SelectionDAG.cpp revision 3181a771ff5b2090b7ed55f9b18a684ea8fe625a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::MULHU:
36  case ISD::MULHS:
37  case ISD::FADD:
38  case ISD::FMUL:
39  case ISD::AND:
40  case ISD::OR:
41  case ISD::XOR: return true;
42  default: return false; // FIXME: Need commutative info for user ops!
43  }
44}
45
46static bool isAssociativeBinOp(unsigned Opcode) {
47  switch (Opcode) {
48  case ISD::ADD:
49  case ISD::MUL:
50  case ISD::AND:
51  case ISD::OR:
52  case ISD::XOR: return true;
53  default: return false; // FIXME: Need associative info for user ops!
54  }
55}
56
57// isInvertibleForFree - Return true if there is no cost to emitting the logical
58// inverse of this node.
59static bool isInvertibleForFree(SDOperand N) {
60  if (isa<ConstantSDNode>(N.Val)) return true;
61  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
62    return true;
63  return false;
64}
65
66//===----------------------------------------------------------------------===//
67//                              ConstantFPSDNode Class
68//===----------------------------------------------------------------------===//
69
70/// isExactlyValue - We don't rely on operator== working on double values, as
71/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
72/// As such, this method can be used to do an exact bit-for-bit comparison of
73/// two floating point values.
74bool ConstantFPSDNode::isExactlyValue(double V) const {
75  return DoubleToBits(V) == DoubleToBits(Value);
76}
77
78//===----------------------------------------------------------------------===//
79//                              ISD Class
80//===----------------------------------------------------------------------===//
81
82/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
83/// when given the operation for (X op Y).
84ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
85  // To perform this operation, we just need to swap the L and G bits of the
86  // operation.
87  unsigned OldL = (Operation >> 2) & 1;
88  unsigned OldG = (Operation >> 1) & 1;
89  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
90                       (OldL << 1) |       // New G bit
91                       (OldG << 2));        // New L bit.
92}
93
94/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
95/// 'op' is a valid SetCC operation.
96ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
97  unsigned Operation = Op;
98  if (isInteger)
99    Operation ^= 7;   // Flip L, G, E bits, but not U.
100  else
101    Operation ^= 15;  // Flip all of the condition bits.
102  if (Operation > ISD::SETTRUE2)
103    Operation &= ~8;     // Don't let N and U bits get set.
104  return ISD::CondCode(Operation);
105}
106
107
108/// isSignedOp - For an integer comparison, return 1 if the comparison is a
109/// signed operation and 2 if the result is an unsigned comparison.  Return zero
110/// if the operation does not depend on the sign of the input (setne and seteq).
111static int isSignedOp(ISD::CondCode Opcode) {
112  switch (Opcode) {
113  default: assert(0 && "Illegal integer setcc operation!");
114  case ISD::SETEQ:
115  case ISD::SETNE: return 0;
116  case ISD::SETLT:
117  case ISD::SETLE:
118  case ISD::SETGT:
119  case ISD::SETGE: return 1;
120  case ISD::SETULT:
121  case ISD::SETULE:
122  case ISD::SETUGT:
123  case ISD::SETUGE: return 2;
124  }
125}
126
127/// getSetCCOrOperation - Return the result of a logical OR between different
128/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
129/// returns SETCC_INVALID if it is not possible to represent the resultant
130/// comparison.
131ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
132                                       bool isInteger) {
133  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
134    // Cannot fold a signed integer setcc with an unsigned integer setcc.
135    return ISD::SETCC_INVALID;
136
137  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
138
139  // If the N and U bits get set then the resultant comparison DOES suddenly
140  // care about orderedness, and is true when ordered.
141  if (Op > ISD::SETTRUE2)
142    Op &= ~16;     // Clear the N bit.
143  return ISD::CondCode(Op);
144}
145
146/// getSetCCAndOperation - Return the result of a logical AND between different
147/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
148/// function returns zero if it is not possible to represent the resultant
149/// comparison.
150ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
151                                        bool isInteger) {
152  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
153    // Cannot fold a signed setcc with an unsigned setcc.
154    return ISD::SETCC_INVALID;
155
156  // Combine all of the condition bits.
157  return ISD::CondCode(Op1 & Op2);
158}
159
160const TargetMachine &SelectionDAG::getTarget() const {
161  return TLI.getTargetMachine();
162}
163
164//===----------------------------------------------------------------------===//
165//                              SelectionDAG Class
166//===----------------------------------------------------------------------===//
167
168/// RemoveDeadNodes - This method deletes all unreachable nodes in the
169/// SelectionDAG, including nodes (like loads) that have uses of their token
170/// chain but no other uses and no side effect.  If a node is passed in as an
171/// argument, it is used as the seed for node deletion.
172void SelectionDAG::RemoveDeadNodes(SDNode *N) {
173  // Create a dummy node (which is not added to allnodes), that adds a reference
174  // to the root node, preventing it from being deleted.
175  HandleSDNode Dummy(getRoot());
176
177  bool MadeChange = false;
178
179  // If we have a hint to start from, use it.
180  if (N && N->use_empty()) {
181    DestroyDeadNode(N);
182    MadeChange = true;
183  }
184
185  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
186    if (I->use_empty() && I->getOpcode() != 65535) {
187      // Node is dead, recursively delete newly dead uses.
188      DestroyDeadNode(I);
189      MadeChange = true;
190    }
191
192  // Walk the nodes list, removing the nodes we've marked as dead.
193  if (MadeChange) {
194    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
195      SDNode *N = I++;
196      if (N->use_empty())
197        AllNodes.erase(N);
198    }
199  }
200
201  // If the root changed (e.g. it was a dead load, update the root).
202  setRoot(Dummy.getValue());
203}
204
205/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
206/// graph.  If it is the last user of any of its operands, recursively process
207/// them the same way.
208///
209void SelectionDAG::DestroyDeadNode(SDNode *N) {
210  // Okay, we really are going to delete this node.  First take this out of the
211  // appropriate CSE map.
212  RemoveNodeFromCSEMaps(N);
213
214  // Next, brutally remove the operand list.  This is safe to do, as there are
215  // no cycles in the graph.
216  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
217    SDNode *O = I->Val;
218    O->removeUser(N);
219
220    // Now that we removed this operand, see if there are no uses of it left.
221    if (O->use_empty())
222      DestroyDeadNode(O);
223  }
224  delete[] N->OperandList;
225  N->OperandList = 0;
226  N->NumOperands = 0;
227
228  // Mark the node as dead.
229  N->MorphNodeTo(65535);
230}
231
232void SelectionDAG::DeleteNode(SDNode *N) {
233  assert(N->use_empty() && "Cannot delete a node that is not dead!");
234
235  // First take this out of the appropriate CSE map.
236  RemoveNodeFromCSEMaps(N);
237
238  // Finally, remove uses due to operands of this node, remove from the
239  // AllNodes list, and delete the node.
240  DeleteNodeNotInCSEMaps(N);
241}
242
243void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
244
245  // Remove it from the AllNodes list.
246  AllNodes.remove(N);
247
248  // Drop all of the operands and decrement used nodes use counts.
249  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
250    I->Val->removeUser(N);
251  delete[] N->OperandList;
252  N->OperandList = 0;
253  N->NumOperands = 0;
254
255  delete N;
256}
257
258/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
259/// correspond to it.  This is useful when we're about to delete or repurpose
260/// the node.  We don't want future request for structurally identical nodes
261/// to return N anymore.
262void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
263  bool Erased = false;
264  switch (N->getOpcode()) {
265  case ISD::HANDLENODE: return;  // noop.
266  case ISD::Constant:
267    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
268                                            N->getValueType(0)));
269    break;
270  case ISD::TargetConstant:
271    Erased = TargetConstants.erase(std::make_pair(
272                                    cast<ConstantSDNode>(N)->getValue(),
273                                                  N->getValueType(0)));
274    break;
275  case ISD::ConstantFP: {
276    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
277    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
278    break;
279  }
280  case ISD::TargetConstantFP: {
281    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
282    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
283    break;
284  }
285  case ISD::STRING:
286    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
287    break;
288  case ISD::CONDCODE:
289    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
290           "Cond code doesn't exist!");
291    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
292    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
293    break;
294  case ISD::GlobalAddress: {
295    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
296    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
297                                               GN->getOffset()));
298    break;
299  }
300  case ISD::TargetGlobalAddress: {
301    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
302    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
303                                                    GN->getOffset()));
304    break;
305  }
306  case ISD::FrameIndex:
307    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
308    break;
309  case ISD::TargetFrameIndex:
310    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
311    break;
312  case ISD::ConstantPool:
313    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
314    break;
315  case ISD::TargetConstantPool:
316    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
317    break;
318  case ISD::BasicBlock:
319    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
320    break;
321  case ISD::ExternalSymbol:
322    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
323    break;
324  case ISD::TargetExternalSymbol:
325    Erased =
326      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
327    break;
328  case ISD::VALUETYPE:
329    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
330    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
331    break;
332  case ISD::Register:
333    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
334                                           N->getValueType(0)));
335    break;
336  case ISD::SRCVALUE: {
337    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
338    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
339    break;
340  }
341  case ISD::LOAD:
342    Erased = Loads.erase(std::make_pair(N->getOperand(1),
343                                        std::make_pair(N->getOperand(0),
344                                                       N->getValueType(0))));
345    break;
346  default:
347    if (N->getNumValues() == 1) {
348      if (N->getNumOperands() == 0) {
349        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
350                                                 N->getValueType(0)));
351      } else if (N->getNumOperands() == 1) {
352        Erased =
353          UnaryOps.erase(std::make_pair(N->getOpcode(),
354                                        std::make_pair(N->getOperand(0),
355                                                       N->getValueType(0))));
356      } else if (N->getNumOperands() == 2) {
357        Erased =
358          BinaryOps.erase(std::make_pair(N->getOpcode(),
359                                         std::make_pair(N->getOperand(0),
360                                                        N->getOperand(1))));
361      } else {
362        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
363        Erased =
364          OneResultNodes.erase(std::make_pair(N->getOpcode(),
365                                              std::make_pair(N->getValueType(0),
366                                                             Ops)));
367      }
368    } else {
369      // Remove the node from the ArbitraryNodes map.
