SelectionDAG.cpp revision 29cbade25aa094ca9a149a96a8614cf6f3247480
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetIntrinsicInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/ManagedStatic.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/System/Mutex.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringExtras.h"
46#include <algorithm>
47#include <cmath>
48using namespace llvm;
49
50/// makeVTList - Return an instance of the SDVTList struct initialized with the
51/// specified members.
52static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
53  SDVTList Res = {VTs, NumVTs};
54  return Res;
55}
56
57static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
58  switch (VT.getSimpleVT().SimpleTy) {
59  default: llvm_unreachable("Unknown FP format");
60  case MVT::f32:     return &APFloat::IEEEsingle;
61  case MVT::f64:     return &APFloat::IEEEdouble;
62  case MVT::f80:     return &APFloat::x87DoubleExtended;
63  case MVT::f128:    return &APFloat::IEEEquad;
64  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
65  }
66}
67
68SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
69
70//===----------------------------------------------------------------------===//
71//                              ConstantFPSDNode Class
72//===----------------------------------------------------------------------===//
73
74/// isExactlyValue - We don't rely on operator== working on double values, as
75/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
76/// As such, this method can be used to do an exact bit-for-bit comparison of
77/// two floating point values.
78bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
79  return getValueAPF().bitwiseIsEqual(V);
80}
81
82bool ConstantFPSDNode::isValueValidForType(EVT VT,
83                                           const APFloat& Val) {
84  assert(VT.isFloatingPoint() && "Can only convert between FP types");
85
86  // PPC long double cannot be converted to any other type.
87  if (VT == MVT::ppcf128 ||
88      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
89    return false;
90
91  // convert modifies in place, so make a copy.
92  APFloat Val2 = APFloat(Val);
93  bool losesInfo;
94  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
95                      &losesInfo);
96  return !losesInfo;
97}
98
99//===----------------------------------------------------------------------===//
100//                              ISD Namespace
101//===----------------------------------------------------------------------===//
102
103/// isBuildVectorAllOnes - Return true if the specified node is a
104/// BUILD_VECTOR where all of the elements are ~0 or undef.
105bool ISD::isBuildVectorAllOnes(const SDNode *N) {
106  // Look through a bit convert.
107  if (N->getOpcode() == ISD::BIT_CONVERT)
108    N = N->getOperand(0).getNode();
109
110  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
111
112  unsigned i = 0, e = N->getNumOperands();
113
114  // Skip over all of the undef values.
115  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
116    ++i;
117
118  // Do not accept an all-undef vector.
119  if (i == e) return false;
120
121  // Do not accept build_vectors that aren't all constants or which have non-~0
122  // elements.
123  SDValue NotZero = N->getOperand(i);
124  if (isa<ConstantSDNode>(NotZero)) {
125    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
126      return false;
127  } else if (isa<ConstantFPSDNode>(NotZero)) {
128    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
129                bitcastToAPInt().isAllOnesValue())
130      return false;
131  } else
132    return false;
133
134  // Okay, we have at least one ~0 value, check to see if the rest match or are
135  // undefs.
136  for (++i; i != e; ++i)
137    if (N->getOperand(i) != NotZero &&
138        N->getOperand(i).getOpcode() != ISD::UNDEF)
139      return false;
140  return true;
141}
142
143
144/// isBuildVectorAllZeros - Return true if the specified node is a
145/// BUILD_VECTOR where all of the elements are 0 or undef.
146bool ISD::isBuildVectorAllZeros(const SDNode *N) {
147  // Look through a bit convert.
148  if (N->getOpcode() == ISD::BIT_CONVERT)
149    N = N->getOperand(0).getNode();
150
151  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
152
153  unsigned i = 0, e = N->getNumOperands();
154
155  // Skip over all of the undef values.
156  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
157    ++i;
158
159  // Do not accept an all-undef vector.
160  if (i == e) return false;
161
162  // Do not accept build_vectors that aren't all constants or which have non-0
163  // elements.
164  SDValue Zero = N->getOperand(i);
165  if (isa<ConstantSDNode>(Zero)) {
166    if (!cast<ConstantSDNode>(Zero)->isNullValue())
167      return false;
168  } else if (isa<ConstantFPSDNode>(Zero)) {
169    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
170      return false;
171  } else
172    return false;
173
174  // Okay, we have at least one 0 value, check to see if the rest match or are
175  // undefs.
176  for (++i; i != e; ++i)
177    if (N->getOperand(i) != Zero &&
178        N->getOperand(i).getOpcode() != ISD::UNDEF)
179      return false;
180  return true;
181}
182
183/// isScalarToVector - Return true if the specified node is a
184/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
185/// element is not an undef.
186bool ISD::isScalarToVector(const SDNode *N) {
187  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
188    return true;
189
190  if (N->getOpcode() != ISD::BUILD_VECTOR)
191    return false;
192  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
193    return false;
194  unsigned NumElems = N->getNumOperands();
195  for (unsigned i = 1; i < NumElems; ++i) {
196    SDValue V = N->getOperand(i);
197    if (V.getOpcode() != ISD::UNDEF)
198      return false;
199  }
200  return true;
201}
202
203
204/// isDebugLabel - Return true if the specified node represents a debug
205/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
206bool ISD::isDebugLabel(const SDNode *N) {
207  SDValue Zero;
208  if (N->getOpcode() == ISD::DBG_LABEL)
209    return true;
210  if (N->isMachineOpcode() &&
211      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
212    return true;
213  return false;
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));       // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236
237  if (Operation > ISD::SETTRUE2)
238    Operation &= ~8;  // Don't let N and U bits get set.
239
240  return ISD::CondCode(Operation);
241}
242
243
244/// isSignedOp - For an integer comparison, return 1 if the comparison is a
245/// signed operation and 2 if the result is an unsigned comparison.  Return zero
246/// if the operation does not depend on the sign of the input (setne and seteq).
247static int isSignedOp(ISD::CondCode Opcode) {
248  switch (Opcode) {
249  default: llvm_unreachable("Illegal integer setcc operation!");
250  case ISD::SETEQ:
251  case ISD::SETNE: return 0;
252  case ISD::SETLT:
253  case ISD::SETLE:
254  case ISD::SETGT:
255  case ISD::SETGE: return 1;
256  case ISD::SETULT:
257  case ISD::SETULE:
258  case ISD::SETUGT:
259  case ISD::SETUGE: return 2;
260  }
261}
262
263/// getSetCCOrOperation - Return the result of a logical OR between different
264/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
265/// returns SETCC_INVALID if it is not possible to represent the resultant
266/// comparison.
267ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
268                                       bool isInteger) {
269  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
270    // Cannot fold a signed integer setcc with an unsigned integer setcc.
271    return ISD::SETCC_INVALID;
272
273  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
274
275  // If the N and U bits get set then the resultant comparison DOES suddenly
276  // care about orderedness, and is true when ordered.
277  if (Op > ISD::SETTRUE2)
278    Op &= ~16;     // Clear the U bit if the N bit is set.
279
280  // Canonicalize illegal integer setcc's.
281  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
282    Op = ISD::SETNE;
283
284  return ISD::CondCode(Op);
285}
286
287/// getSetCCAndOperation - Return the result of a logical AND between different
288/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
289/// function returns zero if it is not possible to represent the resultant
290/// comparison.
291ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294    // Cannot fold a signed setcc with an unsigned setcc.
295    return ISD::SETCC_INVALID;
296
297  // Combine all of the condition bits.
298  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
299
300  // Canonicalize illegal integer setcc's.
301  if (isInteger) {
302    switch (Result) {
303    default: break;
304    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
305    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
306    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
307    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
308    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
309    }
310  }
311
312  return Result;
313}
314
315const TargetMachine &SelectionDAG::getTarget() const {
316  return MF->getTarget();
317}
318
319//===----------------------------------------------------------------------===//
320//                           SDNode Profile Support
321//===----------------------------------------------------------------------===//
322
323/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324///
325static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
326  ID.AddInteger(OpC);
327}
328
329/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
330/// solely with their pointer.
331static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
332  ID.AddPointer(VTList.VTs);
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDValue *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346///
347static void AddNodeIDOperands(FoldingSetNodeID &ID,
348                              const SDUse *Ops, unsigned NumOps) {
349  for (; NumOps; --NumOps, ++Ops) {
350    ID.AddPointer(Ops->getNode());
351    ID.AddInteger(Ops->getResNo());
352  }
353}
354
355static void AddNodeIDNode(FoldingSetNodeID &ID,
356                          unsigned short OpC, SDVTList VTList,
357                          const SDValue *OpList, unsigned N) {
358  AddNodeIDOpcode(ID, OpC);
359  AddNodeIDValueTypes(ID, VTList);
360  AddNodeIDOperands(ID, OpList, N);
361}
362
363/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364/// the NodeID data.
365static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
366  switch (N->getOpcode()) {
367  case ISD::TargetExternalSymbol:
368  case ISD::ExternalSymbol:
369    llvm_unreachable("Should only be used on nodes with operands");
370  default: break;  // Normal nodes don't need extra info.
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::FrameIndex:
407  case ISD::TargetFrameIndex:
408    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411  case ISD::TargetJumpTable:
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    ID.AddInteger(CP->getTargetFlags());
425    break;
426  }
427  case ISD::LOAD: {
428    const LoadSDNode *LD = cast<LoadSDNode>(N);
429    ID.AddInteger(LD->getMemoryVT().getRawBits());
430    ID.AddInteger(LD->getRawSubclassData());
431    break;
432  }
433  case ISD::STORE: {
434    const StoreSDNode *ST = cast<StoreSDNode>(N);
435    ID.AddInteger(ST->getMemoryVT().getRawBits());
436    ID.AddInteger(ST->getRawSubclassData());
437    break;
438  }
439  case ISD::ATOMIC_CMP_SWAP:
440  case ISD::ATOMIC_SWAP:
441  case ISD::ATOMIC_LOAD_ADD:
442  case ISD::ATOMIC_LOAD_SUB:
443  case ISD::ATOMIC_LOAD_AND:
444  case ISD::ATOMIC_LOAD_OR:
445  case ISD::ATOMIC_LOAD_XOR:
446  case ISD::ATOMIC_LOAD_NAND:
447  case ISD::ATOMIC_LOAD_MIN:
448  case ISD::ATOMIC_LOAD_MAX:
449  case ISD::ATOMIC_LOAD_UMIN:
450  case ISD::ATOMIC_LOAD_UMAX: {
451    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
452    ID.AddInteger(AT->getMemoryVT().getRawBits());
453    ID.AddInteger(AT->getRawSubclassData());
454    break;
455  }
456  case ISD::VECTOR_SHUFFLE: {
457    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
458    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
459         i != e; ++i)
460      ID.AddInteger(SVN->getMaskElt(i));
461    break;
462  }
463  case ISD::TargetBlockAddress:
464  case ISD::BlockAddress: {
465    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
466    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
467    break;
468  }
469  } // end switch (N->getOpcode())
470}
471
472/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
473/// data.
474static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
475  AddNodeIDOpcode(ID, N->getOpcode());
476  // Add the return value info.
477  AddNodeIDValueTypes(ID, N->getVTList());
478  // Add the operand info.
479  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
480
481  // Handle SDNode leafs with special info.
482  AddNodeIDCustom(ID, N);
483}
484
485/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
486/// the CSE map that carries volatility, indexing mode, and
487/// extension/truncation information.
488///
489static inline unsigned
490encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
491  assert((ConvType & 3) == ConvType &&
492         "ConvType may not require more than 2 bits!");
493  assert((AM & 7) == AM &&
494         "AM may not require more than 3 bits!");
495  return ConvType |
496         (AM << 2) |
497         (isVolatile << 5);
498}
499
500//===----------------------------------------------------------------------===//
501//                              SelectionDAG Class
502//===----------------------------------------------------------------------===//
503
504/// doNotCSE - Return true if CSE should not be performed for this node.
505static bool doNotCSE(SDNode *N) {
506  if (N->getValueType(0) == MVT::Flag)
507    return true; // Never CSE anything that produces a flag.
508
509  switch (N->getOpcode()) {
510  default: break;
511  case ISD::HANDLENODE:
512  case ISD::DBG_LABEL:
513  case ISD::DBG_STOPPOINT:
514  case ISD::EH_LABEL:
515    return true;   // Never CSE these nodes.
516  }
517
518  // Check that remaining values produced are not flags.
519  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520    if (N->getValueType(i) == MVT::Flag)
521      return true; // Never CSE anything that produces a flag.
522
523  return false;
524}
525
526/// RemoveDeadNodes - This method deletes all unreachable nodes in the
527/// SelectionDAG.
528void SelectionDAG::RemoveDeadNodes() {
529  // Create a dummy node (which is not added to allnodes), that adds a reference
530  // to the root node, preventing it from being deleted.
531  HandleSDNode Dummy(getRoot());
532
533  SmallVector<SDNode*, 128> DeadNodes;
534
535  // Add all obviously-dead nodes to the DeadNodes worklist.
536  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537    if (I->use_empty())
538      DeadNodes.push_back(I);
539
540  RemoveDeadNodes(DeadNodes);
541
542  // If the root changed (e.g. it was a dead load, update the root).
543  setRoot(Dummy.getValue());
544}
545
546/// RemoveDeadNodes - This method deletes the unreachable nodes in the
547/// given list, and any nodes that become unreachable as a result.
548void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549                                   DAGUpdateListener *UpdateListener) {
550
551  // Process the worklist, deleting the nodes and adding their uses to the
552  // worklist.
553  while (!DeadNodes.empty()) {
554    SDNode *N = DeadNodes.pop_back_val();
555
556    if (UpdateListener)
557      UpdateListener->NodeDeleted(N, 0);
558
559    // Take the node out of the appropriate CSE map.
560    RemoveNodeFromCSEMaps(N);
561
562    // Next, brutally remove the operand list.  This is safe to do, as there are
563    // no cycles in the graph.
564    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565      SDUse &Use = *I++;
566      SDNode *Operand = Use.getNode();
567      Use.set(SDValue());
568
569      // Now that we removed this operand, see if there are no uses of it left.
570      if (Operand->use_empty())
571        DeadNodes.push_back(Operand);
572    }
573
574    DeallocateNode(N);
575  }
576}
577
578void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579  SmallVector<SDNode*, 16> DeadNodes(1, N);
580  RemoveDeadNodes(DeadNodes, UpdateListener);
581}
582
583void SelectionDAG::DeleteNode(SDNode *N) {
584  // First take this out of the appropriate CSE map.
585  RemoveNodeFromCSEMaps(N);
586
587  // Finally, remove uses due to operands of this node, remove from the
588  // AllNodes list, and delete the node.
589  DeleteNodeNotInCSEMaps(N);
590}
591
592void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594  assert(N->use_empty() && "Cannot delete a node that is not dead!");
595
596  // Drop all of the operands and decrement used node's use counts.
597  N->DropOperands();
598
599  DeallocateNode(N);
600}
601
602void SelectionDAG::DeallocateNode(SDNode *N) {
603  if (N->OperandsNeedDelete)
604    delete[] N->OperandList;
605
606  // Set the opcode to DELETED_NODE to help catch bugs when node
607  // memory is reallocated.
608  N->NodeType = ISD::DELETED_NODE;
609
610  NodeAllocator.Deallocate(AllNodes.remove(N));
611}
612
613/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614/// correspond to it.  This is useful when we're about to delete or repurpose
615/// the node.  We don't want future request for structurally identical nodes
616/// to return N anymore.
617bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618  bool Erased = false;
619  switch (N->getOpcode()) {
620  case ISD::EntryToken:
621    llvm_unreachable("EntryToken should not be in CSEMaps!");
622    return false;
623  case ISD::HANDLENODE: return false;  // noop.
624  case ISD::CONDCODE:
625    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626           "Cond code doesn't exist!");
627    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629    break;
630  case ISD::ExternalSymbol:
631    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632    break;
633  case ISD::TargetExternalSymbol: {
634    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
635    Erased = TargetExternalSymbols.erase(
636               std::pair<std::string,unsigned char>(ESN->getSymbol(),
637                                                    ESN->getTargetFlags()));
638    break;
639  }
640  case ISD::VALUETYPE: {
641    EVT VT = cast<VTSDNode>(N)->getVT();
642    if (VT.isExtended()) {
643      Erased = ExtendedValueTypeNodes.erase(VT);
644    } else {
645      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
646      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
647    }
648    break;
649  }
650  default:
651    // Remove it from the CSE Map.
652    Erased = CSEMap.RemoveNode(N);
653    break;
654  }
655#ifndef NDEBUG
656  // Verify that the node was actually in one of the CSE maps, unless it has a
657  // flag result (which cannot be CSE'd) or is one of the special cases that are
658  // not subject to CSE.
659  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
660      !N->isMachineOpcode() && !doNotCSE(N)) {
661    N->dump(this);
662    errs() << "\n";
663    llvm_unreachable("Node is not in map!");
664  }
665#endif
666  return Erased;
667}
668
669/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670/// maps and modified in place. Add it back to the CSE maps, unless an identical
671/// node already exists, in which case transfer all its users to the existing
672/// node. This transfer can potentially trigger recursive merging.
673///
674void
675SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
676                                       DAGUpdateListener *UpdateListener) {
677  // For node types that aren't CSE'd, just act as if no identical node
678  // already exists.
679  if (!doNotCSE(N)) {
680    SDNode *Existing = CSEMap.GetOrInsertNode(N);
681    if (Existing != N) {
682      // If there was already an existing matching node, use ReplaceAllUsesWith
683      // to replace the dead one with the existing one.  This can cause
684      // recursive merging of other unrelated nodes down the line.
685      ReplaceAllUsesWith(N, Existing, UpdateListener);
686
687      // N is now dead.  Inform the listener if it exists and delete it.
688      if (UpdateListener)
689        UpdateListener->NodeDeleted(N, Existing);
690      DeleteNodeNotInCSEMaps(N);
691      return;
692    }
693  }
694
695  // If the node doesn't already exist, we updated it.  Inform a listener if
696  // it exists.
697  if (UpdateListener)
698    UpdateListener->NodeUpdated(N);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
706                                           void *&InsertPos) {
707  if (doNotCSE(N))
708    return 0;
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  AddNodeIDCustom(ID, N);
714  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715}
716
717/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
718/// were replaced with those specified.  If this node is never memoized,
719/// return null, otherwise return a pointer to the slot it would take.  If a
720/// node already exists with these operands, the slot will be non-null.
721SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
722                                           SDValue Op1, SDValue Op2,
723                                           void *&InsertPos) {
724  if (doNotCSE(N))
725    return 0;
726
727  SDValue Ops[] = { Op1, Op2 };
728  FoldingSetNodeID ID;
729  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
730  AddNodeIDCustom(ID, N);
731  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732}
733
734
735/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
736/// were replaced with those specified.  If this node is never memoized,
737/// return null, otherwise return a pointer to the slot it would take.  If a
738/// node already exists with these operands, the slot will be non-null.
739SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
740                                           const SDValue *Ops,unsigned NumOps,
741                                           void *&InsertPos) {
742  if (doNotCSE(N))
743    return 0;
744
745  FoldingSetNodeID ID;
746  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
747  AddNodeIDCustom(ID, N);
748  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
749}
750
751/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
752void SelectionDAG::VerifyNode(SDNode *N) {
753  switch (N->getOpcode()) {
754  default:
755    break;
756  case ISD::BUILD_PAIR: {
757    EVT VT = N->getValueType(0);
758    assert(N->getNumValues() == 1 && "Too many results!");
759    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
760           "Wrong return type!");
761    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
762    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
763           "Mismatched operand types!");
764    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
765           "Wrong operand type!");
766    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
767           "Wrong return type size");
768    break;
769  }
770  case ISD::BUILD_VECTOR: {
771    assert(N->getNumValues() == 1 && "Too many results!");
772    assert(N->getValueType(0).isVector() && "Wrong return type!");
773    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
774           "Wrong number of operands!");
775    EVT EltVT = N->getValueType(0).getVectorElementType();
776    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
777      assert((I->getValueType() == EltVT ||
778             (EltVT.isInteger() && I->getValueType().isInteger() &&
779              EltVT.bitsLE(I->getValueType()))) &&
780            "Wrong operand type!");
781    break;
782  }
783  }
784}
785
786/// getEVTAlignment - Compute the default alignment value for the
787/// given type.
788///
789unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
790  const Type *Ty = VT == MVT::iPTR ?
791                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
792                   VT.getTypeForEVT(*getContext());
793
794  return TLI.getTargetData()->getABITypeAlignment(Ty);
795}
796
797// EntryNode could meaningfully have debug info if we can find it...
798SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
799  : TLI(tli), FLI(fli), DW(0),
800    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
801    getVTList(MVT::Other)), Root(getEntryNode()) {
802  AllNodes.push_back(&EntryNode);
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815}
816
817void SelectionDAG::allnodes_clear() {
818  assert(&*AllNodes.begin() == &EntryNode);
819  AllNodes.remove(AllNodes.begin());
820  while (!AllNodes.empty())
821    DeallocateNode(AllNodes.begin());
822}
823
824void SelectionDAG::clear() {
825  allnodes_clear();
826  OperandAllocator.Reset();
827  CSEMap.clear();
828
829  ExtendedValueTypeNodes.clear();
830  ExternalSymbols.clear();
831  TargetExternalSymbols.clear();
832  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
833            static_cast<CondCodeSDNode*>(0));
834  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
835            static_cast<SDNode*>(0));
836
837  EntryNode.UseList = 0;
838  AllNodes.push_back(&EntryNode);
839  Root = getEntryNode();
840}
841
842SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
849  return VT.bitsGT(Op.getValueType()) ?
850    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
851    getNode(ISD::TRUNCATE, DL, VT, Op);
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, DL, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863///
864SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
865  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  SDValue NegOne =
867    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
868  return getNode(ISD::XOR, DL, VT, Val, NegOne);
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
872  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert((EltVT.getSizeInBits() >= 64 ||
874         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
875         "getConstant with a uint64_t value that doesn't fit in the type!");
876  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
877}
878
879SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
880  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
884  assert(VT.isInteger() && "Cannot create FP integer constant!");
885
886  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
887  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
888         "APInt size does not match type size!");
889
890  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
891  FoldingSetNodeID ID;
892  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
893  ID.AddPointer(&Val);
894  void *IP = 0;
895  SDNode *N = NULL;
896  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
897    if (!VT.isVector())
898      return SDValue(N, 0);
899  if (!N) {
900    N = NodeAllocator.Allocate<ConstantSDNode>();
901    new (N) ConstantSDNode(isT, &Val, EltVT);
902    CSEMap.InsertNode(N, IP);
903    AllNodes.push_back(N);
904  }
905
906  SDValue Result(N, 0);
907  if (VT.isVector()) {
908    SmallVector<SDValue, 8> Ops;
909    Ops.assign(VT.getVectorNumElements(), Result);
910    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
911                     VT, &Ops[0], Ops.size());
912  }
913  return Result;
914}
915
916SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
917  return getConstant(Val, TLI.getPointerTy(), isTarget);
918}
919
920
921SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
922  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
923}
924
925SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
926  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
927
928  EVT EltVT =
929    VT.isVector() ? VT.getVectorElementType() : VT;
930
931  // Do the map lookup using the actual bit pattern for the floating point
932  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933  // we don't have issues with SNANs.
934  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937  ID.AddPointer(&V);
938  void *IP = 0;
939  SDNode *N = NULL;
940  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941    if (!VT.isVector())
942      return SDValue(N, 0);
943  if (!N) {
944    N = NodeAllocator.Allocate<ConstantFPSDNode>();
945    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
946    CSEMap.InsertNode(N, IP);
947    AllNodes.push_back(N);
948  }
949
950  SDValue Result(N, 0);
951  if (VT.isVector()) {
952    SmallVector<SDValue, 8> Ops;
953    Ops.assign(VT.getVectorNumElements(), Result);
954    // FIXME DebugLoc info might be appropriate here
955    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
956                     VT, &Ops[0], Ops.size());
957  }
958  return Result;
959}
960
961SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
962  EVT EltVT =
963    VT.isVector() ? VT.getVectorElementType() : VT;
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       EVT VT, int64_t Offset,
972                                       bool isTargetGA,
973                                       unsigned char TargetFlags) {
974  assert((TargetFlags == 0 || isTargetGA) &&
975         "Cannot set target flags on target-independent globals");
976
977  // Truncate (with sign-extension) the offset value to the pointer size.
978  EVT PTy = TLI.getPointerTy();
979  unsigned BitWidth = PTy.getSizeInBits();
980  if (BitWidth < 64)
981    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984  if (!GVar) {
985    // If GV is an alias then use the aliasee for determining thread-localness.
986    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988  }
989
990  unsigned Opc;
991  if (GVar && GVar->isThreadLocal())
992    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993  else
994    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998  ID.AddPointer(GV);
999  ID.AddInteger(Offset);
1000  ID.AddInteger(TargetFlags);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1005  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1012  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1013  FoldingSetNodeID ID;
1014  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1015  ID.AddInteger(FI);
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDValue(E, 0);
1019  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1020  new (N) FrameIndexSDNode(FI, VT, isTarget);
1021  CSEMap.InsertNode(N, IP);
1022  AllNodes.push_back(N);
1023  return SDValue(N, 0);
1024}
1025
1026SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1027                                   unsigned char TargetFlags) {
1028  assert((TargetFlags == 0 || isTarget) &&
1029         "Cannot set target flags on target-independent jump tables");
1030  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1031  FoldingSetNodeID ID;
1032  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1033  ID.AddInteger(JTI);
1034  ID.AddInteger(TargetFlags);
1035  void *IP = 0;
1036  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1037    return SDValue(E, 0);
1038  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1039  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1040  CSEMap.InsertNode(N, IP);
1041  AllNodes.push_back(N);
1042  return SDValue(N, 0);
1043}
1044
1045SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget,
1048                                      unsigned char TargetFlags) {
1049  assert((TargetFlags == 0 || isTarget) &&
1050         "Cannot set target flags on target-independent globals");
1051  if (Alignment == 0)
1052    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1053  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1054  FoldingSetNodeID ID;
1055  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1056  ID.AddInteger(Alignment);
1057  ID.AddInteger(Offset);
1058  ID.AddPointer(C);
1059  ID.AddInteger(TargetFlags);
1060  void *IP = 0;
1061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1062    return SDValue(E, 0);
1063  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1064  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1065  CSEMap.InsertNode(N, IP);
1066  AllNodes.push_back(N);
1067  return SDValue(N, 0);
1068}
1069
1070
1071SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1072                                      unsigned Alignment, int Offset,
1073                                      bool isTarget,
1074                                      unsigned char TargetFlags) {
1075  assert((TargetFlags == 0 || isTarget) &&
1076         "Cannot set target flags on target-independent globals");
1077  if (Alignment == 0)
1078    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1079  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1082  ID.AddInteger(Alignment);
1083  ID.AddInteger(Offset);
1084  C->AddSelectionDAGCSEId(ID);
1085  ID.AddInteger(TargetFlags);
1086  void *IP = 0;
1087  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1088    return SDValue(E, 0);
1089  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1090  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1091  CSEMap.InsertNode(N, IP);
1092  AllNodes.push_back(N);
1093  return SDValue(N, 0);
1094}
1095
1096SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1097  FoldingSetNodeID ID;
1098  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1099  ID.AddPointer(MBB);
1100  void *IP = 0;
1101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1102    return SDValue(E, 0);
1103  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1104  new (N) BasicBlockSDNode(MBB);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getValueType(EVT VT) {
1111  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1112      ValueTypeNodes.size())
1113    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1114
1115  SDNode *&N = VT.isExtended() ?
1116    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1117
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<VTSDNode>();
1120  new (N) VTSDNode(VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1126  SDNode *&N = ExternalSymbols[Sym];
1127  if (N) return SDValue(N, 0);
1128  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1129  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1135                                              unsigned char TargetFlags) {
1136  SDNode *&N =
1137    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1138                                                               TargetFlags)];
1139  if (N) return SDValue(N, 0);
1140  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1141  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1147  if ((unsigned)Cond >= CondCodeNodes.size())
1148    CondCodeNodes.resize(Cond+1);
1149
1150  if (CondCodeNodes[Cond] == 0) {
1151    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1152    new (N) CondCodeSDNode(Cond);
1153    CondCodeNodes[Cond] = N;
1154    AllNodes.push_back(N);
1155  }
1156  return SDValue(CondCodeNodes[Cond], 0);
1157}
1158
1159// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1160// the shuffle mask M that point at N1 to point at N2, and indices that point
1161// N2 to point at N1.
1162static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1163  std::swap(N1, N2);
1164  int NElts = M.size();
1165  for (int i = 0; i != NElts; ++i) {
1166    if (M[i] >= NElts)
1167      M[i] -= NElts;
1168    else if (M[i] >= 0)
1169      M[i] += NElts;
1170  }
1171}
1172
1173SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1174                                       SDValue N2, const int *Mask) {
1175  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1176  assert(VT.isVector() && N1.getValueType().isVector() &&
1177         "Vector Shuffle VTs must be a vectors");
1178  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1179         && "Vector Shuffle VTs must have same element type");
1180
1181  // Canonicalize shuffle undef, undef -> undef
1182  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1183    return getUNDEF(VT);
1184
1185  // Validate that all indices in Mask are within the range of the elements
1186  // input to the shuffle.
1187  unsigned NElts = VT.getVectorNumElements();
1188  SmallVector<int, 8> MaskVec;
1189  for (unsigned i = 0; i != NElts; ++i) {
1190    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1191    MaskVec.push_back(Mask[i]);
1192  }
1193
1194  // Canonicalize shuffle v, v -> v, undef
1195  if (N1 == N2) {
1196    N2 = getUNDEF(VT);
1197    for (unsigned i = 0; i != NElts; ++i)
1198      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1199  }
1200
1201  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1202  if (N1.getOpcode() == ISD::UNDEF)
1203    commuteShuffle(N1, N2, MaskVec);
1204
1205  // Canonicalize all index into lhs, -> shuffle lhs, undef
1206  // Canonicalize all index into rhs, -> shuffle rhs, undef
1207  bool AllLHS = true, AllRHS = true;
1208  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1209  for (unsigned i = 0; i != NElts; ++i) {
1210    if (MaskVec[i] >= (int)NElts) {
1211      if (N2Undef)
1212        MaskVec[i] = -1;
1213      else
1214        AllLHS = false;
1215    } else if (MaskVec[i] >= 0) {
1216      AllRHS = false;
1217    }
1218  }
1219  if (AllLHS && AllRHS)
1220    return getUNDEF(VT);
1221  if (AllLHS && !N2Undef)
1222    N2 = getUNDEF(VT);
1223  if (AllRHS) {
1224    N1 = getUNDEF(VT);
1225    commuteShuffle(N1, N2, MaskVec);
1226  }
1227
1228  // If Identity shuffle, or all shuffle in to undef, return that node.
1229  bool AllUndef = true;
1230  bool Identity = true;
1231  for (unsigned i = 0; i != NElts; ++i) {
1232    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1233    if (MaskVec[i] >= 0) AllUndef = false;
1234  }
1235  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1236    return N1;
1237  if (AllUndef)
1238    return getUNDEF(VT);
1239
1240  FoldingSetNodeID ID;
1241  SDValue Ops[2] = { N1, N2 };
1242  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1243  for (unsigned i = 0; i != NElts; ++i)
1244    ID.AddInteger(MaskVec[i]);
1245
1246  void* IP = 0;
1247  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1248    return SDValue(E, 0);
1249
1250  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1251  // SDNode doesn't have access to it.  This memory will be "leaked" when
1252  // the node is deallocated, but recovered when the NodeAllocator is released.
1253  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1254  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1255
1256  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1257  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1258  CSEMap.InsertNode(N, IP);
1259  AllNodes.push_back(N);
1260  return SDValue(N, 0);
1261}
1262
1263SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1264                                       SDValue Val, SDValue DTy,
1265                                       SDValue STy, SDValue Rnd, SDValue Sat,
1266                                       ISD::CvtCode Code) {
1267  // If the src and dest types are the same and the conversion is between
1268  // integer types of the same sign or two floats, no conversion is necessary.
1269  if (DTy == STy &&
1270      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1271    return Val;
1272
1273  FoldingSetNodeID ID;
1274  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1275  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1276  void* IP = 0;
1277  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1278    return SDValue(E, 0);
1279  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1280  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1281  CSEMap.InsertNode(N, IP);
1282  AllNodes.push_back(N);
1283  return SDValue(N, 0);
1284}
1285
1286SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1287  FoldingSetNodeID ID;
1288  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1289  ID.AddInteger(RegNo);
1290  void *IP = 0;
1291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1292    return SDValue(E, 0);
1293  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1294  new (N) RegisterSDNode(RegNo, VT);
1295  CSEMap.InsertNode(N, IP);
1296  AllNodes.push_back(N);
1297  return SDValue(N, 0);
1298}
1299
1300SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1301                                      unsigned Line, unsigned Col,
1302                                      MDNode *CU) {
1303  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1304  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1305  N->setDebugLoc(DL);
1306  AllNodes.push_back(N);
1307  return SDValue(N, 0);
1308}
1309
1310SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1311                               SDValue Root,
1312                               unsigned LabelID) {
1313  FoldingSetNodeID ID;
1314  SDValue Ops[] = { Root };
1315  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1316  ID.AddInteger(LabelID);
1317  void *IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1321  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1328                                      bool isTarget,
1329                                      unsigned char TargetFlags) {
1330  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331
1332  FoldingSetNodeID ID;
1333  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1334  ID.AddPointer(BA);
1335  ID.AddInteger(TargetFlags);
1336  void *IP = 0;
1337  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1338    return SDValue(E, 0);
1339  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1340  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346SDValue SelectionDAG::getSrcValue(const Value *V) {
1347  assert((!V || isa<PointerType>(V->getType())) &&
1348         "SrcValue is not a pointer?");
1349
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1352  ID.AddPointer(V);
1353
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1359  new (N) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue();
1929      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1930        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // If the sign bit of the first operand is zero, the sign bit of
1935        // the result is zero. If the first operand has no one bits below
1936        // the second operand's single 1 bit, its sign will be zero.
1937        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1938          KnownZero2 |= ~LowBits;
1939
1940        KnownZero |= KnownZero2 & Mask;
1941
1942        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1943      }
1944    }
1945    return;
1946  case ISD::UREM: {
1947    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1948      const APInt &RA = Rem->getAPIntValue();
1949      if (RA.isPowerOf2()) {
1950        APInt LowBits = (RA - 1);
1951        APInt Mask2 = LowBits & Mask;
1952        KnownZero |= ~LowBits & Mask;
1953        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1954        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1955        break;
1956      }
1957    }
1958
1959    // Since the result is less than or equal to either operand, any leading
1960    // zero bits in either operand must also exist in the result.
1961    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1962    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1963                      Depth+1);
1964    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1965                      Depth+1);
1966
1967    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1968                                KnownZero2.countLeadingOnes());
1969    KnownOne.clear();
1970    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1971    return;
1972  }
1973  default:
1974    // Allow the target to implement this method for its nodes.
1975    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1976  case ISD::INTRINSIC_WO_CHAIN:
1977  case ISD::INTRINSIC_W_CHAIN:
1978  case ISD::INTRINSIC_VOID:
1979      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1980                                         Depth);
1981    }
1982    return;
1983  }
1984}
1985
1986/// ComputeNumSignBits - Return the number of times the sign bit of the
1987/// register is replicated into the other bits.  We know that at least 1 bit
1988/// is always equal to the sign bit (itself), but other cases can give us
1989/// information.  For example, immediately after an "SRA X, 2", we know that
1990/// the top 3 bits are all equal to each other, so we return 3.
1991unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1992  EVT VT = Op.getValueType();
1993  assert(VT.isInteger() && "Invalid VT!");
1994  unsigned VTBits = VT.getSizeInBits();
1995  unsigned Tmp, Tmp2;
1996  unsigned FirstAnswer = 1;
1997
1998  if (Depth == 6)
1999    return 1;  // Limit search depth.
2000
2001  switch (Op.getOpcode()) {
2002  default: break;
2003  case ISD::AssertSext:
2004    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2005    return VTBits-Tmp+1;
2006  case ISD::AssertZext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp;
2009
2010  case ISD::Constant: {
2011    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2012    // If negative, return # leading ones.
2013    if (Val.isNegative())
2014      return Val.countLeadingOnes();
2015
2016    // Return # leading zeros.
2017    return Val.countLeadingZeros();
2018  }
2019
2020  case ISD::SIGN_EXTEND:
2021    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
2022    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2023
2024  case ISD::SIGN_EXTEND_INREG:
2025    // Max of the input and what this extends.
2026    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2027    Tmp = VTBits-Tmp+1;
2028
2029    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2030    return std::max(Tmp, Tmp2);
2031
2032  case ISD::SRA:
2033    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    // SRA X, C   -> adds C sign bits.
2035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2036      Tmp += C->getZExtValue();
2037      if (Tmp > VTBits) Tmp = VTBits;
2038    }
2039    return Tmp;
2040  case ISD::SHL:
2041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2042      // shl destroys sign bits.
2043      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2045          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2046      return Tmp - C->getZExtValue();
2047    }
2048    break;
2049  case ISD::AND:
2050  case ISD::OR:
2051  case ISD::XOR:    // NOT is handled here.
2052    // Logical binary ops preserve the number of sign bits at the worst.
2053    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054    if (Tmp != 1) {
2055      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2056      FirstAnswer = std::min(Tmp, Tmp2);
2057      // We computed what we know about the sign bits as our first
2058      // answer. Now proceed to the generic code that uses
2059      // ComputeMaskedBits, and pick whichever answer is better.
2060    }
2061    break;
2062
2063  case ISD::SELECT:
2064    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2065    if (Tmp == 1) return 1;  // Early out.
2066    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2067    return std::min(Tmp, Tmp2);
2068
2069  case ISD::SADDO:
2070  case ISD::UADDO:
2071  case ISD::SSUBO:
2072  case ISD::USUBO:
2073  case ISD::SMULO:
2074  case ISD::UMULO:
2075    if (Op.getResNo() != 1)
2076      break;
2077    // The boolean result conforms to getBooleanContents.  Fall through.
2078  case ISD::SETCC:
2079    // If setcc returns 0/-1, all bits are sign bits.
2080    if (TLI.getBooleanContents() ==
2081        TargetLowering::ZeroOrNegativeOneBooleanContent)
2082      return VTBits;
2083    break;
2084  case ISD::ROTL:
2085  case ISD::ROTR:
2086    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2087      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2088
2089      // Handle rotate right by N like a rotate left by 32-N.
2090      if (Op.getOpcode() == ISD::ROTR)
2091        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2092
2093      // If we aren't rotating out all of the known-in sign bits, return the
2094      // number that are left.  This handles rotl(sext(x), 1) for example.
2095      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2096      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2097    }
2098    break;
2099  case ISD::ADD:
2100    // Add can have at most one carry bit.  Thus we know that the output
2101    // is, at worst, one more bit than the inputs.
2102    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2103    if (Tmp == 1) return 1;  // Early out.
2104
2105    // Special case decrementing a value (ADD X, -1):
2106    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2107      if (CRHS->isAllOnesValue()) {
2108        APInt KnownZero, KnownOne;
2109        APInt Mask = APInt::getAllOnesValue(VTBits);
2110        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2111
2112        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113        // sign bits set.
2114        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115          return VTBits;
2116
2117        // If we are subtracting one from a positive number, there is no carry
2118        // out of the result.
2119        if (KnownZero.isNegative())
2120          return Tmp;
2121      }
2122
2123    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2124    if (Tmp2 == 1) return 1;
2125      return std::min(Tmp, Tmp2)-1;
2126    break;
2127
2128  case ISD::SUB:
2129    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2130    if (Tmp2 == 1) return 1;
2131
2132    // Handle NEG.
2133    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2134      if (CLHS->isNullValue()) {
2135        APInt KnownZero, KnownOne;
2136        APInt Mask = APInt::getAllOnesValue(VTBits);
2137        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2138        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139        // sign bits set.
2140        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141          return VTBits;
2142
2143        // If the input is known to be positive (the sign bit is known clear),
2144        // the output of the NEG has the same number of sign bits as the input.
2145        if (KnownZero.isNegative())
2146          return Tmp2;
2147
2148        // Otherwise, we treat this like a SUB.
2149      }
2150
2151    // Sub can have at most one carry bit.  Thus we know that the output
2152    // is, at worst, one more bit than the inputs.
2153    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2154    if (Tmp == 1) return 1;  // Early out.
2155      return std::min(Tmp, Tmp2)-1;
2156    break;
2157  case ISD::TRUNCATE:
2158    // FIXME: it's tricky to do anything useful for this, but it is an important
2159    // case for targets like X86.
2160    break;
2161  }
2162
2163  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2164  if (Op.getOpcode() == ISD::LOAD) {
2165    LoadSDNode *LD = cast<LoadSDNode>(Op);
2166    unsigned ExtType = LD->getExtensionType();
2167    switch (ExtType) {
2168    default: break;
2169    case ISD::SEXTLOAD:    // '17' bits known
2170      Tmp = LD->getMemoryVT().getSizeInBits();
2171      return VTBits-Tmp+1;
2172    case ISD::ZEXTLOAD:    // '16' bits known
2173      Tmp = LD->getMemoryVT().getSizeInBits();
2174      return VTBits-Tmp;
2175    }
2176  }
2177
2178  // Allow the target to implement this method for its nodes.
