SelectionDAG.cpp revision 2fa6d3b1fcadbde90eaee0e8e89aebd81630b662
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include <iostream>
29#include <set>
30#include <cmath>
31#include <algorithm>
32using namespace llvm;
33
34static bool isCommutativeBinOp(unsigned Opcode) {
35  switch (Opcode) {
36  case ISD::ADD:
37  case ISD::MUL:
38  case ISD::MULHU:
39  case ISD::MULHS:
40  case ISD::FADD:
41  case ISD::FMUL:
42  case ISD::AND:
43  case ISD::OR:
44  case ISD::XOR: return true;
45  default: return false; // FIXME: Need commutative info for user ops!
46  }
47}
48
49// isInvertibleForFree - Return true if there is no cost to emitting the logical
50// inverse of this node.
51static bool isInvertibleForFree(SDOperand N) {
52  if (isa<ConstantSDNode>(N.Val)) return true;
53  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
54    return true;
55  return false;
56}
57
58//===----------------------------------------------------------------------===//
59//                              ConstantFPSDNode Class
60//===----------------------------------------------------------------------===//
61
62/// isExactlyValue - We don't rely on operator== working on double values, as
63/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
64/// As such, this method can be used to do an exact bit-for-bit comparison of
65/// two floating point values.
66bool ConstantFPSDNode::isExactlyValue(double V) const {
67  return DoubleToBits(V) == DoubleToBits(Value);
68}
69
70//===----------------------------------------------------------------------===//
71//                              ISD Namespace
72//===----------------------------------------------------------------------===//
73
74/// isBuildVectorAllOnes - Return true if the specified node is a
75/// BUILD_VECTOR where all of the elements are ~0 or undef.
76bool ISD::isBuildVectorAllOnes(const SDNode *N) {
77  // Look through a bit convert.
78  if (N->getOpcode() == ISD::BIT_CONVERT)
79    N = N->getOperand(0).Val;
80
81  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
82
83  unsigned i = 0, e = N->getNumOperands();
84
85  // Skip over all of the undef values.
86  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
87    ++i;
88
89  // Do not accept an all-undef vector.
90  if (i == e) return false;
91
92  // Do not accept build_vectors that aren't all constants or which have non-~0
93  // elements.
94  SDOperand NotZero = N->getOperand(i);
95  if (isa<ConstantSDNode>(NotZero)) {
96    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
97      return false;
98  } else if (isa<ConstantFPSDNode>(NotZero)) {
99    MVT::ValueType VT = NotZero.getValueType();
100    if (VT== MVT::f64) {
101      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
102          (uint64_t)-1)
103        return false;
104    } else {
105      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
106          (uint32_t)-1)
107        return false;
108    }
109  } else
110    return false;
111
112  // Okay, we have at least one ~0 value, check to see if the rest match or are
113  // undefs.
114  for (++i; i != e; ++i)
115    if (N->getOperand(i) != NotZero &&
116        N->getOperand(i).getOpcode() != ISD::UNDEF)
117      return false;
118  return true;
119}
120
121
122/// isBuildVectorAllZeros - Return true if the specified node is a
123/// BUILD_VECTOR where all of the elements are 0 or undef.
124bool ISD::isBuildVectorAllZeros(const SDNode *N) {
125  // Look through a bit convert.
126  if (N->getOpcode() == ISD::BIT_CONVERT)
127    N = N->getOperand(0).Val;
128
129  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
130
131  unsigned i = 0, e = N->getNumOperands();
132
133  // Skip over all of the undef values.
134  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
135    ++i;
136
137  // Do not accept an all-undef vector.
138  if (i == e) return false;
139
140  // Do not accept build_vectors that aren't all constants or which have non-~0
141  // elements.
142  SDOperand Zero = N->getOperand(i);
143  if (isa<ConstantSDNode>(Zero)) {
144    if (!cast<ConstantSDNode>(Zero)->isNullValue())
145      return false;
146  } else if (isa<ConstantFPSDNode>(Zero)) {
147    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
148      return false;
149  } else
150    return false;
151
152  // Okay, we have at least one ~0 value, check to see if the rest match or are
153  // undefs.
154  for (++i; i != e; ++i)
155    if (N->getOperand(i) != Zero &&
156        N->getOperand(i).getOpcode() != ISD::UNDEF)
157      return false;
158  return true;
159}
160
161/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
162/// when given the operation for (X op Y).
163ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
164  // To perform this operation, we just need to swap the L and G bits of the
165  // operation.
166  unsigned OldL = (Operation >> 2) & 1;
167  unsigned OldG = (Operation >> 1) & 1;
168  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
169                       (OldL << 1) |       // New G bit
170                       (OldG << 2));        // New L bit.
171}
172
173/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
174/// 'op' is a valid SetCC operation.
175ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
176  unsigned Operation = Op;
177  if (isInteger)
178    Operation ^= 7;   // Flip L, G, E bits, but not U.
179  else
180    Operation ^= 15;  // Flip all of the condition bits.
181  if (Operation > ISD::SETTRUE2)
182    Operation &= ~8;     // Don't let N and U bits get set.
183  return ISD::CondCode(Operation);
184}
185
186
187/// isSignedOp - For an integer comparison, return 1 if the comparison is a
188/// signed operation and 2 if the result is an unsigned comparison.  Return zero
189/// if the operation does not depend on the sign of the input (setne and seteq).
190static int isSignedOp(ISD::CondCode Opcode) {
191  switch (Opcode) {
192  default: assert(0 && "Illegal integer setcc operation!");
193  case ISD::SETEQ:
194  case ISD::SETNE: return 0;
195  case ISD::SETLT:
196  case ISD::SETLE:
197  case ISD::SETGT:
198  case ISD::SETGE: return 1;
199  case ISD::SETULT:
200  case ISD::SETULE:
201  case ISD::SETUGT:
202  case ISD::SETUGE: return 2;
203  }
204}
205
206/// getSetCCOrOperation - Return the result of a logical OR between different
207/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
208/// returns SETCC_INVALID if it is not possible to represent the resultant
209/// comparison.
210ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
211                                       bool isInteger) {
212  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
213    // Cannot fold a signed integer setcc with an unsigned integer setcc.
214    return ISD::SETCC_INVALID;
215
216  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
217
218  // If the N and U bits get set then the resultant comparison DOES suddenly
219  // care about orderedness, and is true when ordered.
220  if (Op > ISD::SETTRUE2)
221    Op &= ~16;     // Clear the U bit if the N bit is set.
222
223  // Canonicalize illegal integer setcc's.
224  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
225    Op = ISD::SETNE;
226
227  return ISD::CondCode(Op);
228}
229
230/// getSetCCAndOperation - Return the result of a logical AND between different
231/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
232/// function returns zero if it is not possible to represent the resultant
233/// comparison.
234ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
235                                        bool isInteger) {
236  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
237    // Cannot fold a signed setcc with an unsigned setcc.
238    return ISD::SETCC_INVALID;
239
240  // Combine all of the condition bits.
241  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
242
243  // Canonicalize illegal integer setcc's.
244  if (isInteger) {
245    switch (Result) {
246    default: break;
247    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
248    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
249    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
250    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
251    }
252  }
253
254  return Result;
255}
256
257const TargetMachine &SelectionDAG::getTarget() const {
258  return TLI.getTargetMachine();
259}
260
261//===----------------------------------------------------------------------===//
262//                              SelectionDAG Class
263//===----------------------------------------------------------------------===//
264
265/// RemoveDeadNodes - This method deletes all unreachable nodes in the
266/// SelectionDAG.
267void SelectionDAG::RemoveDeadNodes() {
268  // Create a dummy node (which is not added to allnodes), that adds a reference
269  // to the root node, preventing it from being deleted.
270  HandleSDNode Dummy(getRoot());
271
272  SmallVector<SDNode*, 128> DeadNodes;
273
274  // Add all obviously-dead nodes to the DeadNodes worklist.
275  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
276    if (I->use_empty())
277      DeadNodes.push_back(I);
278
279  // Process the worklist, deleting the nodes and adding their uses to the
280  // worklist.
281  while (!DeadNodes.empty()) {
282    SDNode *N = DeadNodes.back();
283    DeadNodes.pop_back();
284
285    // Take the node out of the appropriate CSE map.
286    RemoveNodeFromCSEMaps(N);
287
288    // Next, brutally remove the operand list.  This is safe to do, as there are
289    // no cycles in the graph.
290    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
291      SDNode *Operand = I->Val;
292      Operand->removeUser(N);
293
294      // Now that we removed this operand, see if there are no uses of it left.
295      if (Operand->use_empty())
296        DeadNodes.push_back(Operand);
297    }
298    delete[] N->OperandList;
299    N->OperandList = 0;
300    N->NumOperands = 0;
301
302    // Finally, remove N itself.
303    AllNodes.erase(N);
304  }
305
306  // If the root changed (e.g. it was a dead load, update the root).
307  setRoot(Dummy.getValue());
308}
309
310void SelectionDAG::DeleteNode(SDNode *N) {
311  assert(N->use_empty() && "Cannot delete a node that is not dead!");
312
313  // First take this out of the appropriate CSE map.
314  RemoveNodeFromCSEMaps(N);
315
316  // Finally, remove uses due to operands of this node, remove from the
317  // AllNodes list, and delete the node.
318  DeleteNodeNotInCSEMaps(N);
319}
320
321void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
322
323  // Remove it from the AllNodes list.
324  AllNodes.remove(N);
325
326  // Drop all of the operands and decrement used nodes use counts.
327  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
328    I->Val->removeUser(N);
329  delete[] N->OperandList;
330  N->OperandList = 0;
331  N->NumOperands = 0;
332
333  delete N;
334}
335
336/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
337/// correspond to it.  This is useful when we're about to delete or repurpose
338/// the node.  We don't want future request for structurally identical nodes
339/// to return N anymore.
340void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
341  bool Erased = false;
342  switch (N->getOpcode()) {
343  case ISD::HANDLENODE: return;  // noop.
344  case ISD::STRING:
345    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
346    break;
347  case ISD::CONDCODE:
348    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
349           "Cond code doesn't exist!");
350    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
351    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
352    break;
353  case ISD::ExternalSymbol:
354    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
355    break;
356  case ISD::TargetExternalSymbol:
357    Erased =
358      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
359    break;
360  case ISD::VALUETYPE:
361    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
362    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
363    break;
364  default:
365    // Remove it from the CSE Map.
366    Erased = CSEMap.RemoveNode(N);
367    break;
368  }
369#ifndef NDEBUG
370  // Verify that the node was actually in one of the CSE maps, unless it has a
371  // flag result (which cannot be CSE'd) or is one of the special cases that are
372  // not subject to CSE.
373  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
374      !N->isTargetOpcode()) {
375    N->dump();
376    std::cerr << "\n";
377    assert(0 && "Node is not in map!");
378  }
379#endif
380}
381
382/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
383/// has been taken out and modified in some way.  If the specified node already
384/// exists in the CSE maps, do not modify the maps, but return the existing node
385/// instead.  If it doesn't exist, add it and return null.
386///
387SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
388  assert(N->getNumOperands() && "This is a leaf node!");
389  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
390    return 0;    // Never add these nodes.
391
392  // Check that remaining values produced are not flags.
393  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
394    if (N->getValueType(i) == MVT::Flag)
395      return 0;   // Never CSE anything that produces a flag.
396
397  SDNode *New = CSEMap.GetOrInsertNode(N);
398  if (New != N) return New;  // Node already existed.
