();
6509          Align = TD->getPreferredAlignment(GVar);
6510        }
6511      }
6512    }
6513    return MinAlign(Align, GVOffset);
6514  }
6515
6516  // If this is a direct reference to a stack slot, use information about the
6517  // stack slot's alignment.
6518  int FrameIdx = 1 << 31;
6519  int64_t FrameOffset = 0;
6520  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6521    FrameIdx = FI->getIndex();
6522  } else if (isBaseWithConstantOffset(Ptr) &&
6523             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6524    // Handle FI+Cst
6525    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6526    FrameOffset = Ptr.getConstantOperandVal(1);
6527  }
6528
6529  if (FrameIdx != (1 << 31)) {
6530    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6531    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6532                                    FrameOffset);
6533    return FIInfoAlign;
6534  }
6535
6536  return 0;
6537}
6538
6539void SelectionDAG::dump() const {
6540  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6541
6542  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6543       I != E; ++I) {
6544    const SDNode *N = I;
6545    if (!N->hasOneUse() && N != getRoot().getNode())
6546      DumpNodes(N, 2, this);
6547  }
6548
6549  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6550
6551  dbgs() << "\n\n";
6552}
6553
6554void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6555  print_types(OS, G);
6556  print_details(OS, G);
6557}
6558
6559typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6560static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6561                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6562  if (!once.insert(N))          // If we've been here before, return now.
6563    return;
6564
6565  // Dump the current SDNode, but don't end the line yet.
6566  OS << std::string(indent, ' ');
6567  N->printr(OS, G);
6568
6569  // Having printed this SDNode, walk the children:
6570  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6571    const SDNode *child = N->getOperand(i).getNode();
6572
6573    if (i) OS << ",";
6574    OS << " ";
6575
6576    if (child->getNumOperands() == 0) {
6577      // This child has no grandchildren; print it inline right here.
6578      child->printr(OS, G);
6579      once.insert(child);
6580    } else {         // Just the address. FIXME: also print the child's opcode.
6581      OS << (void*)child;
6582      if (unsigned RN = N->getOperand(i).getResNo())
6583        OS << ":" << RN;
6584    }
6585  }
6586
6587  OS << "\n";
6588
6589  // Dump children that have grandchildren on their own line(s).
6590  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6591    const SDNode *child = N->getOperand(i).getNode();
6592    DumpNodesr(OS, child, indent+2, G, once);
6593  }
6594}
6595
6596void SDNode::dumpr() const {
6597  VisitedSDNodeSet once;
6598  DumpNodesr(dbgs(), this, 0, 0, once);
6599}
6600
6601void SDNode::dumpr(const SelectionDAG *G) const {
6602  VisitedSDNodeSet once;
6603  DumpNodesr(dbgs(), this, 0, G, once);
6604}
6605
6606
6607// getAddressSpace - Return the address space this GlobalAddress belongs to.
6608unsigned GlobalAddressSDNode::getAddressSpace() const {
6609  return getGlobal()->getType()->getAddressSpace();
6610}
6611
6612
6613Type *ConstantPoolSDNode::getType() const {
6614  if (isMachineConstantPoolEntry())
6615    return Val.MachineCPVal->getType();
6616  return Val.ConstVal->getType();
6617}
6618
6619bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6620                                        APInt &SplatUndef,
6621                                        unsigned &SplatBitSize,
6622                                        bool &HasAnyUndefs,
6623                                        unsigned MinSplatBits,
6624                                        bool isBigEndian) {
6625  EVT VT = getValueType(0);
6626  assert(VT.isVector() && "Expected a vector type");
6627  unsigned sz = VT.getSizeInBits();
6628  if (MinSplatBits > sz)
6629    return false;
6630
6631  SplatValue = APInt(sz, 0);
6632  SplatUndef = APInt(sz, 0);
6633
6634  // Get the bits.  Bits with undefined values (when the corresponding element
6635  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6636  // in SplatValue.  If any of the values are not constant, give up and return
6637  // false.
6638  unsigned int nOps = getNumOperands();
6639  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6640  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6641
6642  for (unsigned j = 0; j < nOps; ++j) {
6643    unsigned i = isBigEndian ? nOps-1-j : j;
6644    SDValue OpVal = getOperand(i);
6645    unsigned BitPos = j * EltBitSize;
6646
6647    if (OpVal.getOpcode() == ISD::UNDEF)
6648      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6649    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6650      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6651                    zextOrTrunc(sz) << BitPos;
6652    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6653      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6654     else
6655      return false;
6656  }
6657
6658  // The build_vector is all constants or undefs.  Find the smallest element
6659  // size that splats the vector.
6660
6661  HasAnyUndefs = (SplatUndef != 0);
6662  while (sz > 8) {
6663
6664    unsigned HalfSize = sz / 2;
6665    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6666    APInt LowValue = SplatValue.trunc(HalfSize);
6667    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6668    APInt LowUndef = SplatUndef.trunc(HalfSize);
6669
6670    // If the two halves do not match (ignoring undef bits), stop here.
6671    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6672        MinSplatBits > HalfSize)
6673      break;
6674
6675    SplatValue = HighValue | LowValue;
6676    SplatUndef = HighUndef & LowUndef;
6677
6678    sz = HalfSize;
6679  }
6680
6681  SplatBitSize = sz;
6682  return true;
6683}
6684
6685bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6686  // Find the first non-undef value in the shuffle mask.
6687  unsigned i, e;
6688  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6689    /* search */;
6690
6691  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6692
6693  // Make sure all remaining elements are either undef or the same as the first
6694  // non-undef value.
6695  for (int Idx = Mask[i]; i != e; ++i)
6696    if (Mask[i] >= 0 && Mask[i] != Idx)
6697      return false;
6698  return true;
6699}
6700
6701#ifdef XDEBUG
6702static void checkForCyclesHelper(const SDNode *N,
6703                                 SmallPtrSet<const SDNode*, 32> &Visited,
6704                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6705  // If this node has already been checked, don't check it again.
6706  if (Checked.count(N))
6707    return;
6708
6709  // If a node has already been visited on this depth-first walk, reject it as
6710  // a cycle.
6711  if (!Visited.insert(N)) {
6712    dbgs() << "Offending node:\n";
6713    N->dumprFull();
6714    errs() << "Detected cycle in SelectionDAG\n";
6715    abort();
6716  }
6717
6718  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6719    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6720
6721  Checked.insert(N);
6722  Visited.erase(N);
6723}
6724#endif
6725
6726void llvm::checkForCycles(const llvm::SDNode *N) {
6727#ifdef XDEBUG
6728  assert(N && "Checking nonexistant SDNode");
6729  SmallPtrSet<const SDNode*, 32> visited;
6730  SmallPtrSet<const SDNode*, 32> checked;
6731  checkForCyclesHelper(N, visited, checked);
6732#endif
6733}
6734
6735void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6736  checkForCycles(DAG->getRoot().getNode());
6737}
6738