SelectionDAG.cpp revision 35b6994608b2b7c86714cc464dfb2d086b0cafca
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetSelectionDAGInfo.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Support/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BITCAST)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BITCAST)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  if (NumElems == 1)
202    return false;
203  for (unsigned i = 1; i < NumElems; ++i) {
204    SDValue V = N->getOperand(i);
205    if (V.getOpcode() != ISD::UNDEF)
206      return false;
207  }
208  return true;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: llvm_unreachable("Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Glue)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Glue)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599
600  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
602  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603    DbgVals[i]->setIsInvalidated();
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::HANDLENODE: return false;  // noop.
614  case ISD::CONDCODE:
615    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616           "Cond code doesn't exist!");
617    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619    break;
620  case ISD::ExternalSymbol:
621    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622    break;
623  case ISD::TargetExternalSymbol: {
624    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625    Erased = TargetExternalSymbols.erase(
626               std::pair<std::string,unsigned char>(ESN->getSymbol(),
627                                                    ESN->getTargetFlags()));
628    break;
629  }
630  case ISD::VALUETYPE: {
631    EVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746#ifndef NDEBUG
747/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
748static void VerifyNodeCommon(SDNode *N) {
749  switch (N->getOpcode()) {
750  default:
751    break;
752  case ISD::BUILD_PAIR: {
753    EVT VT = N->getValueType(0);
754    assert(N->getNumValues() == 1 && "Too many results!");
755    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756           "Wrong return type!");
757    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759           "Mismatched operand types!");
760    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761           "Wrong operand type!");
762    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763           "Wrong return type size");
764    break;
765  }
766  case ISD::BUILD_VECTOR: {
767    assert(N->getNumValues() == 1 && "Too many results!");
768    assert(N->getValueType(0).isVector() && "Wrong return type!");
769    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770           "Wrong number of operands!");
771    EVT EltVT = N->getValueType(0).getVectorElementType();
772    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773      assert((I->getValueType() == EltVT ||
774             (EltVT.isInteger() && I->getValueType().isInteger() &&
775              EltVT.bitsLE(I->getValueType()))) &&
776            "Wrong operand type!");
777    break;
778  }
779  }
780}
781
782/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
783static void VerifySDNode(SDNode *N) {
784  // The SDNode allocators cannot be used to allocate nodes with fields that are
785  // not present in an SDNode!
786  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
805
806  VerifyNodeCommon(N);
807}
808
809/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
810/// invalid.
811static void VerifyMachineNode(SDNode *N) {
812  // The MachineNode allocators cannot be used to allocate nodes with fields
813  // that are not present in a MachineNode!
814  // Currently there are no such nodes.
815
816  VerifyNodeCommon(N);
817}
818#endif // NDEBUG
819
820/// getEVTAlignment - Compute the default alignment value for the
821/// given type.
822///
823unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824  const Type *Ty = VT == MVT::iPTR ?
825                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826                   VT.getTypeForEVT(*getContext());
827
828  return TLI.getTargetData()->getABITypeAlignment(Ty);
829}
830
831// EntryNode could meaningfully have debug info if we can find it...
832SelectionDAG::SelectionDAG(const TargetMachine &tm)
833  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835    Root(getEntryNode()), Ordering(0) {
836  AllNodes.push_back(&EntryNode);
837  Ordering = new SDNodeOrdering();
838  DbgInfo = new SDDbgInfo();
839}
840
841void SelectionDAG::init(MachineFunction &mf) {
842  MF = &mf;
843  Context = &mf.getFunction()->getContext();
844}
845
846SelectionDAG::~SelectionDAG() {
847  allnodes_clear();
848  delete Ordering;
849  delete DbgInfo;
850}
851
852void SelectionDAG::allnodes_clear() {
853  assert(&*AllNodes.begin() == &EntryNode);
854  AllNodes.remove(AllNodes.begin());
855  while (!AllNodes.empty())
856    DeallocateNode(AllNodes.begin());
857}
858
859void SelectionDAG::clear() {
860  allnodes_clear();
861  OperandAllocator.Reset();
862  CSEMap.clear();
863
864  ExtendedValueTypeNodes.clear();
865  ExternalSymbols.clear();
866  TargetExternalSymbols.clear();
867  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868            static_cast<CondCodeSDNode*>(0));
869  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870            static_cast<SDNode*>(0));
871
872  EntryNode.UseList = 0;
873  AllNodes.push_back(&EntryNode);
874  Root = getEntryNode();
875  Ordering->clear();
876  DbgInfo->clear();
877}
878
879SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880  return VT.bitsGT(Op.getValueType()) ?
881    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882    getNode(ISD::TRUNCATE, DL, VT, Op);
883}
884
885SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886  return VT.bitsGT(Op.getValueType()) ?
887    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888    getNode(ISD::TRUNCATE, DL, VT, Op);
889}
890
891SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892  assert(!VT.isVector() &&
893         "getZeroExtendInReg should use the vector element type instead of "
894         "the vector type!");
895  if (Op.getValueType() == VT) return Op;
896  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897  APInt Imm = APInt::getLowBitsSet(BitWidth,
898                                   VT.getSizeInBits());
899  return getNode(ISD::AND, DL, Op.getValueType(), Op,
900                 getConstant(Imm, Op.getValueType()));
901}
902
903/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
904///
905SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906  EVT EltVT = VT.getScalarType();
907  SDValue NegOne =
908    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909  return getNode(ISD::XOR, DL, VT, Val, NegOne);
910}
911
912SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913  EVT EltVT = VT.getScalarType();
914  assert((EltVT.getSizeInBits() >= 64 ||
915         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916         "getConstant with a uint64_t value that doesn't fit in the type!");
917  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
918}
919
920SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
922}
923
924SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925  assert(VT.isInteger() && "Cannot create FP integer constant!");
926
927  EVT EltVT = VT.getScalarType();
928  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929         "APInt size does not match type size!");
930
931  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932  FoldingSetNodeID ID;
933  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934  ID.AddPointer(&Val);
935  void *IP = 0;
936  SDNode *N = NULL;
937  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938    if (!VT.isVector())
939      return SDValue(N, 0);
940
941  if (!N) {
942    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943    CSEMap.InsertNode(N, IP);
944    AllNodes.push_back(N);
945  }
946
947  SDValue Result(N, 0);
948  if (VT.isVector()) {
949    SmallVector<SDValue, 8> Ops;
950    Ops.assign(VT.getVectorNumElements(), Result);
951    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
952  }
953  return Result;
954}
955
956SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957  return getConstant(Val, TLI.getPointerTy(), isTarget);
958}
959
960
961SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
963}
964
965SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
967
968  EVT EltVT = VT.getScalarType();
969
970  // Do the map lookup using the actual bit pattern for the floating point
971  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972  // we don't have issues with SNANs.