399  return 0;
400}
401
402/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
403/// were replaced with those specified.  If this node is never memoized,
404/// return null, otherwise return a pointer to the slot it would take.  If a
405/// node already exists with these operands, the slot will be non-null.
406SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
407                                           void *&InsertPos) {
408  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
409    return 0;    // Never add these nodes.
410
411  // Check that remaining values produced are not flags.
412  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
413    if (N->getValueType(i) == MVT::Flag)
414      return 0;   // Never CSE anything that produces a flag.
415
416  SelectionDAGCSEMap::NodeID ID;
417  ID.SetOpcode(N->getOpcode());
418  ID.SetValueTypes(N->value_begin());
419  ID.SetOperands(Op);
420  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
421}
422
423/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
424/// were replaced with those specified.  If this node is never memoized,
425/// return null, otherwise return a pointer to the slot it would take.  If a
426/// node already exists with these operands, the slot will be non-null.
427SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
428                                           SDOperand Op1, SDOperand Op2,
429                                           void *&InsertPos) {
430  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
431    return 0;    // Never add these nodes.
432
433  // Check that remaining values produced are not flags.
434  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
435    if (N->getValueType(i) == MVT::Flag)
436      return 0;   // Never CSE anything that produces a flag.
437
438  SelectionDAGCSEMap::NodeID ID;
439  ID.SetOpcode(N->getOpcode());
440  ID.SetValueTypes(N->value_begin());
441  ID.SetOperands(Op1, Op2);
442  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
443}
444
445
446/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
447/// were replaced with those specified.  If this node is never memoized,
448/// return null, otherwise return a pointer to the slot it would take.  If a
449/// node already exists with these operands, the slot will be non-null.
450SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
451                                           const SDOperand *Ops,unsigned NumOps,
452                                           void *&InsertPos) {
453  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
454    return 0;    // Never add these nodes.
455
456  // Check that remaining values produced are not flags.
457  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
458    if (N->getValueType(i) == MVT::Flag)
459      return 0;   // Never CSE anything that produces a flag.
460
461  SelectionDAGCSEMap::NodeID ID;
462  ID.SetOpcode(N->getOpcode());
463  ID.SetValueTypes(N->value_begin());
464  ID.SetOperands(Ops, NumOps);
465  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
466}
467
468
469SelectionDAG::~SelectionDAG() {
470  while (!AllNodes.empty()) {
471    SDNode *N = AllNodes.begin();
472    N->SetNextInBucket(0);
473    delete [] N->OperandList;
474    N->OperandList = 0;
475    N->NumOperands = 0;
476    AllNodes.pop_front();
477  }
478}
479
480SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
481  if (Op.getValueType() == VT) return Op;
482  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
483  return getNode(ISD::AND, Op.getValueType(), Op,
484                 getConstant(Imm, Op.getValueType()));
485}
486
487SDOperand SelectionDAG::getString(const std::string &Val) {
488  StringSDNode *&N = StringNodes[Val];
489  if (!N) {
490    N = new StringSDNode(Val);
491    AllNodes.push_back(N);
492  }
493  return SDOperand(N, 0);
494}
495
496SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
497  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
498  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
499
500  // Mask out any bits that are not valid for this constant.
501  Val &= MVT::getIntVTBitMask(VT);
502
503  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
504  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
505  ID.AddInteger(Val);
506  void *IP = 0;
507  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
508    return SDOperand(E, 0);
509  SDNode *N = new ConstantSDNode(isT, Val, VT);
510  CSEMap.InsertNode(N, IP);
511  AllNodes.push_back(N);
512  return SDOperand(N, 0);
513}
514
515
516SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
517                                      bool isTarget) {
518  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
519  if (VT == MVT::f32)
520    Val = (float)Val;  // Mask out extra precision.
521
522  // Do the map lookup using the actual bit pattern for the floating point
523  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
524  // we don't have issues with SNANs.
525  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
526  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
527  ID.AddInteger(DoubleToBits(Val));
528  void *IP = 0;
529  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
530    return SDOperand(E, 0);
531  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
532  CSEMap.InsertNode(N, IP);
533  AllNodes.push_back(N);
534  return SDOperand(N, 0);
535}
536
537SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
538                                         MVT::ValueType VT, int Offset,
539                                         bool isTargetGA) {
540  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
541  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
542  ID.AddPointer(GV);
543  ID.AddInteger(Offset);
544  void *IP = 0;
545  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
546   return SDOperand(E, 0);
547  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
548  CSEMap.InsertNode(N, IP);
549  AllNodes.push_back(N);
550  return SDOperand(N, 0);
551}
552
553SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
554                                      bool isTarget) {
555  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
556  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
557  ID.AddInteger(FI);
558  void *IP = 0;
559  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
560    return SDOperand(E, 0);
561  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
562  CSEMap.InsertNode(N, IP);
563  AllNodes.push_back(N);
564  return SDOperand(N, 0);
565}
566
567SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
568  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
569  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
570  ID.AddInteger(JTI);
571  void *IP = 0;
572  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
573    return SDOperand(E, 0);
574  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
575  CSEMap.InsertNode(N, IP);
576  AllNodes.push_back(N);
577  return SDOperand(N, 0);
578}
579
580SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
581                                        unsigned Alignment, int Offset,
582                                        bool isTarget) {
583  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
584  SelectionDAGCSEMap::NodeID ID(Opc, getNodeValueTypes(VT));
585  ID.AddInteger(Alignment);
586  ID.AddInteger(Offset);
587  ID.AddPointer(C);
588  void *IP = 0;
589  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
590    return SDOperand(E, 0);
591  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
592  CSEMap.InsertNode(N, IP);
593  AllNodes.push_back(N);
594  return SDOperand(N, 0);
595}
596
597
598SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
599  SelectionDAGCSEMap::NodeID ID(ISD::BasicBlock, getNodeValueTypes(MVT::Other));
600  ID.AddPointer(MBB);
601  void *IP = 0;
602  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
603    return SDOperand(E, 0);
604  SDNode *N = new BasicBlockSDNode(MBB);
605  CSEMap.InsertNode(N, IP);
606  AllNodes.push_back(N);
607  return SDOperand(N, 0);
608}
609
610SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
611  if ((unsigned)VT >= ValueTypeNodes.size())
612    ValueTypeNodes.resize(VT+1);
613  if (ValueTypeNodes[VT] == 0) {
614    ValueTypeNodes[VT] = new VTSDNode(VT);
615    AllNodes.push_back(ValueTypeNodes[VT]);
616  }
617
618  return SDOperand(ValueTypeNodes[VT], 0);
619}
620
621SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
622  SDNode *&N = ExternalSymbols[Sym];
623  if (N) return SDOperand(N, 0);
624  N = new ExternalSymbolSDNode(false, Sym, VT);
625  AllNodes.push_back(N);
626  return SDOperand(N, 0);
627}
628
629SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
630                                                MVT::ValueType VT) {
631  SDNode *&N = TargetExternalSymbols[Sym];
632  if (N) return SDOperand(N, 0);
633  N = new ExternalSymbolSDNode(true, Sym, VT);
634  AllNodes.push_back(N);
635  return SDOperand(N, 0);
636}
637
638SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
639  if ((unsigned)Cond >= CondCodeNodes.size())
640    CondCodeNodes.resize(Cond+1);
641
642  if (CondCodeNodes[Cond] == 0) {
643    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
644    AllNodes.push_back(CondCodeNodes[Cond]);
645  }
646  return SDOperand(CondCodeNodes[Cond], 0);
647}
648
649SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
650  SelectionDAGCSEMap::NodeID ID(ISD::Register, getNodeValueTypes(VT));
651  ID.AddInteger(RegNo);
652  void *IP = 0;
653  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
654    return SDOperand(E, 0);
655  SDNode *N = new RegisterSDNode(RegNo, VT);
656  CSEMap.InsertNode(N, IP);
657  AllNodes.push_back(N);
658  return SDOperand(N, 0);
659}
660
661SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
662  assert((!V || isa<PointerType>(V->getType())) &&
663         "SrcValue is not a pointer?");
664
665  SelectionDAGCSEMap::NodeID ID(ISD::SRCVALUE, getNodeValueTypes(MVT::Other));
666  ID.AddPointer(V);
667  ID.AddInteger(Offset);
668  void *IP = 0;
669  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
670    return SDOperand(E, 0);
671  SDNode *N = new SrcValueSDNode(V, Offset);
672  CSEMap.InsertNode(N, IP);
673  AllNodes.push_back(N);
674  return SDOperand(N, 0);
675}
676
677SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
678                                      SDOperand N2, ISD::CondCode Cond) {
679  // These setcc operations always fold.
680  switch (Cond) {
681  default: break;
682  case ISD::SETFALSE:
683  case ISD::SETFALSE2: return getConstant(0, VT);
684  case ISD::SETTRUE:
685  case ISD::SETTRUE2:  return getConstant(1, VT);
686
687  case ISD::SETOEQ:
688  case ISD::SETOGT:
689  case ISD::SETOGE:
690  case ISD::SETOLT:
691  case ISD::SETOLE:
692  case ISD::SETONE:
693  case ISD::SETO:
694  case ISD::SETUO:
695  case ISD::SETUEQ:
696  case ISD::SETUNE:
697    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
698    break;
699  }
700
701  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
702    uint64_t C2 = N2C->getValue();
703    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
704      uint64_t C1 = N1C->getValue();
705
706      // Sign extend the operands if required
707      if (ISD::isSignedIntSetCC(Cond)) {
708        C1 = N1C->getSignExtended();
709        C2 = N2C->getSignExtended();
710      }
711
712      switch (Cond) {
713      default: assert(0 && "Unknown integer setcc!");
714      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
715      case ISD::SETNE:  return getConstant(C1 != C2, VT);
716      case ISD::SETULT: return getConstant(C1 <  C2, VT);
717      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
718      case ISD::SETULE: return getConstant(C1 <= C2, VT);
719      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
720      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
721      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
722      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
723      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
724      }
725    } else {
726      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
727      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
728        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
729
730        // If the comparison constant has bits in the upper part, the
731        // zero-extended value could never match.
732        if (C2 & (~0ULL << InSize)) {
733          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
734          switch (Cond) {
735          case ISD::SETUGT:
736          case ISD::SETUGE:
737          case ISD::SETEQ: return getConstant(0, VT);
738          case ISD::SETULT:
739          case ISD::SETULE:
740          case ISD::SETNE: return getConstant(1, VT);
741          case ISD::SETGT:
742          case ISD::SETGE:
743            // True if the sign bit of C2 is set.
744            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
745          case ISD::SETLT:
746          case ISD::SETLE:
747            // True if the sign bit of C2 isn't set.
748            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
749          default:
750            break;
751          }
752        }
753
754        // Otherwise, we can perform the comparison with the low bits.
755        switch (Cond) {
756        case ISD::SETEQ:
757        case ISD::SETNE:
758        case ISD::SETUGT:
759        case ISD::SETUGE:
760        case ISD::SETULT:
761        case ISD::SETULE:
762          return getSetCC(VT, N1.getOperand(0),
763                          getConstant(C2, N1.getOperand(0).getValueType()),
764                          Cond);
765        default:
766          break;   // todo, be more careful with signed comparisons
767        }
768      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
769                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
770        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
771        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
772        MVT::ValueType ExtDstTy = N1.getValueType();
773        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
774
775        // If the extended part has any inconsistent bits, it cannot ever
776        // compare equal.  In other words, they have to be all ones or all
777        // zeros.
