SelectionDAG.cpp revision 2efa35f779213a828fa15d6aa3a508fc81d75d73
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX:
436  case ISD::ATOMIC_LOAD:
437  case ISD::ATOMIC_STORE: {
438    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
439    ID.AddInteger(AT->getMemoryVT().getRawBits());
440    ID.AddInteger(AT->getRawSubclassData());
441    break;
442  }
443  case ISD::VECTOR_SHUFFLE: {
444    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
445    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
446         i != e; ++i)
447      ID.AddInteger(SVN->getMaskElt(i));
448    break;
449  }
450  case ISD::TargetBlockAddress:
451  case ISD::BlockAddress: {
452    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
453    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
454    break;
455  }
456  } // end switch (N->getOpcode())
457}
458
459/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
460/// data.
461static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
462  AddNodeIDOpcode(ID, N->getOpcode());
463  // Add the return value info.
464  AddNodeIDValueTypes(ID, N->getVTList());
465  // Add the operand info.
466  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
467
468  // Handle SDNode leafs with special info.
469  AddNodeIDCustom(ID, N);
470}
471
472/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
473/// the CSE map that carries volatility, temporalness, indexing mode, and
474/// extension/truncation information.
475///
476static inline unsigned
477encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
478                     bool isNonTemporal) {
479  assert((ConvType & 3) == ConvType &&
480         "ConvType may not require more than 2 bits!");
481  assert((AM & 7) == AM &&
482         "AM may not require more than 3 bits!");
483  return ConvType |
484         (AM << 2) |
485         (isVolatile << 5) |
486         (isNonTemporal << 6);
487}
488
489//===----------------------------------------------------------------------===//
490//                              SelectionDAG Class
491//===----------------------------------------------------------------------===//
492
493/// doNotCSE - Return true if CSE should not be performed for this node.
494static bool doNotCSE(SDNode *N) {
495  if (N->getValueType(0) == MVT::Glue)
496    return true; // Never CSE anything that produces a flag.
497
498  switch (N->getOpcode()) {
499  default: break;
500  case ISD::HANDLENODE:
501  case ISD::EH_LABEL:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Glue)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567
568  // Create a dummy node that adds a reference to the root node, preventing
569  // it from being deleted.  (This matters if the root is an operand of the
570  // dead node.)
571  HandleSDNode Dummy(getRoot());
572
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604
605  // Remove the ordering of this node.
606  Ordering->remove(N);
607
608  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
609  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
610  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
611    DbgVals[i]->setIsInvalidated();
612}
613
614/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
615/// correspond to it.  This is useful when we're about to delete or repurpose
616/// the node.  We don't want future request for structurally identical nodes
617/// to return N anymore.
618bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
619  bool Erased = false;
620  switch (N->getOpcode()) {
621  case ISD::HANDLENODE: return false;  // noop.
622  case ISD::CONDCODE:
623    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
624           "Cond code doesn't exist!");
625    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
626    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
627    break;
628  case ISD::ExternalSymbol:
629    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
630    break;
631  case ISD::TargetExternalSymbol: {
632    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
633    Erased = TargetExternalSymbols.erase(
634               std::pair<std::string,unsigned char>(ESN->getSymbol(),
635                                                    ESN->getTargetFlags()));
636    break;
637  }
638  case ISD::VALUETYPE: {
639    EVT VT = cast<VTSDNode>(N)->getVT();
640    if (VT.isExtended()) {
641      Erased = ExtendedValueTypeNodes.erase(VT);
642    } else {
643      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
644      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
645    }
646    break;
647  }
648  default:
649    // Remove it from the CSE Map.
650    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
651    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
652    Erased = CSEMap.RemoveNode(N);
653    break;
654  }
655#ifndef NDEBUG
656  // Verify that the node was actually in one of the CSE maps, unless it has a
657  // flag result (which cannot be CSE'd) or is one of the special cases that are
658  // not subject to CSE.
659  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
660      !N->isMachineOpcode() && !doNotCSE(N)) {
661    N->dump(this);
662    dbgs() << "\n";
663    llvm_unreachable("Node is not in map!");
664  }
665#endif
666  return Erased;
667}
668
669/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
670/// maps and modified in place. Add it back to the CSE maps, unless an identical
671/// node already exists, in which case transfer all its users to the existing
672/// node. This transfer can potentially trigger recursive merging.
673///
674void
675SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
676                                       DAGUpdateListener *UpdateListener) {
677  // For node types that aren't CSE'd, just act as if no identical node
678  // already exists.
679  if (!doNotCSE(N)) {
680    SDNode *Existing = CSEMap.GetOrInsertNode(N);
681    if (Existing != N) {
682      // If there was already an existing matching node, use ReplaceAllUsesWith
683      // to replace the dead one with the existing one.  This can cause
684      // recursive merging of other unrelated nodes down the line.
685      ReplaceAllUsesWith(N, Existing, UpdateListener);
686
687      // N is now dead.  Inform the listener if it exists and delete it.
688      if (UpdateListener)
689        UpdateListener->NodeDeleted(N, Existing);
690      DeleteNodeNotInCSEMaps(N);
691      return;
692    }
693  }
694
695  // If the node doesn't already exist, we updated it.  Inform a listener if
696  // it exists.
697  if (UpdateListener)
698    UpdateListener->NodeUpdated(N);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
706                                           void *&InsertPos) {
707  if (doNotCSE(N))
708    return 0;
709
710  SDValue Ops[] = { Op };
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
713  AddNodeIDCustom(ID, N);
714  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
715  return Node;
716}
717
718/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
719/// were replaced with those specified.  If this node is never memoized,
720/// return null, otherwise return a pointer to the slot it would take.  If a
721/// node already exists with these operands, the slot will be non-null.
722SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
723                                           SDValue Op1, SDValue Op2,
724                                           void *&InsertPos) {
725  if (doNotCSE(N))
726    return 0;
727
728  SDValue Ops[] = { Op1, Op2 };
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
731  AddNodeIDCustom(ID, N);
732  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733  return Node;
734}
735
736
737/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
738/// were replaced with those specified.  If this node is never memoized,
739/// return null, otherwise return a pointer to the slot it would take.  If a
740/// node already exists with these operands, the slot will be non-null.
741SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
742                                           const SDValue *Ops,unsigned NumOps,
743                                           void *&InsertPos) {
744  if (doNotCSE(N))
745    return 0;
746
747  FoldingSetNodeID ID;
748  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
749  AddNodeIDCustom(ID, N);
750  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
751  return Node;
752}
753
754#ifndef NDEBUG
755/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
756static void VerifyNodeCommon(SDNode *N) {
757  switch (N->getOpcode()) {
758  default:
759    break;
760  case ISD::BUILD_PAIR: {
761    EVT VT = N->getValueType(0);
762    assert(N->getNumValues() == 1 && "Too many results!");
763    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
764           "Wrong return type!");
765    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
766    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
767           "Mismatched operand types!");
768    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
769           "Wrong operand type!");
770    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
771           "Wrong return type size");
772    break;
773  }
774  case ISD::BUILD_VECTOR: {
775    assert(N->getNumValues() == 1 && "Too many results!");
776    assert(N->getValueType(0).isVector() && "Wrong return type!");
777    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
778           "Wrong number of operands!");
779    EVT EltVT = N->getValueType(0).getVectorElementType();
780    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
781      assert((I->getValueType() == EltVT ||
782             (EltVT.isInteger() && I->getValueType().isInteger() &&
783              EltVT.bitsLE(I->getValueType()))) &&
784            "Wrong operand type!");
785      assert(I->getValueType() == N->getOperand(0).getValueType() &&
786             "Operands must all have the same type");
787    }
788    break;
789  }
790  }
791}
792
793/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
794static void VerifySDNode(SDNode *N) {
795  // The SDNode allocators cannot be used to allocate nodes with fields that are
796  // not present in an SDNode!
797  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
798  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
799  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
800  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
801  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
802  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
803  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
804  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
805  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
806  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
807  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
808  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
809  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
810  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
811  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
812  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
813  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
814  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
815  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
816
817  VerifyNodeCommon(N);
818}
819
820/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
821/// invalid.
822static void VerifyMachineNode(SDNode *N) {
823  // The MachineNode allocators cannot be used to allocate nodes with fields
824  // that are not present in a MachineNode!
825  // Currently there are no such nodes.
826
827  VerifyNodeCommon(N);
828}
829#endif // NDEBUG
830
831/// getEVTAlignment - Compute the default alignment value for the
832/// given type.
833///
834unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
835  Type *Ty = VT == MVT::iPTR ?
836                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
837                   VT.getTypeForEVT(*getContext());
838
839  return TLI.getTargetData()->getABITypeAlignment(Ty);
840}
841
842// EntryNode could meaningfully have debug info if we can find it...
843SelectionDAG::SelectionDAG(const TargetMachine &tm)
844  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
845    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
846    Root(getEntryNode()), Ordering(0) {
847  AllNodes.push_back(&EntryNode);
848  Ordering = new SDNodeOrdering();
849  DbgInfo = new SDDbgInfo();
850}
851
852void SelectionDAG::init(MachineFunction &mf) {
853  MF = &mf;
854  Context = &mf.getFunction()->getContext();
855}
856
857SelectionDAG::~SelectionDAG() {
858  allnodes_clear();
859  delete Ordering;
860  delete DbgInfo;
861}
862
863void SelectionDAG::allnodes_clear() {
864  assert(&*AllNodes.begin() == &EntryNode);
865  AllNodes.remove(AllNodes.begin());
866  while (!AllNodes.empty())
867    DeallocateNode(AllNodes.begin());
868}
869
870void SelectionDAG::clear() {
871  allnodes_clear();
872  OperandAllocator.Reset();
873  CSEMap.clear();
874
875  ExtendedValueTypeNodes.clear();
876  ExternalSymbols.clear();
877  TargetExternalSymbols.clear();
878  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
879            static_cast<CondCodeSDNode*>(0));
880  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
881            static_cast<SDNode*>(0));
882
883  EntryNode.UseList = 0;
884  AllNodes.push_back(&EntryNode);
885  Root = getEntryNode();
886  Ordering->clear();
887  DbgInfo->clear();
888}
889
890SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
891  return VT.bitsGT(Op.getValueType()) ?
892    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
893    getNode(ISD::TRUNCATE, DL, VT, Op);
894}
895
896SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
897  return VT.bitsGT(Op.getValueType()) ?
898    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
899    getNode(ISD::TRUNCATE, DL, VT, Op);
900}
901
902SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
903  return VT.bitsGT(Op.getValueType()) ?
904    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
905    getNode(ISD::TRUNCATE, DL, VT, Op);
906}
907
908SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
909  assert(!VT.isVector() &&
910         "getZeroExtendInReg should use the vector element type instead of "
911         "the vector type!");
912  if (Op.getValueType() == VT) return Op;
913  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
914  APInt Imm = APInt::getLowBitsSet(BitWidth,
915                                   VT.getSizeInBits());
916  return getNode(ISD::AND, DL, Op.getValueType(), Op,
917                 getConstant(Imm, Op.getValueType()));
918}
919
920/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
921///
922SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
923  EVT EltVT = VT.getScalarType();
924  SDValue NegOne =
925    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
926  return getNode(ISD::XOR, DL, VT, Val, NegOne);
927}
928
929SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
930  EVT EltVT = VT.getScalarType();
931  assert((EltVT.getSizeInBits() >= 64 ||
932         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
933         "getConstant with a uint64_t value that doesn't fit in the type!");
934  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
935}
936
937SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
938  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
939}
940
941SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
942  assert(VT.isInteger() && "Cannot create FP integer constant!");
943
944  EVT EltVT = VT.getScalarType();
945  const ConstantInt *Elt = &Val;
946
947  // In some cases the vector type is legal but the element type is illegal and
948  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
949  // inserted value (the type does not need to match the vector element type).
950  // Any extra bits introduced will be truncated away.
951  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
952      TargetLowering::TypePromoteInteger) {
953   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
954   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
955   Elt = ConstantInt::get(*getContext(), NewVal);
956  }
957
958  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
959         "APInt size does not match type size!");
960  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
961  FoldingSetNodeID ID;
962  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
963  ID.AddPointer(Elt);
964  void *IP = 0;
965  SDNode *N = NULL;
966  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
967    if (!VT.isVector())
968      return SDValue(N, 0);
969
970  if (!N) {
971    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
972    CSEMap.InsertNode(N, IP);
973    AllNodes.push_back(N);
974  }
975
976  SDValue Result(N, 0);
977  if (VT.isVector()) {
978    SmallVector<SDValue, 8> Ops;
979    Ops.assign(VT.getVectorNumElements(), Result);
980    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
981  }
982  return Result;
983}
984
985SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
986  return getConstant(Val, TLI.getPointerTy(), isTarget);
987}
988
989
990SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
991  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
992}
993
994SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
995  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
996
997  EVT EltVT = VT.getScalarType();
998
999  // Do the map lookup using the actual bit pattern for the floating point
1000  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1001  // we don't have issues with SNANs.
1002  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1003  FoldingSetNodeID ID;
1004  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1005  ID.AddPointer(&V);
1006  void *IP = 0;
1007  SDNode *N = NULL;
1008  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1009    if (!VT.isVector())
1010      return SDValue(N, 0);
1011
1012  if (!N) {
1013    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1014    CSEMap.InsertNode(N, IP);
1015    AllNodes.push_back(N);
1016  }
1017
1018  SDValue Result(N, 0);
1019  if (VT.isVector()) {
1020    SmallVector<SDValue, 8> Ops;
1021    Ops.assign(VT.getVectorNumElements(), Result);
1022    // FIXME DebugLoc info might be appropriate here
1023    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1024  }
1025  return Result;
1026}
1027
1028SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1029  EVT EltVT = VT.getScalarType();
1030  if (EltVT==MVT::f32)
1031    return getConstantFP(APFloat((float)Val), VT, isTarget);
1032  else if (EltVT==MVT::f64)
1033    return getConstantFP(APFloat(Val), VT, isTarget);
1034  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1035    bool ignored;
1036    APFloat apf = APFloat(Val);
1037    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1038                &ignored);
1039    return getConstantFP(apf, VT, isTarget);
1040  } else {
1041    assert(0 && "Unsupported type in getConstantFP");
1042    return SDValue();
1043  }
1044}
1045
1046SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1047                                       EVT VT, int64_t Offset,
1048                                       bool isTargetGA,
1049                                       unsigned char TargetFlags) {
1050  assert((TargetFlags == 0 || isTargetGA) &&
1051         "Cannot set target flags on target-independent globals");
1052
1053  // Truncate (with sign-extension) the offset value to the pointer size.
1054  EVT PTy = TLI.getPointerTy();
1055  unsigned BitWidth = PTy.getSizeInBits();
1056  if (BitWidth < 64)
1057    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1058
1059  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1060  if (!GVar) {
1061    // If GV is an alias then use the aliasee for determining thread-localness.
1062    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1063      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1064  }
1065
1066  unsigned Opc;
1067  if (GVar && GVar->isThreadLocal())
1068    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1069  else
1070    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1071
1072  FoldingSetNodeID ID;
1073  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1074  ID.AddPointer(GV);
1075  ID.AddInteger(Offset);
1076  ID.AddInteger(TargetFlags);
1077  void *IP = 0;
1078  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1079    return SDValue(E, 0);
1080
1081  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1082                                                      Offset, TargetFlags);
1083  CSEMap.InsertNode(N, IP);
1084  AllNodes.push_back(N);
1085  return SDValue(N, 0);
1086}
1087
1088SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1089  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1090  FoldingSetNodeID ID;
1091  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1092  ID.AddInteger(FI);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1098  CSEMap.InsertNode(N, IP);
1099  AllNodes.push_back(N);
1100  return SDValue(N, 0);
1101}
1102
1103SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1104                                   unsigned char TargetFlags) {
1105  assert((TargetFlags == 0 || isTarget) &&
1106         "Cannot set target flags on target-independent jump tables");
1107  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1108  FoldingSetNodeID ID;
1109  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1110  ID.AddInteger(JTI);
1111  ID.AddInteger(TargetFlags);
1112  void *IP = 0;
1113  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114    return SDValue(E, 0);
1115
1116  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1117                                                  TargetFlags);
1118  CSEMap.InsertNode(N, IP);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1124                                      unsigned Alignment, int Offset,
1125                                      bool isTarget,
1126                                      unsigned char TargetFlags) {
1127  assert((TargetFlags == 0 || isTarget) &&
1128         "Cannot set target flags on target-independent globals");
1129  if (Alignment == 0)
1130    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1131  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1132  FoldingSetNodeID ID;
1133  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1134  ID.AddInteger(Alignment);
1135  ID.AddInteger(Offset);
1136  ID.AddPointer(C);
1137  ID.AddInteger(TargetFlags);
1138  void *IP = 0;
1139  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1140    return SDValue(E, 0);
1141
1142  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1143                                                     Alignment, TargetFlags);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149
1150SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1151                                      unsigned Alignment, int Offset,
1152                                      bool isTarget,
1153                                      unsigned char TargetFlags) {
1154  assert((TargetFlags == 0 || isTarget) &&
1155         "Cannot set target flags on target-independent globals");
1156  if (Alignment == 0)
1157    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1158  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1159  FoldingSetNodeID ID;
1160  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1161  ID.AddInteger(Alignment);
1162  ID.AddInteger(Offset);
1163  C->addSelectionDAGCSEId(ID);
1164  ID.AddInteger(TargetFlags);
1165  void *IP = 0;
1166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1167    return SDValue(E, 0);
1168
1169  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1170                                                     Alignment, TargetFlags);
1171  CSEMap.InsertNode(N, IP);
1172  AllNodes.push_back(N);
1173  return SDValue(N, 0);
1174}
1175
1176SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1177  FoldingSetNodeID ID;
1178  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1179  ID.AddPointer(MBB);
1180  void *IP = 0;
1181  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1182    return SDValue(E, 0);
1183
1184  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1185  CSEMap.InsertNode(N, IP);
1186  AllNodes.push_back(N);
1187  return SDValue(N, 0);
1188}
1189
1190SDValue SelectionDAG::getValueType(EVT VT) {
1191  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1192      ValueTypeNodes.size())
1193    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1194
1195  SDNode *&N = VT.isExtended() ?
1196    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1197
1198  if (N) return SDValue(N, 0);
1199  N = new (NodeAllocator) VTSDNode(VT);
1200  AllNodes.push_back(N);
1201  return SDValue(N, 0);
1202}
1203
1204SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1205  SDNode *&N = ExternalSymbols[Sym];
1206  if (N) return SDValue(N, 0);
1207  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1208  AllNodes.push_back(N);
1209  return SDValue(N, 0);
1210}
1211
1212SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1213                                              unsigned char TargetFlags) {
1214  SDNode *&N =
1215    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1216                                                               TargetFlags)];
1217  if (N) return SDValue(N, 0);
1218  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1219  AllNodes.push_back(N);
1220  return SDValue(N, 0);
1221}
1222
1223SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1224  if ((unsigned)Cond >= CondCodeNodes.size())
1225    CondCodeNodes.resize(Cond+1);
1226
1227  if (CondCodeNodes[Cond] == 0) {
1228    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1229    CondCodeNodes[Cond] = N;
1230    AllNodes.push_back(N);
1231  }
1232
1233  return SDValue(CondCodeNodes[Cond], 0);
1234}
1235
1236// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1237// the shuffle mask M that point at N1 to point at N2, and indices that point
1238// N2 to point at N1.
1239static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1240  std::swap(N1, N2);
1241  int NElts = M.size();
1242  for (int i = 0; i != NElts; ++i) {
1243    if (M[i] >= NElts)
1244      M[i] -= NElts;
1245    else if (M[i] >= 0)
1246      M[i] += NElts;
1247  }
1248}
1249
1250SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1251                                       SDValue N2, const int *Mask) {
1252  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1253  assert(VT.isVector() && N1.getValueType().isVector() &&
1254         "Vector Shuffle VTs must be a vectors");
1255  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1256         && "Vector Shuffle VTs must have same element type");
1257
1258  // Canonicalize shuffle undef, undef -> undef
1259  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1260    return getUNDEF(VT);
1261
1262  // Validate that all indices in Mask are within the range of the elements
1263  // input to the shuffle.
1264  unsigned NElts = VT.getVectorNumElements();
1265  SmallVector<int, 8> MaskVec;
1266  for (unsigned i = 0; i != NElts; ++i) {
1267    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1268    MaskVec.push_back(Mask[i]);
1269  }
1270
1271  // Canonicalize shuffle v, v -> v, undef
1272  if (N1 == N2) {
1273    N2 = getUNDEF(VT);
1274    for (unsigned i = 0; i != NElts; ++i)
1275      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1276  }
1277
1278  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1279  if (N1.getOpcode() == ISD::UNDEF)
1280    commuteShuffle(N1, N2, MaskVec);
1281
1282  // Canonicalize all index into lhs, -> shuffle lhs, undef
1283  // Canonicalize all index into rhs, -> shuffle rhs, undef
1284  bool AllLHS = true, AllRHS = true;
1285  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1286  for (unsigned i = 0; i != NElts; ++i) {
1287    if (MaskVec[i] >= (int)NElts) {
1288      if (N2Undef)
1289        MaskVec[i] = -1;
1290      else
1291        AllLHS = false;
1292    } else if (MaskVec[i] >= 0) {
1293      AllRHS = false;
1294    }
1295  }
1296  if (AllLHS && AllRHS)
1297    return getUNDEF(VT);
1298  if (AllLHS && !N2Undef)
1299    N2 = getUNDEF(VT);
1300  if (AllRHS) {
1301    N1 = getUNDEF(VT);
1302    commuteShuffle(N1, N2, MaskVec);
1303  }
1304
1305  // If Identity shuffle, or all shuffle in to undef, return that node.
1306  bool AllUndef = true;
1307  bool Identity = true;
1308  for (unsigned i = 0; i != NElts; ++i) {
1309    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1310    if (MaskVec[i] >= 0) AllUndef = false;
1311  }
1312  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1313    return N1;
1314  if (AllUndef)
1315    return getUNDEF(VT);
1316
1317  FoldingSetNodeID ID;
1318  SDValue Ops[2] = { N1, N2 };
1319  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1320  for (unsigned i = 0; i != NElts; ++i)
1321    ID.AddInteger(MaskVec[i]);
1322
1323  void* IP = 0;
1324  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1325    return SDValue(E, 0);
1326
1327  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1328  // SDNode doesn't have access to it.  This memory will be "leaked" when
1329  // the node is deallocated, but recovered when the NodeAllocator is released.
1330  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1331  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1332
1333  ShuffleVectorSDNode *N =
1334    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1335  CSEMap.InsertNode(N, IP);
1336  AllNodes.push_back(N);
1337  return SDValue(N, 0);
1338}
1339
1340SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1341                                       SDValue Val, SDValue DTy,
1342                                       SDValue STy, SDValue Rnd, SDValue Sat,
1343                                       ISD::CvtCode Code) {
1344  // If the src and dest types are the same and the conversion is between
1345  // integer types of the same sign or two floats, no conversion is necessary.
1346  if (DTy == STy &&
1347      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1348    return Val;
1349
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1352  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1353  void* IP = 0;
1354  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355    return SDValue(E, 0);
1356
1357  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1358                                                           Code);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1365  FoldingSetNodeID ID;
1366  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1367  ID.AddInteger(RegNo);
1368  void *IP = 0;
1369  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1370    return SDValue(E, 0);
1371
1372  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1373  CSEMap.InsertNode(N, IP);
1374  AllNodes.push_back(N);
1375  return SDValue(N, 0);
1376}
1377
1378SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1379  FoldingSetNodeID ID;
1380  SDValue Ops[] = { Root };
1381  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1382  ID.AddPointer(Label);
1383  void *IP = 0;
1384  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1385    return SDValue(E, 0);
1386
1387  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1388  CSEMap.InsertNode(N, IP);
1389  AllNodes.push_back(N);
1390  return SDValue(N, 0);
1391}
1392
1393
1394SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1395                                      bool isTarget,
1396                                      unsigned char TargetFlags) {
1397  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1398
1399  FoldingSetNodeID ID;
1400  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1401  ID.AddPointer(BA);
1402  ID.AddInteger(TargetFlags);
1403  void *IP = 0;
1404  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1405    return SDValue(E, 0);
1406
1407  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1408  CSEMap.InsertNode(N, IP);
1409  AllNodes.push_back(N);
1410  return SDValue(N, 0);
1411}
1412
1413SDValue SelectionDAG::getSrcValue(const Value *V) {
1414  assert((!V || V->getType()->isPointerTy()) &&
1415         "SrcValue is not a pointer?");
1416
1417  FoldingSetNodeID ID;
1418  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1419  ID.AddPointer(V);
1420
1421  void *IP = 0;
1422  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1423    return SDValue(E, 0);
1424
1425  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1426  CSEMap.InsertNode(N, IP);
1427  AllNodes.push_back(N);
1428  return SDValue(N, 0);
1429}
1430
1431/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1432SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1433  FoldingSetNodeID ID;
1434  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1435  ID.AddPointer(MD);
1436
1437  void *IP = 0;
1438  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1439    return SDValue(E, 0);
1440
1441  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1442  CSEMap.InsertNode(N, IP);
1443  AllNodes.push_back(N);
1444  return SDValue(N, 0);
1445}
1446
1447
1448/// getShiftAmountOperand - Return the specified value casted to
1449/// the target's desired shift amount type.