973  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974  FoldingSetNodeID ID;
975  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976  ID.AddPointer(&V);
977  void *IP = 0;
978  SDNode *N = NULL;
979  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980    if (!VT.isVector())
981      return SDValue(N, 0);
982
983  if (!N) {
984    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985    CSEMap.InsertNode(N, IP);
986    AllNodes.push_back(N);
987  }
988
989  SDValue Result(N, 0);
990  if (VT.isVector()) {
991    SmallVector<SDValue, 8> Ops;
992    Ops.assign(VT.getVectorNumElements(), Result);
993    // FIXME DebugLoc info might be appropriate here
994    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
995  }
996  return Result;
997}
998
999SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000  EVT EltVT = VT.getScalarType();
1001  if (EltVT==MVT::f32)
1002    return getConstantFP(APFloat((float)Val), VT, isTarget);
1003  else if (EltVT==MVT::f64)
1004    return getConstantFP(APFloat(Val), VT, isTarget);
1005  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006    bool ignored;
1007    APFloat apf = APFloat(Val);
1008    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009                &ignored);
1010    return getConstantFP(apf, VT, isTarget);
1011  } else {
1012    assert(0 && "Unsupported type in getConstantFP");
1013    return SDValue();
1014  }
1015}
1016
1017SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018                                       EVT VT, int64_t Offset,
1019                                       bool isTargetGA,
1020                                       unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTargetGA) &&
1022         "Cannot set target flags on target-independent globals");
1023
1024  // Truncate (with sign-extension) the offset value to the pointer size.
1025  EVT PTy = TLI.getPointerTy();
1026  unsigned BitWidth = PTy.getSizeInBits();
1027  if (BitWidth < 64)
1028    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1029
1030  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031  if (!GVar) {
1032    // If GV is an alias then use the aliasee for determining thread-localness.
1033    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1035  }
1036
1037  unsigned Opc;
1038  if (GVar && GVar->isThreadLocal())
1039    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040  else
1041    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1042
1043  FoldingSetNodeID ID;
1044  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045  ID.AddPointer(GV);
1046  ID.AddInteger(Offset);
1047  ID.AddInteger(TargetFlags);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051
1052  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053                                                      Offset, TargetFlags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061  FoldingSetNodeID ID;
1062  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063  ID.AddInteger(FI);
1064  void *IP = 0;
1065  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066    return SDValue(E, 0);
1067
1068  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075                                   unsigned char TargetFlags) {
1076  assert((TargetFlags == 0 || isTarget) &&
1077         "Cannot set target flags on target-independent jump tables");
1078  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079  FoldingSetNodeID ID;
1080  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081  ID.AddInteger(JTI);
1082  ID.AddInteger(TargetFlags);
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086
1087  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088                                                  TargetFlags);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095                                      unsigned Alignment, int Offset,
1096                                      bool isTarget,
1097                                      unsigned char TargetFlags) {
1098  assert((TargetFlags == 0 || isTarget) &&
1099         "Cannot set target flags on target-independent globals");
1100  if (Alignment == 0)
1101    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103  FoldingSetNodeID ID;
1104  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105  ID.AddInteger(Alignment);
1106  ID.AddInteger(Offset);
1107  ID.AddPointer(C);
1108  ID.AddInteger(TargetFlags);
1109  void *IP = 0;
1110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111    return SDValue(E, 0);
1112
1113  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114                                                     Alignment, TargetFlags);
1115  CSEMap.InsertNode(N, IP);
1116  AllNodes.push_back(N);
1117  return SDValue(N, 0);
1118}
1119
1120
1121SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122                                      unsigned Alignment, int Offset,
1123                                      bool isTarget,
1124                                      unsigned char TargetFlags) {
1125  assert((TargetFlags == 0 || isTarget) &&
1126         "Cannot set target flags on target-independent globals");
1127  if (Alignment == 0)
1128    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130  FoldingSetNodeID ID;
1131  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132  ID.AddInteger(Alignment);
1133  ID.AddInteger(Offset);
1134  C->AddSelectionDAGCSEId(ID);
1135  ID.AddInteger(TargetFlags);
1136  void *IP = 0;
1137  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138    return SDValue(E, 0);
1139
1140  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141                                                     Alignment, TargetFlags);
1142  CSEMap.InsertNode(N, IP);
1143  AllNodes.push_back(N);
1144  return SDValue(N, 0);
1145}
1146
1147SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148  FoldingSetNodeID ID;
1149  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150  ID.AddPointer(MBB);
1151  void *IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154
1155  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156  CSEMap.InsertNode(N, IP);
1157  AllNodes.push_back(N);
1158  return SDValue(N, 0);
1159}
1160
1161SDValue SelectionDAG::getValueType(EVT VT) {
1162  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163      ValueTypeNodes.size())
1164    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1165
1166  SDNode *&N = VT.isExtended() ?
1167    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1168
1169  if (N) return SDValue(N, 0);
1170  N = new (NodeAllocator) VTSDNode(VT);
1171  AllNodes.push_back(N);
1172  return SDValue(N, 0);
1173}
1174
1175SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176  SDNode *&N = ExternalSymbols[Sym];
1177  if (N) return SDValue(N, 0);
1178  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179  AllNodes.push_back(N);
1180  return SDValue(N, 0);
1181}
1182
1183SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184                                              unsigned char TargetFlags) {
1185  SDNode *&N =
1186    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187                                                               TargetFlags)];
1188  if (N) return SDValue(N, 0);
1189  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195  if ((unsigned)Cond >= CondCodeNodes.size())
1196    CondCodeNodes.resize(Cond+1);
1197
1198  if (CondCodeNodes[Cond] == 0) {
1199    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200    CondCodeNodes[Cond] = N;
1201    AllNodes.push_back(N);
1202  }
1203
1204  return SDValue(CondCodeNodes[Cond], 0);
1205}
1206
1207// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208// the shuffle mask M that point at N1 to point at N2, and indices that point
1209// N2 to point at N1.
1210static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211  std::swap(N1, N2);
1212  int NElts = M.size();
1213  for (int i = 0; i != NElts; ++i) {
1214    if (M[i] >= NElts)
1215      M[i] -= NElts;
1216    else if (M[i] >= 0)
1217      M[i] += NElts;
1218  }
1219}
1220
1221SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222                                       SDValue N2, const int *Mask) {
1223  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224  assert(VT.isVector() && N1.getValueType().isVector() &&
1225         "Vector Shuffle VTs must be a vectors");
1226  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227         && "Vector Shuffle VTs must have same element type");
1228
1229  // Canonicalize shuffle undef, undef -> undef
1230  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231    return getUNDEF(VT);
1232
1233  // Validate that all indices in Mask are within the range of the elements
1234  // input to the shuffle.