778        uint64_t ExtBits =
779          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
780        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
781          return getConstant(Cond == ISD::SETNE, VT);
782
783        // Otherwise, make this a use of a zext.
784        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
785                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
786                        Cond);
787      }
788
789      uint64_t MinVal, MaxVal;
790      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
791      if (ISD::isSignedIntSetCC(Cond)) {
792        MinVal = 1ULL << (OperandBitSize-1);
793        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
794          MaxVal = ~0ULL >> (65-OperandBitSize);
795        else
796          MaxVal = 0;
797      } else {
798        MinVal = 0;
799        MaxVal = ~0ULL >> (64-OperandBitSize);
800      }
801
802      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
803      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
804        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
805        --C2;                                          // X >= C1 --> X > (C1-1)
806        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
807                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
808      }
809
810      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
811        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
812        ++C2;                                          // X <= C1 --> X < (C1+1)
813        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
814                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
815      }
816
817      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
818        return getConstant(0, VT);      // X < MIN --> false
819
820      // Canonicalize setgt X, Min --> setne X, Min
821      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
822        return getSetCC(VT, N1, N2, ISD::SETNE);
823
824      // If we have setult X, 1, turn it into seteq X, 0
825      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
826        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
827                        ISD::SETEQ);
828      // If we have setugt X, Max-1, turn it into seteq X, Max
829      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
830        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
831                        ISD::SETEQ);
832
833      // If we have "setcc X, C1", check to see if we can shrink the immediate
834      // by changing cc.
835
836      // SETUGT X, SINTMAX  -> SETLT X, 0
837      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
838          C2 == (~0ULL >> (65-OperandBitSize)))
839        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
840
841      // FIXME: Implement the rest of these.
842
843
844      // Fold bit comparisons when we can.
845      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
846          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
847        if (ConstantSDNode *AndRHS =
848                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
849          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
850            // Perform the xform if the AND RHS is a single bit.
851            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
852              return getNode(ISD::SRL, VT, N1,
853                             getConstant(Log2_64(AndRHS->getValue()),
854                                                   TLI.getShiftAmountTy()));
855            }
856          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
857            // (X & 8) == 8  -->  (X & 8) >> 3
858            // Perform the xform if C2 is a single bit.
859            if ((C2 & (C2-1)) == 0) {
860              return getNode(ISD::SRL, VT, N1,
861                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
862            }
863          }
864        }
865    }
866  } else if (isa<ConstantSDNode>(N1.Val)) {
867      // Ensure that the constant occurs on the RHS.
868    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
869  }
870
871  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
872    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
873      double C1 = N1C->getValue(), C2 = N2C->getValue();
874
875      switch (Cond) {
876      default: break; // FIXME: Implement the rest of these!
877      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
878      case ISD::SETNE:  return getConstant(C1 != C2, VT);
879      case ISD::SETLT:  return getConstant(C1 < C2, VT);
880      case ISD::SETGT:  return getConstant(C1 > C2, VT);
881      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
882      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
883      }
884    } else {
885      // Ensure that the constant occurs on the RHS.
886      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
887    }
888
889  // Could not fold it.
890  return SDOperand();
891}
892
893/// getNode - Gets or creates the specified node.
894///
895SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
896  MVT::ValueType *VTs = getNodeValueTypes(VT);
897  SelectionDAGCSEMap::NodeID ID(Opcode, VTs);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new SDNode(Opcode, VT);
902  CSEMap.InsertNode(N, IP);
903
904  AllNodes.push_back(N);
905  return SDOperand(N, 0);
906}
907
908SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
909                                SDOperand Operand) {
910  unsigned Tmp1;
911  // Constant fold unary operations with an integer constant operand.
912  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
913    uint64_t Val = C->getValue();
914    switch (Opcode) {
915    default: break;
916    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
917    case ISD::ANY_EXTEND:
918    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
919    case ISD::TRUNCATE:    return getConstant(Val, VT);
920    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
921    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
922    case ISD::BIT_CONVERT:
923      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
924        return getConstantFP(BitsToFloat(Val), VT);
925      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
926        return getConstantFP(BitsToDouble(Val), VT);
927      break;
928    case ISD::BSWAP:
929      switch(VT) {
930      default: assert(0 && "Invalid bswap!"); break;
931      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
932      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
933      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
934      }
935      break;
936    case ISD::CTPOP:
937      switch(VT) {
938      default: assert(0 && "Invalid ctpop!"); break;
939      case MVT::i1: return getConstant(Val != 0, VT);
940      case MVT::i8:
941        Tmp1 = (unsigned)Val & 0xFF;
942        return getConstant(CountPopulation_32(Tmp1), VT);
943      case MVT::i16:
944        Tmp1 = (unsigned)Val & 0xFFFF;
945        return getConstant(CountPopulation_32(Tmp1), VT);
946      case MVT::i32:
947        return getConstant(CountPopulation_32((unsigned)Val), VT);
948      case MVT::i64:
949        return getConstant(CountPopulation_64(Val), VT);
950      }
951    case ISD::CTLZ:
952      switch(VT) {
953      default: assert(0 && "Invalid ctlz!"); break;
954      case MVT::i1: return getConstant(Val == 0, VT);
955      case MVT::i8:
956        Tmp1 = (unsigned)Val & 0xFF;
957        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
958      case MVT::i16:
959        Tmp1 = (unsigned)Val & 0xFFFF;
960        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
961      case MVT::i32:
962        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
963      case MVT::i64:
964        return getConstant(CountLeadingZeros_64(Val), VT);
965      }
966    case ISD::CTTZ:
967      switch(VT) {
968      default: assert(0 && "Invalid cttz!"); break;
969      case MVT::i1: return getConstant(Val == 0, VT);
970      case MVT::i8:
971        Tmp1 = (unsigned)Val | 0x100;
972        return getConstant(CountTrailingZeros_32(Tmp1), VT);
973      case MVT::i16:
974        Tmp1 = (unsigned)Val | 0x10000;
975        return getConstant(CountTrailingZeros_32(Tmp1), VT);
976      case MVT::i32:
977        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
978      case MVT::i64:
979        return getConstant(CountTrailingZeros_64(Val), VT);
980      }
981    }
982  }
983
984  // Constant fold unary operations with an floating point constant operand.
985  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
986    switch (Opcode) {
987    case ISD::FNEG:
988      return getConstantFP(-C->getValue(), VT);
989    case ISD::FABS:
990      return getConstantFP(fabs(C->getValue()), VT);
991    case ISD::FP_ROUND:
992    case ISD::FP_EXTEND:
993      return getConstantFP(C->getValue(), VT);
994    case ISD::FP_TO_SINT:
995      return getConstant((int64_t)C->getValue(), VT);
996    case ISD::FP_TO_UINT:
997      return getConstant((uint64_t)C->getValue(), VT);
998    case ISD::BIT_CONVERT:
999      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1000        return getConstant(FloatToBits(C->getValue()), VT);
1001      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1002        return getConstant(DoubleToBits(C->getValue()), VT);
1003      break;
1004    }
1005
1006  unsigned OpOpcode = Operand.Val->getOpcode();
1007  switch (Opcode) {
1008  case ISD::TokenFactor:
1009    return Operand;         // Factor of one node?  No factor.
1010  case ISD::SIGN_EXTEND:
1011    if (Operand.getValueType() == VT) return Operand;   // noop extension
1012    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1013    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1014      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1015    break;
1016  case ISD::ZERO_EXTEND:
1017    if (Operand.getValueType() == VT) return Operand;   // noop extension
1018    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1019    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1020      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1021    break;
1022  case ISD::ANY_EXTEND:
1023    if (Operand.getValueType() == VT) return Operand;   // noop extension
1024    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1025    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1026      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1027      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1028    break;
1029  case ISD::TRUNCATE:
1030    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1031    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1032    if (OpOpcode == ISD::TRUNCATE)
1033      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1034    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1035             OpOpcode == ISD::ANY_EXTEND) {
1036      // If the source is smaller than the dest, we still need an extend.
1037      if (Operand.Val->getOperand(0).getValueType() < VT)
1038        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1039      else if (Operand.Val->getOperand(0).getValueType() > VT)
1040        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1041      else
1042        return Operand.Val->getOperand(0);
1043    }
1044    break;
1045  case ISD::BIT_CONVERT:
1046    // Basic sanity checking.
1047    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1048           && "Cannot BIT_CONVERT between two different types!");
1049    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1050    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1051      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1052    if (OpOpcode == ISD::UNDEF)
1053      return getNode(ISD::UNDEF, VT);
1054    break;
1055  case ISD::SCALAR_TO_VECTOR:
1056    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1057           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1058           "Illegal SCALAR_TO_VECTOR node!");
1059    break;
1060  case ISD::FNEG:
1061    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1062      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1063                     Operand.Val->getOperand(0));
1064    if (OpOpcode == ISD::FNEG)  // --X -> X
1065      return Operand.Val->getOperand(0);
1066    break;
1067  case ISD::FABS:
1068    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1069      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1070    break;
1071  }
1072
1073  SDNode *N;
1074  MVT::ValueType *VTs = getNodeValueTypes(VT);
1075  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1076    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1077    void *IP = 0;
1078    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1079      return SDOperand(E, 0);
1080    N = new SDNode(Opcode, Operand);
1081    N->setValueTypes(VTs, 1);
1082    CSEMap.InsertNode(N, IP);
1083  } else {
1084    N = new SDNode(Opcode, Operand);
1085    N->setValueTypes(VTs, 1);
1086  }
1087  AllNodes.push_back(N);
1088  return SDOperand(N, 0);
1089}
1090
1091
1092
1093SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1094                                SDOperand N1, SDOperand N2) {
1095#ifndef NDEBUG
1096  switch (Opcode) {
1097  case ISD::TokenFactor:
1098    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1099           N2.getValueType() == MVT::Other && "Invalid token factor!");
1100    break;
1101  case ISD::AND:
1102  case ISD::OR:
1103  case ISD::XOR:
1104  case ISD::UDIV:
1105  case ISD::UREM:
1106  case ISD::MULHU:
1107  case ISD::MULHS:
1108    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1109    // fall through
1110  case ISD::ADD:
1111  case ISD::SUB:
1112  case ISD::MUL:
1113  case ISD::SDIV:
1114  case ISD::SREM:
1115    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1116    // fall through.