1450SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1451  EVT OpTy = Op.getValueType();
1452  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1453  if (OpTy == ShTy || OpTy.isVector()) return Op;
1454
1455  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1456  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1457}
1458
1459/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1460/// specified value type.
1461SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1462  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1463  unsigned ByteSize = VT.getStoreSize();
1464  Type *Ty = VT.getTypeForEVT(*getContext());
1465  unsigned StackAlign =
1466  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1467
1468  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1469  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1470}
1471
1472/// CreateStackTemporary - Create a stack temporary suitable for holding
1473/// either of the specified value types.
1474SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1475  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1476                            VT2.getStoreSizeInBits())/8;
1477  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1478  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1479  const TargetData *TD = TLI.getTargetData();
1480  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1481                            TD->getPrefTypeAlignment(Ty2));
1482
1483  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1484  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1485  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1486}
1487
1488SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1489                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1490  // These setcc operations always fold.
1491  switch (Cond) {
1492  default: break;
1493  case ISD::SETFALSE:
1494  case ISD::SETFALSE2: return getConstant(0, VT);
1495  case ISD::SETTRUE:
1496  case ISD::SETTRUE2:  return getConstant(1, VT);
1497
1498  case ISD::SETOEQ:
1499  case ISD::SETOGT:
1500  case ISD::SETOGE:
1501  case ISD::SETOLT:
1502  case ISD::SETOLE:
1503  case ISD::SETONE:
1504  case ISD::SETO:
1505  case ISD::SETUO:
1506  case ISD::SETUEQ:
1507  case ISD::SETUNE:
1508    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1509    break;
1510  }
1511
1512  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1513    const APInt &C2 = N2C->getAPIntValue();
1514    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1515      const APInt &C1 = N1C->getAPIntValue();
1516
1517      switch (Cond) {
1518      default: llvm_unreachable("Unknown integer setcc!");
1519      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1520      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1521      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1522      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1523      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1524      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1525      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1526      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1527      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1528      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1529      }
1530    }
1531  }
1532  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1533    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1534      // No compile time operations on this type yet.
1535      if (N1C->getValueType(0) == MVT::ppcf128)
1536        return SDValue();
1537
1538      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1539      switch (Cond) {
1540      default: break;
1541      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1542                          return getUNDEF(VT);
1543                        // fall through
1544      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1545      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1546                          return getUNDEF(VT);
1547                        // fall through
1548      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1549                                           R==APFloat::cmpLessThan, VT);
1550      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1551                          return getUNDEF(VT);
1552                        // fall through
1553      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1554      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1555                          return getUNDEF(VT);
1556                        // fall through
1557      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1558      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1559                          return getUNDEF(VT);
1560                        // fall through
1561      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1562                                           R==APFloat::cmpEqual, VT);
1563      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1564                          return getUNDEF(VT);
1565                        // fall through
1566      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1567                                           R==APFloat::cmpEqual, VT);
1568      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1569      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1570      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1571                                           R==APFloat::cmpEqual, VT);
1572      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1573      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1574                                           R==APFloat::cmpLessThan, VT);
1575      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1576                                           R==APFloat::cmpUnordered, VT);
1577      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1578      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1579      }
1580    } else {
1581      // Ensure that the constant occurs on the RHS.
1582      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1583    }
1584  }
1585
1586  // Could not fold it.
1587  return SDValue();
1588}
1589
1590/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1591/// use this predicate to simplify operations downstream.
1592bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1593  // This predicate is not safe for vector operations.
1594  if (Op.getValueType().isVector())
1595    return false;
1596
1597  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1598  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1599}
1600
1601/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1602/// this predicate to simplify operations downstream.  Mask is known to be zero
1603/// for bits that V cannot have.
1604bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1605                                     unsigned Depth) const {
1606  APInt KnownZero, KnownOne;
1607  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1608  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1609  return (KnownZero & Mask) == Mask;
1610}
1611
1612/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1613/// known to be either zero or one and return them in the KnownZero/KnownOne
1614/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1615/// processing.
1616void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1617                                     APInt &KnownZero, APInt &KnownOne,
1618                                     unsigned Depth) const {
1619  unsigned BitWidth = Mask.getBitWidth();
1620  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1621         "Mask size mismatches value type size!");
1622
1623  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1624  if (Depth == 6 || Mask == 0)
1625    return;  // Limit search depth.
1626
1627  APInt KnownZero2, KnownOne2;
1628
1629  switch (Op.getOpcode()) {
1630  case ISD::Constant:
1631    // We know all of the bits for a constant!
1632    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1633    KnownZero = ~KnownOne & Mask;
1634    return;
1635  case ISD::AND:
1636    // If either the LHS or the RHS are Zero, the result is zero.
1637    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1639                      KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Output known-1 bits are only known if set in both the LHS & RHS.
1644    KnownOne &= KnownOne2;
1645    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1646    KnownZero |= KnownZero2;
1647    return;
1648  case ISD::OR:
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1650    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1651                      KnownZero2, KnownOne2, Depth+1);
1652    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1653    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1654
1655    // Output known-0 bits are only known if clear in both the LHS & RHS.
1656    KnownZero &= KnownZero2;
1657    // Output known-1 are known to be set if set in either the LHS | RHS.
1658    KnownOne |= KnownOne2;
1659    return;
1660  case ISD::XOR: {
1661    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1662    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1663    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1664    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1665
1666    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1667    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1668    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1669    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1670    KnownZero = KnownZeroOut;
1671    return;
1672  }
1673  case ISD::MUL: {
1674    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1675    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1676    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1677    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1678    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1679
1680    // If low bits are zero in either operand, output low known-0 bits.
1681    // Also compute a conserative estimate for high known-0 bits.
1682    // More trickiness is possible, but this is sufficient for the
1683    // interesting case of alignment computation.
1684    KnownOne.clearAllBits();
1685    unsigned TrailZ = KnownZero.countTrailingOnes() +
1686                      KnownZero2.countTrailingOnes();
1687    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1688                               KnownZero2.countLeadingOnes(),
1689                               BitWidth) - BitWidth;
1690
1691    TrailZ = std::min(TrailZ, BitWidth);
1692    LeadZ = std::min(LeadZ, BitWidth);
1693    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1694                APInt::getHighBitsSet(BitWidth, LeadZ);
1695    KnownZero &= Mask;
1696    return;
1697  }
1698  case ISD::UDIV: {
1699    // For the purposes of computing leading zeros we can conservatively
1700    // treat a udiv as a logical right shift by the power of 2 known to
1701    // be less than the denominator.
1702    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1703    ComputeMaskedBits(Op.getOperand(0),
1704                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1705    unsigned LeadZ = KnownZero2.countLeadingOnes();
1706
1707    KnownOne2.clearAllBits();
1708    KnownZero2.clearAllBits();
1709    ComputeMaskedBits(Op.getOperand(1),
1710                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1711    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1712    if (RHSUnknownLeadingOnes != BitWidth)
1713      LeadZ = std::min(BitWidth,
1714                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1715
1716    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1717    return;
1718  }
1719  case ISD::SELECT:
1720    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1721    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1722    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1723    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1724
1725    // Only known if known in both the LHS and RHS.
1726    KnownOne &= KnownOne2;
1727    KnownZero &= KnownZero2;
1728    return;
1729  case ISD::SELECT_CC:
1730    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1731    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1732    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1733    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1734
1735    // Only known if known in both the LHS and RHS.
1736    KnownOne &= KnownOne2;
1737    KnownZero &= KnownZero2;
1738    return;
1739  case ISD::SADDO:
1740  case ISD::UADDO:
1741  case ISD::SSUBO:
1742  case ISD::USUBO:
1743  case ISD::SMULO:
1744  case ISD::UMULO:
1745    if (Op.getResNo() != 1)
1746      return;
1747    // The boolean result conforms to getBooleanContents.  Fall through.
1748  case ISD::SETCC:
1749    // If we know the result of a setcc has the top bits zero, use this info.
1750    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1751        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1752      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1753    return;
1754  case ISD::SHL:
1755    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1756    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1757      unsigned ShAmt = SA->getZExtValue();
1758
1759      // If the shift count is an invalid immediate, don't do anything.
1760      if (ShAmt >= BitWidth)
1761        return;
1762
1763      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1764                        KnownZero, KnownOne, Depth+1);
1765      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1766      KnownZero <<= ShAmt;
1767      KnownOne  <<= ShAmt;
1768      // low bits known zero.
1769      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1770    }
1771    return;
1772  case ISD::SRL:
1773    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1774    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1775      unsigned ShAmt = SA->getZExtValue();
1776
1777      // If the shift count is an invalid immediate, don't do anything.
1778      if (ShAmt >= BitWidth)
1779        return;
1780
1781      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1782                        KnownZero, KnownOne, Depth+1);
1783      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1784      KnownZero = KnownZero.lshr(ShAmt);
1785      KnownOne  = KnownOne.lshr(ShAmt);
1786
1787      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1788      KnownZero |= HighBits;  // High bits known zero.
1789    }
1790    return;
1791  case ISD::SRA:
1792    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1793      unsigned ShAmt = SA->getZExtValue();
1794
1795      // If the shift count is an invalid immediate, don't do anything.
1796      if (ShAmt >= BitWidth)
1797        return;
1798
1799      APInt InDemandedMask = (Mask << ShAmt);
1800      // If any of the demanded bits are produced by the sign extension, we also
1801      // demand the input sign bit.
1802      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1803      if (HighBits.getBoolValue())
1804        InDemandedMask |= APInt::getSignBit(BitWidth);
1805
1806      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1807                        Depth+1);
1808      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1809      KnownZero = KnownZero.lshr(ShAmt);
1810      KnownOne  = KnownOne.lshr(ShAmt);
1811
1812      // Handle the sign bits.
1813      APInt SignBit = APInt::getSignBit(BitWidth);
1814      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1815
1816      if (KnownZero.intersects(SignBit)) {
1817        KnownZero |= HighBits;  // New bits are known zero.
1818      } else if (KnownOne.intersects(SignBit)) {
1819        KnownOne  |= HighBits;  // New bits are known one.
1820      }
1821    }
1822    return;
1823  case ISD::SIGN_EXTEND_INREG: {
1824    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1825    unsigned EBits = EVT.getScalarType().getSizeInBits();
1826
1827    // Sign extension.  Compute the demanded bits in the result that are not
1828    // present in the input.
1829    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1830
1831    APInt InSignBit = APInt::getSignBit(EBits);
1832    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1833
1834    // If the sign extended bits are demanded, we know that the sign
1835    // bit is demanded.
1836    InSignBit = InSignBit.zext(BitWidth);
1837    if (NewBits.getBoolValue())
1838      InputDemandedBits |= InSignBit;
1839
1840    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1841                      KnownZero, KnownOne, Depth+1);
1842    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1843
1844    // If the sign bit of the input is known set or clear, then we know the
1845    // top bits of the result.
1846    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1847      KnownZero |= NewBits;
1848      KnownOne  &= ~NewBits;
1849    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1850      KnownOne  |= NewBits;
1851      KnownZero &= ~NewBits;
1852    } else {                              // Input sign bit unknown
1853      KnownZero &= ~NewBits;
1854      KnownOne  &= ~NewBits;
1855    }
1856    return;
1857  }
1858  case ISD::CTTZ:
1859  case ISD::CTLZ:
1860  case ISD::CTPOP: {
1861    unsigned LowBits = Log2_32(BitWidth)+1;
1862    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1863    KnownOne.clearAllBits();
1864    return;
1865  }
1866  case ISD::LOAD: {
1867    if (ISD::isZEXTLoad(Op.getNode())) {
1868      LoadSDNode *LD = cast<LoadSDNode>(Op);
1869      EVT VT = LD->getMemoryVT();
1870      unsigned MemBits = VT.getScalarType().getSizeInBits();
1871      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1872    }
1873    return;
1874  }
1875  case ISD::ZERO_EXTEND: {
1876    EVT InVT = Op.getOperand(0).getValueType();
1877    unsigned InBits = InVT.getScalarType().getSizeInBits();
1878    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1879    APInt InMask    = Mask.trunc(InBits);
1880    KnownZero = KnownZero.trunc(InBits);
1881    KnownOne = KnownOne.trunc(InBits);
1882    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1883    KnownZero = KnownZero.zext(BitWidth);
1884    KnownOne = KnownOne.zext(BitWidth);
1885    KnownZero |= NewBits;
1886    return;
1887  }
1888  case ISD::SIGN_EXTEND: {
1889    EVT InVT = Op.getOperand(0).getValueType();
1890    unsigned InBits = InVT.getScalarType().getSizeInBits();
1891    APInt InSignBit = APInt::getSignBit(InBits);
1892    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1893    APInt InMask = Mask.trunc(InBits);
1894
1895    // If any of the sign extended bits are demanded, we know that the sign
1896    // bit is demanded. Temporarily set this bit in the mask for our callee.
1897    if (NewBits.getBoolValue())
1898      InMask |= InSignBit;
1899
1900    KnownZero = KnownZero.trunc(InBits);
1901    KnownOne = KnownOne.trunc(InBits);
1902    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1903
1904    // Note if the sign bit is known to be zero or one.
1905    bool SignBitKnownZero = KnownZero.isNegative();
1906    bool SignBitKnownOne  = KnownOne.isNegative();
1907    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1908           "Sign bit can't be known to be both zero and one!");
1909
1910    // If the sign bit wasn't actually demanded by our caller, we don't
1911    // want it set in the KnownZero and KnownOne result values. Reset the
1912    // mask and reapply it to the result values.
1913    InMask = Mask.trunc(InBits);
1914    KnownZero &= InMask;
1915    KnownOne  &= InMask;
1916
1917    KnownZero = KnownZero.zext(BitWidth);
1918    KnownOne = KnownOne.zext(BitWidth);
1919
1920    // If the sign bit is known zero or one, the top bits match.
1921    if (SignBitKnownZero)
1922      KnownZero |= NewBits;
1923    else if (SignBitKnownOne)
1924      KnownOne  |= NewBits;
1925    return;
1926  }
1927  case ISD::ANY_EXTEND: {
1928    EVT InVT = Op.getOperand(0).getValueType();
1929    unsigned InBits = InVT.getScalarType().getSizeInBits();
1930    APInt InMask = Mask.trunc(InBits);
1931    KnownZero = KnownZero.trunc(InBits);
1932    KnownOne = KnownOne.trunc(InBits);
1933    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1934    KnownZero = KnownZero.zext(BitWidth);
1935    KnownOne = KnownOne.zext(BitWidth);
1936    return;
1937  }
1938  case ISD::TRUNCATE: {
1939    EVT InVT = Op.getOperand(0).getValueType();
1940    unsigned InBits = InVT.getScalarType().getSizeInBits();
1941    APInt InMask = Mask.zext(InBits);
1942    KnownZero = KnownZero.zext(InBits);
1943    KnownOne = KnownOne.zext(InBits);
1944    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1945    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1946    KnownZero = KnownZero.trunc(BitWidth);
1947    KnownOne = KnownOne.trunc(BitWidth);
1948    break;
1949  }
1950  case ISD::AssertZext: {
1951    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1952    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1953    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1954                      KnownOne, Depth+1);
1955    KnownZero |= (~InMask) & Mask;
1956    return;
1957  }
1958  case ISD::FGETSIGN:
1959    // All bits are zero except the low bit.
1960    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1961    return;
1962
1963  case ISD::SUB: {
1964    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1965      // We know that the top bits of C-X are clear if X contains less bits
1966      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1967      // positive if we can prove that X is >= 0 and < 16.
1968      if (CLHS->getAPIntValue().isNonNegative()) {
1969        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1970        // NLZ can't be BitWidth with no sign bit
1971        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1972        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1973                          Depth+1);
1974
1975        // If all of the MaskV bits are known to be zero, then we know the
1976        // output top bits are zero, because we now know that the output is
1977        // from [0-C].
1978        if ((KnownZero2 & MaskV) == MaskV) {
1979          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1980          // Top bits known zero.
1981          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1982        }
1983      }
1984    }
1985  }
1986  // fall through
1987  case ISD::ADD:
1988  case ISD::ADDE: {
1989    // Output known-0 bits are known if clear or set in both the low clear bits
1990    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1991    // low 3 bits clear.
1992    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1993                                       BitWidth - Mask.countLeadingZeros());
1994    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1995    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1996    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1997
1998    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1999    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2000    KnownZeroOut = std::min(KnownZeroOut,
2001                            KnownZero2.countTrailingOnes());
2002
2003    if (Op.getOpcode() == ISD::ADD) {
2004      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2005      return;
2006    }
2007
2008    // With ADDE, a carry bit may be added in, so we can only use this
2009    // information if we know (at least) that the low two bits are clear.  We
2010    // then return to the caller that the low bit is unknown but that other bits
2011    // are known zero.
2012    if (KnownZeroOut >= 2) // ADDE
2013      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2014    return;
2015  }
2016  case ISD::SREM:
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue().abs();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = RA - 1;
2021        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2022        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
2023
2024        // The low bits of the first operand are unchanged by the srem.
2025        KnownZero = KnownZero2 & LowBits;
2026        KnownOne = KnownOne2 & LowBits;
2027
2028        // If the first operand is non-negative or has all low bits zero, then
2029        // the upper bits are all zero.
2030        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2031          KnownZero |= ~LowBits;
2032
2033        // If the first operand is negative and not all low bits are zero, then
2034        // the upper bits are all one.
2035        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2036          KnownOne |= ~LowBits;
2037
2038        KnownZero &= Mask;
2039        KnownOne &= Mask;
2040
2041        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2042      }
2043    }
2044    return;
2045  case ISD::UREM: {
2046    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      const APInt &RA = Rem->getAPIntValue();
2048      if (RA.isPowerOf2()) {
2049        APInt LowBits = (RA - 1);
2050        APInt Mask2 = LowBits & Mask;
2051        KnownZero |= ~LowBits & Mask;
2052        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2053        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2054        break;
2055      }
2056    }
2057
2058    // Since the result is less than or equal to either operand, any leading
2059    // zero bits in either operand must also exist in the result.
2060    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2061    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2062                      Depth+1);
2063    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2064                      Depth+1);
2065
2066    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2067                                KnownZero2.countLeadingOnes());
2068    KnownOne.clearAllBits();
2069    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2070    return;
2071  }
2072  case ISD::FrameIndex:
2073  case ISD::TargetFrameIndex:
2074    if (unsigned Align = InferPtrAlignment(Op)) {
2075      // The low bits are known zero if the pointer is aligned.
2076      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2077      return;
2078    }
2079    break;
2080
2081  default:
2082    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2083      break;
2084    // Fallthrough
2085  case ISD::INTRINSIC_WO_CHAIN:
2086  case ISD::INTRINSIC_W_CHAIN:
2087  case ISD::INTRINSIC_VOID:
2088    // Allow the target to implement this method for its nodes.
2089    TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2090                                       Depth);
2091    return;
2092  }
2093}
2094
2095/// ComputeNumSignBits - Return the number of times the sign bit of the
2096/// register is replicated into the other bits.  We know that at least 1 bit
2097/// is always equal to the sign bit (itself), but other cases can give us
2098/// information.  For example, immediately after an "SRA X, 2", we know that
2099/// the top 3 bits are all equal to each other, so we return 3.
2100unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2101  EVT VT = Op.getValueType();
2102  assert(VT.isInteger() && "Invalid VT!");
2103  unsigned VTBits = VT.getScalarType().getSizeInBits();
2104  unsigned Tmp, Tmp2;
2105  unsigned FirstAnswer = 1;
2106
2107  if (Depth == 6)
2108    return 1;  // Limit search depth.
2109
2110  switch (Op.getOpcode()) {
2111  default: break;
2112  case ISD::AssertSext:
2113    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2114    return VTBits-Tmp+1;
2115  case ISD::AssertZext:
2116    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2117    return VTBits-Tmp;
2118
2119  case ISD::Constant: {
2120    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2121    return Val.getNumSignBits();
2122  }
2123
2124  case ISD::SIGN_EXTEND:
2125    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2126    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2127
2128  case ISD::SIGN_EXTEND_INREG:
2129    // Max of the input and what this extends.
2130    Tmp =
2131      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2132    Tmp = VTBits-Tmp+1;
2133
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2135    return std::max(Tmp, Tmp2);
2136
2137  case ISD::SRA:
2138    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2139    // SRA X, C   -> adds C sign bits.
2140    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2141      Tmp += C->getZExtValue();
2142      if (Tmp > VTBits) Tmp = VTBits;
2143    }
2144    return Tmp;
2145  case ISD::SHL:
2146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2147      // shl destroys sign bits.
2148      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2149      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2150          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2151      return Tmp - C->getZExtValue();
2152    }
2153    break;
2154  case ISD::AND:
2155  case ISD::OR:
2156  case ISD::XOR:    // NOT is handled here.
2157    // Logical binary ops preserve the number of sign bits at the worst.
2158    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2159    if (Tmp != 1) {
2160      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2161      FirstAnswer = std::min(Tmp, Tmp2);
2162      // We computed what we know about the sign bits as our first
2163      // answer. Now proceed to the generic code that uses
2164      // ComputeMaskedBits, and pick whichever answer is better.
2165    }
2166    break;
2167
2168  case ISD::SELECT:
2169    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2170    if (Tmp == 1) return 1;  // Early out.
2171    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2172    return std::min(Tmp, Tmp2);
2173
2174  case ISD::SADDO:
2175  case ISD::UADDO:
2176  case ISD::SSUBO:
2177  case ISD::USUBO:
2178  case ISD::SMULO:
2179  case ISD::UMULO:
2180    if (Op.getResNo() != 1)
2181      break;
2182    // The boolean result conforms to getBooleanContents.  Fall through.
2183  case ISD::SETCC:
2184    // If setcc returns 0/-1, all bits are sign bits.
2185    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2186        TargetLowering::ZeroOrNegativeOneBooleanContent)
2187      return VTBits;
2188    break;
2189  case ISD::ROTL:
2190  case ISD::ROTR:
2191    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2192      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2193
2194      // Handle rotate right by N like a rotate left by 32-N.
2195      if (Op.getOpcode() == ISD::ROTR)
2196        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2197
2198      // If we aren't rotating out all of the known-in sign bits, return the
2199      // number that are left.  This handles rotl(sext(x), 1) for example.
2200      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2201      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2202    }
2203    break;
2204  case ISD::ADD:
2205    // Add can have at most one carry bit.  Thus we know that the output
2206    // is, at worst, one more bit than the inputs.
2207    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2208    if (Tmp == 1) return 1;  // Early out.
2209
2210    // Special case decrementing a value (ADD X, -1):
2211    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2212      if (CRHS->isAllOnesValue()) {
2213        APInt KnownZero, KnownOne;
2214        APInt Mask = APInt::getAllOnesValue(VTBits);
2215        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2216
2217        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2218        // sign bits set.
2219        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2220          return VTBits;
2221
2222        // If we are subtracting one from a positive number, there is no carry
2223        // out of the result.
2224        if (KnownZero.isNegative())
2225          return Tmp;
2226      }
2227
2228    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2229    if (Tmp2 == 1) return 1;
2230      return std::min(Tmp, Tmp2)-1;
2231    break;
2232
2233  case ISD::SUB:
2234    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2235    if (Tmp2 == 1) return 1;
2236
2237    // Handle NEG.
2238    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2239      if (CLHS->isNullValue()) {
2240        APInt KnownZero, KnownOne;
2241        APInt Mask = APInt::getAllOnesValue(VTBits);
2242        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2243        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2244        // sign bits set.
2245        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2246          return VTBits;
2247
2248        // If the input is known to be positive (the sign bit is known clear),
2249        // the output of the NEG has the same number of sign bits as the input.
2250        if (KnownZero.isNegative())
2251          return Tmp2;
2252
2253        // Otherwise, we treat this like a SUB.
