SelectionDAG.cpp revision 2f91f30b932ad56cd82398d872d4874facf84220
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    MVT EltVT = N->getValueType(0).getVectorElementType();
766    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
767      assert((I->getValueType() == EltVT ||
768              (EltVT.isInteger() && I->getValueType().isInteger() &&
769               EltVT.bitsLE(I->getValueType()))) &&
770             "Wrong operand type!");
771    break;
772  }
773  }
774}
775
776/// getMVTAlignment - Compute the default alignment value for the
777/// given type.
778///
779unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
780  const Type *Ty = VT == MVT::iPTR ?
781                   PointerType::get(Type::Int8Ty, 0) :
782                   VT.getTypeForMVT();
783
784  return TLI.getTargetData()->getABITypeAlignment(Ty);
785}
786
787// EntryNode could meaningfully have debug info if we can find it...
788SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
789  : TLI(tli), FLI(fli), DW(0),
790    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
791    getVTList(MVT::Other)), Root(getEntryNode()) {
792  AllNodes.push_back(&EntryNode);
793}
794
795void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
796                        DwarfWriter *dw) {
797  MF = &mf;
798  MMI = mmi;
799  DW = dw;
800}
801
802SelectionDAG::~SelectionDAG() {
803  allnodes_clear();
804}
805
806void SelectionDAG::allnodes_clear() {
807  assert(&*AllNodes.begin() == &EntryNode);
808  AllNodes.remove(AllNodes.begin());
809  while (!AllNodes.empty())
810    DeallocateNode(AllNodes.begin());
811}
812
813void SelectionDAG::clear() {
814  allnodes_clear();
815  OperandAllocator.Reset();
816  CSEMap.clear();
817
818  ExtendedValueTypeNodes.clear();
819  ExternalSymbols.clear();
820  TargetExternalSymbols.clear();
821  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
822            static_cast<CondCodeSDNode*>(0));
823  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
824            static_cast<SDNode*>(0));
825
826  EntryNode.UseList = 0;
827  AllNodes.push_back(&EntryNode);
828  Root = getEntryNode();
829}
830
831SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
832  if (Op.getValueType() == VT) return Op;
833  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
834                                   VT.getSizeInBits());
835  return getNode(ISD::AND, DL, Op.getValueType(), Op,
836                 getConstant(Imm, Op.getValueType()));
837}
838
839/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
840///
841SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
842  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
843  SDValue NegOne =
844    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
845  return getNode(ISD::XOR, DL, VT, Val, NegOne);
846}
847
848SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
849  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  assert((EltVT.getSizeInBits() >= 64 ||
851         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
852         "getConstant with a uint64_t value that doesn't fit in the type!");
853  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
854}
855
856SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
857  return getConstant(*ConstantInt::get(Val), VT, isT);
858}
859
860SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
861  assert(VT.isInteger() && "Cannot create FP integer constant!");
862
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
865         "APInt size does not match type size!");
866
867  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
870  ID.AddPointer(&Val);
871  void *IP = 0;
872  SDNode *N = NULL;
873  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
874    if (!VT.isVector())
875      return SDValue(N, 0);
876  if (!N) {
877    N = NodeAllocator.Allocate<ConstantSDNode>();
878    new (N) ConstantSDNode(isT, &Val, EltVT);
879    CSEMap.InsertNode(N, IP);
880    AllNodes.push_back(N);
881  }
882
883  SDValue Result(N, 0);
884  if (VT.isVector()) {
885    SmallVector<SDValue, 8> Ops;
886    Ops.assign(VT.getVectorNumElements(), Result);
887    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
888                     VT, &Ops[0], Ops.size());
889  }
890  return Result;
891}
892
893SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894  return getConstant(Val, TLI.getPointerTy(), isTarget);
895}
896
897
898SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
900}
901
902SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
904
905  MVT EltVT =
906    VT.isVector() ? VT.getVectorElementType() : VT;
907
908  // Do the map lookup using the actual bit pattern for the floating point
909  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910  // we don't have issues with SNANs.
911  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914  ID.AddPointer(&V);
915  void *IP = 0;
916  SDNode *N = NULL;
917  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918    if (!VT.isVector())
919      return SDValue(N, 0);
920  if (!N) {
921    N = NodeAllocator.Allocate<ConstantFPSDNode>();
922    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923    CSEMap.InsertNode(N, IP);
924    AllNodes.push_back(N);
925  }
926
927  SDValue Result(N, 0);
928  if (VT.isVector()) {
929    SmallVector<SDValue, 8> Ops;
930    Ops.assign(VT.getVectorNumElements(), Result);
931    // FIXME DebugLoc info might be appropriate here
932    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
933                     VT, &Ops[0], Ops.size());
934  }
935  return Result;
936}
937
938SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
939  MVT EltVT =
940    VT.isVector() ? VT.getVectorElementType() : VT;
941  if (EltVT==MVT::f32)
942    return getConstantFP(APFloat((float)Val), VT, isTarget);
943  else
944    return getConstantFP(APFloat(Val), VT, isTarget);
945}
946
947SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
948                                       MVT VT, int64_t Offset,
949                                       bool isTargetGA) {
950  unsigned Opc;
951
952  // Truncate (with sign-extension) the offset value to the pointer size.
953  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
954  if (BitWidth < 64)
955    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
956
957  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
958  if (!GVar) {
959    // If GV is an alias then use the aliasee for determining thread-localness.
960    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
961      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
962  }
963
964  if (GVar && GVar->isThreadLocal())
965    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
966  else
967    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
968
969  FoldingSetNodeID ID;
970  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
971  ID.AddPointer(GV);
972  ID.AddInteger(Offset);
973  void *IP = 0;
974  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
975    return SDValue(E, 0);
976  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
977  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
978  CSEMap.InsertNode(N, IP);
979  AllNodes.push_back(N);
980  return SDValue(N, 0);
981}
982
983SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
984  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
985  FoldingSetNodeID ID;
986  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
987  ID.AddInteger(FI);
988  void *IP = 0;
989  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990    return SDValue(E, 0);
991  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
992  new (N) FrameIndexSDNode(FI, VT, isTarget);
993  CSEMap.InsertNode(N, IP);
994  AllNodes.push_back(N);
995  return SDValue(N, 0);
996}
997
998SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
999  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddInteger(JTI);
1003  void *IP = 0;
1004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005    return SDValue(E, 0);
1006  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1007  new (N) JumpTableSDNode(JTI, VT, isTarget);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1014                                      unsigned Alignment, int Offset,
1015                                      bool isTarget) {
1016  if (Alignment == 0)
1017    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1018  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1019  FoldingSetNodeID ID;
1020  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021  ID.AddInteger(Alignment);
1022  ID.AddInteger(Offset);
1023  ID.AddPointer(C);
1024  void *IP = 0;
1025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026    return SDValue(E, 0);
1027  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1028  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1029  CSEMap.InsertNode(N, IP);
1030  AllNodes.push_back(N);
1031  return SDValue(N, 0);
1032}
1033
1034
1035SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1036                                      unsigned Alignment, int Offset,
1037                                      bool isTarget) {
1038  if (Alignment == 0)
1039    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  C->AddSelectionDAGCSEId(ID);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1059  ID.AddPointer(MBB);
1060  void *IP = 0;
1061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1062    return SDValue(E, 0);
1063  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1064  new (N) BasicBlockSDNode(MBB);
1065  CSEMap.InsertNode(N, IP);
1066  AllNodes.push_back(N);
1067  return SDValue(N, 0);
1068}
1069
1070SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1071  FoldingSetNodeID ID;
1072  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1073  ID.AddInteger(Flags.getRawBits());
1074  void *IP = 0;
1075  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076    return SDValue(E, 0);
1077  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1078  new (N) ARG_FLAGSSDNode(Flags);
1079  CSEMap.InsertNode(N, IP);
1080  AllNodes.push_back(N);
1081  return SDValue(N, 0);
1082}
1083
1084SDValue SelectionDAG::getValueType(MVT VT) {
1085  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1086    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1087
1088  SDNode *&N = VT.isExtended() ?
1089    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1090
1091  if (N) return SDValue(N, 0);
1092  N = NodeAllocator.Allocate<VTSDNode>();
1093  new (N) VTSDNode(VT);
1094  AllNodes.push_back(N);
1095  return SDValue(N, 0);
1096}
1097
1098SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1099  SDNode *&N = ExternalSymbols[Sym];
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1102  new (N) ExternalSymbolSDNode(false, Sym, VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = TargetExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(true, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1117  if ((unsigned)Cond >= CondCodeNodes.size())
1118    CondCodeNodes.resize(Cond+1);
1119
1120  if (CondCodeNodes[Cond] == 0) {
1121    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1122    new (N) CondCodeSDNode(Cond);
1123    CondCodeNodes[Cond] = N;
1124    AllNodes.push_back(N);
1125  }
1126  return SDValue(CondCodeNodes[Cond], 0);
1127}
1128
1129SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1130                                       SDValue Val, SDValue DTy,
1131                                       SDValue STy, SDValue Rnd, SDValue Sat,
1132                                       ISD::CvtCode Code) {
1133  // If the src and dest types are the same and the conversion is between
1134  // integer types of the same sign or two floats, no conversion is necessary.
1135  if (DTy == STy &&
1136      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1137    return Val;
1138
1139  FoldingSetNodeID ID;
1140  void* IP = 0;
1141  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1142    return SDValue(E, 0);
1143  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1144  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1145  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1146  CSEMap.InsertNode(N, IP);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1152  FoldingSetNodeID ID;
1153  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1154  ID.AddInteger(RegNo);
1155  void *IP = 0;
1156  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1157    return SDValue(E, 0);
1158  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1159  new (N) RegisterSDNode(RegNo, VT);
1160  CSEMap.InsertNode(N, IP);
1161  AllNodes.push_back(N);
1162  return SDValue(N, 0);
1163}
1164
1165SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1166                                      unsigned Line, unsigned Col,
1167                                      Value *CU) {
1168  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1169  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1170  AllNodes.push_back(N);
1171  return SDValue(N, 0);
1172}
1173
1174SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1175                               SDValue Root,
1176                               unsigned LabelID) {
1177  FoldingSetNodeID ID;
1178  SDValue Ops[] = { Root };
1179  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1180  ID.AddInteger(LabelID);
1181  void *IP = 0;
1182  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1183    return SDValue(E, 0);
1184  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1185  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1186  CSEMap.InsertNode(N, IP);
1187  AllNodes.push_back(N);
1188  return SDValue(N, 0);
1189}
1190
1191SDValue SelectionDAG::getSrcValue(const Value *V) {
1192  assert((!V || isa<PointerType>(V->getType())) &&
1193         "SrcValue is not a pointer?");
1194
1195  FoldingSetNodeID ID;
1196  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1197  ID.AddPointer(V);
1198
1199  void *IP = 0;
1200  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1201    return SDValue(E, 0);
1202
1203  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1204  new (N) SrcValueSDNode(V);
1205  CSEMap.InsertNode(N, IP);
1206  AllNodes.push_back(N);
1207  return SDValue(N, 0);
1208}
1209
1210SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1211#ifndef NDEBUG
1212  const Value *v = MO.getValue();
1213  assert((!v || isa<PointerType>(v->getType())) &&
1214         "SrcValue is not a pointer?");
1215#endif
1216
1217  FoldingSetNodeID ID;
1218  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1219  MO.Profile(ID);
1220
1221  void *IP = 0;
1222  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1223    return SDValue(E, 0);
1224
1225  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1226  new (N) MemOperandSDNode(MO);
1227  CSEMap.InsertNode(N, IP);
1228  AllNodes.push_back(N);
1229  return SDValue(N, 0);
1230}
1231
1232/// getShiftAmountOperand - Return the specified value casted to
1233/// the target's desired shift amount type.
1234SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1235  MVT OpTy = Op.getValueType();
1236  MVT ShTy = TLI.getShiftAmountTy();
1237  if (OpTy == ShTy || OpTy.isVector()) return Op;
1238
1239  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1240  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1241}
1242
1243/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1244/// specified value type.
1245SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1246  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1247  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1248  const Type *Ty = VT.getTypeForMVT();
1249  unsigned StackAlign =
1250  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1251
1252  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1253  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1254}
1255
1256/// CreateStackTemporary - Create a stack temporary suitable for holding
1257/// either of the specified value types.
1258SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1259  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1260                            VT2.getStoreSizeInBits())/8;
1261  const Type *Ty1 = VT1.getTypeForMVT();
1262  const Type *Ty2 = VT2.getTypeForMVT();
1263  const TargetData *TD = TLI.getTargetData();
1264  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1265                            TD->getPrefTypeAlignment(Ty2));
1266
1267  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1268  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1269  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1270}
1271
1272SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1273                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1274  // These setcc operations always fold.
1275  switch (Cond) {
1276  default: break;
1277  case ISD::SETFALSE:
1278  case ISD::SETFALSE2: return getConstant(0, VT);
1279  case ISD::SETTRUE:
1280  case ISD::SETTRUE2:  return getConstant(1, VT);
1281
1282  case ISD::SETOEQ:
1283  case ISD::SETOGT:
1284  case ISD::SETOGE:
1285  case ISD::SETOLT:
1286  case ISD::SETOLE:
1287  case ISD::SETONE:
1288  case ISD::SETO:
1289  case ISD::SETUO:
1290  case ISD::SETUEQ:
1291  case ISD::SETUNE:
1292    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1293    break;
1294  }
1295
1296  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1297    const APInt &C2 = N2C->getAPIntValue();
1298    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1299      const APInt &C1 = N1C->getAPIntValue();
1300
1301      switch (Cond) {
1302      default: assert(0 && "Unknown integer setcc!");
1303      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1304      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1305      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1306      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1307      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1308      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1309      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1310      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1311      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1312      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1313      }
1314    }
1315  }
1316  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1317    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1318      // No compile time operations on this type yet.
1319      if (N1C->getValueType(0) == MVT::ppcf128)
1320        return SDValue();
1321
1322      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1323      switch (Cond) {
1324      default: break;
1325      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1326                          return getUNDEF(VT);
1327                        // fall through
1328      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1329      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1330                          return getUNDEF(VT);
1331                        // fall through
1332      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1333                                           R==APFloat::cmpLessThan, VT);
1334      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1335                          return getUNDEF(VT);
1336                        // fall through
1337      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1338      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1339                          return getUNDEF(VT);
1340                        // fall through
1341      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1342      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1343                          return getUNDEF(VT);
1344                        // fall through
1345      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1346                                           R==APFloat::cmpEqual, VT);
1347      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1348                          return getUNDEF(VT);
1349                        // fall through
1350      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1351                                           R==APFloat::cmpEqual, VT);
1352      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1353      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1354      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1355                                           R==APFloat::cmpEqual, VT);
1356      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1357      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1358                                           R==APFloat::cmpLessThan, VT);
1359      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1360                                           R==APFloat::cmpUnordered, VT);
1361      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1362      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1363      }
1364    } else {
1365      // Ensure that the constant occurs on the RHS.
1366      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1367    }
1368  }
1369
1370  // Could not fold it.
1371  return SDValue();
1372}
1373
1374/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1375/// use this predicate to simplify operations downstream.
1376bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1377  unsigned BitWidth = Op.getValueSizeInBits();
1378  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1379}
1380
1381/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1382/// this predicate to simplify operations downstream.  Mask is known to be zero
1383/// for bits that V cannot have.
1384bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1385                                     unsigned Depth) const {
1386  APInt KnownZero, KnownOne;
1387  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1388  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389  return (KnownZero & Mask) == Mask;
1390}
1391
1392/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1393/// known to be either zero or one and return them in the KnownZero/KnownOne
1394/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1395/// processing.
1396void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1397                                     APInt &KnownZero, APInt &KnownOne,
1398                                     unsigned Depth) const {
1399  unsigned BitWidth = Mask.getBitWidth();
1400  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1401         "Mask size mismatches value type size!");
1402
1403  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1404  if (Depth == 6 || Mask == 0)
1405    return;  // Limit search depth.
1406
1407  APInt KnownZero2, KnownOne2;
1408
1409  switch (Op.getOpcode()) {
1410  case ISD::Constant:
1411    // We know all of the bits for a constant!
1412    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1413    KnownZero = ~KnownOne & Mask;
1414    return;
1415  case ISD::AND:
1416    // If either the LHS or the RHS are Zero, the result is zero.
1417    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1418    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1419                      KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // Output known-1 bits are only known if set in both the LHS & RHS.
1424    KnownOne &= KnownOne2;
1425    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1426    KnownZero |= KnownZero2;
1427    return;
1428  case ISD::OR:
1429    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1430    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1431                      KnownZero2, KnownOne2, Depth+1);
1432    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1433    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1434
1435    // Output known-0 bits are only known if clear in both the LHS & RHS.
1436    KnownZero &= KnownZero2;
1437    // Output known-1 are known to be set if set in either the LHS | RHS.
1438    KnownOne |= KnownOne2;
1439    return;
1440  case ISD::XOR: {
1441    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1442    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1445
1446    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1447    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1448    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1449    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1450    KnownZero = KnownZeroOut;
1451    return;
1452  }
1453  case ISD::MUL: {
1454    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1455    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1456    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1457    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1459
1460    // If low bits are zero in either operand, output low known-0 bits.
1461    // Also compute a conserative estimate for high known-0 bits.
1462    // More trickiness is possible, but this is sufficient for the
1463    // interesting case of alignment computation.
1464    KnownOne.clear();
1465    unsigned TrailZ = KnownZero.countTrailingOnes() +
1466                      KnownZero2.countTrailingOnes();
1467    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1468                               KnownZero2.countLeadingOnes(),
1469                               BitWidth) - BitWidth;
1470
1471    TrailZ = std::min(TrailZ, BitWidth);
1472    LeadZ = std::min(LeadZ, BitWidth);
1473    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1474                APInt::getHighBitsSet(BitWidth, LeadZ);
1475    KnownZero &= Mask;
1476    return;
1477  }
1478  case ISD::UDIV: {
1479    // For the purposes of computing leading zeros we can conservatively
1480    // treat a udiv as a logical right shift by the power of 2 known to
1481    // be less than the denominator.
1482    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1483    ComputeMaskedBits(Op.getOperand(0),
1484                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1485    unsigned LeadZ = KnownZero2.countLeadingOnes();
1486
1487    KnownOne2.clear();
1488    KnownZero2.clear();
1489    ComputeMaskedBits(Op.getOperand(1),
1490                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1491    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1492    if (RHSUnknownLeadingOnes != BitWidth)
1493      LeadZ = std::min(BitWidth,
1494                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1495
1496    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1497    return;
1498  }
1499  case ISD::SELECT:
1500    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1501    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1502    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1504
1505    // Only known if known in both the LHS and RHS.
1506    KnownOne &= KnownOne2;
1507    KnownZero &= KnownZero2;
1508    return;
1509  case ISD::SELECT_CC:
1510    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1511    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1512    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1514
1515    // Only known if known in both the LHS and RHS.