1117  case ISD::FADD:
1118  case ISD::FSUB:
1119  case ISD::FMUL:
1120  case ISD::FDIV:
1121  case ISD::FREM:
1122    assert(N1.getValueType() == N2.getValueType() &&
1123           N1.getValueType() == VT && "Binary operator types must match!");
1124    break;
1125  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1126    assert(N1.getValueType() == VT &&
1127           MVT::isFloatingPoint(N1.getValueType()) &&
1128           MVT::isFloatingPoint(N2.getValueType()) &&
1129           "Invalid FCOPYSIGN!");
1130    break;
1131  case ISD::SHL:
1132  case ISD::SRA:
1133  case ISD::SRL:
1134  case ISD::ROTL:
1135  case ISD::ROTR:
1136    assert(VT == N1.getValueType() &&
1137           "Shift operators return type must be the same as their first arg");
1138    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1139           VT != MVT::i1 && "Shifts only work on integers");
1140    break;
1141  case ISD::FP_ROUND_INREG: {
1142    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1143    assert(VT == N1.getValueType() && "Not an inreg round!");
1144    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1145           "Cannot FP_ROUND_INREG integer types");
1146    assert(EVT <= VT && "Not rounding down!");
1147    break;
1148  }
1149  case ISD::AssertSext:
1150  case ISD::AssertZext:
1151  case ISD::SIGN_EXTEND_INREG: {
1152    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1153    assert(VT == N1.getValueType() && "Not an inreg extend!");
1154    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1155           "Cannot *_EXTEND_INREG FP types");
1156    assert(EVT <= VT && "Not extending!");
1157  }
1158
1159  default: break;
1160  }
1161#endif
1162
1163  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1164  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1165  if (N1C) {
1166    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1167      int64_t Val = N1C->getValue();
1168      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1169      Val <<= 64-FromBits;
1170      Val >>= 64-FromBits;
1171      return getConstant(Val, VT);
1172    }
1173
1174    if (N2C) {
1175      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1176      switch (Opcode) {
1177      case ISD::ADD: return getConstant(C1 + C2, VT);
1178      case ISD::SUB: return getConstant(C1 - C2, VT);
1179      case ISD::MUL: return getConstant(C1 * C2, VT);
1180      case ISD::UDIV:
1181        if (C2) return getConstant(C1 / C2, VT);
1182        break;
1183      case ISD::UREM :
1184        if (C2) return getConstant(C1 % C2, VT);
1185        break;
1186      case ISD::SDIV :
1187        if (C2) return getConstant(N1C->getSignExtended() /
1188                                   N2C->getSignExtended(), VT);
1189        break;
1190      case ISD::SREM :
1191        if (C2) return getConstant(N1C->getSignExtended() %
1192                                   N2C->getSignExtended(), VT);
1193        break;
1194      case ISD::AND  : return getConstant(C1 & C2, VT);
1195      case ISD::OR   : return getConstant(C1 | C2, VT);
1196      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1197      case ISD::SHL  : return getConstant(C1 << C2, VT);
1198      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1199      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1200      case ISD::ROTL :
1201        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1202                           VT);
1203      case ISD::ROTR :
1204        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1205                           VT);
1206      default: break;
1207      }
1208    } else {      // Cannonicalize constant to RHS if commutative
1209      if (isCommutativeBinOp(Opcode)) {
1210        std::swap(N1C, N2C);
1211        std::swap(N1, N2);
1212      }
1213    }
1214  }
1215
1216  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1217  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1218  if (N1CFP) {
1219    if (N2CFP) {
1220      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1221      switch (Opcode) {
1222      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1223      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1224      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1225      case ISD::FDIV:
1226        if (C2) return getConstantFP(C1 / C2, VT);
1227        break;
1228      case ISD::FREM :
1229        if (C2) return getConstantFP(fmod(C1, C2), VT);
1230        break;
1231      case ISD::FCOPYSIGN: {
1232        union {
1233          double   F;
1234          uint64_t I;
1235        } u1;
1236        union {
1237          double  F;
1238          int64_t I;
1239        } u2;
1240        u1.F = C1;
1241        u2.F = C2;
1242        if (u2.I < 0)  // Sign bit of RHS set?
1243          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1244        else
1245          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1246        return getConstantFP(u1.F, VT);
1247      }
1248      default: break;
1249      }
1250    } else {      // Cannonicalize constant to RHS if commutative
1251      if (isCommutativeBinOp(Opcode)) {
1252        std::swap(N1CFP, N2CFP);
1253        std::swap(N1, N2);
1254      }
1255    }
1256  }
1257
1258  // Canonicalize an UNDEF to the RHS, even over a constant.
1259  if (N1.getOpcode() == ISD::UNDEF) {
1260    if (isCommutativeBinOp(Opcode)) {
1261      std::swap(N1, N2);
1262    } else {
1263      switch (Opcode) {
1264      case ISD::FP_ROUND_INREG:
1265      case ISD::SIGN_EXTEND_INREG:
1266      case ISD::SUB:
1267      case ISD::FSUB:
1268      case ISD::FDIV:
1269      case ISD::FREM:
1270      case ISD::SRA:
1271        return N1;     // fold op(undef, arg2) -> undef
1272      case ISD::UDIV:
1273      case ISD::SDIV:
1274      case ISD::UREM:
1275      case ISD::SREM:
1276      case ISD::SRL:
1277      case ISD::SHL:
1278        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1279      }
1280    }
1281  }
1282
1283  // Fold a bunch of operators when the RHS is undef.
1284  if (N2.getOpcode() == ISD::UNDEF) {
1285    switch (Opcode) {
1286    case ISD::ADD:
1287    case ISD::SUB:
1288    case ISD::FADD:
1289    case ISD::FSUB:
1290    case ISD::FMUL:
1291    case ISD::FDIV:
1292    case ISD::FREM:
1293    case ISD::UDIV:
1294    case ISD::SDIV:
1295    case ISD::UREM:
1296    case ISD::SREM:
1297    case ISD::XOR:
1298      return N2;       // fold op(arg1, undef) -> undef
1299    case ISD::MUL:
1300    case ISD::AND:
1301    case ISD::SRL:
1302    case ISD::SHL:
1303      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1304    case ISD::OR:
1305      return getConstant(MVT::getIntVTBitMask(VT), VT);
1306    case ISD::SRA:
1307      return N1;
1308    }
1309  }
1310
1311  // Finally, fold operations that do not require constants.
1312  switch (Opcode) {
1313  case ISD::FP_ROUND_INREG:
1314    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1315    break;
1316  case ISD::SIGN_EXTEND_INREG: {
1317    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1318    if (EVT == VT) return N1;  // Not actually extending
1319    break;
1320  }
1321
1322  // FIXME: figure out how to safely handle things like
1323  // int foo(int x) { return 1 << (x & 255); }
1324  // int bar() { return foo(256); }
1325#if 0
1326  case ISD::SHL:
1327  case ISD::SRL:
1328  case ISD::SRA:
1329    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1330        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1331      return getNode(Opcode, VT, N1, N2.getOperand(0));
1332    else if (N2.getOpcode() == ISD::AND)
1333      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1334        // If the and is only masking out bits that cannot effect the shift,
1335        // eliminate the and.
1336        unsigned NumBits = MVT::getSizeInBits(VT);
1337        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1338          return getNode(Opcode, VT, N1, N2.getOperand(0));
1339      }
1340    break;
1341#endif
1342  }
1343
1344  // Memoize this node if possible.
1345  SDNode *N;
1346  MVT::ValueType *VTs = getNodeValueTypes(VT);
1347  if (VT != MVT::Flag) {
1348    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1349    void *IP = 0;
1350    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351      return SDOperand(E, 0);
1352    N = new SDNode(Opcode, N1, N2);
1353    N->setValueTypes(VTs, 1);
1354    CSEMap.InsertNode(N, IP);
1355  } else {
1356    N = new SDNode(Opcode, N1, N2);
1357    N->setValueTypes(VTs, 1);
1358  }
1359
1360  AllNodes.push_back(N);
1361  return SDOperand(N, 0);
1362}
1363
1364SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1365                                SDOperand N1, SDOperand N2, SDOperand N3) {
1366  // Perform various simplifications.
1367  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1368  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1369  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1370  switch (Opcode) {
1371  case ISD::SETCC: {
1372    // Use SimplifySetCC  to simplify SETCC's.
1373    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1374    if (Simp.Val) return Simp;
1375    break;
1376  }
1377  case ISD::SELECT:
1378    if (N1C)
1379      if (N1C->getValue())
1380        return N2;             // select true, X, Y -> X
1381      else
1382        return N3;             // select false, X, Y -> Y
1383
1384    if (N2 == N3) return N2;   // select C, X, X -> X
1385    break;
1386  case ISD::BRCOND:
1387    if (N2C)
1388      if (N2C->getValue()) // Unconditional branch
1389        return getNode(ISD::BR, MVT::Other, N1, N3);
1390      else
1391        return N1;         // Never-taken branch
1392    break;
1393  case ISD::VECTOR_SHUFFLE:
1394    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1395           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1396           N3.getOpcode() == ISD::BUILD_VECTOR &&
1397           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1398           "Illegal VECTOR_SHUFFLE node!");
1399    break;
1400  }
1401
1402  // Memoize node if it doesn't produce a flag.
1403  SDNode *N;
1404  MVT::ValueType *VTs = getNodeValueTypes(VT);
1405
1406  if (VT != MVT::Flag) {
1407    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1408    void *IP = 0;
1409    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410      return SDOperand(E, 0);
1411    N = new SDNode(Opcode, N1, N2, N3);
1412    N->setValueTypes(VTs, 1);
1413    CSEMap.InsertNode(N, IP);
1414  } else {
1415    N = new SDNode(Opcode, N1, N2, N3);
1416    N->setValueTypes(VTs, 1);
1417  }
1418  AllNodes.push_back(N);
1419  return SDOperand(N, 0);
1420}
1421
1422SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1423                                SDOperand N1, SDOperand N2, SDOperand N3,
1424                                SDOperand N4) {
1425  SDOperand Ops[] = { N1, N2, N3, N4 };
1426  return getNode(Opcode, VT, Ops, 4);
1427}
1428
1429SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1430                                SDOperand N1, SDOperand N2, SDOperand N3,
1431                                SDOperand N4, SDOperand N5) {
1432  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1433  return getNode(Opcode, VT, Ops, 5);
1434}
1435
1436SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1437                                SDOperand Chain, SDOperand Ptr,
1438                                SDOperand SV) {
1439  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1440
1441  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, SV);
1442  void *IP = 0;
1443  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1444    return SDOperand(E, 0);
1445  SDNode *N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1446  N->setValueTypes(VTs, 2);
1447  CSEMap.InsertNode(N, IP);
1448  AllNodes.push_back(N);
1449  return SDOperand(N, 0);
1450}
1451
1452SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1453                                   SDOperand Chain, SDOperand Ptr,
1454                                   SDOperand SV) {
1455  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1456                      getValueType(EVT) };
1457  // Add token chain.
1458  MVT::ValueType *VTs = getNodeValueTypes(MVT::Vector, MVT::Other);
1459  return getNode(ISD::VLOAD, VTs, 2, Ops, 5);
1460}
1461
1462SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1463                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1464                                   MVT::ValueType EVT) {
1465  SDOperand Ops[] = { Chain, Ptr, SV, getValueType(EVT) };
1466  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1467  return getNode(Opcode, VTs, 2, Ops, 4);
1468}
1469
1470SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1471                                 SDOperand Chain, SDOperand Ptr,
1472                                 SDOperand SV) {
1473  SDOperand Ops[] = { Chain, Ptr, SV };
1474  // Add token chain.
1475  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1476  return getNode(ISD::VAARG, VTs, 2, Ops, 3);
1477}
1478
1479SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1480                                const SDOperand *Ops, unsigned NumOps) {
1481  switch (NumOps) {
1482  case 0: return getNode(Opcode, VT);
1483  case 1: return getNode(Opcode, VT, Ops[0]);
1484  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1485  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1486  default: break;
1487  }
1488
1489  switch (Opcode) {
1490  default: break;
1491  case ISD::TRUNCSTORE: {
1492    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1493    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1494#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1495    // If this is a truncating store of a constant, convert to the desired type
1496    // and store it instead.
1497    if (isa<Constant>(Ops[0])) {
1498      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1499      if (isa<Constant>(Op))
1500        N1 = Op;
1501    }
1502    // Also for ConstantFP?
