SelectionDAG.cpp revision 35481892da1e5634bf497c8a0cabb1bb5a8b8fef
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/StringExtras.h"
25#include <iostream>
26#include <set>
27#include <cmath>
28#include <algorithm>
29using namespace llvm;
30
31static bool isCommutativeBinOp(unsigned Opcode) {
32  switch (Opcode) {
33  case ISD::ADD:
34  case ISD::MUL:
35  case ISD::FADD:
36  case ISD::FMUL:
37  case ISD::AND:
38  case ISD::OR:
39  case ISD::XOR: return true;
40  default: return false; // FIXME: Need commutative info for user ops!
41  }
42}
43
44static bool isAssociativeBinOp(unsigned Opcode) {
45  switch (Opcode) {
46  case ISD::ADD:
47  case ISD::MUL:
48  case ISD::AND:
49  case ISD::OR:
50  case ISD::XOR: return true;
51  default: return false; // FIXME: Need associative info for user ops!
52  }
53}
54
55// isInvertibleForFree - Return true if there is no cost to emitting the logical
56// inverse of this node.
57static bool isInvertibleForFree(SDOperand N) {
58  if (isa<ConstantSDNode>(N.Val)) return true;
59  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
60    return true;
61  return false;
62}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(double V) const {
73  return DoubleToBits(V) == DoubleToBits(Value);
74}
75
76//===----------------------------------------------------------------------===//
77//                              ISD Class
78//===----------------------------------------------------------------------===//
79
80/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
81/// when given the operation for (X op Y).
82ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
83  // To perform this operation, we just need to swap the L and G bits of the
84  // operation.
85  unsigned OldL = (Operation >> 2) & 1;
86  unsigned OldG = (Operation >> 1) & 1;
87  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
88                       (OldL << 1) |       // New G bit
89                       (OldG << 2));        // New L bit.
90}
91
92/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
93/// 'op' is a valid SetCC operation.
94ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
95  unsigned Operation = Op;
96  if (isInteger)
97    Operation ^= 7;   // Flip L, G, E bits, but not U.
98  else
99    Operation ^= 15;  // Flip all of the condition bits.
100  if (Operation > ISD::SETTRUE2)
101    Operation &= ~8;     // Don't let N and U bits get set.
102  return ISD::CondCode(Operation);
103}
104
105
106/// isSignedOp - For an integer comparison, return 1 if the comparison is a
107/// signed operation and 2 if the result is an unsigned comparison.  Return zero
108/// if the operation does not depend on the sign of the input (setne and seteq).
109static int isSignedOp(ISD::CondCode Opcode) {
110  switch (Opcode) {
111  default: assert(0 && "Illegal integer setcc operation!");
112  case ISD::SETEQ:
113  case ISD::SETNE: return 0;
114  case ISD::SETLT:
115  case ISD::SETLE:
116  case ISD::SETGT:
117  case ISD::SETGE: return 1;
118  case ISD::SETULT:
119  case ISD::SETULE:
120  case ISD::SETUGT:
121  case ISD::SETUGE: return 2;
122  }
123}
124
125/// getSetCCOrOperation - Return the result of a logical OR between different
126/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
127/// returns SETCC_INVALID if it is not possible to represent the resultant
128/// comparison.
129ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
130                                       bool isInteger) {
131  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
132    // Cannot fold a signed integer setcc with an unsigned integer setcc.
133    return ISD::SETCC_INVALID;
134
135  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
136
137  // If the N and U bits get set then the resultant comparison DOES suddenly
138  // care about orderedness, and is true when ordered.
139  if (Op > ISD::SETTRUE2)
140    Op &= ~16;     // Clear the N bit.
141  return ISD::CondCode(Op);
142}
143
144/// getSetCCAndOperation - Return the result of a logical AND between different
145/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
146/// function returns zero if it is not possible to represent the resultant
147/// comparison.
148ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
149                                        bool isInteger) {
150  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
151    // Cannot fold a signed setcc with an unsigned setcc.
152    return ISD::SETCC_INVALID;
153
154  // Combine all of the condition bits.
155  return ISD::CondCode(Op1 & Op2);
156}
157
158const TargetMachine &SelectionDAG::getTarget() const {
159  return TLI.getTargetMachine();
160}
161
162//===----------------------------------------------------------------------===//
163//                              SelectionDAG Class
164//===----------------------------------------------------------------------===//
165
166/// RemoveDeadNodes - This method deletes all unreachable nodes in the
167/// SelectionDAG, including nodes (like loads) that have uses of their token
168/// chain but no other uses and no side effect.  If a node is passed in as an
169/// argument, it is used as the seed for node deletion.
170void SelectionDAG::RemoveDeadNodes(SDNode *N) {
171  // Create a dummy node (which is not added to allnodes), that adds a reference
172  // to the root node, preventing it from being deleted.
173  HandleSDNode Dummy(getRoot());
174
175  bool MadeChange = false;
176
177  // If we have a hint to start from, use it.
178  if (N && N->use_empty()) {
179    DestroyDeadNode(N);
180    MadeChange = true;
181  }
182
183  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
184    if (I->use_empty() && I->getOpcode() != 65535) {
185      // Node is dead, recursively delete newly dead uses.
186      DestroyDeadNode(I);
187      MadeChange = true;
188    }
189
190  // Walk the nodes list, removing the nodes we've marked as dead.
191  if (MadeChange) {
192    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
193      SDNode *N = I++;
194      if (N->use_empty())
195        AllNodes.erase(N);
196    }
197  }
198
199  // If the root changed (e.g. it was a dead load, update the root).
200  setRoot(Dummy.getValue());
201}
202
203/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
204/// graph.  If it is the last user of any of its operands, recursively process
205/// them the same way.
206///
207void SelectionDAG::DestroyDeadNode(SDNode *N) {
208  // Okay, we really are going to delete this node.  First take this out of the
209  // appropriate CSE map.
210  RemoveNodeFromCSEMaps(N);
211
212  // Next, brutally remove the operand list.  This is safe to do, as there are
213  // no cycles in the graph.
214  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
215    SDNode *O = I->Val;
216    O->removeUser(N);
217
218    // Now that we removed this operand, see if there are no uses of it left.
219    if (O->use_empty())
220      DestroyDeadNode(O);
221  }
222  delete[] N->OperandList;
223  N->OperandList = 0;
224  N->NumOperands = 0;
225
226  // Mark the node as dead.
227  N->MorphNodeTo(65535);
228}
229
230void SelectionDAG::DeleteNode(SDNode *N) {
231  assert(N->use_empty() && "Cannot delete a node that is not dead!");
232
233  // First take this out of the appropriate CSE map.
234  RemoveNodeFromCSEMaps(N);
235
236  // Finally, remove uses due to operands of this node, remove from the
237  // AllNodes list, and delete the node.
238  DeleteNodeNotInCSEMaps(N);
239}
240
241void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
242
243  // Remove it from the AllNodes list.
244  AllNodes.remove(N);
245
246  // Drop all of the operands and decrement used nodes use counts.
247  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
248    I->Val->removeUser(N);
249  delete[] N->OperandList;
250  N->OperandList = 0;
251  N->NumOperands = 0;
252
253  delete N;
254}
255
256/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
257/// correspond to it.  This is useful when we're about to delete or repurpose
258/// the node.  We don't want future request for structurally identical nodes
259/// to return N anymore.
260void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
261  bool Erased = false;
262  switch (N->getOpcode()) {
263  case ISD::HANDLENODE: return;  // noop.