1235  unsigned NElts = VT.getVectorNumElements();
1236  SmallVector<int, 8> MaskVec;
1237  for (unsigned i = 0; i != NElts; ++i) {
1238    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239    MaskVec.push_back(Mask[i]);
1240  }
1241
1242  // Canonicalize shuffle v, v -> v, undef
1243  if (N1 == N2) {
1244    N2 = getUNDEF(VT);
1245    for (unsigned i = 0; i != NElts; ++i)
1246      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1247  }
1248
1249  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1250  if (N1.getOpcode() == ISD::UNDEF)
1251    commuteShuffle(N1, N2, MaskVec);
1252
1253  // Canonicalize all index into lhs, -> shuffle lhs, undef
1254  // Canonicalize all index into rhs, -> shuffle rhs, undef
1255  bool AllLHS = true, AllRHS = true;
1256  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257  for (unsigned i = 0; i != NElts; ++i) {
1258    if (MaskVec[i] >= (int)NElts) {
1259      if (N2Undef)
1260        MaskVec[i] = -1;
1261      else
1262        AllLHS = false;
1263    } else if (MaskVec[i] >= 0) {
1264      AllRHS = false;
1265    }
1266  }
1267  if (AllLHS && AllRHS)
1268    return getUNDEF(VT);
1269  if (AllLHS && !N2Undef)
1270    N2 = getUNDEF(VT);
1271  if (AllRHS) {
1272    N1 = getUNDEF(VT);
1273    commuteShuffle(N1, N2, MaskVec);
1274  }
1275
1276  // If Identity shuffle, or all shuffle in to undef, return that node.
1277  bool AllUndef = true;
1278  bool Identity = true;
1279  for (unsigned i = 0; i != NElts; ++i) {
1280    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281    if (MaskVec[i] >= 0) AllUndef = false;
1282  }
1283  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284    return N1;
1285  if (AllUndef)
1286    return getUNDEF(VT);
1287
1288  FoldingSetNodeID ID;
1289  SDValue Ops[2] = { N1, N2 };
1290  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291  for (unsigned i = 0; i != NElts; ++i)
1292    ID.AddInteger(MaskVec[i]);
1293
1294  void* IP = 0;
1295  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296    return SDValue(E, 0);
1297
1298  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299  // SDNode doesn't have access to it.  This memory will be "leaked" when
1300  // the node is deallocated, but recovered when the NodeAllocator is released.
1301  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1303
1304  ShuffleVectorSDNode *N =
1305    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312                                       SDValue Val, SDValue DTy,
1313                                       SDValue STy, SDValue Rnd, SDValue Sat,
1314                                       ISD::CvtCode Code) {
1315  // If the src and dest types are the same and the conversion is between
1316  // integer types of the same sign or two floats, no conversion is necessary.
1317  if (DTy == STy &&
1318      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319    return Val;
1320
1321  FoldingSetNodeID ID;
1322  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324  void* IP = 0;
1325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326    return SDValue(E, 0);
1327
1328  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329                                                           Code);
1330  CSEMap.InsertNode(N, IP);
1331  AllNodes.push_back(N);
1332  return SDValue(N, 0);
1333}
1334
1335SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338  ID.AddInteger(RegNo);
1339  void *IP = 0;
1340  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341    return SDValue(E, 0);
1342
1343  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344  CSEMap.InsertNode(N, IP);
1345  AllNodes.push_back(N);
1346  return SDValue(N, 0);
1347}
1348
1349SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350  FoldingSetNodeID ID;
1351  SDValue Ops[] = { Root };
1352  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353  ID.AddPointer(Label);
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364
1365SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366                                      bool isTarget,
1367                                      unsigned char TargetFlags) {
1368  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1369
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372  ID.AddPointer(BA);
1373  ID.AddInteger(TargetFlags);
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384SDValue SelectionDAG::getSrcValue(const Value *V) {
1385  assert((!V || V->getType()->isPointerTy()) &&
1386         "SrcValue is not a pointer?");
1387
1388  FoldingSetNodeID ID;
1389  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390  ID.AddPointer(V);
1391
1392  void *IP = 0;
1393  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394    return SDValue(E, 0);
1395
1396  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397  CSEMap.InsertNode(N, IP);
1398  AllNodes.push_back(N);
1399  return SDValue(N, 0);
1400}
1401
1402/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404  FoldingSetNodeID ID;
1405  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406  ID.AddPointer(MD);
1407
1408  void *IP = 0;
1409  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410    return SDValue(E, 0);
1411
1412  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413  CSEMap.InsertNode(N, IP);
1414  AllNodes.push_back(N);
1415  return SDValue(N, 0);
1416}
1417
1418
1419/// getShiftAmountOperand - Return the specified value casted to
1420/// the target's desired shift amount type.
1421SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422  EVT OpTy = Op.getValueType();
1423  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424  if (OpTy == ShTy || OpTy.isVector()) return Op;
1425
1426  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1428}
1429
1430/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431/// specified value type.
1432SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434  unsigned ByteSize = VT.getStoreSize();
1435  const Type *Ty = VT.getTypeForEVT(*getContext());
1436  unsigned StackAlign =
1437  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1438
1439  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1441}
1442
1443/// CreateStackTemporary - Create a stack temporary suitable for holding
1444/// either of the specified value types.
1445SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447                            VT2.getStoreSizeInBits())/8;
1448  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450  const TargetData *TD = TLI.getTargetData();
1451  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452                            TD->getPrefTypeAlignment(Ty2));
1453
1454  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1457}
1458
1459SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461  // These setcc operations always fold.
1462  switch (Cond) {
1463  default: break;
1464  case ISD::SETFALSE:
1465  case ISD::SETFALSE2: return getConstant(0, VT);
1466  case ISD::SETTRUE:
1467  case ISD::SETTRUE2:  return getConstant(1, VT);
1468
1469  case ISD::SETOEQ:
1470  case ISD::SETOGT:
1471  case ISD::SETOGE:
1472  case ISD::SETOLT:
1473  case ISD::SETOLE:
1474  case ISD::SETONE:
1475  case ISD::SETO:
1476  case ISD::SETUO:
1477  case ISD::SETUEQ:
1478  case ISD::SETUNE:
1479    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480    break;
1481  }
1482
1483  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484    const APInt &C2 = N2C->getAPIntValue();
1485    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486      const APInt &C1 = N1C->getAPIntValue();
1487
1488      switch (Cond) {
1489      default: llvm_unreachable("Unknown integer setcc!");
1490      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1491      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1492      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1497      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1498      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1499      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1500      }
1501    }
1502  }
1503  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505      // No compile time operations on this type yet.