1516    KnownOne &= KnownOne2;
1517    KnownZero &= KnownZero2;
1518    return;
1519  case ISD::SADDO:
1520  case ISD::UADDO:
1521  case ISD::SSUBO:
1522  case ISD::USUBO:
1523  case ISD::SMULO:
1524  case ISD::UMULO:
1525    if (Op.getResNo() != 1)
1526      return;
1527    // The boolean result conforms to getBooleanContents.  Fall through.
1528  case ISD::SETCC:
1529    // If we know the result of a setcc has the top bits zero, use this info.
1530    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1531        BitWidth > 1)
1532      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1533    return;
1534  case ISD::SHL:
1535    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1536    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1537      unsigned ShAmt = SA->getZExtValue();
1538
1539      // If the shift count is an invalid immediate, don't do anything.
1540      if (ShAmt >= BitWidth)
1541        return;
1542
1543      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1544                        KnownZero, KnownOne, Depth+1);
1545      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546      KnownZero <<= ShAmt;
1547      KnownOne  <<= ShAmt;
1548      // low bits known zero.
1549      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1550    }
1551    return;
1552  case ISD::SRL:
1553    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1554    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      unsigned ShAmt = SA->getZExtValue();
1556
1557      // If the shift count is an invalid immediate, don't do anything.
1558      if (ShAmt >= BitWidth)
1559        return;
1560
1561      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1562                        KnownZero, KnownOne, Depth+1);
1563      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564      KnownZero = KnownZero.lshr(ShAmt);
1565      KnownOne  = KnownOne.lshr(ShAmt);
1566
1567      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1568      KnownZero |= HighBits;  // High bits known zero.
1569    }
1570    return;
1571  case ISD::SRA:
1572    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1573      unsigned ShAmt = SA->getZExtValue();
1574
1575      // If the shift count is an invalid immediate, don't do anything.
1576      if (ShAmt >= BitWidth)
1577        return;
1578
1579      APInt InDemandedMask = (Mask << ShAmt);
1580      // If any of the demanded bits are produced by the sign extension, we also
1581      // demand the input sign bit.
1582      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1583      if (HighBits.getBoolValue())
1584        InDemandedMask |= APInt::getSignBit(BitWidth);
1585
1586      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1587                        Depth+1);
1588      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589      KnownZero = KnownZero.lshr(ShAmt);
1590      KnownOne  = KnownOne.lshr(ShAmt);
1591
1592      // Handle the sign bits.
1593      APInt SignBit = APInt::getSignBit(BitWidth);
1594      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1595
1596      if (KnownZero.intersects(SignBit)) {
1597        KnownZero |= HighBits;  // New bits are known zero.
1598      } else if (KnownOne.intersects(SignBit)) {
1599        KnownOne  |= HighBits;  // New bits are known one.
1600      }
1601    }
1602    return;
1603  case ISD::SIGN_EXTEND_INREG: {
1604    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1605    unsigned EBits = EVT.getSizeInBits();
1606
1607    // Sign extension.  Compute the demanded bits in the result that are not
1608    // present in the input.
1609    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1610
1611    APInt InSignBit = APInt::getSignBit(EBits);
1612    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1613
1614    // If the sign extended bits are demanded, we know that the sign
1615    // bit is demanded.
1616    InSignBit.zext(BitWidth);
1617    if (NewBits.getBoolValue())
1618      InputDemandedBits |= InSignBit;
1619
1620    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1621                      KnownZero, KnownOne, Depth+1);
1622    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1623
1624    // If the sign bit of the input is known set or clear, then we know the
1625    // top bits of the result.
1626    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1627      KnownZero |= NewBits;
1628      KnownOne  &= ~NewBits;
1629    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1630      KnownOne  |= NewBits;
1631      KnownZero &= ~NewBits;
1632    } else {                              // Input sign bit unknown
1633      KnownZero &= ~NewBits;
1634      KnownOne  &= ~NewBits;
1635    }
1636    return;
1637  }
1638  case ISD::CTTZ:
1639  case ISD::CTLZ:
1640  case ISD::CTPOP: {
1641    unsigned LowBits = Log2_32(BitWidth)+1;
1642    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1643    KnownOne.clear();
1644    return;
1645  }
1646  case ISD::LOAD: {
1647    if (ISD::isZEXTLoad(Op.getNode())) {
1648      LoadSDNode *LD = cast<LoadSDNode>(Op);
1649      MVT VT = LD->getMemoryVT();
1650      unsigned MemBits = VT.getSizeInBits();
1651      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1652    }
1653    return;
1654  }
1655  case ISD::ZERO_EXTEND: {
1656    MVT InVT = Op.getOperand(0).getValueType();
1657    unsigned InBits = InVT.getSizeInBits();
1658    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1659    APInt InMask    = Mask;
1660    InMask.trunc(InBits);
1661    KnownZero.trunc(InBits);
1662    KnownOne.trunc(InBits);
1663    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1664    KnownZero.zext(BitWidth);
1665    KnownOne.zext(BitWidth);
1666    KnownZero |= NewBits;
1667    return;
1668  }
1669  case ISD::SIGN_EXTEND: {
1670    MVT InVT = Op.getOperand(0).getValueType();
1671    unsigned InBits = InVT.getSizeInBits();
1672    APInt InSignBit = APInt::getSignBit(InBits);
1673    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1674    APInt InMask = Mask;
1675    InMask.trunc(InBits);
1676
1677    // If any of the sign extended bits are demanded, we know that the sign
1678    // bit is demanded. Temporarily set this bit in the mask for our callee.
1679    if (NewBits.getBoolValue())
1680      InMask |= InSignBit;
1681
1682    KnownZero.trunc(InBits);
1683    KnownOne.trunc(InBits);
1684    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1685
1686    // Note if the sign bit is known to be zero or one.
1687    bool SignBitKnownZero = KnownZero.isNegative();
1688    bool SignBitKnownOne  = KnownOne.isNegative();
1689    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1690           "Sign bit can't be known to be both zero and one!");
1691
1692    // If the sign bit wasn't actually demanded by our caller, we don't
1693    // want it set in the KnownZero and KnownOne result values. Reset the
1694    // mask and reapply it to the result values.
1695    InMask = Mask;
1696    InMask.trunc(InBits);
1697    KnownZero &= InMask;
1698    KnownOne  &= InMask;
1699
1700    KnownZero.zext(BitWidth);
1701    KnownOne.zext(BitWidth);
1702
1703    // If the sign bit is known zero or one, the top bits match.
1704    if (SignBitKnownZero)
1705      KnownZero |= NewBits;
1706    else if (SignBitKnownOne)
1707      KnownOne  |= NewBits;
1708    return;
1709  }
1710  case ISD::ANY_EXTEND: {
1711    MVT InVT = Op.getOperand(0).getValueType();
1712    unsigned InBits = InVT.getSizeInBits();
1713    APInt InMask = Mask;
1714    InMask.trunc(InBits);
1715    KnownZero.trunc(InBits);
1716    KnownOne.trunc(InBits);
1717    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1718    KnownZero.zext(BitWidth);
1719    KnownOne.zext(BitWidth);
1720    return;
1721  }
1722  case ISD::TRUNCATE: {
1723    MVT InVT = Op.getOperand(0).getValueType();
1724    unsigned InBits = InVT.getSizeInBits();
1725    APInt InMask = Mask;
1726    InMask.zext(InBits);
1727    KnownZero.zext(InBits);
1728    KnownOne.zext(InBits);
1729    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1730    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1731    KnownZero.trunc(BitWidth);
1732    KnownOne.trunc(BitWidth);
1733    break;
1734  }
1735  case ISD::AssertZext: {
1736    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1738    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1739                      KnownOne, Depth+1);
1740    KnownZero |= (~InMask) & Mask;
1741    return;
1742  }
1743  case ISD::FGETSIGN:
1744    // All bits are zero except the low bit.
1745    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1746    return;
1747
1748  case ISD::SUB: {
1749    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1750      // We know that the top bits of C-X are clear if X contains less bits
1751      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1752      // positive if we can prove that X is >= 0 and < 16.
1753      if (CLHS->getAPIntValue().isNonNegative()) {
1754        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1755        // NLZ can't be BitWidth with no sign bit
1756        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1757        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1758                          Depth+1);
1759
1760        // If all of the MaskV bits are known to be zero, then we know the
1761        // output top bits are zero, because we now know that the output is
1762        // from [0-C].
1763        if ((KnownZero2 & MaskV) == MaskV) {
1764          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1765          // Top bits known zero.
1766          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1767        }
1768      }
1769    }
1770  }
1771  // fall through
1772  case ISD::ADD: {
1773    // Output known-0 bits are known if clear or set in both the low clear bits
1774    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1775    // low 3 bits clear.
1776    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1777    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1778    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1779    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1780
1781    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1782    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1783    KnownZeroOut = std::min(KnownZeroOut,
1784                            KnownZero2.countTrailingOnes());
1785
1786    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1787    return;
1788  }
1789  case ISD::SREM:
1790    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1791      const APInt &RA = Rem->getAPIntValue();
1792      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1793        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1794        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1795        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1796
1797        // If the sign bit of the first operand is zero, the sign bit of
1798        // the result is zero. If the first operand has no one bits below
1799        // the second operand's single 1 bit, its sign will be zero.
1800        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1801          KnownZero2 |= ~LowBits;
1802
1803        KnownZero |= KnownZero2 & Mask;
1804
1805        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1806      }
1807    }
1808    return;
1809  case ISD::UREM: {
1810    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1811      const APInt &RA = Rem->getAPIntValue();
1812      if (RA.isPowerOf2()) {
1813        APInt LowBits = (RA - 1);
1814        APInt Mask2 = LowBits & Mask;
1815        KnownZero |= ~LowBits & Mask;
1816        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1817        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1818        break;
1819      }
1820    }
1821
1822    // Since the result is less than or equal to either operand, any leading
1823    // zero bits in either operand must also exist in the result.
1824    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1825    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1826                      Depth+1);
1827    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1828                      Depth+1);
1829
1830    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1831                                KnownZero2.countLeadingOnes());
1832    KnownOne.clear();
1833    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1834    return;
1835  }
1836  default:
1837    // Allow the target to implement this method for its nodes.
1838    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1839  case ISD::INTRINSIC_WO_CHAIN:
1840  case ISD::INTRINSIC_W_CHAIN:
1841  case ISD::INTRINSIC_VOID:
1842      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1843    }
1844    return;
1845  }
1846}
1847
1848/// ComputeNumSignBits - Return the number of times the sign bit of the
1849/// register is replicated into the other bits.  We know that at least 1 bit
1850/// is always equal to the sign bit (itself), but other cases can give us
1851/// information.  For example, immediately after an "SRA X, 2", we know that
1852/// the top 3 bits are all equal to each other, so we return 3.
1853unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1854  MVT VT = Op.getValueType();
1855  assert(VT.isInteger() && "Invalid VT!");
1856  unsigned VTBits = VT.getSizeInBits();
1857  unsigned Tmp, Tmp2;
1858  unsigned FirstAnswer = 1;
1859
1860  if (Depth == 6)
1861    return 1;  // Limit search depth.
1862
1863  switch (Op.getOpcode()) {
1864  default: break;
1865  case ISD::AssertSext:
1866    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1867    return VTBits-Tmp+1;
1868  case ISD::AssertZext:
1869    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1870    return VTBits-Tmp;
1871
1872  case ISD::Constant: {
1873    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1874    // If negative, return # leading ones.
1875    if (Val.isNegative())
1876      return Val.countLeadingOnes();
1877
1878    // Return # leading zeros.
1879    return Val.countLeadingZeros();
1880  }
1881
1882  case ISD::SIGN_EXTEND:
1883    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1884    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1885
1886  case ISD::SIGN_EXTEND_INREG:
1887    // Max of the input and what this extends.
1888    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1889    Tmp = VTBits-Tmp+1;
1890
1891    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1892    return std::max(Tmp, Tmp2);
1893
1894  case ISD::SRA:
1895    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1896    // SRA X, C   -> adds C sign bits.
1897    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1898      Tmp += C->getZExtValue();
1899      if (Tmp > VTBits) Tmp = VTBits;
1900    }
1901    return Tmp;
1902  case ISD::SHL:
1903    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1904      // shl destroys sign bits.
1905      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1907          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1908      return Tmp - C->getZExtValue();
1909    }
1910    break;
1911  case ISD::AND:
1912  case ISD::OR:
1913  case ISD::XOR:    // NOT is handled here.
1914    // Logical binary ops preserve the number of sign bits at the worst.
1915    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916    if (Tmp != 1) {
1917      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1918      FirstAnswer = std::min(Tmp, Tmp2);
1919      // We computed what we know about the sign bits as our first
1920      // answer. Now proceed to the generic code that uses
1921      // ComputeMaskedBits, and pick whichever answer is better.
1922    }
1923    break;
1924
1925  case ISD::SELECT:
1926    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927    if (Tmp == 1) return 1;  // Early out.
1928    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1929    return std::min(Tmp, Tmp2);
1930
1931  case ISD::SADDO:
1932  case ISD::UADDO:
1933  case ISD::SSUBO:
1934  case ISD::USUBO:
1935  case ISD::SMULO:
1936  case ISD::UMULO:
1937    if (Op.getResNo() != 1)
1938      break;
1939    // The boolean result conforms to getBooleanContents.  Fall through.
1940  case ISD::SETCC:
1941    // If setcc returns 0/-1, all bits are sign bits.
1942    if (TLI.getBooleanContents() ==
1943        TargetLowering::ZeroOrNegativeOneBooleanContent)
1944      return VTBits;
1945    break;
1946  case ISD::ROTL:
1947  case ISD::ROTR:
1948    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1950
1951      // Handle rotate right by N like a rotate left by 32-N.
1952      if (Op.getOpcode() == ISD::ROTR)
1953        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1954
1955      // If we aren't rotating out all of the known-in sign bits, return the
1956      // number that are left.  This handles rotl(sext(x), 1) for example.
1957      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1959    }
1960    break;
1961  case ISD::ADD:
1962    // Add can have at most one carry bit.  Thus we know that the output
1963    // is, at worst, one more bit than the inputs.
1964    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1965    if (Tmp == 1) return 1;  // Early out.
1966
1967    // Special case decrementing a value (ADD X, -1):
1968    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1969      if (CRHS->isAllOnesValue()) {
1970        APInt KnownZero, KnownOne;
1971        APInt Mask = APInt::getAllOnesValue(VTBits);
1972        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1973
1974        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1975        // sign bits set.
1976        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1977          return VTBits;
1978
1979        // If we are subtracting one from a positive number, there is no carry
1980        // out of the result.
1981        if (KnownZero.isNegative())
1982          return Tmp;
1983      }
1984
1985    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1986    if (Tmp2 == 1) return 1;
1987      return std::min(Tmp, Tmp2)-1;
1988    break;
1989
1990  case ISD::SUB:
1991    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1992    if (Tmp2 == 1) return 1;
1993
1994    // Handle NEG.
1995    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1996      if (CLHS->isNullValue()) {
1997        APInt KnownZero, KnownOne;
1998        APInt Mask = APInt::getAllOnesValue(VTBits);
1999        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2000        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2001        // sign bits set.
2002        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2003          return VTBits;
2004
2005        // If the input is known to be positive (the sign bit is known clear),
2006        // the output of the NEG has the same number of sign bits as the input.
2007        if (KnownZero.isNegative())
2008          return Tmp2;
2009
2010        // Otherwise, we treat this like a SUB.
2011      }
2012
2013    // Sub can have at most one carry bit.  Thus we know that the output
2014    // is, at worst, one more bit than the inputs.
2015    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2016    if (Tmp == 1) return 1;  // Early out.
2017      return std::min(Tmp, Tmp2)-1;
2018    break;
2019  case ISD::TRUNCATE:
2020    // FIXME: it's tricky to do anything useful for this, but it is an important
2021    // case for targets like X86.
2022    break;
2023  }
2024
2025  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2026  if (Op.getOpcode() == ISD::LOAD) {
2027    LoadSDNode *LD = cast<LoadSDNode>(Op);
2028    unsigned ExtType = LD->getExtensionType();
2029    switch (ExtType) {
2030    default: break;
2031    case ISD::SEXTLOAD:    // '17' bits known
2032      Tmp = LD->getMemoryVT().getSizeInBits();
2033      return VTBits-Tmp+1;
2034    case ISD::ZEXTLOAD:    // '16' bits known
2035      Tmp = LD->getMemoryVT().getSizeInBits();
2036      return VTBits-Tmp;
2037    }
2038  }
2039
2040  // Allow the target to implement this method for its nodes.
2041  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2042      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2043      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2044      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2045    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2046    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2047  }
2048
2049  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2050  // use this information.
2051  APInt KnownZero, KnownOne;
2052  APInt Mask = APInt::getAllOnesValue(VTBits);
2053  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2054
2055  if (KnownZero.isNegative()) {        // sign bit is 0
2056    Mask = KnownZero;
2057  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2058    Mask = KnownOne;
2059  } else {
2060    // Nothing known.
2061    return FirstAnswer;
2062  }
2063
2064  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2065  // the number of identical bits in the top of the input value.
2066  Mask = ~Mask;
2067  Mask <<= Mask.getBitWidth()-VTBits;
2068  // Return # leading zeros.  We use 'min' here in case Val was zero before
2069  // shifting.  We don't want to return '64' as for an i32 "0".
2070  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2071}
2072
2073
2074bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2075  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2076  if (!GA) return false;
2077  if (GA->getOffset() != 0) return false;
2078  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2079  if (!GV) return false;
2080  MachineModuleInfo *MMI = getMachineModuleInfo();
2081  return MMI && MMI->hasDebugInfo();
2082}
2083
2084
2085/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2086/// element of the result of the vector shuffle.
2087SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2088  MVT VT = N->getValueType(0);
2089  DebugLoc dl = N->getDebugLoc();
2090  SDValue PermMask = N->getOperand(2);
2091  SDValue Idx = PermMask.getOperand(i);
2092  if (Idx.getOpcode() == ISD::UNDEF)
2093    return getUNDEF(VT.getVectorElementType());
2094  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2095  unsigned NumElems = PermMask.getNumOperands();
2096  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2097  Index %= NumElems;
2098
2099  if (V.getOpcode() == ISD::BIT_CONVERT) {
2100    V = V.getOperand(0);
2101    MVT VVT = V.getValueType();
2102    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2103      return SDValue();
2104  }
2105  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2106    return (Index == 0) ? V.getOperand(0)
2107                      : getUNDEF(VT.getVectorElementType());
2108  if (V.getOpcode() == ISD::BUILD_VECTOR)
2109    return V.getOperand(Index);
2110  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2111    return getShuffleScalarElt(V.getNode(), Index);
2112  return SDValue();
2113}
2114
2115
2116/// getNode - Gets or creates the specified node.
2117///
2118SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2119  FoldingSetNodeID ID;
2120  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2121  void *IP = 0;
2122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2123    return SDValue(E, 0);
2124  SDNode *N = NodeAllocator.Allocate<SDNode>();
2125  new (N) SDNode(Opcode, DL, getVTList(VT));
2126  CSEMap.InsertNode(N, IP);
2127
2128  AllNodes.push_back(N);
2129#ifndef NDEBUG
2130  VerifyNode(N);
2131#endif
2132  return SDValue(N, 0);
2133}
2134
2135SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2136                              MVT VT, SDValue Operand) {
2137  // Constant fold unary operations with an integer constant operand.