370      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
371      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
372      Erased =
373        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
374                                            std::make_pair(RV, Ops)));
375    }
376    break;
377  }
378#ifndef NDEBUG
379  // Verify that the node was actually in one of the CSE maps, unless it has a
380  // flag result (which cannot be CSE'd) or is one of the special cases that are
381  // not subject to CSE.
382  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
383      N->getOpcode() != ISD::CALLSEQ_START &&
384      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
385
386    N->dump();
387    assert(0 && "Node is not in map!");
388  }
389#endif
390}
391
392/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
393/// has been taken out and modified in some way.  If the specified node already
394/// exists in the CSE maps, do not modify the maps, but return the existing node
395/// instead.  If it doesn't exist, add it and return null.
396///
397SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
398  assert(N->getNumOperands() && "This is a leaf node!");
399  if (N->getOpcode() == ISD::CALLSEQ_START ||
400      N->getOpcode() == ISD::CALLSEQ_END ||
401      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
402    return 0;    // Never add these nodes.
403
404  // Check that remaining values produced are not flags.
405  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
406    if (N->getValueType(i) == MVT::Flag)
407      return 0;   // Never CSE anything that produces a flag.
408
409  if (N->getNumValues() == 1) {
410    if (N->getNumOperands() == 1) {
411      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
412                                           std::make_pair(N->getOperand(0),
413                                                          N->getValueType(0)))];
414      if (U) return U;
415      U = N;
416    } else if (N->getNumOperands() == 2) {
417      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
418                                            std::make_pair(N->getOperand(0),
419                                                           N->getOperand(1)))];
420      if (B) return B;
421      B = N;
422    } else {
423      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
424      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
425                                      std::make_pair(N->getValueType(0), Ops))];
426      if (ORN) return ORN;
427      ORN = N;
428    }
429  } else {
430    if (N->getOpcode() == ISD::LOAD) {
431      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
432                                        std::make_pair(N->getOperand(0),
433                                                       N->getValueType(0)))];
434      if (L) return L;
435      L = N;
436    } else {
437      // Remove the node from the ArbitraryNodes map.
438      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
439      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
440      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
441                                                  std::make_pair(RV, Ops))];
442      if (AN) return AN;
443      AN = N;
444    }
445  }
446  return 0;
447}
448
449/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
450/// were replaced with those specified.  If this node is never memoized,
451/// return null, otherwise return a pointer to the slot it would take.  If a
452/// node already exists with these operands, the slot will be non-null.
453SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
454  if (N->getOpcode() == ISD::CALLSEQ_START ||
455      N->getOpcode() == ISD::CALLSEQ_END ||
456      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
457    return 0;    // Never add these nodes.
458
459  // Check that remaining values produced are not flags.
460  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
461    if (N->getValueType(i) == MVT::Flag)
462      return 0;   // Never CSE anything that produces a flag.
463
464  if (N->getNumValues() == 1) {
465    return &UnaryOps[std::make_pair(N->getOpcode(),
466                                    std::make_pair(Op, N->getValueType(0)))];
467  } else {
468    // Remove the node from the ArbitraryNodes map.
469    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
470    std::vector<SDOperand> Ops;
471    Ops.push_back(Op);
472    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
473                                          std::make_pair(RV, Ops))];
474  }
475  return 0;
476}
477
478/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
479/// were replaced with those specified.  If this node is never memoized,
480/// return null, otherwise return a pointer to the slot it would take.  If a
481/// node already exists with these operands, the slot will be non-null.
482SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
483                                            SDOperand Op1, SDOperand Op2) {
484  if (N->getOpcode() == ISD::CALLSEQ_START ||
485      N->getOpcode() == ISD::CALLSEQ_END ||
486      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
487    return 0;    // Never add these nodes.
488
489  // Check that remaining values produced are not flags.
490  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
491    if (N->getValueType(i) == MVT::Flag)
492      return 0;   // Never CSE anything that produces a flag.
493
494  if (N->getNumValues() == 1) {
495    return &BinaryOps[std::make_pair(N->getOpcode(),
496                                     std::make_pair(Op1, Op2))];
497  } else {
498    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
499    std::vector<SDOperand> Ops;
500    Ops.push_back(Op1);
501    Ops.push_back(Op2);
502    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
503                                          std::make_pair(RV, Ops))];
504  }
505  return 0;
506}
507
508
509/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
510/// were replaced with those specified.  If this node is never memoized,
511/// return null, otherwise return a pointer to the slot it would take.  If a
512/// node already exists with these operands, the slot will be non-null.
513SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
514                                            const std::vector<SDOperand> &Ops) {
515  if (N->getOpcode() == ISD::CALLSEQ_START ||
516      N->getOpcode() == ISD::CALLSEQ_END ||
517      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
518    return 0;    // Never add these nodes.
519
520  // Check that remaining values produced are not flags.
521  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
522    if (N->getValueType(i) == MVT::Flag)
523      return 0;   // Never CSE anything that produces a flag.
524
525  if (N->getNumValues() == 1) {
526    if (N->getNumOperands() == 1) {
527      return &UnaryOps[std::make_pair(N->getOpcode(),
528                                      std::make_pair(Ops[0],
529                                                     N->getValueType(0)))];
530    } else if (N->getNumOperands() == 2) {
531      return &BinaryOps[std::make_pair(N->getOpcode(),
532                                       std::make_pair(Ops[0], Ops[1]))];
533    } else {
534      return &OneResultNodes[std::make_pair(N->getOpcode(),
535                                            std::make_pair(N->getValueType(0),
536                                                           Ops))];
537    }
538  } else {
539    if (N->getOpcode() == ISD::LOAD) {
540      return &Loads[std::make_pair(Ops[1],
541                                   std::make_pair(Ops[0], N->getValueType(0)))];
542    } else {
543      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
544      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
545                                            std::make_pair(RV, Ops))];
546    }
547  }
548  return 0;
549}
550
551
552SelectionDAG::~SelectionDAG() {
553  while (!AllNodes.empty()) {
554    SDNode *N = AllNodes.begin();
555    delete [] N->OperandList;
556    N->OperandList = 0;
557    N->NumOperands = 0;
558    AllNodes.pop_front();
559  }
560}
561
562SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
563  if (Op.getValueType() == VT) return Op;
564  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
565  return getNode(ISD::AND, Op.getValueType(), Op,
566                 getConstant(Imm, Op.getValueType()));
567}
568
569SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
570  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
571  // Mask out any bits that are not valid for this constant.
572  if (VT != MVT::i64)
573    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
574
575  SDNode *&N = Constants[std::make_pair(Val, VT)];
576  if (N) return SDOperand(N, 0);
577  N = new ConstantSDNode(false, Val, VT);
578  AllNodes.push_back(N);
579  return SDOperand(N, 0);
580}
581
582SDOperand SelectionDAG::getString(const std::string &Val) {
583  StringSDNode *&N = StringNodes[Val];
584  if (!N) {
585    N = new StringSDNode(Val);
586    AllNodes.push_back(N);
587  }
588  return SDOperand(N, 0);
589}
590
591SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
592  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
593  // Mask out any bits that are not valid for this constant.
594  if (VT != MVT::i64)
595    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
596
597  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
598  if (N) return SDOperand(N, 0);
599  N = new ConstantSDNode(true, Val, VT);
600  AllNodes.push_back(N);
601  return SDOperand(N, 0);
602}
603
604SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
605  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
606  if (VT == MVT::f32)
607    Val = (float)Val;  // Mask out extra precision.
608
609  // Do the map lookup using the actual bit pattern for the floating point
610  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
611  // we don't have issues with SNANs.
612  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
613  if (N) return SDOperand(N, 0);
614  N = new ConstantFPSDNode(false, Val, VT);
615  AllNodes.push_back(N);
616  return SDOperand(N, 0);
617}
618
619SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
620  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
621  if (VT == MVT::f32)
622    Val = (float)Val;  // Mask out extra precision.
623
624  // Do the map lookup using the actual bit pattern for the floating point
625  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
626  // we don't have issues with SNANs.
627  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
628  if (N) return SDOperand(N, 0);
629  N = new ConstantFPSDNode(true, Val, VT);
630  AllNodes.push_back(N);
631  return SDOperand(N, 0);
632}
633
634SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
635                                         MVT::ValueType VT, int offset) {
636  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
637  if (N) return SDOperand(N, 0);
638  N = new GlobalAddressSDNode(false, GV, VT, offset);
639  AllNodes.push_back(N);
640  return SDOperand(N, 0);
641}
642
643SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
644                                               MVT::ValueType VT, int offset) {
645  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
646  if (N) return SDOperand(N, 0);
647  N = new GlobalAddressSDNode(true, GV, VT, offset);
648  AllNodes.push_back(N);
649  return SDOperand(N, 0);
650}
651
652SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
653  SDNode *&N = FrameIndices[FI];
654  if (N) return SDOperand(N, 0);
655  N = new FrameIndexSDNode(FI, VT, false);
656  AllNodes.push_back(N);
657  return SDOperand(N, 0);
658}
659
660SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
661  SDNode *&N = TargetFrameIndices[FI];
662  if (N) return SDOperand(N, 0);
663  N = new FrameIndexSDNode(FI, VT, true);
664  AllNodes.push_back(N);
665  return SDOperand(N, 0);
666}
667
668SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
669  SDNode *&N = ConstantPoolIndices[C];
670  if (N) return SDOperand(N, 0);
671  N = new ConstantPoolSDNode(C, VT, false);
672  AllNodes.push_back(N);
673  return SDOperand(N, 0);
674}
675
676SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
677  SDNode *&N = TargetConstantPoolIndices[C];
678  if (N) return SDOperand(N, 0);
679  N = new ConstantPoolSDNode(C, VT, true);
680  AllNodes.push_back(N);
681  return SDOperand(N, 0);
682}
683
684SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
685  SDNode *&N = BBNodes[MBB];
686  if (N) return SDOperand(N, 0);
687  N = new BasicBlockSDNode(MBB);
688  AllNodes.push_back(N);
689  return SDOperand(N, 0);
690}
691
692SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
693  if ((unsigned)VT >= ValueTypeNodes.size())
694    ValueTypeNodes.resize(VT+1);
695  if (ValueTypeNodes[VT] == 0) {
696    ValueTypeNodes[VT] = new VTSDNode(VT);
697    AllNodes.push_back(ValueTypeNodes[VT]);
698  }
699
700  return SDOperand(ValueTypeNodes[VT], 0);
701}
702
703SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
704  SDNode *&N = ExternalSymbols[Sym];
705  if (N) return SDOperand(N, 0);
706  N = new ExternalSymbolSDNode(false, Sym, VT);
707  AllNodes.push_back(N);
708  return SDOperand(N, 0);
709}
710
711SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
712                                                MVT::ValueType VT) {
713  SDNode *&N = TargetExternalSymbols[Sym];
714  if (N) return SDOperand(N, 0);
715  N = new ExternalSymbolSDNode(true, Sym, VT);
716  AllNodes.push_back(N);
717  return SDOperand(N, 0);
718}
719
720SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
721  if ((unsigned)Cond >= CondCodeNodes.size())
722    CondCodeNodes.resize(Cond+1);
723
724  if (CondCodeNodes[Cond] == 0) {
725    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
726    AllNodes.push_back(CondCodeNodes[Cond]);
727  }
728  return SDOperand(CondCodeNodes[Cond], 0);
729}
730
731SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
732  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
733  if (!Reg) {
734    Reg = new RegisterSDNode(RegNo, VT);
735    AllNodes.push_back(Reg);
736  }
737  return SDOperand(Reg, 0);
738}
739
740SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
741                                      SDOperand N2, ISD::CondCode Cond) {
742  // These setcc operations always fold.