1506      if (N1C->getValueType(0) == MVT::ppcf128)
1507        return SDValue();
1508
1509      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510      switch (Cond) {
1511      default: break;
1512      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1513                          return getUNDEF(VT);
1514                        // fall through
1515      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1517                          return getUNDEF(VT);
1518                        // fall through
1519      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520                                           R==APFloat::cmpLessThan, VT);
1521      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1522                          return getUNDEF(VT);
1523                        // fall through
1524      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1526                          return getUNDEF(VT);
1527                        // fall through
1528      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1530                          return getUNDEF(VT);
1531                        // fall through
1532      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533                                           R==APFloat::cmpEqual, VT);
1534      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1535                          return getUNDEF(VT);
1536                        // fall through
1537      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538                                           R==APFloat::cmpEqual, VT);
1539      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1540      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1541      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542                                           R==APFloat::cmpEqual, VT);
1543      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545                                           R==APFloat::cmpLessThan, VT);
1546      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547                                           R==APFloat::cmpUnordered, VT);
1548      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1550      }
1551    } else {
1552      // Ensure that the constant occurs on the RHS.
1553      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1554    }
1555  }
1556
1557  // Could not fold it.
1558  return SDValue();
1559}
1560
1561/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1562/// use this predicate to simplify operations downstream.
1563bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564  // This predicate is not safe for vector operations.
1565  if (Op.getValueType().isVector())
1566    return false;
1567
1568  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1570}
1571
1572/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1573/// this predicate to simplify operations downstream.  Mask is known to be zero
1574/// for bits that V cannot have.
1575bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576                                     unsigned Depth) const {
1577  APInt KnownZero, KnownOne;
1578  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580  return (KnownZero & Mask) == Mask;
1581}
1582
1583/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584/// known to be either zero or one and return them in the KnownZero/KnownOne
1585/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1586/// processing.
1587void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588                                     APInt &KnownZero, APInt &KnownOne,
1589                                     unsigned Depth) const {
1590  unsigned BitWidth = Mask.getBitWidth();
1591  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592         "Mask size mismatches value type size!");
1593
1594  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1595  if (Depth == 6 || Mask == 0)
1596    return;  // Limit search depth.
1597
1598  APInt KnownZero2, KnownOne2;
1599
1600  switch (Op.getOpcode()) {
1601  case ISD::Constant:
1602    // We know all of the bits for a constant!
1603    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604    KnownZero = ~KnownOne & Mask;
1605    return;
1606  case ISD::AND:
1607    // If either the LHS or the RHS are Zero, the result is zero.
1608    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610                      KnownZero2, KnownOne2, Depth+1);
1611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1613
1614    // Output known-1 bits are only known if set in both the LHS & RHS.
1615    KnownOne &= KnownOne2;
1616    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617    KnownZero |= KnownZero2;
1618    return;
1619  case ISD::OR:
1620    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622                      KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Output known-0 bits are only known if clear in both the LHS & RHS.
1627    KnownZero &= KnownZero2;
1628    // Output known-1 are known to be set if set in either the LHS | RHS.
1629    KnownOne |= KnownOne2;
1630    return;
1631  case ISD::XOR: {
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1636
1637    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641    KnownZero = KnownZeroOut;
1642    return;
1643  }
1644  case ISD::MUL: {
1645    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // If low bits are zero in either operand, output low known-0 bits.
1652    // Also compute a conserative estimate for high known-0 bits.
1653    // More trickiness is possible, but this is sufficient for the
1654    // interesting case of alignment computation.
1655    KnownOne.clearAllBits();
1656    unsigned TrailZ = KnownZero.countTrailingOnes() +
1657                      KnownZero2.countTrailingOnes();
1658    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1659                               KnownZero2.countLeadingOnes(),
1660                               BitWidth) - BitWidth;
1661
1662    TrailZ = std::min(TrailZ, BitWidth);
1663    LeadZ = std::min(LeadZ, BitWidth);
1664    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665                APInt::getHighBitsSet(BitWidth, LeadZ);
1666    KnownZero &= Mask;
1667    return;
1668  }
1669  case ISD::UDIV: {
1670    // For the purposes of computing leading zeros we can conservatively
1671    // treat a udiv as a logical right shift by the power of 2 known to
1672    // be less than the denominator.
1673    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674    ComputeMaskedBits(Op.getOperand(0),
1675                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1676    unsigned LeadZ = KnownZero2.countLeadingOnes();
1677
1678    KnownOne2.clearAllBits();
1679    KnownZero2.clearAllBits();
1680    ComputeMaskedBits(Op.getOperand(1),
1681                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1682    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683    if (RHSUnknownLeadingOnes != BitWidth)
1684      LeadZ = std::min(BitWidth,
1685                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1686
1687    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688    return;
1689  }
1690  case ISD::SELECT:
1691    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1695
1696    // Only known if known in both the LHS and RHS.
1697    KnownOne &= KnownOne2;
1698    KnownZero &= KnownZero2;
1699    return;
1700  case ISD::SELECT_CC:
1701    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1705
1706    // Only known if known in both the LHS and RHS.
1707    KnownOne &= KnownOne2;
1708    KnownZero &= KnownZero2;
1709    return;
1710  case ISD::SADDO:
1711  case ISD::UADDO:
1712  case ISD::SSUBO:
1713  case ISD::USUBO:
1714  case ISD::SMULO:
1715  case ISD::UMULO:
1716    if (Op.getResNo() != 1)
1717      return;
1718    // The boolean result conforms to getBooleanContents.  Fall through.
1719  case ISD::SETCC:
1720    // If we know the result of a setcc has the top bits zero, use this info.
1721    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722        BitWidth > 1)
1723      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724    return;
1725  case ISD::SHL:
1726    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1727    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728      unsigned ShAmt = SA->getZExtValue();
1729
1730      // If the shift count is an invalid immediate, don't do anything.
1731      if (ShAmt >= BitWidth)
1732        return;
1733
1734      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735                        KnownZero, KnownOne, Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero <<= ShAmt;
1738      KnownOne  <<= ShAmt;
1739      // low bits known zero.
1740      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1741    }
1742    return;
1743  case ISD::SRL:
1744    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1745    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746      unsigned ShAmt = SA->getZExtValue();
1747
1748      // If the shift count is an invalid immediate, don't do anything.