2138  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2139    const APInt &Val = C->getAPIntValue();
2140    unsigned BitWidth = VT.getSizeInBits();
2141    switch (Opcode) {
2142    default: break;
2143    case ISD::SIGN_EXTEND:
2144      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2145    case ISD::ANY_EXTEND:
2146    case ISD::ZERO_EXTEND:
2147    case ISD::TRUNCATE:
2148      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2149    case ISD::UINT_TO_FP:
2150    case ISD::SINT_TO_FP: {
2151      const uint64_t zero[] = {0, 0};
2152      // No compile time operations on this type.
2153      if (VT==MVT::ppcf128)
2154        break;
2155      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2156      (void)apf.convertFromAPInt(Val,
2157                                 Opcode==ISD::SINT_TO_FP,
2158                                 APFloat::rmNearestTiesToEven);
2159      return getConstantFP(apf, VT);
2160    }
2161    case ISD::BIT_CONVERT:
2162      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2163        return getConstantFP(Val.bitsToFloat(), VT);
2164      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2165        return getConstantFP(Val.bitsToDouble(), VT);
2166      break;
2167    case ISD::BSWAP:
2168      return getConstant(Val.byteSwap(), VT);
2169    case ISD::CTPOP:
2170      return getConstant(Val.countPopulation(), VT);
2171    case ISD::CTLZ:
2172      return getConstant(Val.countLeadingZeros(), VT);
2173    case ISD::CTTZ:
2174      return getConstant(Val.countTrailingZeros(), VT);
2175    }
2176  }
2177
2178  // Constant fold unary operations with a floating point constant operand.
2179  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2180    APFloat V = C->getValueAPF();    // make copy
2181    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2182      switch (Opcode) {
2183      case ISD::FNEG:
2184        V.changeSign();
2185        return getConstantFP(V, VT);
2186      case ISD::FABS:
2187        V.clearSign();
2188        return getConstantFP(V, VT);
2189      case ISD::FP_ROUND:
2190      case ISD::FP_EXTEND: {
2191        bool ignored;
2192        // This can return overflow, underflow, or inexact; we don't care.
2193        // FIXME need to be more flexible about rounding mode.
2194        (void)V.convert(*MVTToAPFloatSemantics(VT),
2195                        APFloat::rmNearestTiesToEven, &ignored);
2196        return getConstantFP(V, VT);
2197      }
2198      case ISD::FP_TO_SINT:
2199      case ISD::FP_TO_UINT: {
2200        integerPart x[2];
2201        bool ignored;
2202        assert(integerPartWidth >= 64);
2203        // FIXME need to be more flexible about rounding mode.
2204        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2205                              Opcode==ISD::FP_TO_SINT,
2206                              APFloat::rmTowardZero, &ignored);
2207        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2208          break;
2209        APInt api(VT.getSizeInBits(), 2, x);
2210        return getConstant(api, VT);
2211      }
2212      case ISD::BIT_CONVERT:
2213        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2214          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2215        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2216          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2217        break;
2218      }
2219    }
2220  }
2221
2222  unsigned OpOpcode = Operand.getNode()->getOpcode();
2223  switch (Opcode) {
2224  case ISD::TokenFactor:
2225  case ISD::MERGE_VALUES:
2226  case ISD::CONCAT_VECTORS:
2227    return Operand;         // Factor, merge or concat of one node?  No need.
2228  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2229  case ISD::FP_EXTEND:
2230    assert(VT.isFloatingPoint() &&
2231           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2232    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2233    if (Operand.getOpcode() == ISD::UNDEF)
2234      return getUNDEF(VT);
2235    break;
2236  case ISD::SIGN_EXTEND:
2237    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2238           "Invalid SIGN_EXTEND!");
2239    if (Operand.getValueType() == VT) return Operand;   // noop extension
2240    assert(Operand.getValueType().bitsLT(VT)
2241           && "Invalid sext node, dst < src!");
2242    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2243      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2244    break;
2245  case ISD::ZERO_EXTEND:
2246    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2247           "Invalid ZERO_EXTEND!");
2248    if (Operand.getValueType() == VT) return Operand;   // noop extension
2249    assert(Operand.getValueType().bitsLT(VT)
2250           && "Invalid zext node, dst < src!");
2251    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2252      return getNode(ISD::ZERO_EXTEND, DL, VT,
2253                     Operand.getNode()->getOperand(0));
2254    break;
2255  case ISD::ANY_EXTEND:
2256    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2257           "Invalid ANY_EXTEND!");
2258    if (Operand.getValueType() == VT) return Operand;   // noop extension
2259    assert(Operand.getValueType().bitsLT(VT)
2260           && "Invalid anyext node, dst < src!");
2261    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2262      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2263      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2264    break;
2265  case ISD::TRUNCATE:
2266    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2267           "Invalid TRUNCATE!");
2268    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2269    assert(Operand.getValueType().bitsGT(VT)
2270           && "Invalid truncate node, src < dst!");
2271    if (OpOpcode == ISD::TRUNCATE)
2272      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2273    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2274             OpOpcode == ISD::ANY_EXTEND) {
2275      // If the source is smaller than the dest, we still need an extend.
2276      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2277        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2278      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2279        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2280      else
2281        return Operand.getNode()->getOperand(0);
2282    }
2283    break;
2284  case ISD::BIT_CONVERT:
2285    // Basic sanity checking.
2286    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2287           && "Cannot BIT_CONVERT between types of different sizes!");
2288    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2289    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2290      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2291    if (OpOpcode == ISD::UNDEF)
2292      return getUNDEF(VT);
2293    break;
2294  case ISD::SCALAR_TO_VECTOR:
2295    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2296           (VT.getVectorElementType() == Operand.getValueType() ||
2297            (VT.getVectorElementType().isInteger() &&
2298             Operand.getValueType().isInteger() &&
2299             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2300           "Illegal SCALAR_TO_VECTOR node!");
2301    if (OpOpcode == ISD::UNDEF)
2302      return getUNDEF(VT);
2303    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2304    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2305        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2306        Operand.getConstantOperandVal(1) == 0 &&
2307        Operand.getOperand(0).getValueType() == VT)
2308      return Operand.getOperand(0);
2309    break;
2310  case ISD::FNEG:
2311    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2312    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2313      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2314                     Operand.getNode()->getOperand(0));
2315    if (OpOpcode == ISD::FNEG)  // --X -> X
2316      return Operand.getNode()->getOperand(0);
2317    break;
2318  case ISD::FABS:
2319    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2320      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2321    break;
2322  }
2323
2324  SDNode *N;
2325  SDVTList VTs = getVTList(VT);
2326  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2327    FoldingSetNodeID ID;
2328    SDValue Ops[1] = { Operand };
2329    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2330    void *IP = 0;
2331    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2332      return SDValue(E, 0);
2333    N = NodeAllocator.Allocate<UnarySDNode>();
2334    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2335    CSEMap.InsertNode(N, IP);
2336  } else {
2337    N = NodeAllocator.Allocate<UnarySDNode>();
2338    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2339  }
2340
2341  AllNodes.push_back(N);
2342#ifndef NDEBUG
2343  VerifyNode(N);
2344#endif
2345  return SDValue(N, 0);
2346}
2347
2348SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2349                                             MVT VT,
2350                                             ConstantSDNode *Cst1,
2351                                             ConstantSDNode *Cst2) {
2352  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2353
2354  switch (Opcode) {
2355  case ISD::ADD:  return getConstant(C1 + C2, VT);
2356  case ISD::SUB:  return getConstant(C1 - C2, VT);
2357  case ISD::MUL:  return getConstant(C1 * C2, VT);
2358  case ISD::UDIV:
2359    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2360    break;
2361  case ISD::UREM:
2362    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2363    break;
2364  case ISD::SDIV:
2365    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2366    break;
2367  case ISD::SREM:
2368    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2369    break;
2370  case ISD::AND:  return getConstant(C1 & C2, VT);
2371  case ISD::OR:   return getConstant(C1 | C2, VT);
2372  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2373  case ISD::SHL:  return getConstant(C1 << C2, VT);
2374  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2375  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2376  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2377  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2378  default: break;
2379  }
2380
2381  return SDValue();
2382}
2383
2384SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2385                              SDValue N1, SDValue N2) {
2386  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2387  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2388  switch (Opcode) {
2389  default: break;
2390  case ISD::TokenFactor:
2391    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2392           N2.getValueType() == MVT::Other && "Invalid token factor!");
2393    // Fold trivial token factors.
2394    if (N1.getOpcode() == ISD::EntryToken) return N2;
2395    if (N2.getOpcode() == ISD::EntryToken) return N1;
2396    if (N1 == N2) return N1;
2397    break;
2398  case ISD::CONCAT_VECTORS:
2399    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2400    // one big BUILD_VECTOR.
2401    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2402        N2.getOpcode() == ISD::BUILD_VECTOR) {
2403      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2404      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2405      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2406    }
2407    break;
2408  case ISD::AND:
2409    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2410           N1.getValueType() == VT && "Binary operator types must match!");
2411    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2412    // worth handling here.
2413    if (N2C && N2C->isNullValue())
2414      return N2;
2415    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2416      return N1;
2417    break;
2418  case ISD::OR:
2419  case ISD::XOR:
2420  case ISD::ADD:
2421  case ISD::SUB:
2422    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2423           N1.getValueType() == VT && "Binary operator types must match!");
2424    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2425    // it's worth handling here.
2426    if (N2C && N2C->isNullValue())
2427      return N1;
2428    break;
2429  case ISD::UDIV:
2430  case ISD::UREM:
2431  case ISD::MULHU:
2432  case ISD::MULHS:
2433  case ISD::MUL:
2434  case ISD::SDIV:
2435  case ISD::SREM:
2436    assert(VT.isInteger() && "This operator does not apply to FP types!");
2437    // fall through
2438  case ISD::FADD:
2439  case ISD::FSUB:
2440  case ISD::FMUL:
2441  case ISD::FDIV:
2442  case ISD::FREM:
2443    if (UnsafeFPMath) {
2444      if (Opcode == ISD::FADD) {
2445        // 0+x --> x
2446        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2447          if (CFP->getValueAPF().isZero())
2448            return N2;
2449        // x+0 --> x
2450        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2451          if (CFP->getValueAPF().isZero())
2452            return N1;
2453      } else if (Opcode == ISD::FSUB) {
2454        // x-0 --> x
2455        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2456          if (CFP->getValueAPF().isZero())
2457            return N1;
2458      }
2459    }
2460    assert(N1.getValueType() == N2.getValueType() &&
2461           N1.getValueType() == VT && "Binary operator types must match!");
2462    break;
2463  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2464    assert(N1.getValueType() == VT &&
2465           N1.getValueType().isFloatingPoint() &&
2466           N2.getValueType().isFloatingPoint() &&
2467           "Invalid FCOPYSIGN!");
2468    break;
2469  case ISD::SHL:
2470  case ISD::SRA:
2471  case ISD::SRL:
2472  case ISD::ROTL:
2473  case ISD::ROTR:
2474    assert(VT == N1.getValueType() &&
2475           "Shift operators return type must be the same as their first arg");
2476    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2477           "Shifts only work on integers");
2478
2479    // Always fold shifts of i1 values so the code generator doesn't need to
2480    // handle them.  Since we know the size of the shift has to be less than the
2481    // size of the value, the shift/rotate count is guaranteed to be zero.
2482    if (VT == MVT::i1)
2483      return N1;
2484    break;
2485  case ISD::FP_ROUND_INREG: {
2486    MVT EVT = cast<VTSDNode>(N2)->getVT();
2487    assert(VT == N1.getValueType() && "Not an inreg round!");
2488    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2489           "Cannot FP_ROUND_INREG integer types");
2490    assert(EVT.bitsLE(VT) && "Not rounding down!");
2491    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2492    break;
2493  }
2494  case ISD::FP_ROUND:
2495    assert(VT.isFloatingPoint() &&
2496           N1.getValueType().isFloatingPoint() &&
2497           VT.bitsLE(N1.getValueType()) &&
2498           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2499    if (N1.getValueType() == VT) return N1;  // noop conversion.
2500    break;
2501  case ISD::AssertSext:
2502  case ISD::AssertZext: {
2503    MVT EVT = cast<VTSDNode>(N2)->getVT();
2504    assert(VT == N1.getValueType() && "Not an inreg extend!");
2505    assert(VT.isInteger() && EVT.isInteger() &&
2506           "Cannot *_EXTEND_INREG FP types");
2507    assert(EVT.bitsLE(VT) && "Not extending!");
2508    if (VT == EVT) return N1; // noop assertion.
2509    break;
2510  }
2511  case ISD::SIGN_EXTEND_INREG: {
2512    MVT EVT = cast<VTSDNode>(N2)->getVT();
2513    assert(VT == N1.getValueType() && "Not an inreg extend!");
2514    assert(VT.isInteger() && EVT.isInteger() &&
2515           "Cannot *_EXTEND_INREG FP types");
2516    assert(EVT.bitsLE(VT) && "Not extending!");
2517    if (EVT == VT) return N1;  // Not actually extending
2518
2519    if (N1C) {
2520      APInt Val = N1C->getAPIntValue();
2521      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2522      Val <<= Val.getBitWidth()-FromBits;
2523      Val = Val.ashr(Val.getBitWidth()-FromBits);
2524      return getConstant(Val, VT);
2525    }
2526    break;
2527  }
2528  case ISD::EXTRACT_VECTOR_ELT:
2529    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2530    if (N1.getOpcode() == ISD::UNDEF)
2531      return getUNDEF(VT);
2532
2533    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2534    // expanding copies of large vectors from registers.
2535    if (N2C &&
2536        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2537        N1.getNumOperands() > 0) {
2538      unsigned Factor =
2539        N1.getOperand(0).getValueType().getVectorNumElements();
2540      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2541                     N1.getOperand(N2C->getZExtValue() / Factor),
2542                     getConstant(N2C->getZExtValue() % Factor,
2543                                 N2.getValueType()));
2544    }
2545
2546    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2547    // expanding large vector constants.
2548    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2549      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2550      if (Elt.getValueType() != VT) {
2551        // If the vector element type is not legal, the BUILD_VECTOR operands
2552        // are promoted and implicitly truncated.  Make that explicit here.
2553        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2554               VT.bitsLE(Elt.getValueType()) &&
2555               "Bad type for BUILD_VECTOR operand");
2556        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2557      }
2558      return Elt;
2559    }
2560
2561    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2562    // operations are lowered to scalars.
2563    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2564      // If the indices are the same, return the inserted element.
2565      if (N1.getOperand(2) == N2)
2566        return N1.getOperand(1);
2567      // If the indices are known different, extract the element from
2568      // the original vector.
2569      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2570               isa<ConstantSDNode>(N2))
2571        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2572    }
2573    break;
2574  case ISD::EXTRACT_ELEMENT:
2575    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2576    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2577           (N1.getValueType().isInteger() == VT.isInteger()) &&
2578           "Wrong types for EXTRACT_ELEMENT!");
2579
2580    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2581    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2582    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2583    if (N1.getOpcode() == ISD::BUILD_PAIR)
2584      return N1.getOperand(N2C->getZExtValue());
2585
2586    // EXTRACT_ELEMENT of a constant int is also very common.
2587    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2588      unsigned ElementSize = VT.getSizeInBits();
2589      unsigned Shift = ElementSize * N2C->getZExtValue();
2590      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2591      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2592    }
2593    break;
2594  case ISD::EXTRACT_SUBVECTOR:
2595    if (N1.getValueType() == VT) // Trivial extraction.
2596      return N1;
2597    break;
2598  }
2599
2600  if (N1C) {
2601    if (N2C) {
2602      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2603      if (SV.getNode()) return SV;
2604    } else {      // Cannonicalize constant to RHS if commutative
2605      if (isCommutativeBinOp(Opcode)) {
2606        std::swap(N1C, N2C);
2607        std::swap(N1, N2);
2608      }
2609    }
2610  }
2611
2612  // Constant fold FP operations.
2613  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2614  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2615  if (N1CFP) {
2616    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2617      // Cannonicalize constant to RHS if commutative
2618      std::swap(N1CFP, N2CFP);
2619      std::swap(N1, N2);
2620    } else if (N2CFP && VT != MVT::ppcf128) {
2621      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2622      APFloat::opStatus s;
2623      switch (Opcode) {
2624      case ISD::FADD:
2625        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2626        if (s != APFloat::opInvalidOp)
2627          return getConstantFP(V1, VT);
2628        break;
2629      case ISD::FSUB:
2630        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2631        if (s!=APFloat::opInvalidOp)
2632          return getConstantFP(V1, VT);
2633        break;
2634      case ISD::FMUL:
2635        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2636        if (s!=APFloat::opInvalidOp)
2637          return getConstantFP(V1, VT);
2638        break;
2639      case ISD::FDIV:
2640        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2641        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2642          return getConstantFP(V1, VT);
2643        break;
2644      case ISD::FREM :
2645        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2646        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2647          return getConstantFP(V1, VT);
2648        break;
2649      case ISD::FCOPYSIGN:
2650        V1.copySign(V2);
2651        return getConstantFP(V1, VT);
2652      default: break;
2653      }
2654    }
2655  }
2656
2657  // Canonicalize an UNDEF to the RHS, even over a constant.
2658  if (N1.getOpcode() == ISD::UNDEF) {
2659    if (isCommutativeBinOp(Opcode)) {
2660      std::swap(N1, N2);
2661    } else {
2662      switch (Opcode) {
2663      case ISD::FP_ROUND_INREG:
2664      case ISD::SIGN_EXTEND_INREG:
2665      case ISD::SUB:
2666      case ISD::FSUB:
2667      case ISD::FDIV:
2668      case ISD::FREM:
2669      case ISD::SRA:
2670        return N1;     // fold op(undef, arg2) -> undef
2671      case ISD::UDIV:
2672      case ISD::SDIV:
2673      case ISD::UREM:
2674      case ISD::SREM:
2675      case ISD::SRL:
2676      case ISD::SHL:
2677        if (!VT.isVector())
2678          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2679        // For vectors, we can't easily build an all zero vector, just return
2680        // the LHS.
2681        return N2;
2682      }
2683    }
2684  }
2685
2686  // Fold a bunch of operators when the RHS is undef.
2687  if (N2.getOpcode() == ISD::UNDEF) {
2688    switch (Opcode) {
2689    case ISD::XOR:
2690      if (N1.getOpcode() == ISD::UNDEF)
2691        // Handle undef ^ undef -> 0 special case. This is a common
2692        // idiom (misuse).