2179  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2180      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2181      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2182      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2183    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2184    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2185  }
2186
2187  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2188  // use this information.
2189  APInt KnownZero, KnownOne;
2190  APInt Mask = APInt::getAllOnesValue(VTBits);
2191  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2192
2193  if (KnownZero.isNegative()) {        // sign bit is 0
2194    Mask = KnownZero;
2195  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2196    Mask = KnownOne;
2197  } else {
2198    // Nothing known.
2199    return FirstAnswer;
2200  }
2201
2202  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2203  // the number of identical bits in the top of the input value.
2204  Mask = ~Mask;
2205  Mask <<= Mask.getBitWidth()-VTBits;
2206  // Return # leading zeros.  We use 'min' here in case Val was zero before
2207  // shifting.  We don't want to return '64' as for an i32 "0".
2208  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2209}
2210
2211bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2212  // If we're told that NaNs won't happen, assume they won't.
2213  if (FiniteOnlyFPMath())
2214    return true;
2215
2216  // If the value is a constant, we can obviously see if it is a NaN or not.
2217  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2218    return !C->getValueAPF().isNaN();
2219
2220  // TODO: Recognize more cases here.
2221
2222  return false;
2223}
2224
2225bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2226  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2227  if (!GA) return false;
2228  if (GA->getOffset() != 0) return false;
2229  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2230  if (!GV) return false;
2231  MachineModuleInfo *MMI = getMachineModuleInfo();
2232  return MMI && MMI->hasDebugInfo();
2233}
2234
2235
2236/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2237/// element of the result of the vector shuffle.
2238SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2239                                          unsigned i) {
2240  EVT VT = N->getValueType(0);
2241  DebugLoc dl = N->getDebugLoc();
2242  if (N->getMaskElt(i) < 0)
2243    return getUNDEF(VT.getVectorElementType());
2244  unsigned Index = N->getMaskElt(i);
2245  unsigned NumElems = VT.getVectorNumElements();
2246  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2247  Index %= NumElems;
2248
2249  if (V.getOpcode() == ISD::BIT_CONVERT) {
2250    V = V.getOperand(0);
2251    EVT VVT = V.getValueType();
2252    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2253      return SDValue();
2254  }
2255  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2256    return (Index == 0) ? V.getOperand(0)
2257                      : getUNDEF(VT.getVectorElementType());
2258  if (V.getOpcode() == ISD::BUILD_VECTOR)
2259    return V.getOperand(Index);
2260  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2261    return getShuffleScalarElt(SVN, Index);
2262  return SDValue();
2263}
2264
2265
2266/// getNode - Gets or creates the specified node.
2267///
2268SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2269  FoldingSetNodeID ID;
2270  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2271  void *IP = 0;
2272  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2273    return SDValue(E, 0);
2274  SDNode *N = NodeAllocator.Allocate<SDNode>();
2275  new (N) SDNode(Opcode, DL, getVTList(VT));
2276  CSEMap.InsertNode(N, IP);
2277
2278  AllNodes.push_back(N);
2279#ifndef NDEBUG
2280  VerifyNode(N);
2281#endif
2282  return SDValue(N, 0);
2283}
2284
2285SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2286                              EVT VT, SDValue Operand) {
2287  // Constant fold unary operations with an integer constant operand.
2288  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2289    const APInt &Val = C->getAPIntValue();
2290    unsigned BitWidth = VT.getSizeInBits();
2291    switch (Opcode) {
2292    default: break;
2293    case ISD::SIGN_EXTEND:
2294      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2295    case ISD::ANY_EXTEND:
2296    case ISD::ZERO_EXTEND:
2297    case ISD::TRUNCATE:
2298      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2299    case ISD::UINT_TO_FP:
2300    case ISD::SINT_TO_FP: {
2301      const uint64_t zero[] = {0, 0};
2302      // No compile time operations on this type.
2303      if (VT==MVT::ppcf128)
2304        break;
2305      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2306      (void)apf.convertFromAPInt(Val,
2307                                 Opcode==ISD::SINT_TO_FP,
2308                                 APFloat::rmNearestTiesToEven);
2309      return getConstantFP(apf, VT);
2310    }
2311    case ISD::BIT_CONVERT:
2312      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2313        return getConstantFP(Val.bitsToFloat(), VT);
2314      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2315        return getConstantFP(Val.bitsToDouble(), VT);
2316      break;
2317    case ISD::BSWAP:
2318      return getConstant(Val.byteSwap(), VT);
2319    case ISD::CTPOP:
2320      return getConstant(Val.countPopulation(), VT);
2321    case ISD::CTLZ:
2322      return getConstant(Val.countLeadingZeros(), VT);
2323    case ISD::CTTZ:
2324      return getConstant(Val.countTrailingZeros(), VT);
2325    }
2326  }
2327
2328  // Constant fold unary operations with a floating point constant operand.
2329  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2330    APFloat V = C->getValueAPF();    // make copy
2331    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2332      switch (Opcode) {
2333      case ISD::FNEG:
2334        V.changeSign();
2335        return getConstantFP(V, VT);
2336      case ISD::FABS:
2337        V.clearSign();
2338        return getConstantFP(V, VT);
2339      case ISD::FP_ROUND:
2340      case ISD::FP_EXTEND: {
2341        bool ignored;
2342        // This can return overflow, underflow, or inexact; we don't care.
2343        // FIXME need to be more flexible about rounding mode.
2344        (void)V.convert(*EVTToAPFloatSemantics(VT),
2345                        APFloat::rmNearestTiesToEven, &ignored);
2346        return getConstantFP(V, VT);
2347      }
2348      case ISD::FP_TO_SINT:
2349      case ISD::FP_TO_UINT: {
2350        integerPart x[2];
2351        bool ignored;
2352        assert(integerPartWidth >= 64);
2353        // FIXME need to be more flexible about rounding mode.
2354        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2355                              Opcode==ISD::FP_TO_SINT,
2356                              APFloat::rmTowardZero, &ignored);
2357        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2358          break;
2359        APInt api(VT.getSizeInBits(), 2, x);
2360        return getConstant(api, VT);
2361      }
2362      case ISD::BIT_CONVERT:
2363        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2364          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2365        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2366          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2367        break;
2368      }
2369    }
2370  }
2371
2372  unsigned OpOpcode = Operand.getNode()->getOpcode();
2373  switch (Opcode) {
2374  case ISD::TokenFactor:
2375  case ISD::MERGE_VALUES:
2376  case ISD::CONCAT_VECTORS:
2377    return Operand;         // Factor, merge or concat of one node?  No need.
2378  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2379  case ISD::FP_EXTEND:
2380    assert(VT.isFloatingPoint() &&
2381           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2382    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2383    if (Operand.getOpcode() == ISD::UNDEF)
2384      return getUNDEF(VT);
2385    break;
2386  case ISD::SIGN_EXTEND:
2387    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2388           "Invalid SIGN_EXTEND!");
2389    if (Operand.getValueType() == VT) return Operand;   // noop extension
2390    assert(Operand.getValueType().bitsLT(VT)
2391           && "Invalid sext node, dst < src!");
2392    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2393      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2394    break;
2395  case ISD::ZERO_EXTEND:
2396    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2397           "Invalid ZERO_EXTEND!");
2398    if (Operand.getValueType() == VT) return Operand;   // noop extension
2399    assert(Operand.getValueType().bitsLT(VT)
2400           && "Invalid zext node, dst < src!");
2401    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2402      return getNode(ISD::ZERO_EXTEND, DL, VT,
2403                     Operand.getNode()->getOperand(0));
2404    break;
2405  case ISD::ANY_EXTEND:
2406    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2407           "Invalid ANY_EXTEND!");
2408    if (Operand.getValueType() == VT) return Operand;   // noop extension
2409    assert(Operand.getValueType().bitsLT(VT)
2410           && "Invalid anyext node, dst < src!");
2411    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2412      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2413      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2414    break;
2415  case ISD::TRUNCATE:
2416    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2417           "Invalid TRUNCATE!");
2418    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2419    assert(Operand.getValueType().bitsGT(VT)
2420           && "Invalid truncate node, src < dst!");
2421    if (OpOpcode == ISD::TRUNCATE)
2422      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2423    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2424             OpOpcode == ISD::ANY_EXTEND) {
2425      // If the source is smaller than the dest, we still need an extend.
2426      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2427        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2428      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2429        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2430      else
2431        return Operand.getNode()->getOperand(0);
2432    }
2433    break;
2434  case ISD::BIT_CONVERT:
2435    // Basic sanity checking.
2436    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2437           && "Cannot BIT_CONVERT between types of different sizes!");
2438    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2439    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2440      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2441    if (OpOpcode == ISD::UNDEF)
2442      return getUNDEF(VT);
2443    break;
2444  case ISD::SCALAR_TO_VECTOR:
2445    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2446           (VT.getVectorElementType() == Operand.getValueType() ||
2447            (VT.getVectorElementType().isInteger() &&
2448             Operand.getValueType().isInteger() &&
2449             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2450           "Illegal SCALAR_TO_VECTOR node!");
2451    if (OpOpcode == ISD::UNDEF)
2452      return getUNDEF(VT);
2453    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2454    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2455        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2456        Operand.getConstantOperandVal(1) == 0 &&
2457        Operand.getOperand(0).getValueType() == VT)
2458      return Operand.getOperand(0);
2459    break;
2460  case ISD::FNEG:
2461    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2462    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2463      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2464                     Operand.getNode()->getOperand(0));
2465    if (OpOpcode == ISD::FNEG)  // --X -> X
2466      return Operand.getNode()->getOperand(0);
2467    break;
2468  case ISD::FABS:
2469    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2470      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2471    break;
2472  }
2473
2474  SDNode *N;
2475  SDVTList VTs = getVTList(VT);
2476  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2477    FoldingSetNodeID ID;
2478    SDValue Ops[1] = { Operand };
2479    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2480    void *IP = 0;
2481    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2482      return SDValue(E, 0);
2483    N = NodeAllocator.Allocate<UnarySDNode>();
2484    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2485    CSEMap.InsertNode(N, IP);
2486  } else {
2487    N = NodeAllocator.Allocate<UnarySDNode>();
2488    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2489  }
2490
2491  AllNodes.push_back(N);
2492#ifndef NDEBUG
2493  VerifyNode(N);
2494#endif
2495  return SDValue(N, 0);
2496}
2497
2498SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2499                                             EVT VT,
2500                                             ConstantSDNode *Cst1,
2501                                             ConstantSDNode *Cst2) {
2502  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2503
2504  switch (Opcode) {
2505  case ISD::ADD:  return getConstant(C1 + C2, VT);
2506  case ISD::SUB:  return getConstant(C1 - C2, VT);
2507  case ISD::MUL:  return getConstant(C1 * C2, VT);
2508  case ISD::UDIV:
2509    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2510    break;
2511  case ISD::UREM:
2512    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2513    break;
2514  case ISD::SDIV:
2515    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2516    break;
2517  case ISD::SREM:
2518    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2519    break;
2520  case ISD::AND:  return getConstant(C1 & C2, VT);
2521  case ISD::OR:   return getConstant(C1 | C2, VT);
2522  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2523  case ISD::SHL:  return getConstant(C1 << C2, VT);
2524  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2525  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2526  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2527  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2528  default: break;
2529  }
2530
2531  return SDValue();
2532}
2533
2534SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2535                              SDValue N1, SDValue N2) {
2536  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2537  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2538  switch (Opcode) {
2539  default: break;
2540  case ISD::TokenFactor:
2541    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2542           N2.getValueType() == MVT::Other && "Invalid token factor!");
2543    // Fold trivial token factors.
2544    if (N1.getOpcode() == ISD::EntryToken) return N2;
2545    if (N2.getOpcode() == ISD::EntryToken) return N1;
2546    if (N1 == N2) return N1;
2547    break;
2548  case ISD::CONCAT_VECTORS:
2549    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2550    // one big BUILD_VECTOR.
2551    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2552        N2.getOpcode() == ISD::BUILD_VECTOR) {
2553      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2554      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2555      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2556    }
2557    break;
2558  case ISD::AND:
2559    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2560           N1.getValueType() == VT && "Binary operator types must match!");
2561    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2562    // worth handling here.
2563    if (N2C && N2C->isNullValue())
2564      return N2;
2565    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2566      return N1;
2567    break;
2568  case ISD::OR:
2569  case ISD::XOR:
2570  case ISD::ADD:
2571  case ISD::SUB:
2572    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2573           N1.getValueType() == VT && "Binary operator types must match!");
2574    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2575    // it's worth handling here.
2576    if (N2C && N2C->isNullValue())
2577      return N1;
2578    break;
2579  case ISD::UDIV:
2580  case ISD::UREM:
2581  case ISD::MULHU:
2582  case ISD::MULHS:
2583  case ISD::MUL:
2584  case ISD::SDIV:
2585  case ISD::SREM:
2586    assert(VT.isInteger() && "This operator does not apply to FP types!");
2587    // fall through
2588  case ISD::FADD:
2589  case ISD::FSUB:
2590  case ISD::FMUL:
2591  case ISD::FDIV:
2592  case ISD::FREM:
2593    if (UnsafeFPMath) {
2594      if (Opcode == ISD::FADD) {
2595        // 0+x --> x
2596        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2597          if (CFP->getValueAPF().isZero())
2598            return N2;
2599        // x+0 --> x
2600        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2601          if (CFP->getValueAPF().isZero())
2602            return N1;
2603      } else if (Opcode == ISD::FSUB) {
2604        // x-0 --> x
2605        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2606          if (CFP->getValueAPF().isZero())
2607            return N1;
2608      }
2609    }
2610    assert(N1.getValueType() == N2.getValueType() &&
2611           N1.getValueType() == VT && "Binary operator types must match!");
2612    break;
2613  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2614    assert(N1.getValueType() == VT &&
2615           N1.getValueType().isFloatingPoint() &&
2616           N2.getValueType().isFloatingPoint() &&
2617           "Invalid FCOPYSIGN!");
2618    break;
2619  case ISD::SHL:
2620  case ISD::SRA:
2621  case ISD::SRL:
2622  case ISD::ROTL:
2623  case ISD::ROTR:
2624    assert(VT == N1.getValueType() &&
2625           "Shift operators return type must be the same as their first arg");
2626    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2627           "Shifts only work on integers");
2628
2629    // Always fold shifts of i1 values so the code generator doesn't need to
2630    // handle them.  Since we know the size of the shift has to be less than the
2631    // size of the value, the shift/rotate count is guaranteed to be zero.
2632    if (VT == MVT::i1)
2633      return N1;
2634    break;
2635  case ISD::FP_ROUND_INREG: {
2636    EVT EVT = cast<VTSDNode>(N2)->getVT();
2637    assert(VT == N1.getValueType() && "Not an inreg round!");
2638    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2639           "Cannot FP_ROUND_INREG integer types");
2640    assert(EVT.bitsLE(VT) && "Not rounding down!");
2641    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2642    break;
2643  }
2644  case ISD::FP_ROUND:
2645    assert(VT.isFloatingPoint() &&
2646           N1.getValueType().isFloatingPoint() &&
2647           VT.bitsLE(N1.getValueType()) &&
2648           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2649    if (N1.getValueType() == VT) return N1;  // noop conversion.
2650    break;
2651  case ISD::AssertSext:
2652  case ISD::AssertZext: {
2653    EVT EVT = cast<VTSDNode>(N2)->getVT();
2654    assert(VT == N1.getValueType() && "Not an inreg extend!");
2655    assert(VT.isInteger() && EVT.isInteger() &&
2656           "Cannot *_EXTEND_INREG FP types");
2657    assert(EVT.bitsLE(VT) && "Not extending!");
2658    if (VT == EVT) return N1; // noop assertion.
2659    break;
2660  }
2661  case ISD::SIGN_EXTEND_INREG: {
2662    EVT EVT = cast<VTSDNode>(N2)->getVT();
2663    assert(VT == N1.getValueType() && "Not an inreg extend!");
2664    assert(VT.isInteger() && EVT.isInteger() &&
2665           "Cannot *_EXTEND_INREG FP types");
2666    assert(EVT.bitsLE(VT) && "Not extending!");
2667    if (EVT == VT) return N1;  // Not actually extending
2668
2669    if (N1C) {
2670      APInt Val = N1C->getAPIntValue();
2671      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2672      Val <<= Val.getBitWidth()-FromBits;
2673      Val = Val.ashr(Val.getBitWidth()-FromBits);
2674      return getConstant(Val, VT);
2675    }
2676    break;
2677  }
2678  case ISD::EXTRACT_VECTOR_ELT:
2679    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2680    if (N1.getOpcode() == ISD::UNDEF)
2681      return getUNDEF(VT);
2682
2683    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2684    // expanding copies of large vectors from registers.
2685    if (N2C &&
2686        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2687        N1.getNumOperands() > 0) {
2688      unsigned Factor =
2689        N1.getOperand(0).getValueType().getVectorNumElements();
2690      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2691                     N1.getOperand(N2C->getZExtValue() / Factor),
2692                     getConstant(N2C->getZExtValue() % Factor,
2693                                 N2.getValueType()));
2694    }
2695
2696    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2697    // expanding large vector constants.
2698    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2699      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2700      EVT VEltTy = N1.getValueType().getVectorElementType();
2701      if (Elt.getValueType() != VEltTy) {
2702        // If the vector element type is not legal, the BUILD_VECTOR operands
2703        // are promoted and implicitly truncated.  Make that explicit here.
2704        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2705      }
2706      if (VT != VEltTy) {
2707        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2708        // result is implicitly extended.
2709        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2710      }
2711      return Elt;
2712    }
2713
2714    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2715    // operations are lowered to scalars.
2716    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2717      // If the indices are the same, return the inserted element.
2718      if (N1.getOperand(2) == N2)
2719        return N1.getOperand(1);
2720      // If the indices are known different, extract the element from
2721      // the original vector.
2722      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2723               isa<ConstantSDNode>(N2))
2724        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2725    }
2726    break;
2727  case ISD::EXTRACT_ELEMENT:
2728    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2729    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2730           (N1.getValueType().isInteger() == VT.isInteger()) &&
2731           "Wrong types for EXTRACT_ELEMENT!");
2732
2733    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2734    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2735    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2736    if (N1.getOpcode() == ISD::BUILD_PAIR)
2737      return N1.getOperand(N2C->getZExtValue());
2738
2739    // EXTRACT_ELEMENT of a constant int is also very common.
2740    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2741      unsigned ElementSize = VT.getSizeInBits();
2742      unsigned Shift = ElementSize * N2C->getZExtValue();
2743      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2744      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2745    }
2746    break;
2747  case ISD::EXTRACT_SUBVECTOR:
2748    if (N1.getValueType() == VT) // Trivial extraction.
2749      return N1;
2750    break;
2751  }
2752
2753  if (N1C) {
2754    if (N2C) {
2755      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2756      if (SV.getNode()) return SV;
2757    } else {      // Cannonicalize constant to RHS if commutative
2758      if (isCommutativeBinOp(Opcode)) {
2759        std::swap(N1C, N2C);
2760        std::swap(N1, N2);
2761      }
2762    }
2763  }
2764
2765  // Constant fold FP operations.
2766  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2767  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2768  if (N1CFP) {
2769    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2770      // Cannonicalize constant to RHS if commutative
2771      std::swap(N1CFP, N2CFP);
2772      std::swap(N1, N2);
2773    } else if (N2CFP && VT != MVT::ppcf128) {
2774      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2775      APFloat::opStatus s;
2776      switch (Opcode) {
2777      case ISD::FADD:
2778        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2779        if (s != APFloat::opInvalidOp)
2780          return getConstantFP(V1, VT);
2781        break;
2782      case ISD::FSUB:
2783        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2784        if (s!=APFloat::opInvalidOp)
2785          return getConstantFP(V1, VT);
2786        break;
2787      case ISD::FMUL:
2788        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2789        if (s!=APFloat::opInvalidOp)
2790          return getConstantFP(V1, VT);
2791        break;
2792      case ISD::FDIV:
2793        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2794        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2795          return getConstantFP(V1, VT);
2796        break;
2797      case ISD::FREM :
2798        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2799        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2800          return getConstantFP(V1, VT);
2801        break;
2802      case ISD::FCOPYSIGN:
2803        V1.copySign(V2);
2804        return getConstantFP(V1, VT);
2805      default: break;
2806      }
2807    }
2808  }
2809
2810  // Canonicalize an UNDEF to the RHS, even over a constant.