2254      }
2255
2256    // Sub can have at most one carry bit.  Thus we know that the output
2257    // is, at worst, one more bit than the inputs.
2258    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2259    if (Tmp == 1) return 1;  // Early out.
2260      return std::min(Tmp, Tmp2)-1;
2261    break;
2262  case ISD::TRUNCATE:
2263    // FIXME: it's tricky to do anything useful for this, but it is an important
2264    // case for targets like X86.
2265    break;
2266  }
2267
2268  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2269  if (Op.getOpcode() == ISD::LOAD) {
2270    LoadSDNode *LD = cast<LoadSDNode>(Op);
2271    unsigned ExtType = LD->getExtensionType();
2272    switch (ExtType) {
2273    default: break;
2274    case ISD::SEXTLOAD:    // '17' bits known
2275      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2276      return VTBits-Tmp+1;
2277    case ISD::ZEXTLOAD:    // '16' bits known
2278      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2279      return VTBits-Tmp;
2280    }
2281  }
2282
2283  // Allow the target to implement this method for its nodes.
2284  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2285      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2286      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2287      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2288    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2289    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2290  }
2291
2292  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2293  // use this information.
2294  APInt KnownZero, KnownOne;
2295  APInt Mask = APInt::getAllOnesValue(VTBits);
2296  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2297
2298  if (KnownZero.isNegative()) {        // sign bit is 0
2299    Mask = KnownZero;
2300  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2301    Mask = KnownOne;
2302  } else {
2303    // Nothing known.
2304    return FirstAnswer;
2305  }
2306
2307  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2308  // the number of identical bits in the top of the input value.
2309  Mask = ~Mask;
2310  Mask <<= Mask.getBitWidth()-VTBits;
2311  // Return # leading zeros.  We use 'min' here in case Val was zero before
2312  // shifting.  We don't want to return '64' as for an i32 "0".
2313  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2314}
2315
2316/// isBaseWithConstantOffset - Return true if the specified operand is an
2317/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2318/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2319/// semantics as an ADD.  This handles the equivalence:
2320///     X|Cst == X+Cst iff X&Cst = 0.
2321bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2322  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2323      !isa<ConstantSDNode>(Op.getOperand(1)))
2324    return false;
2325
2326  if (Op.getOpcode() == ISD::OR &&
2327      !MaskedValueIsZero(Op.getOperand(0),
2328                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2329    return false;
2330
2331  return true;
2332}
2333
2334
2335bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2336  // If we're told that NaNs won't happen, assume they won't.
2337  if (NoNaNsFPMath)
2338    return true;
2339
2340  // If the value is a constant, we can obviously see if it is a NaN or not.
2341  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2342    return !C->getValueAPF().isNaN();
2343
2344  // TODO: Recognize more cases here.
2345
2346  return false;
2347}
2348
2349bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2350  // If the value is a constant, we can obviously see if it is a zero or not.
2351  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2352    return !C->isZero();
2353
2354  // TODO: Recognize more cases here.
2355  switch (Op.getOpcode()) {
2356  default: break;
2357  case ISD::OR:
2358    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2359      return !C->isNullValue();
2360    break;
2361  }
2362
2363  return false;
2364}
2365
2366bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2367  // Check the obvious case.
2368  if (A == B) return true;
2369
2370  // For for negative and positive zero.
2371  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2372    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2373      if (CA->isZero() && CB->isZero()) return true;
2374
2375  // Otherwise they may not be equal.
2376  return false;
2377}
2378
2379/// getNode - Gets or creates the specified node.
2380///
2381SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2382  FoldingSetNodeID ID;
2383  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2384  void *IP = 0;
2385  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2386    return SDValue(E, 0);
2387
2388  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2389  CSEMap.InsertNode(N, IP);
2390
2391  AllNodes.push_back(N);
2392#ifndef NDEBUG
2393  VerifySDNode(N);
2394#endif
2395  return SDValue(N, 0);
2396}
2397
2398SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2399                              EVT VT, SDValue Operand) {
2400  // Constant fold unary operations with an integer constant operand.
2401  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2402    const APInt &Val = C->getAPIntValue();
2403    switch (Opcode) {
2404    default: break;
2405    case ISD::SIGN_EXTEND:
2406      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2407    case ISD::ANY_EXTEND:
2408    case ISD::ZERO_EXTEND:
2409    case ISD::TRUNCATE:
2410      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2411    case ISD::UINT_TO_FP:
2412    case ISD::SINT_TO_FP: {
2413      // No compile time operations on ppcf128.
2414      if (VT == MVT::ppcf128) break;
2415      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2416      (void)apf.convertFromAPInt(Val,
2417                                 Opcode==ISD::SINT_TO_FP,
2418                                 APFloat::rmNearestTiesToEven);
2419      return getConstantFP(apf, VT);
2420    }
2421    case ISD::BITCAST:
2422      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2423        return getConstantFP(Val.bitsToFloat(), VT);
2424      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2425        return getConstantFP(Val.bitsToDouble(), VT);
2426      break;
2427    case ISD::BSWAP:
2428      return getConstant(Val.byteSwap(), VT);
2429    case ISD::CTPOP:
2430      return getConstant(Val.countPopulation(), VT);
2431    case ISD::CTLZ:
2432      return getConstant(Val.countLeadingZeros(), VT);
2433    case ISD::CTTZ:
2434      return getConstant(Val.countTrailingZeros(), VT);
2435    }
2436  }
2437
2438  // Constant fold unary operations with a floating point constant operand.
2439  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2440    APFloat V = C->getValueAPF();    // make copy
2441    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2442      switch (Opcode) {
2443      case ISD::FNEG:
2444        V.changeSign();
2445        return getConstantFP(V, VT);
2446      case ISD::FABS:
2447        V.clearSign();
2448        return getConstantFP(V, VT);
2449      case ISD::FP_ROUND:
2450      case ISD::FP_EXTEND: {
2451        bool ignored;
2452        // This can return overflow, underflow, or inexact; we don't care.
2453        // FIXME need to be more flexible about rounding mode.
2454        (void)V.convert(*EVTToAPFloatSemantics(VT),
2455                        APFloat::rmNearestTiesToEven, &ignored);
2456        return getConstantFP(V, VT);
2457      }
2458      case ISD::FP_TO_SINT:
2459      case ISD::FP_TO_UINT: {
2460        integerPart x[2];
2461        bool ignored;
2462        assert(integerPartWidth >= 64);
2463        // FIXME need to be more flexible about rounding mode.
2464        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2465                              Opcode==ISD::FP_TO_SINT,
2466                              APFloat::rmTowardZero, &ignored);
2467        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2468          break;
2469        APInt api(VT.getSizeInBits(), x);
2470        return getConstant(api, VT);
2471      }
2472      case ISD::BITCAST:
2473        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2474          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2475        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2476          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2477        break;
2478      }
2479    }
2480  }
2481
2482  unsigned OpOpcode = Operand.getNode()->getOpcode();
2483  switch (Opcode) {
2484  case ISD::TokenFactor:
2485  case ISD::MERGE_VALUES:
2486  case ISD::CONCAT_VECTORS:
2487    return Operand;         // Factor, merge or concat of one node?  No need.
2488  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2489  case ISD::FP_EXTEND:
2490    assert(VT.isFloatingPoint() &&
2491           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2492    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2493    assert((!VT.isVector() ||
2494            VT.getVectorNumElements() ==
2495            Operand.getValueType().getVectorNumElements()) &&
2496           "Vector element count mismatch!");
2497    if (Operand.getOpcode() == ISD::UNDEF)
2498      return getUNDEF(VT);
2499    break;
2500  case ISD::SIGN_EXTEND:
2501    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2502           "Invalid SIGN_EXTEND!");
2503    if (Operand.getValueType() == VT) return Operand;   // noop extension
2504    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2505           "Invalid sext node, dst < src!");
2506    assert((!VT.isVector() ||
2507            VT.getVectorNumElements() ==
2508            Operand.getValueType().getVectorNumElements()) &&
2509           "Vector element count mismatch!");
2510    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2511      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2512    else if (OpOpcode == ISD::UNDEF)
2513      // sext(undef) = 0, because the top bits will all be the same.
2514      return getConstant(0, VT);
2515    break;
2516  case ISD::ZERO_EXTEND:
2517    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2518           "Invalid ZERO_EXTEND!");
2519    if (Operand.getValueType() == VT) return Operand;   // noop extension
2520    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2521           "Invalid zext node, dst < src!");
2522    assert((!VT.isVector() ||
2523            VT.getVectorNumElements() ==
2524            Operand.getValueType().getVectorNumElements()) &&
2525           "Vector element count mismatch!");
2526    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2527      return getNode(ISD::ZERO_EXTEND, DL, VT,
2528                     Operand.getNode()->getOperand(0));
2529    else if (OpOpcode == ISD::UNDEF)
2530      // zext(undef) = 0, because the top bits will be zero.
2531      return getConstant(0, VT);
2532    break;
2533  case ISD::ANY_EXTEND:
2534    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2535           "Invalid ANY_EXTEND!");
2536    if (Operand.getValueType() == VT) return Operand;   // noop extension
2537    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2538           "Invalid anyext node, dst < src!");
2539    assert((!VT.isVector() ||
2540            VT.getVectorNumElements() ==
2541            Operand.getValueType().getVectorNumElements()) &&
2542           "Vector element count mismatch!");
2543
2544    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2545        OpOpcode == ISD::ANY_EXTEND)
2546      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2547      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2548    else if (OpOpcode == ISD::UNDEF)
2549      return getUNDEF(VT);
2550
2551    // (ext (trunx x)) -> x
2552    if (OpOpcode == ISD::TRUNCATE) {
2553      SDValue OpOp = Operand.getNode()->getOperand(0);
2554      if (OpOp.getValueType() == VT)
2555        return OpOp;
2556    }
2557    break;
2558  case ISD::TRUNCATE:
2559    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2560           "Invalid TRUNCATE!");
2561    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2562    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2563           "Invalid truncate node, src < dst!");
2564    assert((!VT.isVector() ||
2565            VT.getVectorNumElements() ==
2566            Operand.getValueType().getVectorNumElements()) &&
2567           "Vector element count mismatch!");
2568    if (OpOpcode == ISD::TRUNCATE)
2569      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2570    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2571             OpOpcode == ISD::ANY_EXTEND) {
2572      // If the source is smaller than the dest, we still need an extend.
2573      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2574            .bitsLT(VT.getScalarType()))
2575        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2576      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2577        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2578      else
2579        return Operand.getNode()->getOperand(0);
2580    }
2581    break;
2582  case ISD::BITCAST:
2583    // Basic sanity checking.
2584    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2585           && "Cannot BITCAST between types of different sizes!");
2586    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2587    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2588      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2589    if (OpOpcode == ISD::UNDEF)
2590      return getUNDEF(VT);
2591    break;
2592  case ISD::SCALAR_TO_VECTOR:
2593    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2594           (VT.getVectorElementType() == Operand.getValueType() ||
2595            (VT.getVectorElementType().isInteger() &&
2596             Operand.getValueType().isInteger() &&
2597             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2598           "Illegal SCALAR_TO_VECTOR node!");
2599    if (OpOpcode == ISD::UNDEF)
2600      return getUNDEF(VT);
2601    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2602    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2603        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2604        Operand.getConstantOperandVal(1) == 0 &&
2605        Operand.getOperand(0).getValueType() == VT)
2606      return Operand.getOperand(0);
2607    break;
2608  case ISD::FNEG:
2609    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2610    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2611      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2612                     Operand.getNode()->getOperand(0));
2613    if (OpOpcode == ISD::FNEG)  // --X -> X
2614      return Operand.getNode()->getOperand(0);
2615    break;
2616  case ISD::FABS:
2617    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2618      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2619    break;
2620  }
2621
2622  SDNode *N;
2623  SDVTList VTs = getVTList(VT);
2624  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2625    FoldingSetNodeID ID;
2626    SDValue Ops[1] = { Operand };
2627    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2628    void *IP = 0;
2629    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2630      return SDValue(E, 0);
2631
2632    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2633    CSEMap.InsertNode(N, IP);
2634  } else {
2635    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2636  }
2637
2638  AllNodes.push_back(N);
2639#ifndef NDEBUG
2640  VerifySDNode(N);
2641#endif
2642  return SDValue(N, 0);
2643}
2644
2645SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2646                                             EVT VT,
2647                                             ConstantSDNode *Cst1,
2648                                             ConstantSDNode *Cst2) {
2649  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2650
2651  switch (Opcode) {
2652  case ISD::ADD:  return getConstant(C1 + C2, VT);
2653  case ISD::SUB:  return getConstant(C1 - C2, VT);
2654  case ISD::MUL:  return getConstant(C1 * C2, VT);
2655  case ISD::UDIV:
2656    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2657    break;
2658  case ISD::UREM:
2659    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2660    break;
2661  case ISD::SDIV:
2662    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2663    break;
2664  case ISD::SREM:
2665    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2666    break;
2667  case ISD::AND:  return getConstant(C1 & C2, VT);
2668  case ISD::OR:   return getConstant(C1 | C2, VT);
2669  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2670  case ISD::SHL:  return getConstant(C1 << C2, VT);
2671  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2672  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2673  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2674  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2675  default: break;
2676  }
2677
2678  return SDValue();
2679}
2680
2681SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2682                              SDValue N1, SDValue N2) {
2683  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2684  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2685  switch (Opcode) {
2686  default: break;
2687  case ISD::TokenFactor:
2688    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2689           N2.getValueType() == MVT::Other && "Invalid token factor!");
2690    // Fold trivial token factors.
2691    if (N1.getOpcode() == ISD::EntryToken) return N2;
2692    if (N2.getOpcode() == ISD::EntryToken) return N1;
2693    if (N1 == N2) return N1;
2694    break;
2695  case ISD::CONCAT_VECTORS:
2696    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2697    // one big BUILD_VECTOR.
2698    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2699        N2.getOpcode() == ISD::BUILD_VECTOR) {
2700      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2701                                    N1.getNode()->op_end());
2702      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2703      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2704    }
2705    break;
2706  case ISD::AND:
2707    assert(VT.isInteger() && "This operator does not apply to FP types!");
2708    assert(N1.getValueType() == N2.getValueType() &&
2709           N1.getValueType() == VT && "Binary operator types must match!");
2710    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2711    // worth handling here.
2712    if (N2C && N2C->isNullValue())
2713      return N2;
2714    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2715      return N1;
2716    break;
2717  case ISD::OR:
2718  case ISD::XOR:
2719  case ISD::ADD:
2720  case ISD::SUB:
2721    assert(VT.isInteger() && "This operator does not apply to FP types!");
2722    assert(N1.getValueType() == N2.getValueType() &&
2723           N1.getValueType() == VT && "Binary operator types must match!");
2724    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2725    // it's worth handling here.
2726    if (N2C && N2C->isNullValue())
2727      return N1;
2728    break;
2729  case ISD::UDIV:
2730  case ISD::UREM:
2731  case ISD::MULHU:
2732  case ISD::MULHS:
2733  case ISD::MUL:
2734  case ISD::SDIV:
2735  case ISD::SREM:
2736    assert(VT.isInteger() && "This operator does not apply to FP types!");
2737    assert(N1.getValueType() == N2.getValueType() &&
2738           N1.getValueType() == VT && "Binary operator types must match!");
2739    break;
2740  case ISD::FADD:
2741  case ISD::FSUB:
2742  case ISD::FMUL:
2743  case ISD::FDIV:
2744  case ISD::FREM:
2745    if (UnsafeFPMath) {
2746      if (Opcode == ISD::FADD) {
2747        // 0+x --> x
2748        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2749          if (CFP->getValueAPF().isZero())
2750            return N2;
2751        // x+0 --> x
2752        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2753          if (CFP->getValueAPF().isZero())
2754            return N1;
2755      } else if (Opcode == ISD::FSUB) {
2756        // x-0 --> x
2757        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2758          if (CFP->getValueAPF().isZero())
2759            return N1;
2760      }
2761    }
2762    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2763    assert(N1.getValueType() == N2.getValueType() &&
2764           N1.getValueType() == VT && "Binary operator types must match!");
2765    break;
2766  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2767    assert(N1.getValueType() == VT &&
2768           N1.getValueType().isFloatingPoint() &&
2769           N2.getValueType().isFloatingPoint() &&
2770           "Invalid FCOPYSIGN!");
2771    break;
2772  case ISD::SHL:
2773  case ISD::SRA:
2774  case ISD::SRL:
2775  case ISD::ROTL:
2776  case ISD::ROTR:
2777    assert(VT == N1.getValueType() &&
2778           "Shift operators return type must be the same as their first arg");
2779    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2780           "Shifts only work on integers");
2781    // Verify that the shift amount VT is bit enough to hold valid shift
2782    // amounts.  This catches things like trying to shift an i1024 value by an
2783    // i8, which is easy to fall into in generic code that uses
2784    // TLI.getShiftAmount().
2785    assert(N2.getValueType().getSizeInBits() >=
2786                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2787           "Invalid use of small shift amount with oversized value!");
2788
2789    // Always fold shifts of i1 values so the code generator doesn't need to
2790    // handle them.  Since we know the size of the shift has to be less than the
2791    // size of the value, the shift/rotate count is guaranteed to be zero.
2792    if (VT == MVT::i1)
2793      return N1;
2794    if (N2C && N2C->isNullValue())
2795      return N1;
2796    break;
2797  case ISD::FP_ROUND_INREG: {
2798    EVT EVT = cast<VTSDNode>(N2)->getVT();
2799    assert(VT == N1.getValueType() && "Not an inreg round!");
2800    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2801           "Cannot FP_ROUND_INREG integer types");
2802    assert(EVT.isVector() == VT.isVector() &&
2803           "FP_ROUND_INREG type should be vector iff the operand "
2804           "type is vector!");
2805    assert((!EVT.isVector() ||
2806            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2807           "Vector element counts must match in FP_ROUND_INREG");
2808    assert(EVT.bitsLE(VT) && "Not rounding down!");
2809    (void)EVT;
2810    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2811    break;
2812  }
2813  case ISD::FP_ROUND:
2814    assert(VT.isFloatingPoint() &&
2815           N1.getValueType().isFloatingPoint() &&
2816           VT.bitsLE(N1.getValueType()) &&
2817           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2818    if (N1.getValueType() == VT) return N1;  // noop conversion.
2819    break;
2820  case ISD::AssertSext:
2821  case ISD::AssertZext: {
2822    EVT EVT = cast<VTSDNode>(N2)->getVT();
2823    assert(VT == N1.getValueType() && "Not an inreg extend!");
2824    assert(VT.isInteger() && EVT.isInteger() &&
2825           "Cannot *_EXTEND_INREG FP types");
2826    assert(!EVT.isVector() &&
2827           "AssertSExt/AssertZExt type should be the vector element type "
2828           "rather than the vector type!");
2829    assert(EVT.bitsLE(VT) && "Not extending!");
2830    if (VT == EVT) return N1; // noop assertion.
2831    break;
2832  }
2833  case ISD::SIGN_EXTEND_INREG: {
2834    EVT EVT = cast<VTSDNode>(N2)->getVT();
2835    assert(VT == N1.getValueType() && "Not an inreg extend!");
2836    assert(VT.isInteger() && EVT.isInteger() &&
2837           "Cannot *_EXTEND_INREG FP types");
2838    assert(EVT.isVector() == VT.isVector() &&
2839           "SIGN_EXTEND_INREG type should be vector iff the operand "
2840           "type is vector!");
2841    assert((!EVT.isVector() ||
2842            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2843           "Vector element counts must match in SIGN_EXTEND_INREG");
2844    assert(EVT.bitsLE(VT) && "Not extending!");
2845    if (EVT == VT) return N1;  // Not actually extending
2846
2847    if (N1C) {
2848      APInt Val = N1C->getAPIntValue();
2849      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2850      Val <<= Val.getBitWidth()-FromBits;
2851      Val = Val.ashr(Val.getBitWidth()-FromBits);
2852      return getConstant(Val, VT);
2853    }
2854    break;
2855  }
2856  case ISD::EXTRACT_VECTOR_ELT:
2857    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2858    if (N1.getOpcode() == ISD::UNDEF)
2859      return getUNDEF(VT);
2860
2861    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2862    // expanding copies of large vectors from registers.
2863    if (N2C &&
2864        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2865        N1.getNumOperands() > 0) {
2866      unsigned Factor =
2867        N1.getOperand(0).getValueType().getVectorNumElements();
2868      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2869                     N1.getOperand(N2C->getZExtValue() / Factor),
2870                     getConstant(N2C->getZExtValue() % Factor,
2871                                 N2.getValueType()));
2872    }
2873
2874    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2875    // expanding large vector constants.
2876    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2877      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2878      EVT VEltTy = N1.getValueType().getVectorElementType();
2879      if (Elt.getValueType() != VEltTy) {
2880        // If the vector element type is not legal, the BUILD_VECTOR operands
2881        // are promoted and implicitly truncated.  Make that explicit here.
2882        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2883      }
2884      if (VT != VEltTy) {
2885        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2886        // result is implicitly extended.
2887        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2888      }
2889      return Elt;
2890    }
2891
2892    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2893    // operations are lowered to scalars.
2894    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2895      // If the indices are the same, return the inserted element else
2896      // if the indices are known different, extract the element from
2897      // the original vector.
2898      SDValue N1Op2 = N1.getOperand(2);
2899      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2900
2901      if (N1Op2C && N2C) {
2902        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2903          if (VT == N1.getOperand(1).getValueType())
2904            return N1.getOperand(1);
2905          else
2906            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2907        }
2908
2909        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2910      }
2911    }
2912    break;
2913  case ISD::EXTRACT_ELEMENT:
2914    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2915    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2916           (N1.getValueType().isInteger() == VT.isInteger()) &&
2917           N1.getValueType() != VT &&
2918           "Wrong types for EXTRACT_ELEMENT!");
2919
2920    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2921    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2922    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2923    if (N1.getOpcode() == ISD::BUILD_PAIR)
2924      return N1.getOperand(N2C->getZExtValue());
2925
2926    // EXTRACT_ELEMENT of a constant int is also very common.
2927    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2928      unsigned ElementSize = VT.getSizeInBits();
2929      unsigned Shift = ElementSize * N2C->getZExtValue();
2930      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2931      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2932    }
2933    break;
2934  case ISD::EXTRACT_SUBVECTOR: {
2935    SDValue Index = N2;
2936    if (VT.isSimple() && N1.getValueType().isSimple()) {
2937      assert(VT.isVector() && N1.getValueType().isVector() &&
2938             "Extract subvector VTs must be a vectors!");
2939      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2940             "Extract subvector VTs must have the same element type!");
2941      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2942             "Extract subvector must be from larger vector to smaller vector!");
2943
2944      if (isa<ConstantSDNode>(Index.getNode())) {
2945        assert((VT.getVectorNumElements() +
2946                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2947                <= N1.getValueType().getVectorNumElements())
2948               && "Extract subvector overflow!");
2949      }
2950
2951      // Trivial extraction.
2952      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2953        return N1;
2954    }
2955    break;
2956  }
2957  }
2958
2959  if (N1C) {
2960    if (N2C) {
2961      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2962      if (SV.getNode()) return SV;
2963    } else {      // Cannonicalize constant to RHS if commutative
2964      if (isCommutativeBinOp(Opcode)) {
2965        std::swap(N1C, N2C);
2966        std::swap(N1, N2);
2967      }
2968    }
2969  }
2970
2971  // Constant fold FP operations.
2972  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2973  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2974  if (N1CFP) {
2975    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2976      // Cannonicalize constant to RHS if commutative
2977      std::swap(N1CFP, N2CFP);
2978      std::swap(N1, N2);
2979    } else if (N2CFP && VT != MVT::ppcf128) {
2980      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2981      APFloat::opStatus s;
2982      switch (Opcode) {
2983      case ISD::FADD:
2984        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2985        if (s != APFloat::opInvalidOp)
2986          return getConstantFP(V1, VT);
2987        break;
2988      case ISD::FSUB:
2989        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2990        if (s!=APFloat::opInvalidOp)
2991          return getConstantFP(V1, VT);
2992        break;
2993      case ISD::FMUL:
2994        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2995        if (s!=APFloat::opInvalidOp)
2996          return getConstantFP(V1, VT);
2997        break;
2998      case ISD::FDIV:
2999        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3000        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3001          return getConstantFP(V1, VT);
3002        break;
3003      case ISD::FREM :
3004        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3005        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3006          return getConstantFP(V1, VT);
3007        break;
3008      case ISD::FCOPYSIGN:
3009        V1.copySign(V2);
3010        return getConstantFP(V1, VT);
3011      default: break;
3012      }
3013    }
3014  }
3015
3016  // Canonicalize an UNDEF to the RHS, even over a constant.