743  switch (Cond) {
744  default: break;
745  case ISD::SETFALSE:
746  case ISD::SETFALSE2: return getConstant(0, VT);
747  case ISD::SETTRUE:
748  case ISD::SETTRUE2:  return getConstant(1, VT);
749  }
750
751  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
752    uint64_t C2 = N2C->getValue();
753    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
754      uint64_t C1 = N1C->getValue();
755
756      // Sign extend the operands if required
757      if (ISD::isSignedIntSetCC(Cond)) {
758        C1 = N1C->getSignExtended();
759        C2 = N2C->getSignExtended();
760      }
761
762      switch (Cond) {
763      default: assert(0 && "Unknown integer setcc!");
764      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
765      case ISD::SETNE:  return getConstant(C1 != C2, VT);
766      case ISD::SETULT: return getConstant(C1 <  C2, VT);
767      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
768      case ISD::SETULE: return getConstant(C1 <= C2, VT);
769      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
770      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
771      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
772      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
773      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
774      }
775    } else {
776      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
777      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
778        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
779
780        // If the comparison constant has bits in the upper part, the
781        // zero-extended value could never match.
782        if (C2 & (~0ULL << InSize)) {
783          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
784          switch (Cond) {
785          case ISD::SETUGT:
786          case ISD::SETUGE:
787          case ISD::SETEQ: return getConstant(0, VT);
788          case ISD::SETULT:
789          case ISD::SETULE:
790          case ISD::SETNE: return getConstant(1, VT);
791          case ISD::SETGT:
792          case ISD::SETGE:
793            // True if the sign bit of C2 is set.
794            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
795          case ISD::SETLT:
796          case ISD::SETLE:
797            // True if the sign bit of C2 isn't set.
798            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
799          default:
800            break;
801          }
802        }
803
804        // Otherwise, we can perform the comparison with the low bits.
805        switch (Cond) {
806        case ISD::SETEQ:
807        case ISD::SETNE:
808        case ISD::SETUGT:
809        case ISD::SETUGE:
810        case ISD::SETULT:
811        case ISD::SETULE:
812          return getSetCC(VT, N1.getOperand(0),
813                          getConstant(C2, N1.getOperand(0).getValueType()),
814                          Cond);
815        default:
816          break;   // todo, be more careful with signed comparisons
817        }
818      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
819                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
820        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
821        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
822        MVT::ValueType ExtDstTy = N1.getValueType();
823        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
824
825        // If the extended part has any inconsistent bits, it cannot ever
826        // compare equal.  In other words, they have to be all ones or all
827        // zeros.
828        uint64_t ExtBits =
829          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
830        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
831          return getConstant(Cond == ISD::SETNE, VT);
832
833        // Otherwise, make this a use of a zext.
834        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
835                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
836                        Cond);
837      }
838
839      uint64_t MinVal, MaxVal;
840      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
841      if (ISD::isSignedIntSetCC(Cond)) {
842        MinVal = 1ULL << (OperandBitSize-1);
843        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
844          MaxVal = ~0ULL >> (65-OperandBitSize);
845        else
846          MaxVal = 0;
847      } else {
848        MinVal = 0;
849        MaxVal = ~0ULL >> (64-OperandBitSize);
850      }
851
852      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
853      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
854        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
855        --C2;                                          // X >= C1 --> X > (C1-1)
856        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
857                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
858      }
859
860      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
861        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
862        ++C2;                                          // X <= C1 --> X < (C1+1)
863        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
864                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
865      }
866
867      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
868        return getConstant(0, VT);      // X < MIN --> false
869
870      // Canonicalize setgt X, Min --> setne X, Min
871      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
872        return getSetCC(VT, N1, N2, ISD::SETNE);
873
874      // If we have setult X, 1, turn it into seteq X, 0
875      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
876        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
877                        ISD::SETEQ);
878      // If we have setugt X, Max-1, turn it into seteq X, Max
879      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
880        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
881                        ISD::SETEQ);
882
883      // If we have "setcc X, C1", check to see if we can shrink the immediate
884      // by changing cc.
885
886      // SETUGT X, SINTMAX  -> SETLT X, 0
887      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
888          C2 == (~0ULL >> (65-OperandBitSize)))
889        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
890
891      // FIXME: Implement the rest of these.
892
893
894      // Fold bit comparisons when we can.
895      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
896          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
897        if (ConstantSDNode *AndRHS =
898                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
899          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
900            // Perform the xform if the AND RHS is a single bit.
901            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
902              return getNode(ISD::SRL, VT, N1,
903                             getConstant(Log2_64(AndRHS->getValue()),
904                                                   TLI.getShiftAmountTy()));
905            }
906          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
907            // (X & 8) == 8  -->  (X & 8) >> 3
908            // Perform the xform if C2 is a single bit.
909            if ((C2 & (C2-1)) == 0) {
910              return getNode(ISD::SRL, VT, N1,
911                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
912            }
913          }
914        }
915    }
916  } else if (isa<ConstantSDNode>(N1.Val)) {
917      // Ensure that the constant occurs on the RHS.
918    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
919  }
920
921  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
922    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
923      double C1 = N1C->getValue(), C2 = N2C->getValue();
924
925      switch (Cond) {
926      default: break; // FIXME: Implement the rest of these!
927      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
928      case ISD::SETNE:  return getConstant(C1 != C2, VT);
929      case ISD::SETLT:  return getConstant(C1 < C2, VT);
930      case ISD::SETGT:  return getConstant(C1 > C2, VT);
931      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
932      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
933      }
934    } else {
935      // Ensure that the constant occurs on the RHS.
936      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
937    }
938
939  // Could not fold it.
940  return SDOperand();
941}
942
943/// getNode - Gets or creates the specified node.
944///
945SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
946  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
947  if (!N) {
948    N = new SDNode(Opcode, VT);
949    AllNodes.push_back(N);
950  }
951  return SDOperand(N, 0);
952}
953
954SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
955                                SDOperand Operand) {
956  unsigned Tmp1;
957  // Constant fold unary operations with an integer constant operand.
958  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
959    uint64_t Val = C->getValue();
960    switch (Opcode) {
961    default: break;
962    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
963    case ISD::ANY_EXTEND:
964    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
965    case ISD::TRUNCATE:    return getConstant(Val, VT);
966    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
967    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
968    case ISD::BIT_CONVERT:
969      if (VT == MVT::f32) {
970        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
971        return getConstantFP(BitsToFloat(Val), VT);
972      } else if (VT == MVT::f64) {
973        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
974        return getConstantFP(BitsToDouble(Val), VT);
975      }
976      break;
977    case ISD::BSWAP:
978      switch(VT) {
979      default: assert(0 && "Invalid bswap!"); break;
980      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
981      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
982      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
983      }
984      break;
985    case ISD::CTPOP:
986      switch(VT) {
987      default: assert(0 && "Invalid ctpop!"); break;
988      case MVT::i1: return getConstant(Val != 0, VT);
989      case MVT::i8:
990        Tmp1 = (unsigned)Val & 0xFF;
991        return getConstant(CountPopulation_32(Tmp1), VT);
992      case MVT::i16:
993        Tmp1 = (unsigned)Val & 0xFFFF;
994        return getConstant(CountPopulation_32(Tmp1), VT);
995      case MVT::i32:
996        return getConstant(CountPopulation_32((unsigned)Val), VT);
997      case MVT::i64:
998        return getConstant(CountPopulation_64(Val), VT);
999      }
1000    case ISD::CTLZ:
1001      switch(VT) {
1002      default: assert(0 && "Invalid ctlz!"); break;
1003      case MVT::i1: return getConstant(Val == 0, VT);
1004      case MVT::i8:
1005        Tmp1 = (unsigned)Val & 0xFF;
1006        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1007      case MVT::i16:
1008        Tmp1 = (unsigned)Val & 0xFFFF;
1009        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1010      case MVT::i32:
1011        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1012      case MVT::i64:
1013        return getConstant(CountLeadingZeros_64(Val), VT);
1014      }
1015    case ISD::CTTZ:
1016      switch(VT) {
1017      default: assert(0 && "Invalid cttz!"); break;
1018      case MVT::i1: return getConstant(Val == 0, VT);
1019      case MVT::i8:
1020        Tmp1 = (unsigned)Val | 0x100;
1021        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1022      case MVT::i16:
1023        Tmp1 = (unsigned)Val | 0x10000;
1024        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1025      case MVT::i32:
1026        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1027      case MVT::i64:
1028        return getConstant(CountTrailingZeros_64(Val), VT);
1029      }
1030    }
1031  }
1032
1033  // Constant fold unary operations with an floating point constant operand.