264  case ISD::Constant:
265    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
266                                            N->getValueType(0)));
267    break;
268  case ISD::TargetConstant:
269    Erased = TargetConstants.erase(std::make_pair(
270                                    cast<ConstantSDNode>(N)->getValue(),
271                                                  N->getValueType(0)));
272    break;
273  case ISD::ConstantFP: {
274    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
275    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
276    break;
277  }
278  case ISD::STRING:
279    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
280    break;
281  case ISD::CONDCODE:
282    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
283           "Cond code doesn't exist!");
284    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
285    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
286    break;
287  case ISD::GlobalAddress: {
288    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
289    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
290                                               GN->getOffset()));
291    break;
292  }
293  case ISD::TargetGlobalAddress: {
294    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
295    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
296                                                    GN->getOffset()));
297    break;
298  }
299  case ISD::FrameIndex:
300    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::TargetFrameIndex:
303    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
304    break;
305  case ISD::ConstantPool:
306    Erased = ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
307    break;
308  case ISD::TargetConstantPool:
309    Erased =TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get());
310    break;
311  case ISD::BasicBlock:
312    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
313    break;
314  case ISD::ExternalSymbol:
315    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
316    break;
317  case ISD::TargetExternalSymbol:
318    Erased = TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::VALUETYPE:
321    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
322    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
323    break;
324  case ISD::Register:
325    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
326                                           N->getValueType(0)));
327    break;
328  case ISD::SRCVALUE: {
329    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
330    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
331    break;
332  }
333  case ISD::LOAD:
334    Erased = Loads.erase(std::make_pair(N->getOperand(1),
335                                        std::make_pair(N->getOperand(0),
336                                                       N->getValueType(0))));
337    break;
338  default:
339    if (N->getNumValues() == 1) {
340      if (N->getNumOperands() == 0) {
341        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
342                                                 N->getValueType(0)));
343      } else if (N->getNumOperands() == 1) {
344        Erased =
345          UnaryOps.erase(std::make_pair(N->getOpcode(),
346                                        std::make_pair(N->getOperand(0),
347                                                       N->getValueType(0))));
348      } else if (N->getNumOperands() == 2) {
349        Erased =
350          BinaryOps.erase(std::make_pair(N->getOpcode(),
351                                         std::make_pair(N->getOperand(0),
352                                                        N->getOperand(1))));
353      } else {
354        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
355        Erased =
356          OneResultNodes.erase(std::make_pair(N->getOpcode(),
357                                              std::make_pair(N->getValueType(0),
358                                                             Ops)));
359      }
360    } else {
361      // Remove the node from the ArbitraryNodes map.
362      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
363      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
364      Erased =
365        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
366                                            std::make_pair(RV, Ops)));
367    }
368    break;
369  }
370#ifndef NDEBUG
371  // Verify that the node was actually in one of the CSE maps, unless it has a
372  // flag result (which cannot be CSE'd) or is one of the special cases that are
373  // not subject to CSE.
374  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
375      N->getOpcode() != ISD::CALL && N->getOpcode() != ISD::CALLSEQ_START &&
376      N->getOpcode() != ISD::CALLSEQ_END && !N->isTargetOpcode()) {
377
378    N->dump();
379    assert(0 && "Node is not in map!");
380  }
381#endif
382}
383
384/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
385/// has been taken out and modified in some way.  If the specified node already
386/// exists in the CSE maps, do not modify the maps, but return the existing node
387/// instead.  If it doesn't exist, add it and return null.
388///
389SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
390  assert(N->getNumOperands() && "This is a leaf node!");
391  if (N->getOpcode() == ISD::CALLSEQ_START ||
392      N->getOpcode() == ISD::CALLSEQ_END ||
393      N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
394    return 0;    // Never add these nodes.
395
396  // Check that remaining values produced are not flags.
397  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
398    if (N->getValueType(i) == MVT::Flag)
399      return 0;   // Never CSE anything that produces a flag.
400
401  if (N->getNumValues() == 1) {
402    if (N->getNumOperands() == 1) {
403      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
404                                           std::make_pair(N->getOperand(0),
405                                                          N->getValueType(0)))];
406      if (U) return U;
407      U = N;
408    } else if (N->getNumOperands() == 2) {
409      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
410                                            std::make_pair(N->getOperand(0),
411                                                           N->getOperand(1)))];
412      if (B) return B;
413      B = N;
414    } else {
415      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
416      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
417                                                   std::make_pair(N->getValueType(0), Ops))];
418      if (ORN) return ORN;
419      ORN = N;
420    }
421  } else {
422    if (N->getOpcode() == ISD::LOAD) {
423      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
424                                        std::make_pair(N->getOperand(0),
425                                                       N->getValueType(0)))];
426      if (L) return L;
427      L = N;
428    } else {
429      // Remove the node from the ArbitraryNodes map.
430      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
431      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
432      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
433                                                  std::make_pair(RV, Ops))];
434      if (AN) return AN;
435      AN = N;
436    }
437  }
438  return 0;
439}
440
441
442
443SelectionDAG::~SelectionDAG() {
444  while (!AllNodes.empty()) {
445    SDNode *N = AllNodes.begin();
446    delete [] N->OperandList;
447    N->OperandList = 0;
448    N->NumOperands = 0;
449    AllNodes.pop_front();
450  }
451}
452
453SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
454  if (Op.getValueType() == VT) return Op;
455  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
456  return getNode(ISD::AND, Op.getValueType(), Op,
457                 getConstant(Imm, Op.getValueType()));
458}
459
460SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
461  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
462  // Mask out any bits that are not valid for this constant.
463  if (VT != MVT::i64)
464    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
465
466  SDNode *&N = Constants[std::make_pair(Val, VT)];
467  if (N) return SDOperand(N, 0);
468  N = new ConstantSDNode(false, Val, VT);
469  AllNodes.push_back(N);
470  return SDOperand(N, 0);
471}
472
473SDOperand SelectionDAG::getString(const std::string &Val) {
474  StringSDNode *&N = StringNodes[Val];
475  if (!N) {
476    N = new StringSDNode(Val);
477    AllNodes.push_back(N);
478  }
479  return SDOperand(N, 0);
480}
481
482SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
483  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
484  // Mask out any bits that are not valid for this constant.
485  if (VT != MVT::i64)
486    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
487
488  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
489  if (N) return SDOperand(N, 0);
490  N = new ConstantSDNode(true, Val, VT);
491  AllNodes.push_back(N);
492  return SDOperand(N, 0);
493}
494
495SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
496  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
497  if (VT == MVT::f32)
498    Val = (float)Val;  // Mask out extra precision.
499
500  // Do the map lookup using the actual bit pattern for the floating point
501  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
502  // we don't have issues with SNANs.
503  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
504  if (N) return SDOperand(N, 0);
505  N = new ConstantFPSDNode(Val, VT);
506  AllNodes.push_back(N);
507  return SDOperand(N, 0);
508}
509
510SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
511                                         MVT::ValueType VT, int offset) {
512  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
513  if (N) return SDOperand(N, 0);
514  N = new GlobalAddressSDNode(false, GV, VT);
515  AllNodes.push_back(N);
516  return SDOperand(N, 0);
517}
518
519SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
520                                               MVT::ValueType VT, int offset) {
521  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
522  if (N) return SDOperand(N, 0);
523  N = new GlobalAddressSDNode(true, GV, VT, offset);
524  AllNodes.push_back(N);
525  return SDOperand(N, 0);
526}
527
528SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
529  SDNode *&N = FrameIndices[FI];
530  if (N) return SDOperand(N, 0);
531  N = new FrameIndexSDNode(FI, VT, false);
532  AllNodes.push_back(N);
533  return SDOperand(N, 0);
534}
535
536SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
537  SDNode *&N = TargetFrameIndices[FI];
538  if (N) return SDOperand(N, 0);
539  N = new FrameIndexSDNode(FI, VT, true);
540  AllNodes.push_back(N);
541  return SDOperand(N, 0);
542}
543
544SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) {
545  SDNode *&N = ConstantPoolIndices[C];
546  if (N) return SDOperand(N, 0);
547  N = new ConstantPoolSDNode(C, VT, false);
548  AllNodes.push_back(N);
549  return SDOperand(N, 0);
550}
551
552SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) {
553  SDNode *&N = TargetConstantPoolIndices[C];
554  if (N) return SDOperand(N, 0);
555  N = new ConstantPoolSDNode(C, VT, true);
556  AllNodes.push_back(N);
557  return SDOperand(N, 0);
558}
559
560SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
561  SDNode *&N = BBNodes[MBB];
562  if (N) return SDOperand(N, 0);
563  N = new BasicBlockSDNode(MBB);
564  AllNodes.push_back(N);
565  return SDOperand(N, 0);
566}
567
568SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
569  if ((unsigned)VT >= ValueTypeNodes.size())
570    ValueTypeNodes.resize(VT+1);
571  if (ValueTypeNodes[VT] == 0) {
572    ValueTypeNodes[VT] = new VTSDNode(VT);
573    AllNodes.push_back(ValueTypeNodes[VT]);
574  }
575
576  return SDOperand(ValueTypeNodes[VT], 0);
577}
578
579SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
580  SDNode *&N = ExternalSymbols[Sym];
581  if (N) return SDOperand(N, 0);
582  N = new ExternalSymbolSDNode(false, Sym, VT);
583  AllNodes.push_back(N);
584  return SDOperand(N, 0);
585}
586
587SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT::ValueType VT) {
588  SDNode *&N = TargetExternalSymbols[Sym];
589  if (N) return SDOperand(N, 0);
590  N = new ExternalSymbolSDNode(true, Sym, VT);
591  AllNodes.push_back(N);
592  return SDOperand(N, 0);
593}
594
595SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
596  if ((unsigned)Cond >= CondCodeNodes.size())
597    CondCodeNodes.resize(Cond+1);
598
599  if (CondCodeNodes[Cond] == 0) {
600    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
601    AllNodes.push_back(CondCodeNodes[Cond]);
602  }
603  return SDOperand(CondCodeNodes[Cond], 0);
604}
605
606SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
607  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
608  if (!Reg) {
609    Reg = new RegisterSDNode(RegNo, VT);
610    AllNodes.push_back(Reg);
611  }
612  return SDOperand(Reg, 0);
613}
614
615SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
616                                      SDOperand N2, ISD::CondCode Cond) {
617  // These setcc operations always fold.