3017  if (N1.getOpcode() == ISD::UNDEF) {
3018    if (isCommutativeBinOp(Opcode)) {
3019      std::swap(N1, N2);
3020    } else {
3021      switch (Opcode) {
3022      case ISD::FP_ROUND_INREG:
3023      case ISD::SIGN_EXTEND_INREG:
3024      case ISD::SUB:
3025      case ISD::FSUB:
3026      case ISD::FDIV:
3027      case ISD::FREM:
3028      case ISD::SRA:
3029        return N1;     // fold op(undef, arg2) -> undef
3030      case ISD::UDIV:
3031      case ISD::SDIV:
3032      case ISD::UREM:
3033      case ISD::SREM:
3034      case ISD::SRL:
3035      case ISD::SHL:
3036        if (!VT.isVector())
3037          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3038        // For vectors, we can't easily build an all zero vector, just return
3039        // the LHS.
3040        return N2;
3041      }
3042    }
3043  }
3044
3045  // Fold a bunch of operators when the RHS is undef.
3046  if (N2.getOpcode() == ISD::UNDEF) {
3047    switch (Opcode) {
3048    case ISD::XOR:
3049      if (N1.getOpcode() == ISD::UNDEF)
3050        // Handle undef ^ undef -> 0 special case. This is a common
3051        // idiom (misuse).
3052        return getConstant(0, VT);
3053      // fallthrough
3054    case ISD::ADD:
3055    case ISD::ADDC:
3056    case ISD::ADDE:
3057    case ISD::SUB:
3058    case ISD::UDIV:
3059    case ISD::SDIV:
3060    case ISD::UREM:
3061    case ISD::SREM:
3062      return N2;       // fold op(arg1, undef) -> undef
3063    case ISD::FADD:
3064    case ISD::FSUB:
3065    case ISD::FMUL:
3066    case ISD::FDIV:
3067    case ISD::FREM:
3068      if (UnsafeFPMath)
3069        return N2;
3070      break;
3071    case ISD::MUL:
3072    case ISD::AND:
3073    case ISD::SRL:
3074    case ISD::SHL:
3075      if (!VT.isVector())
3076        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3077      // For vectors, we can't easily build an all zero vector, just return
3078      // the LHS.
3079      return N1;
3080    case ISD::OR:
3081      if (!VT.isVector())
3082        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3083      // For vectors, we can't easily build an all one vector, just return
3084      // the LHS.
3085      return N1;
3086    case ISD::SRA:
3087      return N1;
3088    }
3089  }
3090
3091  // Memoize this node if possible.
3092  SDNode *N;
3093  SDVTList VTs = getVTList(VT);
3094  if (VT != MVT::Glue) {
3095    SDValue Ops[] = { N1, N2 };
3096    FoldingSetNodeID ID;
3097    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3098    void *IP = 0;
3099    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3100      return SDValue(E, 0);
3101
3102    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3103    CSEMap.InsertNode(N, IP);
3104  } else {
3105    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3106  }
3107
3108  AllNodes.push_back(N);
3109#ifndef NDEBUG
3110  VerifySDNode(N);
3111#endif
3112  return SDValue(N, 0);
3113}
3114
3115SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3116                              SDValue N1, SDValue N2, SDValue N3) {
3117  // Perform various simplifications.
3118  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3119  switch (Opcode) {
3120  case ISD::CONCAT_VECTORS:
3121    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3122    // one big BUILD_VECTOR.
3123    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3124        N2.getOpcode() == ISD::BUILD_VECTOR &&
3125        N3.getOpcode() == ISD::BUILD_VECTOR) {
3126      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3127                                    N1.getNode()->op_end());
3128      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3129      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3130      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3131    }
3132    break;
3133  case ISD::SETCC: {
3134    // Use FoldSetCC to simplify SETCC's.
3135    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3136    if (Simp.getNode()) return Simp;
3137    break;
3138  }
3139  case ISD::SELECT:
3140    if (N1C) {
3141     if (N1C->getZExtValue())
3142        return N2;             // select true, X, Y -> X
3143      else
3144        return N3;             // select false, X, Y -> Y
3145    }
3146
3147    if (N2 == N3) return N2;   // select C, X, X -> X
3148    break;
3149  case ISD::VECTOR_SHUFFLE:
3150    llvm_unreachable("should use getVectorShuffle constructor!");
3151    break;
3152  case ISD::INSERT_SUBVECTOR: {
3153    SDValue Index = N3;
3154    if (VT.isSimple() && N1.getValueType().isSimple()
3155        && N2.getValueType().isSimple()) {
3156      assert(VT.isVector() && N1.getValueType().isVector() &&
3157             N2.getValueType().isVector() &&
3158             "Insert subvector VTs must be a vectors");
3159      assert(VT == N1.getValueType() &&
3160             "Dest and insert subvector source types must match!");
3161      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3162             "Insert subvector must be from smaller vector to larger vector!");
3163      if (isa<ConstantSDNode>(Index.getNode())) {
3164        assert((N2.getValueType().getVectorNumElements() +
3165                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3166                <= VT.getVectorNumElements())
3167               && "Insert subvector overflow!");
3168      }
3169
3170      // Trivial insertion.
3171      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3172        return N2;
3173    }
3174    break;
3175  }
3176  case ISD::BITCAST:
3177    // Fold bit_convert nodes from a type to themselves.
3178    if (N1.getValueType() == VT)
3179      return N1;
3180    break;
3181  }
3182
3183  // Memoize node if it doesn't produce a flag.
3184  SDNode *N;
3185  SDVTList VTs = getVTList(VT);
3186  if (VT != MVT::Glue) {
3187    SDValue Ops[] = { N1, N2, N3 };
3188    FoldingSetNodeID ID;
3189    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3190    void *IP = 0;
3191    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3192      return SDValue(E, 0);
3193
3194    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3195    CSEMap.InsertNode(N, IP);
3196  } else {
3197    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3198  }
3199
3200  AllNodes.push_back(N);
3201#ifndef NDEBUG
3202  VerifySDNode(N);
3203#endif
3204  return SDValue(N, 0);
3205}
3206
3207SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3208                              SDValue N1, SDValue N2, SDValue N3,
3209                              SDValue N4) {
3210  SDValue Ops[] = { N1, N2, N3, N4 };
3211  return getNode(Opcode, DL, VT, Ops, 4);
3212}
3213
3214SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3215                              SDValue N1, SDValue N2, SDValue N3,
3216                              SDValue N4, SDValue N5) {
3217  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3218  return getNode(Opcode, DL, VT, Ops, 5);
3219}
3220
3221/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3222/// the incoming stack arguments to be loaded from the stack.
3223SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3224  SmallVector<SDValue, 8> ArgChains;
3225
3226  // Include the original chain at the beginning of the list. When this is
3227  // used by target LowerCall hooks, this helps legalize find the
3228  // CALLSEQ_BEGIN node.
3229  ArgChains.push_back(Chain);
3230
3231  // Add a chain value for each stack argument.
3232  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3233       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3234    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3235      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3236        if (FI->getIndex() < 0)
3237          ArgChains.push_back(SDValue(L, 1));
3238
3239  // Build a tokenfactor for all the chains.
3240  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3241                 &ArgChains[0], ArgChains.size());
3242}
3243
3244/// SplatByte - Distribute ByteVal over NumBits bits.
3245static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3246  APInt Val = APInt(NumBits, ByteVal);
3247  unsigned Shift = 8;
3248  for (unsigned i = NumBits; i > 8; i >>= 1) {
3249    Val = (Val << Shift) | Val;
3250    Shift <<= 1;
3251  }
3252  return Val;
3253}
3254
3255/// getMemsetValue - Vectorized representation of the memset value
3256/// operand.
3257static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3258                              DebugLoc dl) {
3259  assert(Value.getOpcode() != ISD::UNDEF);
3260
3261  unsigned NumBits = VT.getScalarType().getSizeInBits();
3262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3263    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3264    if (VT.isInteger())
3265      return DAG.getConstant(Val, VT);
3266    return DAG.getConstantFP(APFloat(Val), VT);
3267  }
3268
3269  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3270  if (NumBits > 8) {
3271    // Use a multiplication with 0x010101... to extend the input to the
3272    // required length.
3273    APInt Magic = SplatByte(NumBits, 0x01);
3274    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3275  }
3276
3277  return Value;
3278}
3279
3280/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3281/// used when a memcpy is turned into a memset when the source is a constant
3282/// string ptr.
3283static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3284                                  const TargetLowering &TLI,
3285                                  std::string &Str, unsigned Offset) {
3286  // Handle vector with all elements zero.
3287  if (Str.empty()) {
3288    if (VT.isInteger())
3289      return DAG.getConstant(0, VT);
3290    else if (VT == MVT::f32 || VT == MVT::f64)
3291      return DAG.getConstantFP(0.0, VT);
3292    else if (VT.isVector()) {
3293      unsigned NumElts = VT.getVectorNumElements();
3294      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3295      return DAG.getNode(ISD::BITCAST, dl, VT,
3296                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3297                                                             EltVT, NumElts)));
3298    } else
3299      llvm_unreachable("Expected type!");
3300  }
3301
3302  assert(!VT.isVector() && "Can't handle vector type here!");
3303  unsigned NumBits = VT.getSizeInBits();
3304  unsigned MSB = NumBits / 8;
3305  uint64_t Val = 0;
3306  if (TLI.isLittleEndian())
3307    Offset = Offset + MSB - 1;
3308  for (unsigned i = 0; i != MSB; ++i) {
3309    Val = (Val << 8) | (unsigned char)Str[Offset];
3310    Offset += TLI.isLittleEndian() ? -1 : 1;
3311  }
3312  return DAG.getConstant(Val, VT);
3313}
3314
3315/// getMemBasePlusOffset - Returns base and offset node for the
3316///
3317static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3318                                      SelectionDAG &DAG) {
3319  EVT VT = Base.getValueType();
3320  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3321                     VT, Base, DAG.getConstant(Offset, VT));
3322}
3323
3324/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3325///
3326static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3327  unsigned SrcDelta = 0;
3328  GlobalAddressSDNode *G = NULL;
3329  if (Src.getOpcode() == ISD::GlobalAddress)
3330    G = cast<GlobalAddressSDNode>(Src);
3331  else if (Src.getOpcode() == ISD::ADD &&
3332           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3333           Src.getOperand(1).getOpcode() == ISD::Constant) {
3334    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3335    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3336  }
3337  if (!G)
3338    return false;
3339
3340  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3341  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3342    return true;
3343
3344  return false;
3345}
3346
3347/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3348/// to replace the memset / memcpy. Return true if the number of memory ops
3349/// is below the threshold. It returns the types of the sequence of
3350/// memory ops to perform memset / memcpy by reference.
3351static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3352                                     unsigned Limit, uint64_t Size,
3353                                     unsigned DstAlign, unsigned SrcAlign,
3354                                     bool IsZeroVal,
3355                                     bool MemcpyStrSrc,
3356                                     SelectionDAG &DAG,
3357                                     const TargetLowering &TLI) {
3358  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3359         "Expecting memcpy / memset source to meet alignment requirement!");
3360  // If 'SrcAlign' is zero, that means the memory operation does not need to
3361  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3362  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3363  // is the specified alignment of the memory operation. If it is zero, that
3364  // means it's possible to change the alignment of the destination.
3365  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3366  // not need to be loaded.
3367  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3368                                   IsZeroVal, MemcpyStrSrc,
3369                                   DAG.getMachineFunction());
3370
3371  if (VT == MVT::Other) {
3372    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3373        TLI.allowsUnalignedMemoryAccesses(VT)) {
3374      VT = TLI.getPointerTy();
3375    } else {
3376      switch (DstAlign & 7) {
3377      case 0:  VT = MVT::i64; break;
3378      case 4:  VT = MVT::i32; break;
3379      case 2:  VT = MVT::i16; break;
3380      default: VT = MVT::i8;  break;
3381      }
3382    }
3383
3384    MVT LVT = MVT::i64;
3385    while (!TLI.isTypeLegal(LVT))
3386      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3387    assert(LVT.isInteger());
3388
3389    if (VT.bitsGT(LVT))
3390      VT = LVT;
3391  }
3392
3393  unsigned NumMemOps = 0;
3394  while (Size != 0) {
3395    unsigned VTSize = VT.getSizeInBits() / 8;
3396    while (VTSize > Size) {
3397      // For now, only use non-vector load / store's for the left-over pieces.
3398      if (VT.isVector() || VT.isFloatingPoint()) {
3399        VT = MVT::i64;
3400        while (!TLI.isTypeLegal(VT))
3401          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3402        VTSize = VT.getSizeInBits() / 8;
3403      } else {
3404        // This can result in a type that is not legal on the target, e.g.
3405        // 1 or 2 bytes on PPC.
3406        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3407        VTSize >>= 1;
3408      }
3409    }
3410
3411    if (++NumMemOps > Limit)
3412      return false;
3413    MemOps.push_back(VT);
3414    Size -= VTSize;
3415  }
3416
3417  return true;
3418}
3419
3420static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3421                                       SDValue Chain, SDValue Dst,
3422                                       SDValue Src, uint64_t Size,
3423                                       unsigned Align, bool isVol,
3424                                       bool AlwaysInline,
3425                                       MachinePointerInfo DstPtrInfo,
3426                                       MachinePointerInfo SrcPtrInfo) {
3427  // Turn a memcpy of undef to nop.
3428  if (Src.getOpcode() == ISD::UNDEF)
3429    return Chain;
3430
3431  // Expand memcpy to a series of load and store ops if the size operand falls
3432  // below a certain threshold.
3433  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3434  // rather than maybe a humongous number of loads and stores.
3435  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436  std::vector<EVT> MemOps;
3437  bool DstAlignCanChange = false;
3438  MachineFunction &MF = DAG.getMachineFunction();
3439  MachineFrameInfo *MFI = MF.getFrameInfo();
3440  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3441  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3442  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3443    DstAlignCanChange = true;
3444  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3445  if (Align > SrcAlign)
3446    SrcAlign = Align;
3447  std::string Str;
3448  bool CopyFromStr = isMemSrcFromString(Src, Str);
3449  bool isZeroStr = CopyFromStr && Str.empty();
3450  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3451
3452  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3453                                (DstAlignCanChange ? 0 : Align),
3454                                (isZeroStr ? 0 : SrcAlign),
3455                                true, CopyFromStr, DAG, TLI))
3456    return SDValue();
3457
3458  if (DstAlignCanChange) {
3459    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3460    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3461    if (NewAlign > Align) {
3462      // Give the stack frame object a larger alignment if needed.
3463      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3464        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3465      Align = NewAlign;
3466    }
3467  }
3468
3469  SmallVector<SDValue, 8> OutChains;
3470  unsigned NumMemOps = MemOps.size();
3471  uint64_t SrcOff = 0, DstOff = 0;
3472  for (unsigned i = 0; i != NumMemOps; ++i) {
3473    EVT VT = MemOps[i];
3474    unsigned VTSize = VT.getSizeInBits() / 8;
3475    SDValue Value, Store;
3476
3477    if (CopyFromStr &&
3478        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3479      // It's unlikely a store of a vector immediate can be done in a single
3480      // instruction. It would require a load from a constantpool first.
3481      // We only handle zero vectors here.
3482      // FIXME: Handle other cases where store of vector immediate is done in
3483      // a single instruction.
3484      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3485      Store = DAG.getStore(Chain, dl, Value,
3486                           getMemBasePlusOffset(Dst, DstOff, DAG),
3487                           DstPtrInfo.getWithOffset(DstOff), isVol,
3488                           false, Align);
3489    } else {
3490      // The type might not be legal for the target.  This should only happen
3491      // if the type is smaller than a legal type, as on PPC, so the right
3492      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3493      // to Load/Store if NVT==VT.
3494      // FIXME does the case above also need this?
3495      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3496      assert(NVT.bitsGE(VT));
3497      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3498                             getMemBasePlusOffset(Src, SrcOff, DAG),
3499                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3500                             MinAlign(SrcAlign, SrcOff));
3501      Store = DAG.getTruncStore(Chain, dl, Value,
3502                                getMemBasePlusOffset(Dst, DstOff, DAG),
3503                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3504                                false, Align);
3505    }
3506    OutChains.push_back(Store);
3507    SrcOff += VTSize;
3508    DstOff += VTSize;
3509  }
3510
3511  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3512                     &OutChains[0], OutChains.size());
3513}
3514
3515static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3516                                        SDValue Chain, SDValue Dst,
3517                                        SDValue Src, uint64_t Size,
3518                                        unsigned Align,  bool isVol,
3519                                        bool AlwaysInline,
3520                                        MachinePointerInfo DstPtrInfo,
3521                                        MachinePointerInfo SrcPtrInfo) {
3522  // Turn a memmove of undef to nop.
3523  if (Src.getOpcode() == ISD::UNDEF)
3524    return Chain;
3525
3526  // Expand memmove to a series of load and store ops if the size operand falls
3527  // below a certain threshold.
3528  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529  std::vector<EVT> MemOps;
3530  bool DstAlignCanChange = false;
3531  MachineFunction &MF = DAG.getMachineFunction();
3532  MachineFrameInfo *MFI = MF.getFrameInfo();
3533  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3534  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3535  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3536    DstAlignCanChange = true;
3537  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3538  if (Align > SrcAlign)
3539    SrcAlign = Align;
3540  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3541
3542  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3543                                (DstAlignCanChange ? 0 : Align),
3544                                SrcAlign, true, false, DAG, TLI))
3545    return SDValue();
3546
3547  if (DstAlignCanChange) {
3548    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3549    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3550    if (NewAlign > Align) {
3551      // Give the stack frame object a larger alignment if needed.
3552      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3553        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3554      Align = NewAlign;
3555    }
3556  }
3557
3558  uint64_t SrcOff = 0, DstOff = 0;
3559  SmallVector<SDValue, 8> LoadValues;
3560  SmallVector<SDValue, 8> LoadChains;
3561  SmallVector<SDValue, 8> OutChains;
3562  unsigned NumMemOps = MemOps.size();
3563  for (unsigned i = 0; i < NumMemOps; i++) {
3564    EVT VT = MemOps[i];
3565    unsigned VTSize = VT.getSizeInBits() / 8;
3566    SDValue Value, Store;
3567
3568    Value = DAG.getLoad(VT, dl, Chain,
3569                        getMemBasePlusOffset(Src, SrcOff, DAG),
3570                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3571                        false, SrcAlign);
3572    LoadValues.push_back(Value);
3573    LoadChains.push_back(Value.getValue(1));
3574    SrcOff += VTSize;
3575  }
3576  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3577                      &LoadChains[0], LoadChains.size());
3578  OutChains.clear();
3579  for (unsigned i = 0; i < NumMemOps; i++) {
3580    EVT VT = MemOps[i];
3581    unsigned VTSize = VT.getSizeInBits() / 8;
3582    SDValue Value, Store;
3583
3584    Store = DAG.getStore(Chain, dl, LoadValues[i],
3585                         getMemBasePlusOffset(Dst, DstOff, DAG),
3586                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3587    OutChains.push_back(Store);
3588    DstOff += VTSize;
3589  }
3590
3591  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3592                     &OutChains[0], OutChains.size());
3593}
3594
3595static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3596                               SDValue Chain, SDValue Dst,
3597                               SDValue Src, uint64_t Size,
3598                               unsigned Align, bool isVol,
3599                               MachinePointerInfo DstPtrInfo) {
3600  // Turn a memset of undef to nop.
3601  if (Src.getOpcode() == ISD::UNDEF)
3602    return Chain;
3603
3604  // Expand memset to a series of load/store ops if the size operand
3605  // falls below a certain threshold.
3606  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3607  std::vector<EVT> MemOps;
3608  bool DstAlignCanChange = false;
3609  MachineFunction &MF = DAG.getMachineFunction();
3610  MachineFrameInfo *MFI = MF.getFrameInfo();
3611  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3612  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3613  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3614    DstAlignCanChange = true;
3615  bool IsZeroVal =
3616    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3617  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3618                                Size, (DstAlignCanChange ? 0 : Align), 0,
3619                                IsZeroVal, false, DAG, TLI))
3620    return SDValue();
3621
3622  if (DstAlignCanChange) {
3623    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3624    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3625    if (NewAlign > Align) {
3626      // Give the stack frame object a larger alignment if needed.
3627      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3628        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3629      Align = NewAlign;
3630    }
3631  }
3632
3633  SmallVector<SDValue, 8> OutChains;
3634  uint64_t DstOff = 0;
3635  unsigned NumMemOps = MemOps.size();
3636
3637  // Find the largest store and generate the bit pattern for it.
3638  EVT LargestVT = MemOps[0];
3639  for (unsigned i = 1; i < NumMemOps; i++)
3640    if (MemOps[i].bitsGT(LargestVT))
3641      LargestVT = MemOps[i];
3642  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3643
3644  for (unsigned i = 0; i < NumMemOps; i++) {
3645    EVT VT = MemOps[i];
3646
3647    // If this store is smaller than the largest store see whether we can get
3648    // the smaller value for free with a truncate.
3649    SDValue Value = MemSetValue;
3650    if (VT.bitsLT(LargestVT)) {
3651      if (!LargestVT.isVector() && !VT.isVector() &&
3652          TLI.isTruncateFree(LargestVT, VT))
3653        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3654      else
3655        Value = getMemsetValue(Src, VT, DAG, dl);
3656    }
3657    assert(Value.getValueType() == VT && "Value with wrong type.");
3658    SDValue Store = DAG.getStore(Chain, dl, Value,
3659                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3660                                 DstPtrInfo.getWithOffset(DstOff),
3661                                 isVol, false, Align);
3662    OutChains.push_back(Store);
3663    DstOff += VT.getSizeInBits() / 8;
3664  }
3665
3666  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3667                     &OutChains[0], OutChains.size());
3668}
3669
3670SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3671                                SDValue Src, SDValue Size,
3672                                unsigned Align, bool isVol, bool AlwaysInline,
3673                                MachinePointerInfo DstPtrInfo,
3674                                MachinePointerInfo SrcPtrInfo) {
3675
3676  // Check to see if we should lower the memcpy to loads and stores first.
3677  // For cases within the target-specified limits, this is the best choice.
3678  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3679  if (ConstantSize) {
3680    // Memcpy with size zero? Just return the original chain.
3681    if (ConstantSize->isNullValue())
3682      return Chain;
3683
3684    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3685                                             ConstantSize->getZExtValue(),Align,
3686                                isVol, false, DstPtrInfo, SrcPtrInfo);
3687    if (Result.getNode())
3688      return Result;
3689  }
3690
3691  // Then check to see if we should lower the memcpy with target-specific
3692  // code. If the target chooses to do this, this is the next best.
3693  SDValue Result =
3694    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3695                                isVol, AlwaysInline,
3696                                DstPtrInfo, SrcPtrInfo);
3697  if (Result.getNode())
3698    return Result;
3699
3700  // If we really need inline code and the target declined to provide it,
3701  // use a (potentially long) sequence of loads and stores.
3702  if (AlwaysInline) {
3703    assert(ConstantSize && "AlwaysInline requires a constant size!");
3704    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3705                                   ConstantSize->getZExtValue(), Align, isVol,
3706                                   true, DstPtrInfo, SrcPtrInfo);
3707  }
3708
3709  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3710  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3711  // respect volatile, so they may do things like read or write memory
3712  // beyond the given memory regions. But fixing this isn't easy, and most
3713  // people don't care.
3714
3715  // Emit a library call.
3716  TargetLowering::ArgListTy Args;
3717  TargetLowering::ArgListEntry Entry;
3718  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3719  Entry.Node = Dst; Args.push_back(Entry);
3720  Entry.Node = Src; Args.push_back(Entry);
3721  Entry.Node = Size; Args.push_back(Entry);
3722  // FIXME: pass in DebugLoc
3723  std::pair<SDValue,SDValue> CallResult =
3724    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3725                    false, false, false, false, 0,
3726                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3727                    /*isReturnValueUsed=*/false,
3728                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3729                                      TLI.getPointerTy()),
3730                    Args, *this, dl);
3731  return CallResult.second;
3732}
3733
3734SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3735                                 SDValue Src, SDValue Size,
3736                                 unsigned Align, bool isVol,
3737                                 MachinePointerInfo DstPtrInfo,
3738                                 MachinePointerInfo SrcPtrInfo) {
3739
3740  // Check to see if we should lower the memmove to loads and stores first.