1749      if (ShAmt >= BitWidth)
1750        return;
1751
1752      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753                        KnownZero, KnownOne, Depth+1);
1754      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755      KnownZero = KnownZero.lshr(ShAmt);
1756      KnownOne  = KnownOne.lshr(ShAmt);
1757
1758      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759      KnownZero |= HighBits;  // High bits known zero.
1760    }
1761    return;
1762  case ISD::SRA:
1763    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764      unsigned ShAmt = SA->getZExtValue();
1765
1766      // If the shift count is an invalid immediate, don't do anything.
1767      if (ShAmt >= BitWidth)
1768        return;
1769
1770      APInt InDemandedMask = (Mask << ShAmt);
1771      // If any of the demanded bits are produced by the sign extension, we also
1772      // demand the input sign bit.
1773      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774      if (HighBits.getBoolValue())
1775        InDemandedMask |= APInt::getSignBit(BitWidth);
1776
1777      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778                        Depth+1);
1779      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780      KnownZero = KnownZero.lshr(ShAmt);
1781      KnownOne  = KnownOne.lshr(ShAmt);
1782
1783      // Handle the sign bits.
1784      APInt SignBit = APInt::getSignBit(BitWidth);
1785      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1786
1787      if (KnownZero.intersects(SignBit)) {
1788        KnownZero |= HighBits;  // New bits are known zero.
1789      } else if (KnownOne.intersects(SignBit)) {
1790        KnownOne  |= HighBits;  // New bits are known one.
1791      }
1792    }
1793    return;
1794  case ISD::SIGN_EXTEND_INREG: {
1795    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796    unsigned EBits = EVT.getScalarType().getSizeInBits();
1797
1798    // Sign extension.  Compute the demanded bits in the result that are not
1799    // present in the input.
1800    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1801
1802    APInt InSignBit = APInt::getSignBit(EBits);
1803    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1804
1805    // If the sign extended bits are demanded, we know that the sign
1806    // bit is demanded.
1807    InSignBit = InSignBit.zext(BitWidth);
1808    if (NewBits.getBoolValue())
1809      InputDemandedBits |= InSignBit;
1810
1811    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812                      KnownZero, KnownOne, Depth+1);
1813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1814
1815    // If the sign bit of the input is known set or clear, then we know the
1816    // top bits of the result.
1817    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1818      KnownZero |= NewBits;
1819      KnownOne  &= ~NewBits;
1820    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1821      KnownOne  |= NewBits;
1822      KnownZero &= ~NewBits;
1823    } else {                              // Input sign bit unknown
1824      KnownZero &= ~NewBits;
1825      KnownOne  &= ~NewBits;
1826    }
1827    return;
1828  }
1829  case ISD::CTTZ:
1830  case ISD::CTLZ:
1831  case ISD::CTPOP: {
1832    unsigned LowBits = Log2_32(BitWidth)+1;
1833    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834    KnownOne.clearAllBits();
1835    return;
1836  }
1837  case ISD::LOAD: {
1838    if (ISD::isZEXTLoad(Op.getNode())) {
1839      LoadSDNode *LD = cast<LoadSDNode>(Op);
1840      EVT VT = LD->getMemoryVT();
1841      unsigned MemBits = VT.getScalarType().getSizeInBits();
1842      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1843    }
1844    return;
1845  }
1846  case ISD::ZERO_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850    APInt InMask    = Mask.trunc(InBits);
1851    KnownZero = KnownZero.trunc(InBits);
1852    KnownOne = KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero = KnownZero.zext(BitWidth);
1855    KnownOne = KnownOne.zext(BitWidth);
1856    KnownZero |= NewBits;
1857    return;
1858  }
1859  case ISD::SIGN_EXTEND: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InSignBit = APInt::getSignBit(InBits);
1863    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864    APInt InMask = Mask.trunc(InBits);
1865
1866    // If any of the sign extended bits are demanded, we know that the sign
1867    // bit is demanded. Temporarily set this bit in the mask for our callee.
1868    if (NewBits.getBoolValue())
1869      InMask |= InSignBit;
1870
1871    KnownZero = KnownZero.trunc(InBits);
1872    KnownOne = KnownOne.trunc(InBits);
1873    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874
1875    // Note if the sign bit is known to be zero or one.
1876    bool SignBitKnownZero = KnownZero.isNegative();
1877    bool SignBitKnownOne  = KnownOne.isNegative();
1878    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879           "Sign bit can't be known to be both zero and one!");
1880
1881    // If the sign bit wasn't actually demanded by our caller, we don't
1882    // want it set in the KnownZero and KnownOne result values. Reset the
1883    // mask and reapply it to the result values.
1884    InMask = Mask.trunc(InBits);
1885    KnownZero &= InMask;
1886    KnownOne  &= InMask;
1887
1888    KnownZero = KnownZero.zext(BitWidth);
1889    KnownOne = KnownOne.zext(BitWidth);
1890
1891    // If the sign bit is known zero or one, the top bits match.
1892    if (SignBitKnownZero)
1893      KnownZero |= NewBits;
1894    else if (SignBitKnownOne)
1895      KnownOne  |= NewBits;
1896    return;
1897  }
1898  case ISD::ANY_EXTEND: {
1899    EVT InVT = Op.getOperand(0).getValueType();
1900    unsigned InBits = InVT.getScalarType().getSizeInBits();
1901    APInt InMask = Mask.trunc(InBits);
1902    KnownZero = KnownZero.trunc(InBits);
1903    KnownOne = KnownOne.trunc(InBits);
1904    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905    KnownZero = KnownZero.zext(BitWidth);
1906    KnownOne = KnownOne.zext(BitWidth);
1907    return;
1908  }
1909  case ISD::TRUNCATE: {
1910    EVT InVT = Op.getOperand(0).getValueType();
1911    unsigned InBits = InVT.getScalarType().getSizeInBits();
1912    APInt InMask = Mask.zext(InBits);
1913    KnownZero = KnownZero.zext(InBits);
1914    KnownOne = KnownOne.zext(InBits);
1915    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917    KnownZero = KnownZero.trunc(BitWidth);
1918    KnownOne = KnownOne.trunc(BitWidth);
1919    break;
1920  }
1921  case ISD::AssertZext: {
1922    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925                      KnownOne, Depth+1);
1926    KnownZero |= (~InMask) & Mask;
1927    return;
1928  }
1929  case ISD::FGETSIGN:
1930    // All bits are zero except the low bit.
1931    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932    return;
1933
1934  case ISD::SUB: {
1935    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936      // We know that the top bits of C-X are clear if X contains less bits
1937      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1938      // positive if we can prove that X is >= 0 and < 16.