618  switch (Cond) {
619  default: break;
620  case ISD::SETFALSE:
621  case ISD::SETFALSE2: return getConstant(0, VT);
622  case ISD::SETTRUE:
623  case ISD::SETTRUE2:  return getConstant(1, VT);
624  }
625
626  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
627    uint64_t C2 = N2C->getValue();
628    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
629      uint64_t C1 = N1C->getValue();
630
631      // Sign extend the operands if required
632      if (ISD::isSignedIntSetCC(Cond)) {
633        C1 = N1C->getSignExtended();
634        C2 = N2C->getSignExtended();
635      }
636
637      switch (Cond) {
638      default: assert(0 && "Unknown integer setcc!");
639      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
640      case ISD::SETNE:  return getConstant(C1 != C2, VT);
641      case ISD::SETULT: return getConstant(C1 <  C2, VT);
642      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
643      case ISD::SETULE: return getConstant(C1 <= C2, VT);
644      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
645      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
646      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
647      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
648      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
649      }
650    } else {
651      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
652      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
653        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
654
655        // If the comparison constant has bits in the upper part, the
656        // zero-extended value could never match.
657        if (C2 & (~0ULL << InSize)) {
658          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
659          switch (Cond) {
660          case ISD::SETUGT:
661          case ISD::SETUGE:
662          case ISD::SETEQ: return getConstant(0, VT);
663          case ISD::SETULT:
664          case ISD::SETULE:
665          case ISD::SETNE: return getConstant(1, VT);
666          case ISD::SETGT:
667          case ISD::SETGE:
668            // True if the sign bit of C2 is set.
669            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
670          case ISD::SETLT:
671          case ISD::SETLE:
672            // True if the sign bit of C2 isn't set.
673            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
674          default:
675            break;
676          }
677        }
678
679        // Otherwise, we can perform the comparison with the low bits.
680        switch (Cond) {
681        case ISD::SETEQ:
682        case ISD::SETNE:
683        case ISD::SETUGT:
684        case ISD::SETUGE:
685        case ISD::SETULT:
686        case ISD::SETULE:
687          return getSetCC(VT, N1.getOperand(0),
688                          getConstant(C2, N1.getOperand(0).getValueType()),
689                          Cond);
690        default:
691          break;   // todo, be more careful with signed comparisons
692        }
693      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
694                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
695        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
696        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
697        MVT::ValueType ExtDstTy = N1.getValueType();
698        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
699
700        // If the extended part has any inconsistent bits, it cannot ever
701        // compare equal.  In other words, they have to be all ones or all
702        // zeros.
703        uint64_t ExtBits =
704          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
705        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
706          return getConstant(Cond == ISD::SETNE, VT);
707
708        // Otherwise, make this a use of a zext.
709        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
710                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
711                        Cond);
712      }
713
714      uint64_t MinVal, MaxVal;
715      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
716      if (ISD::isSignedIntSetCC(Cond)) {
717        MinVal = 1ULL << (OperandBitSize-1);
718        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
719          MaxVal = ~0ULL >> (65-OperandBitSize);
720        else
721          MaxVal = 0;
722      } else {
723        MinVal = 0;
724        MaxVal = ~0ULL >> (64-OperandBitSize);
725      }
726
727      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
728      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
729        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
730        --C2;                                          // X >= C1 --> X > (C1-1)
731        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
732                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
733      }
734
735      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
736        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
737        ++C2;                                          // X <= C1 --> X < (C1+1)
738        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
739                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
740      }
741
742      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
743        return getConstant(0, VT);      // X < MIN --> false
744
745      // Canonicalize setgt X, Min --> setne X, Min
746      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
747        return getSetCC(VT, N1, N2, ISD::SETNE);
748
749      // If we have setult X, 1, turn it into seteq X, 0
750      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
751        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
752                        ISD::SETEQ);
753      // If we have setugt X, Max-1, turn it into seteq X, Max
754      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
755        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
756                        ISD::SETEQ);
757
758      // If we have "setcc X, C1", check to see if we can shrink the immediate
759      // by changing cc.
760
761      // SETUGT X, SINTMAX  -> SETLT X, 0
762      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
763          C2 == (~0ULL >> (65-OperandBitSize)))
764        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
765
766      // FIXME: Implement the rest of these.
767
768
769      // Fold bit comparisons when we can.
770      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
771          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
772        if (ConstantSDNode *AndRHS =
773                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
774          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
775            // Perform the xform if the AND RHS is a single bit.
776            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
777              return getNode(ISD::SRL, VT, N1,
778                             getConstant(Log2_64(AndRHS->getValue()),
779                                                   TLI.getShiftAmountTy()));
780            }
781          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
782            // (X & 8) == 8  -->  (X & 8) >> 3
783            // Perform the xform if C2 is a single bit.
784            if ((C2 & (C2-1)) == 0) {
785              return getNode(ISD::SRL, VT, N1,
786                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
787            }
788          }
789        }
790    }
791  } else if (isa<ConstantSDNode>(N1.Val)) {
792      // Ensure that the constant occurs on the RHS.
793    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
794  }
795
796  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
797    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
798      double C1 = N1C->getValue(), C2 = N2C->getValue();
799
800      switch (Cond) {
801      default: break; // FIXME: Implement the rest of these!
802      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
803      case ISD::SETNE:  return getConstant(C1 != C2, VT);
804      case ISD::SETLT:  return getConstant(C1 < C2, VT);
805      case ISD::SETGT:  return getConstant(C1 > C2, VT);
806      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
807      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
808      }
809    } else {
810      // Ensure that the constant occurs on the RHS.
811      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
812    }
813
814  // Could not fold it.
815  return SDOperand();
816}
817
818/// getNode - Gets or creates the specified node.
819///
820SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
821  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
822  if (!N) {
823    N = new SDNode(Opcode, VT);
824    AllNodes.push_back(N);
825  }
826  return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
830                                SDOperand Operand) {
831  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
832    uint64_t Val = C->getValue();
833    switch (Opcode) {
834    default: break;
835    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
836    case ISD::ANY_EXTEND:
837    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
838    case ISD::TRUNCATE:    return getConstant(Val, VT);
839    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
840    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
841    }
842  }
843
844  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
845    switch (Opcode) {
846    case ISD::FNEG:
847      return getConstantFP(-C->getValue(), VT);
848    case ISD::FP_ROUND:
849    case ISD::FP_EXTEND:
850      return getConstantFP(C->getValue(), VT);
851    case ISD::FP_TO_SINT:
852      return getConstant((int64_t)C->getValue(), VT);
853    case ISD::FP_TO_UINT:
854      return getConstant((uint64_t)C->getValue(), VT);
855    }
856
857  unsigned OpOpcode = Operand.Val->getOpcode();
858  switch (Opcode) {
859  case ISD::TokenFactor:
860    return Operand;         // Factor of one node?  No factor.
861  case ISD::SIGN_EXTEND:
862    if (Operand.getValueType() == VT) return Operand;   // noop extension
863    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
864      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
865    break;
866  case ISD::ZERO_EXTEND:
867    if (Operand.getValueType() == VT) return Operand;   // noop extension
868    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
869      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
870    break;
871  case ISD::ANY_EXTEND:
872    if (Operand.getValueType() == VT) return Operand;   // noop extension
873    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
874      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
875      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
876    break;
877  case ISD::TRUNCATE:
878    if (Operand.getValueType() == VT) return Operand;   // noop truncate
879    if (OpOpcode == ISD::TRUNCATE)
880      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
881    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
882             OpOpcode == ISD::ANY_EXTEND) {
883      // If the source is smaller than the dest, we still need an extend.