3741  // For cases within the target-specified limits, this is the best choice.
3742  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3743  if (ConstantSize) {
3744    // Memmove with size zero? Just return the original chain.
3745    if (ConstantSize->isNullValue())
3746      return Chain;
3747
3748    SDValue Result =
3749      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3750                               ConstantSize->getZExtValue(), Align, isVol,
3751                               false, DstPtrInfo, SrcPtrInfo);
3752    if (Result.getNode())
3753      return Result;
3754  }
3755
3756  // Then check to see if we should lower the memmove with target-specific
3757  // code. If the target chooses to do this, this is the next best.
3758  SDValue Result =
3759    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3760                                 DstPtrInfo, SrcPtrInfo);
3761  if (Result.getNode())
3762    return Result;
3763
3764  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3765  // not be safe.  See memcpy above for more details.
3766
3767  // Emit a library call.
3768  TargetLowering::ArgListTy Args;
3769  TargetLowering::ArgListEntry Entry;
3770  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3771  Entry.Node = Dst; Args.push_back(Entry);
3772  Entry.Node = Src; Args.push_back(Entry);
3773  Entry.Node = Size; Args.push_back(Entry);
3774  // FIXME:  pass in DebugLoc
3775  std::pair<SDValue,SDValue> CallResult =
3776    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3777                    false, false, false, false, 0,
3778                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3779                    /*isReturnValueUsed=*/false,
3780                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3781                                      TLI.getPointerTy()),
3782                    Args, *this, dl);
3783  return CallResult.second;
3784}
3785
3786SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3787                                SDValue Src, SDValue Size,
3788                                unsigned Align, bool isVol,
3789                                MachinePointerInfo DstPtrInfo) {
3790
3791  // Check to see if we should lower the memset to stores first.
3792  // For cases within the target-specified limits, this is the best choice.
3793  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3794  if (ConstantSize) {
3795    // Memset with size zero? Just return the original chain.
3796    if (ConstantSize->isNullValue())
3797      return Chain;
3798
3799    SDValue Result =
3800      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3801                      Align, isVol, DstPtrInfo);
3802
3803    if (Result.getNode())
3804      return Result;
3805  }
3806
3807  // Then check to see if we should lower the memset with target-specific
3808  // code. If the target chooses to do this, this is the next best.
3809  SDValue Result =
3810    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3811                                DstPtrInfo);
3812  if (Result.getNode())
3813    return Result;
3814
3815  // Emit a library call.
3816  Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3817  TargetLowering::ArgListTy Args;
3818  TargetLowering::ArgListEntry Entry;
3819  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3820  Args.push_back(Entry);
3821  // Extend or truncate the argument to be an i32 value for the call.
3822  if (Src.getValueType().bitsGT(MVT::i32))
3823    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3824  else
3825    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3826  Entry.Node = Src;
3827  Entry.Ty = Type::getInt32Ty(*getContext());
3828  Entry.isSExt = true;
3829  Args.push_back(Entry);
3830  Entry.Node = Size;
3831  Entry.Ty = IntPtrTy;
3832  Entry.isSExt = false;
3833  Args.push_back(Entry);
3834  // FIXME: pass in DebugLoc
3835  std::pair<SDValue,SDValue> CallResult =
3836    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3837                    false, false, false, false, 0,
3838                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3839                    /*isReturnValueUsed=*/false,
3840                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3841                                      TLI.getPointerTy()),
3842                    Args, *this, dl);
3843  return CallResult.second;
3844}
3845
3846SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3847                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3848                                SDValue Swp, MachinePointerInfo PtrInfo,
3849                                unsigned Alignment,
3850                                AtomicOrdering Ordering,
3851                                SynchronizationScope SynchScope) {
3852  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3853    Alignment = getEVTAlignment(MemVT);
3854
3855  MachineFunction &MF = getMachineFunction();
3856  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3857
3858  // For now, atomics are considered to be volatile always.
3859  // FIXME: Volatile isn't really correct; we should keep track of atomic
3860  // orderings in the memoperand.
3861  Flags |= MachineMemOperand::MOVolatile;
3862
3863  MachineMemOperand *MMO =
3864    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3865
3866  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3867                   Ordering, SynchScope);
3868}
3869
3870SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3871                                SDValue Chain,
3872                                SDValue Ptr, SDValue Cmp,
3873                                SDValue Swp, MachineMemOperand *MMO,
3874                                AtomicOrdering Ordering,
3875                                SynchronizationScope SynchScope) {
3876  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3877  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3878
3879  EVT VT = Cmp.getValueType();
3880
3881  SDVTList VTs = getVTList(VT, MVT::Other);
3882  FoldingSetNodeID ID;
3883  ID.AddInteger(MemVT.getRawBits());
3884  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3885  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3886  void* IP = 0;
3887  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3888    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3889    return SDValue(E, 0);
3890  }
3891  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3892                                               Ptr, Cmp, Swp, MMO, Ordering,
3893                                               SynchScope);
3894  CSEMap.InsertNode(N, IP);
3895  AllNodes.push_back(N);
3896  return SDValue(N, 0);
3897}
3898
3899SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3900                                SDValue Chain,
3901                                SDValue Ptr, SDValue Val,
3902                                const Value* PtrVal,
3903                                unsigned Alignment,
3904                                AtomicOrdering Ordering,
3905                                SynchronizationScope SynchScope) {
3906  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3907    Alignment = getEVTAlignment(MemVT);
3908
3909  MachineFunction &MF = getMachineFunction();
3910  // A monotonic store does not load; a release store "loads" in the sense
3911  // that other stores cannot be sunk past it.
3912  // (An atomicrmw obviously both loads and stores.)
3913  unsigned Flags = MachineMemOperand::MOStore;
3914  if (Opcode != ISD::ATOMIC_STORE || Ordering > Monotonic)
3915    Flags |= MachineMemOperand::MOLoad;
3916
3917  // For now, atomics are considered to be volatile always.
3918  // FIXME: Volatile isn't really correct; we should keep track of atomic
3919  // orderings in the memoperand.
3920  Flags |= MachineMemOperand::MOVolatile;
3921
3922  MachineMemOperand *MMO =
3923    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3924                            MemVT.getStoreSize(), Alignment);
3925
3926  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
3927                   Ordering, SynchScope);
3928}
3929
3930SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3931                                SDValue Chain,
3932                                SDValue Ptr, SDValue Val,
3933                                MachineMemOperand *MMO,
3934                                AtomicOrdering Ordering,
3935                                SynchronizationScope SynchScope) {
3936  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3937          Opcode == ISD::ATOMIC_LOAD_SUB ||
3938          Opcode == ISD::ATOMIC_LOAD_AND ||
3939          Opcode == ISD::ATOMIC_LOAD_OR ||
3940          Opcode == ISD::ATOMIC_LOAD_XOR ||
3941          Opcode == ISD::ATOMIC_LOAD_NAND ||
3942          Opcode == ISD::ATOMIC_LOAD_MIN ||
3943          Opcode == ISD::ATOMIC_LOAD_MAX ||
3944          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3945          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3946          Opcode == ISD::ATOMIC_SWAP ||
3947          Opcode == ISD::ATOMIC_STORE) &&
3948         "Invalid Atomic Op");
3949
3950  EVT VT = Val.getValueType();
3951
3952  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
3953                                               getVTList(VT, MVT::Other);
3954  FoldingSetNodeID ID;
3955  ID.AddInteger(MemVT.getRawBits());
3956  SDValue Ops[] = {Chain, Ptr, Val};
3957  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3958  void* IP = 0;
3959  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3960    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3961    return SDValue(E, 0);
3962  }
3963  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3964                                               Ptr, Val, MMO,
3965                                               Ordering, SynchScope);
3966  CSEMap.InsertNode(N, IP);
3967  AllNodes.push_back(N);
3968  return SDValue(N, 0);
3969}
3970
3971SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3972                                EVT VT, SDValue Chain,
3973                                SDValue Ptr,
3974                                const Value* PtrVal,
3975                                unsigned Alignment,
3976                                AtomicOrdering Ordering,
3977                                SynchronizationScope SynchScope) {
3978  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3979    Alignment = getEVTAlignment(MemVT);
3980
3981  MachineFunction &MF = getMachineFunction();
3982  // A monotonic load does not store; an acquire load "stores" in the sense
3983  // that other loads cannot be hoisted past it.
3984  unsigned Flags = MachineMemOperand::MOLoad;
3985  if (Ordering > Monotonic)
3986    Flags |= MachineMemOperand::MOStore;
3987
3988  // For now, atomics are considered to be volatile always.
3989  // FIXME: Volatile isn't really correct; we should keep track of atomic
3990  // orderings in the memoperand.
3991  Flags |= MachineMemOperand::MOVolatile;
3992
3993  MachineMemOperand *MMO =
3994    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3995                            MemVT.getStoreSize(), Alignment);
3996
3997  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
3998                   Ordering, SynchScope);
3999}
4000
4001SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4002                                EVT VT, SDValue Chain,
4003                                SDValue Ptr,
4004                                MachineMemOperand *MMO,
4005                                AtomicOrdering Ordering,
4006                                SynchronizationScope SynchScope) {
4007  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4008
4009  SDVTList VTs = getVTList(VT, MVT::Other);
4010  FoldingSetNodeID ID;
4011  ID.AddInteger(MemVT.getRawBits());
4012  SDValue Ops[] = {Chain, Ptr};
4013  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4014  void* IP = 0;
4015  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4016    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4017    return SDValue(E, 0);
4018  }
4019  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4020                                               Ptr, MMO, Ordering, SynchScope);
4021  CSEMap.InsertNode(N, IP);
4022  AllNodes.push_back(N);
4023  return SDValue(N, 0);
4024}
4025
4026/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4027SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4028                                     DebugLoc dl) {
4029  if (NumOps == 1)
4030    return Ops[0];
4031
4032  SmallVector<EVT, 4> VTs;
4033  VTs.reserve(NumOps);
4034  for (unsigned i = 0; i < NumOps; ++i)
4035    VTs.push_back(Ops[i].getValueType());
4036  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4037                 Ops, NumOps);
4038}
4039
4040SDValue
4041SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4042                                  const EVT *VTs, unsigned NumVTs,
4043                                  const SDValue *Ops, unsigned NumOps,
4044                                  EVT MemVT, MachinePointerInfo PtrInfo,
4045                                  unsigned Align, bool Vol,
4046                                  bool ReadMem, bool WriteMem) {
4047  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4048                             MemVT, PtrInfo, Align, Vol,
4049                             ReadMem, WriteMem);
4050}
4051
4052SDValue
4053SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4054                                  const SDValue *Ops, unsigned NumOps,
4055                                  EVT MemVT, MachinePointerInfo PtrInfo,
4056                                  unsigned Align, bool Vol,
4057                                  bool ReadMem, bool WriteMem) {
4058  if (Align == 0)  // Ensure that codegen never sees alignment 0
4059    Align = getEVTAlignment(MemVT);
4060
4061  MachineFunction &MF = getMachineFunction();
4062  unsigned Flags = 0;
4063  if (WriteMem)
4064    Flags |= MachineMemOperand::MOStore;
4065  if (ReadMem)
4066    Flags |= MachineMemOperand::MOLoad;
4067  if (Vol)
4068    Flags |= MachineMemOperand::MOVolatile;
4069  MachineMemOperand *MMO =
4070    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4071
4072  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4073}
4074
4075SDValue
4076SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4077                                  const SDValue *Ops, unsigned NumOps,
4078                                  EVT MemVT, MachineMemOperand *MMO) {
4079  assert((Opcode == ISD::INTRINSIC_VOID ||
4080          Opcode == ISD::INTRINSIC_W_CHAIN ||
4081          Opcode == ISD::PREFETCH ||
4082          (Opcode <= INT_MAX &&
4083           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4084         "Opcode is not a memory-accessing opcode!");
4085
4086  // Memoize the node unless it returns a flag.
4087  MemIntrinsicSDNode *N;
4088  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4089    FoldingSetNodeID ID;
4090    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4091    void *IP = 0;
4092    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4093      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4094      return SDValue(E, 0);
4095    }
4096
4097    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4098                                               MemVT, MMO);
4099    CSEMap.InsertNode(N, IP);
4100  } else {
4101    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4102                                               MemVT, MMO);
4103  }
4104  AllNodes.push_back(N);
4105  return SDValue(N, 0);
4106}
4107
4108/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4109/// MachinePointerInfo record from it.  This is particularly useful because the
4110/// code generator has many cases where it doesn't bother passing in a
4111/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4112static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4113  // If this is FI+Offset, we can model it.
4114  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4115    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4116
4117  // If this is (FI+Offset1)+Offset2, we can model it.
4118  if (Ptr.getOpcode() != ISD::ADD ||
4119      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4120      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4121    return MachinePointerInfo();
4122
4123  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4124  return MachinePointerInfo::getFixedStack(FI, Offset+
4125                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4126}
4127
4128/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4129/// MachinePointerInfo record from it.  This is particularly useful because the
4130/// code generator has many cases where it doesn't bother passing in a
4131/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4132static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4133  // If the 'Offset' value isn't a constant, we can't handle this.
4134  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4135    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4136  if (OffsetOp.getOpcode() == ISD::UNDEF)
4137    return InferPointerInfo(Ptr);
4138  return MachinePointerInfo();
4139}
4140
4141
4142SDValue
4143SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4144                      EVT VT, DebugLoc dl, SDValue Chain,
4145                      SDValue Ptr, SDValue Offset,
4146                      MachinePointerInfo PtrInfo, EVT MemVT,
4147                      bool isVolatile, bool isNonTemporal,
4148                      unsigned Alignment, const MDNode *TBAAInfo) {
4149  assert(Chain.getValueType() == MVT::Other &&
4150        "Invalid chain type");
4151  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4152    Alignment = getEVTAlignment(VT);
4153
4154  unsigned Flags = MachineMemOperand::MOLoad;
4155  if (isVolatile)
4156    Flags |= MachineMemOperand::MOVolatile;
4157  if (isNonTemporal)
4158    Flags |= MachineMemOperand::MONonTemporal;
4159
4160  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4161  // clients.
4162  if (PtrInfo.V == 0)
4163    PtrInfo = InferPointerInfo(Ptr, Offset);
4164
4165  MachineFunction &MF = getMachineFunction();
4166  MachineMemOperand *MMO =
4167    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4168                            TBAAInfo);
4169  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4170}
4171
4172SDValue
4173SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4174                      EVT VT, DebugLoc dl, SDValue Chain,
4175                      SDValue Ptr, SDValue Offset, EVT MemVT,
4176                      MachineMemOperand *MMO) {
4177  if (VT == MemVT) {
4178    ExtType = ISD::NON_EXTLOAD;
4179  } else if (ExtType == ISD::NON_EXTLOAD) {
4180    assert(VT == MemVT && "Non-extending load from different memory type!");
4181  } else {
4182    // Extending load.
4183    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4184           "Should only be an extending load, not truncating!");
4185    assert(VT.isInteger() == MemVT.isInteger() &&
4186           "Cannot convert from FP to Int or Int -> FP!");
4187    assert(VT.isVector() == MemVT.isVector() &&
4188           "Cannot use trunc store to convert to or from a vector!");
4189    assert((!VT.isVector() ||
4190            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4191           "Cannot use trunc store to change the number of vector elements!");
4192  }
4193
4194  bool Indexed = AM != ISD::UNINDEXED;
4195  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4196         "Unindexed load with an offset!");
4197
4198  SDVTList VTs = Indexed ?
4199    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4200  SDValue Ops[] = { Chain, Ptr, Offset };
4201  FoldingSetNodeID ID;
4202  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4203  ID.AddInteger(MemVT.getRawBits());
4204  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4205                                     MMO->isNonTemporal()));
4206  void *IP = 0;
4207  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4208    cast<LoadSDNode>(E)->refineAlignment(MMO);
4209    return SDValue(E, 0);
4210  }
4211  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4212                                             MemVT, MMO);
4213  CSEMap.InsertNode(N, IP);
4214  AllNodes.push_back(N);
4215  return SDValue(N, 0);
4216}
4217
4218SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4219                              SDValue Chain, SDValue Ptr,
4220                              MachinePointerInfo PtrInfo,
4221                              bool isVolatile, bool isNonTemporal,
4222                              unsigned Alignment, const MDNode *TBAAInfo) {
4223  SDValue Undef = getUNDEF(Ptr.getValueType());
4224  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4225                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4226}
4227
4228SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4229                                 SDValue Chain, SDValue Ptr,
4230                                 MachinePointerInfo PtrInfo, EVT MemVT,
4231                                 bool isVolatile, bool isNonTemporal,
4232                                 unsigned Alignment, const MDNode *TBAAInfo) {
4233  SDValue Undef = getUNDEF(Ptr.getValueType());
4234  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4235                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4236                 TBAAInfo);
4237}
4238
4239
4240SDValue
4241SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4242                             SDValue Offset, ISD::MemIndexedMode AM) {
4243  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4244  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4245         "Load is already a indexed load!");
4246  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4247                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4248                 LD->getMemoryVT(),
4249                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4250}
4251
4252SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4253                               SDValue Ptr, MachinePointerInfo PtrInfo,
4254                               bool isVolatile, bool isNonTemporal,
4255                               unsigned Alignment, const MDNode *TBAAInfo) {
4256  assert(Chain.getValueType() == MVT::Other &&
4257        "Invalid chain type");
4258  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4259    Alignment = getEVTAlignment(Val.getValueType());
4260
4261  unsigned Flags = MachineMemOperand::MOStore;
4262  if (isVolatile)
4263    Flags |= MachineMemOperand::MOVolatile;
4264  if (isNonTemporal)
4265    Flags |= MachineMemOperand::MONonTemporal;
4266
4267  if (PtrInfo.V == 0)
4268    PtrInfo = InferPointerInfo(Ptr);
4269
4270  MachineFunction &MF = getMachineFunction();
4271  MachineMemOperand *MMO =
4272    MF.getMachineMemOperand(PtrInfo, Flags,
4273                            Val.getValueType().getStoreSize(), Alignment,
4274                            TBAAInfo);
4275
4276  return getStore(Chain, dl, Val, Ptr, MMO);
4277}
4278
4279SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4280                               SDValue Ptr, MachineMemOperand *MMO) {
4281  assert(Chain.getValueType() == MVT::Other &&
4282        "Invalid chain type");
4283  EVT VT = Val.getValueType();
4284  SDVTList VTs = getVTList(MVT::Other);
4285  SDValue Undef = getUNDEF(Ptr.getValueType());
4286  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4287  FoldingSetNodeID ID;
4288  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4289  ID.AddInteger(VT.getRawBits());
4290  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4291                                     MMO->isNonTemporal()));
4292  void *IP = 0;
4293  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4294    cast<StoreSDNode>(E)->refineAlignment(MMO);
4295    return SDValue(E, 0);
4296  }
4297  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4298                                              false, VT, MMO);
4299  CSEMap.InsertNode(N, IP);
4300  AllNodes.push_back(N);
4301  return SDValue(N, 0);
4302}
4303
4304SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4305                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4306                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4307                                    unsigned Alignment,
4308                                    const MDNode *TBAAInfo) {
4309  assert(Chain.getValueType() == MVT::Other &&
4310        "Invalid chain type");
4311  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4312    Alignment = getEVTAlignment(SVT);
4313
4314  unsigned Flags = MachineMemOperand::MOStore;
4315  if (isVolatile)
4316    Flags |= MachineMemOperand::MOVolatile;
4317  if (isNonTemporal)
4318    Flags |= MachineMemOperand::MONonTemporal;
4319
4320  if (PtrInfo.V == 0)
4321    PtrInfo = InferPointerInfo(Ptr);
4322
4323  MachineFunction &MF = getMachineFunction();
4324  MachineMemOperand *MMO =
4325    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4326                            TBAAInfo);
4327
4328  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4329}
4330
4331SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4332                                    SDValue Ptr, EVT SVT,
4333                                    MachineMemOperand *MMO) {
4334  EVT VT = Val.getValueType();
4335
4336  assert(Chain.getValueType() == MVT::Other &&
4337        "Invalid chain type");
4338  if (VT == SVT)
4339    return getStore(Chain, dl, Val, Ptr, MMO);
4340
4341  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4342         "Should only be a truncating store, not extending!");
4343  assert(VT.isInteger() == SVT.isInteger() &&
4344         "Can't do FP-INT conversion!");
4345  assert(VT.isVector() == SVT.isVector() &&
4346         "Cannot use trunc store to convert to or from a vector!");
4347  assert((!VT.isVector() ||
4348          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4349         "Cannot use trunc store to change the number of vector elements!");
4350
4351  SDVTList VTs = getVTList(MVT::Other);
4352  SDValue Undef = getUNDEF(Ptr.getValueType());
4353  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4354  FoldingSetNodeID ID;
4355  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4356  ID.AddInteger(SVT.getRawBits());
4357  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4358                                     MMO->isNonTemporal()));
4359  void *IP = 0;
4360  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4361    cast<StoreSDNode>(E)->refineAlignment(MMO);
4362    return SDValue(E, 0);
4363  }
4364  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4365                                              true, SVT, MMO);
4366  CSEMap.InsertNode(N, IP);
4367  AllNodes.push_back(N);
4368  return SDValue(N, 0);
4369}
4370
4371SDValue
4372SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4373                              SDValue Offset, ISD::MemIndexedMode AM) {
4374  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4375  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4376         "Store is already a indexed store!");
4377  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4378  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4379  FoldingSetNodeID ID;
4380  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4381  ID.AddInteger(ST->getMemoryVT().getRawBits());
4382  ID.AddInteger(ST->getRawSubclassData());
4383  void *IP = 0;
4384  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4385    return SDValue(E, 0);
4386
4387  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4388                                              ST->isTruncatingStore(),
4389                                              ST->getMemoryVT(),
4390                                              ST->getMemOperand());
4391  CSEMap.InsertNode(N, IP);
4392  AllNodes.push_back(N);
4393  return SDValue(N, 0);
4394}
4395
4396SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4397                               SDValue Chain, SDValue Ptr,
4398                               SDValue SV,
4399                               unsigned Align) {
4400  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4401  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4402}
4403
4404SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4405                              const SDUse *Ops, unsigned NumOps) {
4406  switch (NumOps) {
4407  case 0: return getNode(Opcode, DL, VT);
4408  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4409  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4410  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4411  default: break;
4412  }
4413
4414  // Copy from an SDUse array into an SDValue array for use with
4415  // the regular getNode logic.
4416  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4417  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4418}
4419
4420SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4421                              const SDValue *Ops, unsigned NumOps) {
4422  switch (NumOps) {
4423  case 0: return getNode(Opcode, DL, VT);
4424  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4425  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4426  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4427  default: break;
4428  }
4429
4430  switch (Opcode) {
4431  default: break;
4432  case ISD::SELECT_CC: {
4433    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4434    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4435           "LHS and RHS of condition must have same type!");
4436    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4437           "True and False arms of SelectCC must have same type!");
4438    assert(Ops[2].getValueType() == VT &&
4439           "select_cc node must be of same type as true and false value!");
4440    break;
4441  }
4442  case ISD::BR_CC: {
4443    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4444    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4445           "LHS/RHS of comparison should match types!");
4446    break;
4447  }
4448  }
4449
4450  // Memoize nodes.
4451  SDNode *N;
4452  SDVTList VTs = getVTList(VT);
4453
4454  if (VT != MVT::Glue) {
4455    FoldingSetNodeID ID;
4456    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4457    void *IP = 0;
4458
4459    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4460      return SDValue(E, 0);
4461
4462    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4463    CSEMap.InsertNode(N, IP);
4464  } else {
4465    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4466  }
4467
4468  AllNodes.push_back(N);
4469#ifndef NDEBUG
4470  VerifySDNode(N);
4471#endif
4472  return SDValue(N, 0);
4473}
4474
4475SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4476                              const std::vector<EVT> &ResultTys,
4477                              const SDValue *Ops, unsigned NumOps) {
4478  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4479                 Ops, NumOps);
4480}
4481
4482SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4483                              const EVT *VTs, unsigned NumVTs,
4484                              const SDValue *Ops, unsigned NumOps) {
4485  if (NumVTs == 1)
4486    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4487  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4488}
4489
4490SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4491                              const SDValue *Ops, unsigned NumOps) {
4492  if (VTList.NumVTs == 1)
4493    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4494
4495#if 0
4496  switch (Opcode) {
4497  // FIXME: figure out how to safely handle things like
4498  // int foo(int x) { return 1 << (x & 255); }
4499  // int bar() { return foo(256); }
4500  case ISD::SRA_PARTS:
4501  case ISD::SRL_PARTS:
4502  case ISD::SHL_PARTS:
4503    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4504        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4505      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4506    else if (N3.getOpcode() == ISD::AND)
4507      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4508        // If the and is only masking out bits that cannot effect the shift,
4509        // eliminate the and.