1034  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1035    switch (Opcode) {
1036    case ISD::FNEG:
1037      return getConstantFP(-C->getValue(), VT);
1038    case ISD::FABS:
1039      return getConstantFP(fabs(C->getValue()), VT);
1040    case ISD::FP_ROUND:
1041    case ISD::FP_EXTEND:
1042      return getConstantFP(C->getValue(), VT);
1043    case ISD::FP_TO_SINT:
1044      return getConstant((int64_t)C->getValue(), VT);
1045    case ISD::FP_TO_UINT:
1046      return getConstant((uint64_t)C->getValue(), VT);
1047    case ISD::BIT_CONVERT:
1048      if (VT == MVT::i32) {
1049        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1050        return getConstant(FloatToBits(C->getValue()), VT);
1051      } else if (VT == MVT::i64) {
1052        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1053        return getConstant(DoubleToBits(C->getValue()), VT);
1054      }
1055      break;
1056    }
1057
1058  unsigned OpOpcode = Operand.Val->getOpcode();
1059  switch (Opcode) {
1060  case ISD::TokenFactor:
1061    return Operand;         // Factor of one node?  No factor.
1062  case ISD::SIGN_EXTEND:
1063    if (Operand.getValueType() == VT) return Operand;   // noop extension
1064    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1065      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1066    break;
1067  case ISD::ZERO_EXTEND:
1068    if (Operand.getValueType() == VT) return Operand;   // noop extension
1069    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1070      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1071    break;
1072  case ISD::ANY_EXTEND:
1073    if (Operand.getValueType() == VT) return Operand;   // noop extension
1074    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1075      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1076      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1077    break;
1078  case ISD::TRUNCATE:
1079    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1080    if (OpOpcode == ISD::TRUNCATE)
1081      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1082    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1083             OpOpcode == ISD::ANY_EXTEND) {
1084      // If the source is smaller than the dest, we still need an extend.
1085      if (Operand.Val->getOperand(0).getValueType() < VT)
1086        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1087      else if (Operand.Val->getOperand(0).getValueType() > VT)
1088        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1089      else
1090        return Operand.Val->getOperand(0);
1091    }
1092    break;
1093  case ISD::BIT_CONVERT:
1094    // Basic sanity checking.
1095    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
1096           "Cannot BIT_CONVERT between two different types!");
1097    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1098    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1099      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1100    break;
1101  case ISD::FNEG:
1102    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1103      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1104                     Operand.Val->getOperand(0));
1105    if (OpOpcode == ISD::FNEG)  // --X -> X
1106      return Operand.Val->getOperand(0);
1107    break;
1108  case ISD::FABS:
1109    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1110      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1111    break;
1112  }
1113
1114  SDNode *N;
1115  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1116    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1117    if (E) return SDOperand(E, 0);
1118    E = N = new SDNode(Opcode, Operand);
1119  } else {
1120    N = new SDNode(Opcode, Operand);
1121  }
1122  N->setValueTypes(VT);
1123  AllNodes.push_back(N);
1124  return SDOperand(N, 0);
1125}
1126
1127
1128
1129SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1130                                SDOperand N1, SDOperand N2) {
1131#ifndef NDEBUG
1132  switch (Opcode) {
1133  case ISD::TokenFactor:
1134    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1135           N2.getValueType() == MVT::Other && "Invalid token factor!");
1136    break;
1137  case ISD::AND:
1138  case ISD::OR:
1139  case ISD::XOR:
1140  case ISD::UDIV:
1141  case ISD::UREM:
1142  case ISD::MULHU:
1143  case ISD::MULHS:
1144    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1145    // fall through
1146  case ISD::ADD:
1147  case ISD::SUB:
1148  case ISD::MUL:
1149  case ISD::SDIV:
1150  case ISD::SREM:
1151    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1152    // fall through.
1153  case ISD::FADD:
1154  case ISD::FSUB:
1155  case ISD::FMUL:
1156  case ISD::FDIV:
1157  case ISD::FREM:
1158    assert(N1.getValueType() == N2.getValueType() &&
1159           N1.getValueType() == VT && "Binary operator types must match!");
1160    break;
1161
1162  case ISD::SHL:
1163  case ISD::SRA:
1164  case ISD::SRL:
1165  case ISD::ROTL:
1166  case ISD::ROTR:
1167    assert(VT == N1.getValueType() &&
1168           "Shift operators return type must be the same as their first arg");
1169    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1170           VT != MVT::i1 && "Shifts only work on integers");
1171    break;
1172  case ISD::FP_ROUND_INREG: {
1173    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1174    assert(VT == N1.getValueType() && "Not an inreg round!");
1175    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1176           "Cannot FP_ROUND_INREG integer types");
1177    assert(EVT <= VT && "Not rounding down!");
1178    break;
1179  }
1180  case ISD::AssertSext:
1181  case ISD::AssertZext:
1182  case ISD::SIGN_EXTEND_INREG: {
1183    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1184    assert(VT == N1.getValueType() && "Not an inreg extend!");
1185    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1186           "Cannot *_EXTEND_INREG FP types");
1187    assert(EVT <= VT && "Not extending!");
1188  }
1189
1190  default: break;
1191  }
1192#endif
1193
1194  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1195  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1196  if (N1C) {
1197    if (N2C) {
1198      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1199      switch (Opcode) {
1200      case ISD::ADD: return getConstant(C1 + C2, VT);
1201      case ISD::SUB: return getConstant(C1 - C2, VT);
1202      case ISD::MUL: return getConstant(C1 * C2, VT);
1203      case ISD::UDIV:
1204        if (C2) return getConstant(C1 / C2, VT);
1205        break;
1206      case ISD::UREM :
1207        if (C2) return getConstant(C1 % C2, VT);
1208        break;
1209      case ISD::SDIV :
1210        if (C2) return getConstant(N1C->getSignExtended() /
1211                                   N2C->getSignExtended(), VT);
1212        break;
1213      case ISD::SREM :
1214        if (C2) return getConstant(N1C->getSignExtended() %
1215                                   N2C->getSignExtended(), VT);
1216        break;
1217      case ISD::AND  : return getConstant(C1 & C2, VT);
1218      case ISD::OR   : return getConstant(C1 | C2, VT);
1219      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1220      case ISD::SHL  : return getConstant(C1 << C2, VT);
1221      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1222      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1223      case ISD::ROTL :
1224        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1225                           VT);
1226      case ISD::ROTR :
1227        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1228                           VT);
1229      default: break;
1230      }
1231    } else {      // Cannonicalize constant to RHS if commutative
1232      if (isCommutativeBinOp(Opcode)) {
1233        std::swap(N1C, N2C);
1234        std::swap(N1, N2);
1235      }
1236    }
1237  }
1238
1239  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1240  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1241  if (N1CFP) {
1242    if (N2CFP) {
1243      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1244      switch (Opcode) {
1245      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1246      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1247      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1248      case ISD::FDIV:
1249        if (C2) return getConstantFP(C1 / C2, VT);
1250        break;
1251      case ISD::FREM :
1252        if (C2) return getConstantFP(fmod(C1, C2), VT);
1253        break;
1254      default: break;
1255      }
1256    } else {      // Cannonicalize constant to RHS if commutative
1257      if (isCommutativeBinOp(Opcode)) {
1258        std::swap(N1CFP, N2CFP);
1259        std::swap(N1, N2);
1260      }
1261    }
1262  }
1263
1264  // Finally, fold operations that do not require constants.
1265  switch (Opcode) {
1266  case ISD::FP_ROUND_INREG:
1267    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1268    break;
1269  case ISD::SIGN_EXTEND_INREG: {
1270    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1271    if (EVT == VT) return N1;  // Not actually extending
1272    break;
1273  }
1274
1275  // FIXME: figure out how to safely handle things like
1276  // int foo(int x) { return 1 << (x & 255); }
1277  // int bar() { return foo(256); }
1278#if 0
1279  case ISD::SHL:
1280  case ISD::SRL:
1281  case ISD::SRA:
1282    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1283        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1284      return getNode(Opcode, VT, N1, N2.getOperand(0));
1285    else if (N2.getOpcode() == ISD::AND)
1286      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1287        // If the and is only masking out bits that cannot effect the shift,
1288        // eliminate the and.
1289        unsigned NumBits = MVT::getSizeInBits(VT);
1290        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1291          return getNode(Opcode, VT, N1, N2.getOperand(0));
1292      }
1293    break;
1294#endif
1295  }
1296
1297  // Memoize this node if possible.
1298  SDNode *N;
1299  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1300      VT != MVT::Flag) {
1301    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1302    if (BON) return SDOperand(BON, 0);
1303
1304    BON = N = new SDNode(Opcode, N1, N2);
1305  } else {
1306    N = new SDNode(Opcode, N1, N2);
1307  }
1308
1309  N->setValueTypes(VT);
1310  AllNodes.push_back(N);
1311  return SDOperand(N, 0);
1312}
1313
1314SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1315                                SDOperand N1, SDOperand N2, SDOperand N3) {
1316  // Perform various simplifications.
1317  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1318  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1319  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1320  switch (Opcode) {
1321  case ISD::SETCC: {
1322    // Use SimplifySetCC  to simplify SETCC's.
1323    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1324    if (Simp.Val) return Simp;
1325    break;
1326  }
1327  case ISD::SELECT:
1328    if (N1C)
1329      if (N1C->getValue())
1330        return N2;             // select true, X, Y -> X
1331      else
1332        return N3;             // select false, X, Y -> Y
1333
1334    if (N2 == N3) return N2;   // select C, X, X -> X
1335    break;
1336  case ISD::BRCOND:
1337    if (N2C)
1338      if (N2C->getValue()) // Unconditional branch
1339        return getNode(ISD::BR, MVT::Other, N1, N3);
1340      else
1341        return N1;         // Never-taken branch
1342    break;
1343  }
1344
1345  std::vector<SDOperand> Ops;
1346  Ops.reserve(3);
1347  Ops.push_back(N1);
1348  Ops.push_back(N2);
1349  Ops.push_back(N3);
1350
1351  // Memoize node if it doesn't produce a flag.