884      if (Operand.Val->getOperand(0).getValueType() < VT)
885        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
886      else if (Operand.Val->getOperand(0).getValueType() > VT)
887        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
888      else
889        return Operand.Val->getOperand(0);
890    }
891    break;
892  case ISD::BIT_CONVERT:
893    // Basic sanity checking.
894    assert(MVT::getSizeInBits(VT)==MVT::getSizeInBits(Operand.getValueType()) &&
895           "Cannot BIT_CONVERT between two different types!");
896    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
897    break;
898  case ISD::FNEG:
899    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
900      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
901                     Operand.Val->getOperand(0));
902    if (OpOpcode == ISD::FNEG)  // --X -> X
903      return Operand.Val->getOperand(0);
904    break;
905  case ISD::FABS:
906    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
907      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
908    break;
909  }
910
911  SDNode *N;
912  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
913    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
914    if (E) return SDOperand(E, 0);
915    E = N = new SDNode(Opcode, Operand);
916  } else {
917    N = new SDNode(Opcode, Operand);
918  }
919  N->setValueTypes(VT);
920  AllNodes.push_back(N);
921  return SDOperand(N, 0);
922}
923
924
925
926SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
927                                SDOperand N1, SDOperand N2) {
928#ifndef NDEBUG
929  switch (Opcode) {
930  case ISD::TokenFactor:
931    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
932           N2.getValueType() == MVT::Other && "Invalid token factor!");
933    break;
934  case ISD::AND:
935  case ISD::OR:
936  case ISD::XOR:
937  case ISD::UDIV:
938  case ISD::UREM:
939  case ISD::MULHU:
940  case ISD::MULHS:
941    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
942    // fall through
943  case ISD::ADD:
944  case ISD::SUB:
945  case ISD::MUL:
946  case ISD::SDIV:
947  case ISD::SREM:
948    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
949    // fall through.
950  case ISD::FADD:
951  case ISD::FSUB:
952  case ISD::FMUL:
953  case ISD::FDIV:
954  case ISD::FREM:
955    assert(N1.getValueType() == N2.getValueType() &&
956           N1.getValueType() == VT && "Binary operator types must match!");
957    break;
958
959  case ISD::SHL:
960  case ISD::SRA:
961  case ISD::SRL:
962    assert(VT == N1.getValueType() &&
963           "Shift operators return type must be the same as their first arg");
964    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
965           VT != MVT::i1 && "Shifts only work on integers");
966    break;
967  case ISD::FP_ROUND_INREG: {
968    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
969    assert(VT == N1.getValueType() && "Not an inreg round!");
970    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
971           "Cannot FP_ROUND_INREG integer types");
972    assert(EVT <= VT && "Not rounding down!");
973    break;
974  }
975  case ISD::AssertSext:
976  case ISD::AssertZext:
977  case ISD::SIGN_EXTEND_INREG: {
978    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
979    assert(VT == N1.getValueType() && "Not an inreg extend!");
980    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
981           "Cannot *_EXTEND_INREG FP types");
982    assert(EVT <= VT && "Not extending!");
983  }
984
985  default: break;
986  }
987#endif
988
989  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
990  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
991  if (N1C) {
992    if (N2C) {
993      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
994      switch (Opcode) {
995      case ISD::ADD: return getConstant(C1 + C2, VT);
996      case ISD::SUB: return getConstant(C1 - C2, VT);
997      case ISD::MUL: return getConstant(C1 * C2, VT);
998      case ISD::UDIV:
999        if (C2) return getConstant(C1 / C2, VT);
1000        break;
1001      case ISD::UREM :
1002        if (C2) return getConstant(C1 % C2, VT);
1003        break;
1004      case ISD::SDIV :
1005        if (C2) return getConstant(N1C->getSignExtended() /
1006                                   N2C->getSignExtended(), VT);
1007        break;
1008      case ISD::SREM :
1009        if (C2) return getConstant(N1C->getSignExtended() %
1010                                   N2C->getSignExtended(), VT);
1011        break;
1012      case ISD::AND  : return getConstant(C1 & C2, VT);
1013      case ISD::OR   : return getConstant(C1 | C2, VT);
1014      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1015      case ISD::SHL  : return getConstant(C1 << C2, VT);
1016      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1017      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1018      default: break;
1019      }
1020    } else {      // Cannonicalize constant to RHS if commutative
1021      if (isCommutativeBinOp(Opcode)) {
1022        std::swap(N1C, N2C);
1023        std::swap(N1, N2);
1024      }
1025    }
1026  }
1027
1028  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1029  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1030  if (N1CFP) {
1031    if (N2CFP) {
1032      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1033      switch (Opcode) {
1034      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1035      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1036      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1037      case ISD::FDIV:
1038        if (C2) return getConstantFP(C1 / C2, VT);
1039        break;
1040      case ISD::FREM :
1041        if (C2) return getConstantFP(fmod(C1, C2), VT);
1042        break;
1043      default: break;
1044      }
1045    } else {      // Cannonicalize constant to RHS if commutative
1046      if (isCommutativeBinOp(Opcode)) {
1047        std::swap(N1CFP, N2CFP);
1048        std::swap(N1, N2);
1049      }
1050    }
1051  }
1052
1053  // Finally, fold operations that do not require constants.
1054  switch (Opcode) {
1055  case ISD::FP_ROUND_INREG:
1056    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1057    break;
1058  case ISD::SIGN_EXTEND_INREG: {
1059    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1060    if (EVT == VT) return N1;  // Not actually extending
1061    break;
1062  }
1063
1064  // FIXME: figure out how to safely handle things like
1065  // int foo(int x) { return 1 << (x & 255); }
1066  // int bar() { return foo(256); }
1067#if 0
1068  case ISD::SHL:
1069  case ISD::SRL:
1070  case ISD::SRA:
1071    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1072        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1073      return getNode(Opcode, VT, N1, N2.getOperand(0));
1074    else if (N2.getOpcode() == ISD::AND)
1075      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1076        // If the and is only masking out bits that cannot effect the shift,
1077        // eliminate the and.
1078        unsigned NumBits = MVT::getSizeInBits(VT);
1079        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1080          return getNode(Opcode, VT, N1, N2.getOperand(0));
1081      }
1082    break;
1083#endif
1084  }
1085
1086  // Memoize this node if possible.
1087  SDNode *N;
1088  if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END &&
1089      VT != MVT::Flag) {
1090    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1091    if (BON) return SDOperand(BON, 0);
1092
1093    BON = N = new SDNode(Opcode, N1, N2);
1094  } else {
1095    N = new SDNode(Opcode, N1, N2);
1096  }
1097
1098  N->setValueTypes(VT);
1099  AllNodes.push_back(N);
1100  return SDOperand(N, 0);
1101}
1102
1103SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1104                                SDOperand N1, SDOperand N2, SDOperand N3) {
1105  // Perform various simplifications.
1106  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1107  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1108  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1109  switch (Opcode) {
1110  case ISD::SETCC: {
1111    // Use SimplifySetCC  to simplify SETCC's.
1112    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1113    if (Simp.Val) return Simp;
1114    break;
1115  }
1116  case ISD::SELECT:
1117    if (N1C)
1118      if (N1C->getValue())
1119        return N2;             // select true, X, Y -> X
1120      else
1121        return N3;             // select false, X, Y -> Y
1122
1123    if (N2 == N3) return N2;   // select C, X, X -> X
1124    break;
1125  case ISD::BRCOND:
1126    if (N2C)
1127      if (N2C->getValue()) // Unconditional branch
1128        return getNode(ISD::BR, MVT::Other, N1, N3);
1129      else
1130        return N1;         // Never-taken branch
1131    break;
1132  }
1133
1134  std::vector<SDOperand> Ops;
1135  Ops.reserve(3);
1136  Ops.push_back(N1);
1137  Ops.push_back(N2);
1138  Ops.push_back(N3);
1139
1140  // Memoize node if it doesn't produce a flag.