1939      if (CLHS->getAPIntValue().isNonNegative()) {
1940        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941        // NLZ can't be BitWidth with no sign bit
1942        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944                          Depth+1);
1945
1946        // If all of the MaskV bits are known to be zero, then we know the
1947        // output top bits are zero, because we now know that the output is
1948        // from [0-C].
1949        if ((KnownZero2 & MaskV) == MaskV) {
1950          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951          // Top bits known zero.
1952          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1953        }
1954      }
1955    }
1956  }
1957  // fall through
1958  case ISD::ADD:
1959  case ISD::ADDE: {
1960    // Output known-0 bits are known if clear or set in both the low clear bits
1961    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1962    // low 3 bits clear.
1963    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964                                       BitWidth - Mask.countLeadingZeros());
1965    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1968
1969    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971    KnownZeroOut = std::min(KnownZeroOut,
1972                            KnownZero2.countTrailingOnes());
1973
1974    if (Op.getOpcode() == ISD::ADD) {
1975      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976      return;
1977    }
1978
1979    // With ADDE, a carry bit may be added in, so we can only use this
1980    // information if we know (at least) that the low two bits are clear.  We
1981    // then return to the caller that the low bit is unknown but that other bits
1982    // are known zero.
1983    if (KnownZeroOut >= 2) // ADDE
1984      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985    return;
1986  }
1987  case ISD::SREM:
1988    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989      const APInt &RA = Rem->getAPIntValue().abs();
1990      if (RA.isPowerOf2()) {
1991        APInt LowBits = RA - 1;
1992        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1994
1995        // The low bits of the first operand are unchanged by the srem.
1996        KnownZero = KnownZero2 & LowBits;
1997        KnownOne = KnownOne2 & LowBits;
1998
1999        // If the first operand is non-negative or has all low bits zero, then
2000        // the upper bits are all zero.
2001        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002          KnownZero |= ~LowBits;
2003
2004        // If the first operand is negative and not all low bits are zero, then
2005        // the upper bits are all one.
2006        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007          KnownOne |= ~LowBits;
2008
2009        KnownZero &= Mask;
2010        KnownOne &= Mask;
2011
2012        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2013      }
2014    }
2015    return;
2016  case ISD::UREM: {
2017    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      const APInt &RA = Rem->getAPIntValue();
2019      if (RA.isPowerOf2()) {
2020        APInt LowBits = (RA - 1);
2021        APInt Mask2 = LowBits & Mask;
2022        KnownZero |= ~LowBits & Mask;
2023        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025        break;
2026      }
2027    }
2028
2029    // Since the result is less than or equal to either operand, any leading
2030    // zero bits in either operand must also exist in the result.
2031    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033                      Depth+1);
2034    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035                      Depth+1);
2036
2037    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038                                KnownZero2.countLeadingOnes());
2039    KnownOne.clearAllBits();
2040    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041    return;
2042  }
2043  case ISD::FrameIndex:
2044  case ISD::TargetFrameIndex:
2045    if (unsigned Align = InferPtrAlignment(Op)) {
2046      // The low bits are known zero if the pointer is aligned.
2047      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048      return;
2049    }
2050    break;
2051
2052  default:
2053    // Allow the target to implement this method for its nodes.
2054    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2055  case ISD::INTRINSIC_WO_CHAIN:
2056  case ISD::INTRINSIC_W_CHAIN:
2057  case ISD::INTRINSIC_VOID:
2058      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2059                                         Depth);
2060    }
2061    return;
2062  }
2063}
2064
2065/// ComputeNumSignBits - Return the number of times the sign bit of the
2066/// register is replicated into the other bits.  We know that at least 1 bit
2067/// is always equal to the sign bit (itself), but other cases can give us
2068/// information.  For example, immediately after an "SRA X, 2", we know that
2069/// the top 3 bits are all equal to each other, so we return 3.
2070unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2071  EVT VT = Op.getValueType();
2072  assert(VT.isInteger() && "Invalid VT!");
2073  unsigned VTBits = VT.getScalarType().getSizeInBits();
2074  unsigned Tmp, Tmp2;
2075  unsigned FirstAnswer = 1;
2076
2077  if (Depth == 6)
2078    return 1;  // Limit search depth.
2079
2080  switch (Op.getOpcode()) {
2081  default: break;
2082  case ISD::AssertSext:
2083    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2084    return VTBits-Tmp+1;
2085  case ISD::AssertZext:
2086    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2087    return VTBits-Tmp;
2088
2089  case ISD::Constant: {
2090    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2091    return Val.getNumSignBits();
2092  }
2093
2094  case ISD::SIGN_EXTEND:
2095    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2096    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2097
2098  case ISD::SIGN_EXTEND_INREG:
2099    // Max of the input and what this extends.
2100    Tmp =
2101      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2102    Tmp = VTBits-Tmp+1;
2103
2104    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105    return std::max(Tmp, Tmp2);
2106
2107  case ISD::SRA:
2108    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2109    // SRA X, C   -> adds C sign bits.
2110    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2111      Tmp += C->getZExtValue();
2112      if (Tmp > VTBits) Tmp = VTBits;
2113    }
2114    return Tmp;
2115  case ISD::SHL:
2116    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2117      // shl destroys sign bits.
2118      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2119      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2120          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2121      return Tmp - C->getZExtValue();
2122    }
2123    break;
2124  case ISD::AND:
2125  case ISD::OR:
2126  case ISD::XOR:    // NOT is handled here.
2127    // Logical binary ops preserve the number of sign bits at the worst.
2128    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129    if (Tmp != 1) {
2130      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2131      FirstAnswer = std::min(Tmp, Tmp2);
2132      // We computed what we know about the sign bits as our first
2133      // answer. Now proceed to the generic code that uses
2134      // ComputeMaskedBits, and pick whichever answer is better.
2135    }
2136    break;
2137
2138  case ISD::SELECT:
2139    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp == 1) return 1;  // Early out.
2141    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2142    return std::min(Tmp, Tmp2);
2143
2144  case ISD::SADDO:
2145  case ISD::UADDO:
2146  case ISD::SSUBO:
2147  case ISD::USUBO:
2148  case ISD::SMULO:
2149  case ISD::UMULO:
2150    if (Op.getResNo() != 1)
2151      break;
2152    // The boolean result conforms to getBooleanContents.  Fall through.
2153  case ISD::SETCC:
2154    // If setcc returns 0/-1, all bits are sign bits.
2155    if (TLI.getBooleanContents() ==
2156        TargetLowering::ZeroOrNegativeOneBooleanContent)
2157      return VTBits;
2158    break;
2159  case ISD::ROTL:
2160  case ISD::ROTR:
2161    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2162      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2163
2164      // Handle rotate right by N like a rotate left by 32-N.