1352  SDNode *N;
1353  if (VT != MVT::Flag) {
1354    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1355    if (E) return SDOperand(E, 0);
1356    E = N = new SDNode(Opcode, N1, N2, N3);
1357  } else {
1358    N = new SDNode(Opcode, N1, N2, N3);
1359  }
1360  N->setValueTypes(VT);
1361  AllNodes.push_back(N);
1362  return SDOperand(N, 0);
1363}
1364
1365SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1366                                SDOperand N1, SDOperand N2, SDOperand N3,
1367                                SDOperand N4) {
1368  std::vector<SDOperand> Ops;
1369  Ops.reserve(4);
1370  Ops.push_back(N1);
1371  Ops.push_back(N2);
1372  Ops.push_back(N3);
1373  Ops.push_back(N4);
1374  return getNode(Opcode, VT, Ops);
1375}
1376
1377SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1378                                SDOperand N1, SDOperand N2, SDOperand N3,
1379                                SDOperand N4, SDOperand N5) {
1380  std::vector<SDOperand> Ops;
1381  Ops.reserve(5);
1382  Ops.push_back(N1);
1383  Ops.push_back(N2);
1384  Ops.push_back(N3);
1385  Ops.push_back(N4);
1386  Ops.push_back(N5);
1387  return getNode(Opcode, VT, Ops);
1388}
1389
1390// setAdjCallChain - This method changes the token chain of an
1391// CALLSEQ_START/END node to be the specified operand.
1392void SDNode::setAdjCallChain(SDOperand N) {
1393  assert(N.getValueType() == MVT::Other);
1394  assert((getOpcode() == ISD::CALLSEQ_START ||
1395          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1396
1397  OperandList[0].Val->removeUser(this);
1398  OperandList[0] = N;
1399  OperandList[0].Val->Uses.push_back(this);
1400}
1401
1402// setAdjCallFlag - This method changes the flag input of an
1403// CALLSEQ_START/END node to be the specified operand.
1404void SDNode::setAdjCallFlag(SDOperand N) {
1405  assert(N.getValueType() == MVT::Flag);
1406  assert((getOpcode() == ISD::CALLSEQ_START ||
1407          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1408
1409  SDOperand &FlagOp = OperandList[getNumOperands()-1];
1410  assert(FlagOp.getValueType() == MVT::Flag);
1411  FlagOp.Val->removeUser(this);
1412  FlagOp = N;
1413  FlagOp.Val->Uses.push_back(this);
1414}
1415
1416
1417SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1418                                SDOperand Chain, SDOperand Ptr,
1419                                SDOperand SV) {
1420  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1421  if (N) return SDOperand(N, 0);
1422  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1423
1424  // Loads have a token chain.
1425  setNodeValueTypes(N, VT, MVT::Other);
1426  AllNodes.push_back(N);
1427  return SDOperand(N, 0);
1428}
1429
1430SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1431                                   SDOperand Chain, SDOperand Ptr,
1432                                   SDOperand SV) {
1433  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1434  if (N) return SDOperand(N, 0);
1435  std::vector<SDOperand> Ops;
1436  Ops.reserve(5);
1437  Ops.push_back(Chain);
1438  Ops.push_back(Ptr);
1439  Ops.push_back(getConstant(Count, MVT::i32));
1440  Ops.push_back(getValueType(EVT));
1441  Ops.push_back(SV);
1442  std::vector<MVT::ValueType> VTs;
1443  VTs.reserve(2);
1444  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1445  return getNode(ISD::VLOAD, VTs, Ops);
1446}
1447
1448SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1449                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1450                                   MVT::ValueType EVT) {
1451  std::vector<SDOperand> Ops;
1452  Ops.reserve(4);
1453  Ops.push_back(Chain);
1454  Ops.push_back(Ptr);
1455  Ops.push_back(SV);
1456  Ops.push_back(getValueType(EVT));
1457  std::vector<MVT::ValueType> VTs;
1458  VTs.reserve(2);
1459  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1460  return getNode(Opcode, VTs, Ops);
1461}
1462
1463SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1464  assert((!V || isa<PointerType>(V->getType())) &&
1465         "SrcValue is not a pointer?");
1466  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1467  if (N) return SDOperand(N, 0);
1468
1469  N = new SrcValueSDNode(V, Offset);
1470  AllNodes.push_back(N);
1471  return SDOperand(N, 0);
1472}
1473
1474SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1475                                 SDOperand Chain, SDOperand Ptr,
1476                                 SDOperand SV) {
1477  std::vector<SDOperand> Ops;
1478  Ops.reserve(3);
1479  Ops.push_back(Chain);
1480  Ops.push_back(Ptr);
1481  Ops.push_back(SV);
1482  std::vector<MVT::ValueType> VTs;
1483  VTs.reserve(2);
1484  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1485  return getNode(ISD::VAARG, VTs, Ops);
1486}
1487
1488SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1489                                std::vector<SDOperand> &Ops) {
1490  switch (Ops.size()) {
1491  case 0: return getNode(Opcode, VT);
1492  case 1: return getNode(Opcode, VT, Ops[0]);
1493  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1494  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1495  default: break;
1496  }
1497
1498  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1499  switch (Opcode) {
1500  default: break;
1501  case ISD::BRCONDTWOWAY:
1502    if (N1C)
1503      if (N1C->getValue()) // Unconditional branch to true dest.
1504        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1505      else                 // Unconditional branch to false dest.
1506        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1507    break;
1508  case ISD::BRTWOWAY_CC:
1509    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1510    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1511           "LHS and RHS of comparison must have same type!");
1512    break;
1513  case ISD::TRUNCSTORE: {
1514    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1515    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1516#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1517    // If this is a truncating store of a constant, convert to the desired type
1518    // and store it instead.
1519    if (isa<Constant>(Ops[0])) {
1520      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1521      if (isa<Constant>(Op))
1522        N1 = Op;
1523    }
1524    // Also for ConstantFP?
1525#endif
1526    if (Ops[0].getValueType() == EVT)       // Normal store?
1527      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1528    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1529    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1530           "Can't do FP-INT conversion!");
1531    break;
1532  }
1533  case ISD::SELECT_CC: {
1534    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1535    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1536           "LHS and RHS of condition must have same type!");
1537    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1538           "True and False arms of SelectCC must have same type!");
1539    assert(Ops[2].getValueType() == VT &&
1540           "select_cc node must be of same type as true and false value!");
1541    break;
1542  }
1543  case ISD::BR_CC: {
1544    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1545    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1546           "LHS/RHS of comparison should match types!");
1547    break;
1548  }
1549  }
1550
1551  // Memoize nodes.
1552  SDNode *N;
1553  if (VT != MVT::Flag) {
1554    SDNode *&E =
1555      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1556    if (E) return SDOperand(E, 0);
1557    E = N = new SDNode(Opcode, Ops);
1558  } else {
1559    N = new SDNode(Opcode, Ops);
1560  }
1561  N->setValueTypes(VT);
1562  AllNodes.push_back(N);
1563  return SDOperand(N, 0);
1564}
1565
1566SDOperand SelectionDAG::getNode(unsigned Opcode,
1567                                std::vector<MVT::ValueType> &ResultTys,
1568                                std::vector<SDOperand> &Ops) {
1569  if (ResultTys.size() == 1)
1570    return getNode(Opcode, ResultTys[0], Ops);
1571
1572  switch (Opcode) {
1573  case ISD::EXTLOAD:
1574  case ISD::SEXTLOAD:
1575  case ISD::ZEXTLOAD: {
1576    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1577    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1578    // If they are asking for an extending load from/to the same thing, return a
1579    // normal load.
1580    if (ResultTys[0] == EVT)
1581      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1582    assert(EVT < ResultTys[0] &&
1583           "Should only be an extending load, not truncating!");
1584    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1585           "Cannot sign/zero extend a FP load!");
1586    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1587           "Cannot convert from FP to Int or Int -> FP!");
1588    break;
1589  }
1590
1591  // FIXME: figure out how to safely handle things like
1592  // int foo(int x) { return 1 << (x & 255); }
1593  // int bar() { return foo(256); }
1594#if 0
1595  case ISD::SRA_PARTS:
1596  case ISD::SRL_PARTS:
1597  case ISD::SHL_PARTS:
1598    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1599        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1600      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1601    else if (N3.getOpcode() == ISD::AND)
1602      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1603        // If the and is only masking out bits that cannot effect the shift,
1604        // eliminate the and.
1605        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1606        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1607          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1608      }
1609    break;
1610#endif
1611  }
1612
1613  // Memoize the node unless it returns a flag.
1614  SDNode *N;
1615  if (ResultTys.back() != MVT::Flag) {
1616    SDNode *&E =
1617      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1618    if (E) return SDOperand(E, 0);
1619    E = N = new SDNode(Opcode, Ops);
1620  } else {
1621    N = new SDNode(Opcode, Ops);
1622  }
1623  setNodeValueTypes(N, ResultTys);
1624  AllNodes.push_back(N);
1625  return SDOperand(N, 0);
1626}
1627
1628void SelectionDAG::setNodeValueTypes(SDNode *N,
1629                                     std::vector<MVT::ValueType> &RetVals) {
1630  switch (RetVals.size()) {
1631  case 0: return;
1632  case 1: N->setValueTypes(RetVals[0]); return;
1633  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1634  default: break;
1635  }
1636
1637  std::list<std::vector<MVT::ValueType> >::iterator I =
1638    std::find(VTList.begin(), VTList.end(), RetVals);
1639  if (I == VTList.end()) {
1640    VTList.push_front(RetVals);
1641    I = VTList.begin();
1642  }
1643
1644  N->setValueTypes(&(*I)[0], I->size());
1645}
1646
1647void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1648                                     MVT::ValueType VT2) {
1649  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1650       E = VTList.end(); I != E; ++I) {
1651    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1652      N->setValueTypes(&(*I)[0], 2);
1653      return;
1654    }
1655  }
1656  std::vector<MVT::ValueType> V;
1657  V.push_back(VT1);
1658  V.push_back(VT2);
1659  VTList.push_front(V);
1660  N->setValueTypes(&(*VTList.begin())[0], 2);
1661}
1662
1663/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1664/// specified operands.  If the resultant node already exists in the DAG,
1665/// this does not modify the specified node, instead it returns the node that
1666/// already exists.  If the resultant node does not exist in the DAG, the
1667/// input node is returned.  As a degenerate case, if you specify the same
1668/// input operands as the node already has, the input node is returned.