1141  SDNode *N;
1142  if (VT != MVT::Flag) {
1143    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1144    if (E) return SDOperand(E, 0);
1145    E = N = new SDNode(Opcode, N1, N2, N3);
1146  } else {
1147    N = new SDNode(Opcode, N1, N2, N3);
1148  }
1149  N->setValueTypes(VT);
1150  AllNodes.push_back(N);
1151  return SDOperand(N, 0);
1152}
1153
1154SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1155                                SDOperand N1, SDOperand N2, SDOperand N3,
1156                                SDOperand N4) {
1157  std::vector<SDOperand> Ops;
1158  Ops.reserve(4);
1159  Ops.push_back(N1);
1160  Ops.push_back(N2);
1161  Ops.push_back(N3);
1162  Ops.push_back(N4);
1163  return getNode(Opcode, VT, Ops);
1164}
1165
1166SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1167                                SDOperand N1, SDOperand N2, SDOperand N3,
1168                                SDOperand N4, SDOperand N5) {
1169  std::vector<SDOperand> Ops;
1170  Ops.reserve(5);
1171  Ops.push_back(N1);
1172  Ops.push_back(N2);
1173  Ops.push_back(N3);
1174  Ops.push_back(N4);
1175  Ops.push_back(N5);
1176  return getNode(Opcode, VT, Ops);
1177}
1178
1179SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1180                                SDOperand N1, SDOperand N2, SDOperand N3,
1181                                SDOperand N4, SDOperand N5, SDOperand N6) {
1182  std::vector<SDOperand> Ops;
1183  Ops.reserve(6);
1184  Ops.push_back(N1);
1185  Ops.push_back(N2);
1186  Ops.push_back(N3);
1187  Ops.push_back(N4);
1188  Ops.push_back(N5);
1189  Ops.push_back(N6);
1190  return getNode(Opcode, VT, Ops);
1191}
1192
1193// setAdjCallChain - This method changes the token chain of an
1194// CALLSEQ_START/END node to be the specified operand.
1195void SDNode::setAdjCallChain(SDOperand N) {
1196  assert(N.getValueType() == MVT::Other);
1197  assert((getOpcode() == ISD::CALLSEQ_START ||
1198          getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!");
1199
1200  OperandList[0].Val->removeUser(this);
1201  OperandList[0] = N;
1202  OperandList[0].Val->Uses.push_back(this);
1203}
1204
1205
1206
1207SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1208                                SDOperand Chain, SDOperand Ptr,
1209                                SDOperand SV) {
1210  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1211  if (N) return SDOperand(N, 0);
1212  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1213
1214  // Loads have a token chain.
1215  setNodeValueTypes(N, VT, MVT::Other);
1216  AllNodes.push_back(N);
1217  return SDOperand(N, 0);
1218}
1219
1220SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1221                                   SDOperand Chain, SDOperand Ptr,
1222                                   SDOperand SV) {
1223  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1224  if (N) return SDOperand(N, 0);
1225  std::vector<SDOperand> Ops;
1226  Ops.reserve(5);
1227  Ops.push_back(Chain);
1228  Ops.push_back(Ptr);
1229  Ops.push_back(getConstant(Count, MVT::i32));
1230  Ops.push_back(getValueType(EVT));
1231  Ops.push_back(SV);
1232  std::vector<MVT::ValueType> VTs;
1233  VTs.reserve(2);
1234  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1235  return getNode(ISD::VLOAD, VTs, Ops);
1236}
1237
1238SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1239                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1240                                   MVT::ValueType EVT) {
1241  std::vector<SDOperand> Ops;
1242  Ops.reserve(4);
1243  Ops.push_back(Chain);
1244  Ops.push_back(Ptr);
1245  Ops.push_back(SV);
1246  Ops.push_back(getValueType(EVT));
1247  std::vector<MVT::ValueType> VTs;
1248  VTs.reserve(2);
1249  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1250  return getNode(Opcode, VTs, Ops);
1251}
1252
1253SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1254  assert((!V || isa<PointerType>(V->getType())) &&
1255         "SrcValue is not a pointer?");
1256  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1257  if (N) return SDOperand(N, 0);
1258
1259  N = new SrcValueSDNode(V, Offset);
1260  AllNodes.push_back(N);
1261  return SDOperand(N, 0);
1262}
1263
1264SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1265                                std::vector<SDOperand> &Ops) {
1266  switch (Ops.size()) {
1267  case 0: return getNode(Opcode, VT);
1268  case 1: return getNode(Opcode, VT, Ops[0]);
1269  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1270  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1271  default: break;
1272  }
1273
1274  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1275  switch (Opcode) {
1276  default: break;
1277  case ISD::BRCONDTWOWAY:
1278    if (N1C)
1279      if (N1C->getValue()) // Unconditional branch to true dest.
1280        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]);
1281      else                 // Unconditional branch to false dest.
1282        return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]);
1283    break;
1284  case ISD::BRTWOWAY_CC:
1285    assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!");
1286    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1287           "LHS and RHS of comparison must have same type!");
1288    break;
1289  case ISD::TRUNCSTORE: {
1290    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1291    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1292#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1293    // If this is a truncating store of a constant, convert to the desired type
1294    // and store it instead.
1295    if (isa<Constant>(Ops[0])) {
1296      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1297      if (isa<Constant>(Op))
1298        N1 = Op;
1299    }
1300    // Also for ConstantFP?
1301#endif
1302    if (Ops[0].getValueType() == EVT)       // Normal store?
1303      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1304    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1305    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1306           "Can't do FP-INT conversion!");
1307    break;
1308  }
1309  case ISD::SELECT_CC: {
1310    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1311    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1312           "LHS and RHS of condition must have same type!");
1313    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1314           "True and False arms of SelectCC must have same type!");
1315    assert(Ops[2].getValueType() == VT &&
1316           "select_cc node must be of same type as true and false value!");
1317    break;
1318  }
1319  case ISD::BR_CC: {
1320    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1321    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1322           "LHS/RHS of comparison should match types!");
1323    break;
1324  }
1325  }
1326
1327  // Memoize nodes.
1328  SDNode *N;
1329  if (VT != MVT::Flag) {
1330    SDNode *&E =
1331      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1332    if (E) return SDOperand(E, 0);
1333    E = N = new SDNode(Opcode, Ops);
1334  } else {
1335    N = new SDNode(Opcode, Ops);
1336  }
1337  N->setValueTypes(VT);
1338  AllNodes.push_back(N);
1339  return SDOperand(N, 0);
1340}
1341
1342SDOperand SelectionDAG::getNode(unsigned Opcode,
1343                                std::vector<MVT::ValueType> &ResultTys,
1344                                std::vector<SDOperand> &Ops) {
1345  if (ResultTys.size() == 1)
1346    return getNode(Opcode, ResultTys[0], Ops);
1347
1348  switch (Opcode) {
1349  case ISD::EXTLOAD:
1350  case ISD::SEXTLOAD:
1351  case ISD::ZEXTLOAD: {
1352    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1353    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1354    // If they are asking for an extending load from/to the same thing, return a
1355    // normal load.
1356    if (ResultTys[0] == EVT)
1357      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1358    assert(EVT < ResultTys[0] &&
1359           "Should only be an extending load, not truncating!");
1360    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1361           "Cannot sign/zero extend a FP load!");
1362    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1363           "Cannot convert from FP to Int or Int -> FP!");
1364    break;
1365  }
1366
1367  // FIXME: figure out how to safely handle things like
1368  // int foo(int x) { return 1 << (x & 255); }
1369  // int bar() { return foo(256); }
1370#if 0
1371  case ISD::SRA_PARTS:
1372  case ISD::SRL_PARTS:
1373  case ISD::SHL_PARTS:
1374    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1375        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1376      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1377    else if (N3.getOpcode() == ISD::AND)
1378      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1379        // If the and is only masking out bits that cannot effect the shift,
1380        // eliminate the and.
1381        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1382        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1383          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1384      }
1385    break;
1386#endif
1387  }
1388
1389  // Memoize the node unless it returns a flag.