1503#endif
1504    if (Ops[0].getValueType() == EVT)       // Normal store?
1505      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1506    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1507    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1508           "Can't do FP-INT conversion!");
1509    break;
1510  }
1511  case ISD::SELECT_CC: {
1512    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1513    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1514           "LHS and RHS of condition must have same type!");
1515    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1516           "True and False arms of SelectCC must have same type!");
1517    assert(Ops[2].getValueType() == VT &&
1518           "select_cc node must be of same type as true and false value!");
1519    break;
1520  }
1521  case ISD::BR_CC: {
1522    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1523    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1524           "LHS/RHS of comparison should match types!");
1525    break;
1526  }
1527  }
1528
1529  // Memoize nodes.
1530  SDNode *N;
1531  MVT::ValueType *VTs = getNodeValueTypes(VT);
1532  if (VT != MVT::Flag) {
1533    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1534    void *IP = 0;
1535    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1536      return SDOperand(E, 0);
1537    N = new SDNode(Opcode, Ops, NumOps);
1538    N->setValueTypes(VTs, 1);
1539    CSEMap.InsertNode(N, IP);
1540  } else {
1541    N = new SDNode(Opcode, Ops, NumOps);
1542    N->setValueTypes(VTs, 1);
1543  }
1544  AllNodes.push_back(N);
1545  return SDOperand(N, 0);
1546}
1547
1548SDOperand SelectionDAG::getNode(unsigned Opcode,
1549                                std::vector<MVT::ValueType> &ResultTys,
1550                                const SDOperand *Ops, unsigned NumOps) {
1551  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1552                 Ops, NumOps);
1553}
1554
1555SDOperand SelectionDAG::getNode(unsigned Opcode,
1556                                const MVT::ValueType *VTs, unsigned NumVTs,
1557                                const SDOperand *Ops, unsigned NumOps) {
1558  if (NumVTs == 1)
1559    return getNode(Opcode, VTs[0], Ops, NumOps);
1560
1561  switch (Opcode) {
1562  case ISD::EXTLOAD:
1563  case ISD::SEXTLOAD:
1564  case ISD::ZEXTLOAD: {
1565    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1566    assert(NumOps == 4 && NumVTs == 2 && "Bad *EXTLOAD!");
1567    // If they are asking for an extending load from/to the same thing, return a
1568    // normal load.
1569    if (VTs[0] == EVT)
1570      return getLoad(VTs[0], Ops[0], Ops[1], Ops[2]);
1571    if (MVT::isVector(VTs[0])) {
1572      assert(EVT == MVT::getVectorBaseType(VTs[0]) &&
1573             "Invalid vector extload!");
1574    } else {
1575      assert(EVT < VTs[0] &&
1576             "Should only be an extending load, not truncating!");
1577    }
1578    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(VTs[0])) &&
1579           "Cannot sign/zero extend a FP/Vector load!");
1580    assert(MVT::isInteger(VTs[0]) == MVT::isInteger(EVT) &&
1581           "Cannot convert from FP to Int or Int -> FP!");
1582    break;
1583  }
1584
1585  // FIXME: figure out how to safely handle things like
1586  // int foo(int x) { return 1 << (x & 255); }
1587  // int bar() { return foo(256); }
1588#if 0
1589  case ISD::SRA_PARTS:
1590  case ISD::SRL_PARTS:
1591  case ISD::SHL_PARTS:
1592    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1593        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1594      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1595    else if (N3.getOpcode() == ISD::AND)
1596      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1597        // If the and is only masking out bits that cannot effect the shift,
1598        // eliminate the and.
1599        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1600        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1601          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1602      }
1603    break;
1604#endif
1605  }
1606
1607  // Memoize the node unless it returns a flag.
1608  SDNode *N;
1609  if (VTs[NumVTs-1] != MVT::Flag) {
1610    SelectionDAGCSEMap::NodeID ID;
1611    ID.SetOpcode(Opcode);
1612    ID.SetValueTypes(VTs);
1613    ID.SetOperands(&Ops[0], NumOps);
1614    void *IP = 0;
1615    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1616      return SDOperand(E, 0);
1617    N = new SDNode(Opcode, Ops, NumOps);
1618    N->setValueTypes(VTs, NumVTs);
1619    CSEMap.InsertNode(N, IP);
1620  } else {
1621    N = new SDNode(Opcode, Ops, NumOps);
1622    N->setValueTypes(VTs, NumVTs);
1623  }
1624  AllNodes.push_back(N);
1625  return SDOperand(N, 0);
1626}
1627
1628
1629MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT) {
1630  return SDNode::getValueTypeList(VT);
1631}
1632
1633MVT::ValueType *SelectionDAG::getNodeValueTypes(
1634                                        std::vector<MVT::ValueType> &RetVals) {
1635  switch (RetVals.size()) {
1636  case 0: assert(0 && "Cannot have nodes without results!");
1637  case 1: return SDNode::getValueTypeList(RetVals[0]);
1638  case 2: return getNodeValueTypes(RetVals[0], RetVals[1]);
1639  default: break;
1640  }
1641
1642  std::list<std::vector<MVT::ValueType> >::iterator I =
1643    std::find(VTList.begin(), VTList.end(), RetVals);
1644  if (I == VTList.end()) {
1645    VTList.push_front(RetVals);
1646    I = VTList.begin();
1647  }
1648
1649  return &(*I)[0];
1650}
1651
1652MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT1,
1653                                                MVT::ValueType VT2) {
1654  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1655       E = VTList.end(); I != E; ++I) {
1656    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1657      return &(*I)[0];
1658  }
1659  std::vector<MVT::ValueType> V;
1660  V.push_back(VT1);
1661  V.push_back(VT2);
1662  VTList.push_front(V);
1663  return &(*VTList.begin())[0];
1664}
1665
1666MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT1,
1667                                                MVT::ValueType VT2,
1668                                                MVT::ValueType VT3) {
1669  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1670    E = VTList.end(); I != E; ++I) {
1671      if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1672          (*I)[2] == VT3)
1673        return &(*I)[0];
1674    }
1675  std::vector<MVT::ValueType> V;
1676  V.push_back(VT1);
1677  V.push_back(VT2);
1678  V.push_back(VT3);
1679  VTList.push_front(V);
1680  return &(*VTList.begin())[0];
1681}
1682
1683
1684/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1685/// specified operands.  If the resultant node already exists in the DAG,
1686/// this does not modify the specified node, instead it returns the node that
1687/// already exists.  If the resultant node does not exist in the DAG, the
1688/// input node is returned.  As a degenerate case, if you specify the same
1689/// input operands as the node already has, the input node is returned.
1690SDOperand SelectionDAG::
1691UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1692  SDNode *N = InN.Val;
1693  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1694
1695  // Check to see if there is no change.
1696  if (Op == N->getOperand(0)) return InN;
1697
1698  // See if the modified node already exists.
1699  void *InsertPos = 0;
1700  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1701    return SDOperand(Existing, InN.ResNo);
1702
1703  // Nope it doesn't.  Remove the node from it's current place in the maps.
1704  if (InsertPos)
1705    RemoveNodeFromCSEMaps(N);
1706
1707  // Now we update the operands.
1708  N->OperandList[0].Val->removeUser(N);
1709  Op.Val->addUser(N);
1710  N->OperandList[0] = Op;
1711
1712  // If this gets put into a CSE map, add it.
1713  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1714  return InN;
1715}
1716
1717SDOperand SelectionDAG::
1718UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1719  SDNode *N = InN.Val;
1720  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1721
1722  // Check to see if there is no change.
1723  bool AnyChange = false;
1724  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1725    return InN;   // No operands changed, just return the input node.
1726
1727  // See if the modified node already exists.
1728  void *InsertPos = 0;
1729  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1730    return SDOperand(Existing, InN.ResNo);
1731
1732  // Nope it doesn't.  Remove the node from it's current place in the maps.
1733  if (InsertPos)
1734    RemoveNodeFromCSEMaps(N);
1735
1736  // Now we update the operands.
1737  if (N->OperandList[0] != Op1) {
1738    N->OperandList[0].Val->removeUser(N);
1739    Op1.Val->addUser(N);
1740    N->OperandList[0] = Op1;
1741  }
1742  if (N->OperandList[1] != Op2) {
1743    N->OperandList[1].Val->removeUser(N);
1744    Op2.Val->addUser(N);
1745    N->OperandList[1] = Op2;
1746  }
1747
1748  // If this gets put into a CSE map, add it.
1749  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1750  return InN;
1751}
1752
1753SDOperand SelectionDAG::
1754UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1755  SDOperand Ops[] = { Op1, Op2, Op3 };
1756  return UpdateNodeOperands(N, Ops, 3);
1757}
1758
1759SDOperand SelectionDAG::
1760UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1761                   SDOperand Op3, SDOperand Op4) {
1762  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1763  return UpdateNodeOperands(N, Ops, 4);
1764}
1765
1766SDOperand SelectionDAG::
1767UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1768                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1769  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1770  return UpdateNodeOperands(N, Ops, 5);
1771}
1772
1773
1774SDOperand SelectionDAG::
1775UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1776  SDNode *N = InN.Val;
1777  assert(N->getNumOperands() == NumOps &&
1778         "Update with wrong number of operands");
1779
1780  // Check to see if there is no change.
1781  bool AnyChange = false;
1782  for (unsigned i = 0; i != NumOps; ++i) {
1783    if (Ops[i] != N->getOperand(i)) {
1784      AnyChange = true;
1785      break;
1786    }
1787  }
1788
1789  // No operands changed, just return the input node.
1790  if (!AnyChange) return InN;
1791
1792  // See if the modified node already exists.
1793  void *InsertPos = 0;
1794  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1795    return SDOperand(Existing, InN.ResNo);
1796
1797  // Nope it doesn't.  Remove the node from it's current place in the maps.
1798  if (InsertPos)
1799    RemoveNodeFromCSEMaps(N);
1800
1801  // Now we update the operands.
1802  for (unsigned i = 0; i != NumOps; ++i) {
1803    if (N->OperandList[i] != Ops[i]) {
1804      N->OperandList[i].Val->removeUser(N);
1805      Ops[i].Val->addUser(N);
1806      N->OperandList[i] = Ops[i];
1807    }
1808  }
1809
1810  // If this gets put into a CSE map, add it.
1811  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1812  return InN;
1813}
1814
1815
1816
1817
1818/// SelectNodeTo - These are used for target selectors to *mutate* the
1819/// specified node to have the specified return type, Target opcode, and
1820/// operands.  Note that target opcodes are stored as
1821/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1822///
1823/// Note that SelectNodeTo returns the resultant node.  If there is already a
1824/// node of the specified opcode and operands, it returns that node instead of
1825/// the current one.
1826SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1827                                     MVT::ValueType VT) {
1828  MVT::ValueType *VTs = getNodeValueTypes(VT);
1829  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1830  void *IP = 0;
1831  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1832    return SDOperand(ON, 0);
1833
1834  RemoveNodeFromCSEMaps(N);
1835
1836  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1837  N->setValueTypes(getNodeValueTypes(VT), 1);
1838
1839  CSEMap.InsertNode(N, IP);
1840  return SDOperand(N, 0);
1841}
1842
1843SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1844                                     MVT::ValueType VT, SDOperand Op1) {
1845  // If an identical node already exists, use it.