2811  if (N1.getOpcode() == ISD::UNDEF) {
2812    if (isCommutativeBinOp(Opcode)) {
2813      std::swap(N1, N2);
2814    } else {
2815      switch (Opcode) {
2816      case ISD::FP_ROUND_INREG:
2817      case ISD::SIGN_EXTEND_INREG:
2818      case ISD::SUB:
2819      case ISD::FSUB:
2820      case ISD::FDIV:
2821      case ISD::FREM:
2822      case ISD::SRA:
2823        return N1;     // fold op(undef, arg2) -> undef
2824      case ISD::UDIV:
2825      case ISD::SDIV:
2826      case ISD::UREM:
2827      case ISD::SREM:
2828      case ISD::SRL:
2829      case ISD::SHL:
2830        if (!VT.isVector())
2831          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2832        // For vectors, we can't easily build an all zero vector, just return
2833        // the LHS.
2834        return N2;
2835      }
2836    }
2837  }
2838
2839  // Fold a bunch of operators when the RHS is undef.
2840  if (N2.getOpcode() == ISD::UNDEF) {
2841    switch (Opcode) {
2842    case ISD::XOR:
2843      if (N1.getOpcode() == ISD::UNDEF)
2844        // Handle undef ^ undef -> 0 special case. This is a common
2845        // idiom (misuse).
2846        return getConstant(0, VT);
2847      // fallthrough
2848    case ISD::ADD:
2849    case ISD::ADDC:
2850    case ISD::ADDE:
2851    case ISD::SUB:
2852    case ISD::UDIV:
2853    case ISD::SDIV:
2854    case ISD::UREM:
2855    case ISD::SREM:
2856      return N2;       // fold op(arg1, undef) -> undef
2857    case ISD::FADD:
2858    case ISD::FSUB:
2859    case ISD::FMUL:
2860    case ISD::FDIV:
2861    case ISD::FREM:
2862      if (UnsafeFPMath)
2863        return N2;
2864      break;
2865    case ISD::MUL:
2866    case ISD::AND:
2867    case ISD::SRL:
2868    case ISD::SHL:
2869      if (!VT.isVector())
2870        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2871      // For vectors, we can't easily build an all zero vector, just return
2872      // the LHS.
2873      return N1;
2874    case ISD::OR:
2875      if (!VT.isVector())
2876        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2877      // For vectors, we can't easily build an all one vector, just return
2878      // the LHS.
2879      return N1;
2880    case ISD::SRA:
2881      return N1;
2882    }
2883  }
2884
2885  // Memoize this node if possible.
2886  SDNode *N;
2887  SDVTList VTs = getVTList(VT);
2888  if (VT != MVT::Flag) {
2889    SDValue Ops[] = { N1, N2 };
2890    FoldingSetNodeID ID;
2891    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2892    void *IP = 0;
2893    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2894      return SDValue(E, 0);
2895    N = NodeAllocator.Allocate<BinarySDNode>();
2896    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2897    CSEMap.InsertNode(N, IP);
2898  } else {
2899    N = NodeAllocator.Allocate<BinarySDNode>();
2900    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2901  }
2902
2903  AllNodes.push_back(N);
2904#ifndef NDEBUG
2905  VerifyNode(N);
2906#endif
2907  return SDValue(N, 0);
2908}
2909
2910SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2911                              SDValue N1, SDValue N2, SDValue N3) {
2912  // Perform various simplifications.
2913  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2914  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2915  switch (Opcode) {
2916  case ISD::CONCAT_VECTORS:
2917    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2918    // one big BUILD_VECTOR.
2919    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2920        N2.getOpcode() == ISD::BUILD_VECTOR &&
2921        N3.getOpcode() == ISD::BUILD_VECTOR) {
2922      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2923      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2924      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2925      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2926    }
2927    break;
2928  case ISD::SETCC: {
2929    // Use FoldSetCC to simplify SETCC's.
2930    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2931    if (Simp.getNode()) return Simp;
2932    break;
2933  }
2934  case ISD::SELECT:
2935    if (N1C) {
2936     if (N1C->getZExtValue())
2937        return N2;             // select true, X, Y -> X
2938      else
2939        return N3;             // select false, X, Y -> Y
2940    }
2941
2942    if (N2 == N3) return N2;   // select C, X, X -> X
2943    break;
2944  case ISD::BRCOND:
2945    if (N2C) {
2946      if (N2C->getZExtValue()) // Unconditional branch
2947        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2948      else
2949        return N1;         // Never-taken branch
2950    }
2951    break;
2952  case ISD::VECTOR_SHUFFLE:
2953    llvm_unreachable("should use getVectorShuffle constructor!");
2954    break;
2955  case ISD::BIT_CONVERT:
2956    // Fold bit_convert nodes from a type to themselves.
2957    if (N1.getValueType() == VT)
2958      return N1;
2959    break;
2960  }
2961
2962  // Memoize node if it doesn't produce a flag.
2963  SDNode *N;
2964  SDVTList VTs = getVTList(VT);
2965  if (VT != MVT::Flag) {
2966    SDValue Ops[] = { N1, N2, N3 };
2967    FoldingSetNodeID ID;
2968    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2969    void *IP = 0;
2970    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2971      return SDValue(E, 0);
2972    N = NodeAllocator.Allocate<TernarySDNode>();
2973    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2974    CSEMap.InsertNode(N, IP);
2975  } else {
2976    N = NodeAllocator.Allocate<TernarySDNode>();
2977    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2978  }
2979  AllNodes.push_back(N);
2980#ifndef NDEBUG
2981  VerifyNode(N);
2982#endif
2983  return SDValue(N, 0);
2984}
2985
2986SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2987                              SDValue N1, SDValue N2, SDValue N3,
2988                              SDValue N4) {
2989  SDValue Ops[] = { N1, N2, N3, N4 };
2990  return getNode(Opcode, DL, VT, Ops, 4);
2991}
2992
2993SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2994                              SDValue N1, SDValue N2, SDValue N3,
2995                              SDValue N4, SDValue N5) {
2996  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2997  return getNode(Opcode, DL, VT, Ops, 5);
2998}
2999
3000/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3001/// the incoming stack arguments to be loaded from the stack.
3002SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3003  SmallVector<SDValue, 8> ArgChains;
3004
3005  // Include the original chain at the beginning of the list. When this is
3006  // used by target LowerCall hooks, this helps legalize find the
3007  // CALLSEQ_BEGIN node.
3008  ArgChains.push_back(Chain);
3009
3010  // Add a chain value for each stack argument.
3011  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3012       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3013    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3014      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3015        if (FI->getIndex() < 0)
3016          ArgChains.push_back(SDValue(L, 1));
3017
3018  // Build a tokenfactor for all the chains.
3019  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3020                 &ArgChains[0], ArgChains.size());
3021}
3022
3023/// getMemsetValue - Vectorized representation of the memset value
3024/// operand.
3025static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3026                              DebugLoc dl) {
3027  unsigned NumBits = VT.isVector() ?
3028    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3029  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3030    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3031    unsigned Shift = 8;
3032    for (unsigned i = NumBits; i > 8; i >>= 1) {
3033      Val = (Val << Shift) | Val;
3034      Shift <<= 1;
3035    }
3036    if (VT.isInteger())
3037      return DAG.getConstant(Val, VT);
3038    return DAG.getConstantFP(APFloat(Val), VT);
3039  }
3040
3041  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3042  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3043  unsigned Shift = 8;
3044  for (unsigned i = NumBits; i > 8; i >>= 1) {
3045    Value = DAG.getNode(ISD::OR, dl, VT,
3046                        DAG.getNode(ISD::SHL, dl, VT, Value,
3047                                    DAG.getConstant(Shift,
3048                                                    TLI.getShiftAmountTy())),
3049                        Value);
3050    Shift <<= 1;
3051  }
3052
3053  return Value;
3054}
3055
3056/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3057/// used when a memcpy is turned into a memset when the source is a constant
3058/// string ptr.
3059static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3060                                  const TargetLowering &TLI,
3061                                  std::string &Str, unsigned Offset) {
3062  // Handle vector with all elements zero.
3063  if (Str.empty()) {
3064    if (VT.isInteger())
3065      return DAG.getConstant(0, VT);
3066    unsigned NumElts = VT.getVectorNumElements();
3067    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3068    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3069                       DAG.getConstant(0,
3070                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3071  }
3072
3073  assert(!VT.isVector() && "Can't handle vector type here!");
3074  unsigned NumBits = VT.getSizeInBits();
3075  unsigned MSB = NumBits / 8;
3076  uint64_t Val = 0;
3077  if (TLI.isLittleEndian())
3078    Offset = Offset + MSB - 1;
3079  for (unsigned i = 0; i != MSB; ++i) {
3080    Val = (Val << 8) | (unsigned char)Str[Offset];
3081    Offset += TLI.isLittleEndian() ? -1 : 1;
3082  }
3083  return DAG.getConstant(Val, VT);
3084}
3085
3086/// getMemBasePlusOffset - Returns base and offset node for the
3087///
3088static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3089                                      SelectionDAG &DAG) {
3090  EVT VT = Base.getValueType();
3091  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3092                     VT, Base, DAG.getConstant(Offset, VT));
3093}
3094
3095/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3096///
3097static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3098  unsigned SrcDelta = 0;
3099  GlobalAddressSDNode *G = NULL;
3100  if (Src.getOpcode() == ISD::GlobalAddress)
3101    G = cast<GlobalAddressSDNode>(Src);
3102  else if (Src.getOpcode() == ISD::ADD &&
3103           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3104           Src.getOperand(1).getOpcode() == ISD::Constant) {
3105    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3106    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3107  }
3108  if (!G)
3109    return false;
3110
3111  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3112  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3113    return true;
3114
3115  return false;
3116}
3117
3118/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3119/// to replace the memset / memcpy is below the threshold. It also returns the
3120/// types of the sequence of memory ops to perform memset / memcpy.
3121static
3122bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3123                              SDValue Dst, SDValue Src,
3124                              unsigned Limit, uint64_t Size, unsigned &Align,
3125                              std::string &Str, bool &isSrcStr,
3126                              SelectionDAG &DAG,
3127                              const TargetLowering &TLI) {
3128  isSrcStr = isMemSrcFromString(Src, Str);
3129  bool isSrcConst = isa<ConstantSDNode>(Src);
3130  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3131  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3132  if (VT != MVT::iAny) {
3133    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3134    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3135    // If source is a string constant, this will require an unaligned load.
3136    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3137      if (Dst.getOpcode() != ISD::FrameIndex) {
3138        // Can't change destination alignment. It requires a unaligned store.
3139        if (AllowUnalign)
3140          VT = MVT::iAny;
3141      } else {
3142        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3143        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3144        if (MFI->isFixedObjectIndex(FI)) {
3145          // Can't change destination alignment. It requires a unaligned store.
3146          if (AllowUnalign)
3147            VT = MVT::iAny;
3148        } else {
3149          // Give the stack frame object a larger alignment if needed.
3150          if (MFI->getObjectAlignment(FI) < NewAlign)
3151            MFI->setObjectAlignment(FI, NewAlign);
3152          Align = NewAlign;
3153        }
3154      }
3155    }
3156  }
3157
3158  if (VT == MVT::iAny) {
3159    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3160      VT = MVT::i64;
3161    } else {
3162      switch (Align & 7) {
3163      case 0:  VT = MVT::i64; break;
3164      case 4:  VT = MVT::i32; break;
3165      case 2:  VT = MVT::i16; break;
3166      default: VT = MVT::i8;  break;
3167      }
3168    }
3169
3170    MVT LVT = MVT::i64;
3171    while (!TLI.isTypeLegal(LVT))
3172      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3173    assert(LVT.isInteger());
3174
3175    if (VT.bitsGT(LVT))
3176      VT = LVT;
3177  }
3178
3179  unsigned NumMemOps = 0;
3180  while (Size != 0) {
3181    unsigned VTSize = VT.getSizeInBits() / 8;
3182    while (VTSize > Size) {
3183      // For now, only use non-vector load / store's for the left-over pieces.
3184      if (VT.isVector()) {
3185        VT = MVT::i64;
3186        while (!TLI.isTypeLegal(VT))
3187          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3188        VTSize = VT.getSizeInBits() / 8;
3189      } else {
3190        // This can result in a type that is not legal on the target, e.g.
3191        // 1 or 2 bytes on PPC.
3192        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3193        VTSize >>= 1;
3194      }
3195    }
3196
3197    if (++NumMemOps > Limit)
3198      return false;
3199    MemOps.push_back(VT);
3200    Size -= VTSize;
3201  }
3202
3203  return true;
3204}
3205
3206static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3207                                         SDValue Chain, SDValue Dst,
3208                                         SDValue Src, uint64_t Size,
3209                                         unsigned Align, bool AlwaysInline,
3210                                         const Value *DstSV, uint64_t DstSVOff,
3211                                         const Value *SrcSV, uint64_t SrcSVOff){
3212  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3213
3214  // Expand memcpy to a series of load and store ops if the size operand falls
3215  // below a certain threshold.
3216  std::vector<EVT> MemOps;
3217  uint64_t Limit = -1ULL;
3218  if (!AlwaysInline)
3219    Limit = TLI.getMaxStoresPerMemcpy();
3220  unsigned DstAlign = Align;  // Destination alignment can change.
3221  std::string Str;
3222  bool CopyFromStr;
3223  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3224                                Str, CopyFromStr, DAG, TLI))
3225    return SDValue();
3226
3227
3228  bool isZeroStr = CopyFromStr && Str.empty();
3229  SmallVector<SDValue, 8> OutChains;
3230  unsigned NumMemOps = MemOps.size();
3231  uint64_t SrcOff = 0, DstOff = 0;
3232  for (unsigned i = 0; i != NumMemOps; ++i) {
3233    EVT VT = MemOps[i];
3234    unsigned VTSize = VT.getSizeInBits() / 8;
3235    SDValue Value, Store;
3236
3237    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3238      // It's unlikely a store of a vector immediate can be done in a single
3239      // instruction. It would require a load from a constantpool first.
3240      // We also handle store a vector with all zero's.
3241      // FIXME: Handle other cases where store of vector immediate is done in
3242      // a single instruction.
3243      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3244      Store = DAG.getStore(Chain, dl, Value,
3245                           getMemBasePlusOffset(Dst, DstOff, DAG),
3246                           DstSV, DstSVOff + DstOff, false, DstAlign);
3247    } else {
3248      // The type might not be legal for the target.  This should only happen
3249      // if the type is smaller than a legal type, as on PPC, so the right
3250      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3251      // to Load/Store if NVT==VT.
3252      // FIXME does the case above also need this?
3253      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3254      assert(NVT.bitsGE(VT));
3255      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3256                             getMemBasePlusOffset(Src, SrcOff, DAG),
3257                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3258      Store = DAG.getTruncStore(Chain, dl, Value,
3259                             getMemBasePlusOffset(Dst, DstOff, DAG),
3260                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3261    }
3262    OutChains.push_back(Store);
3263    SrcOff += VTSize;
3264    DstOff += VTSize;
3265  }
3266
3267  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3268                     &OutChains[0], OutChains.size());
3269}
3270
3271static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3272                                          SDValue Chain, SDValue Dst,
3273                                          SDValue Src, uint64_t Size,
3274                                          unsigned Align, bool AlwaysInline,
3275                                          const Value *DstSV, uint64_t DstSVOff,
3276                                          const Value *SrcSV, uint64_t SrcSVOff){
3277  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3278
3279  // Expand memmove to a series of load and store ops if the size operand falls
3280  // below a certain threshold.
3281  std::vector<EVT> MemOps;
3282  uint64_t Limit = -1ULL;
3283  if (!AlwaysInline)
3284    Limit = TLI.getMaxStoresPerMemmove();
3285  unsigned DstAlign = Align;  // Destination alignment can change.
3286  std::string Str;
3287  bool CopyFromStr;
3288  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3289                                Str, CopyFromStr, DAG, TLI))
3290    return SDValue();
3291
3292  uint64_t SrcOff = 0, DstOff = 0;
3293
3294  SmallVector<SDValue, 8> LoadValues;
3295  SmallVector<SDValue, 8> LoadChains;
3296  SmallVector<SDValue, 8> OutChains;
3297  unsigned NumMemOps = MemOps.size();
3298  for (unsigned i = 0; i < NumMemOps; i++) {
3299    EVT VT = MemOps[i];
3300    unsigned VTSize = VT.getSizeInBits() / 8;
3301    SDValue Value, Store;
3302
3303    Value = DAG.getLoad(VT, dl, Chain,
3304                        getMemBasePlusOffset(Src, SrcOff, DAG),
3305                        SrcSV, SrcSVOff + SrcOff, false, Align);
3306    LoadValues.push_back(Value);
3307    LoadChains.push_back(Value.getValue(1));
3308    SrcOff += VTSize;
3309  }
3310  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3311                      &LoadChains[0], LoadChains.size());
3312  OutChains.clear();
3313  for (unsigned i = 0; i < NumMemOps; i++) {
3314    EVT VT = MemOps[i];
3315    unsigned VTSize = VT.getSizeInBits() / 8;
3316    SDValue Value, Store;
3317
3318    Store = DAG.getStore(Chain, dl, LoadValues[i],
3319                         getMemBasePlusOffset(Dst, DstOff, DAG),
3320                         DstSV, DstSVOff + DstOff, false, DstAlign);
3321    OutChains.push_back(Store);
3322    DstOff += VTSize;
3323  }
3324
3325  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3326                     &OutChains[0], OutChains.size());
3327}
3328
3329static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3330                                 SDValue Chain, SDValue Dst,
3331                                 SDValue Src, uint64_t Size,
3332                                 unsigned Align,
3333                                 const Value *DstSV, uint64_t DstSVOff) {
3334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3335
3336  // Expand memset to a series of load/store ops if the size operand
3337  // falls below a certain threshold.
3338  std::vector<EVT> MemOps;
3339  std::string Str;
3340  bool CopyFromStr;
3341  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3342                                Size, Align, Str, CopyFromStr, DAG, TLI))
3343    return SDValue();
3344
3345  SmallVector<SDValue, 8> OutChains;
3346  uint64_t DstOff = 0;
3347
3348  unsigned NumMemOps = MemOps.size();
3349  for (unsigned i = 0; i < NumMemOps; i++) {
3350    EVT VT = MemOps[i];
3351    unsigned VTSize = VT.getSizeInBits() / 8;
3352    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3353    SDValue Store = DAG.getStore(Chain, dl, Value,
3354                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3355                                 DstSV, DstSVOff + DstOff);
3356    OutChains.push_back(Store);
3357    DstOff += VTSize;
3358  }
3359
3360  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3361                     &OutChains[0], OutChains.size());
3362}
3363
3364SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3365                                SDValue Src, SDValue Size,
3366                                unsigned Align, bool AlwaysInline,
3367                                const Value *DstSV, uint64_t DstSVOff,
3368                                const Value *SrcSV, uint64_t SrcSVOff) {
3369
3370  // Check to see if we should lower the memcpy to loads and stores first.
3371  // For cases within the target-specified limits, this is the best choice.
3372  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3373  if (ConstantSize) {
3374    // Memcpy with size zero? Just return the original chain.
3375    if (ConstantSize->isNullValue())
3376      return Chain;
3377
3378    SDValue Result =
3379      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3380                              ConstantSize->getZExtValue(),
3381                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3382    if (Result.getNode())
3383      return Result;
3384  }
3385
3386  // Then check to see if we should lower the memcpy with target-specific
3387  // code. If the target chooses to do this, this is the next best.
3388  SDValue Result =
3389    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3390                                AlwaysInline,
3391                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3392  if (Result.getNode())
3393    return Result;
3394
3395  // If we really need inline code and the target declined to provide it,
3396  // use a (potentially long) sequence of loads and stores.
3397  if (AlwaysInline) {
3398    assert(ConstantSize && "AlwaysInline requires a constant size!");
3399    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3400                                   ConstantSize->getZExtValue(), Align, true,
3401                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3402  }
3403
3404  // Emit a library call.
3405  TargetLowering::ArgListTy Args;
3406  TargetLowering::ArgListEntry Entry;
3407  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3408  Entry.Node = Dst; Args.push_back(Entry);
3409  Entry.Node = Src; Args.push_back(Entry);
3410  Entry.Node = Size; Args.push_back(Entry);
3411  // FIXME: pass in DebugLoc
3412  std::pair<SDValue,SDValue> CallResult =
3413    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3414                    false, false, false, false, 0,
3415                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3416                    /*isReturnValueUsed=*/false,
3417                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3418                                      TLI.getPointerTy()),
3419                    Args, *this, dl);
3420  return CallResult.second;
3421}
3422
3423SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3424                                 SDValue Src, SDValue Size,
3425                                 unsigned Align,
3426                                 const Value *DstSV, uint64_t DstSVOff,
3427                                 const Value *SrcSV, uint64_t SrcSVOff) {
3428
3429  // Check to see if we should lower the memmove to loads and stores first.