1390  SDNode *N;
1391  if (ResultTys.back() != MVT::Flag) {
1392    SDNode *&E =
1393      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1394    if (E) return SDOperand(E, 0);
1395    E = N = new SDNode(Opcode, Ops);
1396  } else {
1397    N = new SDNode(Opcode, Ops);
1398  }
1399  setNodeValueTypes(N, ResultTys);
1400  AllNodes.push_back(N);
1401  return SDOperand(N, 0);
1402}
1403
1404void SelectionDAG::setNodeValueTypes(SDNode *N,
1405                                     std::vector<MVT::ValueType> &RetVals) {
1406  switch (RetVals.size()) {
1407  case 0: return;
1408  case 1: N->setValueTypes(RetVals[0]); return;
1409  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1410  default: break;
1411  }
1412
1413  std::list<std::vector<MVT::ValueType> >::iterator I =
1414    std::find(VTList.begin(), VTList.end(), RetVals);
1415  if (I == VTList.end()) {
1416    VTList.push_front(RetVals);
1417    I = VTList.begin();
1418  }
1419
1420  N->setValueTypes(&(*I)[0], I->size());
1421}
1422
1423void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1424                                     MVT::ValueType VT2) {
1425  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1426       E = VTList.end(); I != E; ++I) {
1427    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1428      N->setValueTypes(&(*I)[0], 2);
1429      return;
1430    }
1431  }
1432  std::vector<MVT::ValueType> V;
1433  V.push_back(VT1);
1434  V.push_back(VT2);
1435  VTList.push_front(V);
1436  N->setValueTypes(&(*VTList.begin())[0], 2);
1437}
1438
1439
1440/// SelectNodeTo - These are used for target selectors to *mutate* the
1441/// specified node to have the specified return type, Target opcode, and
1442/// operands.  Note that target opcodes are stored as
1443/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1444///
1445/// Note that SelectNodeTo returns the resultant node.  If there is already a
1446/// node of the specified opcode and operands, it returns that node instead of
1447/// the current one.
1448SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1449                                     MVT::ValueType VT) {
1450  // If an identical node already exists, use it.
1451  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1452  if (ON) return SDOperand(ON, 0);
1453
1454  RemoveNodeFromCSEMaps(N);
1455
1456  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1457  N->setValueTypes(VT);
1458
1459  ON = N;   // Memoize the new node.
1460  return SDOperand(N, 0);
1461}
1462
1463SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1464                                     MVT::ValueType VT, SDOperand Op1) {
1465  // If an identical node already exists, use it.
1466  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1467                                        std::make_pair(Op1, VT))];
1468  if (ON) return SDOperand(ON, 0);
1469
1470  RemoveNodeFromCSEMaps(N);
1471  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1472  N->setValueTypes(VT);
1473  N->setOperands(Op1);
1474
1475  ON = N;   // Memoize the new node.
1476  return SDOperand(N, 0);
1477}
1478
1479SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1480                                     MVT::ValueType VT, SDOperand Op1,
1481                                     SDOperand Op2) {
1482  // If an identical node already exists, use it.
1483  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1484                                         std::make_pair(Op1, Op2))];
1485  if (ON) return SDOperand(ON, 0);
1486
1487  RemoveNodeFromCSEMaps(N);
1488  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1489  N->setValueTypes(VT);
1490  N->setOperands(Op1, Op2);
1491
1492  ON = N;   // Memoize the new node.
1493  return SDOperand(N, 0);
1494}
1495
1496SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1497                                     MVT::ValueType VT, SDOperand Op1,
1498                                     SDOperand Op2, SDOperand Op3) {
1499  // If an identical node already exists, use it.
1500  std::vector<SDOperand> OpList;
1501  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1502  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1503                                              std::make_pair(VT, OpList))];
1504  if (ON) return SDOperand(ON, 0);
1505
1506  RemoveNodeFromCSEMaps(N);
1507  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1508  N->setValueTypes(VT);
1509  N->setOperands(Op1, Op2, Op3);
1510
1511  ON = N;   // Memoize the new node.
1512  return SDOperand(N, 0);
1513}
1514
1515SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1516                                     MVT::ValueType VT, SDOperand Op1,
1517                                     SDOperand Op2, SDOperand Op3,
1518                                     SDOperand Op4) {
1519  // If an identical node already exists, use it.
1520  std::vector<SDOperand> OpList;
1521  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1522  OpList.push_back(Op4);
1523  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1524                                              std::make_pair(VT, OpList))];
1525  if (ON) return SDOperand(ON, 0);
1526
1527  RemoveNodeFromCSEMaps(N);
1528  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1529  N->setValueTypes(VT);
1530  N->setOperands(Op1, Op2, Op3, Op4);
1531
1532  ON = N;   // Memoize the new node.
1533  return SDOperand(N, 0);
1534}
1535
1536SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1537                                     MVT::ValueType VT, SDOperand Op1,
1538                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1539                                     SDOperand Op5) {
1540  // If an identical node already exists, use it.
1541  std::vector<SDOperand> OpList;
1542  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1543  OpList.push_back(Op4); OpList.push_back(Op5);
1544  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1545                                              std::make_pair(VT, OpList))];
1546  if (ON) return SDOperand(ON, 0);
1547
1548  RemoveNodeFromCSEMaps(N);
1549  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1550  N->setValueTypes(VT);
1551  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1552
1553  ON = N;   // Memoize the new node.
1554  return SDOperand(N, 0);
1555}
1556
1557SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1558                                     MVT::ValueType VT, SDOperand Op1,
1559                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1560                                     SDOperand Op5, SDOperand Op6) {
1561  // If an identical node already exists, use it.
1562  std::vector<SDOperand> OpList;
1563  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1564  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1565  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1566                                              std::make_pair(VT, OpList))];
1567  if (ON) return SDOperand(ON, 0);
1568
1569  RemoveNodeFromCSEMaps(N);
1570  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1571  N->setValueTypes(VT);
1572  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1573
1574  ON = N;   // Memoize the new node.
1575  return SDOperand(N, 0);
1576}
1577
1578SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1579                                     MVT::ValueType VT1, MVT::ValueType VT2,
1580                                     SDOperand Op1, SDOperand Op2) {
1581  // If an identical node already exists, use it.
1582  std::vector<SDOperand> OpList;
1583  OpList.push_back(Op1); OpList.push_back(Op2);
1584  std::vector<MVT::ValueType> VTList;
1585  VTList.push_back(VT1); VTList.push_back(VT2);
1586  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1587                                              std::make_pair(VTList, OpList))];
1588  if (ON) return SDOperand(ON, 0);
1589
1590  RemoveNodeFromCSEMaps(N);
1591  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1592  setNodeValueTypes(N, VT1, VT2);
1593  N->setOperands(Op1, Op2);
1594
1595  ON = N;   // Memoize the new node.
1596  return SDOperand(N, 0);
1597}
1598
1599SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1600                                     MVT::ValueType VT1, MVT::ValueType VT2,
1601                                     SDOperand Op1, SDOperand Op2,
1602                                     SDOperand Op3) {
1603  // If an identical node already exists, use it.
1604  std::vector<SDOperand> OpList;
1605  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1606  std::vector<MVT::ValueType> VTList;
1607  VTList.push_back(VT1); VTList.push_back(VT2);
1608  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1609                                              std::make_pair(VTList, OpList))];
1610  if (ON) return SDOperand(ON, 0);
1611
1612  RemoveNodeFromCSEMaps(N);
1613  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1614  setNodeValueTypes(N, VT1, VT2);
1615  N->setOperands(Op1, Op2, Op3);
1616
1617  ON = N;   // Memoize the new node.
1618  return SDOperand(N, 0);
1619}
1620
1621SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1622                                     MVT::ValueType VT1, MVT::ValueType VT2,
1623                                     SDOperand Op1, SDOperand Op2,
1624                                     SDOperand Op3, SDOperand Op4) {
1625  // If an identical node already exists, use it.
1626  std::vector<SDOperand> OpList;
1627  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1628  OpList.push_back(Op4);
1629  std::vector<MVT::ValueType> VTList;
1630  VTList.push_back(VT1); VTList.push_back(VT2);
1631  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1632                                              std::make_pair(VTList, OpList))];
1633  if (ON) return SDOperand(ON, 0);
1634
1635  RemoveNodeFromCSEMaps(N);
1636  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1637  setNodeValueTypes(N, VT1, VT2);
1638  N->setOperands(Op1, Op2, Op3, Op4);
1639
1640  ON = N;   // Memoize the new node.
1641  return SDOperand(N, 0);
1642}
1643
1644SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1645                                     MVT::ValueType VT1, MVT::ValueType VT2,
1646                                     SDOperand Op1, SDOperand Op2,
1647                                     SDOperand Op3, SDOperand Op4,
1648                                     SDOperand Op5) {
1649  // If an identical node already exists, use it.