1846  MVT::ValueType *VTs = getNodeValueTypes(VT);
1847  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1848  void *IP = 0;
1849  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1850    return SDOperand(ON, 0);
1851
1852  RemoveNodeFromCSEMaps(N);
1853  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1854  N->setValueTypes(getNodeValueTypes(VT), 1);
1855  N->setOperands(Op1);
1856  CSEMap.InsertNode(N, IP);
1857  return SDOperand(N, 0);
1858}
1859
1860SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1861                                     MVT::ValueType VT, SDOperand Op1,
1862                                     SDOperand Op2) {
1863  // If an identical node already exists, use it.
1864  MVT::ValueType *VTs = getNodeValueTypes(VT);
1865  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1866  void *IP = 0;
1867  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1868    return SDOperand(ON, 0);
1869
1870  RemoveNodeFromCSEMaps(N);
1871  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1872  N->setValueTypes(VTs, 1);
1873  N->setOperands(Op1, Op2);
1874
1875  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1876  return SDOperand(N, 0);
1877}
1878
1879SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1880                                     MVT::ValueType VT, SDOperand Op1,
1881                                     SDOperand Op2, SDOperand Op3) {
1882  // If an identical node already exists, use it.
1883  MVT::ValueType *VTs = getNodeValueTypes(VT);
1884  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2, Op3);
1885  void *IP = 0;
1886  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1887    return SDOperand(ON, 0);
1888
1889  RemoveNodeFromCSEMaps(N);
1890  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1891  N->setValueTypes(VTs, 1);
1892  N->setOperands(Op1, Op2, Op3);
1893
1894  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1895  return SDOperand(N, 0);
1896}
1897
1898SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1899                                     MVT::ValueType VT, SDOperand Op1,
1900                                     SDOperand Op2, SDOperand Op3,
1901                                     SDOperand Op4) {
1902  // If an identical node already exists, use it.
1903  MVT::ValueType *VTs = getNodeValueTypes(VT);
1904  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1905  ID.AddOperand(Op1);
1906  ID.AddOperand(Op2);
1907  ID.AddOperand(Op3);
1908  ID.AddOperand(Op4);
1909  void *IP = 0;
1910  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1911    return SDOperand(ON, 0);
1912
1913  RemoveNodeFromCSEMaps(N);
1914  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1915  N->setValueTypes(VTs, 1);
1916  N->setOperands(Op1, Op2, Op3, Op4);
1917
1918  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1919  return SDOperand(N, 0);
1920}
1921
1922SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1923                                     MVT::ValueType VT, SDOperand Op1,
1924                                     SDOperand Op2, SDOperand Op3,
1925                                     SDOperand Op4, SDOperand Op5) {
1926  MVT::ValueType *VTs = getNodeValueTypes(VT);
1927  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1928  ID.AddOperand(Op1);
1929  ID.AddOperand(Op2);
1930  ID.AddOperand(Op3);
1931  ID.AddOperand(Op4);
1932  ID.AddOperand(Op5);
1933  void *IP = 0;
1934  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1935    return SDOperand(ON, 0);
1936
1937  RemoveNodeFromCSEMaps(N);
1938  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1939  N->setValueTypes(VTs, 1);
1940  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1941
1942  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1943  return SDOperand(N, 0);
1944}
1945
1946SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1947                                     MVT::ValueType VT, SDOperand Op1,
1948                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1949                                     SDOperand Op5, SDOperand Op6) {
1950  MVT::ValueType *VTs = getNodeValueTypes(VT);
1951  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1952  ID.AddOperand(Op1);
1953  ID.AddOperand(Op2);
1954  ID.AddOperand(Op3);
1955  ID.AddOperand(Op4);
1956  ID.AddOperand(Op5);
1957  ID.AddOperand(Op6);
1958  void *IP = 0;
1959  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1960    return SDOperand(ON, 0);
1961
1962  RemoveNodeFromCSEMaps(N);
1963  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1964  N->setValueTypes(VTs, 1);
1965  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1966
1967  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1968  return SDOperand(N, 0);
1969}
1970
1971SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1972                                     MVT::ValueType VT, SDOperand Op1,
1973                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1974                                     SDOperand Op5, SDOperand Op6,
1975				     SDOperand Op7) {
1976  MVT::ValueType *VTs = getNodeValueTypes(VT);
1977  // If an identical node already exists, use it.
1978  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1979  ID.AddOperand(Op1);
1980  ID.AddOperand(Op2);
1981  ID.AddOperand(Op3);
1982  ID.AddOperand(Op4);
1983  ID.AddOperand(Op5);
1984  ID.AddOperand(Op6);
1985  ID.AddOperand(Op7);
1986  void *IP = 0;
1987  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1988    return SDOperand(ON, 0);
1989
1990  RemoveNodeFromCSEMaps(N);
1991  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1992  N->setValueTypes(VTs, 1);
1993  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1994
1995  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1996  return SDOperand(N, 0);
1997}
1998SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1999                                     MVT::ValueType VT, SDOperand Op1,
2000                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2001                                     SDOperand Op5, SDOperand Op6,
2002				     SDOperand Op7, SDOperand Op8) {
2003  // If an identical node already exists, use it.
2004  MVT::ValueType *VTs = getNodeValueTypes(VT);
2005  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2006  ID.AddOperand(Op1);
2007  ID.AddOperand(Op2);
2008  ID.AddOperand(Op3);
2009  ID.AddOperand(Op4);
2010  ID.AddOperand(Op5);
2011  ID.AddOperand(Op6);
2012  ID.AddOperand(Op7);
2013  ID.AddOperand(Op8);
2014  void *IP = 0;
2015  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2016    return SDOperand(ON, 0);
2017
2018  RemoveNodeFromCSEMaps(N);
2019  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2020  N->setValueTypes(VTs, 1);
2021  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2022
2023  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2024  return SDOperand(N, 0);
2025}
2026
2027SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2028                                     MVT::ValueType VT1, MVT::ValueType VT2,
2029                                     SDOperand Op1, SDOperand Op2) {
2030  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2031  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2032  void *IP = 0;
2033  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2034    return SDOperand(ON, 0);
2035
2036  RemoveNodeFromCSEMaps(N);
2037  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2038  N->setValueTypes(VTs, 2);
2039  N->setOperands(Op1, Op2);
2040
2041  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2042  return SDOperand(N, 0);
2043}
2044
2045SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2046                                     MVT::ValueType VT1, MVT::ValueType VT2,
2047                                     SDOperand Op1, SDOperand Op2,
2048                                     SDOperand Op3) {
2049  // If an identical node already exists, use it.
2050  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2051  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2052                                Op1, Op2, Op3);
2053  void *IP = 0;
2054  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2055    return SDOperand(ON, 0);
2056
2057  RemoveNodeFromCSEMaps(N);
2058  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2059  N->setValueTypes(VTs, 2);
2060  N->setOperands(Op1, Op2, Op3);
2061
2062  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2063  return SDOperand(N, 0);
2064}
2065
2066SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2067                                     MVT::ValueType VT1, MVT::ValueType VT2,
2068                                     SDOperand Op1, SDOperand Op2,
2069                                     SDOperand Op3, SDOperand Op4) {
2070  // If an identical node already exists, use it.
2071  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2072  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2073  ID.AddOperand(Op1);
2074  ID.AddOperand(Op2);
2075  ID.AddOperand(Op3);
2076  ID.AddOperand(Op4);
2077  void *IP = 0;
2078  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2079    return SDOperand(ON, 0);
2080
2081  RemoveNodeFromCSEMaps(N);
2082  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2083  N->setValueTypes(VTs, 2);
2084  N->setOperands(Op1, Op2, Op3, Op4);
2085
2086  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2087  return SDOperand(N, 0);
2088}
2089
2090SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2091                                     MVT::ValueType VT1, MVT::ValueType VT2,
2092                                     SDOperand Op1, SDOperand Op2,
2093                                     SDOperand Op3, SDOperand Op4,
2094                                     SDOperand Op5) {
2095  // If an identical node already exists, use it.
2096  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2097  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2098  ID.AddOperand(Op1);
2099  ID.AddOperand(Op2);
2100  ID.AddOperand(Op3);
2101  ID.AddOperand(Op4);
2102  ID.AddOperand(Op5);
2103  void *IP = 0;
2104  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2105    return SDOperand(ON, 0);
2106
2107  RemoveNodeFromCSEMaps(N);
2108  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2109  N->setValueTypes(VTs, 2);
2110  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2111
2112  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2113  return SDOperand(N, 0);
2114}
2115
2116/// getTargetNode - These are used for target selectors to create a new node
2117/// with specified return type(s), target opcode, and operands.
2118///
2119/// Note that getTargetNode returns the resultant node.  If there is already a
2120/// node of the specified opcode and operands, it returns that node instead of
2121/// the current one.
2122SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2123  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2124}
2125SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2126                                    SDOperand Op1) {
2127  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2128}
2129SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2130                                    SDOperand Op1, SDOperand Op2) {
2131  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2132}
2133SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2134                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2135  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2136}
2137SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2138                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2139                                    SDOperand Op4) {
2140  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2141}
2142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2143                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2144                                    SDOperand Op4, SDOperand Op5) {
2145  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2146}
2147SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2148                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2149                                    SDOperand Op4, SDOperand Op5,
2150                                    SDOperand Op6) {
2151  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2152  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 6).Val;
2153}
2154SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2155                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2156                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2157                                    SDOperand Op7) {
2158  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2159  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 7).Val;
2160}
2161SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2162                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2163                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2164                                    SDOperand Op7, SDOperand Op8) {
2165  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8 };
2166  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, 8).Val;
2167}
2168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2169                                    const SDOperand *Ops, unsigned NumOps) {
2170  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2171}
2172SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2173                                    MVT::ValueType VT2, SDOperand Op1) {
2174  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2175  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2176}
2177SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2178                                    MVT::ValueType VT2, SDOperand Op1,
2179                                    SDOperand Op2) {
2180  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2181  SDOperand Ops[] = { Op1, Op2 };
2182  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2183}
2184SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2185                                    MVT::ValueType VT2, SDOperand Op1,
2186                                    SDOperand Op2, SDOperand Op3) {
2187  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2188  SDOperand Ops[] = { Op1, Op2, Op3 };
2189  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2190}
2191SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2192                                    MVT::ValueType VT2, SDOperand Op1,
2193                                    SDOperand Op2, SDOperand Op3,
2194                                    SDOperand Op4) {
2195  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2196  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2197  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 4).Val;
2198}
2199SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2200                                    MVT::ValueType VT2, SDOperand Op1,
2201                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2202                                    SDOperand Op5) {
2203  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2204  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2205  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 5).Val;
2206}
2207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2208                                    MVT::ValueType VT2, SDOperand Op1,
2209                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2210                                    SDOperand Op5, SDOperand Op6) {
2211  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2212  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2213  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 6).Val;
2214}
2215SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2216                                    MVT::ValueType VT2, SDOperand Op1,
2217                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2218                                    SDOperand Op5, SDOperand Op6,
2219                                    SDOperand Op7) {
2220  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2221  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2222  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 7).Val;
2223}
2224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2225                                    MVT::ValueType VT2, MVT::ValueType VT3,
2226                                    SDOperand Op1, SDOperand Op2) {
2227  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2228  SDOperand Ops[] = { Op1, Op2 };
2229  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2230}
2231SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2232                                    MVT::ValueType VT2, MVT::ValueType VT3,
2233                                    SDOperand Op1, SDOperand Op2,
2234                                    SDOperand Op3, SDOperand Op4,
2235                                    SDOperand Op5) {
2236  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2237  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2238  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 5).Val;
2239}
2240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2241                                    MVT::ValueType VT2, MVT::ValueType VT3,
2242                                    SDOperand Op1, SDOperand Op2,
2243                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2244                                    SDOperand Op6) {
2245  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2246  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6 };
2247  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 6).Val;
2248}
2249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2250                                    MVT::ValueType VT2, MVT::ValueType VT3,
2251                                    SDOperand Op1, SDOperand Op2,
2252                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2253                                    SDOperand Op6, SDOperand Op7) {
2254  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2255  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5, Op6, Op7 };
2256  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 7).Val;
2257}
2258SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2259                                    MVT::ValueType VT2,
2260                                    const SDOperand *Ops, unsigned NumOps) {
2261  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2262  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2263}
2264
2265/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2266/// This can cause recursive merging of nodes in the DAG.