2693        return getConstant(0, VT);
2694      // fallthrough
2695    case ISD::ADD:
2696    case ISD::ADDC:
2697    case ISD::ADDE:
2698    case ISD::SUB:
2699    case ISD::FADD:
2700    case ISD::FSUB:
2701    case ISD::FMUL:
2702    case ISD::FDIV:
2703    case ISD::FREM:
2704    case ISD::UDIV:
2705    case ISD::SDIV:
2706    case ISD::UREM:
2707    case ISD::SREM:
2708      return N2;       // fold op(arg1, undef) -> undef
2709    case ISD::MUL:
2710    case ISD::AND:
2711    case ISD::SRL:
2712    case ISD::SHL:
2713      if (!VT.isVector())
2714        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2715      // For vectors, we can't easily build an all zero vector, just return
2716      // the LHS.
2717      return N1;
2718    case ISD::OR:
2719      if (!VT.isVector())
2720        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2721      // For vectors, we can't easily build an all one vector, just return
2722      // the LHS.
2723      return N1;
2724    case ISD::SRA:
2725      return N1;
2726    }
2727  }
2728
2729  // Memoize this node if possible.
2730  SDNode *N;
2731  SDVTList VTs = getVTList(VT);
2732  if (VT != MVT::Flag) {
2733    SDValue Ops[] = { N1, N2 };
2734    FoldingSetNodeID ID;
2735    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2736    void *IP = 0;
2737    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2738      return SDValue(E, 0);
2739    N = NodeAllocator.Allocate<BinarySDNode>();
2740    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2741    CSEMap.InsertNode(N, IP);
2742  } else {
2743    N = NodeAllocator.Allocate<BinarySDNode>();
2744    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2745  }
2746
2747  AllNodes.push_back(N);
2748#ifndef NDEBUG
2749  VerifyNode(N);
2750#endif
2751  return SDValue(N, 0);
2752}
2753
2754SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2755                              SDValue N1, SDValue N2, SDValue N3) {
2756  // Perform various simplifications.
2757  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2758  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2759  switch (Opcode) {
2760  case ISD::CONCAT_VECTORS:
2761    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2762    // one big BUILD_VECTOR.
2763    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2764        N2.getOpcode() == ISD::BUILD_VECTOR &&
2765        N3.getOpcode() == ISD::BUILD_VECTOR) {
2766      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2767      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2768      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2769      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2770    }
2771    break;
2772  case ISD::SETCC: {
2773    // Use FoldSetCC to simplify SETCC's.
2774    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2775    if (Simp.getNode()) return Simp;
2776    break;
2777  }
2778  case ISD::SELECT:
2779    if (N1C) {
2780     if (N1C->getZExtValue())
2781        return N2;             // select true, X, Y -> X
2782      else
2783        return N3;             // select false, X, Y -> Y
2784    }
2785
2786    if (N2 == N3) return N2;   // select C, X, X -> X
2787    break;
2788  case ISD::BRCOND:
2789    if (N2C) {
2790      if (N2C->getZExtValue()) // Unconditional branch
2791        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2792      else
2793        return N1;         // Never-taken branch
2794    }
2795    break;
2796  case ISD::VECTOR_SHUFFLE:
2797    assert(N1.getValueType() == N2.getValueType() &&
2798           N1.getValueType().isVector() &&
2799           VT.isVector() && N3.getValueType().isVector() &&
2800           N3.getOpcode() == ISD::BUILD_VECTOR &&
2801           VT.getVectorNumElements() == N3.getNumOperands() &&
2802           "Illegal VECTOR_SHUFFLE node!");
2803    break;
2804  case ISD::BIT_CONVERT:
2805    // Fold bit_convert nodes from a type to themselves.
2806    if (N1.getValueType() == VT)
2807      return N1;
2808    break;
2809  }
2810
2811  // Memoize node if it doesn't produce a flag.
2812  SDNode *N;
2813  SDVTList VTs = getVTList(VT);
2814  if (VT != MVT::Flag) {
2815    SDValue Ops[] = { N1, N2, N3 };
2816    FoldingSetNodeID ID;
2817    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2818    void *IP = 0;
2819    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2820      return SDValue(E, 0);
2821    N = NodeAllocator.Allocate<TernarySDNode>();
2822    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2823    CSEMap.InsertNode(N, IP);
2824  } else {
2825    N = NodeAllocator.Allocate<TernarySDNode>();
2826    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2827  }
2828  AllNodes.push_back(N);
2829#ifndef NDEBUG
2830  VerifyNode(N);
2831#endif
2832  return SDValue(N, 0);
2833}
2834
2835SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2836                              SDValue N1, SDValue N2, SDValue N3,
2837                              SDValue N4) {
2838  SDValue Ops[] = { N1, N2, N3, N4 };
2839  return getNode(Opcode, DL, VT, Ops, 4);
2840}
2841
2842SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2843                              SDValue N1, SDValue N2, SDValue N3,
2844                              SDValue N4, SDValue N5) {
2845  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2846  return getNode(Opcode, DL, VT, Ops, 5);
2847}
2848
2849/// getMemsetValue - Vectorized representation of the memset value
2850/// operand.
2851static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2852                              DebugLoc dl) {
2853  unsigned NumBits = VT.isVector() ?
2854    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2855  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2856    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2857    unsigned Shift = 8;
2858    for (unsigned i = NumBits; i > 8; i >>= 1) {
2859      Val = (Val << Shift) | Val;
2860      Shift <<= 1;
2861    }
2862    if (VT.isInteger())
2863      return DAG.getConstant(Val, VT);
2864    return DAG.getConstantFP(APFloat(Val), VT);
2865  }
2866
2867  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2868  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2869  unsigned Shift = 8;
2870  for (unsigned i = NumBits; i > 8; i >>= 1) {
2871    Value = DAG.getNode(ISD::OR, dl, VT,
2872                        DAG.getNode(ISD::SHL, dl, VT, Value,
2873                                    DAG.getConstant(Shift,
2874                                                    TLI.getShiftAmountTy())),
2875                        Value);
2876    Shift <<= 1;
2877  }
2878
2879  return Value;
2880}
2881
2882/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2883/// used when a memcpy is turned into a memset when the source is a constant
2884/// string ptr.
2885static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2886                                    const TargetLowering &TLI,
2887                                    std::string &Str, unsigned Offset) {
2888  // Handle vector with all elements zero.
2889  if (Str.empty()) {
2890    if (VT.isInteger())
2891      return DAG.getConstant(0, VT);
2892    unsigned NumElts = VT.getVectorNumElements();
2893    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2894    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2895                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2896  }
2897
2898  assert(!VT.isVector() && "Can't handle vector type here!");
2899  unsigned NumBits = VT.getSizeInBits();
2900  unsigned MSB = NumBits / 8;
2901  uint64_t Val = 0;
2902  if (TLI.isLittleEndian())
2903    Offset = Offset + MSB - 1;
2904  for (unsigned i = 0; i != MSB; ++i) {
2905    Val = (Val << 8) | (unsigned char)Str[Offset];
2906    Offset += TLI.isLittleEndian() ? -1 : 1;
2907  }
2908  return DAG.getConstant(Val, VT);
2909}
2910
2911/// getMemBasePlusOffset - Returns base and offset node for the
2912///
2913static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2914                                      SelectionDAG &DAG) {
2915  MVT VT = Base.getValueType();
2916  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2917                     VT, Base, DAG.getConstant(Offset, VT));
2918}
2919
2920/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2921///
2922static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2923  unsigned SrcDelta = 0;
2924  GlobalAddressSDNode *G = NULL;
2925  if (Src.getOpcode() == ISD::GlobalAddress)
2926    G = cast<GlobalAddressSDNode>(Src);
2927  else if (Src.getOpcode() == ISD::ADD &&
2928           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2929           Src.getOperand(1).getOpcode() == ISD::Constant) {
2930    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2931    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2932  }
2933  if (!G)
2934    return false;
2935
2936  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2937  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2938    return true;
2939
2940  return false;
2941}
2942
2943/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2944/// to replace the memset / memcpy is below the threshold. It also returns the
2945/// types of the sequence of memory ops to perform memset / memcpy.
2946static
2947bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2948                              SDValue Dst, SDValue Src,
2949                              unsigned Limit, uint64_t Size, unsigned &Align,
2950                              std::string &Str, bool &isSrcStr,
2951                              SelectionDAG &DAG,
2952                              const TargetLowering &TLI) {
2953  isSrcStr = isMemSrcFromString(Src, Str);
2954  bool isSrcConst = isa<ConstantSDNode>(Src);
2955  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2956  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2957  if (VT != MVT::iAny) {
2958    unsigned NewAlign = (unsigned)
2959      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2960    // If source is a string constant, this will require an unaligned load.
2961    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2962      if (Dst.getOpcode() != ISD::FrameIndex) {
2963        // Can't change destination alignment. It requires a unaligned store.
2964        if (AllowUnalign)
2965          VT = MVT::iAny;
2966      } else {
2967        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2968        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2969        if (MFI->isFixedObjectIndex(FI)) {
2970          // Can't change destination alignment. It requires a unaligned store.
2971          if (AllowUnalign)
2972            VT = MVT::iAny;
2973        } else {
2974          // Give the stack frame object a larger alignment if needed.
2975          if (MFI->getObjectAlignment(FI) < NewAlign)
2976            MFI->setObjectAlignment(FI, NewAlign);
2977          Align = NewAlign;
2978        }
2979      }
2980    }
2981  }
2982
2983  if (VT == MVT::iAny) {
2984    if (AllowUnalign) {
2985      VT = MVT::i64;
2986    } else {
2987      switch (Align & 7) {
2988      case 0:  VT = MVT::i64; break;
2989      case 4:  VT = MVT::i32; break;
2990      case 2:  VT = MVT::i16; break;
2991      default: VT = MVT::i8;  break;
2992      }
2993    }
2994
2995    MVT LVT = MVT::i64;
2996    while (!TLI.isTypeLegal(LVT))
2997      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2998    assert(LVT.isInteger());
2999
3000    if (VT.bitsGT(LVT))
3001      VT = LVT;
3002  }
3003
3004  unsigned NumMemOps = 0;
3005  while (Size != 0) {
3006    unsigned VTSize = VT.getSizeInBits() / 8;
3007    while (VTSize > Size) {
3008      // For now, only use non-vector load / store's for the left-over pieces.
3009      if (VT.isVector()) {
3010        VT = MVT::i64;
3011        while (!TLI.isTypeLegal(VT))
3012          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3013        VTSize = VT.getSizeInBits() / 8;
3014      } else {
3015        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3016        VTSize >>= 1;
3017      }
3018    }
3019
3020    if (++NumMemOps > Limit)
3021      return false;
3022    MemOps.push_back(VT);
3023    Size -= VTSize;
3024  }
3025
3026  return true;
3027}
3028
3029static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3030                                         SDValue Chain, SDValue Dst,
3031                                         SDValue Src, uint64_t Size,
3032                                         unsigned Align, bool AlwaysInline,
3033                                         const Value *DstSV, uint64_t DstSVOff,
3034                                         const Value *SrcSV, uint64_t SrcSVOff){
3035  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036
3037  // Expand memcpy to a series of load and store ops if the size operand falls
3038  // below a certain threshold.
3039  std::vector<MVT> MemOps;
3040  uint64_t Limit = -1ULL;
3041  if (!AlwaysInline)
3042    Limit = TLI.getMaxStoresPerMemcpy();
3043  unsigned DstAlign = Align;  // Destination alignment can change.
3044  std::string Str;
3045  bool CopyFromStr;
3046  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3047                                Str, CopyFromStr, DAG, TLI))
3048    return SDValue();
3049
3050
3051  bool isZeroStr = CopyFromStr && Str.empty();
3052  SmallVector<SDValue, 8> OutChains;
3053  unsigned NumMemOps = MemOps.size();
3054  uint64_t SrcOff = 0, DstOff = 0;
3055  for (unsigned i = 0; i < NumMemOps; i++) {
3056    MVT VT = MemOps[i];
3057    unsigned VTSize = VT.getSizeInBits() / 8;
3058    SDValue Value, Store;
3059
3060    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3061      // It's unlikely a store of a vector immediate can be done in a single
3062      // instruction. It would require a load from a constantpool first.
3063      // We also handle store a vector with all zero's.
3064      // FIXME: Handle other cases where store of vector immediate is done in
3065      // a single instruction.
3066      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3067      Store = DAG.getStore(Chain, dl, Value,
3068                           getMemBasePlusOffset(Dst, DstOff, DAG),
3069                           DstSV, DstSVOff + DstOff, false, DstAlign);
3070    } else {
3071      Value = DAG.getLoad(VT, dl, Chain,
3072                          getMemBasePlusOffset(Src, SrcOff, DAG),
3073                          SrcSV, SrcSVOff + SrcOff, false, Align);
3074      Store = DAG.getStore(Chain, dl, Value,
3075                           getMemBasePlusOffset(Dst, DstOff, DAG),
3076                           DstSV, DstSVOff + DstOff, false, DstAlign);
3077    }
3078    OutChains.push_back(Store);
3079    SrcOff += VTSize;
3080    DstOff += VTSize;
3081  }
3082
3083  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3084                     &OutChains[0], OutChains.size());
3085}
3086
3087static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3088                                          SDValue Chain, SDValue Dst,
3089                                          SDValue Src, uint64_t Size,
3090                                          unsigned Align, bool AlwaysInline,
3091                                          const Value *DstSV, uint64_t DstSVOff,
3092                                          const Value *SrcSV, uint64_t SrcSVOff){
3093  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3094
3095  // Expand memmove to a series of load and store ops if the size operand falls
3096  // below a certain threshold.
3097  std::vector<MVT> MemOps;
3098  uint64_t Limit = -1ULL;
3099  if (!AlwaysInline)
3100    Limit = TLI.getMaxStoresPerMemmove();
3101  unsigned DstAlign = Align;  // Destination alignment can change.
3102  std::string Str;
3103  bool CopyFromStr;
3104  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3105                                Str, CopyFromStr, DAG, TLI))
3106    return SDValue();
3107
3108  uint64_t SrcOff = 0, DstOff = 0;
3109
3110  SmallVector<SDValue, 8> LoadValues;
3111  SmallVector<SDValue, 8> LoadChains;
3112  SmallVector<SDValue, 8> OutChains;
3113  unsigned NumMemOps = MemOps.size();
3114  for (unsigned i = 0; i < NumMemOps; i++) {
3115    MVT VT = MemOps[i];
3116    unsigned VTSize = VT.getSizeInBits() / 8;
3117    SDValue Value, Store;
3118
3119    Value = DAG.getLoad(VT, dl, Chain,
3120                        getMemBasePlusOffset(Src, SrcOff, DAG),
3121                        SrcSV, SrcSVOff + SrcOff, false, Align);
3122    LoadValues.push_back(Value);
3123    LoadChains.push_back(Value.getValue(1));
3124    SrcOff += VTSize;
3125  }
3126  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3127                      &LoadChains[0], LoadChains.size());
3128  OutChains.clear();
3129  for (unsigned i = 0; i < NumMemOps; i++) {
3130    MVT VT = MemOps[i];
3131    unsigned VTSize = VT.getSizeInBits() / 8;
3132    SDValue Value, Store;
3133
3134    Store = DAG.getStore(Chain, dl, LoadValues[i],
3135                         getMemBasePlusOffset(Dst, DstOff, DAG),
3136                         DstSV, DstSVOff + DstOff, false, DstAlign);
3137    OutChains.push_back(Store);
3138    DstOff += VTSize;
3139  }
3140
3141  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3142                     &OutChains[0], OutChains.size());
3143}
3144
3145static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3146                                 SDValue Chain, SDValue Dst,
3147                                 SDValue Src, uint64_t Size,
3148                                 unsigned Align,
3149                                 const Value *DstSV, uint64_t DstSVOff) {
3150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151
3152  // Expand memset to a series of load/store ops if the size operand
3153  // falls below a certain threshold.
3154  std::vector<MVT> MemOps;
3155  std::string Str;
3156  bool CopyFromStr;
3157  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3158                                Size, Align, Str, CopyFromStr, DAG, TLI))
3159    return SDValue();
3160
3161  SmallVector<SDValue, 8> OutChains;
3162  uint64_t DstOff = 0;
3163
3164  unsigned NumMemOps = MemOps.size();
3165  for (unsigned i = 0; i < NumMemOps; i++) {
3166    MVT VT = MemOps[i];
3167    unsigned VTSize = VT.getSizeInBits() / 8;
3168    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3169    SDValue Store = DAG.getStore(Chain, dl, Value,
3170                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3171                                 DstSV, DstSVOff + DstOff);
3172    OutChains.push_back(Store);
3173    DstOff += VTSize;
3174  }
3175
3176  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3177                     &OutChains[0], OutChains.size());
3178}
3179
3180SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3181                                SDValue Src, SDValue Size,
3182                                unsigned Align, bool AlwaysInline,
3183                                const Value *DstSV, uint64_t DstSVOff,
3184                                const Value *SrcSV, uint64_t SrcSVOff) {
3185
3186  // Check to see if we should lower the memcpy to loads and stores first.
3187  // For cases within the target-specified limits, this is the best choice.
3188  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3189  if (ConstantSize) {
3190    // Memcpy with size zero? Just return the original chain.
3191    if (ConstantSize->isNullValue())
3192      return Chain;
3193
3194    SDValue Result =
3195      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3196                              ConstantSize->getZExtValue(),
3197                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3198    if (Result.getNode())
3199      return Result;
3200  }
3201
3202  // Then check to see if we should lower the memcpy with target-specific
3203  // code. If the target chooses to do this, this is the next best.
3204  SDValue Result =
3205    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3206                                AlwaysInline,
3207                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3208  if (Result.getNode())
3209    return Result;
3210
3211  // If we really need inline code and the target declined to provide it,
3212  // use a (potentially long) sequence of loads and stores.
3213  if (AlwaysInline) {
3214    assert(ConstantSize && "AlwaysInline requires a constant size!");
3215    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3216                                   ConstantSize->getZExtValue(), Align, true,
3217                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3218  }
3219
3220  // Emit a library call.
3221  TargetLowering::ArgListTy Args;
3222  TargetLowering::ArgListEntry Entry;
3223  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3224  Entry.Node = Dst; Args.push_back(Entry);
3225  Entry.Node = Src; Args.push_back(Entry);
3226  Entry.Node = Size; Args.push_back(Entry);
3227  // FIXME: pass in DebugLoc
3228  std::pair<SDValue,SDValue> CallResult =
3229    TLI.LowerCallTo(Chain, Type::VoidTy,
3230                    false, false, false, false, CallingConv::C, false,
3231                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3232                    Args, *this, dl);
3233  return CallResult.second;
3234}
3235
3236SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3237                                 SDValue Src, SDValue Size,
3238                                 unsigned Align,
3239                                 const Value *DstSV, uint64_t DstSVOff,
3240                                 const Value *SrcSV, uint64_t SrcSVOff) {
3241
3242  // Check to see if we should lower the memmove to loads and stores first.
3243  // For cases within the target-specified limits, this is the best choice.
3244  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3245  if (ConstantSize) {
3246    // Memmove with size zero? Just return the original chain.
3247    if (ConstantSize->isNullValue())
3248      return Chain;
3249
3250    SDValue Result =
3251      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3252                               ConstantSize->getZExtValue(),
3253                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3254    if (Result.getNode())
3255      return Result;
3256  }
3257
3258  // Then check to see if we should lower the memmove with target-specific
3259  // code. If the target chooses to do this, this is the next best.