3430  // For cases within the target-specified limits, this is the best choice.
3431  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3432  if (ConstantSize) {
3433    // Memmove with size zero? Just return the original chain.
3434    if (ConstantSize->isNullValue())
3435      return Chain;
3436
3437    SDValue Result =
3438      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3439                               ConstantSize->getZExtValue(),
3440                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3441    if (Result.getNode())
3442      return Result;
3443  }
3444
3445  // Then check to see if we should lower the memmove with target-specific
3446  // code. If the target chooses to do this, this is the next best.
3447  SDValue Result =
3448    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3449                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3450  if (Result.getNode())
3451    return Result;
3452
3453  // Emit a library call.
3454  TargetLowering::ArgListTy Args;
3455  TargetLowering::ArgListEntry Entry;
3456  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3457  Entry.Node = Dst; Args.push_back(Entry);
3458  Entry.Node = Src; Args.push_back(Entry);
3459  Entry.Node = Size; Args.push_back(Entry);
3460  // FIXME:  pass in DebugLoc
3461  std::pair<SDValue,SDValue> CallResult =
3462    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3463                    false, false, false, false, 0,
3464                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3465                    /*isReturnValueUsed=*/false,
3466                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3467                                      TLI.getPointerTy()),
3468                    Args, *this, dl);
3469  return CallResult.second;
3470}
3471
3472SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3473                                SDValue Src, SDValue Size,
3474                                unsigned Align,
3475                                const Value *DstSV, uint64_t DstSVOff) {
3476
3477  // Check to see if we should lower the memset to stores first.
3478  // For cases within the target-specified limits, this is the best choice.
3479  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3480  if (ConstantSize) {
3481    // Memset with size zero? Just return the original chain.
3482    if (ConstantSize->isNullValue())
3483      return Chain;
3484
3485    SDValue Result =
3486      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3487                      Align, DstSV, DstSVOff);
3488    if (Result.getNode())
3489      return Result;
3490  }
3491
3492  // Then check to see if we should lower the memset with target-specific
3493  // code. If the target chooses to do this, this is the next best.
3494  SDValue Result =
3495    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3496                                DstSV, DstSVOff);
3497  if (Result.getNode())
3498    return Result;
3499
3500  // Emit a library call.
3501  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3502  TargetLowering::ArgListTy Args;
3503  TargetLowering::ArgListEntry Entry;
3504  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3505  Args.push_back(Entry);
3506  // Extend or truncate the argument to be an i32 value for the call.
3507  if (Src.getValueType().bitsGT(MVT::i32))
3508    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3509  else
3510    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3511  Entry.Node = Src;
3512  Entry.Ty = Type::getInt32Ty(*getContext());
3513  Entry.isSExt = true;
3514  Args.push_back(Entry);
3515  Entry.Node = Size;
3516  Entry.Ty = IntPtrTy;
3517  Entry.isSExt = false;
3518  Args.push_back(Entry);
3519  // FIXME: pass in DebugLoc
3520  std::pair<SDValue,SDValue> CallResult =
3521    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3522                    false, false, false, false, 0,
3523                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3524                    /*isReturnValueUsed=*/false,
3525                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3526                                      TLI.getPointerTy()),
3527                    Args, *this, dl);
3528  return CallResult.second;
3529}
3530
3531SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3532                                SDValue Chain,
3533                                SDValue Ptr, SDValue Cmp,
3534                                SDValue Swp, const Value* PtrVal,
3535                                unsigned Alignment) {
3536  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3537    Alignment = getEVTAlignment(MemVT);
3538
3539  // Check if the memory reference references a frame index
3540  if (!PtrVal)
3541    if (const FrameIndexSDNode *FI =
3542          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3543      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3544
3545  MachineFunction &MF = getMachineFunction();
3546  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3547
3548  // For now, atomics are considered to be volatile always.
3549  Flags |= MachineMemOperand::MOVolatile;
3550
3551  MachineMemOperand *MMO =
3552    MF.getMachineMemOperand(PtrVal, Flags, 0,
3553                            MemVT.getStoreSize(), Alignment);
3554
3555  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3556}
3557
3558SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3559                                SDValue Chain,
3560                                SDValue Ptr, SDValue Cmp,
3561                                SDValue Swp, MachineMemOperand *MMO) {
3562  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3563  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3564
3565  EVT VT = Cmp.getValueType();
3566
3567  SDVTList VTs = getVTList(VT, MVT::Other);
3568  FoldingSetNodeID ID;
3569  ID.AddInteger(MemVT.getRawBits());
3570  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3571  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3572  void* IP = 0;
3573  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3574    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3575    return SDValue(E, 0);
3576  }
3577  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3578  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3579  CSEMap.InsertNode(N, IP);
3580  AllNodes.push_back(N);
3581  return SDValue(N, 0);
3582}
3583
3584SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3585                                SDValue Chain,
3586                                SDValue Ptr, SDValue Val,
3587                                const Value* PtrVal,
3588                                unsigned Alignment) {
3589  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3590    Alignment = getEVTAlignment(MemVT);
3591
3592  // Check if the memory reference references a frame index
3593  if (!PtrVal)
3594    if (const FrameIndexSDNode *FI =
3595          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3596      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3597
3598  MachineFunction &MF = getMachineFunction();
3599  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3600
3601  // For now, atomics are considered to be volatile always.
3602  Flags |= MachineMemOperand::MOVolatile;
3603
3604  MachineMemOperand *MMO =
3605    MF.getMachineMemOperand(PtrVal, Flags, 0,
3606                            MemVT.getStoreSize(), Alignment);
3607
3608  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3609}
3610
3611SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3612                                SDValue Chain,
3613                                SDValue Ptr, SDValue Val,
3614                                MachineMemOperand *MMO) {
3615  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3616          Opcode == ISD::ATOMIC_LOAD_SUB ||
3617          Opcode == ISD::ATOMIC_LOAD_AND ||
3618          Opcode == ISD::ATOMIC_LOAD_OR ||
3619          Opcode == ISD::ATOMIC_LOAD_XOR ||
3620          Opcode == ISD::ATOMIC_LOAD_NAND ||
3621          Opcode == ISD::ATOMIC_LOAD_MIN ||
3622          Opcode == ISD::ATOMIC_LOAD_MAX ||
3623          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3624          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3625          Opcode == ISD::ATOMIC_SWAP) &&
3626         "Invalid Atomic Op");
3627
3628  EVT VT = Val.getValueType();
3629
3630  SDVTList VTs = getVTList(VT, MVT::Other);
3631  FoldingSetNodeID ID;
3632  ID.AddInteger(MemVT.getRawBits());
3633  SDValue Ops[] = {Chain, Ptr, Val};
3634  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3635  void* IP = 0;
3636  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3637    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3638    return SDValue(E, 0);
3639  }
3640  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3641  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3642  CSEMap.InsertNode(N, IP);
3643  AllNodes.push_back(N);
3644  return SDValue(N, 0);
3645}
3646
3647/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3648/// Allowed to return something different (and simpler) if Simplify is true.
3649SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3650                                     DebugLoc dl) {
3651  if (NumOps == 1)
3652    return Ops[0];
3653
3654  SmallVector<EVT, 4> VTs;
3655  VTs.reserve(NumOps);
3656  for (unsigned i = 0; i < NumOps; ++i)
3657    VTs.push_back(Ops[i].getValueType());
3658  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3659                 Ops, NumOps);
3660}
3661
3662SDValue
3663SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3664                                  const EVT *VTs, unsigned NumVTs,
3665                                  const SDValue *Ops, unsigned NumOps,
3666                                  EVT MemVT, const Value *srcValue, int SVOff,
3667                                  unsigned Align, bool Vol,
3668                                  bool ReadMem, bool WriteMem) {
3669  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3670                             MemVT, srcValue, SVOff, Align, Vol,
3671                             ReadMem, WriteMem);
3672}
3673
3674SDValue
3675SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3676                                  const SDValue *Ops, unsigned NumOps,
3677                                  EVT MemVT, const Value *srcValue, int SVOff,
3678                                  unsigned Align, bool Vol,
3679                                  bool ReadMem, bool WriteMem) {
3680  if (Align == 0)  // Ensure that codegen never sees alignment 0
3681    Align = getEVTAlignment(MemVT);
3682
3683  MachineFunction &MF = getMachineFunction();
3684  unsigned Flags = 0;
3685  if (WriteMem)
3686    Flags |= MachineMemOperand::MOStore;
3687  if (ReadMem)
3688    Flags |= MachineMemOperand::MOLoad;
3689  if (Vol)
3690    Flags |= MachineMemOperand::MOVolatile;
3691  MachineMemOperand *MMO =
3692    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3693                            MemVT.getStoreSize(), Align);
3694
3695  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3696}
3697
3698SDValue
3699SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3700                                  const SDValue *Ops, unsigned NumOps,
3701                                  EVT MemVT, MachineMemOperand *MMO) {
3702  assert((Opcode == ISD::INTRINSIC_VOID ||
3703          Opcode == ISD::INTRINSIC_W_CHAIN ||
3704          (Opcode <= INT_MAX &&
3705           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3706         "Opcode is not a memory-accessing opcode!");
3707
3708  // Memoize the node unless it returns a flag.
3709  MemIntrinsicSDNode *N;
3710  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3711    FoldingSetNodeID ID;
3712    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3713    void *IP = 0;
3714    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3715      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3716      return SDValue(E, 0);
3717    }
3718
3719    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3720    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3721    CSEMap.InsertNode(N, IP);
3722  } else {
3723    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3724    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3725  }
3726  AllNodes.push_back(N);
3727  return SDValue(N, 0);
3728}
3729
3730SDValue
3731SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3732                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3733                      SDValue Ptr, SDValue Offset,
3734                      const Value *SV, int SVOffset, EVT MemVT,
3735                      bool isVolatile, unsigned Alignment) {
3736  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3737    Alignment = getEVTAlignment(VT);
3738
3739  // Check if the memory reference references a frame index
3740  if (!SV)
3741    if (const FrameIndexSDNode *FI =
3742          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3743      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3744
3745  MachineFunction &MF = getMachineFunction();
3746  unsigned Flags = MachineMemOperand::MOLoad;
3747  if (isVolatile)
3748    Flags |= MachineMemOperand::MOVolatile;
3749  MachineMemOperand *MMO =
3750    MF.getMachineMemOperand(SV, Flags, SVOffset,
3751                            MemVT.getStoreSize(), Alignment);
3752  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3753}
3754
3755SDValue
3756SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3757                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3758                      SDValue Ptr, SDValue Offset, EVT MemVT,
3759                      MachineMemOperand *MMO) {
3760  if (VT == MemVT) {
3761    ExtType = ISD::NON_EXTLOAD;
3762  } else if (ExtType == ISD::NON_EXTLOAD) {
3763    assert(VT == MemVT && "Non-extending load from different memory type!");
3764  } else {
3765    // Extending load.
3766    if (VT.isVector())
3767      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3768             "Invalid vector extload!");
3769    else
3770      assert(MemVT.bitsLT(VT) &&
3771             "Should only be an extending load, not truncating!");
3772    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3773           "Cannot sign/zero extend a FP/Vector load!");
3774    assert(VT.isInteger() == MemVT.isInteger() &&
3775           "Cannot convert from FP to Int or Int -> FP!");
3776  }
3777
3778  bool Indexed = AM != ISD::UNINDEXED;
3779  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3780         "Unindexed load with an offset!");
3781
3782  SDVTList VTs = Indexed ?
3783    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3784  SDValue Ops[] = { Chain, Ptr, Offset };
3785  FoldingSetNodeID ID;
3786  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3787  ID.AddInteger(MemVT.getRawBits());
3788  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3789  void *IP = 0;
3790  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3791    cast<LoadSDNode>(E)->refineAlignment(MMO);
3792    return SDValue(E, 0);
3793  }
3794  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3795  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3796  CSEMap.InsertNode(N, IP);
3797  AllNodes.push_back(N);
3798  return SDValue(N, 0);
3799}
3800
3801SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3802                              SDValue Chain, SDValue Ptr,
3803                              const Value *SV, int SVOffset,
3804                              bool isVolatile, unsigned Alignment) {
3805  SDValue Undef = getUNDEF(Ptr.getValueType());
3806  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3807                 SV, SVOffset, VT, isVolatile, Alignment);
3808}
3809
3810SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3811                                 SDValue Chain, SDValue Ptr,
3812                                 const Value *SV,
3813                                 int SVOffset, EVT MemVT,
3814                                 bool isVolatile, unsigned Alignment) {
3815  SDValue Undef = getUNDEF(Ptr.getValueType());
3816  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3817                 SV, SVOffset, MemVT, isVolatile, Alignment);
3818}
3819
3820SDValue
3821SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3822                             SDValue Offset, ISD::MemIndexedMode AM) {
3823  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3824  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3825         "Load is already a indexed load!");
3826  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3827                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3828                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3829                 LD->isVolatile(), LD->getAlignment());
3830}
3831
3832SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3833                               SDValue Ptr, const Value *SV, int SVOffset,
3834                               bool isVolatile, unsigned Alignment) {
3835  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3836    Alignment = getEVTAlignment(Val.getValueType());
3837
3838  // Check if the memory reference references a frame index
3839  if (!SV)
3840    if (const FrameIndexSDNode *FI =
3841          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3842      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3843
3844  MachineFunction &MF = getMachineFunction();
3845  unsigned Flags = MachineMemOperand::MOStore;
3846  if (isVolatile)
3847    Flags |= MachineMemOperand::MOVolatile;
3848  MachineMemOperand *MMO =
3849    MF.getMachineMemOperand(SV, Flags, SVOffset,
3850                            Val.getValueType().getStoreSize(), Alignment);
3851
3852  return getStore(Chain, dl, Val, Ptr, MMO);
3853}
3854
3855SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3856                               SDValue Ptr, MachineMemOperand *MMO) {
3857  EVT VT = Val.getValueType();
3858  SDVTList VTs = getVTList(MVT::Other);
3859  SDValue Undef = getUNDEF(Ptr.getValueType());
3860  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3861  FoldingSetNodeID ID;
3862  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3863  ID.AddInteger(VT.getRawBits());
3864  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3865  void *IP = 0;
3866  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3867    cast<StoreSDNode>(E)->refineAlignment(MMO);
3868    return SDValue(E, 0);
3869  }
3870  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3871  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3872  CSEMap.InsertNode(N, IP);
3873  AllNodes.push_back(N);
3874  return SDValue(N, 0);
3875}
3876
3877SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3878                                    SDValue Ptr, const Value *SV,
3879                                    int SVOffset, EVT SVT,
3880                                    bool isVolatile, unsigned Alignment) {
3881  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3882    Alignment = getEVTAlignment(SVT);
3883
3884  // Check if the memory reference references a frame index
3885  if (!SV)
3886    if (const FrameIndexSDNode *FI =
3887          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3888      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3889
3890  MachineFunction &MF = getMachineFunction();
3891  unsigned Flags = MachineMemOperand::MOStore;
3892  if (isVolatile)
3893    Flags |= MachineMemOperand::MOVolatile;
3894  MachineMemOperand *MMO =
3895    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3896
3897  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3898}
3899
3900SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3901                                    SDValue Ptr, EVT SVT,
3902                                    MachineMemOperand *MMO) {
3903  EVT VT = Val.getValueType();
3904
3905  if (VT == SVT)
3906    return getStore(Chain, dl, Val, Ptr, MMO);
3907
3908  assert(VT.bitsGT(SVT) && "Not a truncation?");
3909  assert(VT.isInteger() == SVT.isInteger() &&
3910         "Can't do FP-INT conversion!");
3911
3912
3913  SDVTList VTs = getVTList(MVT::Other);
3914  SDValue Undef = getUNDEF(Ptr.getValueType());
3915  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3916  FoldingSetNodeID ID;
3917  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3918  ID.AddInteger(SVT.getRawBits());
3919  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3920  void *IP = 0;
3921  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3922    cast<StoreSDNode>(E)->refineAlignment(MMO);
3923    return SDValue(E, 0);
3924  }
3925  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3926  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3927  CSEMap.InsertNode(N, IP);
3928  AllNodes.push_back(N);
3929  return SDValue(N, 0);
3930}
3931
3932SDValue
3933SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3934                              SDValue Offset, ISD::MemIndexedMode AM) {
3935  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3936  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3937         "Store is already a indexed store!");
3938  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3939  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3940  FoldingSetNodeID ID;
3941  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3942  ID.AddInteger(ST->getMemoryVT().getRawBits());
3943  ID.AddInteger(ST->getRawSubclassData());
3944  void *IP = 0;
3945  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3946    return SDValue(E, 0);
3947  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3948  new (N) StoreSDNode(Ops, dl, VTs, AM,
3949                      ST->isTruncatingStore(), ST->getMemoryVT(),
3950                      ST->getMemOperand());
3951  CSEMap.InsertNode(N, IP);
3952  AllNodes.push_back(N);
3953  return SDValue(N, 0);
3954}
3955
3956SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3957                               SDValue Chain, SDValue Ptr,
3958                               SDValue SV) {
3959  SDValue Ops[] = { Chain, Ptr, SV };
3960  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3961}
3962
3963SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3964                              const SDUse *Ops, unsigned NumOps) {
3965  switch (NumOps) {
3966  case 0: return getNode(Opcode, DL, VT);
3967  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3968  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3969  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3970  default: break;
3971  }
3972
3973  // Copy from an SDUse array into an SDValue array for use with
3974  // the regular getNode logic.
3975  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3976  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3977}
3978
3979SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3980                              const SDValue *Ops, unsigned NumOps) {
3981  switch (NumOps) {
3982  case 0: return getNode(Opcode, DL, VT);
3983  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3984  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3985  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3986  default: break;
3987  }
3988
3989  switch (Opcode) {
3990  default: break;
3991  case ISD::SELECT_CC: {
3992    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3993    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3994           "LHS and RHS of condition must have same type!");
3995    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3996           "True and False arms of SelectCC must have same type!");
3997    assert(Ops[2].getValueType() == VT &&
3998           "select_cc node must be of same type as true and false value!");
3999    break;
4000  }
4001  case ISD::BR_CC: {
4002    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4003    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4004           "LHS/RHS of comparison should match types!");
4005    break;
4006  }
4007  }
4008
4009  // Memoize nodes.
4010  SDNode *N;
4011  SDVTList VTs = getVTList(VT);
4012
4013  if (VT != MVT::Flag) {
4014    FoldingSetNodeID ID;
4015    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4016    void *IP = 0;
4017
4018    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4019      return SDValue(E, 0);
4020
4021    N = NodeAllocator.Allocate<SDNode>();
4022    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4023    CSEMap.InsertNode(N, IP);
4024  } else {
4025    N = NodeAllocator.Allocate<SDNode>();
4026    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4027  }
4028
4029  AllNodes.push_back(N);
4030#ifndef NDEBUG
4031  VerifyNode(N);
4032#endif
4033  return SDValue(N, 0);
4034}
4035
4036SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4037                              const std::vector<EVT> &ResultTys,
4038                              const SDValue *Ops, unsigned NumOps) {
4039  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4040                 Ops, NumOps);
4041}
4042
4043SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4044                              const EVT *VTs, unsigned NumVTs,
4045                              const SDValue *Ops, unsigned NumOps) {
4046  if (NumVTs == 1)
4047    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4048  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4049}
4050
4051SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4052                              const SDValue *Ops, unsigned NumOps) {
4053  if (VTList.NumVTs == 1)
4054    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4055
4056#if 0
4057  switch (Opcode) {
4058  // FIXME: figure out how to safely handle things like
4059  // int foo(int x) { return 1 << (x & 255); }
4060  // int bar() { return foo(256); }
4061  case ISD::SRA_PARTS:
4062  case ISD::SRL_PARTS:
4063  case ISD::SHL_PARTS:
4064    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4065        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4066      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4067    else if (N3.getOpcode() == ISD::AND)
4068      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4069        // If the and is only masking out bits that cannot effect the shift,
4070        // eliminate the and.
4071        unsigned NumBits = VT.getSizeInBits()*2;
4072        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4073          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4074      }
4075    break;
4076  }
4077#endif
4078
4079  // Memoize the node unless it returns a flag.