2165      if (Op.getOpcode() == ISD::ROTR)
2166        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2167
2168      // If we aren't rotating out all of the known-in sign bits, return the
2169      // number that are left.  This handles rotl(sext(x), 1) for example.
2170      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2171      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2172    }
2173    break;
2174  case ISD::ADD:
2175    // Add can have at most one carry bit.  Thus we know that the output
2176    // is, at worst, one more bit than the inputs.
2177    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2178    if (Tmp == 1) return 1;  // Early out.
2179
2180    // Special case decrementing a value (ADD X, -1):
2181    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2182      if (CRHS->isAllOnesValue()) {
2183        APInt KnownZero, KnownOne;
2184        APInt Mask = APInt::getAllOnesValue(VTBits);
2185        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2186
2187        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2188        // sign bits set.
2189        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2190          return VTBits;
2191
2192        // If we are subtracting one from a positive number, there is no carry
2193        // out of the result.
2194        if (KnownZero.isNegative())
2195          return Tmp;
2196      }
2197
2198    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2199    if (Tmp2 == 1) return 1;
2200      return std::min(Tmp, Tmp2)-1;
2201    break;
2202
2203  case ISD::SUB:
2204    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2205    if (Tmp2 == 1) return 1;
2206
2207    // Handle NEG.
2208    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2209      if (CLHS->isNullValue()) {
2210        APInt KnownZero, KnownOne;
2211        APInt Mask = APInt::getAllOnesValue(VTBits);
2212        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2213        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2214        // sign bits set.
2215        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2216          return VTBits;
2217
2218        // If the input is known to be positive (the sign bit is known clear),
2219        // the output of the NEG has the same number of sign bits as the input.
2220        if (KnownZero.isNegative())
2221          return Tmp2;
2222
2223        // Otherwise, we treat this like a SUB.
2224      }
2225
2226    // Sub can have at most one carry bit.  Thus we know that the output
2227    // is, at worst, one more bit than the inputs.
2228    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2229    if (Tmp == 1) return 1;  // Early out.
2230      return std::min(Tmp, Tmp2)-1;
2231    break;
2232  case ISD::TRUNCATE:
2233    // FIXME: it's tricky to do anything useful for this, but it is an important
2234    // case for targets like X86.
2235    break;
2236  }
2237
2238  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2239  if (Op.getOpcode() == ISD::LOAD) {
2240    LoadSDNode *LD = cast<LoadSDNode>(Op);
2241    unsigned ExtType = LD->getExtensionType();
2242    switch (ExtType) {
2243    default: break;
2244    case ISD::SEXTLOAD:    // '17' bits known
2245      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2246      return VTBits-Tmp+1;
2247    case ISD::ZEXTLOAD:    // '16' bits known
2248      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2249      return VTBits-Tmp;
2250    }
2251  }
2252
2253  // Allow the target to implement this method for its nodes.
2254  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2255      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2256      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2257      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2258    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2259    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2260  }
2261
2262  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2263  // use this information.
2264  APInt KnownZero, KnownOne;
2265  APInt Mask = APInt::getAllOnesValue(VTBits);
2266  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2267
2268  if (KnownZero.isNegative()) {        // sign bit is 0
2269    Mask = KnownZero;
2270  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2271    Mask = KnownOne;
2272  } else {
2273    // Nothing known.
2274    return FirstAnswer;
2275  }
2276
2277  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2278  // the number of identical bits in the top of the input value.
2279  Mask = ~Mask;
2280  Mask <<= Mask.getBitWidth()-VTBits;
2281  // Return # leading zeros.  We use 'min' here in case Val was zero before
2282  // shifting.  We don't want to return '64' as for an i32 "0".
2283  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2284}
2285
2286/// isBaseWithConstantOffset - Return true if the specified operand is an
2287/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2288/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2289/// semantics as an ADD.  This handles the equivalence:
2290///     X|Cst == X+Cst iff X&Cst = 0.
2291bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2292  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2293      !isa<ConstantSDNode>(Op.getOperand(1)))
2294    return false;
2295
2296  if (Op.getOpcode() == ISD::OR &&
2297      !MaskedValueIsZero(Op.getOperand(0),
2298                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2299    return false;
2300
2301  return true;
2302}
2303
2304
2305bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2306  // If we're told that NaNs won't happen, assume they won't.
2307  if (NoNaNsFPMath)
2308    return true;
2309
2310  // If the value is a constant, we can obviously see if it is a NaN or not.
2311  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2312    return !C->getValueAPF().isNaN();
2313
2314  // TODO: Recognize more cases here.
2315
2316  return false;
2317}
2318
2319bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2320  // If the value is a constant, we can obviously see if it is a zero or not.
2321  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2322    return !C->isZero();
2323
2324  // TODO: Recognize more cases here.
2325
2326  return false;
2327}
2328
2329bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2330  // Check the obvious case.
2331  if (A == B) return true;
2332
2333  // For for negative and positive zero.
2334  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2335    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2336      if (CA->isZero() && CB->isZero()) return true;
2337
2338  // Otherwise they may not be equal.
2339  return false;
2340}
2341
2342bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2343  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2344  if (!GA) return false;
2345  if (GA->getOffset() != 0) return false;
2346  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2347  if (!GV) return false;
2348  return MF->getMMI().hasDebugInfo();
2349}
2350
2351
2352/// getNode - Gets or creates the specified node.
2353///
2354SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2355  FoldingSetNodeID ID;
2356  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2357  void *IP = 0;
2358  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2359    return SDValue(E, 0);
2360
2361  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2362  CSEMap.InsertNode(N, IP);
2363
2364  AllNodes.push_back(N);
2365#ifndef NDEBUG
2366  VerifySDNode(N);
2367#endif
2368  return SDValue(N, 0);
2369}
2370
2371SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2372                              EVT VT, SDValue Operand) {
2373  // Constant fold unary operations with an integer constant operand.
2374  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2375    const APInt &Val = C->getAPIntValue();
2376    switch (Opcode) {
2377    default: break;
2378    case ISD::SIGN_EXTEND:
2379      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2380    case ISD::ANY_EXTEND:
2381    case ISD::ZERO_EXTEND:
2382    case ISD::TRUNCATE:
2383      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2384    case ISD::UINT_TO_FP:
2385    case ISD::SINT_TO_FP: {
2386      // No compile time operations on ppcf128.