3260  SDValue Result =
3261    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3262                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3263  if (Result.getNode())
3264    return Result;
3265
3266  // Emit a library call.
3267  TargetLowering::ArgListTy Args;
3268  TargetLowering::ArgListEntry Entry;
3269  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3270  Entry.Node = Dst; Args.push_back(Entry);
3271  Entry.Node = Src; Args.push_back(Entry);
3272  Entry.Node = Size; Args.push_back(Entry);
3273  // FIXME:  pass in DebugLoc
3274  std::pair<SDValue,SDValue> CallResult =
3275    TLI.LowerCallTo(Chain, Type::VoidTy,
3276                    false, false, false, false, CallingConv::C, false,
3277                    getExternalSymbol("memmove", TLI.getPointerTy()),
3278                    Args, *this, dl);
3279  return CallResult.second;
3280}
3281
3282SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3283                                SDValue Src, SDValue Size,
3284                                unsigned Align,
3285                                const Value *DstSV, uint64_t DstSVOff) {
3286
3287  // Check to see if we should lower the memset to stores first.
3288  // For cases within the target-specified limits, this is the best choice.
3289  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3290  if (ConstantSize) {
3291    // Memset with size zero? Just return the original chain.
3292    if (ConstantSize->isNullValue())
3293      return Chain;
3294
3295    SDValue Result =
3296      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3297                      Align, DstSV, DstSVOff);
3298    if (Result.getNode())
3299      return Result;
3300  }
3301
3302  // Then check to see if we should lower the memset with target-specific
3303  // code. If the target chooses to do this, this is the next best.
3304  SDValue Result =
3305    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3306                                DstSV, DstSVOff);
3307  if (Result.getNode())
3308    return Result;
3309
3310  // Emit a library call.
3311  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3312  TargetLowering::ArgListTy Args;
3313  TargetLowering::ArgListEntry Entry;
3314  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3315  Args.push_back(Entry);
3316  // Extend or truncate the argument to be an i32 value for the call.
3317  if (Src.getValueType().bitsGT(MVT::i32))
3318    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3319  else
3320    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3321  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3322  Args.push_back(Entry);
3323  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3324  Args.push_back(Entry);
3325  // FIXME: pass in DebugLoc
3326  std::pair<SDValue,SDValue> CallResult =
3327    TLI.LowerCallTo(Chain, Type::VoidTy,
3328                    false, false, false, false, CallingConv::C, false,
3329                    getExternalSymbol("memset", TLI.getPointerTy()),
3330                    Args, *this, dl);
3331  return CallResult.second;
3332}
3333
3334SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3335                                SDValue Chain,
3336                                SDValue Ptr, SDValue Cmp,
3337                                SDValue Swp, const Value* PtrVal,
3338                                unsigned Alignment) {
3339  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3340  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3341
3342  MVT VT = Cmp.getValueType();
3343
3344  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3345    Alignment = getMVTAlignment(MemVT);
3346
3347  SDVTList VTs = getVTList(VT, MVT::Other);
3348  FoldingSetNodeID ID;
3349  ID.AddInteger(MemVT.getRawBits());
3350  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3351  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3352  void* IP = 0;
3353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3354    return SDValue(E, 0);
3355  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3356  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3357                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3358  CSEMap.InsertNode(N, IP);
3359  AllNodes.push_back(N);
3360  return SDValue(N, 0);
3361}
3362
3363SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3364                                SDValue Chain,
3365                                SDValue Ptr, SDValue Val,
3366                                const Value* PtrVal,
3367                                unsigned Alignment) {
3368  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3369          Opcode == ISD::ATOMIC_LOAD_SUB ||
3370          Opcode == ISD::ATOMIC_LOAD_AND ||
3371          Opcode == ISD::ATOMIC_LOAD_OR ||
3372          Opcode == ISD::ATOMIC_LOAD_XOR ||
3373          Opcode == ISD::ATOMIC_LOAD_NAND ||
3374          Opcode == ISD::ATOMIC_LOAD_MIN ||
3375          Opcode == ISD::ATOMIC_LOAD_MAX ||
3376          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3377          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3378          Opcode == ISD::ATOMIC_SWAP) &&
3379         "Invalid Atomic Op");
3380
3381  MVT VT = Val.getValueType();
3382
3383  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3384    Alignment = getMVTAlignment(MemVT);
3385
3386  SDVTList VTs = getVTList(VT, MVT::Other);
3387  FoldingSetNodeID ID;
3388  ID.AddInteger(MemVT.getRawBits());
3389  SDValue Ops[] = {Chain, Ptr, Val};
3390  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3391  void* IP = 0;
3392  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3393    return SDValue(E, 0);
3394  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3395  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3396                       Chain, Ptr, Val, PtrVal, Alignment);
3397  CSEMap.InsertNode(N, IP);
3398  AllNodes.push_back(N);
3399  return SDValue(N, 0);
3400}
3401
3402/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3403/// Allowed to return something different (and simpler) if Simplify is true.
3404SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3405                                     DebugLoc dl) {
3406  if (NumOps == 1)
3407    return Ops[0];
3408
3409  SmallVector<MVT, 4> VTs;
3410  VTs.reserve(NumOps);
3411  for (unsigned i = 0; i < NumOps; ++i)
3412    VTs.push_back(Ops[i].getValueType());
3413  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3414                 Ops, NumOps);
3415}
3416
3417SDValue
3418SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3419                                  const MVT *VTs, unsigned NumVTs,
3420                                  const SDValue *Ops, unsigned NumOps,
3421                                  MVT MemVT, const Value *srcValue, int SVOff,
3422                                  unsigned Align, bool Vol,
3423                                  bool ReadMem, bool WriteMem) {
3424  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3425                             MemVT, srcValue, SVOff, Align, Vol,
3426                             ReadMem, WriteMem);
3427}
3428
3429SDValue
3430SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3431                                  const SDValue *Ops, unsigned NumOps,
3432                                  MVT MemVT, const Value *srcValue, int SVOff,
3433                                  unsigned Align, bool Vol,
3434                                  bool ReadMem, bool WriteMem) {
3435  // Memoize the node unless it returns a flag.
3436  MemIntrinsicSDNode *N;
3437  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3438    FoldingSetNodeID ID;
3439    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3440    void *IP = 0;
3441    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3442      return SDValue(E, 0);
3443
3444    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3445    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3446                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3447    CSEMap.InsertNode(N, IP);
3448  } else {
3449    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3450    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3451                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3452  }
3453  AllNodes.push_back(N);
3454  return SDValue(N, 0);
3455}
3456
3457SDValue
3458SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3459                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3460                      const SDValue *Operands, unsigned NumOperands) {
3461  // Do not include isTailCall in the folding set profile.
3462  FoldingSetNodeID ID;
3463  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3464  ID.AddInteger(CallingConv);
3465  ID.AddInteger(IsVarArgs);
3466  void *IP = 0;
3467  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3468    // Instead of including isTailCall in the folding set, we just
3469    // set the flag of the existing node.
3470    if (!IsTailCall)
3471      cast<CallSDNode>(E)->setNotTailCall();
3472    return SDValue(E, 0);
3473  }
3474  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3475  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3476                     VTs, Operands, NumOperands);
3477  CSEMap.InsertNode(N, IP);
3478  AllNodes.push_back(N);
3479  return SDValue(N, 0);
3480}
3481
3482SDValue
3483SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3484                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3485                      SDValue Ptr, SDValue Offset,
3486                      const Value *SV, int SVOffset, MVT EVT,
3487                      bool isVolatile, unsigned Alignment) {
3488  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3489    Alignment = getMVTAlignment(VT);
3490
3491  if (VT == EVT) {
3492    ExtType = ISD::NON_EXTLOAD;
3493  } else if (ExtType == ISD::NON_EXTLOAD) {
3494    assert(VT == EVT && "Non-extending load from different memory type!");
3495  } else {
3496    // Extending load.
3497    if (VT.isVector())
3498      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3499             "Invalid vector extload!");
3500    else
3501      assert(EVT.bitsLT(VT) &&
3502             "Should only be an extending load, not truncating!");
3503    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3504           "Cannot sign/zero extend a FP/Vector load!");
3505    assert(VT.isInteger() == EVT.isInteger() &&
3506           "Cannot convert from FP to Int or Int -> FP!");
3507  }
3508
3509  bool Indexed = AM != ISD::UNINDEXED;
3510  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3511         "Unindexed load with an offset!");
3512
3513  SDVTList VTs = Indexed ?
3514    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3515  SDValue Ops[] = { Chain, Ptr, Offset };
3516  FoldingSetNodeID ID;
3517  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3518  ID.AddInteger(EVT.getRawBits());
3519  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3520  void *IP = 0;
3521  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3522    return SDValue(E, 0);
3523  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3524  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3525                     Alignment, isVolatile);
3526  CSEMap.InsertNode(N, IP);
3527  AllNodes.push_back(N);
3528  return SDValue(N, 0);
3529}
3530
3531SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3532                              SDValue Chain, SDValue Ptr,
3533                              const Value *SV, int SVOffset,
3534                              bool isVolatile, unsigned Alignment) {
3535  SDValue Undef = getUNDEF(Ptr.getValueType());
3536  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3537                 SV, SVOffset, VT, isVolatile, Alignment);
3538}
3539
3540SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3541                                 SDValue Chain, SDValue Ptr,
3542                                 const Value *SV,
3543                                 int SVOffset, MVT EVT,
3544                                 bool isVolatile, unsigned Alignment) {
3545  SDValue Undef = getUNDEF(Ptr.getValueType());
3546  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3547                 SV, SVOffset, EVT, isVolatile, Alignment);
3548}
3549
3550SDValue
3551SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3552                             SDValue Offset, ISD::MemIndexedMode AM) {
3553  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3554  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3555         "Load is already a indexed load!");
3556  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3557                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3558                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3559                 LD->isVolatile(), LD->getAlignment());
3560}
3561
3562SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3563                               SDValue Ptr, const Value *SV, int SVOffset,
3564                               bool isVolatile, unsigned Alignment) {
3565  MVT VT = Val.getValueType();
3566
3567  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3568    Alignment = getMVTAlignment(VT);
3569
3570  SDVTList VTs = getVTList(MVT::Other);
3571  SDValue Undef = getUNDEF(Ptr.getValueType());
3572  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3573  FoldingSetNodeID ID;
3574  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3575  ID.AddInteger(VT.getRawBits());
3576  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3577                                     isVolatile, Alignment));
3578  void *IP = 0;
3579  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3580    return SDValue(E, 0);
3581  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3582  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3583                      VT, SV, SVOffset, Alignment, isVolatile);
3584  CSEMap.InsertNode(N, IP);
3585  AllNodes.push_back(N);
3586  return SDValue(N, 0);
3587}
3588
3589SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3590                                    SDValue Ptr, const Value *SV,
3591                                    int SVOffset, MVT SVT,
3592                                    bool isVolatile, unsigned Alignment) {
3593  MVT VT = Val.getValueType();
3594
3595  if (VT == SVT)
3596    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3597
3598  assert(VT.bitsGT(SVT) && "Not a truncation?");
3599  assert(VT.isInteger() == SVT.isInteger() &&
3600         "Can't do FP-INT conversion!");
3601
3602  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3603    Alignment = getMVTAlignment(VT);
3604
3605  SDVTList VTs = getVTList(MVT::Other);
3606  SDValue Undef = getUNDEF(Ptr.getValueType());
3607  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3608  FoldingSetNodeID ID;
3609  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3610  ID.AddInteger(SVT.getRawBits());
3611  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3612                                     isVolatile, Alignment));
3613  void *IP = 0;
3614  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3615    return SDValue(E, 0);
3616  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3617  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3618                      SVT, SV, SVOffset, Alignment, isVolatile);
3619  CSEMap.InsertNode(N, IP);
3620  AllNodes.push_back(N);
3621  return SDValue(N, 0);
3622}
3623
3624SDValue
3625SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3626                              SDValue Offset, ISD::MemIndexedMode AM) {
3627  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3628  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3629         "Store is already a indexed store!");
3630  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3631  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3632  FoldingSetNodeID ID;
3633  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3634  ID.AddInteger(ST->getMemoryVT().getRawBits());
3635  ID.AddInteger(ST->getRawSubclassData());
3636  void *IP = 0;
3637  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3638    return SDValue(E, 0);
3639  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3640  new (N) StoreSDNode(Ops, dl, VTs, AM,
3641                      ST->isTruncatingStore(), ST->getMemoryVT(),
3642                      ST->getSrcValue(), ST->getSrcValueOffset(),
3643                      ST->getAlignment(), ST->isVolatile());
3644  CSEMap.InsertNode(N, IP);
3645  AllNodes.push_back(N);
3646  return SDValue(N, 0);
3647}
3648
3649SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3650                               SDValue Chain, SDValue Ptr,
3651                               SDValue SV) {
3652  SDValue Ops[] = { Chain, Ptr, SV };
3653  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3654}
3655
3656SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3657                              const SDUse *Ops, unsigned NumOps) {
3658  switch (NumOps) {
3659  case 0: return getNode(Opcode, DL, VT);
3660  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3661  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3662  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3663  default: break;
3664  }
3665
3666  // Copy from an SDUse array into an SDValue array for use with
3667  // the regular getNode logic.
3668  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3669  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3670}
3671
3672SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3673                              const SDValue *Ops, unsigned NumOps) {
3674  switch (NumOps) {
3675  case 0: return getNode(Opcode, DL, VT);
3676  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3677  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3678  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3679  default: break;
3680  }
3681
3682  switch (Opcode) {
3683  default: break;
3684  case ISD::SELECT_CC: {
3685    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3686    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3687           "LHS and RHS of condition must have same type!");
3688    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3689           "True and False arms of SelectCC must have same type!");
3690    assert(Ops[2].getValueType() == VT &&
3691           "select_cc node must be of same type as true and false value!");
3692    break;
3693  }
3694  case ISD::BR_CC: {
3695    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3696    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3697           "LHS/RHS of comparison should match types!");
3698    break;
3699  }
3700  }
3701
3702  // Memoize nodes.
3703  SDNode *N;
3704  SDVTList VTs = getVTList(VT);
3705
3706  if (VT != MVT::Flag) {
3707    FoldingSetNodeID ID;
3708    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3709    void *IP = 0;
3710
3711    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3712      return SDValue(E, 0);
3713
3714    N = NodeAllocator.Allocate<SDNode>();
3715    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3716    CSEMap.InsertNode(N, IP);
3717  } else {
3718    N = NodeAllocator.Allocate<SDNode>();
3719    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3720  }
3721
3722  AllNodes.push_back(N);
3723#ifndef NDEBUG
3724  VerifyNode(N);
3725#endif
3726  return SDValue(N, 0);
3727}
3728
3729SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3730                              const std::vector<MVT> &ResultTys,
3731                              const SDValue *Ops, unsigned NumOps) {
3732  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3733                 Ops, NumOps);
3734}
3735
3736SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3737                              const MVT *VTs, unsigned NumVTs,
3738                              const SDValue *Ops, unsigned NumOps) {
3739  if (NumVTs == 1)
3740    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3741  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3745                              const SDValue *Ops, unsigned NumOps) {
3746  if (VTList.NumVTs == 1)
3747    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3748
3749  switch (Opcode) {
3750  // FIXME: figure out how to safely handle things like
3751  // int foo(int x) { return 1 << (x & 255); }
3752  // int bar() { return foo(256); }
3753#if 0
3754  case ISD::SRA_PARTS:
3755  case ISD::SRL_PARTS:
3756  case ISD::SHL_PARTS:
3757    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3758        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3759      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3760    else if (N3.getOpcode() == ISD::AND)
3761      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3762        // If the and is only masking out bits that cannot effect the shift,
3763        // eliminate the and.
3764        unsigned NumBits = VT.getSizeInBits()*2;
3765        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3766          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3767      }
3768    break;
3769#endif
3770  }
3771
3772  // Memoize the node unless it returns a flag.
3773  SDNode *N;
3774  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3775    FoldingSetNodeID ID;
3776    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3777    void *IP = 0;
3778    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3779      return SDValue(E, 0);
3780    if (NumOps == 1) {
3781      N = NodeAllocator.Allocate<UnarySDNode>();
3782      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3783    } else if (NumOps == 2) {
3784      N = NodeAllocator.Allocate<BinarySDNode>();
3785      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3786    } else if (NumOps == 3) {
3787      N = NodeAllocator.Allocate<TernarySDNode>();
3788      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3789    } else {
3790      N = NodeAllocator.Allocate<SDNode>();
3791      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3792    }
3793    CSEMap.InsertNode(N, IP);
3794  } else {
3795    if (NumOps == 1) {
3796      N = NodeAllocator.Allocate<UnarySDNode>();
3797      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3798    } else if (NumOps == 2) {
3799      N = NodeAllocator.Allocate<BinarySDNode>();
3800      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3801    } else if (NumOps == 3) {
3802      N = NodeAllocator.Allocate<TernarySDNode>();
3803      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3804    } else {
3805      N = NodeAllocator.Allocate<SDNode>();
3806      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3807    }
3808  }
3809  AllNodes.push_back(N);
3810#ifndef NDEBUG
3811  VerifyNode(N);
3812#endif
3813  return SDValue(N, 0);
3814}
3815
3816SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3817  return getNode(Opcode, DL, VTList, 0, 0);
3818}
3819
3820SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3821                              SDValue N1) {
3822  SDValue Ops[] = { N1 };
3823  return getNode(Opcode, DL, VTList, Ops, 1);
3824}
3825
3826SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3827                              SDValue N1, SDValue N2) {
3828  SDValue Ops[] = { N1, N2 };
3829  return getNode(Opcode, DL, VTList, Ops, 2);
3830}
3831
3832SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3833                              SDValue N1, SDValue N2, SDValue N3) {
3834  SDValue Ops[] = { N1, N2, N3 };
3835  return getNode(Opcode, DL, VTList, Ops, 3);
3836}
3837
3838SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3839                              SDValue N1, SDValue N2, SDValue N3,
3840                              SDValue N4) {
3841  SDValue Ops[] = { N1, N2, N3, N4 };
3842  return getNode(Opcode, DL, VTList, Ops, 4);
3843}
3844
3845SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3846                              SDValue N1, SDValue N2, SDValue N3,
3847                              SDValue N4, SDValue N5) {
3848  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3849  return getNode(Opcode, DL, VTList, Ops, 5);
3850}
3851
3852SDVTList SelectionDAG::getVTList(MVT VT) {
3853  return makeVTList(SDNode::getValueTypeList(VT), 1);
3854}
3855
3856SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3857  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3858       E = VTList.rend(); I != E; ++I)
3859    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3860      return *I;
3861
3862  MVT *Array = Allocator.Allocate<MVT>(2);
3863  Array[0] = VT1;
3864  Array[1] = VT2;
3865  SDVTList Result = makeVTList(Array, 2);
3866  VTList.push_back(Result);
3867  return Result;
3868}
3869
3870SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3871  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3872       E = VTList.rend(); I != E; ++I)
3873    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3874                          I->VTs[2] == VT3)
3875      return *I;
3876
3877  MVT *Array = Allocator.Allocate<MVT>(3);
3878  Array[0] = VT1;
3879  Array[1] = VT2;
3880  Array[2] = VT3;
3881  SDVTList Result = makeVTList(Array, 3);
3882  VTList.push_back(Result);
3883  return Result;
3884}
3885
3886SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3887  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3888       E = VTList.rend(); I != E; ++I)
3889    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3890                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3891      return *I;
3892
3893  MVT *Array = Allocator.Allocate<MVT>(3);
3894  Array[0] = VT1;
3895  Array[1] = VT2;
3896  Array[2] = VT3;
3897  Array[3] = VT4;
3898  SDVTList Result = makeVTList(Array, 4);
3899  VTList.push_back(Result);
3900  return Result;
3901}
3902
3903SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3904  switch (NumVTs) {
3905    case 0: assert(0 && "Cannot have nodes without results!");
3906    case 1: return getVTList(VTs[0]);
3907    case 2: return getVTList(VTs[0], VTs[1]);
3908    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3909    default: break;
3910  }
3911
3912  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3913       E = VTList.rend(); I != E; ++I) {
3914    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3915      continue;
3916
3917    bool NoMatch = false;
3918    for (unsigned i = 2; i != NumVTs; ++i)
3919      if (VTs[i] != I->VTs[i]) {
3920        NoMatch = true;
3921        break;
3922      }
3923    if (!NoMatch)
3924      return *I;
3925  }
3926
3927  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3928  std::copy(VTs, VTs+NumVTs, Array);
3929  SDVTList Result = makeVTList(Array, NumVTs);
3930  VTList.push_back(Result);
3931  return Result;
3932}
3933
3934
3935/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3936/// specified operands.  If the resultant node already exists in the DAG,
3937/// this does not modify the specified node, instead it returns the node that
3938/// already exists.  If the resultant node does not exist in the DAG, the
3939/// input node is returned.  As a degenerate case, if you specify the same
3940/// input operands as the node already has, the input node is returned.