1650  std::vector<SDOperand> OpList;
1651  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1652  OpList.push_back(Op4); OpList.push_back(Op5);
1653  std::vector<MVT::ValueType> VTList;
1654  VTList.push_back(VT1); VTList.push_back(VT2);
1655  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1656                                              std::make_pair(VTList, OpList))];
1657  if (ON) return SDOperand(ON, 0);
1658
1659  RemoveNodeFromCSEMaps(N);
1660  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1661  setNodeValueTypes(N, VT1, VT2);
1662  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1663
1664  ON = N;   // Memoize the new node.
1665  return SDOperand(N, 0);
1666}
1667
1668// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1669/// This can cause recursive merging of nodes in the DAG.
1670///
1671/// This version assumes From/To have a single result value.
1672///
1673void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
1674                                      std::vector<SDNode*> *Deleted) {
1675  SDNode *From = FromN.Val, *To = ToN.Val;
1676  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
1677         "Cannot replace with this method!");
1678  assert(From != To && "Cannot replace uses of with self");
1679
1680  while (!From->use_empty()) {
1681    // Process users until they are all gone.
1682    SDNode *U = *From->use_begin();
1683
1684    // This node is about to morph, remove its old self from the CSE maps.
1685    RemoveNodeFromCSEMaps(U);
1686
1687    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1688         I != E; ++I)
1689      if (I->Val == From) {
1690        From->removeUser(U);
1691        I->Val = To;
1692        To->addUser(U);
1693      }
1694
1695    // Now that we have modified U, add it back to the CSE maps.  If it already
1696    // exists there, recursively merge the results together.
1697    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1698      ReplaceAllUsesWith(U, Existing, Deleted);
1699      // U is now dead.
1700      if (Deleted) Deleted->push_back(U);
1701      DeleteNodeNotInCSEMaps(U);
1702    }
1703  }
1704}
1705
1706/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1707/// This can cause recursive merging of nodes in the DAG.
1708///
1709/// This version assumes From/To have matching types and numbers of result
1710/// values.
1711///
1712void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
1713                                      std::vector<SDNode*> *Deleted) {
1714  assert(From != To && "Cannot replace uses of with self");
1715  assert(From->getNumValues() == To->getNumValues() &&
1716         "Cannot use this version of ReplaceAllUsesWith!");
1717  if (From->getNumValues() == 1) {  // If possible, use the faster version.
1718    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
1719    return;
1720  }
1721
1722  while (!From->use_empty()) {
1723    // Process users until they are all gone.
1724    SDNode *U = *From->use_begin();
1725
1726    // This node is about to morph, remove its old self from the CSE maps.
1727    RemoveNodeFromCSEMaps(U);
1728
1729    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1730         I != E; ++I)
1731      if (I->Val == From) {
1732        From->removeUser(U);
1733        I->Val = To;
1734        To->addUser(U);
1735      }
1736
1737    // Now that we have modified U, add it back to the CSE maps.  If it already
1738    // exists there, recursively merge the results together.
1739    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1740      ReplaceAllUsesWith(U, Existing, Deleted);
1741      // U is now dead.
1742      if (Deleted) Deleted->push_back(U);
1743      DeleteNodeNotInCSEMaps(U);
1744    }
1745  }
1746}
1747
1748/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
1749/// This can cause recursive merging of nodes in the DAG.
1750///
1751/// This version can replace From with any result values.  To must match the
1752/// number and types of values returned by From.
1753void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
1754                                      const std::vector<SDOperand> &To,
1755                                      std::vector<SDNode*> *Deleted) {
1756  assert(From->getNumValues() == To.size() &&
1757         "Incorrect number of values to replace with!");
1758  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
1759    // Degenerate case handled above.
1760    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
1761    return;
1762  }
1763
1764  while (!From->use_empty()) {
1765    // Process users until they are all gone.
1766    SDNode *U = *From->use_begin();
1767
1768    // This node is about to morph, remove its old self from the CSE maps.
1769    RemoveNodeFromCSEMaps(U);
1770
1771    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
1772         I != E; ++I)
1773      if (I->Val == From) {
1774        const SDOperand &ToOp = To[I->ResNo];
1775        From->removeUser(U);
1776        *I = ToOp;
1777        ToOp.Val->addUser(U);
1778      }
1779
1780    // Now that we have modified U, add it back to the CSE maps.  If it already
1781    // exists there, recursively merge the results together.
1782    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
1783      ReplaceAllUsesWith(U, Existing, Deleted);
1784      // U is now dead.
1785      if (Deleted) Deleted->push_back(U);
1786      DeleteNodeNotInCSEMaps(U);
1787    }
1788  }
1789}
1790
1791
1792//===----------------------------------------------------------------------===//
1793//                              SDNode Class
1794//===----------------------------------------------------------------------===//
1795
1796
1797/// getValueTypeList - Return a pointer to the specified value type.
1798///
1799MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
1800  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
1801  VTs[VT] = VT;
1802  return &VTs[VT];
1803}
1804
1805/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1806/// indicated value.  This method ignores uses of other values defined by this
1807/// operation.
1808bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) {
1809  assert(Value < getNumValues() && "Bad value!");
1810
1811  // If there is only one value, this is easy.
1812  if (getNumValues() == 1)
1813    return use_size() == NUses;
1814  if (Uses.size() < NUses) return false;
1815
1816  SDOperand TheValue(this, Value);
1817
1818  std::set<SDNode*> UsersHandled;
1819
1820  for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end();
1821       UI != E; ++UI) {
1822    SDNode *User = *UI;
1823    if (User->getNumOperands() == 1 ||
1824        UsersHandled.insert(User).second)     // First time we've seen this?
1825      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
1826        if (User->getOperand(i) == TheValue) {
1827          if (NUses == 0)
1828            return false;   // too many uses
1829          --NUses;
1830        }
1831  }
1832
1833  // Found exactly the right number of uses?
1834  return NUses == 0;
1835}
1836
1837
1838const char *SDNode::getOperationName(const SelectionDAG *G) const {
1839  switch (getOpcode()) {
1840  default:
1841    if (getOpcode() < ISD::BUILTIN_OP_END)
1842      return "<<Unknown DAG Node>>";
1843    else {
1844      if (G) {
1845        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
1846          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
1847            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
1848
1849        TargetLowering &TLI = G->getTargetLoweringInfo();
1850        const char *Name =
1851          TLI.getTargetNodeName(getOpcode());
1852        if (Name) return Name;
1853      }
1854
1855      return "<<Unknown Target Node>>";
1856    }
1857
1858  case ISD::PCMARKER:      return "PCMarker";
1859  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
1860  case ISD::SRCVALUE:      return "SrcValue";
1861  case ISD::VALUETYPE:     return "ValueType";
1862  case ISD::STRING:        return "String";
1863  case ISD::EntryToken:    return "EntryToken";
1864  case ISD::TokenFactor:   return "TokenFactor";
1865  case ISD::AssertSext:    return "AssertSext";
1866  case ISD::AssertZext:    return "AssertZext";
1867  case ISD::Constant:      return "Constant";
1868  case ISD::TargetConstant: return "TargetConstant";
1869  case ISD::ConstantFP:    return "ConstantFP";
1870  case ISD::ConstantVec:   return "ConstantVec";
1871  case ISD::GlobalAddress: return "GlobalAddress";
1872  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
1873  case ISD::FrameIndex:    return "FrameIndex";
1874  case ISD::TargetFrameIndex: return "TargetFrameIndex";
1875  case ISD::BasicBlock:    return "BasicBlock";
1876  case ISD::Register:      return "Register";
1877  case ISD::ExternalSymbol: return "ExternalSymbol";
1878  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
1879  case ISD::ConstantPool:  return "ConstantPool";
1880  case ISD::TargetConstantPool:  return "TargetConstantPool";
1881  case ISD::CopyToReg:     return "CopyToReg";
1882  case ISD::CopyFromReg:   return "CopyFromReg";
1883  case ISD::UNDEF:         return "undef";
1884
1885  // Unary operators
1886  case ISD::FABS:   return "fabs";
1887  case ISD::FNEG:   return "fneg";
1888  case ISD::FSQRT:  return "fsqrt";
1889  case ISD::FSIN:   return "fsin";
1890  case ISD::FCOS:   return "fcos";
1891
1892  // Binary operators
1893  case ISD::ADD:    return "add";
1894  case ISD::SUB:    return "sub";
1895  case ISD::MUL:    return "mul";
1896  case ISD::MULHU:  return "mulhu";
1897  case ISD::MULHS:  return "mulhs";
1898  case ISD::SDIV:   return "sdiv";
1899  case ISD::UDIV:   return "udiv";
1900  case ISD::SREM:   return "srem";
1901  case ISD::UREM:   return "urem";
1902  case ISD::AND:    return "and";
1903  case ISD::OR:     return "or";
1904  case ISD::XOR:    return "xor";
1905  case ISD::SHL:    return "shl";
1906  case ISD::SRA:    return "sra";
1907  case ISD::SRL:    return "srl";
1908  case ISD::FADD:   return "fadd";
1909  case ISD::FSUB:   return "fsub";
1910  case ISD::FMUL:   return "fmul";
1911  case ISD::FDIV:   return "fdiv";
1912  case ISD::FREM:   return "frem";
1913  case ISD::VADD:   return "vadd";
1914  case ISD::VSUB:   return "vsub";
1915  case ISD::VMUL:   return "vmul";
1916
1917  case ISD::SETCC:       return "setcc";
1918  case ISD::SELECT:      return "select";
1919  case ISD::SELECT_CC:   return "select_cc";
1920  case ISD::ADD_PARTS:   return "add_parts";
1921  case ISD::SUB_PARTS:   return "sub_parts";
1922  case ISD::SHL_PARTS:   return "shl_parts";
1923  case ISD::SRA_PARTS:   return "sra_parts";
1924  case ISD::SRL_PARTS:   return "srl_parts";
1925
1926  // Conversion operators.