4080  SDNode *N;
4081  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4082    FoldingSetNodeID ID;
4083    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4084    void *IP = 0;
4085    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4086      return SDValue(E, 0);
4087    if (NumOps == 1) {
4088      N = NodeAllocator.Allocate<UnarySDNode>();
4089      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4090    } else if (NumOps == 2) {
4091      N = NodeAllocator.Allocate<BinarySDNode>();
4092      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4093    } else if (NumOps == 3) {
4094      N = NodeAllocator.Allocate<TernarySDNode>();
4095      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4096    } else {
4097      N = NodeAllocator.Allocate<SDNode>();
4098      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4099    }
4100    CSEMap.InsertNode(N, IP);
4101  } else {
4102    if (NumOps == 1) {
4103      N = NodeAllocator.Allocate<UnarySDNode>();
4104      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4105    } else if (NumOps == 2) {
4106      N = NodeAllocator.Allocate<BinarySDNode>();
4107      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4108    } else if (NumOps == 3) {
4109      N = NodeAllocator.Allocate<TernarySDNode>();
4110      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4111    } else {
4112      N = NodeAllocator.Allocate<SDNode>();
4113      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4114    }
4115  }
4116  AllNodes.push_back(N);
4117#ifndef NDEBUG
4118  VerifyNode(N);
4119#endif
4120  return SDValue(N, 0);
4121}
4122
4123SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4124  return getNode(Opcode, DL, VTList, 0, 0);
4125}
4126
4127SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4128                              SDValue N1) {
4129  SDValue Ops[] = { N1 };
4130  return getNode(Opcode, DL, VTList, Ops, 1);
4131}
4132
4133SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4134                              SDValue N1, SDValue N2) {
4135  SDValue Ops[] = { N1, N2 };
4136  return getNode(Opcode, DL, VTList, Ops, 2);
4137}
4138
4139SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4140                              SDValue N1, SDValue N2, SDValue N3) {
4141  SDValue Ops[] = { N1, N2, N3 };
4142  return getNode(Opcode, DL, VTList, Ops, 3);
4143}
4144
4145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4146                              SDValue N1, SDValue N2, SDValue N3,
4147                              SDValue N4) {
4148  SDValue Ops[] = { N1, N2, N3, N4 };
4149  return getNode(Opcode, DL, VTList, Ops, 4);
4150}
4151
4152SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4153                              SDValue N1, SDValue N2, SDValue N3,
4154                              SDValue N4, SDValue N5) {
4155  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4156  return getNode(Opcode, DL, VTList, Ops, 5);
4157}
4158
4159SDVTList SelectionDAG::getVTList(EVT VT) {
4160  return makeVTList(SDNode::getValueTypeList(VT), 1);
4161}
4162
4163SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4164  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4165       E = VTList.rend(); I != E; ++I)
4166    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4167      return *I;
4168
4169  EVT *Array = Allocator.Allocate<EVT>(2);
4170  Array[0] = VT1;
4171  Array[1] = VT2;
4172  SDVTList Result = makeVTList(Array, 2);
4173  VTList.push_back(Result);
4174  return Result;
4175}
4176
4177SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4178  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4179       E = VTList.rend(); I != E; ++I)
4180    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4181                          I->VTs[2] == VT3)
4182      return *I;
4183
4184  EVT *Array = Allocator.Allocate<EVT>(3);
4185  Array[0] = VT1;
4186  Array[1] = VT2;
4187  Array[2] = VT3;
4188  SDVTList Result = makeVTList(Array, 3);
4189  VTList.push_back(Result);
4190  return Result;
4191}
4192
4193SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4194  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4195       E = VTList.rend(); I != E; ++I)
4196    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4197                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4198      return *I;
4199
4200  EVT *Array = Allocator.Allocate<EVT>(3);
4201  Array[0] = VT1;
4202  Array[1] = VT2;
4203  Array[2] = VT3;
4204  Array[3] = VT4;
4205  SDVTList Result = makeVTList(Array, 4);
4206  VTList.push_back(Result);
4207  return Result;
4208}
4209
4210SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4211  switch (NumVTs) {
4212    case 0: llvm_unreachable("Cannot have nodes without results!");
4213    case 1: return getVTList(VTs[0]);
4214    case 2: return getVTList(VTs[0], VTs[1]);
4215    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4216    default: break;
4217  }
4218
4219  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4220       E = VTList.rend(); I != E; ++I) {
4221    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4222      continue;
4223
4224    bool NoMatch = false;
4225    for (unsigned i = 2; i != NumVTs; ++i)
4226      if (VTs[i] != I->VTs[i]) {
4227        NoMatch = true;
4228        break;
4229      }
4230    if (!NoMatch)
4231      return *I;
4232  }
4233
4234  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4235  std::copy(VTs, VTs+NumVTs, Array);
4236  SDVTList Result = makeVTList(Array, NumVTs);
4237  VTList.push_back(Result);
4238  return Result;
4239}
4240
4241
4242/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4243/// specified operands.  If the resultant node already exists in the DAG,
4244/// this does not modify the specified node, instead it returns the node that
4245/// already exists.  If the resultant node does not exist in the DAG, the
4246/// input node is returned.  As a degenerate case, if you specify the same
4247/// input operands as the node already has, the input node is returned.
4248SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4249  SDNode *N = InN.getNode();
4250  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4251
4252  // Check to see if there is no change.
4253  if (Op == N->getOperand(0)) return InN;
4254
4255  // See if the modified node already exists.
4256  void *InsertPos = 0;
4257  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4258    return SDValue(Existing, InN.getResNo());
4259
4260  // Nope it doesn't.  Remove the node from its current place in the maps.
4261  if (InsertPos)
4262    if (!RemoveNodeFromCSEMaps(N))
4263      InsertPos = 0;
4264
4265  // Now we update the operands.
4266  N->OperandList[0].set(Op);
4267
4268  // If this gets put into a CSE map, add it.
4269  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4270  return InN;
4271}
4272
4273SDValue SelectionDAG::
4274UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4275  SDNode *N = InN.getNode();
4276  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4277
4278  // Check to see if there is no change.
4279  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4280    return InN;   // No operands changed, just return the input node.
4281
4282  // See if the modified node already exists.
4283  void *InsertPos = 0;
4284  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4285    return SDValue(Existing, InN.getResNo());
4286
4287  // Nope it doesn't.  Remove the node from its current place in the maps.
4288  if (InsertPos)
4289    if (!RemoveNodeFromCSEMaps(N))
4290      InsertPos = 0;
4291
4292  // Now we update the operands.
4293  if (N->OperandList[0] != Op1)
4294    N->OperandList[0].set(Op1);
4295  if (N->OperandList[1] != Op2)
4296    N->OperandList[1].set(Op2);
4297
4298  // If this gets put into a CSE map, add it.
4299  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4300  return InN;
4301}
4302
4303SDValue SelectionDAG::
4304UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4305  SDValue Ops[] = { Op1, Op2, Op3 };
4306  return UpdateNodeOperands(N, Ops, 3);
4307}
4308
4309SDValue SelectionDAG::
4310UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4311                   SDValue Op3, SDValue Op4) {
4312  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4313  return UpdateNodeOperands(N, Ops, 4);
4314}
4315
4316SDValue SelectionDAG::
4317UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4318                   SDValue Op3, SDValue Op4, SDValue Op5) {
4319  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4320  return UpdateNodeOperands(N, Ops, 5);
4321}
4322
4323SDValue SelectionDAG::
4324UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4325  SDNode *N = InN.getNode();
4326  assert(N->getNumOperands() == NumOps &&
4327         "Update with wrong number of operands");
4328
4329  // Check to see if there is no change.
4330  bool AnyChange = false;
4331  for (unsigned i = 0; i != NumOps; ++i) {
4332    if (Ops[i] != N->getOperand(i)) {
4333      AnyChange = true;
4334      break;
4335    }
4336  }
4337
4338  // No operands changed, just return the input node.
4339  if (!AnyChange) return InN;
4340
4341  // See if the modified node already exists.
4342  void *InsertPos = 0;
4343  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4344    return SDValue(Existing, InN.getResNo());
4345
4346  // Nope it doesn't.  Remove the node from its current place in the maps.
4347  if (InsertPos)
4348    if (!RemoveNodeFromCSEMaps(N))
4349      InsertPos = 0;
4350
4351  // Now we update the operands.
4352  for (unsigned i = 0; i != NumOps; ++i)
4353    if (N->OperandList[i] != Ops[i])
4354      N->OperandList[i].set(Ops[i]);
4355
4356  // If this gets put into a CSE map, add it.
4357  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4358  return InN;
4359}
4360
4361/// DropOperands - Release the operands and set this node to have
4362/// zero operands.
4363void SDNode::DropOperands() {
4364  // Unlike the code in MorphNodeTo that does this, we don't need to
4365  // watch for dead nodes here.
4366  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4367    SDUse &Use = *I++;
4368    Use.set(SDValue());
4369  }
4370}
4371
4372/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4373/// machine opcode.
4374///
4375SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4376                                   EVT VT) {
4377  SDVTList VTs = getVTList(VT);
4378  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4379}
4380
4381SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4382                                   EVT VT, SDValue Op1) {
4383  SDVTList VTs = getVTList(VT);
4384  SDValue Ops[] = { Op1 };
4385  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4386}
4387
4388SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4389                                   EVT VT, SDValue Op1,
4390                                   SDValue Op2) {
4391  SDVTList VTs = getVTList(VT);
4392  SDValue Ops[] = { Op1, Op2 };
4393  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4394}
4395
4396SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4397                                   EVT VT, SDValue Op1,
4398                                   SDValue Op2, SDValue Op3) {
4399  SDVTList VTs = getVTList(VT);
4400  SDValue Ops[] = { Op1, Op2, Op3 };
4401  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4402}
4403
4404SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4405                                   EVT VT, const SDValue *Ops,
4406                                   unsigned NumOps) {
4407  SDVTList VTs = getVTList(VT);
4408  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4409}
4410
4411SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4412                                   EVT VT1, EVT VT2, const SDValue *Ops,
4413                                   unsigned NumOps) {
4414  SDVTList VTs = getVTList(VT1, VT2);
4415  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4416}
4417
4418SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4419                                   EVT VT1, EVT VT2) {
4420  SDVTList VTs = getVTList(VT1, VT2);
4421  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4422}
4423
4424SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4425                                   EVT VT1, EVT VT2, EVT VT3,
4426                                   const SDValue *Ops, unsigned NumOps) {
4427  SDVTList VTs = getVTList(VT1, VT2, VT3);
4428  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4429}
4430
4431SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4432                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4433                                   const SDValue *Ops, unsigned NumOps) {
4434  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4435  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4436}
4437
4438SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4439                                   EVT VT1, EVT VT2,
4440                                   SDValue Op1) {
4441  SDVTList VTs = getVTList(VT1, VT2);
4442  SDValue Ops[] = { Op1 };
4443  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4444}
4445
4446SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4447                                   EVT VT1, EVT VT2,
4448                                   SDValue Op1, SDValue Op2) {
4449  SDVTList VTs = getVTList(VT1, VT2);
4450  SDValue Ops[] = { Op1, Op2 };
4451  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4452}
4453
4454SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4455                                   EVT VT1, EVT VT2,
4456                                   SDValue Op1, SDValue Op2,
4457                                   SDValue Op3) {
4458  SDVTList VTs = getVTList(VT1, VT2);
4459  SDValue Ops[] = { Op1, Op2, Op3 };
4460  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4461}
4462
4463SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4464                                   EVT VT1, EVT VT2, EVT VT3,
4465                                   SDValue Op1, SDValue Op2,
4466                                   SDValue Op3) {
4467  SDVTList VTs = getVTList(VT1, VT2, VT3);
4468  SDValue Ops[] = { Op1, Op2, Op3 };
4469  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4470}
4471
4472SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4473                                   SDVTList VTs, const SDValue *Ops,
4474                                   unsigned NumOps) {
4475  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4476}
4477
4478SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4479                                  EVT VT) {
4480  SDVTList VTs = getVTList(VT);
4481  return MorphNodeTo(N, Opc, VTs, 0, 0);
4482}
4483
4484SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4485                                  EVT VT, SDValue Op1) {
4486  SDVTList VTs = getVTList(VT);
4487  SDValue Ops[] = { Op1 };
4488  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4489}
4490
4491SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4492                                  EVT VT, SDValue Op1,
4493                                  SDValue Op2) {
4494  SDVTList VTs = getVTList(VT);
4495  SDValue Ops[] = { Op1, Op2 };
4496  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4497}
4498
4499SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4500                                  EVT VT, SDValue Op1,
4501                                  SDValue Op2, SDValue Op3) {
4502  SDVTList VTs = getVTList(VT);
4503  SDValue Ops[] = { Op1, Op2, Op3 };
4504  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4505}
4506
4507SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4508                                  EVT VT, const SDValue *Ops,
4509                                  unsigned NumOps) {
4510  SDVTList VTs = getVTList(VT);
4511  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4512}
4513
4514SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4515                                  EVT VT1, EVT VT2, const SDValue *Ops,
4516                                  unsigned NumOps) {
4517  SDVTList VTs = getVTList(VT1, VT2);
4518  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4519}
4520
4521SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4522                                  EVT VT1, EVT VT2) {
4523  SDVTList VTs = getVTList(VT1, VT2);
4524  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4525}
4526
4527SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4528                                  EVT VT1, EVT VT2, EVT VT3,
4529                                  const SDValue *Ops, unsigned NumOps) {
4530  SDVTList VTs = getVTList(VT1, VT2, VT3);
4531  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4532}
4533
4534SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4535                                  EVT VT1, EVT VT2,
4536                                  SDValue Op1) {
4537  SDVTList VTs = getVTList(VT1, VT2);
4538  SDValue Ops[] = { Op1 };
4539  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4540}
4541
4542SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4543                                  EVT VT1, EVT VT2,
4544                                  SDValue Op1, SDValue Op2) {
4545  SDVTList VTs = getVTList(VT1, VT2);
4546  SDValue Ops[] = { Op1, Op2 };
4547  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4548}
4549
4550SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4551                                  EVT VT1, EVT VT2,
4552                                  SDValue Op1, SDValue Op2,
4553                                  SDValue Op3) {
4554  SDVTList VTs = getVTList(VT1, VT2);
4555  SDValue Ops[] = { Op1, Op2, Op3 };
4556  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4557}
4558
4559/// MorphNodeTo - These *mutate* the specified node to have the specified
4560/// return type, opcode, and operands.
4561///
4562/// Note that MorphNodeTo returns the resultant node.  If there is already a
4563/// node of the specified opcode and operands, it returns that node instead of
4564/// the current one.  Note that the DebugLoc need not be the same.
4565///
4566/// Using MorphNodeTo is faster than creating a new node and swapping it in
4567/// with ReplaceAllUsesWith both because it often avoids allocating a new
4568/// node, and because it doesn't require CSE recalculation for any of
4569/// the node's users.
4570///
4571SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4572                                  SDVTList VTs, const SDValue *Ops,
4573                                  unsigned NumOps) {
4574  // If an identical node already exists, use it.
4575  void *IP = 0;
4576  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4577    FoldingSetNodeID ID;
4578    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4579    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4580      return ON;
4581  }
4582
4583  if (!RemoveNodeFromCSEMaps(N))
4584    IP = 0;
4585
4586  // Start the morphing.
4587  N->NodeType = Opc;
4588  N->ValueList = VTs.VTs;
4589  N->NumValues = VTs.NumVTs;
4590
4591  // Clear the operands list, updating used nodes to remove this from their
4592  // use list.  Keep track of any operands that become dead as a result.
4593  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4594  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4595    SDUse &Use = *I++;
4596    SDNode *Used = Use.getNode();
4597    Use.set(SDValue());
4598    if (Used->use_empty())
4599      DeadNodeSet.insert(Used);
4600  }
4601
4602  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4603    // Initialize the memory references information.
4604    MN->setMemRefs(0, 0);
4605    // If NumOps is larger than the # of operands we can have in a
4606    // MachineSDNode, reallocate the operand list.
4607    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4608      if (MN->OperandsNeedDelete)
4609        delete[] MN->OperandList;
4610      if (NumOps > array_lengthof(MN->LocalOperands))
4611        // We're creating a final node that will live unmorphed for the
4612        // remainder of the current SelectionDAG iteration, so we can allocate
4613        // the operands directly out of a pool with no recycling metadata.
4614        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4615                        Ops, NumOps);
4616      else
4617        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4618      MN->OperandsNeedDelete = false;
4619    } else
4620      MN->InitOperands(MN->OperandList, Ops, NumOps);
4621  } else {
4622    // If NumOps is larger than the # of operands we currently have, reallocate
4623    // the operand list.
4624    if (NumOps > N->NumOperands) {
4625      if (N->OperandsNeedDelete)
4626        delete[] N->OperandList;
4627      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4628      N->OperandsNeedDelete = true;
4629    } else
4630      N->InitOperands(N->OperandList, Ops, NumOps);
4631  }
4632
4633  // Delete any nodes that are still dead after adding the uses for the
4634  // new operands.
4635  SmallVector<SDNode *, 16> DeadNodes;
4636  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4637       E = DeadNodeSet.end(); I != E; ++I)
4638    if ((*I)->use_empty())
4639      DeadNodes.push_back(*I);
4640  RemoveDeadNodes(DeadNodes);
4641
4642  if (IP)
4643    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4644  return N;
4645}
4646
4647
4648/// getMachineNode - These are used for target selectors to create a new node
4649/// with specified return type(s), MachineInstr opcode, and operands.
4650///
4651/// Note that getMachineNode returns the resultant node.  If there is already a
4652/// node of the specified opcode and operands, it returns that node instead of
4653/// the current one.
4654MachineSDNode *
4655SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4656  SDVTList VTs = getVTList(VT);
4657  return getMachineNode(Opcode, dl, VTs, 0, 0);
4658}
4659
4660MachineSDNode *
4661SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4662  SDVTList VTs = getVTList(VT);
4663  SDValue Ops[] = { Op1 };
4664  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4665}
4666
4667MachineSDNode *
4668SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4669                             SDValue Op1, SDValue Op2) {
4670  SDVTList VTs = getVTList(VT);
4671  SDValue Ops[] = { Op1, Op2 };
4672  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4673}
4674
4675MachineSDNode *
4676SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4677                             SDValue Op1, SDValue Op2, SDValue Op3) {
4678  SDVTList VTs = getVTList(VT);
4679  SDValue Ops[] = { Op1, Op2, Op3 };
4680  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4681}
4682
4683MachineSDNode *
4684SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4685                             const SDValue *Ops, unsigned NumOps) {
4686  SDVTList VTs = getVTList(VT);
4687  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4688}
4689
4690MachineSDNode *
4691SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4692  SDVTList VTs = getVTList(VT1, VT2);
4693  return getMachineNode(Opcode, dl, VTs, 0, 0);
4694}
4695
4696MachineSDNode *
4697SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4698                             EVT VT1, EVT VT2, SDValue Op1) {
4699  SDVTList VTs = getVTList(VT1, VT2);
4700  SDValue Ops[] = { Op1 };
4701  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4702}
4703
4704MachineSDNode *
4705SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4706                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4707  SDVTList VTs = getVTList(VT1, VT2);
4708  SDValue Ops[] = { Op1, Op2 };
4709  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4710}
4711
4712MachineSDNode *
4713SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4714                             EVT VT1, EVT VT2, SDValue Op1,
4715                             SDValue Op2, SDValue Op3) {
4716  SDVTList VTs = getVTList(VT1, VT2);
4717  SDValue Ops[] = { Op1, Op2, Op3 };
4718  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4723                             EVT VT1, EVT VT2,
4724                             const SDValue *Ops, unsigned NumOps) {
4725  SDVTList VTs = getVTList(VT1, VT2);
4726  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4731                             EVT VT1, EVT VT2, EVT VT3,
4732                             SDValue Op1, SDValue Op2) {
4733  SDVTList VTs = getVTList(VT1, VT2, VT3);
4734  SDValue Ops[] = { Op1, Op2 };
4735  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4736}
4737
4738MachineSDNode *
4739SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4740                             EVT VT1, EVT VT2, EVT VT3,
4741                             SDValue Op1, SDValue Op2, SDValue Op3) {
4742  SDVTList VTs = getVTList(VT1, VT2, VT3);
4743  SDValue Ops[] = { Op1, Op2, Op3 };
4744  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4745}
4746
4747MachineSDNode *
4748SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4749                             EVT VT1, EVT VT2, EVT VT3,
4750                             const SDValue *Ops, unsigned NumOps) {
4751  SDVTList VTs = getVTList(VT1, VT2, VT3);
4752  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4753}
4754
4755MachineSDNode *
4756SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4757                             EVT VT2, EVT VT3, EVT VT4,
4758                             const SDValue *Ops, unsigned NumOps) {
4759  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4760  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765                             const std::vector<EVT> &ResultTys,
4766                             const SDValue *Ops, unsigned NumOps) {
4767  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4768  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4773                             const SDValue *Ops, unsigned NumOps) {
4774  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4775  MachineSDNode *N;
4776  void *IP;
4777
4778  if (DoCSE) {
4779    FoldingSetNodeID ID;
4780    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4781    IP = 0;
4782    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4783      return cast<MachineSDNode>(E);
4784  }
4785
4786  // Allocate a new MachineSDNode.