3941SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3942  SDNode *N = InN.getNode();
3943  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3944
3945  // Check to see if there is no change.
3946  if (Op == N->getOperand(0)) return InN;
3947
3948  // See if the modified node already exists.
3949  void *InsertPos = 0;
3950  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3951    return SDValue(Existing, InN.getResNo());
3952
3953  // Nope it doesn't.  Remove the node from its current place in the maps.
3954  if (InsertPos)
3955    if (!RemoveNodeFromCSEMaps(N))
3956      InsertPos = 0;
3957
3958  // Now we update the operands.
3959  N->OperandList[0].set(Op);
3960
3961  // If this gets put into a CSE map, add it.
3962  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3963  return InN;
3964}
3965
3966SDValue SelectionDAG::
3967UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3968  SDNode *N = InN.getNode();
3969  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3970
3971  // Check to see if there is no change.
3972  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3973    return InN;   // No operands changed, just return the input node.
3974
3975  // See if the modified node already exists.
3976  void *InsertPos = 0;
3977  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3978    return SDValue(Existing, InN.getResNo());
3979
3980  // Nope it doesn't.  Remove the node from its current place in the maps.
3981  if (InsertPos)
3982    if (!RemoveNodeFromCSEMaps(N))
3983      InsertPos = 0;
3984
3985  // Now we update the operands.
3986  if (N->OperandList[0] != Op1)
3987    N->OperandList[0].set(Op1);
3988  if (N->OperandList[1] != Op2)
3989    N->OperandList[1].set(Op2);
3990
3991  // If this gets put into a CSE map, add it.
3992  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3993  return InN;
3994}
3995
3996SDValue SelectionDAG::
3997UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3998  SDValue Ops[] = { Op1, Op2, Op3 };
3999  return UpdateNodeOperands(N, Ops, 3);
4000}
4001
4002SDValue SelectionDAG::
4003UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4004                   SDValue Op3, SDValue Op4) {
4005  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4006  return UpdateNodeOperands(N, Ops, 4);
4007}
4008
4009SDValue SelectionDAG::
4010UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4011                   SDValue Op3, SDValue Op4, SDValue Op5) {
4012  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4013  return UpdateNodeOperands(N, Ops, 5);
4014}
4015
4016SDValue SelectionDAG::
4017UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4018  SDNode *N = InN.getNode();
4019  assert(N->getNumOperands() == NumOps &&
4020         "Update with wrong number of operands");
4021
4022  // Check to see if there is no change.
4023  bool AnyChange = false;
4024  for (unsigned i = 0; i != NumOps; ++i) {
4025    if (Ops[i] != N->getOperand(i)) {
4026      AnyChange = true;
4027      break;
4028    }
4029  }
4030
4031  // No operands changed, just return the input node.
4032  if (!AnyChange) return InN;
4033
4034  // See if the modified node already exists.
4035  void *InsertPos = 0;
4036  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4037    return SDValue(Existing, InN.getResNo());
4038
4039  // Nope it doesn't.  Remove the node from its current place in the maps.
4040  if (InsertPos)
4041    if (!RemoveNodeFromCSEMaps(N))
4042      InsertPos = 0;
4043
4044  // Now we update the operands.
4045  for (unsigned i = 0; i != NumOps; ++i)
4046    if (N->OperandList[i] != Ops[i])
4047      N->OperandList[i].set(Ops[i]);
4048
4049  // If this gets put into a CSE map, add it.
4050  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4051  return InN;
4052}
4053
4054/// DropOperands - Release the operands and set this node to have
4055/// zero operands.
4056void SDNode::DropOperands() {
4057  // Unlike the code in MorphNodeTo that does this, we don't need to
4058  // watch for dead nodes here.
4059  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4060    SDUse &Use = *I++;
4061    Use.set(SDValue());
4062  }
4063}
4064
4065/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4066/// machine opcode.
4067///
4068SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4069                                   MVT VT) {
4070  SDVTList VTs = getVTList(VT);
4071  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4072}
4073
4074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4075                                   MVT VT, SDValue Op1) {
4076  SDVTList VTs = getVTList(VT);
4077  SDValue Ops[] = { Op1 };
4078  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4079}
4080
4081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4082                                   MVT VT, SDValue Op1,
4083                                   SDValue Op2) {
4084  SDVTList VTs = getVTList(VT);
4085  SDValue Ops[] = { Op1, Op2 };
4086  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4087}
4088
4089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4090                                   MVT VT, SDValue Op1,
4091                                   SDValue Op2, SDValue Op3) {
4092  SDVTList VTs = getVTList(VT);
4093  SDValue Ops[] = { Op1, Op2, Op3 };
4094  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4095}
4096
4097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4098                                   MVT VT, const SDValue *Ops,
4099                                   unsigned NumOps) {
4100  SDVTList VTs = getVTList(VT);
4101  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4102}
4103
4104SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4105                                   MVT VT1, MVT VT2, const SDValue *Ops,
4106                                   unsigned NumOps) {
4107  SDVTList VTs = getVTList(VT1, VT2);
4108  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4109}
4110
4111SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4112                                   MVT VT1, MVT VT2) {
4113  SDVTList VTs = getVTList(VT1, VT2);
4114  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4115}
4116
4117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4118                                   MVT VT1, MVT VT2, MVT VT3,
4119                                   const SDValue *Ops, unsigned NumOps) {
4120  SDVTList VTs = getVTList(VT1, VT2, VT3);
4121  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4122}
4123
4124SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4125                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4126                                   const SDValue *Ops, unsigned NumOps) {
4127  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4128  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4129}
4130
4131SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4132                                   MVT VT1, MVT VT2,
4133                                   SDValue Op1) {
4134  SDVTList VTs = getVTList(VT1, VT2);
4135  SDValue Ops[] = { Op1 };
4136  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4137}
4138
4139SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4140                                   MVT VT1, MVT VT2,
4141                                   SDValue Op1, SDValue Op2) {
4142  SDVTList VTs = getVTList(VT1, VT2);
4143  SDValue Ops[] = { Op1, Op2 };
4144  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4145}
4146
4147SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4148                                   MVT VT1, MVT VT2,
4149                                   SDValue Op1, SDValue Op2,
4150                                   SDValue Op3) {
4151  SDVTList VTs = getVTList(VT1, VT2);
4152  SDValue Ops[] = { Op1, Op2, Op3 };
4153  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4154}
4155
4156SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4157                                   MVT VT1, MVT VT2, MVT VT3,
4158                                   SDValue Op1, SDValue Op2,
4159                                   SDValue Op3) {
4160  SDVTList VTs = getVTList(VT1, VT2, VT3);
4161  SDValue Ops[] = { Op1, Op2, Op3 };
4162  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4163}
4164
4165SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4166                                   SDVTList VTs, const SDValue *Ops,
4167                                   unsigned NumOps) {
4168  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4169}
4170
4171SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4172                                  MVT VT) {
4173  SDVTList VTs = getVTList(VT);
4174  return MorphNodeTo(N, Opc, VTs, 0, 0);
4175}
4176
4177SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4178                                  MVT VT, SDValue Op1) {
4179  SDVTList VTs = getVTList(VT);
4180  SDValue Ops[] = { Op1 };
4181  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4182}
4183
4184SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4185                                  MVT VT, SDValue Op1,
4186                                  SDValue Op2) {
4187  SDVTList VTs = getVTList(VT);
4188  SDValue Ops[] = { Op1, Op2 };
4189  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4190}
4191
4192SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4193                                  MVT VT, SDValue Op1,
4194                                  SDValue Op2, SDValue Op3) {
4195  SDVTList VTs = getVTList(VT);
4196  SDValue Ops[] = { Op1, Op2, Op3 };
4197  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4198}
4199
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  MVT VT, const SDValue *Ops,
4202                                  unsigned NumOps) {
4203  SDVTList VTs = getVTList(VT);
4204  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4205}
4206
4207SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4208                                  MVT VT1, MVT VT2, const SDValue *Ops,
4209                                  unsigned NumOps) {
4210  SDVTList VTs = getVTList(VT1, VT2);
4211  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4212}
4213
4214SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4215                                  MVT VT1, MVT VT2) {
4216  SDVTList VTs = getVTList(VT1, VT2);
4217  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4218}
4219
4220SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4221                                  MVT VT1, MVT VT2, MVT VT3,
4222                                  const SDValue *Ops, unsigned NumOps) {
4223  SDVTList VTs = getVTList(VT1, VT2, VT3);
4224  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4225}
4226
4227SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4228                                  MVT VT1, MVT VT2,
4229                                  SDValue Op1) {
4230  SDVTList VTs = getVTList(VT1, VT2);
4231  SDValue Ops[] = { Op1 };
4232  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4233}
4234
4235SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4236                                  MVT VT1, MVT VT2,
4237                                  SDValue Op1, SDValue Op2) {
4238  SDVTList VTs = getVTList(VT1, VT2);
4239  SDValue Ops[] = { Op1, Op2 };
4240  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4241}
4242
4243SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4244                                  MVT VT1, MVT VT2,
4245                                  SDValue Op1, SDValue Op2,
4246                                  SDValue Op3) {
4247  SDVTList VTs = getVTList(VT1, VT2);
4248  SDValue Ops[] = { Op1, Op2, Op3 };
4249  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4250}
4251
4252/// MorphNodeTo - These *mutate* the specified node to have the specified
4253/// return type, opcode, and operands.
4254///
4255/// Note that MorphNodeTo returns the resultant node.  If there is already a
4256/// node of the specified opcode and operands, it returns that node instead of
4257/// the current one.  Note that the DebugLoc need not be the same.
4258///
4259/// Using MorphNodeTo is faster than creating a new node and swapping it in
4260/// with ReplaceAllUsesWith both because it often avoids allocating a new
4261/// node, and because it doesn't require CSE recalculation for any of
4262/// the node's users.
4263///
4264SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4265                                  SDVTList VTs, const SDValue *Ops,
4266                                  unsigned NumOps) {
4267  // If an identical node already exists, use it.
4268  void *IP = 0;
4269  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4270    FoldingSetNodeID ID;
4271    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4272    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4273      return ON;
4274  }
4275
4276  if (!RemoveNodeFromCSEMaps(N))
4277    IP = 0;
4278
4279  // Start the morphing.
4280  N->NodeType = Opc;
4281  N->ValueList = VTs.VTs;
4282  N->NumValues = VTs.NumVTs;
4283
4284  // Clear the operands list, updating used nodes to remove this from their
4285  // use list.  Keep track of any operands that become dead as a result.
4286  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4287  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4288    SDUse &Use = *I++;
4289    SDNode *Used = Use.getNode();
4290    Use.set(SDValue());
4291    if (Used->use_empty())
4292      DeadNodeSet.insert(Used);
4293  }
4294
4295  // If NumOps is larger than the # of operands we currently have, reallocate
4296  // the operand list.
4297  if (NumOps > N->NumOperands) {
4298    if (N->OperandsNeedDelete)
4299      delete[] N->OperandList;
4300
4301    if (N->isMachineOpcode()) {
4302      // We're creating a final node that will live unmorphed for the
4303      // remainder of the current SelectionDAG iteration, so we can allocate
4304      // the operands directly out of a pool with no recycling metadata.
4305      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4306      N->OperandsNeedDelete = false;
4307    } else {
4308      N->OperandList = new SDUse[NumOps];
4309      N->OperandsNeedDelete = true;
4310    }
4311  }
4312
4313  // Assign the new operands.
4314  N->NumOperands = NumOps;
4315  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4316    N->OperandList[i].setUser(N);
4317    N->OperandList[i].setInitial(Ops[i]);
4318  }
4319
4320  // Delete any nodes that are still dead after adding the uses for the
4321  // new operands.
4322  SmallVector<SDNode *, 16> DeadNodes;
4323  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4324       E = DeadNodeSet.end(); I != E; ++I)
4325    if ((*I)->use_empty())
4326      DeadNodes.push_back(*I);
4327  RemoveDeadNodes(DeadNodes);
4328
4329  if (IP)
4330    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4331  return N;
4332}
4333
4334
4335/// getTargetNode - These are used for target selectors to create a new node
4336/// with specified return type(s), target opcode, and operands.
4337///
4338/// Note that getTargetNode returns the resultant node.  If there is already a
4339/// node of the specified opcode and operands, it returns that node instead of
4340/// the current one.
4341SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4342  return getNode(~Opcode, dl, VT).getNode();
4343}
4344
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4346                                    SDValue Op1) {
4347  return getNode(~Opcode, dl, VT, Op1).getNode();
4348}
4349
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4351                                    SDValue Op1, SDValue Op2) {
4352  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4353}
4354
4355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4356                                    SDValue Op1, SDValue Op2,
4357                                    SDValue Op3) {
4358  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4359}
4360
4361SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4362                                    const SDValue *Ops, unsigned NumOps) {
4363  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4364}
4365
4366SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4367                                    MVT VT1, MVT VT2) {
4368  SDVTList VTs = getVTList(VT1, VT2);
4369  SDValue Op;
4370  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4371}
4372
4373SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4374                                    MVT VT2, SDValue Op1) {
4375  SDVTList VTs = getVTList(VT1, VT2);
4376  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4377}
4378
4379SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4380                                    MVT VT2, SDValue Op1,
4381                                    SDValue Op2) {
4382  SDVTList VTs = getVTList(VT1, VT2);
4383  SDValue Ops[] = { Op1, Op2 };
4384  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4385}
4386
4387SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4388                                    MVT VT2, SDValue Op1,
4389                                    SDValue Op2, SDValue Op3) {
4390  SDVTList VTs = getVTList(VT1, VT2);
4391  SDValue Ops[] = { Op1, Op2, Op3 };
4392  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4393}
4394
4395SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4396                                    MVT VT1, MVT VT2,
4397                                    const SDValue *Ops, unsigned NumOps) {
4398  SDVTList VTs = getVTList(VT1, VT2);
4399  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4400}
4401
4402SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4403                                    MVT VT1, MVT VT2, MVT VT3,
4404                                    SDValue Op1, SDValue Op2) {
4405  SDVTList VTs = getVTList(VT1, VT2, VT3);
4406  SDValue Ops[] = { Op1, Op2 };
4407  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4408}
4409
4410SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4411                                    MVT VT1, MVT VT2, MVT VT3,
4412                                    SDValue Op1, SDValue Op2,
4413                                    SDValue Op3) {
4414  SDVTList VTs = getVTList(VT1, VT2, VT3);
4415  SDValue Ops[] = { Op1, Op2, Op3 };
4416  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4417}
4418
4419SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4420                                    MVT VT1, MVT VT2, MVT VT3,
4421                                    const SDValue *Ops, unsigned NumOps) {
4422  SDVTList VTs = getVTList(VT1, VT2, VT3);
4423  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4424}
4425
4426SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4427                                    MVT VT2, MVT VT3, MVT VT4,
4428                                    const SDValue *Ops, unsigned NumOps) {
4429  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4430  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4431}
4432
4433SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4434                                    const std::vector<MVT> &ResultTys,
4435                                    const SDValue *Ops, unsigned NumOps) {
4436  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4437}
4438
4439/// getNodeIfExists - Get the specified node if it's already available, or
4440/// else return NULL.
4441SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4442                                      const SDValue *Ops, unsigned NumOps) {
4443  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4444    FoldingSetNodeID ID;
4445    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4446    void *IP = 0;
4447    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4448      return E;
4449  }
4450  return NULL;
4451}
4452
4453/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4454/// This can cause recursive merging of nodes in the DAG.
4455///
4456/// This version assumes From has a single result value.
4457///
4458void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4459                                      DAGUpdateListener *UpdateListener) {
4460  SDNode *From = FromN.getNode();
4461  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4462         "Cannot replace with this method!");
4463  assert(From != To.getNode() && "Cannot replace uses of with self");
4464
4465  // Iterate over all the existing uses of From. New uses will be added
4466  // to the beginning of the use list, which we avoid visiting.
4467  // This specifically avoids visiting uses of From that arise while the
4468  // replacement is happening, because any such uses would be the result
4469  // of CSE: If an existing node looks like From after one of its operands
4470  // is replaced by To, we don't want to replace of all its users with To
4471  // too. See PR3018 for more info.
4472  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4473  while (UI != UE) {
4474    SDNode *User = *UI;
4475
4476    // This node is about to morph, remove its old self from the CSE maps.
4477    RemoveNodeFromCSEMaps(User);
4478
4479    // A user can appear in a use list multiple times, and when this
4480    // happens the uses are usually next to each other in the list.
4481    // To help reduce the number of CSE recomputations, process all
4482    // the uses of this user that we can find this way.
4483    do {
4484      SDUse &Use = UI.getUse();
4485      ++UI;
4486      Use.set(To);
4487    } while (UI != UE && *UI == User);
4488
4489    // Now that we have modified User, add it back to the CSE maps.  If it
4490    // already exists there, recursively merge the results together.
4491    AddModifiedNodeToCSEMaps(User, UpdateListener);
4492  }
4493}
4494
4495/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4496/// This can cause recursive merging of nodes in the DAG.
4497///
4498/// This version assumes that for each value of From, there is a
4499/// corresponding value in To in the same position with the same type.