4510        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4511        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4512          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4513      }
4514    break;
4515  }
4516#endif
4517
4518  // Memoize the node unless it returns a flag.
4519  SDNode *N;
4520  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4521    FoldingSetNodeID ID;
4522    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4523    void *IP = 0;
4524    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4525      return SDValue(E, 0);
4526
4527    if (NumOps == 1) {
4528      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4529    } else if (NumOps == 2) {
4530      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4531    } else if (NumOps == 3) {
4532      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4533                                            Ops[2]);
4534    } else {
4535      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4536    }
4537    CSEMap.InsertNode(N, IP);
4538  } else {
4539    if (NumOps == 1) {
4540      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4541    } else if (NumOps == 2) {
4542      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4543    } else if (NumOps == 3) {
4544      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4545                                            Ops[2]);
4546    } else {
4547      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4548    }
4549  }
4550  AllNodes.push_back(N);
4551#ifndef NDEBUG
4552  VerifySDNode(N);
4553#endif
4554  return SDValue(N, 0);
4555}
4556
4557SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4558  return getNode(Opcode, DL, VTList, 0, 0);
4559}
4560
4561SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4562                              SDValue N1) {
4563  SDValue Ops[] = { N1 };
4564  return getNode(Opcode, DL, VTList, Ops, 1);
4565}
4566
4567SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4568                              SDValue N1, SDValue N2) {
4569  SDValue Ops[] = { N1, N2 };
4570  return getNode(Opcode, DL, VTList, Ops, 2);
4571}
4572
4573SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4574                              SDValue N1, SDValue N2, SDValue N3) {
4575  SDValue Ops[] = { N1, N2, N3 };
4576  return getNode(Opcode, DL, VTList, Ops, 3);
4577}
4578
4579SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4580                              SDValue N1, SDValue N2, SDValue N3,
4581                              SDValue N4) {
4582  SDValue Ops[] = { N1, N2, N3, N4 };
4583  return getNode(Opcode, DL, VTList, Ops, 4);
4584}
4585
4586SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4587                              SDValue N1, SDValue N2, SDValue N3,
4588                              SDValue N4, SDValue N5) {
4589  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4590  return getNode(Opcode, DL, VTList, Ops, 5);
4591}
4592
4593SDVTList SelectionDAG::getVTList(EVT VT) {
4594  return makeVTList(SDNode::getValueTypeList(VT), 1);
4595}
4596
4597SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4598  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4599       E = VTList.rend(); I != E; ++I)
4600    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4601      return *I;
4602
4603  EVT *Array = Allocator.Allocate<EVT>(2);
4604  Array[0] = VT1;
4605  Array[1] = VT2;
4606  SDVTList Result = makeVTList(Array, 2);
4607  VTList.push_back(Result);
4608  return Result;
4609}
4610
4611SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4612  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4613       E = VTList.rend(); I != E; ++I)
4614    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4615                          I->VTs[2] == VT3)
4616      return *I;
4617
4618  EVT *Array = Allocator.Allocate<EVT>(3);
4619  Array[0] = VT1;
4620  Array[1] = VT2;
4621  Array[2] = VT3;
4622  SDVTList Result = makeVTList(Array, 3);
4623  VTList.push_back(Result);
4624  return Result;
4625}
4626
4627SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4628  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4629       E = VTList.rend(); I != E; ++I)
4630    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4631                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4632      return *I;
4633
4634  EVT *Array = Allocator.Allocate<EVT>(4);
4635  Array[0] = VT1;
4636  Array[1] = VT2;
4637  Array[2] = VT3;
4638  Array[3] = VT4;
4639  SDVTList Result = makeVTList(Array, 4);
4640  VTList.push_back(Result);
4641  return Result;
4642}
4643
4644SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4645  switch (NumVTs) {
4646    case 0: llvm_unreachable("Cannot have nodes without results!");
4647    case 1: return getVTList(VTs[0]);
4648    case 2: return getVTList(VTs[0], VTs[1]);
4649    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4650    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4651    default: break;
4652  }
4653
4654  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4655       E = VTList.rend(); I != E; ++I) {
4656    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4657      continue;
4658
4659    bool NoMatch = false;
4660    for (unsigned i = 2; i != NumVTs; ++i)
4661      if (VTs[i] != I->VTs[i]) {
4662        NoMatch = true;
4663        break;
4664      }
4665    if (!NoMatch)
4666      return *I;
4667  }
4668
4669  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4670  std::copy(VTs, VTs+NumVTs, Array);
4671  SDVTList Result = makeVTList(Array, NumVTs);
4672  VTList.push_back(Result);
4673  return Result;
4674}
4675
4676
4677/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4678/// specified operands.  If the resultant node already exists in the DAG,
4679/// this does not modify the specified node, instead it returns the node that
4680/// already exists.  If the resultant node does not exist in the DAG, the
4681/// input node is returned.  As a degenerate case, if you specify the same
4682/// input operands as the node already has, the input node is returned.
4683SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4684  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4685
4686  // Check to see if there is no change.
4687  if (Op == N->getOperand(0)) return N;
4688
4689  // See if the modified node already exists.
4690  void *InsertPos = 0;
4691  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4692    return Existing;
4693
4694  // Nope it doesn't.  Remove the node from its current place in the maps.
4695  if (InsertPos)
4696    if (!RemoveNodeFromCSEMaps(N))
4697      InsertPos = 0;
4698
4699  // Now we update the operands.
4700  N->OperandList[0].set(Op);
4701
4702  // If this gets put into a CSE map, add it.
4703  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4704  return N;
4705}
4706
4707SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4708  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4709
4710  // Check to see if there is no change.
4711  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4712    return N;   // No operands changed, just return the input node.
4713
4714  // See if the modified node already exists.
4715  void *InsertPos = 0;
4716  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4717    return Existing;
4718
4719  // Nope it doesn't.  Remove the node from its current place in the maps.
4720  if (InsertPos)
4721    if (!RemoveNodeFromCSEMaps(N))
4722      InsertPos = 0;
4723
4724  // Now we update the operands.
4725  if (N->OperandList[0] != Op1)
4726    N->OperandList[0].set(Op1);
4727  if (N->OperandList[1] != Op2)
4728    N->OperandList[1].set(Op2);
4729
4730  // If this gets put into a CSE map, add it.
4731  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4732  return N;
4733}
4734
4735SDNode *SelectionDAG::
4736UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4737  SDValue Ops[] = { Op1, Op2, Op3 };
4738  return UpdateNodeOperands(N, Ops, 3);
4739}
4740
4741SDNode *SelectionDAG::
4742UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4743                   SDValue Op3, SDValue Op4) {
4744  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4745  return UpdateNodeOperands(N, Ops, 4);
4746}
4747
4748SDNode *SelectionDAG::
4749UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4750                   SDValue Op3, SDValue Op4, SDValue Op5) {
4751  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4752  return UpdateNodeOperands(N, Ops, 5);
4753}
4754
4755SDNode *SelectionDAG::
4756UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4757  assert(N->getNumOperands() == NumOps &&
4758         "Update with wrong number of operands");
4759
4760  // Check to see if there is no change.
4761  bool AnyChange = false;
4762  for (unsigned i = 0; i != NumOps; ++i) {
4763    if (Ops[i] != N->getOperand(i)) {
4764      AnyChange = true;
4765      break;
4766    }
4767  }
4768
4769  // No operands changed, just return the input node.
4770  if (!AnyChange) return N;
4771
4772  // See if the modified node already exists.
4773  void *InsertPos = 0;
4774  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4775    return Existing;
4776
4777  // Nope it doesn't.  Remove the node from its current place in the maps.
4778  if (InsertPos)
4779    if (!RemoveNodeFromCSEMaps(N))
4780      InsertPos = 0;
4781
4782  // Now we update the operands.
4783  for (unsigned i = 0; i != NumOps; ++i)
4784    if (N->OperandList[i] != Ops[i])
4785      N->OperandList[i].set(Ops[i]);
4786
4787  // If this gets put into a CSE map, add it.
4788  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4789  return N;
4790}
4791
4792/// DropOperands - Release the operands and set this node to have
4793/// zero operands.
4794void SDNode::DropOperands() {
4795  // Unlike the code in MorphNodeTo that does this, we don't need to
4796  // watch for dead nodes here.
4797  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4798    SDUse &Use = *I++;
4799    Use.set(SDValue());
4800  }
4801}
4802
4803/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4804/// machine opcode.
4805///
4806SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4807                                   EVT VT) {
4808  SDVTList VTs = getVTList(VT);
4809  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4810}
4811
4812SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4813                                   EVT VT, SDValue Op1) {
4814  SDVTList VTs = getVTList(VT);
4815  SDValue Ops[] = { Op1 };
4816  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4817}
4818
4819SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4820                                   EVT VT, SDValue Op1,
4821                                   SDValue Op2) {
4822  SDVTList VTs = getVTList(VT);
4823  SDValue Ops[] = { Op1, Op2 };
4824  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4825}
4826
4827SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4828                                   EVT VT, SDValue Op1,
4829                                   SDValue Op2, SDValue Op3) {
4830  SDVTList VTs = getVTList(VT);
4831  SDValue Ops[] = { Op1, Op2, Op3 };
4832  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4833}
4834
4835SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4836                                   EVT VT, const SDValue *Ops,
4837                                   unsigned NumOps) {
4838  SDVTList VTs = getVTList(VT);
4839  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4840}
4841
4842SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4843                                   EVT VT1, EVT VT2, const SDValue *Ops,
4844                                   unsigned NumOps) {
4845  SDVTList VTs = getVTList(VT1, VT2);
4846  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4847}
4848
4849SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4850                                   EVT VT1, EVT VT2) {
4851  SDVTList VTs = getVTList(VT1, VT2);
4852  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4853}
4854
4855SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4856                                   EVT VT1, EVT VT2, EVT VT3,
4857                                   const SDValue *Ops, unsigned NumOps) {
4858  SDVTList VTs = getVTList(VT1, VT2, VT3);
4859  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4860}
4861
4862SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4863                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4864                                   const SDValue *Ops, unsigned NumOps) {
4865  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4866  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4867}
4868
4869SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4870                                   EVT VT1, EVT VT2,
4871                                   SDValue Op1) {
4872  SDVTList VTs = getVTList(VT1, VT2);
4873  SDValue Ops[] = { Op1 };
4874  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4875}
4876
4877SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4878                                   EVT VT1, EVT VT2,
4879                                   SDValue Op1, SDValue Op2) {
4880  SDVTList VTs = getVTList(VT1, VT2);
4881  SDValue Ops[] = { Op1, Op2 };
4882  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4883}
4884
4885SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4886                                   EVT VT1, EVT VT2,
4887                                   SDValue Op1, SDValue Op2,
4888                                   SDValue Op3) {
4889  SDVTList VTs = getVTList(VT1, VT2);
4890  SDValue Ops[] = { Op1, Op2, Op3 };
4891  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4892}
4893
4894SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4895                                   EVT VT1, EVT VT2, EVT VT3,
4896                                   SDValue Op1, SDValue Op2,
4897                                   SDValue Op3) {
4898  SDVTList VTs = getVTList(VT1, VT2, VT3);
4899  SDValue Ops[] = { Op1, Op2, Op3 };
4900  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4901}
4902
4903SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4904                                   SDVTList VTs, const SDValue *Ops,
4905                                   unsigned NumOps) {
4906  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4907  // Reset the NodeID to -1.
4908  N->setNodeId(-1);
4909  return N;
4910}
4911
4912/// MorphNodeTo - This *mutates* the specified node to have the specified
4913/// return type, opcode, and operands.
4914///
4915/// Note that MorphNodeTo returns the resultant node.  If there is already a
4916/// node of the specified opcode and operands, it returns that node instead of
4917/// the current one.  Note that the DebugLoc need not be the same.
4918///
4919/// Using MorphNodeTo is faster than creating a new node and swapping it in
4920/// with ReplaceAllUsesWith both because it often avoids allocating a new
4921/// node, and because it doesn't require CSE recalculation for any of
4922/// the node's users.
4923///
4924SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4925                                  SDVTList VTs, const SDValue *Ops,
4926                                  unsigned NumOps) {
4927  // If an identical node already exists, use it.
4928  void *IP = 0;
4929  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4930    FoldingSetNodeID ID;
4931    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4932    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4933      return ON;
4934  }
4935
4936  if (!RemoveNodeFromCSEMaps(N))
4937    IP = 0;
4938
4939  // Start the morphing.
4940  N->NodeType = Opc;
4941  N->ValueList = VTs.VTs;
4942  N->NumValues = VTs.NumVTs;
4943
4944  // Clear the operands list, updating used nodes to remove this from their
4945  // use list.  Keep track of any operands that become dead as a result.
4946  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4947  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4948    SDUse &Use = *I++;
4949    SDNode *Used = Use.getNode();
4950    Use.set(SDValue());
4951    if (Used->use_empty())
4952      DeadNodeSet.insert(Used);
4953  }
4954
4955  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4956    // Initialize the memory references information.
4957    MN->setMemRefs(0, 0);
4958    // If NumOps is larger than the # of operands we can have in a
4959    // MachineSDNode, reallocate the operand list.
4960    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4961      if (MN->OperandsNeedDelete)
4962        delete[] MN->OperandList;
4963      if (NumOps > array_lengthof(MN->LocalOperands))
4964        // We're creating a final node that will live unmorphed for the
4965        // remainder of the current SelectionDAG iteration, so we can allocate
4966        // the operands directly out of a pool with no recycling metadata.
4967        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4968                         Ops, NumOps);
4969      else
4970        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4971      MN->OperandsNeedDelete = false;
4972    } else
4973      MN->InitOperands(MN->OperandList, Ops, NumOps);
4974  } else {
4975    // If NumOps is larger than the # of operands we currently have, reallocate
4976    // the operand list.
4977    if (NumOps > N->NumOperands) {
4978      if (N->OperandsNeedDelete)
4979        delete[] N->OperandList;
4980      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4981      N->OperandsNeedDelete = true;
4982    } else
4983      N->InitOperands(N->OperandList, Ops, NumOps);
4984  }
4985
4986  // Delete any nodes that are still dead after adding the uses for the
4987  // new operands.
4988  if (!DeadNodeSet.empty()) {
4989    SmallVector<SDNode *, 16> DeadNodes;
4990    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4991         E = DeadNodeSet.end(); I != E; ++I)
4992      if ((*I)->use_empty())
4993        DeadNodes.push_back(*I);
4994    RemoveDeadNodes(DeadNodes);
4995  }
4996
4997  if (IP)
4998    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4999  return N;
5000}
5001
5002
5003/// getMachineNode - These are used for target selectors to create a new node
5004/// with specified return type(s), MachineInstr opcode, and operands.
5005///
5006/// Note that getMachineNode returns the resultant node.  If there is already a
5007/// node of the specified opcode and operands, it returns that node instead of
5008/// the current one.
5009MachineSDNode *
5010SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5011  SDVTList VTs = getVTList(VT);
5012  return getMachineNode(Opcode, dl, VTs, 0, 0);
5013}
5014
5015MachineSDNode *
5016SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5017  SDVTList VTs = getVTList(VT);
5018  SDValue Ops[] = { Op1 };
5019  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5020}
5021
5022MachineSDNode *
5023SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5024                             SDValue Op1, SDValue Op2) {
5025  SDVTList VTs = getVTList(VT);
5026  SDValue Ops[] = { Op1, Op2 };
5027  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5028}
5029
5030MachineSDNode *
5031SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5032                             SDValue Op1, SDValue Op2, SDValue Op3) {
5033  SDVTList VTs = getVTList(VT);
5034  SDValue Ops[] = { Op1, Op2, Op3 };
5035  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5036}
5037
5038MachineSDNode *
5039SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5040                             const SDValue *Ops, unsigned NumOps) {
5041  SDVTList VTs = getVTList(VT);
5042  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5043}
5044
5045MachineSDNode *
5046SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5047  SDVTList VTs = getVTList(VT1, VT2);
5048  return getMachineNode(Opcode, dl, VTs, 0, 0);
5049}
5050
5051MachineSDNode *
5052SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5053                             EVT VT1, EVT VT2, SDValue Op1) {
5054  SDVTList VTs = getVTList(VT1, VT2);
5055  SDValue Ops[] = { Op1 };
5056  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5057}
5058
5059MachineSDNode *
5060SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5061                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5062  SDVTList VTs = getVTList(VT1, VT2);
5063  SDValue Ops[] = { Op1, Op2 };
5064  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5065}
5066
5067MachineSDNode *
5068SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5069                             EVT VT1, EVT VT2, SDValue Op1,
5070                             SDValue Op2, SDValue Op3) {
5071  SDVTList VTs = getVTList(VT1, VT2);
5072  SDValue Ops[] = { Op1, Op2, Op3 };
5073  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5074}
5075
5076MachineSDNode *
5077SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5078                             EVT VT1, EVT VT2,
5079                             const SDValue *Ops, unsigned NumOps) {
5080  SDVTList VTs = getVTList(VT1, VT2);
5081  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5082}
5083
5084MachineSDNode *
5085SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5086                             EVT VT1, EVT VT2, EVT VT3,
5087                             SDValue Op1, SDValue Op2) {
5088  SDVTList VTs = getVTList(VT1, VT2, VT3);
5089  SDValue Ops[] = { Op1, Op2 };
5090  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5091}
5092
5093MachineSDNode *
5094SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5095                             EVT VT1, EVT VT2, EVT VT3,
5096                             SDValue Op1, SDValue Op2, SDValue Op3) {
5097  SDVTList VTs = getVTList(VT1, VT2, VT3);
5098  SDValue Ops[] = { Op1, Op2, Op3 };
5099  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5100}
5101
5102MachineSDNode *
5103SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5104                             EVT VT1, EVT VT2, EVT VT3,
5105                             const SDValue *Ops, unsigned NumOps) {
5106  SDVTList VTs = getVTList(VT1, VT2, VT3);
5107  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5108}
5109
5110MachineSDNode *
5111SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5112                             EVT VT2, EVT VT3, EVT VT4,
5113                             const SDValue *Ops, unsigned NumOps) {
5114  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5115  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5116}
5117
5118MachineSDNode *
5119SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5120                             const std::vector<EVT> &ResultTys,
5121                             const SDValue *Ops, unsigned NumOps) {
5122  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5123  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5124}
5125
5126MachineSDNode *
5127SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5128                             const SDValue *Ops, unsigned NumOps) {
5129  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5130  MachineSDNode *N;
5131  void *IP = 0;
5132
5133  if (DoCSE) {
5134    FoldingSetNodeID ID;
5135    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5136    IP = 0;
5137    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5138      return cast<MachineSDNode>(E);
5139  }
5140
5141  // Allocate a new MachineSDNode.
5142  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5143
5144  // Initialize the operands list.
5145  if (NumOps > array_lengthof(N->LocalOperands))
5146    // We're creating a final node that will live unmorphed for the
5147    // remainder of the current SelectionDAG iteration, so we can allocate
5148    // the operands directly out of a pool with no recycling metadata.
5149    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5150                    Ops, NumOps);
5151  else
5152    N->InitOperands(N->LocalOperands, Ops, NumOps);
5153  N->OperandsNeedDelete = false;
5154
5155  if (DoCSE)
5156    CSEMap.InsertNode(N, IP);
5157
5158  AllNodes.push_back(N);
5159#ifndef NDEBUG
5160  VerifyMachineNode(N);
5161#endif
5162  return N;
5163}
5164
5165/// getTargetExtractSubreg - A convenience function for creating
5166/// TargetOpcode::EXTRACT_SUBREG nodes.
5167SDValue
5168SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5169                                     SDValue Operand) {
5170  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5171  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5172                                  VT, Operand, SRIdxVal);
5173  return SDValue(Subreg, 0);
5174}
5175
5176/// getTargetInsertSubreg - A convenience function for creating
5177/// TargetOpcode::INSERT_SUBREG nodes.
5178SDValue
5179SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5180                                    SDValue Operand, SDValue Subreg) {
5181  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5182  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5183                                  VT, Operand, Subreg, SRIdxVal);
5184  return SDValue(Result, 0);
5185}
5186
5187/// getNodeIfExists - Get the specified node if it's already available, or
5188/// else return NULL.
5189SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5190                                      const SDValue *Ops, unsigned NumOps) {
5191  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5192    FoldingSetNodeID ID;
5193    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5194    void *IP = 0;
5195    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5196      return E;
5197  }
5198  return NULL;
5199}
5200
5201/// getDbgValue - Creates a SDDbgValue node.
5202///
5203SDDbgValue *
5204SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5205                          DebugLoc DL, unsigned O) {
5206  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5207}
5208
5209SDDbgValue *
5210SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5211                          DebugLoc DL, unsigned O) {
5212  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5213}
5214
5215SDDbgValue *
5216SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5217                          DebugLoc DL, unsigned O) {
5218  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5219}
5220
5221namespace {
5222
5223/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5224/// pointed to by a use iterator is deleted, increment the use iterator
5225/// so that it doesn't dangle.
5226///
5227/// This class also manages a "downlink" DAGUpdateListener, to forward
5228/// messages to ReplaceAllUsesWith's callers.
5229///
5230class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5231  SelectionDAG::DAGUpdateListener *DownLink;
5232  SDNode::use_iterator &UI;
5233  SDNode::use_iterator &UE;
5234
5235  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5236    // Increment the iterator as needed.
5237    while (UI != UE && N == *UI)
5238      ++UI;
5239
5240    // Then forward the message.
5241    if (DownLink) DownLink->NodeDeleted(N, E);
5242  }
5243
5244  virtual void NodeUpdated(SDNode *N) {
5245    // Just forward the message.
5246    if (DownLink) DownLink->NodeUpdated(N);
5247  }
5248
5249public:
5250  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5251                     SDNode::use_iterator &ui,
5252                     SDNode::use_iterator &ue)
5253    : DownLink(dl), UI(ui), UE(ue) {}
5254};
5255
5256}
5257
5258/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5259/// This can cause recursive merging of nodes in the DAG.
5260///
5261/// This version assumes From has a single result value.
5262///
5263void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5264                                      DAGUpdateListener *UpdateListener) {
5265  SDNode *From = FromN.getNode();
5266  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5267         "Cannot replace with this method!");
5268  assert(From != To.getNode() && "Cannot replace uses of with self");
5269
5270  // Iterate over all the existing uses of From. New uses will be added
5271  // to the beginning of the use list, which we avoid visiting.
5272  // This specifically avoids visiting uses of From that arise while the
5273  // replacement is happening, because any such uses would be the result
5274  // of CSE: If an existing node looks like From after one of its operands
5275  // is replaced by To, we don't want to replace of all its users with To
5276  // too. See PR3018 for more info.
5277  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5278  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5279  while (UI != UE) {
5280    SDNode *User = *UI;
5281
5282    // This node is about to morph, remove its old self from the CSE maps.
5283    RemoveNodeFromCSEMaps(User);
5284
5285    // A user can appear in a use list multiple times, and when this
5286    // happens the uses are usually next to each other in the list.
5287    // To help reduce the number of CSE recomputations, process all
5288    // the uses of this user that we can find this way.
5289    do {
5290      SDUse &Use = UI.getUse();
5291      ++UI;
5292      Use.set(To);
5293    } while (UI != UE && *UI == User);
5294
5295    // Now that we have modified User, add it back to the CSE maps.  If it
5296    // already exists there, recursively merge the results together.
5297    AddModifiedNodeToCSEMaps(User, &Listener);
5298  }
5299
5300  // If we just RAUW'd the root, take note.
5301  if (FromN == getRoot())
5302    setRoot(To);
5303}
5304
5305/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5306/// This can cause recursive merging of nodes in the DAG.
5307///
5308/// This version assumes that for each value of From, there is a
5309/// corresponding value in To in the same position with the same type.
5310///
5311void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5312                                      DAGUpdateListener *UpdateListener) {
5313#ifndef NDEBUG
5314  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5315    assert((!From->hasAnyUseOfValue(i) ||
5316            From->getValueType(i) == To->getValueType(i)) &&
5317           "Cannot use this version of ReplaceAllUsesWith!");
5318#endif
5319
5320  // Handle the trivial case.
5321  if (From == To)
5322    return;
5323
5324  // Iterate over just the existing users of From. See the comments in
5325  // the ReplaceAllUsesWith above.