1669SDOperand SelectionDAG::
1670UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1671  SDNode *N = InN.Val;
1672  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1673
1674  // Check to see if there is no change.
1675  if (Op == N->getOperand(0)) return InN;
1676
1677  // See if the modified node already exists.
1678  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1679  if (NewSlot && *NewSlot)
1680    return SDOperand(*NewSlot, InN.ResNo);
1681
1682  // Nope it doesn't.  Remove the node from it's current place in the maps.
1683  if (NewSlot)
1684    RemoveNodeFromCSEMaps(N);
1685
1686  // Now we update the operands.
1687  N->OperandList[0].Val->removeUser(N);
1688  Op.Val->addUser(N);
1689  N->OperandList[0] = Op;
1690
1691  // If this gets put into a CSE map, add it.
1692  if (NewSlot) *NewSlot = N;
1693  return InN;
1694}
1695
1696SDOperand SelectionDAG::
1697UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1698  SDNode *N = InN.Val;
1699  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1700
1701  // Check to see if there is no change.
1702  bool AnyChange = false;
1703  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1704    return InN;   // No operands changed, just return the input node.
1705
1706  // See if the modified node already exists.
1707  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1708  if (NewSlot && *NewSlot)
1709    return SDOperand(*NewSlot, InN.ResNo);
1710
1711  // Nope it doesn't.  Remove the node from it's current place in the maps.
1712  if (NewSlot)
1713    RemoveNodeFromCSEMaps(N);
1714
1715  // Now we update the operands.
1716  if (N->OperandList[0] != Op1) {
1717    N->OperandList[0].Val->removeUser(N);
1718    Op1.Val->addUser(N);
1719    N->OperandList[0] = Op1;
1720  }
1721  if (N->OperandList[1] != Op2) {
1722    N->OperandList[1].Val->removeUser(N);
1723    Op2.Val->addUser(N);
1724    N->OperandList[1] = Op2;
1725  }
1726
1727  // If this gets put into a CSE map, add it.
1728  if (NewSlot) *NewSlot = N;
1729  return InN;
1730}
1731
1732SDOperand SelectionDAG::
1733UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1734  std::vector<SDOperand> Ops;
1735  Ops.push_back(Op1);
1736  Ops.push_back(Op2);
1737  Ops.push_back(Op3);
1738  return UpdateNodeOperands(N, Ops);
1739}
1740
1741SDOperand SelectionDAG::
1742UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1743                   SDOperand Op3, SDOperand Op4) {
1744  std::vector<SDOperand> Ops;
1745  Ops.push_back(Op1);
1746  Ops.push_back(Op2);
1747  Ops.push_back(Op3);
1748  Ops.push_back(Op4);
1749  return UpdateNodeOperands(N, Ops);
1750}
1751
1752SDOperand SelectionDAG::
1753UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1754                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1755  std::vector<SDOperand> Ops;
1756  Ops.push_back(Op1);
1757  Ops.push_back(Op2);
1758  Ops.push_back(Op3);
1759  Ops.push_back(Op4);
1760  Ops.push_back(Op5);
1761  return UpdateNodeOperands(N, Ops);
1762}
1763
1764
1765SDOperand SelectionDAG::
1766UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1767  SDNode *N = InN.Val;
1768  assert(N->getNumOperands() == Ops.size() &&
1769         "Update with wrong number of operands");
1770
1771  // Check to see if there is no change.
1772  unsigned NumOps = Ops.size();
1773  bool AnyChange = false;
1774  for (unsigned i = 0; i != NumOps; ++i) {
1775    if (Ops[i] != N->getOperand(i)) {
1776      AnyChange = true;
1777      break;
1778    }
1779  }
1780
1781  // No operands changed, just return the input node.
1782  if (!AnyChange) return InN;
1783
1784  // See if the modified node already exists.
1785  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1786  if (NewSlot && *NewSlot)
1787    return SDOperand(*NewSlot, InN.ResNo);
1788
1789  // Nope it doesn't.  Remove the node from it's current place in the maps.
1790  if (NewSlot)
1791    RemoveNodeFromCSEMaps(N);
1792
1793  // Now we update the operands.
1794  for (unsigned i = 0; i != NumOps; ++i) {
1795    if (N->OperandList[i] != Ops[i]) {
1796      N->OperandList[i].Val->removeUser(N);
1797      Ops[i].Val->addUser(N);
1798      N->OperandList[i] = Ops[i];
1799    }
1800  }
1801
1802  // If this gets put into a CSE map, add it.
1803  if (NewSlot) *NewSlot = N;
1804  return InN;
1805}
1806
1807
1808
1809
1810/// SelectNodeTo - These are used for target selectors to *mutate* the
1811/// specified node to have the specified return type, Target opcode, and
1812/// operands.  Note that target opcodes are stored as
1813/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1814///
1815/// Note that SelectNodeTo returns the resultant node.  If there is already a
1816/// node of the specified opcode and operands, it returns that node instead of
1817/// the current one.
1818SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1819                                     MVT::ValueType VT) {
1820  // If an identical node already exists, use it.
1821  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1822  if (ON) return SDOperand(ON, 0);
1823
1824  RemoveNodeFromCSEMaps(N);
1825
1826  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1827  N->setValueTypes(VT);
1828
1829  ON = N;   // Memoize the new node.
1830  return SDOperand(N, 0);
1831}
1832
1833SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1834                                     MVT::ValueType VT, SDOperand Op1) {
1835  // If an identical node already exists, use it.
1836  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1837                                        std::make_pair(Op1, VT))];
1838  if (ON) return SDOperand(ON, 0);
1839
1840  RemoveNodeFromCSEMaps(N);
1841  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1842  N->setValueTypes(VT);
1843  N->setOperands(Op1);
1844
1845  ON = N;   // Memoize the new node.
1846  return SDOperand(N, 0);
1847}
1848
1849SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1850                                     MVT::ValueType VT, SDOperand Op1,
1851                                     SDOperand Op2) {
1852  // If an identical node already exists, use it.
1853  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1854                                         std::make_pair(Op1, Op2))];
1855  if (ON) return SDOperand(ON, 0);
1856
1857  RemoveNodeFromCSEMaps(N);
1858  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1859  N->setValueTypes(VT);
1860  N->setOperands(Op1, Op2);
1861
1862  ON = N;   // Memoize the new node.
1863  return SDOperand(N, 0);
1864}
1865
1866SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1867                                     MVT::ValueType VT, SDOperand Op1,
1868                                     SDOperand Op2, SDOperand Op3) {
1869  // If an identical node already exists, use it.
1870  std::vector<SDOperand> OpList;
1871  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1872  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1873                                              std::make_pair(VT, OpList))];
1874  if (ON) return SDOperand(ON, 0);
1875
1876  RemoveNodeFromCSEMaps(N);
1877  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1878  N->setValueTypes(VT);
1879  N->setOperands(Op1, Op2, Op3);
1880
1881  ON = N;   // Memoize the new node.
1882  return SDOperand(N, 0);
1883}
1884
1885SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1886                                     MVT::ValueType VT, SDOperand Op1,
1887                                     SDOperand Op2, SDOperand Op3,
1888                                     SDOperand Op4) {
1889  // If an identical node already exists, use it.
1890  std::vector<SDOperand> OpList;
1891  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1892  OpList.push_back(Op4);
1893  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1894                                              std::make_pair(VT, OpList))];
1895  if (ON) return SDOperand(ON, 0);
1896
1897  RemoveNodeFromCSEMaps(N);
1898  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1899  N->setValueTypes(VT);
1900  N->setOperands(Op1, Op2, Op3, Op4);
1901
1902  ON = N;   // Memoize the new node.
1903  return SDOperand(N, 0);
1904}
1905
1906SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1907                                     MVT::ValueType VT, SDOperand Op1,
1908                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1909                                     SDOperand Op5) {
1910  // If an identical node already exists, use it.
1911  std::vector<SDOperand> OpList;
1912  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1913  OpList.push_back(Op4); OpList.push_back(Op5);
1914  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1915                                              std::make_pair(VT, OpList))];
1916  if (ON) return SDOperand(ON, 0);
1917
1918  RemoveNodeFromCSEMaps(N);
1919  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1920  N->setValueTypes(VT);
1921  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1922
1923  ON = N;   // Memoize the new node.
1924  return SDOperand(N, 0);
1925}
1926
1927SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1928                                     MVT::ValueType VT, SDOperand Op1,
1929                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1930                                     SDOperand Op5, SDOperand Op6) {
1931  // If an identical node already exists, use it.
1932  std::vector<SDOperand> OpList;
1933  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1934  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1935  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1936                                              std::make_pair(VT, OpList))];
1937  if (ON) return SDOperand(ON, 0);
1938
1939  RemoveNodeFromCSEMaps(N);
1940  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1941  N->setValueTypes(VT);
1942  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1943
1944  ON = N;   // Memoize the new node.
1945  return SDOperand(N, 0);
1946}
1947
1948SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1949                                     MVT::ValueType VT, SDOperand Op1,
1950                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1951                                     SDOperand Op5, SDOperand Op6,
1952				     SDOperand Op7) {
1953  // If an identical node already exists, use it.
1954  std::vector<SDOperand> OpList;
1955  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1956  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1957  OpList.push_back(Op7);
1958  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1959                                              std::make_pair(VT, OpList))];
1960  if (ON) return SDOperand(ON, 0);
1961
1962  RemoveNodeFromCSEMaps(N);
1963  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1964  N->setValueTypes(VT);
1965  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1966
1967  ON = N;   // Memoize the new node.
1968  return SDOperand(N, 0);
1969}
1970SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1971                                     MVT::ValueType VT, SDOperand Op1,
1972                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1973                                     SDOperand Op5, SDOperand Op6,
1974				     SDOperand Op7, SDOperand Op8) {
1975  // If an identical node already exists, use it.