4787  N = NodeAllocator.Allocate<MachineSDNode>();
4788  new (N) MachineSDNode(~Opcode, DL, VTs);
4789
4790  // Initialize the operands list.
4791  if (NumOps > array_lengthof(N->LocalOperands))
4792    // We're creating a final node that will live unmorphed for the
4793    // remainder of the current SelectionDAG iteration, so we can allocate
4794    // the operands directly out of a pool with no recycling metadata.
4795    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4796                    Ops, NumOps);
4797  else
4798    N->InitOperands(N->LocalOperands, Ops, NumOps);
4799  N->OperandsNeedDelete = false;
4800
4801  if (DoCSE)
4802    CSEMap.InsertNode(N, IP);
4803
4804  AllNodes.push_back(N);
4805#ifndef NDEBUG
4806  VerifyNode(N);
4807#endif
4808  return N;
4809}
4810
4811/// getTargetExtractSubreg - A convenience function for creating
4812/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4813SDValue
4814SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4815                                     SDValue Operand) {
4816  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4817  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4818                                  VT, Operand, SRIdxVal);
4819  return SDValue(Subreg, 0);
4820}
4821
4822/// getTargetInsertSubreg - A convenience function for creating
4823/// TargetInstrInfo::INSERT_SUBREG nodes.
4824SDValue
4825SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4826                                    SDValue Operand, SDValue Subreg) {
4827  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4828  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4829                                  VT, Operand, Subreg, SRIdxVal);
4830  return SDValue(Result, 0);
4831}
4832
4833/// getNodeIfExists - Get the specified node if it's already available, or
4834/// else return NULL.
4835SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4836                                      const SDValue *Ops, unsigned NumOps) {
4837  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4838    FoldingSetNodeID ID;
4839    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4840    void *IP = 0;
4841    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4842      return E;
4843  }
4844  return NULL;
4845}
4846
4847/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4848/// This can cause recursive merging of nodes in the DAG.
4849///
4850/// This version assumes From has a single result value.
4851///
4852void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4853                                      DAGUpdateListener *UpdateListener) {
4854  SDNode *From = FromN.getNode();
4855  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4856         "Cannot replace with this method!");
4857  assert(From != To.getNode() && "Cannot replace uses of with self");
4858
4859  // Iterate over all the existing uses of From. New uses will be added
4860  // to the beginning of the use list, which we avoid visiting.
4861  // This specifically avoids visiting uses of From that arise while the
4862  // replacement is happening, because any such uses would be the result
4863  // of CSE: If an existing node looks like From after one of its operands
4864  // is replaced by To, we don't want to replace of all its users with To
4865  // too. See PR3018 for more info.
4866  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4867  while (UI != UE) {
4868    SDNode *User = *UI;
4869
4870    // This node is about to morph, remove its old self from the CSE maps.
4871    RemoveNodeFromCSEMaps(User);
4872
4873    // A user can appear in a use list multiple times, and when this
4874    // happens the uses are usually next to each other in the list.
4875    // To help reduce the number of CSE recomputations, process all
4876    // the uses of this user that we can find this way.
4877    do {
4878      SDUse &Use = UI.getUse();
4879      ++UI;
4880      Use.set(To);
4881    } while (UI != UE && *UI == User);
4882
4883    // Now that we have modified User, add it back to the CSE maps.  If it
4884    // already exists there, recursively merge the results together.
4885    AddModifiedNodeToCSEMaps(User, UpdateListener);
4886  }
4887}
4888
4889/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4890/// This can cause recursive merging of nodes in the DAG.
4891///
4892/// This version assumes that for each value of From, there is a
4893/// corresponding value in To in the same position with the same type.
4894///
4895void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4896                                      DAGUpdateListener *UpdateListener) {
4897#ifndef NDEBUG
4898  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4899    assert((!From->hasAnyUseOfValue(i) ||
4900            From->getValueType(i) == To->getValueType(i)) &&
4901           "Cannot use this version of ReplaceAllUsesWith!");
4902#endif
4903
4904  // Handle the trivial case.
4905  if (From == To)
4906    return;
4907
4908  // Iterate over just the existing users of From. See the comments in
4909  // the ReplaceAllUsesWith above.
4910  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4911  while (UI != UE) {
4912    SDNode *User = *UI;
4913
4914    // This node is about to morph, remove its old self from the CSE maps.
4915    RemoveNodeFromCSEMaps(User);
4916
4917    // A user can appear in a use list multiple times, and when this
4918    // happens the uses are usually next to each other in the list.
4919    // To help reduce the number of CSE recomputations, process all
4920    // the uses of this user that we can find this way.
4921    do {
4922      SDUse &Use = UI.getUse();
4923      ++UI;
4924      Use.setNode(To);
4925    } while (UI != UE && *UI == User);
4926
4927    // Now that we have modified User, add it back to the CSE maps.  If it
4928    // already exists there, recursively merge the results together.
4929    AddModifiedNodeToCSEMaps(User, UpdateListener);
4930  }
4931}
4932
4933/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4934/// This can cause recursive merging of nodes in the DAG.
4935///
4936/// This version can replace From with any result values.  To must match the
4937/// number and types of values returned by From.
4938void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4939                                      const SDValue *To,
4940                                      DAGUpdateListener *UpdateListener) {
4941  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4942    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4943
4944  // Iterate over just the existing users of From. See the comments in
4945  // the ReplaceAllUsesWith above.
4946  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4947  while (UI != UE) {
4948    SDNode *User = *UI;
4949
4950    // This node is about to morph, remove its old self from the CSE maps.
4951    RemoveNodeFromCSEMaps(User);
4952
4953    // A user can appear in a use list multiple times, and when this
4954    // happens the uses are usually next to each other in the list.
4955    // To help reduce the number of CSE recomputations, process all
4956    // the uses of this user that we can find this way.
4957    do {
4958      SDUse &Use = UI.getUse();
4959      const SDValue &ToOp = To[Use.getResNo()];
4960      ++UI;
4961      Use.set(ToOp);
4962    } while (UI != UE && *UI == User);
4963
4964    // Now that we have modified User, add it back to the CSE maps.  If it
4965    // already exists there, recursively merge the results together.
4966    AddModifiedNodeToCSEMaps(User, UpdateListener);
4967  }
4968}
4969
4970/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4971/// uses of other values produced by From.getNode() alone.  The Deleted
4972/// vector is handled the same way as for ReplaceAllUsesWith.
4973void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4974                                             DAGUpdateListener *UpdateListener){
4975  // Handle the really simple, really trivial case efficiently.
4976  if (From == To) return;
4977
4978  // Handle the simple, trivial, case efficiently.
4979  if (From.getNode()->getNumValues() == 1) {
4980    ReplaceAllUsesWith(From, To, UpdateListener);
4981    return;
4982  }
4983
4984  // Iterate over just the existing users of From. See the comments in
4985  // the ReplaceAllUsesWith above.
4986  SDNode::use_iterator UI = From.getNode()->use_begin(),
4987                       UE = From.getNode()->use_end();
4988  while (UI != UE) {
4989    SDNode *User = *UI;
4990    bool UserRemovedFromCSEMaps = false;
4991
4992    // A user can appear in a use list multiple times, and when this
4993    // happens the uses are usually next to each other in the list.
4994    // To help reduce the number of CSE recomputations, process all
4995    // the uses of this user that we can find this way.
4996    do {
4997      SDUse &Use = UI.getUse();
4998
4999      // Skip uses of different values from the same node.
5000      if (Use.getResNo() != From.getResNo()) {
5001        ++UI;
5002        continue;
5003      }
5004
5005      // If this node hasn't been modified yet, it's still in the CSE maps,
5006      // so remove its old self from the CSE maps.
5007      if (!UserRemovedFromCSEMaps) {
5008        RemoveNodeFromCSEMaps(User);
5009        UserRemovedFromCSEMaps = true;
5010      }
5011
5012      ++UI;
5013      Use.set(To);
5014    } while (UI != UE && *UI == User);
5015
5016    // We are iterating over all uses of the From node, so if a use
5017    // doesn't use the specific value, no changes are made.
5018    if (!UserRemovedFromCSEMaps)
5019      continue;
5020
5021    // Now that we have modified User, add it back to the CSE maps.  If it
5022    // already exists there, recursively merge the results together.
5023    AddModifiedNodeToCSEMaps(User, UpdateListener);
5024  }
5025}
5026
5027namespace {
5028  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5029  /// to record information about a use.
5030  struct UseMemo {
5031    SDNode *User;
5032    unsigned Index;
5033    SDUse *Use;
5034  };
5035
5036  /// operator< - Sort Memos by User.
5037  bool operator<(const UseMemo &L, const UseMemo &R) {
5038    return (intptr_t)L.User < (intptr_t)R.User;
5039  }
5040}
5041
5042/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5043/// uses of other values produced by From.getNode() alone.  The same value
5044/// may appear in both the From and To list.  The Deleted vector is
5045/// handled the same way as for ReplaceAllUsesWith.
5046void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5047                                              const SDValue *To,
5048                                              unsigned Num,
5049                                              DAGUpdateListener *UpdateListener){
5050  // Handle the simple, trivial case efficiently.
5051  if (Num == 1)
5052    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5053
5054  // Read up all the uses and make records of them. This helps
5055  // processing new uses that are introduced during the
5056  // replacement process.
5057  SmallVector<UseMemo, 4> Uses;
5058  for (unsigned i = 0; i != Num; ++i) {
5059    unsigned FromResNo = From[i].getResNo();
5060    SDNode *FromNode = From[i].getNode();
5061    for (SDNode::use_iterator UI = FromNode->use_begin(),
5062         E = FromNode->use_end(); UI != E; ++UI) {
5063      SDUse &Use = UI.getUse();
5064      if (Use.getResNo() == FromResNo) {
5065        UseMemo Memo = { *UI, i, &Use };
5066        Uses.push_back(Memo);
5067      }
5068    }
5069  }
5070
5071  // Sort the uses, so that all the uses from a given User are together.
5072  std::sort(Uses.begin(), Uses.end());
5073
5074  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5075       UseIndex != UseIndexEnd; ) {
5076    // We know that this user uses some value of From.  If it is the right
5077    // value, update it.
5078    SDNode *User = Uses[UseIndex].User;
5079
5080    // This node is about to morph, remove its old self from the CSE maps.
5081    RemoveNodeFromCSEMaps(User);
5082
5083    // The Uses array is sorted, so all the uses for a given User
5084    // are next to each other in the list.
5085    // To help reduce the number of CSE recomputations, process all
5086    // the uses of this user that we can find this way.
5087    do {
5088      unsigned i = Uses[UseIndex].Index;
5089      SDUse &Use = *Uses[UseIndex].Use;
5090      ++UseIndex;
5091
5092      Use.set(To[i]);
5093    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5094
5095    // Now that we have modified User, add it back to the CSE maps.  If it
5096    // already exists there, recursively merge the results together.
5097    AddModifiedNodeToCSEMaps(User, UpdateListener);
5098  }
5099}
5100
5101/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5102/// based on their topological order. It returns the maximum id and a vector
5103/// of the SDNodes* in assigned order by reference.
5104unsigned SelectionDAG::AssignTopologicalOrder() {
5105
5106  unsigned DAGSize = 0;
5107
5108  // SortedPos tracks the progress of the algorithm. Nodes before it are
5109  // sorted, nodes after it are unsorted. When the algorithm completes
5110  // it is at the end of the list.
5111  allnodes_iterator SortedPos = allnodes_begin();
5112
5113  // Visit all the nodes. Move nodes with no operands to the front of
5114  // the list immediately. Annotate nodes that do have operands with their
5115  // operand count. Before we do this, the Node Id fields of the nodes
5116  // may contain arbitrary values. After, the Node Id fields for nodes
5117  // before SortedPos will contain the topological sort index, and the
5118  // Node Id fields for nodes At SortedPos and after will contain the
5119  // count of outstanding operands.
5120  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5121    SDNode *N = I++;
5122    unsigned Degree = N->getNumOperands();
5123    if (Degree == 0) {
5124      // A node with no uses, add it to the result array immediately.
5125      N->setNodeId(DAGSize++);
5126      allnodes_iterator Q = N;
5127      if (Q != SortedPos)
5128        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5129      ++SortedPos;
5130    } else {
5131      // Temporarily use the Node Id as scratch space for the degree count.
5132      N->setNodeId(Degree);
5133    }
5134  }
5135
5136  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5137  // such that by the time the end is reached all nodes will be sorted.
5138  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5139    SDNode *N = I;
5140    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5141         UI != UE; ++UI) {
5142      SDNode *P = *UI;
5143      unsigned Degree = P->getNodeId();
5144      --Degree;
5145      if (Degree == 0) {
5146        // All of P's operands are sorted, so P may sorted now.
5147        P->setNodeId(DAGSize++);
5148        if (P != SortedPos)
5149          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5150        ++SortedPos;
5151      } else {
5152        // Update P's outstanding operand count.
5153        P->setNodeId(Degree);
5154      }
5155    }
5156  }
5157
5158  assert(SortedPos == AllNodes.end() &&
5159         "Topological sort incomplete!");
5160  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5161         "First node in topological sort is not the entry token!");
5162  assert(AllNodes.front().getNodeId() == 0 &&
5163         "First node in topological sort has non-zero id!");
5164  assert(AllNodes.front().getNumOperands() == 0 &&
5165         "First node in topological sort has operands!");
5166  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5167         "Last node in topologic sort has unexpected id!");
5168  assert(AllNodes.back().use_empty() &&
5169         "Last node in topologic sort has users!");
5170  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5171  return DAGSize;
5172}
5173
5174
5175
5176//===----------------------------------------------------------------------===//
5177//                              SDNode Class
5178//===----------------------------------------------------------------------===//
5179
5180HandleSDNode::~HandleSDNode() {
5181  DropOperands();
5182}
5183
5184GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5185                                         EVT VT, int64_t o, unsigned char TF)
5186  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5187    Offset(o), TargetFlags(TF) {
5188  TheGlobal = const_cast<GlobalValue*>(GA);
5189}
5190
5191MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5192                     MachineMemOperand *mmo)
5193 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5194  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5195  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5196  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5197}
5198
5199MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5200                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5201                     MachineMemOperand *mmo)
5202   : SDNode(Opc, dl, VTs, Ops, NumOps),
5203     MemoryVT(memvt), MMO(mmo) {
5204  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5205  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5206  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5207}
5208
5209/// Profile - Gather unique data for the node.
5210///
5211void SDNode::Profile(FoldingSetNodeID &ID) const {
5212  AddNodeIDNode(ID, this);
5213}
5214
5215namespace {
5216  struct EVTArray {
5217    std::vector<EVT> VTs;
5218
5219    EVTArray() {
5220      VTs.reserve(MVT::LAST_VALUETYPE);
5221      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5222        VTs.push_back(MVT((MVT::SimpleValueType)i));
5223    }
5224  };
5225}
5226
5227static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5228static ManagedStatic<EVTArray> SimpleVTArray;
5229static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5230
5231/// getValueTypeList - Return a pointer to the specified value type.
5232///
5233const EVT *SDNode::getValueTypeList(EVT VT) {
5234  if (VT.isExtended()) {
5235    sys::SmartScopedLock<true> Lock(*VTMutex);
5236    return &(*EVTs->insert(VT).first);
5237  } else {
5238    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5239  }
5240}
5241
5242/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5243/// indicated value.  This method ignores uses of other values defined by this
5244/// operation.
5245bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5246  assert(Value < getNumValues() && "Bad value!");
5247
5248  // TODO: Only iterate over uses of a given value of the node
5249  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5250    if (UI.getUse().getResNo() == Value) {
5251      if (NUses == 0)
5252        return false;
5253      --NUses;
5254    }
5255  }
5256
5257  // Found exactly the right number of uses?
5258  return NUses == 0;
5259}
5260
5261
5262/// hasAnyUseOfValue - Return true if there are any use of the indicated
5263/// value. This method ignores uses of other values defined by this operation.
5264bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5265  assert(Value < getNumValues() && "Bad value!");
5266
5267  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5268    if (UI.getUse().getResNo() == Value)
5269      return true;
5270
5271  return false;
5272}
5273
5274
5275/// isOnlyUserOf - Return true if this node is the only use of N.
5276///
5277bool SDNode::isOnlyUserOf(SDNode *N) const {
5278  bool Seen = false;
5279  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5280    SDNode *User = *I;
5281    if (User == this)
5282      Seen = true;
5283    else
5284      return false;
5285  }
5286
5287  return Seen;
5288}
5289
5290/// isOperand - Return true if this node is an operand of N.
5291///
5292bool SDValue::isOperandOf(SDNode *N) const {
5293  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5294    if (*this == N->getOperand(i))
5295      return true;
5296  return false;
5297}
5298
5299bool SDNode::isOperandOf(SDNode *N) const {
5300  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5301    if (this == N->OperandList[i].getNode())
5302      return true;
5303  return false;
5304}
5305
5306/// reachesChainWithoutSideEffects - Return true if this operand (which must
5307/// be a chain) reaches the specified operand without crossing any
5308/// side-effecting instructions.  In practice, this looks through token
5309/// factors and non-volatile loads.  In order to remain efficient, this only
5310/// looks a couple of nodes in, it does not do an exhaustive search.
5311bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5312                                               unsigned Depth) const {
5313  if (*this == Dest) return true;
5314
5315  // Don't search too deeply, we just want to be able to see through
5316  // TokenFactor's etc.
5317  if (Depth == 0) return false;
5318
5319  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5320  // of the operands of the TF reach dest, then we can do the xform.
5321  if (getOpcode() == ISD::TokenFactor) {
5322    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5323      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5324        return true;
5325    return false;
5326  }
5327
5328  // Loads don't have side effects, look through them.
5329  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5330    if (!Ld->isVolatile())
5331      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5332  }
5333  return false;
5334}
5335
5336/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5337/// is either an operand of N or it can be reached by traversing up the operands.
5338/// NOTE: this is an expensive method. Use it carefully.