2267///
2268/// This version assumes From/To have a single result value.
2269///
2270void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2271                                      std::vector<SDNode*> *Deleted) {
2272  SDNode *From = FromN.Val, *To = ToN.Val;
2273  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2274         "Cannot replace with this method!");
2275  assert(From != To && "Cannot replace uses of with self");
2276
2277  while (!From->use_empty()) {
2278    // Process users until they are all gone.
2279    SDNode *U = *From->use_begin();
2280
2281    // This node is about to morph, remove its old self from the CSE maps.
2282    RemoveNodeFromCSEMaps(U);
2283
2284    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2285         I != E; ++I)
2286      if (I->Val == From) {
2287        From->removeUser(U);
2288        I->Val = To;
2289        To->addUser(U);
2290      }
2291
2292    // Now that we have modified U, add it back to the CSE maps.  If it already
2293    // exists there, recursively merge the results together.
2294    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2295      ReplaceAllUsesWith(U, Existing, Deleted);
2296      // U is now dead.
2297      if (Deleted) Deleted->push_back(U);
2298      DeleteNodeNotInCSEMaps(U);
2299    }
2300  }
2301}
2302
2303/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2304/// This can cause recursive merging of nodes in the DAG.
2305///
2306/// This version assumes From/To have matching types and numbers of result
2307/// values.
2308///
2309void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2310                                      std::vector<SDNode*> *Deleted) {
2311  assert(From != To && "Cannot replace uses of with self");
2312  assert(From->getNumValues() == To->getNumValues() &&
2313         "Cannot use this version of ReplaceAllUsesWith!");
2314  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2315    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2316    return;
2317  }
2318
2319  while (!From->use_empty()) {
2320    // Process users until they are all gone.
2321    SDNode *U = *From->use_begin();
2322
2323    // This node is about to morph, remove its old self from the CSE maps.
2324    RemoveNodeFromCSEMaps(U);
2325
2326    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2327         I != E; ++I)
2328      if (I->Val == From) {
2329        From->removeUser(U);
2330        I->Val = To;
2331        To->addUser(U);
2332      }
2333
2334    // Now that we have modified U, add it back to the CSE maps.  If it already
2335    // exists there, recursively merge the results together.
2336    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2337      ReplaceAllUsesWith(U, Existing, Deleted);
2338      // U is now dead.
2339      if (Deleted) Deleted->push_back(U);
2340      DeleteNodeNotInCSEMaps(U);
2341    }
2342  }
2343}
2344
2345/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2346/// This can cause recursive merging of nodes in the DAG.
2347///
2348/// This version can replace From with any result values.  To must match the
2349/// number and types of values returned by From.
2350void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2351                                      const SDOperand *To,
2352                                      std::vector<SDNode*> *Deleted) {
2353  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2354    // Degenerate case handled above.
2355    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2356    return;
2357  }
2358
2359  while (!From->use_empty()) {
2360    // Process users until they are all gone.
2361    SDNode *U = *From->use_begin();
2362
2363    // This node is about to morph, remove its old self from the CSE maps.
2364    RemoveNodeFromCSEMaps(U);
2365
2366    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2367         I != E; ++I)
2368      if (I->Val == From) {
2369        const SDOperand &ToOp = To[I->ResNo];
2370        From->removeUser(U);
2371        *I = ToOp;
2372        ToOp.Val->addUser(U);
2373      }
2374
2375    // Now that we have modified U, add it back to the CSE maps.  If it already
2376    // exists there, recursively merge the results together.
2377    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2378      ReplaceAllUsesWith(U, Existing, Deleted);
2379      // U is now dead.
2380      if (Deleted) Deleted->push_back(U);
2381      DeleteNodeNotInCSEMaps(U);
2382    }
2383  }
2384}
2385
2386/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2387/// uses of other values produced by From.Val alone.  The Deleted vector is
2388/// handled the same was as for ReplaceAllUsesWith.
2389void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2390                                             std::vector<SDNode*> &Deleted) {
2391  assert(From != To && "Cannot replace a value with itself");
2392  // Handle the simple, trivial, case efficiently.
2393  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2394    ReplaceAllUsesWith(From, To, &Deleted);
2395    return;
2396  }
2397
2398  // Get all of the users in a nice, deterministically ordered, uniqued set.
2399  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2400
2401  while (!Users.empty()) {
2402    // We know that this user uses some value of From.  If it is the right
2403    // value, update it.
2404    SDNode *User = Users.back();
2405    Users.pop_back();
2406
2407    for (SDOperand *Op = User->OperandList,
2408         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2409      if (*Op == From) {
2410        // Okay, we know this user needs to be updated.  Remove its old self
2411        // from the CSE maps.
2412        RemoveNodeFromCSEMaps(User);
2413
2414        // Update all operands that match "From".
2415        for (; Op != E; ++Op) {
2416          if (*Op == From) {
2417            From.Val->removeUser(User);
2418            *Op = To;
2419            To.Val->addUser(User);
2420          }
2421        }
2422
2423        // Now that we have modified User, add it back to the CSE maps.  If it
2424        // already exists there, recursively merge the results together.
2425        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2426          unsigned NumDeleted = Deleted.size();
2427          ReplaceAllUsesWith(User, Existing, &Deleted);
2428
2429          // User is now dead.
2430          Deleted.push_back(User);
2431          DeleteNodeNotInCSEMaps(User);
2432
2433          // We have to be careful here, because ReplaceAllUsesWith could have
2434          // deleted a user of From, which means there may be dangling pointers
2435          // in the "Users" setvector.  Scan over the deleted node pointers and
2436          // remove them from the setvector.
2437          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2438            Users.remove(Deleted[i]);
2439        }
2440        break;   // Exit the operand scanning loop.
2441      }
2442    }
2443  }
2444}
2445
2446
2447/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2448/// their allnodes order. It returns the maximum id.
2449unsigned SelectionDAG::AssignNodeIds() {
2450  unsigned Id = 0;
2451  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2452    SDNode *N = I;
2453    N->setNodeId(Id++);
2454  }
2455  return Id;
2456}
2457
2458/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2459/// based on their topological order. It returns the maximum id and a vector
2460/// of the SDNodes* in assigned order by reference.
2461unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2462  unsigned DAGSize = AllNodes.size();
2463  std::vector<unsigned> InDegree(DAGSize);
2464  std::vector<SDNode*> Sources;
2465
2466  // Use a two pass approach to avoid using a std::map which is slow.
2467  unsigned Id = 0;
2468  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2469    SDNode *N = I;
2470    N->setNodeId(Id++);
2471    unsigned Degree = N->use_size();
2472    InDegree[N->getNodeId()] = Degree;
2473    if (Degree == 0)
2474      Sources.push_back(N);
2475  }
2476
2477  TopOrder.clear();
2478  while (!Sources.empty()) {
2479    SDNode *N = Sources.back();
2480    Sources.pop_back();
2481    TopOrder.push_back(N);
2482    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2483      SDNode *P = I->Val;
2484      unsigned Degree = --InDegree[P->getNodeId()];
2485      if (Degree == 0)
2486        Sources.push_back(P);
2487    }
2488  }
2489
2490  // Second pass, assign the actual topological order as node ids.
2491  Id = 0;
2492  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2493       TI != TE; ++TI)
2494    (*TI)->setNodeId(Id++);
2495
2496  return Id;
2497}
2498
2499
2500
2501//===----------------------------------------------------------------------===//
2502//                              SDNode Class
2503//===----------------------------------------------------------------------===//
2504
2505// Out-of-line virtual method to give class a home.
2506void SDNode::ANCHOR() {
2507}
2508
2509/// getValueTypeList - Return a pointer to the specified value type.
2510///
2511MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2512  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2513  VTs[VT] = VT;
2514  return &VTs[VT];
2515}
2516
2517/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2518/// indicated value.  This method ignores uses of other values defined by this
2519/// operation.
2520bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2521  assert(Value < getNumValues() && "Bad value!");
2522
2523  // If there is only one value, this is easy.
2524  if (getNumValues() == 1)
2525    return use_size() == NUses;
2526  if (Uses.size() < NUses) return false;
2527
2528  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2529
2530  std::set<SDNode*> UsersHandled;
2531
2532  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2533       UI != E; ++UI) {
2534    SDNode *User = *UI;
2535    if (User->getNumOperands() == 1 ||
2536        UsersHandled.insert(User).second)     // First time we've seen this?
2537      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2538        if (User->getOperand(i) == TheValue) {
2539          if (NUses == 0)
2540            return false;   // too many uses
2541          --NUses;
2542        }
2543  }
2544
2545  // Found exactly the right number of uses?
2546  return NUses == 0;
2547}
2548
2549
2550// isOnlyUse - Return true if this node is the only use of N.
2551bool SDNode::isOnlyUse(SDNode *N) const {
2552  bool Seen = false;
2553  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2554    SDNode *User = *I;
2555    if (User == this)
2556      Seen = true;
2557    else
2558      return false;
2559  }
2560
2561  return Seen;
2562}
2563
2564// isOperand - Return true if this node is an operand of N.