1976  std::vector<SDOperand> OpList;
1977  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1978  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1979  OpList.push_back(Op7); OpList.push_back(Op8);
1980  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1981                                              std::make_pair(VT, OpList))];
1982  if (ON) return SDOperand(ON, 0);
1983
1984  RemoveNodeFromCSEMaps(N);
1985  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1986  N->setValueTypes(VT);
1987  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1988
1989  ON = N;   // Memoize the new node.
1990  return SDOperand(N, 0);
1991}
1992
1993SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1994                                     MVT::ValueType VT1, MVT::ValueType VT2,
1995                                     SDOperand Op1, SDOperand Op2) {
1996  // If an identical node already exists, use it.
1997  std::vector<SDOperand> OpList;
1998  OpList.push_back(Op1); OpList.push_back(Op2);
1999  std::vector<MVT::ValueType> VTList;
2000  VTList.push_back(VT1); VTList.push_back(VT2);
2001  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2002                                              std::make_pair(VTList, OpList))];
2003  if (ON) return SDOperand(ON, 0);
2004
2005  RemoveNodeFromCSEMaps(N);
2006  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2007  setNodeValueTypes(N, VT1, VT2);
2008  N->setOperands(Op1, Op2);
2009
2010  ON = N;   // Memoize the new node.
2011  return SDOperand(N, 0);
2012}
2013
2014SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2015                                     MVT::ValueType VT1, MVT::ValueType VT2,
2016                                     SDOperand Op1, SDOperand Op2,
2017                                     SDOperand Op3) {
2018  // If an identical node already exists, use it.
2019  std::vector<SDOperand> OpList;
2020  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2021  std::vector<MVT::ValueType> VTList;
2022  VTList.push_back(VT1); VTList.push_back(VT2);
2023  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2024                                              std::make_pair(VTList, OpList))];
2025  if (ON) return SDOperand(ON, 0);
2026
2027  RemoveNodeFromCSEMaps(N);
2028  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2029  setNodeValueTypes(N, VT1, VT2);
2030  N->setOperands(Op1, Op2, Op3);
2031
2032  ON = N;   // Memoize the new node.
2033  return SDOperand(N, 0);
2034}
2035
2036SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2037                                     MVT::ValueType VT1, MVT::ValueType VT2,
2038                                     SDOperand Op1, SDOperand Op2,
2039                                     SDOperand Op3, SDOperand Op4) {
2040  // If an identical node already exists, use it.
2041  std::vector<SDOperand> OpList;
2042  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2043  OpList.push_back(Op4);
2044  std::vector<MVT::ValueType> VTList;
2045  VTList.push_back(VT1); VTList.push_back(VT2);
2046  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2047                                              std::make_pair(VTList, OpList))];
2048  if (ON) return SDOperand(ON, 0);
2049
2050  RemoveNodeFromCSEMaps(N);
2051  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2052  setNodeValueTypes(N, VT1, VT2);
2053  N->setOperands(Op1, Op2, Op3, Op4);
2054
2055  ON = N;   // Memoize the new node.
2056  return SDOperand(N, 0);
2057}
2058
2059SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2060                                     MVT::ValueType VT1, MVT::ValueType VT2,
2061                                     SDOperand Op1, SDOperand Op2,
2062                                     SDOperand Op3, SDOperand Op4,
2063                                     SDOperand Op5) {
2064  // If an identical node already exists, use it.
2065  std::vector<SDOperand> OpList;
2066  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2067  OpList.push_back(Op4); OpList.push_back(Op5);
2068  std::vector<MVT::ValueType> VTList;
2069  VTList.push_back(VT1); VTList.push_back(VT2);
2070  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2071                                              std::make_pair(VTList, OpList))];
2072  if (ON) return SDOperand(ON, 0);
2073
2074  RemoveNodeFromCSEMaps(N);
2075  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2076  setNodeValueTypes(N, VT1, VT2);
2077  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2078
2079  ON = N;   // Memoize the new node.
2080  return SDOperand(N, 0);
2081}
2082
2083// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2084/// This can cause recursive merging of nodes in the DAG.
2085///
2086/// This version assumes From/To have a single result value.
2087///
2088void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2089                                      std::vector<SDNode*> *Deleted) {
2090  SDNode *From = FromN.Val, *To = ToN.Val;
2091  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2092         "Cannot replace with this method!");
2093  assert(From != To && "Cannot replace uses of with self");
2094
2095  while (!From->use_empty()) {
2096    // Process users until they are all gone.
2097    SDNode *U = *From->use_begin();
2098
2099    // This node is about to morph, remove its old self from the CSE maps.
2100    RemoveNodeFromCSEMaps(U);
2101
2102    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2103         I != E; ++I)
2104      if (I->Val == From) {
2105        From->removeUser(U);
2106        I->Val = To;
2107        To->addUser(U);
2108      }
2109
2110    // Now that we have modified U, add it back to the CSE maps.  If it already
2111    // exists there, recursively merge the results together.
2112    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2113      ReplaceAllUsesWith(U, Existing, Deleted);
2114      // U is now dead.
2115      if (Deleted) Deleted->push_back(U);
2116      DeleteNodeNotInCSEMaps(U);
2117    }
2118  }
2119}
2120
2121/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2122/// This can cause recursive merging of nodes in the DAG.
2123///
2124/// This version assumes From/To have matching types and numbers of result
2125/// values.
2126///
2127void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2128                                      std::vector<SDNode*> *Deleted) {
2129  assert(From != To && "Cannot replace uses of with self");
2130  assert(From->getNumValues() == To->getNumValues() &&
2131         "Cannot use this version of ReplaceAllUsesWith!");
2132  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2133    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2134    return;
2135  }
2136
2137  while (!From->use_empty()) {
2138    // Process users until they are all gone.
2139    SDNode *U = *From->use_begin();
2140
2141    // This node is about to morph, remove its old self from the CSE maps.
2142    RemoveNodeFromCSEMaps(U);
2143
2144    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2145         I != E; ++I)
2146      if (I->Val == From) {
2147        From->removeUser(U);
2148        I->Val = To;
2149        To->addUser(U);
2150      }
2151
2152    // Now that we have modified U, add it back to the CSE maps.  If it already
2153    // exists there, recursively merge the results together.
2154    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2155      ReplaceAllUsesWith(U, Existing, Deleted);
2156      // U is now dead.
2157      if (Deleted) Deleted->push_back(U);
2158      DeleteNodeNotInCSEMaps(U);
2159    }
2160  }
2161}
2162
2163/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2164/// This can cause recursive merging of nodes in the DAG.
2165///
2166/// This version can replace From with any result values.  To must match the
2167/// number and types of values returned by From.
2168void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2169                                      const std::vector<SDOperand> &To,
2170                                      std::vector<SDNode*> *Deleted) {
2171  assert(From->getNumValues() == To.size() &&
2172         "Incorrect number of values to replace with!");
2173  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2174    // Degenerate case handled above.
2175    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2176    return;
2177  }
2178
2179  while (!From->use_empty()) {
2180    // Process users until they are all gone.
2181    SDNode *U = *From->use_begin();
2182
2183    // This node is about to morph, remove its old self from the CSE maps.
2184    RemoveNodeFromCSEMaps(U);
2185
2186    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2187         I != E; ++I)
2188      if (I->Val == From) {
2189        const SDOperand &ToOp = To[I->ResNo];
2190        From->removeUser(U);
2191        *I = ToOp;
2192        ToOp.Val->addUser(U);
2193      }
2194
2195    // Now that we have modified U, add it back to the CSE maps.  If it already
2196    // exists there, recursively merge the results together.
2197    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2198      ReplaceAllUsesWith(U, Existing, Deleted);
2199      // U is now dead.
2200      if (Deleted) Deleted->push_back(U);
2201      DeleteNodeNotInCSEMaps(U);
2202    }
2203  }
2204}
2205
2206
2207//===----------------------------------------------------------------------===//
2208//                              SDNode Class
2209//===----------------------------------------------------------------------===//
2210
2211
2212/// getValueTypeList - Return a pointer to the specified value type.
2213///
2214MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2215  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2216  VTs[VT] = VT;
2217  return &VTs[VT];
2218}
2219
2220/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2221/// indicated value.  This method ignores uses of other values defined by this
2222/// operation.
2223bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
2224  assert(Value < getNumValues() && "Bad value!");
2225
2226  // If there is only one value, this is easy.
2227  if (getNumValues() == 1)
2228    return use_size() == NUses;
2229  if (Uses.size() < NUses) return false;
2230
2231  SDOperand TheValue(this, Value);
2232
2233  std::set<SDNode*> UsersHandled;
2234
2235  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
2236       UI != E; ++UI) {
2237    SDNode *User = *UI;
2238    if (User->getNumOperands() == 1 ||
2239        UsersHandled.insert(User).second)     // First time we've seen this?
2240      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2241        if (User->getOperand(i) == TheValue) {
2242          if (NUses == 0)
2243            return false;   // too many uses
2244          --NUses;
2245        }
2246  }
2247
2248  // Found exactly the right number of uses?