5326  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5327  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5328  while (UI != UE) {
5329    SDNode *User = *UI;
5330
5331    // This node is about to morph, remove its old self from the CSE maps.
5332    RemoveNodeFromCSEMaps(User);
5333
5334    // A user can appear in a use list multiple times, and when this
5335    // happens the uses are usually next to each other in the list.
5336    // To help reduce the number of CSE recomputations, process all
5337    // the uses of this user that we can find this way.
5338    do {
5339      SDUse &Use = UI.getUse();
5340      ++UI;
5341      Use.setNode(To);
5342    } while (UI != UE && *UI == User);
5343
5344    // Now that we have modified User, add it back to the CSE maps.  If it
5345    // already exists there, recursively merge the results together.
5346    AddModifiedNodeToCSEMaps(User, &Listener);
5347  }
5348
5349  // If we just RAUW'd the root, take note.
5350  if (From == getRoot().getNode())
5351    setRoot(SDValue(To, getRoot().getResNo()));
5352}
5353
5354/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5355/// This can cause recursive merging of nodes in the DAG.
5356///
5357/// This version can replace From with any result values.  To must match the
5358/// number and types of values returned by From.
5359void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5360                                      const SDValue *To,
5361                                      DAGUpdateListener *UpdateListener) {
5362  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5363    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5364
5365  // Iterate over just the existing users of From. See the comments in
5366  // the ReplaceAllUsesWith above.
5367  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5368  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5369  while (UI != UE) {
5370    SDNode *User = *UI;
5371
5372    // This node is about to morph, remove its old self from the CSE maps.
5373    RemoveNodeFromCSEMaps(User);
5374
5375    // A user can appear in a use list multiple times, and when this
5376    // happens the uses are usually next to each other in the list.
5377    // To help reduce the number of CSE recomputations, process all
5378    // the uses of this user that we can find this way.
5379    do {
5380      SDUse &Use = UI.getUse();
5381      const SDValue &ToOp = To[Use.getResNo()];
5382      ++UI;
5383      Use.set(ToOp);
5384    } while (UI != UE && *UI == User);
5385
5386    // Now that we have modified User, add it back to the CSE maps.  If it
5387    // already exists there, recursively merge the results together.
5388    AddModifiedNodeToCSEMaps(User, &Listener);
5389  }
5390
5391  // If we just RAUW'd the root, take note.
5392  if (From == getRoot().getNode())
5393    setRoot(SDValue(To[getRoot().getResNo()]));
5394}
5395
5396/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5397/// uses of other values produced by From.getNode() alone.  The Deleted
5398/// vector is handled the same way as for ReplaceAllUsesWith.
5399void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5400                                             DAGUpdateListener *UpdateListener){
5401  // Handle the really simple, really trivial case efficiently.
5402  if (From == To) return;
5403
5404  // Handle the simple, trivial, case efficiently.
5405  if (From.getNode()->getNumValues() == 1) {
5406    ReplaceAllUsesWith(From, To, UpdateListener);
5407    return;
5408  }
5409
5410  // Iterate over just the existing users of From. See the comments in
5411  // the ReplaceAllUsesWith above.
5412  SDNode::use_iterator UI = From.getNode()->use_begin(),
5413                       UE = From.getNode()->use_end();
5414  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5415  while (UI != UE) {
5416    SDNode *User = *UI;
5417    bool UserRemovedFromCSEMaps = false;
5418
5419    // A user can appear in a use list multiple times, and when this
5420    // happens the uses are usually next to each other in the list.
5421    // To help reduce the number of CSE recomputations, process all
5422    // the uses of this user that we can find this way.
5423    do {
5424      SDUse &Use = UI.getUse();
5425
5426      // Skip uses of different values from the same node.
5427      if (Use.getResNo() != From.getResNo()) {
5428        ++UI;
5429        continue;
5430      }
5431
5432      // If this node hasn't been modified yet, it's still in the CSE maps,
5433      // so remove its old self from the CSE maps.
5434      if (!UserRemovedFromCSEMaps) {
5435        RemoveNodeFromCSEMaps(User);
5436        UserRemovedFromCSEMaps = true;
5437      }
5438
5439      ++UI;
5440      Use.set(To);
5441    } while (UI != UE && *UI == User);
5442
5443    // We are iterating over all uses of the From node, so if a use
5444    // doesn't use the specific value, no changes are made.
5445    if (!UserRemovedFromCSEMaps)
5446      continue;
5447
5448    // Now that we have modified User, add it back to the CSE maps.  If it
5449    // already exists there, recursively merge the results together.
5450    AddModifiedNodeToCSEMaps(User, &Listener);
5451  }
5452
5453  // If we just RAUW'd the root, take note.
5454  if (From == getRoot())
5455    setRoot(To);
5456}
5457
5458namespace {
5459  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5460  /// to record information about a use.
5461  struct UseMemo {
5462    SDNode *User;
5463    unsigned Index;
5464    SDUse *Use;
5465  };
5466
5467  /// operator< - Sort Memos by User.
5468  bool operator<(const UseMemo &L, const UseMemo &R) {
5469    return (intptr_t)L.User < (intptr_t)R.User;
5470  }
5471}
5472
5473/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5474/// uses of other values produced by From.getNode() alone.  The same value
5475/// may appear in both the From and To list.  The Deleted vector is
5476/// handled the same way as for ReplaceAllUsesWith.
5477void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5478                                              const SDValue *To,
5479                                              unsigned Num,
5480                                              DAGUpdateListener *UpdateListener){
5481  // Handle the simple, trivial case efficiently.
5482  if (Num == 1)
5483    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5484
5485  // Read up all the uses and make records of them. This helps
5486  // processing new uses that are introduced during the
5487  // replacement process.
5488  SmallVector<UseMemo, 4> Uses;
5489  for (unsigned i = 0; i != Num; ++i) {
5490    unsigned FromResNo = From[i].getResNo();
5491    SDNode *FromNode = From[i].getNode();
5492    for (SDNode::use_iterator UI = FromNode->use_begin(),
5493         E = FromNode->use_end(); UI != E; ++UI) {
5494      SDUse &Use = UI.getUse();
5495      if (Use.getResNo() == FromResNo) {
5496        UseMemo Memo = { *UI, i, &Use };
5497        Uses.push_back(Memo);
5498      }
5499    }
5500  }
5501
5502  // Sort the uses, so that all the uses from a given User are together.
5503  std::sort(Uses.begin(), Uses.end());
5504
5505  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5506       UseIndex != UseIndexEnd; ) {
5507    // We know that this user uses some value of From.  If it is the right
5508    // value, update it.
5509    SDNode *User = Uses[UseIndex].User;
5510
5511    // This node is about to morph, remove its old self from the CSE maps.
5512    RemoveNodeFromCSEMaps(User);
5513
5514    // The Uses array is sorted, so all the uses for a given User
5515    // are next to each other in the list.
5516    // To help reduce the number of CSE recomputations, process all
5517    // the uses of this user that we can find this way.
5518    do {
5519      unsigned i = Uses[UseIndex].Index;
5520      SDUse &Use = *Uses[UseIndex].Use;
5521      ++UseIndex;
5522
5523      Use.set(To[i]);
5524    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5525
5526    // Now that we have modified User, add it back to the CSE maps.  If it
5527    // already exists there, recursively merge the results together.
5528    AddModifiedNodeToCSEMaps(User, UpdateListener);
5529  }
5530}
5531
5532/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5533/// based on their topological order. It returns the maximum id and a vector
5534/// of the SDNodes* in assigned order by reference.
5535unsigned SelectionDAG::AssignTopologicalOrder() {
5536
5537  unsigned DAGSize = 0;
5538
5539  // SortedPos tracks the progress of the algorithm. Nodes before it are
5540  // sorted, nodes after it are unsorted. When the algorithm completes
5541  // it is at the end of the list.
5542  allnodes_iterator SortedPos = allnodes_begin();
5543
5544  // Visit all the nodes. Move nodes with no operands to the front of
5545  // the list immediately. Annotate nodes that do have operands with their
5546  // operand count. Before we do this, the Node Id fields of the nodes
5547  // may contain arbitrary values. After, the Node Id fields for nodes
5548  // before SortedPos will contain the topological sort index, and the
5549  // Node Id fields for nodes At SortedPos and after will contain the
5550  // count of outstanding operands.
5551  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5552    SDNode *N = I++;
5553    checkForCycles(N);
5554    unsigned Degree = N->getNumOperands();
5555    if (Degree == 0) {
5556      // A node with no uses, add it to the result array immediately.
5557      N->setNodeId(DAGSize++);
5558      allnodes_iterator Q = N;
5559      if (Q != SortedPos)
5560        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5561      assert(SortedPos != AllNodes.end() && "Overran node list");
5562      ++SortedPos;
5563    } else {
5564      // Temporarily use the Node Id as scratch space for the degree count.
5565      N->setNodeId(Degree);
5566    }
5567  }
5568
5569  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5570  // such that by the time the end is reached all nodes will be sorted.
5571  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5572    SDNode *N = I;
5573    checkForCycles(N);
5574    // N is in sorted position, so all its uses have one less operand
5575    // that needs to be sorted.
5576    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5577         UI != UE; ++UI) {
5578      SDNode *P = *UI;
5579      unsigned Degree = P->getNodeId();
5580      assert(Degree != 0 && "Invalid node degree");
5581      --Degree;
5582      if (Degree == 0) {
5583        // All of P's operands are sorted, so P may sorted now.
5584        P->setNodeId(DAGSize++);
5585        if (P != SortedPos)
5586          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5587        assert(SortedPos != AllNodes.end() && "Overran node list");
5588        ++SortedPos;
5589      } else {
5590        // Update P's outstanding operand count.
5591        P->setNodeId(Degree);
5592      }
5593    }
5594    if (I == SortedPos) {
5595#ifndef NDEBUG
5596      SDNode *S = ++I;
5597      dbgs() << "Overran sorted position:\n";
5598      S->dumprFull();
5599#endif
5600      llvm_unreachable(0);
5601    }
5602  }
5603
5604  assert(SortedPos == AllNodes.end() &&
5605         "Topological sort incomplete!");
5606  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5607         "First node in topological sort is not the entry token!");
5608  assert(AllNodes.front().getNodeId() == 0 &&
5609         "First node in topological sort has non-zero id!");
5610  assert(AllNodes.front().getNumOperands() == 0 &&
5611         "First node in topological sort has operands!");
5612  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5613         "Last node in topologic sort has unexpected id!");
5614  assert(AllNodes.back().use_empty() &&
5615         "Last node in topologic sort has users!");
5616  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5617  return DAGSize;
5618}
5619
5620/// AssignOrdering - Assign an order to the SDNode.
5621void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5622  assert(SD && "Trying to assign an order to a null node!");
5623  Ordering->add(SD, Order);
5624}
5625
5626/// GetOrdering - Get the order for the SDNode.
5627unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5628  assert(SD && "Trying to get the order of a null node!");
5629  return Ordering->getOrder(SD);
5630}
5631
5632/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5633/// value is produced by SD.
5634void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5635  DbgInfo->add(DB, SD, isParameter);
5636  if (SD)
5637    SD->setHasDebugValue(true);
5638}
5639
5640/// TransferDbgValues - Transfer SDDbgValues.
5641void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5642  if (From == To || !From.getNode()->getHasDebugValue())
5643    return;
5644  SDNode *FromNode = From.getNode();
5645  SDNode *ToNode = To.getNode();
5646  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5647  SmallVector<SDDbgValue *, 2> ClonedDVs;
5648  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5649       I != E; ++I) {
5650    SDDbgValue *Dbg = *I;
5651    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5652      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5653                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5654                                      Dbg->getOrder());
5655      ClonedDVs.push_back(Clone);
5656    }
5657  }
5658  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5659         E = ClonedDVs.end(); I != E; ++I)
5660    AddDbgValue(*I, ToNode, false);
5661}
5662
5663//===----------------------------------------------------------------------===//
5664//                              SDNode Class
5665//===----------------------------------------------------------------------===//
5666
5667HandleSDNode::~HandleSDNode() {
5668  DropOperands();
5669}
5670
5671GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5672                                         const GlobalValue *GA,
5673                                         EVT VT, int64_t o, unsigned char TF)
5674  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5675  TheGlobal = GA;
5676}
5677
5678MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5679                     MachineMemOperand *mmo)
5680 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5681  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5682                                      MMO->isNonTemporal());
5683  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5684  assert(isNonTemporal() == MMO->isNonTemporal() &&
5685         "Non-temporal encoding error!");
5686  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5687}
5688
5689MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5690                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5691                     MachineMemOperand *mmo)
5692   : SDNode(Opc, dl, VTs, Ops, NumOps),
5693     MemoryVT(memvt), MMO(mmo) {
5694  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5695                                      MMO->isNonTemporal());
5696  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5697  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5698}
5699
5700/// Profile - Gather unique data for the node.
5701///
5702void SDNode::Profile(FoldingSetNodeID &ID) const {
5703  AddNodeIDNode(ID, this);
5704}
5705
5706namespace {
5707  struct EVTArray {
5708    std::vector<EVT> VTs;
5709
5710    EVTArray() {
5711      VTs.reserve(MVT::LAST_VALUETYPE);
5712      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5713        VTs.push_back(MVT((MVT::SimpleValueType)i));
5714    }
5715  };
5716}
5717
5718static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5719static ManagedStatic<EVTArray> SimpleVTArray;
5720static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5721
5722/// getValueTypeList - Return a pointer to the specified value type.
5723///
5724const EVT *SDNode::getValueTypeList(EVT VT) {
5725  if (VT.isExtended()) {
5726    sys::SmartScopedLock<true> Lock(*VTMutex);
5727    return &(*EVTs->insert(VT).first);
5728  } else {
5729    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5730           "Value type out of range!");
5731    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5732  }
5733}
5734
5735/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5736/// indicated value.  This method ignores uses of other values defined by this
5737/// operation.
5738bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5739  assert(Value < getNumValues() && "Bad value!");
5740
5741  // TODO: Only iterate over uses of a given value of the node
5742  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5743    if (UI.getUse().getResNo() == Value) {
5744      if (NUses == 0)
5745        return false;
5746      --NUses;
5747    }
5748  }
5749
5750  // Found exactly the right number of uses?
5751  return NUses == 0;
5752}
5753
5754
5755/// hasAnyUseOfValue - Return true if there are any use of the indicated
5756/// value. This method ignores uses of other values defined by this operation.
5757bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5758  assert(Value < getNumValues() && "Bad value!");
5759
5760  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5761    if (UI.getUse().getResNo() == Value)
5762      return true;
5763
5764  return false;
5765}
5766
5767
5768/// isOnlyUserOf - Return true if this node is the only use of N.
5769///
5770bool SDNode::isOnlyUserOf(SDNode *N) const {
5771  bool Seen = false;
5772  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5773    SDNode *User = *I;
5774    if (User == this)
5775      Seen = true;
5776    else
5777      return false;
5778  }
5779
5780  return Seen;
5781}
5782
5783/// isOperand - Return true if this node is an operand of N.
5784///
5785bool SDValue::isOperandOf(SDNode *N) const {
5786  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5787    if (*this == N->getOperand(i))
5788      return true;
5789  return false;
5790}
5791
5792bool SDNode::isOperandOf(SDNode *N) const {
5793  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5794    if (this == N->OperandList[i].getNode())
5795      return true;
5796  return false;
5797}
5798
5799/// reachesChainWithoutSideEffects - Return true if this operand (which must
5800/// be a chain) reaches the specified operand without crossing any
5801/// side-effecting instructions on any chain path.  In practice, this looks
5802/// through token factors and non-volatile loads.  In order to remain efficient,
5803/// this only looks a couple of nodes in, it does not do an exhaustive search.
5804bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5805                                               unsigned Depth) const {
5806  if (*this == Dest) return true;
5807
5808  // Don't search too deeply, we just want to be able to see through
5809  // TokenFactor's etc.
5810  if (Depth == 0) return false;
5811
5812  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5813  // of the operands of the TF does not reach dest, then we cannot do the xform.
5814  if (getOpcode() == ISD::TokenFactor) {
5815    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5816      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5817        return false;
5818    return true;
5819  }
5820
5821  // Loads don't have side effects, look through them.
5822  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5823    if (!Ld->isVolatile())
5824      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5825  }
5826  return false;
5827}
5828
5829/// hasPredecessor - Return true if N is a predecessor of this node.
5830/// N is either an operand of this node, or can be reached by recursively
5831/// traversing up the operands.
5832/// NOTE: This is an expensive method. Use it carefully.
5833bool SDNode::hasPredecessor(const SDNode *N) const {
5834  SmallPtrSet<const SDNode *, 32> Visited;
5835  SmallVector<const SDNode *, 16> Worklist;
5836  return hasPredecessorHelper(N, Visited, Worklist);
5837}
5838
5839bool SDNode::hasPredecessorHelper(const SDNode *N,
5840                                  SmallPtrSet<const SDNode *, 32> &Visited,
5841                                  SmallVector<const SDNode *, 16> &Worklist) const {
5842  if (Visited.empty()) {
5843    Worklist.push_back(this);
5844  } else {
5845    // Take a look in the visited set. If we've already encountered this node
5846    // we needn't search further.
5847    if (Visited.count(N))
5848      return true;
5849  }
5850
5851  // Haven't visited N yet. Continue the search.
5852  while (!Worklist.empty()) {
5853    const SDNode *M = Worklist.pop_back_val();
5854    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5855      SDNode *Op = M->getOperand(i).getNode();
5856      if (Visited.insert(Op))
5857        Worklist.push_back(Op);
5858      if (Op == N)
5859        return true;
5860    }
5861  }
5862
5863  return false;
5864}
5865
5866uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5867  assert(Num < NumOperands && "Invalid child # of SDNode!");
5868  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5869}
5870
5871std::string SDNode::getOperationName(const SelectionDAG *G) const {
5872  switch (getOpcode()) {
5873  default:
5874    if (getOpcode() < ISD::BUILTIN_OP_END)
5875      return "<<Unknown DAG Node>>";
5876    if (isMachineOpcode()) {
5877      if (G)
5878        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5879          if (getMachineOpcode() < TII->getNumOpcodes())
5880            return TII->get(getMachineOpcode()).getName();
5881      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5882    }
5883    if (G) {
5884      const TargetLowering &TLI = G->getTargetLoweringInfo();
5885      const char *Name = TLI.getTargetNodeName(getOpcode());
5886      if (Name) return Name;
5887      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5888    }
5889    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5890
5891#ifndef NDEBUG
5892  case ISD::DELETED_NODE:
5893    return "<<Deleted Node!>>";
5894#endif
5895  case ISD::PREFETCH:      return "Prefetch";
5896  case ISD::MEMBARRIER:    return "MemBarrier";
5897  case ISD::ATOMIC_FENCE:    return "AtomicFence";
5898  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5899  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5900  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5901  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5902  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5903  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5904  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5905  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5906  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5907  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5908  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5909  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5910  case ISD::ATOMIC_LOAD:        return "AtomicLoad";
5911  case ISD::ATOMIC_STORE:       return "AtomicStore";
5912  case ISD::PCMARKER:      return "PCMarker";
5913  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5914  case ISD::SRCVALUE:      return "SrcValue";
5915  case ISD::MDNODE_SDNODE: return "MDNode";
5916  case ISD::EntryToken:    return "EntryToken";
5917  case ISD::TokenFactor:   return "TokenFactor";
5918  case ISD::AssertSext:    return "AssertSext";
5919  case ISD::AssertZext:    return "AssertZext";
5920
5921  case ISD::BasicBlock:    return "BasicBlock";
5922  case ISD::VALUETYPE:     return "ValueType";
5923  case ISD::Register:      return "Register";
5924
5925  case ISD::Constant:      return "Constant";
5926  case ISD::ConstantFP:    return "ConstantFP";
5927  case ISD::GlobalAddress: return "GlobalAddress";
5928  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5929  case ISD::FrameIndex:    return "FrameIndex";
5930  case ISD::JumpTable:     return "JumpTable";
5931  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5932  case ISD::RETURNADDR: return "RETURNADDR";
5933  case ISD::FRAMEADDR: return "FRAMEADDR";
5934  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5935  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5936  case ISD::LSDAADDR: return "LSDAADDR";
5937  case ISD::EHSELECTION: return "EHSELECTION";
5938  case ISD::EH_RETURN: return "EH_RETURN";
5939  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5940  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5941  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5942  case ISD::ConstantPool:  return "ConstantPool";
5943  case ISD::ExternalSymbol: return "ExternalSymbol";
5944  case ISD::BlockAddress:  return "BlockAddress";
5945  case ISD::INTRINSIC_WO_CHAIN:
5946  case ISD::INTRINSIC_VOID:
5947  case ISD::INTRINSIC_W_CHAIN: {
5948    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5949    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5950    if (IID < Intrinsic::num_intrinsics)
5951      return Intrinsic::getName((Intrinsic::ID)IID);
5952    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5953      return TII->getName(IID);
5954    llvm_unreachable("Invalid intrinsic ID");
5955  }
5956
5957  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5958  case ISD::TargetConstant: return "TargetConstant";
5959  case ISD::TargetConstantFP:return "TargetConstantFP";
5960  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5961  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5962  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5963  case ISD::TargetJumpTable:  return "TargetJumpTable";
5964  case ISD::TargetConstantPool:  return "TargetConstantPool";
5965  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5966  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5967
5968  case ISD::CopyToReg:     return "CopyToReg";
5969  case ISD::CopyFromReg:   return "CopyFromReg";
5970  case ISD::UNDEF:         return "undef";
5971  case ISD::MERGE_VALUES:  return "merge_values";
5972  case ISD::INLINEASM:     return "inlineasm";
5973  case ISD::EH_LABEL:      return "eh_label";
5974  case ISD::HANDLENODE:    return "handlenode";
5975
5976  // Unary operators
5977  case ISD::FABS:   return "fabs";
5978  case ISD::FNEG:   return "fneg";
5979  case ISD::FSQRT:  return "fsqrt";
5980  case ISD::FSIN:   return "fsin";
5981  case ISD::FCOS:   return "fcos";
5982  case ISD::FTRUNC: return "ftrunc";
5983  case ISD::FFLOOR: return "ffloor";
5984  case ISD::FCEIL:  return "fceil";
5985  case ISD::FRINT:  return "frint";
5986  case ISD::FNEARBYINT: return "fnearbyint";
5987  case ISD::FEXP:   return "fexp";
5988  case ISD::FEXP2:  return "fexp2";
5989  case ISD::FLOG:   return "flog";
5990  case ISD::FLOG2:  return "flog2";
5991  case ISD::FLOG10: return "flog10";
5992
5993  // Binary operators
5994  case ISD::ADD:    return "add";
5995  case ISD::SUB:    return "sub";
5996  case ISD::MUL:    return "mul";
5997  case ISD::MULHU:  return "mulhu";
5998  case ISD::MULHS:  return "mulhs";
5999  case ISD::SDIV:   return "sdiv";
6000  case ISD::UDIV:   return "udiv";
6001  case ISD::SREM:   return "srem";
6002  case ISD::UREM:   return "urem";
6003  case ISD::SMUL_LOHI:  return "smul_lohi";
6004  case ISD::UMUL_LOHI:  return "umul_lohi";
6005  case ISD::SDIVREM:    return "sdivrem";
6006  case ISD::UDIVREM:    return "udivrem";
6007  case ISD::AND:    return "and";
6008  case ISD::OR:     return "or";
6009  case ISD::XOR:    return "xor";
6010  case ISD::SHL:    return "shl";
6011  case ISD::SRA:    return "sra";
6012  case ISD::SRL:    return "srl";
6013  case ISD::ROTL:   return "rotl";
6014  case ISD::ROTR:   return "rotr";
6015  case ISD::FADD:   return "fadd";
6016  case ISD::FSUB:   return "fsub";
6017  case ISD::FMUL:   return "fmul";
6018  case ISD::FDIV:   return "fdiv";
6019  case ISD::FMA:    return "fma";
6020  case ISD::FREM:   return "frem";
6021  case ISD::FCOPYSIGN: return "fcopysign";
6022  case ISD::FGETSIGN:  return "fgetsign";
6023  case ISD::FPOW:   return "fpow";
6024
6025  case ISD::FPOWI:  return "fpowi";
6026  case ISD::SETCC:       return "setcc";
6027  case ISD::SELECT:      return "select";
6028  case ISD::VSELECT:     return "vselect";
6029  case ISD::SELECT_CC:   return "select_cc";
6030  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
6031  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
6032  case ISD::CONCAT_VECTORS:      return "concat_vectors";
6033  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
6034  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
6035  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
6036  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
6037  case ISD::CARRY_FALSE:         return "carry_false";
6038  case ISD::ADDC:        return "addc";
6039  case ISD::ADDE:        return "adde";
6040  case ISD::SADDO:       return "saddo";
6041  case ISD::UADDO:       return "uaddo";
6042  case ISD::SSUBO:       return "ssubo";
6043  case ISD::USUBO:       return "usubo";
6044  case ISD::SMULO:       return "smulo";
6045  case ISD::UMULO:       return "umulo";
6046  case ISD::SUBC:        return "subc";
6047  case ISD::SUBE:        return "sube";
6048  case ISD::SHL_PARTS:   return "shl_parts";
6049  case ISD::SRA_PARTS:   return "sra_parts";
6050  case ISD::SRL_PARTS:   return "srl_parts";
6051
6052  // Conversion operators.