1927  case ISD::SIGN_EXTEND: return "sign_extend";
1928  case ISD::ZERO_EXTEND: return "zero_extend";
1929  case ISD::ANY_EXTEND:  return "any_extend";
1930  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
1931  case ISD::TRUNCATE:    return "truncate";
1932  case ISD::FP_ROUND:    return "fp_round";
1933  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
1934  case ISD::FP_EXTEND:   return "fp_extend";
1935
1936  case ISD::SINT_TO_FP:  return "sint_to_fp";
1937  case ISD::UINT_TO_FP:  return "uint_to_fp";
1938  case ISD::FP_TO_SINT:  return "fp_to_sint";
1939  case ISD::FP_TO_UINT:  return "fp_to_uint";
1940  case ISD::BIT_CONVERT: return "bit_convert";
1941
1942    // Control flow instructions
1943  case ISD::BR:      return "br";
1944  case ISD::BRCOND:  return "brcond";
1945  case ISD::BRCONDTWOWAY:  return "brcondtwoway";
1946  case ISD::BR_CC:  return "br_cc";
1947  case ISD::BRTWOWAY_CC:  return "brtwoway_cc";
1948  case ISD::RET:     return "ret";
1949  case ISD::CALL:    return "call";
1950  case ISD::TAILCALL:return "tailcall";
1951  case ISD::CALLSEQ_START:  return "callseq_start";
1952  case ISD::CALLSEQ_END:    return "callseq_end";
1953
1954    // Other operators
1955  case ISD::LOAD:    return "load";
1956  case ISD::STORE:   return "store";
1957  case ISD::VLOAD:   return "vload";
1958  case ISD::EXTLOAD:    return "extload";
1959  case ISD::SEXTLOAD:   return "sextload";
1960  case ISD::ZEXTLOAD:   return "zextload";
1961  case ISD::TRUNCSTORE: return "truncstore";
1962
1963  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
1964  case ISD::EXTRACT_ELEMENT: return "extract_element";
1965  case ISD::BUILD_PAIR: return "build_pair";
1966  case ISD::MEMSET:  return "memset";
1967  case ISD::MEMCPY:  return "memcpy";
1968  case ISD::MEMMOVE: return "memmove";
1969
1970  // Bit counting
1971  case ISD::CTPOP:   return "ctpop";
1972  case ISD::CTTZ:    return "cttz";
1973  case ISD::CTLZ:    return "ctlz";
1974
1975  // IO Intrinsics
1976  case ISD::READPORT: return "readport";
1977  case ISD::WRITEPORT: return "writeport";
1978  case ISD::READIO: return "readio";
1979  case ISD::WRITEIO: return "writeio";
1980
1981  // Debug info
1982  case ISD::LOCATION: return "location";
1983  case ISD::DEBUG_LOC: return "debug_loc";
1984
1985  case ISD::CONDCODE:
1986    switch (cast<CondCodeSDNode>(this)->get()) {
1987    default: assert(0 && "Unknown setcc condition!");
1988    case ISD::SETOEQ:  return "setoeq";
1989    case ISD::SETOGT:  return "setogt";
1990    case ISD::SETOGE:  return "setoge";
1991    case ISD::SETOLT:  return "setolt";
1992    case ISD::SETOLE:  return "setole";
1993    case ISD::SETONE:  return "setone";
1994
1995    case ISD::SETO:    return "seto";
1996    case ISD::SETUO:   return "setuo";
1997    case ISD::SETUEQ:  return "setue";
1998    case ISD::SETUGT:  return "setugt";
1999    case ISD::SETUGE:  return "setuge";
2000    case ISD::SETULT:  return "setult";
2001    case ISD::SETULE:  return "setule";
2002    case ISD::SETUNE:  return "setune";
2003
2004    case ISD::SETEQ:   return "seteq";
2005    case ISD::SETGT:   return "setgt";
2006    case ISD::SETGE:   return "setge";
2007    case ISD::SETLT:   return "setlt";
2008    case ISD::SETLE:   return "setle";
2009    case ISD::SETNE:   return "setne";
2010    }
2011  }
2012}
2013
2014void SDNode::dump() const { dump(0); }
2015void SDNode::dump(const SelectionDAG *G) const {
2016  std::cerr << (void*)this << ": ";
2017
2018  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2019    if (i) std::cerr << ",";
2020    if (getValueType(i) == MVT::Other)
2021      std::cerr << "ch";
2022    else
2023      std::cerr << MVT::getValueTypeString(getValueType(i));
2024  }
2025  std::cerr << " = " << getOperationName(G);
2026
2027  std::cerr << " ";
2028  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2029    if (i) std::cerr << ", ";
2030    std::cerr << (void*)getOperand(i).Val;
2031    if (unsigned RN = getOperand(i).ResNo)
2032      std::cerr << ":" << RN;
2033  }
2034
2035  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2036    std::cerr << "<" << CSDN->getValue() << ">";
2037  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2038    std::cerr << "<" << CSDN->getValue() << ">";
2039  } else if (const GlobalAddressSDNode *GADN =
2040             dyn_cast<GlobalAddressSDNode>(this)) {
2041    int offset = GADN->getOffset();
2042    std::cerr << "<";
2043    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2044    if (offset > 0)
2045      std::cerr << " + " << offset;
2046    else
2047      std::cerr << " " << offset;
2048  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2049    std::cerr << "<" << FIDN->getIndex() << ">";
2050  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2051    std::cerr << "<" << *CP->get() << ">";
2052  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2053    std::cerr << "<";
2054    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2055    if (LBB)
2056      std::cerr << LBB->getName() << " ";
2057    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2058  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2059    if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2060      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2061    } else {
2062      std::cerr << " #" << R->getReg();
2063    }
2064  } else if (const ExternalSymbolSDNode *ES =
2065             dyn_cast<ExternalSymbolSDNode>(this)) {
2066    std::cerr << "'" << ES->getSymbol() << "'";
2067  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2068    if (M->getValue())
2069      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2070    else
2071      std::cerr << "<null:" << M->getOffset() << ">";
2072  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2073    std::cerr << ":" << getValueTypeString(N->getVT());
2074  }
2075}
2076
2077static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2078  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2079    if (N->getOperand(i).Val->hasOneUse())
2080      DumpNodes(N->getOperand(i).Val, indent+2, G);
2081    else
2082      std::cerr << "\n" << std::string(indent+2, ' ')
2083                << (void*)N->getOperand(i).Val << ": <multiple use>";
2084
2085
2086  std::cerr << "\n" << std::string(indent, ' ');
2087  N->dump(G);
2088}
2089
2090void SelectionDAG::dump() const {
2091  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2092  std::vector<const SDNode*> Nodes;
2093  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2094       I != E; ++I)
2095    Nodes.push_back(I);
2096
2097  std::sort(Nodes.begin(), Nodes.end());
2098
2099  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2100    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2101      DumpNodes(Nodes[i], 2, this);
2102  }
2103
2104  DumpNodes(getRoot().Val, 2, this);
2105
2106  std::cerr << "\n\n";
2107}
2108
2109