2249  return NUses == 0;
2250}
2251
2252
2253const char *SDNode::getOperationName(const SelectionDAG *G) const {
2254  switch (getOpcode()) {
2255  default:
2256    if (getOpcode() < ISD::BUILTIN_OP_END)
2257      return "<<Unknown DAG Node>>";
2258    else {
2259      if (G) {
2260        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2261          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2262            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2263
2264        TargetLowering &TLI = G->getTargetLoweringInfo();
2265        const char *Name =
2266          TLI.getTargetNodeName(getOpcode());
2267        if (Name) return Name;
2268      }
2269
2270      return "<<Unknown Target Node>>";
2271    }
2272
2273  case ISD::PCMARKER:      return "PCMarker";
2274  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2275  case ISD::SRCVALUE:      return "SrcValue";
2276  case ISD::VALUETYPE:     return "ValueType";
2277  case ISD::STRING:        return "String";
2278  case ISD::EntryToken:    return "EntryToken";
2279  case ISD::TokenFactor:   return "TokenFactor";
2280  case ISD::AssertSext:    return "AssertSext";
2281  case ISD::AssertZext:    return "AssertZext";
2282  case ISD::Constant:      return "Constant";
2283  case ISD::TargetConstant: return "TargetConstant";
2284  case ISD::ConstantFP:    return "ConstantFP";
2285  case ISD::ConstantVec:   return "ConstantVec";
2286  case ISD::GlobalAddress: return "GlobalAddress";
2287  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2288  case ISD::FrameIndex:    return "FrameIndex";
2289  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2290  case ISD::BasicBlock:    return "BasicBlock";
2291  case ISD::Register:      return "Register";
2292  case ISD::ExternalSymbol: return "ExternalSymbol";
2293  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2294  case ISD::ConstantPool:  return "ConstantPool";
2295  case ISD::TargetConstantPool:  return "TargetConstantPool";
2296  case ISD::CopyToReg:     return "CopyToReg";
2297  case ISD::CopyFromReg:   return "CopyFromReg";
2298  case ISD::UNDEF:         return "undef";
2299  case ISD::MERGE_VALUES:  return "mergevalues";
2300  case ISD::INLINEASM:     return "inlineasm";
2301
2302  // Unary operators
2303  case ISD::FABS:   return "fabs";
2304  case ISD::FNEG:   return "fneg";
2305  case ISD::FSQRT:  return "fsqrt";
2306  case ISD::FSIN:   return "fsin";
2307  case ISD::FCOS:   return "fcos";
2308
2309  // Binary operators
2310  case ISD::ADD:    return "add";
2311  case ISD::SUB:    return "sub";
2312  case ISD::MUL:    return "mul";
2313  case ISD::MULHU:  return "mulhu";
2314  case ISD::MULHS:  return "mulhs";
2315  case ISD::SDIV:   return "sdiv";
2316  case ISD::UDIV:   return "udiv";
2317  case ISD::SREM:   return "srem";
2318  case ISD::UREM:   return "urem";
2319  case ISD::AND:    return "and";
2320  case ISD::OR:     return "or";
2321  case ISD::XOR:    return "xor";
2322  case ISD::SHL:    return "shl";
2323  case ISD::SRA:    return "sra";
2324  case ISD::SRL:    return "srl";
2325  case ISD::ROTL:   return "rotl";
2326  case ISD::ROTR:   return "rotr";
2327  case ISD::FADD:   return "fadd";
2328  case ISD::FSUB:   return "fsub";
2329  case ISD::FMUL:   return "fmul";
2330  case ISD::FDIV:   return "fdiv";
2331  case ISD::FREM:   return "frem";
2332  case ISD::VADD:   return "vadd";
2333  case ISD::VSUB:   return "vsub";
2334  case ISD::VMUL:   return "vmul";
2335
2336  case ISD::SETCC:       return "setcc";
2337  case ISD::SELECT:      return "select";
2338  case ISD::SELECT_CC:   return "select_cc";
2339  case ISD::ADD_PARTS:   return "add_parts";
2340  case ISD::SUB_PARTS:   return "sub_parts";
2341  case ISD::SHL_PARTS:   return "shl_parts";
2342  case ISD::SRA_PARTS:   return "sra_parts";
2343  case ISD::SRL_PARTS:   return "srl_parts";
2344
2345  // Conversion operators.
2346  case ISD::SIGN_EXTEND: return "sign_extend";
2347  case ISD::ZERO_EXTEND: return "zero_extend";
2348  case ISD::ANY_EXTEND:  return "any_extend";
2349  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2350  case ISD::TRUNCATE:    return "truncate";
2351  case ISD::FP_ROUND:    return "fp_round";
2352  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2353  case ISD::FP_EXTEND:   return "fp_extend";
2354
2355  case ISD::SINT_TO_FP:  return "sint_to_fp";
2356  case ISD::UINT_TO_FP:  return "uint_to_fp";
2357  case ISD::FP_TO_SINT:  return "fp_to_sint";
2358  case ISD::FP_TO_UINT:  return "fp_to_uint";
2359  case ISD::BIT_CONVERT: return "bit_convert";
2360
2361    // Control flow instructions
2362  case ISD::BR:      return "br";
2363  case ISD::BRCOND:  return "brcond";
2364  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
2365  case ISD::BR_CC:  return "br_cc";
2366  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
2367  case ISD::RET:     return "ret";
2368  case ISD::CALLSEQ_START:  return "callseq_start";
2369  case ISD::CALLSEQ_END:    return "callseq_end";
2370
2371    // Other operators
2372  case ISD::LOAD:               return "load";
2373  case ISD::STORE:              return "store";
2374  case ISD::VLOAD:              return "vload";
2375  case ISD::EXTLOAD:            return "extload";
2376  case ISD::SEXTLOAD:           return "sextload";
2377  case ISD::ZEXTLOAD:           return "zextload";
2378  case ISD::TRUNCSTORE:         return "truncstore";
2379  case ISD::VAARG:              return "vaarg";
2380  case ISD::VACOPY:             return "vacopy";
2381  case ISD::VAEND:              return "vaend";
2382  case ISD::VASTART:            return "vastart";
2383  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2384  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2385  case ISD::BUILD_PAIR:         return "build_pair";
2386  case ISD::STACKSAVE:          return "stacksave";
2387  case ISD::STACKRESTORE:       return "stackrestore";
2388
2389  // Block memory operations.
2390  case ISD::MEMSET:  return "memset";
2391  case ISD::MEMCPY:  return "memcpy";
2392  case ISD::MEMMOVE: return "memmove";
2393
2394  // Bit manipulation
2395  case ISD::BSWAP:   return "bswap";
2396  case ISD::CTPOP:   return "ctpop";
2397  case ISD::CTTZ:    return "cttz";
2398  case ISD::CTLZ:    return "ctlz";
2399
2400  // IO Intrinsics
2401  case ISD::READPORT: return "readport";
2402  case ISD::WRITEPORT: return "writeport";
2403  case ISD::READIO: return "readio";
2404  case ISD::WRITEIO: return "writeio";
2405
2406  // Debug info
2407  case ISD::LOCATION: return "location";
2408  case ISD::DEBUG_LOC: return "debug_loc";
2409  case ISD::DEBUG_LABEL: return "debug_label";
2410
2411  case ISD::CONDCODE:
2412    switch (cast<CondCodeSDNode>(this)->get()) {
2413    default: assert(0 && "Unknown setcc condition!");
2414    case ISD::SETOEQ:  return "setoeq";
2415    case ISD::SETOGT:  return "setogt";
2416    case ISD::SETOGE:  return "setoge";
2417    case ISD::SETOLT:  return "setolt";
2418    case ISD::SETOLE:  return "setole";
2419    case ISD::SETONE:  return "setone";
2420
2421    case ISD::SETO:    return "seto";
2422    case ISD::SETUO:   return "setuo";
2423    case ISD::SETUEQ:  return "setue";
2424    case ISD::SETUGT:  return "setugt";
2425    case ISD::SETUGE:  return "setuge";
2426    case ISD::SETULT:  return "setult";
2427    case ISD::SETULE:  return "setule";
2428    case ISD::SETUNE:  return "setune";
2429
2430    case ISD::SETEQ:   return "seteq";
2431    case ISD::SETGT:   return "setgt";
2432    case ISD::SETGE:   return "setge";
2433    case ISD::SETLT:   return "setlt";
2434    case ISD::SETLE:   return "setle";
2435    case ISD::SETNE:   return "setne";
2436    }
2437  }
2438}
2439
2440void SDNode::dump() const { dump(0); }
2441void SDNode::dump(const SelectionDAG *G) const {
2442  std::cerr << (void*)this << ": ";
2443
2444  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2445    if (i) std::cerr << ",";
2446    if (getValueType(i) == MVT::Other)
2447      std::cerr << "ch";
2448    else
2449      std::cerr << MVT::getValueTypeString(getValueType(i));
2450  }
2451  std::cerr << " = " << getOperationName(G);
2452
2453  std::cerr << " ";
2454  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2455    if (i) std::cerr << ", ";
2456    std::cerr << (void*)getOperand(i).Val;
2457    if (unsigned RN = getOperand(i).ResNo)
2458      std::cerr << ":" << RN;
2459  }
2460
2461  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2462    std::cerr << "<" << CSDN->getValue() << ">";
2463  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2464    std::cerr << "<" << CSDN->getValue() << ">";
2465  } else if (const GlobalAddressSDNode *GADN =
2466             dyn_cast<GlobalAddressSDNode>(this)) {
2467    int offset = GADN->getOffset();
2468    std::cerr << "<";
2469    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2470    if (offset > 0)
2471      std::cerr << " + " << offset;
2472    else
2473      std::cerr << " " << offset;
2474  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2475    std::cerr << "<" << FIDN->getIndex() << ">";
2476  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2477    std::cerr << "<" << *CP->get() << ">";
2478  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2479    std::cerr << "<";
2480    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2481    if (LBB)
2482      std::cerr << LBB->getName() << " ";
2483    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2484  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2485    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2486      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2487    } else {
2488      std::cerr << " #" << R->getReg();
2489    }
2490  } else if (const ExternalSymbolSDNode *ES =
2491             dyn_cast<ExternalSymbolSDNode>(this)) {
2492    std::cerr << "'" << ES->getSymbol() << "'";
2493  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2494    if (M->getValue())
2495      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2496    else
2497      std::cerr << "<null:" << M->getOffset() << ">";
2498  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2499    std::cerr << ":" << getValueTypeString(N->getVT());
2500  }
2501}
2502
2503static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2504  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2505    if (N->getOperand(i).Val->hasOneUse())
2506      DumpNodes(N->getOperand(i).Val, indent+2, G);
2507    else
2508      std::cerr << "\n" << std::string(indent+2, ' ')
2509                << (void*)N->getOperand(i).Val << ": <multiple use>";
2510
2511
2512  std::cerr << "\n" << std::string(indent, ' ');
2513  N->dump(G);
2514}
2515
2516void SelectionDAG::dump() const {
2517  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2518  std::vector<const SDNode*> Nodes;
2519  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2520       I != E; ++I)
2521    Nodes.push_back(I);
2522
2523  std::sort(Nodes.begin(), Nodes.end());
2524
2525  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2526    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2527      DumpNodes(Nodes[i], 2, this);
2528  }
2529
2530  DumpNodes(getRoot().Val, 2, this);
2531
2532  std::cerr << "\n\n";
2533}
2534
2535