5339bool SDNode::isPredecessorOf(SDNode *N) const {
5340  SmallPtrSet<SDNode *, 32> Visited;
5341  SmallVector<SDNode *, 16> Worklist;
5342  Worklist.push_back(N);
5343
5344  do {
5345    N = Worklist.pop_back_val();
5346    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5347      SDNode *Op = N->getOperand(i).getNode();
5348      if (Op == this)
5349        return true;
5350      if (Visited.insert(Op))
5351        Worklist.push_back(Op);
5352    }
5353  } while (!Worklist.empty());
5354
5355  return false;
5356}
5357
5358uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5359  assert(Num < NumOperands && "Invalid child # of SDNode!");
5360  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5361}
5362
5363std::string SDNode::getOperationName(const SelectionDAG *G) const {
5364  switch (getOpcode()) {
5365  default:
5366    if (getOpcode() < ISD::BUILTIN_OP_END)
5367      return "<<Unknown DAG Node>>";
5368    if (isMachineOpcode()) {
5369      if (G)
5370        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5371          if (getMachineOpcode() < TII->getNumOpcodes())
5372            return TII->get(getMachineOpcode()).getName();
5373      return "<<Unknown Machine Node>>";
5374    }
5375    if (G) {
5376      const TargetLowering &TLI = G->getTargetLoweringInfo();
5377      const char *Name = TLI.getTargetNodeName(getOpcode());
5378      if (Name) return Name;
5379      return "<<Unknown Target Node>>";
5380    }
5381    return "<<Unknown Node>>";
5382
5383#ifndef NDEBUG
5384  case ISD::DELETED_NODE:
5385    return "<<Deleted Node!>>";
5386#endif
5387  case ISD::PREFETCH:      return "Prefetch";
5388  case ISD::MEMBARRIER:    return "MemBarrier";
5389  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5390  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5391  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5392  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5393  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5394  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5395  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5396  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5397  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5398  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5399  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5400  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5401  case ISD::PCMARKER:      return "PCMarker";
5402  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5403  case ISD::SRCVALUE:      return "SrcValue";
5404  case ISD::EntryToken:    return "EntryToken";
5405  case ISD::TokenFactor:   return "TokenFactor";
5406  case ISD::AssertSext:    return "AssertSext";
5407  case ISD::AssertZext:    return "AssertZext";
5408
5409  case ISD::BasicBlock:    return "BasicBlock";
5410  case ISD::VALUETYPE:     return "ValueType";
5411  case ISD::Register:      return "Register";
5412
5413  case ISD::Constant:      return "Constant";
5414  case ISD::ConstantFP:    return "ConstantFP";
5415  case ISD::GlobalAddress: return "GlobalAddress";
5416  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5417  case ISD::FrameIndex:    return "FrameIndex";
5418  case ISD::JumpTable:     return "JumpTable";
5419  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5420  case ISD::RETURNADDR: return "RETURNADDR";
5421  case ISD::FRAMEADDR: return "FRAMEADDR";
5422  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5423  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5424  case ISD::LSDAADDR: return "LSDAADDR";
5425  case ISD::EHSELECTION: return "EHSELECTION";
5426  case ISD::EH_RETURN: return "EH_RETURN";
5427  case ISD::ConstantPool:  return "ConstantPool";
5428  case ISD::ExternalSymbol: return "ExternalSymbol";
5429  case ISD::BlockAddress:  return "BlockAddress";
5430  case ISD::INTRINSIC_WO_CHAIN:
5431  case ISD::INTRINSIC_VOID:
5432  case ISD::INTRINSIC_W_CHAIN: {
5433    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5434    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5435    if (IID < Intrinsic::num_intrinsics)
5436      return Intrinsic::getName((Intrinsic::ID)IID);
5437    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5438      return TII->getName(IID);
5439    llvm_unreachable("Invalid intrinsic ID");
5440  }
5441
5442  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5443  case ISD::TargetConstant: return "TargetConstant";
5444  case ISD::TargetConstantFP:return "TargetConstantFP";
5445  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5446  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5447  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5448  case ISD::TargetJumpTable:  return "TargetJumpTable";
5449  case ISD::TargetConstantPool:  return "TargetConstantPool";
5450  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5451  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5452
5453  case ISD::CopyToReg:     return "CopyToReg";
5454  case ISD::CopyFromReg:   return "CopyFromReg";
5455  case ISD::UNDEF:         return "undef";
5456  case ISD::MERGE_VALUES:  return "merge_values";
5457  case ISD::INLINEASM:     return "inlineasm";
5458  case ISD::DBG_LABEL:     return "dbg_label";
5459  case ISD::EH_LABEL:      return "eh_label";
5460  case ISD::HANDLENODE:    return "handlenode";
5461
5462  // Unary operators
5463  case ISD::FABS:   return "fabs";
5464  case ISD::FNEG:   return "fneg";
5465  case ISD::FSQRT:  return "fsqrt";
5466  case ISD::FSIN:   return "fsin";
5467  case ISD::FCOS:   return "fcos";
5468  case ISD::FPOWI:  return "fpowi";
5469  case ISD::FPOW:   return "fpow";
5470  case ISD::FTRUNC: return "ftrunc";
5471  case ISD::FFLOOR: return "ffloor";
5472  case ISD::FCEIL:  return "fceil";
5473  case ISD::FRINT:  return "frint";
5474  case ISD::FNEARBYINT: return "fnearbyint";
5475
5476  // Binary operators
5477  case ISD::ADD:    return "add";
5478  case ISD::SUB:    return "sub";
5479  case ISD::MUL:    return "mul";
5480  case ISD::MULHU:  return "mulhu";
5481  case ISD::MULHS:  return "mulhs";
5482  case ISD::SDIV:   return "sdiv";
5483  case ISD::UDIV:   return "udiv";
5484  case ISD::SREM:   return "srem";
5485  case ISD::UREM:   return "urem";
5486  case ISD::SMUL_LOHI:  return "smul_lohi";
5487  case ISD::UMUL_LOHI:  return "umul_lohi";
5488  case ISD::SDIVREM:    return "sdivrem";
5489  case ISD::UDIVREM:    return "udivrem";
5490  case ISD::AND:    return "and";
5491  case ISD::OR:     return "or";
5492  case ISD::XOR:    return "xor";
5493  case ISD::SHL:    return "shl";
5494  case ISD::SRA:    return "sra";
5495  case ISD::SRL:    return "srl";
5496  case ISD::ROTL:   return "rotl";
5497  case ISD::ROTR:   return "rotr";
5498  case ISD::FADD:   return "fadd";
5499  case ISD::FSUB:   return "fsub";
5500  case ISD::FMUL:   return "fmul";
5501  case ISD::FDIV:   return "fdiv";
5502  case ISD::FREM:   return "frem";
5503  case ISD::FCOPYSIGN: return "fcopysign";
5504  case ISD::FGETSIGN:  return "fgetsign";
5505
5506  case ISD::SETCC:       return "setcc";
5507  case ISD::VSETCC:      return "vsetcc";
5508  case ISD::SELECT:      return "select";
5509  case ISD::SELECT_CC:   return "select_cc";
5510  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5511  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5512  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5513  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5514  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5515  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5516  case ISD::CARRY_FALSE:         return "carry_false";
5517  case ISD::ADDC:        return "addc";
5518  case ISD::ADDE:        return "adde";
5519  case ISD::SADDO:       return "saddo";
5520  case ISD::UADDO:       return "uaddo";
5521  case ISD::SSUBO:       return "ssubo";
5522  case ISD::USUBO:       return "usubo";
5523  case ISD::SMULO:       return "smulo";
5524  case ISD::UMULO:       return "umulo";
5525  case ISD::SUBC:        return "subc";
5526  case ISD::SUBE:        return "sube";
5527  case ISD::SHL_PARTS:   return "shl_parts";
5528  case ISD::SRA_PARTS:   return "sra_parts";
5529  case ISD::SRL_PARTS:   return "srl_parts";
5530
5531  // Conversion operators.
5532  case ISD::SIGN_EXTEND: return "sign_extend";
5533  case ISD::ZERO_EXTEND: return "zero_extend";
5534  case ISD::ANY_EXTEND:  return "any_extend";
5535  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5536  case ISD::TRUNCATE:    return "truncate";
5537  case ISD::FP_ROUND:    return "fp_round";
5538  case ISD::FLT_ROUNDS_: return "flt_rounds";
5539  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5540  case ISD::FP_EXTEND:   return "fp_extend";
5541
5542  case ISD::SINT_TO_FP:  return "sint_to_fp";
5543  case ISD::UINT_TO_FP:  return "uint_to_fp";
5544  case ISD::FP_TO_SINT:  return "fp_to_sint";
5545  case ISD::FP_TO_UINT:  return "fp_to_uint";
5546  case ISD::BIT_CONVERT: return "bit_convert";
5547
5548  case ISD::CONVERT_RNDSAT: {
5549    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5550    default: llvm_unreachable("Unknown cvt code!");
5551    case ISD::CVT_FF:  return "cvt_ff";
5552    case ISD::CVT_FS:  return "cvt_fs";
5553    case ISD::CVT_FU:  return "cvt_fu";
5554    case ISD::CVT_SF:  return "cvt_sf";
5555    case ISD::CVT_UF:  return "cvt_uf";
5556    case ISD::CVT_SS:  return "cvt_ss";
5557    case ISD::CVT_SU:  return "cvt_su";
5558    case ISD::CVT_US:  return "cvt_us";
5559    case ISD::CVT_UU:  return "cvt_uu";
5560    }
5561  }
5562
5563    // Control flow instructions
5564  case ISD::BR:      return "br";
5565  case ISD::BRIND:   return "brind";
5566  case ISD::BR_JT:   return "br_jt";
5567  case ISD::BRCOND:  return "brcond";
5568  case ISD::BR_CC:   return "br_cc";
5569  case ISD::CALLSEQ_START:  return "callseq_start";
5570  case ISD::CALLSEQ_END:    return "callseq_end";
5571
5572    // Other operators
5573  case ISD::LOAD:               return "load";
5574  case ISD::STORE:              return "store";
5575  case ISD::VAARG:              return "vaarg";
5576  case ISD::VACOPY:             return "vacopy";
5577  case ISD::VAEND:              return "vaend";
5578  case ISD::VASTART:            return "vastart";
5579  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5580  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5581  case ISD::BUILD_PAIR:         return "build_pair";
5582  case ISD::STACKSAVE:          return "stacksave";
5583  case ISD::STACKRESTORE:       return "stackrestore";
5584  case ISD::TRAP:               return "trap";
5585
5586  // Bit manipulation
5587  case ISD::BSWAP:   return "bswap";
5588  case ISD::CTPOP:   return "ctpop";
5589  case ISD::CTTZ:    return "cttz";
5590  case ISD::CTLZ:    return "ctlz";
5591
5592  // Debug info
5593  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5594  case ISD::DEBUG_LOC: return "debug_loc";
5595
5596  // Trampolines
5597  case ISD::TRAMPOLINE: return "trampoline";
5598
5599  case ISD::CONDCODE:
5600    switch (cast<CondCodeSDNode>(this)->get()) {
5601    default: llvm_unreachable("Unknown setcc condition!");
5602    case ISD::SETOEQ:  return "setoeq";
5603    case ISD::SETOGT:  return "setogt";
5604    case ISD::SETOGE:  return "setoge";
5605    case ISD::SETOLT:  return "setolt";
5606    case ISD::SETOLE:  return "setole";
5607    case ISD::SETONE:  return "setone";
5608
5609    case ISD::SETO:    return "seto";
5610    case ISD::SETUO:   return "setuo";
5611    case ISD::SETUEQ:  return "setue";
5612    case ISD::SETUGT:  return "setugt";
5613    case ISD::SETUGE:  return "setuge";
5614    case ISD::SETULT:  return "setult";
5615    case ISD::SETULE:  return "setule";
5616    case ISD::SETUNE:  return "setune";
5617
5618    case ISD::SETEQ:   return "seteq";
5619    case ISD::SETGT:   return "setgt";
5620    case ISD::SETGE:   return "setge";
5621    case ISD::SETLT:   return "setlt";
5622    case ISD::SETLE:   return "setle";
5623    case ISD::SETNE:   return "setne";
5624    }
5625  }
5626}
5627
5628const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5629  switch (AM) {
5630  default:
5631    return "";
5632  case ISD::PRE_INC:
5633    return "<pre-inc>";
5634  case ISD::PRE_DEC:
5635    return "<pre-dec>";
5636  case ISD::POST_INC:
5637    return "<post-inc>";
5638  case ISD::POST_DEC:
5639    return "<post-dec>";
5640  }
5641}
5642
5643std::string ISD::ArgFlagsTy::getArgFlagsString() {
5644  std::string S = "< ";
5645
5646  if (isZExt())
5647    S += "zext ";
5648  if (isSExt())
5649    S += "sext ";
5650  if (isInReg())
5651    S += "inreg ";
5652  if (isSRet())
5653    S += "sret ";
5654  if (isByVal())
5655    S += "byval ";
5656  if (isNest())
5657    S += "nest ";
5658  if (getByValAlign())
5659    S += "byval-align:" + utostr(getByValAlign()) + " ";
5660  if (getOrigAlign())
5661    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5662  if (getByValSize())
5663    S += "byval-size:" + utostr(getByValSize()) + " ";
5664  return S + ">";
5665}
5666
5667void SDNode::dump() const { dump(0); }
5668void SDNode::dump(const SelectionDAG *G) const {
5669  print(errs(), G);
5670}
5671
5672void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5673  OS << (void*)this << ": ";
5674
5675  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5676    if (i) OS << ",";
5677    if (getValueType(i) == MVT::Other)
5678      OS << "ch";
5679    else
5680      OS << getValueType(i).getEVTString();
5681  }
5682  OS << " = " << getOperationName(G);
5683}
5684
5685void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5686  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5687    if (!MN->memoperands_empty()) {
5688      OS << "<";
5689      OS << "Mem:";
5690      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5691           e = MN->memoperands_end(); i != e; ++i) {
5692        OS << **i;
5693        if (next(i) != e)
5694          OS << " ";
5695      }
5696      OS << ">";
5697    }
5698  } else if (const ShuffleVectorSDNode *SVN =
5699               dyn_cast<ShuffleVectorSDNode>(this)) {
5700    OS << "<";
5701    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5702      int Idx = SVN->getMaskElt(i);
5703      if (i) OS << ",";
5704      if (Idx < 0)
5705        OS << "u";
5706      else
5707        OS << Idx;
5708    }
5709    OS << ">";
5710  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5711    OS << '<' << CSDN->getAPIntValue() << '>';
5712  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5713    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5714      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5715    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5716      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5717    else {
5718      OS << "<APFloat(";
5719      CSDN->getValueAPF().bitcastToAPInt().dump();
5720      OS << ")>";
5721    }
5722  } else if (const GlobalAddressSDNode *GADN =
5723             dyn_cast<GlobalAddressSDNode>(this)) {
5724    int64_t offset = GADN->getOffset();
5725    OS << '<';
5726    WriteAsOperand(OS, GADN->getGlobal());
5727    OS << '>';
5728    if (offset > 0)
5729      OS << " + " << offset;
5730    else
5731      OS << " " << offset;
5732    if (unsigned int TF = GADN->getTargetFlags())
5733      OS << " [TF=" << TF << ']';
5734  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5735    OS << "<" << FIDN->getIndex() << ">";
5736  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5737    OS << "<" << JTDN->getIndex() << ">";
5738    if (unsigned int TF = JTDN->getTargetFlags())
5739      OS << " [TF=" << TF << ']';
5740  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5741    int offset = CP->getOffset();
5742    if (CP->isMachineConstantPoolEntry())
5743      OS << "<" << *CP->getMachineCPVal() << ">";
5744    else
5745      OS << "<" << *CP->getConstVal() << ">";
5746    if (offset > 0)
5747      OS << " + " << offset;
5748    else
5749      OS << " " << offset;
5750    if (unsigned int TF = CP->getTargetFlags())
5751      OS << " [TF=" << TF << ']';
5752  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5753    OS << "<";
5754    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5755    if (LBB)
5756      OS << LBB->getName() << " ";
5757    OS << (const void*)BBDN->getBasicBlock() << ">";
5758  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5759    if (G && R->getReg() &&
5760        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5761      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5762    } else {
5763      OS << " %reg" << R->getReg();
5764    }
5765  } else if (const ExternalSymbolSDNode *ES =
5766             dyn_cast<ExternalSymbolSDNode>(this)) {
5767    OS << "'" << ES->getSymbol() << "'";
5768    if (unsigned int TF = ES->getTargetFlags())
5769      OS << " [TF=" << TF << ']';
5770  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5771    if (M->getValue())
5772      OS << "<" << M->getValue() << ">";
5773    else
5774      OS << "<null>";
5775  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5776    OS << ":" << N->getVT().getEVTString();
5777  }
5778  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5779    OS << "<" << *LD->getMemOperand();
5780
5781    bool doExt = true;
5782    switch (LD->getExtensionType()) {
5783    default: doExt = false; break;
5784    case ISD::EXTLOAD: OS << ", anyext"; break;
5785    case ISD::SEXTLOAD: OS << ", sext"; break;
5786    case ISD::ZEXTLOAD: OS << ", zext"; break;
5787    }
5788    if (doExt)
5789      OS << " from " << LD->getMemoryVT().getEVTString();
5790
5791    const char *AM = getIndexedModeName(LD->getAddressingMode());
5792    if (*AM)
5793      OS << ", " << AM;
5794
5795    OS << ">";
5796  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5797    OS << "<" << *ST->getMemOperand();
5798
5799    if (ST->isTruncatingStore())
5800      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5801
5802    const char *AM = getIndexedModeName(ST->getAddressingMode());
5803    if (*AM)
5804      OS << ", " << AM;
5805
5806    OS << ">";
5807  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5808    OS << "<" << *M->getMemOperand() << ">";
5809  } else if (const BlockAddressSDNode *BA =
5810               dyn_cast<BlockAddressSDNode>(this)) {
5811    OS << "<";
5812    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5813    OS << ", ";
5814    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5815    OS << ">";
5816    if (unsigned int TF = BA->getTargetFlags())
5817      OS << " [TF=" << TF << ']';
5818  }
5819}
5820
5821void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5822  print_types(OS, G);
5823  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5824    if (i) OS << ", "; else OS << " ";
5825    OS << (void*)getOperand(i).getNode();
5826    if (unsigned RN = getOperand(i).getResNo())
5827      OS << ":" << RN;
5828  }
5829  print_details(OS, G);
5830}
5831
5832static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5833  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5834    if (N->getOperand(i).getNode()->hasOneUse())
5835      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5836    else
5837      errs() << "\n" << std::string(indent+2, ' ')
5838             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5839
5840
5841  errs() << "\n";
5842  errs().indent(indent);
5843  N->dump(G);
5844}
5845
5846void SelectionDAG::dump() const {
5847  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5848
5849  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5850       I != E; ++I) {
5851    const SDNode *N = I;
5852    if (!N->hasOneUse() && N != getRoot().getNode())
5853      DumpNodes(N, 2, this);
5854  }
5855
5856  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5857
5858  errs() << "\n\n";
5859}
5860
5861void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5862  print_types(OS, G);
5863  print_details(OS, G);
5864}
5865
5866typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5867static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5868                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5869  if (!once.insert(N))          // If we've been here before, return now.
5870    return;
5871  // Dump the current SDNode, but don't end the line yet.
5872  OS << std::string(indent, ' ');
5873  N->printr(OS, G);
5874  // Having printed this SDNode, walk the children:
5875  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5876    const SDNode *child = N->getOperand(i).getNode();
5877    if (i) OS << ",";
5878    OS << " ";
5879    if (child->getNumOperands() == 0) {
5880      // This child has no grandchildren; print it inline right here.
5881      child->printr(OS, G);
5882      once.insert(child);
5883    } else {          // Just the address.  FIXME: also print the child's opcode
5884      OS << (void*)child;
5885      if (unsigned RN = N->getOperand(i).getResNo())
5886        OS << ":" << RN;
5887    }
5888  }
5889  OS << "\n";
5890  // Dump children that have grandchildren on their own line(s).
5891  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5892    const SDNode *child = N->getOperand(i).getNode();
5893    DumpNodesr(OS, child, indent+2, G, once);
5894  }
5895}
5896
5897void SDNode::dumpr() const {
5898  VisitedSDNodeSet once;
5899  DumpNodesr(errs(), this, 0, 0, once);
5900}
5901
5902void SDNode::dumpr(const SelectionDAG *G) const {
5903  VisitedSDNodeSet once;
5904  DumpNodesr(errs(), this, 0, G, once);
5905}
5906
5907
5908// getAddressSpace - Return the address space this GlobalAddress belongs to.
5909unsigned GlobalAddressSDNode::getAddressSpace() const {
5910  return getGlobal()->getType()->getAddressSpace();
5911}
5912
5913
5914const Type *ConstantPoolSDNode::getType() const {
5915  if (isMachineConstantPoolEntry())
5916    return Val.MachineCPVal->getType();
5917  return Val.ConstVal->getType();
5918}
5919
5920bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5921                                        APInt &SplatUndef,
5922                                        unsigned &SplatBitSize,
5923                                        bool &HasAnyUndefs,
5924                                        unsigned MinSplatBits,
5925                                        bool isBigEndian) {
5926  EVT VT = getValueType(0);
5927  assert(VT.isVector() && "Expected a vector type");
5928  unsigned sz = VT.getSizeInBits();
5929  if (MinSplatBits > sz)
5930    return false;
5931
5932  SplatValue = APInt(sz, 0);
5933  SplatUndef = APInt(sz, 0);
5934
5935  // Get the bits.  Bits with undefined values (when the corresponding element
5936  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5937  // in SplatValue.  If any of the values are not constant, give up and return
5938  // false.
5939  unsigned int nOps = getNumOperands();
5940  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5941  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5942
5943  for (unsigned j = 0; j < nOps; ++j) {
5944    unsigned i = isBigEndian ? nOps-1-j : j;
5945    SDValue OpVal = getOperand(i);
5946    unsigned BitPos = j * EltBitSize;
5947
5948    if (OpVal.getOpcode() == ISD::UNDEF)
5949      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
5950    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5951      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5952                     zextOrTrunc(sz) << BitPos);
5953    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5954      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5955     else
5956      return false;
5957  }
5958
5959  // The build_vector is all constants or undefs.  Find the smallest element
5960  // size that splats the vector.
5961
5962  HasAnyUndefs = (SplatUndef != 0);
5963  while (sz > 8) {
5964
5965    unsigned HalfSize = sz / 2;
5966    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5967    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5968    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5969    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5970
5971    // If the two halves do not match (ignoring undef bits), stop here.
5972    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5973        MinSplatBits > HalfSize)
5974      break;
5975
5976    SplatValue = HighValue | LowValue;
5977    SplatUndef = HighUndef & LowUndef;
5978
5979    sz = HalfSize;
5980  }
5981
5982  SplatBitSize = sz;
5983  return true;
5984}
5985
5986bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5987  // Find the first non-undef value in the shuffle mask.
5988  unsigned i, e;
5989  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5990    /* search */;
5991
5992  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5993
5994  // Make sure all remaining elements are either undef or the same as the first
5995  // non-undef value.
5996  for (int Idx = Mask[i]; i != e; ++i)
5997    if (Mask[i] >= 0 && Mask[i] != Idx)
5998      return false;
5999  return true;
6000}
6001