6053  case ISD::SIGN_EXTEND: return "sign_extend";
6054  case ISD::ZERO_EXTEND: return "zero_extend";
6055  case ISD::ANY_EXTEND:  return "any_extend";
6056  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
6057  case ISD::TRUNCATE:    return "truncate";
6058  case ISD::FP_ROUND:    return "fp_round";
6059  case ISD::FLT_ROUNDS_: return "flt_rounds";
6060  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
6061  case ISD::FP_EXTEND:   return "fp_extend";
6062
6063  case ISD::SINT_TO_FP:  return "sint_to_fp";
6064  case ISD::UINT_TO_FP:  return "uint_to_fp";
6065  case ISD::FP_TO_SINT:  return "fp_to_sint";
6066  case ISD::FP_TO_UINT:  return "fp_to_uint";
6067  case ISD::BITCAST:     return "bitcast";
6068  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
6069  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
6070
6071  case ISD::CONVERT_RNDSAT: {
6072    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
6073    default: llvm_unreachable("Unknown cvt code!");
6074    case ISD::CVT_FF:  return "cvt_ff";
6075    case ISD::CVT_FS:  return "cvt_fs";
6076    case ISD::CVT_FU:  return "cvt_fu";
6077    case ISD::CVT_SF:  return "cvt_sf";
6078    case ISD::CVT_UF:  return "cvt_uf";
6079    case ISD::CVT_SS:  return "cvt_ss";
6080    case ISD::CVT_SU:  return "cvt_su";
6081    case ISD::CVT_US:  return "cvt_us";
6082    case ISD::CVT_UU:  return "cvt_uu";
6083    }
6084  }
6085
6086    // Control flow instructions
6087  case ISD::BR:      return "br";
6088  case ISD::BRIND:   return "brind";
6089  case ISD::BR_JT:   return "br_jt";
6090  case ISD::BRCOND:  return "brcond";
6091  case ISD::BR_CC:   return "br_cc";
6092  case ISD::CALLSEQ_START:  return "callseq_start";
6093  case ISD::CALLSEQ_END:    return "callseq_end";
6094
6095    // Other operators
6096  case ISD::LOAD:               return "load";
6097  case ISD::STORE:              return "store";
6098  case ISD::VAARG:              return "vaarg";
6099  case ISD::VACOPY:             return "vacopy";
6100  case ISD::VAEND:              return "vaend";
6101  case ISD::VASTART:            return "vastart";
6102  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
6103  case ISD::EXTRACT_ELEMENT:    return "extract_element";
6104  case ISD::BUILD_PAIR:         return "build_pair";
6105  case ISD::STACKSAVE:          return "stacksave";
6106  case ISD::STACKRESTORE:       return "stackrestore";
6107  case ISD::TRAP:               return "trap";
6108
6109  // Bit manipulation
6110  case ISD::BSWAP:   return "bswap";
6111  case ISD::CTPOP:   return "ctpop";
6112  case ISD::CTTZ:    return "cttz";
6113  case ISD::CTLZ:    return "ctlz";
6114
6115  // Trampolines
6116  case ISD::INIT_TRAMPOLINE: return "init_trampoline";
6117  case ISD::ADJUST_TRAMPOLINE: return "adjust_trampoline";
6118
6119  case ISD::CONDCODE:
6120    switch (cast<CondCodeSDNode>(this)->get()) {
6121    default: llvm_unreachable("Unknown setcc condition!");
6122    case ISD::SETOEQ:  return "setoeq";
6123    case ISD::SETOGT:  return "setogt";
6124    case ISD::SETOGE:  return "setoge";
6125    case ISD::SETOLT:  return "setolt";
6126    case ISD::SETOLE:  return "setole";
6127    case ISD::SETONE:  return "setone";
6128
6129    case ISD::SETO:    return "seto";
6130    case ISD::SETUO:   return "setuo";
6131    case ISD::SETUEQ:  return "setue";
6132    case ISD::SETUGT:  return "setugt";
6133    case ISD::SETUGE:  return "setuge";
6134    case ISD::SETULT:  return "setult";
6135    case ISD::SETULE:  return "setule";
6136    case ISD::SETUNE:  return "setune";
6137
6138    case ISD::SETEQ:   return "seteq";
6139    case ISD::SETGT:   return "setgt";
6140    case ISD::SETGE:   return "setge";
6141    case ISD::SETLT:   return "setlt";
6142    case ISD::SETLE:   return "setle";
6143    case ISD::SETNE:   return "setne";
6144    }
6145  }
6146}
6147
6148const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6149  switch (AM) {
6150  default:
6151    return "";
6152  case ISD::PRE_INC:
6153    return "<pre-inc>";
6154  case ISD::PRE_DEC:
6155    return "<pre-dec>";
6156  case ISD::POST_INC:
6157    return "<post-inc>";
6158  case ISD::POST_DEC:
6159    return "<post-dec>";
6160  }
6161}
6162
6163std::string ISD::ArgFlagsTy::getArgFlagsString() {
6164  std::string S = "< ";
6165
6166  if (isZExt())
6167    S += "zext ";
6168  if (isSExt())
6169    S += "sext ";
6170  if (isInReg())
6171    S += "inreg ";
6172  if (isSRet())
6173    S += "sret ";
6174  if (isByVal())
6175    S += "byval ";
6176  if (isNest())
6177    S += "nest ";
6178  if (getByValAlign())
6179    S += "byval-align:" + utostr(getByValAlign()) + " ";
6180  if (getOrigAlign())
6181    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6182  if (getByValSize())
6183    S += "byval-size:" + utostr(getByValSize()) + " ";
6184  return S + ">";
6185}
6186
6187void SDNode::dump() const { dump(0); }
6188void SDNode::dump(const SelectionDAG *G) const {
6189  print(dbgs(), G);
6190  dbgs() << '\n';
6191}
6192
6193void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6194  OS << (void*)this << ": ";
6195
6196  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6197    if (i) OS << ",";
6198    if (getValueType(i) == MVT::Other)
6199      OS << "ch";
6200    else
6201      OS << getValueType(i).getEVTString();
6202  }
6203  OS << " = " << getOperationName(G);
6204}
6205
6206void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6207  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6208    if (!MN->memoperands_empty()) {
6209      OS << "<";
6210      OS << "Mem:";
6211      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6212           e = MN->memoperands_end(); i != e; ++i) {
6213        OS << **i;
6214        if (llvm::next(i) != e)
6215          OS << " ";
6216      }
6217      OS << ">";
6218    }
6219  } else if (const ShuffleVectorSDNode *SVN =
6220               dyn_cast<ShuffleVectorSDNode>(this)) {
6221    OS << "<";
6222    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6223      int Idx = SVN->getMaskElt(i);
6224      if (i) OS << ",";
6225      if (Idx < 0)
6226        OS << "u";
6227      else
6228        OS << Idx;
6229    }
6230    OS << ">";
6231  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6232    OS << '<' << CSDN->getAPIntValue() << '>';
6233  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6234    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6235      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6236    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6237      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6238    else {
6239      OS << "<APFloat(";
6240      CSDN->getValueAPF().bitcastToAPInt().dump();
6241      OS << ")>";
6242    }
6243  } else if (const GlobalAddressSDNode *GADN =
6244             dyn_cast<GlobalAddressSDNode>(this)) {
6245    int64_t offset = GADN->getOffset();
6246    OS << '<';
6247    WriteAsOperand(OS, GADN->getGlobal());
6248    OS << '>';
6249    if (offset > 0)
6250      OS << " + " << offset;
6251    else
6252      OS << " " << offset;
6253    if (unsigned int TF = GADN->getTargetFlags())
6254      OS << " [TF=" << TF << ']';
6255  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6256    OS << "<" << FIDN->getIndex() << ">";
6257  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6258    OS << "<" << JTDN->getIndex() << ">";
6259    if (unsigned int TF = JTDN->getTargetFlags())
6260      OS << " [TF=" << TF << ']';
6261  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6262    int offset = CP->getOffset();
6263    if (CP->isMachineConstantPoolEntry())
6264      OS << "<" << *CP->getMachineCPVal() << ">";
6265    else
6266      OS << "<" << *CP->getConstVal() << ">";
6267    if (offset > 0)
6268      OS << " + " << offset;
6269    else
6270      OS << " " << offset;
6271    if (unsigned int TF = CP->getTargetFlags())
6272      OS << " [TF=" << TF << ']';
6273  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6274    OS << "<";
6275    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6276    if (LBB)
6277      OS << LBB->getName() << " ";
6278    OS << (const void*)BBDN->getBasicBlock() << ">";
6279  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6280    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6281  } else if (const ExternalSymbolSDNode *ES =
6282             dyn_cast<ExternalSymbolSDNode>(this)) {
6283    OS << "'" << ES->getSymbol() << "'";
6284    if (unsigned int TF = ES->getTargetFlags())
6285      OS << " [TF=" << TF << ']';
6286  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6287    if (M->getValue())
6288      OS << "<" << M->getValue() << ">";
6289    else
6290      OS << "<null>";
6291  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6292    if (MD->getMD())
6293      OS << "<" << MD->getMD() << ">";
6294    else
6295      OS << "<null>";
6296  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6297    OS << ":" << N->getVT().getEVTString();
6298  }
6299  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6300    OS << "<" << *LD->getMemOperand();
6301
6302    bool doExt = true;
6303    switch (LD->getExtensionType()) {
6304    default: doExt = false; break;
6305    case ISD::EXTLOAD: OS << ", anyext"; break;
6306    case ISD::SEXTLOAD: OS << ", sext"; break;
6307    case ISD::ZEXTLOAD: OS << ", zext"; break;
6308    }
6309    if (doExt)
6310      OS << " from " << LD->getMemoryVT().getEVTString();
6311
6312    const char *AM = getIndexedModeName(LD->getAddressingMode());
6313    if (*AM)
6314      OS << ", " << AM;
6315
6316    OS << ">";
6317  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6318    OS << "<" << *ST->getMemOperand();
6319
6320    if (ST->isTruncatingStore())
6321      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6322
6323    const char *AM = getIndexedModeName(ST->getAddressingMode());
6324    if (*AM)
6325      OS << ", " << AM;
6326
6327    OS << ">";
6328  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6329    OS << "<" << *M->getMemOperand() << ">";
6330  } else if (const BlockAddressSDNode *BA =
6331               dyn_cast<BlockAddressSDNode>(this)) {
6332    OS << "<";
6333    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6334    OS << ", ";
6335    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6336    OS << ">";
6337    if (unsigned int TF = BA->getTargetFlags())
6338      OS << " [TF=" << TF << ']';
6339  }
6340
6341  if (G)
6342    if (unsigned Order = G->GetOrdering(this))
6343      OS << " [ORD=" << Order << ']';
6344
6345  if (getNodeId() != -1)
6346    OS << " [ID=" << getNodeId() << ']';
6347
6348  DebugLoc dl = getDebugLoc();
6349  if (G && !dl.isUnknown()) {
6350    DIScope
6351      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6352    OS << " dbg:";
6353    // Omit the directory, since it's usually long and uninteresting.
6354    if (Scope.Verify())
6355      OS << Scope.getFilename();
6356    else
6357      OS << "<unknown>";
6358    OS << ':' << dl.getLine();
6359    if (dl.getCol() != 0)
6360      OS << ':' << dl.getCol();
6361  }
6362}
6363
6364void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6365  print_types(OS, G);
6366  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6367    if (i) OS << ", "; else OS << " ";
6368    OS << (void*)getOperand(i).getNode();
6369    if (unsigned RN = getOperand(i).getResNo())
6370      OS << ":" << RN;
6371  }
6372  print_details(OS, G);
6373}
6374
6375static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6376                                  const SelectionDAG *G, unsigned depth,
6377                                  unsigned indent) {
6378  if (depth == 0)
6379    return;
6380
6381  OS.indent(indent);
6382
6383  N->print(OS, G);
6384
6385  if (depth < 1)
6386    return;
6387
6388  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6389    // Don't follow chain operands.
6390    if (N->getOperand(i).getValueType() == MVT::Other)
6391      continue;
6392    OS << '\n';
6393    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6394  }
6395}
6396
6397void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6398                            unsigned depth) const {
6399  printrWithDepthHelper(OS, this, G, depth, 0);
6400}
6401
6402void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6403  // Don't print impossibly deep things.
6404  printrWithDepth(OS, G, 10);
6405}
6406
6407void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6408  printrWithDepth(dbgs(), G, depth);
6409}
6410
6411void SDNode::dumprFull(const SelectionDAG *G) const {
6412  // Don't print impossibly deep things.
6413  dumprWithDepth(G, 10);
6414}
6415
6416static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6417  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6418    if (N->getOperand(i).getNode()->hasOneUse())
6419      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6420    else
6421      dbgs() << "\n" << std::string(indent+2, ' ')
6422           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6423
6424
6425  dbgs() << "\n";
6426  dbgs().indent(indent);
6427  N->dump(G);
6428}
6429
6430SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6431  assert(N->getNumValues() == 1 &&
6432         "Can't unroll a vector with multiple results!");
6433
6434  EVT VT = N->getValueType(0);
6435  unsigned NE = VT.getVectorNumElements();
6436  EVT EltVT = VT.getVectorElementType();
6437  DebugLoc dl = N->getDebugLoc();
6438
6439  SmallVector<SDValue, 8> Scalars;
6440  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6441
6442  // If ResNE is 0, fully unroll the vector op.
6443  if (ResNE == 0)
6444    ResNE = NE;
6445  else if (NE > ResNE)
6446    NE = ResNE;
6447
6448  unsigned i;
6449  for (i= 0; i != NE; ++i) {
6450    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6451      SDValue Operand = N->getOperand(j);
6452      EVT OperandVT = Operand.getValueType();
6453      if (OperandVT.isVector()) {
6454        // A vector operand; extract a single element.
6455        EVT OperandEltVT = OperandVT.getVectorElementType();
6456        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6457                              OperandEltVT,
6458                              Operand,
6459                              getConstant(i, TLI.getPointerTy()));
6460      } else {
6461        // A scalar operand; just use it as is.
6462        Operands[j] = Operand;
6463      }
6464    }
6465
6466    switch (N->getOpcode()) {
6467    default:
6468      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6469                                &Operands[0], Operands.size()));
6470      break;
6471    case ISD::VSELECT:
6472      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6473                                &Operands[0], Operands.size()));
6474      break;
6475    case ISD::SHL:
6476    case ISD::SRA:
6477    case ISD::SRL:
6478    case ISD::ROTL:
6479    case ISD::ROTR:
6480      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6481                                getShiftAmountOperand(Operands[0].getValueType(),
6482                                                      Operands[1])));
6483      break;
6484    case ISD::SIGN_EXTEND_INREG:
6485    case ISD::FP_ROUND_INREG: {
6486      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6487      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6488                                Operands[0],
6489                                getValueType(ExtVT)));
6490    }
6491    }
6492  }
6493
6494  for (; i < ResNE; ++i)
6495    Scalars.push_back(getUNDEF(EltVT));
6496
6497  return getNode(ISD::BUILD_VECTOR, dl,
6498                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6499                 &Scalars[0], Scalars.size());
6500}
6501
6502
6503/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6504/// location that is 'Dist' units away from the location that the 'Base' load
6505/// is loading from.
6506bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6507                                     unsigned Bytes, int Dist) const {
6508  if (LD->getChain() != Base->getChain())
6509    return false;
6510  EVT VT = LD->getValueType(0);
6511  if (VT.getSizeInBits() / 8 != Bytes)
6512    return false;
6513
6514  SDValue Loc = LD->getOperand(1);
6515  SDValue BaseLoc = Base->getOperand(1);
6516  if (Loc.getOpcode() == ISD::FrameIndex) {
6517    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6518      return false;
6519    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6520    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6521    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6522    int FS  = MFI->getObjectSize(FI);
6523    int BFS = MFI->getObjectSize(BFI);
6524    if (FS != BFS || FS != (int)Bytes) return false;
6525    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6526  }
6527
6528  // Handle X+C
6529  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6530      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6531    return true;
6532
6533  const GlobalValue *GV1 = NULL;
6534  const GlobalValue *GV2 = NULL;
6535  int64_t Offset1 = 0;
6536  int64_t Offset2 = 0;
6537  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6538  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6539  if (isGA1 && isGA2 && GV1 == GV2)
6540    return Offset1 == (Offset2 + Dist*Bytes);
6541  return false;
6542}
6543
6544
6545/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6546/// it cannot be inferred.
6547unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6548  // If this is a GlobalAddress + cst, return the alignment.
6549  const GlobalValue *GV;
6550  int64_t GVOffset = 0;
6551  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6552    // If GV has specified alignment, then use it. Otherwise, use the preferred
6553    // alignment.
6554    unsigned Align = GV->getAlignment();
6555    if (!Align) {
6556      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6557        if (GVar->hasInitializer()) {
6558          const TargetData *TD = TLI.getTargetData();
6559          Align = TD->getPreferredAlignment(GVar);
6560        }
6561      }
6562      if (!Align)
6563        Align = TLI.getTargetData()->getABITypeAlignment(GV->getType());
6564    }
6565    return MinAlign(Align, GVOffset);
6566  }
6567
6568  // If this is a direct reference to a stack slot, use information about the
6569  // stack slot's alignment.
6570  int FrameIdx = 1 << 31;
6571  int64_t FrameOffset = 0;
6572  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6573    FrameIdx = FI->getIndex();
6574  } else if (isBaseWithConstantOffset(Ptr) &&
6575             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6576    // Handle FI+Cst
6577    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6578    FrameOffset = Ptr.getConstantOperandVal(1);
6579  }
6580
6581  if (FrameIdx != (1 << 31)) {
6582    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6583    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6584                                    FrameOffset);
6585    return FIInfoAlign;
6586  }
6587
6588  return 0;
6589}
6590
6591void SelectionDAG::dump() const {
6592  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6593
6594  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6595       I != E; ++I) {
6596    const SDNode *N = I;
6597    if (!N->hasOneUse() && N != getRoot().getNode())
6598      DumpNodes(N, 2, this);
6599  }
6600
6601  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6602
6603  dbgs() << "\n\n";
6604}
6605
6606void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6607  print_types(OS, G);
6608  print_details(OS, G);
6609}
6610
6611typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6612static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6613                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6614  if (!once.insert(N))          // If we've been here before, return now.
6615    return;
6616
6617  // Dump the current SDNode, but don't end the line yet.
6618  OS.indent(indent);
6619  N->printr(OS, G);
6620
6621  // Having printed this SDNode, walk the children:
6622  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6623    const SDNode *child = N->getOperand(i).getNode();
6624
6625    if (i) OS << ",";
6626    OS << " ";
6627
6628    if (child->getNumOperands() == 0) {
6629      // This child has no grandchildren; print it inline right here.
6630      child->printr(OS, G);
6631      once.insert(child);
6632    } else {         // Just the address. FIXME: also print the child's opcode.
6633      OS << (void*)child;
6634      if (unsigned RN = N->getOperand(i).getResNo())
6635        OS << ":" << RN;
6636    }
6637  }
6638
6639  OS << "\n";
6640
6641  // Dump children that have grandchildren on their own line(s).
6642  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6643    const SDNode *child = N->getOperand(i).getNode();
6644    DumpNodesr(OS, child, indent+2, G, once);
6645  }
6646}
6647
6648void SDNode::dumpr() const {
6649  VisitedSDNodeSet once;
6650  DumpNodesr(dbgs(), this, 0, 0, once);
6651}
6652
6653void SDNode::dumpr(const SelectionDAG *G) const {
6654  VisitedSDNodeSet once;
6655  DumpNodesr(dbgs(), this, 0, G, once);
6656}
6657
6658
6659// getAddressSpace - Return the address space this GlobalAddress belongs to.
6660unsigned GlobalAddressSDNode::getAddressSpace() const {
6661  return getGlobal()->getType()->getAddressSpace();
6662}
6663
6664
6665Type *ConstantPoolSDNode::getType() const {
6666  if (isMachineConstantPoolEntry())
6667    return Val.MachineCPVal->getType();
6668  return Val.ConstVal->getType();
6669}
6670
6671bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6672                                        APInt &SplatUndef,
6673                                        unsigned &SplatBitSize,
6674                                        bool &HasAnyUndefs,
6675                                        unsigned MinSplatBits,
6676                                        bool isBigEndian) {
6677  EVT VT = getValueType(0);
6678  assert(VT.isVector() && "Expected a vector type");
6679  unsigned sz = VT.getSizeInBits();
6680  if (MinSplatBits > sz)
6681    return false;
6682
6683  SplatValue = APInt(sz, 0);
6684  SplatUndef = APInt(sz, 0);
6685
6686  // Get the bits.  Bits with undefined values (when the corresponding element
6687  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6688  // in SplatValue.  If any of the values are not constant, give up and return
6689  // false.
6690  unsigned int nOps = getNumOperands();
6691  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6692  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6693
6694  for (unsigned j = 0; j < nOps; ++j) {
6695    unsigned i = isBigEndian ? nOps-1-j : j;
6696    SDValue OpVal = getOperand(i);
6697    unsigned BitPos = j * EltBitSize;
6698
6699    if (OpVal.getOpcode() == ISD::UNDEF)
6700      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6701    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6702      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6703                    zextOrTrunc(sz) << BitPos;
6704    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6705      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6706     else
6707      return false;
6708  }
6709
6710  // The build_vector is all constants or undefs.  Find the smallest element
6711  // size that splats the vector.
6712
6713  HasAnyUndefs = (SplatUndef != 0);
6714  while (sz > 8) {
6715
6716    unsigned HalfSize = sz / 2;
6717    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6718    APInt LowValue = SplatValue.trunc(HalfSize);
6719    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6720    APInt LowUndef = SplatUndef.trunc(HalfSize);
6721
6722    // If the two halves do not match (ignoring undef bits), stop here.
6723    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6724        MinSplatBits > HalfSize)
6725      break;
6726
6727    SplatValue = HighValue | LowValue;
6728    SplatUndef = HighUndef & LowUndef;
6729
6730    sz = HalfSize;
6731  }
6732
6733  SplatBitSize = sz;
6734  return true;
6735}
6736
6737bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6738  // Find the first non-undef value in the shuffle mask.
6739  unsigned i, e;
6740  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6741    /* search */;
6742
6743  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6744
6745  // Make sure all remaining elements are either undef or the same as the first
6746  // non-undef value.
6747  for (int Idx = Mask[i]; i != e; ++i)
6748    if (Mask[i] >= 0 && Mask[i] != Idx)
6749      return false;
6750  return true;
6751}
6752
6753#ifdef XDEBUG
6754static void checkForCyclesHelper(const SDNode *N,
6755                                 SmallPtrSet<const SDNode*, 32> &Visited,
6756                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6757  // If this node has already been checked, don't check it again.
6758  if (Checked.count(N))
6759    return;
6760
6761  // If a node has already been visited on this depth-first walk, reject it as
6762  // a cycle.
6763  if (!Visited.insert(N)) {
6764    dbgs() << "Offending node:\n";
6765    N->dumprFull();
6766    errs() << "Detected cycle in SelectionDAG\n";
6767    abort();
6768  }
6769
6770  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6771    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6772
6773  Checked.insert(N);
6774  Visited.erase(N);
6775}
6776#endif
6777
6778void llvm::checkForCycles(const llvm::SDNode *N) {
6779#ifdef XDEBUG
6780  assert(N && "Checking nonexistant SDNode");
6781  SmallPtrSet<const SDNode*, 32> visited;
6782  SmallPtrSet<const SDNode*, 32> checked;
6783  checkForCyclesHelper(N, visited, checked);
6784#endif
6785}
6786
6787void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6788  checkForCycles(DAG->getRoot().getNode());
6789}
6790