4500///
4501void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4502                                      DAGUpdateListener *UpdateListener) {
4503#ifndef NDEBUG
4504  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4505    assert((!From->hasAnyUseOfValue(i) ||
4506            From->getValueType(i) == To->getValueType(i)) &&
4507           "Cannot use this version of ReplaceAllUsesWith!");
4508#endif
4509
4510  // Handle the trivial case.
4511  if (From == To)
4512    return;
4513
4514  // Iterate over just the existing users of From. See the comments in
4515  // the ReplaceAllUsesWith above.
4516  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4517  while (UI != UE) {
4518    SDNode *User = *UI;
4519
4520    // This node is about to morph, remove its old self from the CSE maps.
4521    RemoveNodeFromCSEMaps(User);
4522
4523    // A user can appear in a use list multiple times, and when this
4524    // happens the uses are usually next to each other in the list.
4525    // To help reduce the number of CSE recomputations, process all
4526    // the uses of this user that we can find this way.
4527    do {
4528      SDUse &Use = UI.getUse();
4529      ++UI;
4530      Use.setNode(To);
4531    } while (UI != UE && *UI == User);
4532
4533    // Now that we have modified User, add it back to the CSE maps.  If it
4534    // already exists there, recursively merge the results together.
4535    AddModifiedNodeToCSEMaps(User, UpdateListener);
4536  }
4537}
4538
4539/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4540/// This can cause recursive merging of nodes in the DAG.
4541///
4542/// This version can replace From with any result values.  To must match the
4543/// number and types of values returned by From.
4544void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4545                                      const SDValue *To,
4546                                      DAGUpdateListener *UpdateListener) {
4547  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4548    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4549
4550  // Iterate over just the existing users of From. See the comments in
4551  // the ReplaceAllUsesWith above.
4552  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4553  while (UI != UE) {
4554    SDNode *User = *UI;
4555
4556    // This node is about to morph, remove its old self from the CSE maps.
4557    RemoveNodeFromCSEMaps(User);
4558
4559    // A user can appear in a use list multiple times, and when this
4560    // happens the uses are usually next to each other in the list.
4561    // To help reduce the number of CSE recomputations, process all
4562    // the uses of this user that we can find this way.
4563    do {
4564      SDUse &Use = UI.getUse();
4565      const SDValue &ToOp = To[Use.getResNo()];
4566      ++UI;
4567      Use.set(ToOp);
4568    } while (UI != UE && *UI == User);
4569
4570    // Now that we have modified User, add it back to the CSE maps.  If it
4571    // already exists there, recursively merge the results together.
4572    AddModifiedNodeToCSEMaps(User, UpdateListener);
4573  }
4574}
4575
4576/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4577/// uses of other values produced by From.getNode() alone.  The Deleted
4578/// vector is handled the same way as for ReplaceAllUsesWith.
4579void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4580                                             DAGUpdateListener *UpdateListener){
4581  // Handle the really simple, really trivial case efficiently.
4582  if (From == To) return;
4583
4584  // Handle the simple, trivial, case efficiently.
4585  if (From.getNode()->getNumValues() == 1) {
4586    ReplaceAllUsesWith(From, To, UpdateListener);
4587    return;
4588  }
4589
4590  // Iterate over just the existing users of From. See the comments in
4591  // the ReplaceAllUsesWith above.
4592  SDNode::use_iterator UI = From.getNode()->use_begin(),
4593                       UE = From.getNode()->use_end();
4594  while (UI != UE) {
4595    SDNode *User = *UI;
4596    bool UserRemovedFromCSEMaps = false;
4597
4598    // A user can appear in a use list multiple times, and when this
4599    // happens the uses are usually next to each other in the list.
4600    // To help reduce the number of CSE recomputations, process all
4601    // the uses of this user that we can find this way.
4602    do {
4603      SDUse &Use = UI.getUse();
4604
4605      // Skip uses of different values from the same node.
4606      if (Use.getResNo() != From.getResNo()) {
4607        ++UI;
4608        continue;
4609      }
4610
4611      // If this node hasn't been modified yet, it's still in the CSE maps,
4612      // so remove its old self from the CSE maps.
4613      if (!UserRemovedFromCSEMaps) {
4614        RemoveNodeFromCSEMaps(User);
4615        UserRemovedFromCSEMaps = true;
4616      }
4617
4618      ++UI;
4619      Use.set(To);
4620    } while (UI != UE && *UI == User);
4621
4622    // We are iterating over all uses of the From node, so if a use
4623    // doesn't use the specific value, no changes are made.
4624    if (!UserRemovedFromCSEMaps)
4625      continue;
4626
4627    // Now that we have modified User, add it back to the CSE maps.  If it
4628    // already exists there, recursively merge the results together.
4629    AddModifiedNodeToCSEMaps(User, UpdateListener);
4630  }
4631}
4632
4633namespace {
4634  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4635  /// to record information about a use.
4636  struct UseMemo {
4637    SDNode *User;
4638    unsigned Index;
4639    SDUse *Use;
4640  };
4641
4642  /// operator< - Sort Memos by User.
4643  bool operator<(const UseMemo &L, const UseMemo &R) {
4644    return (intptr_t)L.User < (intptr_t)R.User;
4645  }
4646}
4647
4648/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4649/// uses of other values produced by From.getNode() alone.  The same value
4650/// may appear in both the From and To list.  The Deleted vector is
4651/// handled the same way as for ReplaceAllUsesWith.
4652void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4653                                              const SDValue *To,
4654                                              unsigned Num,
4655                                              DAGUpdateListener *UpdateListener){
4656  // Handle the simple, trivial case efficiently.
4657  if (Num == 1)
4658    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4659
4660  // Read up all the uses and make records of them. This helps
4661  // processing new uses that are introduced during the
4662  // replacement process.
4663  SmallVector<UseMemo, 4> Uses;
4664  for (unsigned i = 0; i != Num; ++i) {
4665    unsigned FromResNo = From[i].getResNo();
4666    SDNode *FromNode = From[i].getNode();
4667    for (SDNode::use_iterator UI = FromNode->use_begin(),
4668         E = FromNode->use_end(); UI != E; ++UI) {
4669      SDUse &Use = UI.getUse();
4670      if (Use.getResNo() == FromResNo) {
4671        UseMemo Memo = { *UI, i, &Use };
4672        Uses.push_back(Memo);
4673      }
4674    }
4675  }
4676
4677  // Sort the uses, so that all the uses from a given User are together.
4678  std::sort(Uses.begin(), Uses.end());
4679
4680  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4681       UseIndex != UseIndexEnd; ) {
4682    // We know that this user uses some value of From.  If it is the right
4683    // value, update it.
4684    SDNode *User = Uses[UseIndex].User;
4685
4686    // This node is about to morph, remove its old self from the CSE maps.
4687    RemoveNodeFromCSEMaps(User);
4688
4689    // The Uses array is sorted, so all the uses for a given User
4690    // are next to each other in the list.
4691    // To help reduce the number of CSE recomputations, process all
4692    // the uses of this user that we can find this way.
4693    do {
4694      unsigned i = Uses[UseIndex].Index;
4695      SDUse &Use = *Uses[UseIndex].Use;
4696      ++UseIndex;
4697
4698      Use.set(To[i]);
4699    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4700
4701    // Now that we have modified User, add it back to the CSE maps.  If it
4702    // already exists there, recursively merge the results together.
4703    AddModifiedNodeToCSEMaps(User, UpdateListener);
4704  }
4705}
4706
4707/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4708/// based on their topological order. It returns the maximum id and a vector
4709/// of the SDNodes* in assigned order by reference.
4710unsigned SelectionDAG::AssignTopologicalOrder() {
4711
4712  unsigned DAGSize = 0;
4713
4714  // SortedPos tracks the progress of the algorithm. Nodes before it are
4715  // sorted, nodes after it are unsorted. When the algorithm completes
4716  // it is at the end of the list.
4717  allnodes_iterator SortedPos = allnodes_begin();
4718
4719  // Visit all the nodes. Move nodes with no operands to the front of
4720  // the list immediately. Annotate nodes that do have operands with their
4721  // operand count. Before we do this, the Node Id fields of the nodes
4722  // may contain arbitrary values. After, the Node Id fields for nodes
4723  // before SortedPos will contain the topological sort index, and the
4724  // Node Id fields for nodes At SortedPos and after will contain the
4725  // count of outstanding operands.
4726  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4727    SDNode *N = I++;
4728    unsigned Degree = N->getNumOperands();
4729    if (Degree == 0) {
4730      // A node with no uses, add it to the result array immediately.
4731      N->setNodeId(DAGSize++);
4732      allnodes_iterator Q = N;
4733      if (Q != SortedPos)
4734        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4735      ++SortedPos;
4736    } else {
4737      // Temporarily use the Node Id as scratch space for the degree count.
4738      N->setNodeId(Degree);
4739    }
4740  }
4741
4742  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4743  // such that by the time the end is reached all nodes will be sorted.
4744  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4745    SDNode *N = I;
4746    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4747         UI != UE; ++UI) {
4748      SDNode *P = *UI;
4749      unsigned Degree = P->getNodeId();
4750      --Degree;
4751      if (Degree == 0) {
4752        // All of P's operands are sorted, so P may sorted now.
4753        P->setNodeId(DAGSize++);
4754        if (P != SortedPos)
4755          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4756        ++SortedPos;
4757      } else {
4758        // Update P's outstanding operand count.
4759        P->setNodeId(Degree);
4760      }
4761    }
4762  }
4763
4764  assert(SortedPos == AllNodes.end() &&
4765         "Topological sort incomplete!");
4766  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4767         "First node in topological sort is not the entry token!");
4768  assert(AllNodes.front().getNodeId() == 0 &&
4769         "First node in topological sort has non-zero id!");
4770  assert(AllNodes.front().getNumOperands() == 0 &&
4771         "First node in topological sort has operands!");
4772  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4773         "Last node in topologic sort has unexpected id!");
4774  assert(AllNodes.back().use_empty() &&
4775         "Last node in topologic sort has users!");
4776  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4777  return DAGSize;
4778}
4779
4780
4781
4782//===----------------------------------------------------------------------===//
4783//                              SDNode Class
4784//===----------------------------------------------------------------------===//
4785
4786HandleSDNode::~HandleSDNode() {
4787  DropOperands();
4788}
4789
4790GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4791                                         MVT VT, int64_t o)
4792  : SDNode(isa<GlobalVariable>(GA) &&
4793           cast<GlobalVariable>(GA)->isThreadLocal() ?
4794           // Thread Local
4795           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4796           // Non Thread Local
4797           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4798           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4799  TheGlobal = const_cast<GlobalValue*>(GA);
4800}
4801
4802MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4803                     const Value *srcValue, int SVO,
4804                     unsigned alignment, bool vol)
4805 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4806  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4807  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4808  assert(getAlignment() == alignment && "Alignment representation error!");
4809  assert(isVolatile() == vol && "Volatile representation error!");
4810}
4811
4812MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4813                     const SDValue *Ops,
4814                     unsigned NumOps, MVT memvt, const Value *srcValue,
4815                     int SVO, unsigned alignment, bool vol)
4816   : SDNode(Opc, dl, VTs, Ops, NumOps),
4817     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4818  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4819  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4820  assert(getAlignment() == alignment && "Alignment representation error!");
4821  assert(isVolatile() == vol && "Volatile representation error!");
4822}
4823
4824/// getMemOperand - Return a MachineMemOperand object describing the memory
4825/// reference performed by this memory reference.
4826MachineMemOperand MemSDNode::getMemOperand() const {
4827  int Flags = 0;
4828  if (isa<LoadSDNode>(this))
4829    Flags = MachineMemOperand::MOLoad;
4830  else if (isa<StoreSDNode>(this))
4831    Flags = MachineMemOperand::MOStore;
4832  else if (isa<AtomicSDNode>(this)) {
4833    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4834  }
4835  else {
4836    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4837    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4838    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4839    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4840  }
4841
4842  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4843  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4844
4845  // Check if the memory reference references a frame index
4846  const FrameIndexSDNode *FI =
4847  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4848  if (!getSrcValue() && FI)
4849    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4850                             Flags, 0, Size, getAlignment());
4851  else
4852    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4853                             Size, getAlignment());
4854}
4855
4856/// Profile - Gather unique data for the node.
4857///
4858void SDNode::Profile(FoldingSetNodeID &ID) const {
4859  AddNodeIDNode(ID, this);
4860}
4861
4862/// getValueTypeList - Return a pointer to the specified value type.
4863///
4864const MVT *SDNode::getValueTypeList(MVT VT) {
4865  if (VT.isExtended()) {
4866    static std::set<MVT, MVT::compareRawBits> EVTs;
4867    return &(*EVTs.insert(VT).first);
4868  } else {
4869    static MVT VTs[MVT::LAST_VALUETYPE];
4870    VTs[VT.getSimpleVT()] = VT;
4871    return &VTs[VT.getSimpleVT()];
4872  }
4873}
4874
4875/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4876/// indicated value.  This method ignores uses of other values defined by this
4877/// operation.
4878bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4879  assert(Value < getNumValues() && "Bad value!");
4880
4881  // TODO: Only iterate over uses of a given value of the node
4882  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4883    if (UI.getUse().getResNo() == Value) {
4884      if (NUses == 0)
4885        return false;
4886      --NUses;
4887    }
4888  }
4889
4890  // Found exactly the right number of uses?
4891  return NUses == 0;
4892}
4893
4894
4895/// hasAnyUseOfValue - Return true if there are any use of the indicated
4896/// value. This method ignores uses of other values defined by this operation.
4897bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4898  assert(Value < getNumValues() && "Bad value!");
4899
4900  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4901    if (UI.getUse().getResNo() == Value)
4902      return true;
4903
4904  return false;
4905}
4906
4907
4908/// isOnlyUserOf - Return true if this node is the only use of N.
4909///
4910bool SDNode::isOnlyUserOf(SDNode *N) const {
4911  bool Seen = false;
4912  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4913    SDNode *User = *I;
4914    if (User == this)
4915      Seen = true;
4916    else
4917      return false;
4918  }
4919
4920  return Seen;
4921}
4922
4923/// isOperand - Return true if this node is an operand of N.
4924///
4925bool SDValue::isOperandOf(SDNode *N) const {
4926  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4927    if (*this == N->getOperand(i))
4928      return true;
4929  return false;
4930}
4931
4932bool SDNode::isOperandOf(SDNode *N) const {
4933  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4934    if (this == N->OperandList[i].getNode())
4935      return true;
4936  return false;
4937}
4938
4939/// reachesChainWithoutSideEffects - Return true if this operand (which must
4940/// be a chain) reaches the specified operand without crossing any
4941/// side-effecting instructions.  In practice, this looks through token
4942/// factors and non-volatile loads.  In order to remain efficient, this only
4943/// looks a couple of nodes in, it does not do an exhaustive search.
4944bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4945                                               unsigned Depth) const {
4946  if (*this == Dest) return true;
4947
4948  // Don't search too deeply, we just want to be able to see through
4949  // TokenFactor's etc.
4950  if (Depth == 0) return false;
4951
4952  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4953  // of the operands of the TF reach dest, then we can do the xform.
4954  if (getOpcode() == ISD::TokenFactor) {
4955    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4956      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4957        return true;
4958    return false;
4959  }
4960
4961  // Loads don't have side effects, look through them.
4962  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4963    if (!Ld->isVolatile())
4964      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4965  }
4966  return false;
4967}
4968
4969
4970static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4971                            SmallPtrSet<SDNode *, 32> &Visited) {
4972  if (found || !Visited.insert(N))
4973    return;
4974
4975  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4976    SDNode *Op = N->getOperand(i).getNode();
4977    if (Op == P) {
4978      found = true;
4979      return;
4980    }
4981    findPredecessor(Op, P, found, Visited);
4982  }
4983}
4984
4985/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4986/// is either an operand of N or it can be reached by recursively traversing
4987/// up the operands.
4988/// NOTE: this is an expensive method. Use it carefully.