2565bool SDOperand::isOperand(SDNode *N) const {
2566  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2567    if (*this == N->getOperand(i))
2568      return true;
2569  return false;
2570}
2571
2572bool SDNode::isOperand(SDNode *N) const {
2573  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2574    if (this == N->OperandList[i].Val)
2575      return true;
2576  return false;
2577}
2578
2579const char *SDNode::getOperationName(const SelectionDAG *G) const {
2580  switch (getOpcode()) {
2581  default:
2582    if (getOpcode() < ISD::BUILTIN_OP_END)
2583      return "<<Unknown DAG Node>>";
2584    else {
2585      if (G) {
2586        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2587          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2588            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2589
2590        TargetLowering &TLI = G->getTargetLoweringInfo();
2591        const char *Name =
2592          TLI.getTargetNodeName(getOpcode());
2593        if (Name) return Name;
2594      }
2595
2596      return "<<Unknown Target Node>>";
2597    }
2598
2599  case ISD::PCMARKER:      return "PCMarker";
2600  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2601  case ISD::SRCVALUE:      return "SrcValue";
2602  case ISD::EntryToken:    return "EntryToken";
2603  case ISD::TokenFactor:   return "TokenFactor";
2604  case ISD::AssertSext:    return "AssertSext";
2605  case ISD::AssertZext:    return "AssertZext";
2606
2607  case ISD::STRING:        return "String";
2608  case ISD::BasicBlock:    return "BasicBlock";
2609  case ISD::VALUETYPE:     return "ValueType";
2610  case ISD::Register:      return "Register";
2611
2612  case ISD::Constant:      return "Constant";
2613  case ISD::ConstantFP:    return "ConstantFP";
2614  case ISD::GlobalAddress: return "GlobalAddress";
2615  case ISD::FrameIndex:    return "FrameIndex";
2616  case ISD::JumpTable:     return "JumpTable";
2617  case ISD::ConstantPool:  return "ConstantPool";
2618  case ISD::ExternalSymbol: return "ExternalSymbol";
2619  case ISD::INTRINSIC_WO_CHAIN: {
2620    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2621    return Intrinsic::getName((Intrinsic::ID)IID);
2622  }
2623  case ISD::INTRINSIC_VOID:
2624  case ISD::INTRINSIC_W_CHAIN: {
2625    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2626    return Intrinsic::getName((Intrinsic::ID)IID);
2627  }
2628
2629  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2630  case ISD::TargetConstant: return "TargetConstant";
2631  case ISD::TargetConstantFP:return "TargetConstantFP";
2632  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2633  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2634  case ISD::TargetJumpTable:  return "TargetJumpTable";
2635  case ISD::TargetConstantPool:  return "TargetConstantPool";
2636  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2637
2638  case ISD::CopyToReg:     return "CopyToReg";
2639  case ISD::CopyFromReg:   return "CopyFromReg";
2640  case ISD::UNDEF:         return "undef";
2641  case ISD::MERGE_VALUES:  return "mergevalues";
2642  case ISD::INLINEASM:     return "inlineasm";
2643  case ISD::HANDLENODE:    return "handlenode";
2644  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2645  case ISD::CALL:          return "call";
2646
2647  // Unary operators
2648  case ISD::FABS:   return "fabs";
2649  case ISD::FNEG:   return "fneg";
2650  case ISD::FSQRT:  return "fsqrt";
2651  case ISD::FSIN:   return "fsin";
2652  case ISD::FCOS:   return "fcos";
2653
2654  // Binary operators
2655  case ISD::ADD:    return "add";
2656  case ISD::SUB:    return "sub";
2657  case ISD::MUL:    return "mul";
2658  case ISD::MULHU:  return "mulhu";
2659  case ISD::MULHS:  return "mulhs";
2660  case ISD::SDIV:   return "sdiv";
2661  case ISD::UDIV:   return "udiv";
2662  case ISD::SREM:   return "srem";
2663  case ISD::UREM:   return "urem";
2664  case ISD::AND:    return "and";
2665  case ISD::OR:     return "or";
2666  case ISD::XOR:    return "xor";
2667  case ISD::SHL:    return "shl";
2668  case ISD::SRA:    return "sra";
2669  case ISD::SRL:    return "srl";
2670  case ISD::ROTL:   return "rotl";
2671  case ISD::ROTR:   return "rotr";
2672  case ISD::FADD:   return "fadd";
2673  case ISD::FSUB:   return "fsub";
2674  case ISD::FMUL:   return "fmul";
2675  case ISD::FDIV:   return "fdiv";
2676  case ISD::FREM:   return "frem";
2677  case ISD::FCOPYSIGN: return "fcopysign";
2678  case ISD::VADD:   return "vadd";
2679  case ISD::VSUB:   return "vsub";
2680  case ISD::VMUL:   return "vmul";
2681  case ISD::VSDIV:  return "vsdiv";
2682  case ISD::VUDIV:  return "vudiv";
2683  case ISD::VAND:   return "vand";
2684  case ISD::VOR:    return "vor";
2685  case ISD::VXOR:   return "vxor";
2686
2687  case ISD::SETCC:       return "setcc";
2688  case ISD::SELECT:      return "select";
2689  case ISD::SELECT_CC:   return "select_cc";
2690  case ISD::VSELECT:     return "vselect";
2691  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2692  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2693  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2694  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2695  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2696  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2697  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2698  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2699  case ISD::VBIT_CONVERT:        return "vbit_convert";
2700  case ISD::ADDC:        return "addc";
2701  case ISD::ADDE:        return "adde";
2702  case ISD::SUBC:        return "subc";
2703  case ISD::SUBE:        return "sube";
2704  case ISD::SHL_PARTS:   return "shl_parts";
2705  case ISD::SRA_PARTS:   return "sra_parts";
2706  case ISD::SRL_PARTS:   return "srl_parts";
2707
2708  // Conversion operators.
2709  case ISD::SIGN_EXTEND: return "sign_extend";
2710  case ISD::ZERO_EXTEND: return "zero_extend";
2711  case ISD::ANY_EXTEND:  return "any_extend";
2712  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2713  case ISD::TRUNCATE:    return "truncate";
2714  case ISD::FP_ROUND:    return "fp_round";
2715  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2716  case ISD::FP_EXTEND:   return "fp_extend";
2717
2718  case ISD::SINT_TO_FP:  return "sint_to_fp";
2719  case ISD::UINT_TO_FP:  return "uint_to_fp";
2720  case ISD::FP_TO_SINT:  return "fp_to_sint";
2721  case ISD::FP_TO_UINT:  return "fp_to_uint";
2722  case ISD::BIT_CONVERT: return "bit_convert";
2723
2724    // Control flow instructions
2725  case ISD::BR:      return "br";
2726  case ISD::BRIND:   return "brind";
2727  case ISD::BRCOND:  return "brcond";
2728  case ISD::BR_CC:   return "br_cc";
2729  case ISD::RET:     return "ret";
2730  case ISD::CALLSEQ_START:  return "callseq_start";
2731  case ISD::CALLSEQ_END:    return "callseq_end";
2732
2733    // Other operators
2734  case ISD::LOAD:               return "load";
2735  case ISD::STORE:              return "store";
2736  case ISD::VLOAD:              return "vload";
2737  case ISD::EXTLOAD:            return "extload";
2738  case ISD::SEXTLOAD:           return "sextload";
2739  case ISD::ZEXTLOAD:           return "zextload";
2740  case ISD::TRUNCSTORE:         return "truncstore";
2741  case ISD::VAARG:              return "vaarg";
2742  case ISD::VACOPY:             return "vacopy";
2743  case ISD::VAEND:              return "vaend";
2744  case ISD::VASTART:            return "vastart";
2745  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2746  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2747  case ISD::BUILD_PAIR:         return "build_pair";
2748  case ISD::STACKSAVE:          return "stacksave";
2749  case ISD::STACKRESTORE:       return "stackrestore";
2750
2751  // Block memory operations.
2752  case ISD::MEMSET:  return "memset";
2753  case ISD::MEMCPY:  return "memcpy";
2754  case ISD::MEMMOVE: return "memmove";
2755
2756  // Bit manipulation
2757  case ISD::BSWAP:   return "bswap";
2758  case ISD::CTPOP:   return "ctpop";
2759  case ISD::CTTZ:    return "cttz";
2760  case ISD::CTLZ:    return "ctlz";
2761
2762  // Debug info
2763  case ISD::LOCATION: return "location";
2764  case ISD::DEBUG_LOC: return "debug_loc";
2765  case ISD::DEBUG_LABEL: return "debug_label";
2766
2767  case ISD::CONDCODE:
2768    switch (cast<CondCodeSDNode>(this)->get()) {
2769    default: assert(0 && "Unknown setcc condition!");
2770    case ISD::SETOEQ:  return "setoeq";
2771    case ISD::SETOGT:  return "setogt";
2772    case ISD::SETOGE:  return "setoge";
2773    case ISD::SETOLT:  return "setolt";
2774    case ISD::SETOLE:  return "setole";
2775    case ISD::SETONE:  return "setone";
2776
2777    case ISD::SETO:    return "seto";
2778    case ISD::SETUO:   return "setuo";
2779    case ISD::SETUEQ:  return "setue";
2780    case ISD::SETUGT:  return "setugt";
2781    case ISD::SETUGE:  return "setuge";
2782    case ISD::SETULT:  return "setult";
2783    case ISD::SETULE:  return "setule";
2784    case ISD::SETUNE:  return "setune";
2785
2786    case ISD::SETEQ:   return "seteq";
2787    case ISD::SETGT:   return "setgt";
2788    case ISD::SETGE:   return "setge";
2789    case ISD::SETLT:   return "setlt";
2790    case ISD::SETLE:   return "setle";
2791    case ISD::SETNE:   return "setne";
2792    }
2793  }
2794}
2795
2796void SDNode::dump() const { dump(0); }
2797void SDNode::dump(const SelectionDAG *G) const {
2798  std::cerr << (void*)this << ": ";
2799
2800  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2801    if (i) std::cerr << ",";
2802    if (getValueType(i) == MVT::Other)
2803      std::cerr << "ch";
2804    else
2805      std::cerr << MVT::getValueTypeString(getValueType(i));
2806  }
2807  std::cerr << " = " << getOperationName(G);
2808
2809  std::cerr << " ";
2810  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2811    if (i) std::cerr << ", ";
2812    std::cerr << (void*)getOperand(i).Val;
2813    if (unsigned RN = getOperand(i).ResNo)
2814      std::cerr << ":" << RN;
2815  }
2816
2817  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2818    std::cerr << "<" << CSDN->getValue() << ">";
2819  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2820    std::cerr << "<" << CSDN->getValue() << ">";
2821  } else if (const GlobalAddressSDNode *GADN =
2822             dyn_cast<GlobalAddressSDNode>(this)) {
2823    int offset = GADN->getOffset();
2824    std::cerr << "<";
2825    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2826    if (offset > 0)
2827      std::cerr << " + " << offset;
2828    else
2829      std::cerr << " " << offset;
2830  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2831    std::cerr << "<" << FIDN->getIndex() << ">";
2832  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2833    int offset = CP->getOffset();
2834    std::cerr << "<" << *CP->get() << ">";
2835    if (offset > 0)
2836      std::cerr << " + " << offset;
2837    else
2838      std::cerr << " " << offset;
2839  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2840    std::cerr << "<";
2841    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2842    if (LBB)
2843      std::cerr << LBB->getName() << " ";
2844    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2845  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2846    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2847      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2848    } else {
2849      std::cerr << " #" << R->getReg();
2850    }
2851  } else if (const ExternalSymbolSDNode *ES =
2852             dyn_cast<ExternalSymbolSDNode>(this)) {
2853    std::cerr << "'" << ES->getSymbol() << "'";
2854  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2855    if (M->getValue())
2856      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2857    else
2858      std::cerr << "<null:" << M->getOffset() << ">";
2859  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2860    std::cerr << ":" << getValueTypeString(N->getVT());
2861  }
2862}
2863
2864static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2865  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2866    if (N->getOperand(i).Val->hasOneUse())
2867      DumpNodes(N->getOperand(i).Val, indent+2, G);
2868    else
2869      std::cerr << "\n" << std::string(indent+2, ' ')
2870                << (void*)N->getOperand(i).Val << ": <multiple use>";
2871
2872
2873  std::cerr << "\n" << std::string(indent, ' ');
2874  N->dump(G);
2875}
2876
2877void SelectionDAG::dump() const {
2878  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2879  std::vector<const SDNode*> Nodes;
2880  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2881       I != E; ++I)
2882    Nodes.push_back(I);
2883
2884  std::sort(Nodes.begin(), Nodes.end());
2885
2886  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2887    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2888      DumpNodes(Nodes[i], 2, this);
2889  }
2890
2891  DumpNodes(getRoot().Val, 2, this);
2892
2893  std::cerr << "\n\n";
2894}
2895
2896