4989bool SDNode::isPredecessorOf(SDNode *N) const {
4990  SmallPtrSet<SDNode *, 32> Visited;
4991  bool found = false;
4992  findPredecessor(N, this, found, Visited);
4993  return found;
4994}
4995
4996uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4997  assert(Num < NumOperands && "Invalid child # of SDNode!");
4998  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4999}
5000
5001std::string SDNode::getOperationName(const SelectionDAG *G) const {
5002  switch (getOpcode()) {
5003  default:
5004    if (getOpcode() < ISD::BUILTIN_OP_END)
5005      return "<<Unknown DAG Node>>";
5006    if (isMachineOpcode()) {
5007      if (G)
5008        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5009          if (getMachineOpcode() < TII->getNumOpcodes())
5010            return TII->get(getMachineOpcode()).getName();
5011      return "<<Unknown Machine Node>>";
5012    }
5013    if (G) {
5014      const TargetLowering &TLI = G->getTargetLoweringInfo();
5015      const char *Name = TLI.getTargetNodeName(getOpcode());
5016      if (Name) return Name;
5017      return "<<Unknown Target Node>>";
5018    }
5019    return "<<Unknown Node>>";
5020
5021#ifndef NDEBUG
5022  case ISD::DELETED_NODE:
5023    return "<<Deleted Node!>>";
5024#endif
5025  case ISD::PREFETCH:      return "Prefetch";
5026  case ISD::MEMBARRIER:    return "MemBarrier";
5027  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5028  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5029  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5030  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5031  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5032  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5033  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5034  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5035  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5036  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5037  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5038  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5039  case ISD::PCMARKER:      return "PCMarker";
5040  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5041  case ISD::SRCVALUE:      return "SrcValue";
5042  case ISD::MEMOPERAND:    return "MemOperand";
5043  case ISD::EntryToken:    return "EntryToken";
5044  case ISD::TokenFactor:   return "TokenFactor";
5045  case ISD::AssertSext:    return "AssertSext";
5046  case ISD::AssertZext:    return "AssertZext";
5047
5048  case ISD::BasicBlock:    return "BasicBlock";
5049  case ISD::ARG_FLAGS:     return "ArgFlags";
5050  case ISD::VALUETYPE:     return "ValueType";
5051  case ISD::Register:      return "Register";
5052
5053  case ISD::Constant:      return "Constant";
5054  case ISD::ConstantFP:    return "ConstantFP";
5055  case ISD::GlobalAddress: return "GlobalAddress";
5056  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5057  case ISD::FrameIndex:    return "FrameIndex";
5058  case ISD::JumpTable:     return "JumpTable";
5059  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5060  case ISD::RETURNADDR: return "RETURNADDR";
5061  case ISD::FRAMEADDR: return "FRAMEADDR";
5062  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5063  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5064  case ISD::EHSELECTION: return "EHSELECTION";
5065  case ISD::EH_RETURN: return "EH_RETURN";
5066  case ISD::ConstantPool:  return "ConstantPool";
5067  case ISD::ExternalSymbol: return "ExternalSymbol";
5068  case ISD::INTRINSIC_WO_CHAIN: {
5069    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5070    return Intrinsic::getName((Intrinsic::ID)IID);
5071  }
5072  case ISD::INTRINSIC_VOID:
5073  case ISD::INTRINSIC_W_CHAIN: {
5074    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5075    return Intrinsic::getName((Intrinsic::ID)IID);
5076  }
5077
5078  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5079  case ISD::TargetConstant: return "TargetConstant";
5080  case ISD::TargetConstantFP:return "TargetConstantFP";
5081  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5082  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5083  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5084  case ISD::TargetJumpTable:  return "TargetJumpTable";
5085  case ISD::TargetConstantPool:  return "TargetConstantPool";
5086  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5087
5088  case ISD::CopyToReg:     return "CopyToReg";
5089  case ISD::CopyFromReg:   return "CopyFromReg";
5090  case ISD::UNDEF:         return "undef";
5091  case ISD::MERGE_VALUES:  return "merge_values";
5092  case ISD::INLINEASM:     return "inlineasm";
5093  case ISD::DBG_LABEL:     return "dbg_label";
5094  case ISD::EH_LABEL:      return "eh_label";
5095  case ISD::DECLARE:       return "declare";
5096  case ISD::HANDLENODE:    return "handlenode";
5097  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5098  case ISD::CALL:          return "call";
5099
5100  // Unary operators
5101  case ISD::FABS:   return "fabs";
5102  case ISD::FNEG:   return "fneg";
5103  case ISD::FSQRT:  return "fsqrt";
5104  case ISD::FSIN:   return "fsin";
5105  case ISD::FCOS:   return "fcos";
5106  case ISD::FPOWI:  return "fpowi";
5107  case ISD::FPOW:   return "fpow";
5108  case ISD::FTRUNC: return "ftrunc";
5109  case ISD::FFLOOR: return "ffloor";
5110  case ISD::FCEIL:  return "fceil";
5111  case ISD::FRINT:  return "frint";
5112  case ISD::FNEARBYINT: return "fnearbyint";
5113
5114  // Binary operators
5115  case ISD::ADD:    return "add";
5116  case ISD::SUB:    return "sub";
5117  case ISD::MUL:    return "mul";
5118  case ISD::MULHU:  return "mulhu";
5119  case ISD::MULHS:  return "mulhs";
5120  case ISD::SDIV:   return "sdiv";
5121  case ISD::UDIV:   return "udiv";
5122  case ISD::SREM:   return "srem";
5123  case ISD::UREM:   return "urem";
5124  case ISD::SMUL_LOHI:  return "smul_lohi";
5125  case ISD::UMUL_LOHI:  return "umul_lohi";
5126  case ISD::SDIVREM:    return "sdivrem";
5127  case ISD::UDIVREM:    return "udivrem";
5128  case ISD::AND:    return "and";
5129  case ISD::OR:     return "or";
5130  case ISD::XOR:    return "xor";
5131  case ISD::SHL:    return "shl";
5132  case ISD::SRA:    return "sra";
5133  case ISD::SRL:    return "srl";
5134  case ISD::ROTL:   return "rotl";
5135  case ISD::ROTR:   return "rotr";
5136  case ISD::FADD:   return "fadd";
5137  case ISD::FSUB:   return "fsub";
5138  case ISD::FMUL:   return "fmul";
5139  case ISD::FDIV:   return "fdiv";
5140  case ISD::FREM:   return "frem";
5141  case ISD::FCOPYSIGN: return "fcopysign";
5142  case ISD::FGETSIGN:  return "fgetsign";
5143
5144  case ISD::SETCC:       return "setcc";
5145  case ISD::VSETCC:      return "vsetcc";
5146  case ISD::SELECT:      return "select";
5147  case ISD::SELECT_CC:   return "select_cc";
5148  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5149  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5150  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5151  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5152  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5153  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5154  case ISD::CARRY_FALSE:         return "carry_false";
5155  case ISD::ADDC:        return "addc";
5156  case ISD::ADDE:        return "adde";
5157  case ISD::SADDO:       return "saddo";
5158  case ISD::UADDO:       return "uaddo";
5159  case ISD::SSUBO:       return "ssubo";
5160  case ISD::USUBO:       return "usubo";
5161  case ISD::SMULO:       return "smulo";
5162  case ISD::UMULO:       return "umulo";
5163  case ISD::SUBC:        return "subc";
5164  case ISD::SUBE:        return "sube";
5165  case ISD::SHL_PARTS:   return "shl_parts";
5166  case ISD::SRA_PARTS:   return "sra_parts";
5167  case ISD::SRL_PARTS:   return "srl_parts";
5168
5169  // Conversion operators.
5170  case ISD::SIGN_EXTEND: return "sign_extend";
5171  case ISD::ZERO_EXTEND: return "zero_extend";
5172  case ISD::ANY_EXTEND:  return "any_extend";
5173  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5174  case ISD::TRUNCATE:    return "truncate";
5175  case ISD::FP_ROUND:    return "fp_round";
5176  case ISD::FLT_ROUNDS_: return "flt_rounds";
5177  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5178  case ISD::FP_EXTEND:   return "fp_extend";
5179
5180  case ISD::SINT_TO_FP:  return "sint_to_fp";
5181  case ISD::UINT_TO_FP:  return "uint_to_fp";
5182  case ISD::FP_TO_SINT:  return "fp_to_sint";
5183  case ISD::FP_TO_UINT:  return "fp_to_uint";
5184  case ISD::BIT_CONVERT: return "bit_convert";
5185
5186  case ISD::CONVERT_RNDSAT: {
5187    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5188    default: assert(0 && "Unknown cvt code!");
5189    case ISD::CVT_FF:  return "cvt_ff";
5190    case ISD::CVT_FS:  return "cvt_fs";
5191    case ISD::CVT_FU:  return "cvt_fu";
5192    case ISD::CVT_SF:  return "cvt_sf";
5193    case ISD::CVT_UF:  return "cvt_uf";
5194    case ISD::CVT_SS:  return "cvt_ss";
5195    case ISD::CVT_SU:  return "cvt_su";
5196    case ISD::CVT_US:  return "cvt_us";
5197    case ISD::CVT_UU:  return "cvt_uu";
5198    }
5199  }
5200
5201    // Control flow instructions
5202  case ISD::BR:      return "br";
5203  case ISD::BRIND:   return "brind";
5204  case ISD::BR_JT:   return "br_jt";
5205  case ISD::BRCOND:  return "brcond";
5206  case ISD::BR_CC:   return "br_cc";
5207  case ISD::RET:     return "ret";
5208  case ISD::CALLSEQ_START:  return "callseq_start";
5209  case ISD::CALLSEQ_END:    return "callseq_end";
5210
5211    // Other operators
5212  case ISD::LOAD:               return "load";
5213  case ISD::STORE:              return "store";
5214  case ISD::VAARG:              return "vaarg";
5215  case ISD::VACOPY:             return "vacopy";
5216  case ISD::VAEND:              return "vaend";
5217  case ISD::VASTART:            return "vastart";
5218  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5219  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5220  case ISD::BUILD_PAIR:         return "build_pair";
5221  case ISD::STACKSAVE:          return "stacksave";
5222  case ISD::STACKRESTORE:       return "stackrestore";
5223  case ISD::TRAP:               return "trap";
5224
5225  // Bit manipulation
5226  case ISD::BSWAP:   return "bswap";
5227  case ISD::CTPOP:   return "ctpop";
5228  case ISD::CTTZ:    return "cttz";
5229  case ISD::CTLZ:    return "ctlz";
5230
5231  // Debug info
5232  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5233  case ISD::DEBUG_LOC: return "debug_loc";
5234
5235  // Trampolines
5236  case ISD::TRAMPOLINE: return "trampoline";
5237
5238  case ISD::CONDCODE:
5239    switch (cast<CondCodeSDNode>(this)->get()) {
5240    default: assert(0 && "Unknown setcc condition!");
5241    case ISD::SETOEQ:  return "setoeq";
5242    case ISD::SETOGT:  return "setogt";
5243    case ISD::SETOGE:  return "setoge";
5244    case ISD::SETOLT:  return "setolt";
5245    case ISD::SETOLE:  return "setole";
5246    case ISD::SETONE:  return "setone";
5247
5248    case ISD::SETO:    return "seto";
5249    case ISD::SETUO:   return "setuo";
5250    case ISD::SETUEQ:  return "setue";
5251    case ISD::SETUGT:  return "setugt";
5252    case ISD::SETUGE:  return "setuge";
5253    case ISD::SETULT:  return "setult";
5254    case ISD::SETULE:  return "setule";
5255    case ISD::SETUNE:  return "setune";
5256
5257    case ISD::SETEQ:   return "seteq";
5258    case ISD::SETGT:   return "setgt";
5259    case ISD::SETGE:   return "setge";
5260    case ISD::SETLT:   return "setlt";
5261    case ISD::SETLE:   return "setle";
5262    case ISD::SETNE:   return "setne";
5263    }
5264  }
5265}
5266
5267const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5268  switch (AM) {
5269  default:
5270    return "";
5271  case ISD::PRE_INC:
5272    return "<pre-inc>";
5273  case ISD::PRE_DEC:
5274    return "<pre-dec>";
5275  case ISD::POST_INC:
5276    return "<post-inc>";
5277  case ISD::POST_DEC:
5278    return "<post-dec>";
5279  }
5280}
5281
5282std::string ISD::ArgFlagsTy::getArgFlagsString() {
5283  std::string S = "< ";
5284
5285  if (isZExt())
5286    S += "zext ";
5287  if (isSExt())
5288    S += "sext ";
5289  if (isInReg())
5290    S += "inreg ";
5291  if (isSRet())
5292    S += "sret ";
5293  if (isByVal())
5294    S += "byval ";
5295  if (isNest())
5296    S += "nest ";
5297  if (getByValAlign())
5298    S += "byval-align:" + utostr(getByValAlign()) + " ";
5299  if (getOrigAlign())
5300    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5301  if (getByValSize())
5302    S += "byval-size:" + utostr(getByValSize()) + " ";
5303  return S + ">";
5304}
5305
5306void SDNode::dump() const { dump(0); }
5307void SDNode::dump(const SelectionDAG *G) const {
5308  print(errs(), G);
5309}
5310
5311void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5312  OS << (void*)this << ": ";
5313
5314  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5315    if (i) OS << ",";
5316    if (getValueType(i) == MVT::Other)
5317      OS << "ch";
5318    else
5319      OS << getValueType(i).getMVTString();
5320  }
5321  OS << " = " << getOperationName(G);
5322}
5323
5324void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5325  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5326    SDNode *Mask = getOperand(2).getNode();
5327    OS << "<";
5328    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5329      if (i) OS << ",";
5330      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5331        OS << "u";
5332      else
5333        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5334    }
5335    OS << ">";
5336  }
5337
5338  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5339    OS << '<' << CSDN->getAPIntValue() << '>';
5340  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5341    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5342      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5343    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5344      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5345    else {
5346      OS << "<APFloat(";
5347      CSDN->getValueAPF().bitcastToAPInt().dump();
5348      OS << ")>";
5349    }
5350  } else if (const GlobalAddressSDNode *GADN =
5351             dyn_cast<GlobalAddressSDNode>(this)) {
5352    int64_t offset = GADN->getOffset();
5353    OS << '<';
5354    WriteAsOperand(OS, GADN->getGlobal());
5355    OS << '>';
5356    if (offset > 0)
5357      OS << " + " << offset;
5358    else
5359      OS << " " << offset;
5360  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5361    OS << "<" << FIDN->getIndex() << ">";
5362  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5363    OS << "<" << JTDN->getIndex() << ">";
5364  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5365    int offset = CP->getOffset();
5366    if (CP->isMachineConstantPoolEntry())
5367      OS << "<" << *CP->getMachineCPVal() << ">";
5368    else
5369      OS << "<" << *CP->getConstVal() << ">";
5370    if (offset > 0)
5371      OS << " + " << offset;
5372    else
5373      OS << " " << offset;
5374  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5375    OS << "<";
5376    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5377    if (LBB)
5378      OS << LBB->getName() << " ";
5379    OS << (const void*)BBDN->getBasicBlock() << ">";
5380  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5381    if (G && R->getReg() &&
5382        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5383      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5384    } else {
5385      OS << " #" << R->getReg();
5386    }
5387  } else if (const ExternalSymbolSDNode *ES =
5388             dyn_cast<ExternalSymbolSDNode>(this)) {
5389    OS << "'" << ES->getSymbol() << "'";
5390  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5391    if (M->getValue())
5392      OS << "<" << M->getValue() << ">";
5393    else
5394      OS << "<null>";
5395  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5396    if (M->MO.getValue())
5397      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5398    else
5399      OS << "<null:" << M->MO.getOffset() << ">";
5400  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5401    OS << N->getArgFlags().getArgFlagsString();
5402  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5403    OS << ":" << N->getVT().getMVTString();
5404  }
5405  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5406    const Value *SrcValue = LD->getSrcValue();
5407    int SrcOffset = LD->getSrcValueOffset();
5408    OS << " <";
5409    if (SrcValue)
5410      OS << SrcValue;
5411    else
5412      OS << "null";
5413    OS << ":" << SrcOffset << ">";
5414
5415    bool doExt = true;
5416    switch (LD->getExtensionType()) {
5417    default: doExt = false; break;
5418    case ISD::EXTLOAD: OS << " <anyext "; break;
5419    case ISD::SEXTLOAD: OS << " <sext "; break;
5420    case ISD::ZEXTLOAD: OS << " <zext "; break;
5421    }
5422    if (doExt)
5423      OS << LD->getMemoryVT().getMVTString() << ">";
5424
5425    const char *AM = getIndexedModeName(LD->getAddressingMode());
5426    if (*AM)
5427      OS << " " << AM;
5428    if (LD->isVolatile())
5429      OS << " <volatile>";
5430    OS << " alignment=" << LD->getAlignment();
5431  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5432    const Value *SrcValue = ST->getSrcValue();
5433    int SrcOffset = ST->getSrcValueOffset();
5434    OS << " <";
5435    if (SrcValue)
5436      OS << SrcValue;
5437    else
5438      OS << "null";
5439    OS << ":" << SrcOffset << ">";
5440
5441    if (ST->isTruncatingStore())
5442      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5443
5444    const char *AM = getIndexedModeName(ST->getAddressingMode());
5445    if (*AM)
5446      OS << " " << AM;
5447    if (ST->isVolatile())
5448      OS << " <volatile>";
5449    OS << " alignment=" << ST->getAlignment();
5450  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5451    const Value *SrcValue = AT->getSrcValue();
5452    int SrcOffset = AT->getSrcValueOffset();
5453    OS << " <";
5454    if (SrcValue)
5455      OS << SrcValue;
5456    else
5457      OS << "null";
5458    OS << ":" << SrcOffset << ">";
5459    if (AT->isVolatile())
5460      OS << " <volatile>";
5461    OS << " alignment=" << AT->getAlignment();
5462  }
5463}
5464
5465void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5466  print_types(OS, G);
5467  OS << " ";
5468  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5469    if (i) OS << ", ";
5470    OS << (void*)getOperand(i).getNode();
5471    if (unsigned RN = getOperand(i).getResNo())
5472      OS << ":" << RN;
5473  }
5474  print_details(OS, G);
5475}
5476
5477static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5478  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5479    if (N->getOperand(i).getNode()->hasOneUse())
5480      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5481    else
5482      cerr << "\n" << std::string(indent+2, ' ')
5483           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5484
5485
5486  cerr << "\n" << std::string(indent, ' ');
5487  N->dump(G);
5488}
5489
5490void SelectionDAG::dump() const {
5491  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5492
5493  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5494       I != E; ++I) {
5495    const SDNode *N = I;
5496    if (!N->hasOneUse() && N != getRoot().getNode())
5497      DumpNodes(N, 2, this);
5498  }
5499
5500  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5501
5502  cerr << "\n\n";
5503}
5504
5505void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5506  print_types(OS, G);
5507  print_details(OS, G);
5508}
5509
5510typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5511static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5512		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5513  if (!once.insert(N))	// If we've been here before, return now.
5514    return;
5515  // Dump the current SDNode, but don't end the line yet.
5516  OS << std::string(indent, ' ');
5517  N->printr(OS, G);
5518  // Having printed this SDNode, walk the children:
5519  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5520    const SDNode *child = N->getOperand(i).getNode();
5521    if (i) OS << ",";
5522    OS << " ";
5523    if (child->getNumOperands() == 0) {
5524      // This child has no grandchildren; print it inline right here.
5525      child->printr(OS, G);
5526      once.insert(child);
5527    } else {	// Just the address.  FIXME: also print the child's opcode
5528      OS << (void*)child;
5529      if (unsigned RN = N->getOperand(i).getResNo())
5530	OS << ":" << RN;
5531    }
5532  }
5533  OS << "\n";
5534  // Dump children that have grandchildren on their own line(s).
5535  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5536    const SDNode *child = N->getOperand(i).getNode();
5537    DumpNodesr(OS, child, indent+2, G, once);
5538  }
5539}
5540
5541void SDNode::dumpr() const {
5542  VisitedSDNodeSet once;
5543  DumpNodesr(errs(), this, 0, 0, once);
5544}
5545
5546const Type *ConstantPoolSDNode::getType() const {
5547  if (isMachineConstantPoolEntry())
5548    return Val.MachineCPVal->getType();
5549  return Val.ConstVal->getType();
5550}
5551
5552bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5553                                        APInt &SplatUndef,
5554                                        unsigned &SplatBitSize,
5555                                        bool &HasAnyUndefs,
5556                                        unsigned MinSplatBits) {
5557  MVT VT = getValueType(0);
5558  assert(VT.isVector() && "Expected a vector type");
5559  unsigned sz = VT.getSizeInBits();
5560  if (MinSplatBits > sz)
5561    return false;
5562
5563  SplatValue = APInt(sz, 0);
5564  SplatUndef = APInt(sz, 0);
5565
5566  // Get the bits.  Bits with undefined values (when the corresponding element
5567  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5568  // in SplatValue.  If any of the values are not constant, give up and return
5569  // false.
5570  unsigned int nOps = getNumOperands();
5571  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5572  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5573  for (unsigned i = 0; i < nOps; ++i) {
5574    SDValue OpVal = getOperand(i);
5575    unsigned BitPos = i * EltBitSize;
5576
5577    if (OpVal.getOpcode() == ISD::UNDEF)
5578      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5579    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5580      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5581                     zextOrTrunc(sz) << BitPos);
5582    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5583      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5584     else
5585      return false;
5586  }
5587
5588  // The build_vector is all constants or undefs.  Find the smallest element
5589  // size that splats the vector.
5590
5591  HasAnyUndefs = (SplatUndef != 0);
5592  while (sz > 8) {
5593
5594    unsigned HalfSize = sz / 2;
5595    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5596    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5597    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5598    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5599
5600    // If the two halves do not match (ignoring undef bits), stop here.
5601    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5602        MinSplatBits > HalfSize)
5603      break;
5604
5605    SplatValue = HighValue | LowValue;
5606    SplatUndef = HighUndef & LowUndef;
5607
5608    sz = HalfSize;
5609  }
5610
5611  SplatBitSize = sz;
5612  return true;
5613}
5614