2387      if (VT == MVT::ppcf128) break;
2388      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2389      (void)apf.convertFromAPInt(Val,
2390                                 Opcode==ISD::SINT_TO_FP,
2391                                 APFloat::rmNearestTiesToEven);
2392      return getConstantFP(apf, VT);
2393    }
2394    case ISD::BITCAST:
2395      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2396        return getConstantFP(Val.bitsToFloat(), VT);
2397      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2398        return getConstantFP(Val.bitsToDouble(), VT);
2399      break;
2400    case ISD::BSWAP:
2401      return getConstant(Val.byteSwap(), VT);
2402    case ISD::CTPOP:
2403      return getConstant(Val.countPopulation(), VT);
2404    case ISD::CTLZ:
2405      return getConstant(Val.countLeadingZeros(), VT);
2406    case ISD::CTTZ:
2407      return getConstant(Val.countTrailingZeros(), VT);
2408    }
2409  }
2410
2411  // Constant fold unary operations with a floating point constant operand.
2412  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2413    APFloat V = C->getValueAPF();    // make copy
2414    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2415      switch (Opcode) {
2416      case ISD::FNEG:
2417        V.changeSign();
2418        return getConstantFP(V, VT);
2419      case ISD::FABS:
2420        V.clearSign();
2421        return getConstantFP(V, VT);
2422      case ISD::FP_ROUND:
2423      case ISD::FP_EXTEND: {
2424        bool ignored;
2425        // This can return overflow, underflow, or inexact; we don't care.
2426        // FIXME need to be more flexible about rounding mode.
2427        (void)V.convert(*EVTToAPFloatSemantics(VT),
2428                        APFloat::rmNearestTiesToEven, &ignored);
2429        return getConstantFP(V, VT);
2430      }
2431      case ISD::FP_TO_SINT:
2432      case ISD::FP_TO_UINT: {
2433        integerPart x[2];
2434        bool ignored;
2435        assert(integerPartWidth >= 64);
2436        // FIXME need to be more flexible about rounding mode.
2437        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2438                              Opcode==ISD::FP_TO_SINT,
2439                              APFloat::rmTowardZero, &ignored);
2440        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2441          break;
2442        APInt api(VT.getSizeInBits(), 2, x);
2443        return getConstant(api, VT);
2444      }
2445      case ISD::BITCAST:
2446        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2447          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2448        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2449          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2450        break;
2451      }
2452    }
2453  }
2454
2455  unsigned OpOpcode = Operand.getNode()->getOpcode();
2456  switch (Opcode) {
2457  case ISD::TokenFactor:
2458  case ISD::MERGE_VALUES:
2459  case ISD::CONCAT_VECTORS:
2460    return Operand;         // Factor, merge or concat of one node?  No need.
2461  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2462  case ISD::FP_EXTEND:
2463    assert(VT.isFloatingPoint() &&
2464           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2465    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2466    assert((!VT.isVector() ||
2467            VT.getVectorNumElements() ==
2468            Operand.getValueType().getVectorNumElements()) &&
2469           "Vector element count mismatch!");
2470    if (Operand.getOpcode() == ISD::UNDEF)
2471      return getUNDEF(VT);
2472    break;
2473  case ISD::SIGN_EXTEND:
2474    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2475           "Invalid SIGN_EXTEND!");
2476    if (Operand.getValueType() == VT) return Operand;   // noop extension
2477    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2478           "Invalid sext node, dst < src!");
2479    assert((!VT.isVector() ||
2480            VT.getVectorNumElements() ==
2481            Operand.getValueType().getVectorNumElements()) &&
2482           "Vector element count mismatch!");
2483    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2484      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2485    else if (OpOpcode == ISD::UNDEF)
2486      // sext(undef) = 0, because the top bits will all be the same.
2487      return getConstant(0, VT);
2488    break;
2489  case ISD::ZERO_EXTEND:
2490    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2491           "Invalid ZERO_EXTEND!");
2492    if (Operand.getValueType() == VT) return Operand;   // noop extension
2493    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2494           "Invalid zext node, dst < src!");
2495    assert((!VT.isVector() ||
2496            VT.getVectorNumElements() ==
2497            Operand.getValueType().getVectorNumElements()) &&
2498           "Vector element count mismatch!");
2499    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2500      return getNode(ISD::ZERO_EXTEND, DL, VT,
2501                     Operand.getNode()->getOperand(0));
2502    else if (OpOpcode == ISD::UNDEF)
2503      // zext(undef) = 0, because the top bits will be zero.
2504      return getConstant(0, VT);
2505    break;
2506  case ISD::ANY_EXTEND:
2507    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2508           "Invalid ANY_EXTEND!");
2509    if (Operand.getValueType() == VT) return Operand;   // noop extension
2510    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2511           "Invalid anyext node, dst < src!");
2512    assert((!VT.isVector() ||
2513            VT.getVectorNumElements() ==
2514            Operand.getValueType().getVectorNumElements()) &&
2515           "Vector element count mismatch!");
2516
2517    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2518        OpOpcode == ISD::ANY_EXTEND)
2519      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2520      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2521    else if (OpOpcode == ISD::UNDEF)
2522      return getUNDEF(VT);
2523
2524    // (ext (trunx x)) -> x
2525    if (OpOpcode == ISD::TRUNCATE) {
2526      SDValue OpOp = Operand.getNode()->getOperand(0);
2527      if (OpOp.getValueType() == VT)
2528        return OpOp;
2529    }
2530    break;
2531  case ISD::TRUNCATE:
2532    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2533           "Invalid TRUNCATE!");
2534    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2535    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2536           "Invalid truncate node, src < dst!");
2537    assert((!VT.isVector() ||
2538            VT.getVectorNumElements() ==
2539            Operand.getValueType().getVectorNumElements()) &&
2540           "Vector element count mismatch!");
2541    if (OpOpcode == ISD::TRUNCATE)
2542      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2543    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2544             OpOpcode == ISD::ANY_EXTEND) {
2545      // If the source is smaller than the dest, we still need an extend.
2546      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2547            .bitsLT(VT.getScalarType()))
2548        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2549      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2550        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2551      else
2552        return Operand.getNode()->getOperand(0);
2553    }
2554    break;
2555  case ISD::BITCAST:
2556    // Basic sanity checking.
2557    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2558           && "Cannot BITCAST between types of different sizes!");
2559    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2560    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2561      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2562    if (OpOpcode == ISD::UNDEF)
2563      return getUNDEF(VT);
2564    break;
2565  case ISD::SCALAR_TO_VECTOR:
2566    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2567           (VT.getVectorElementType() == Operand.getValueType() ||
2568            (VT.getVectorElementType().isInteger() &&
2569             Operand.getValueType().isInteger() &&
2570             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2571           "Illegal SCALAR_TO_VECTOR node!");
2572    if (OpOpcode == ISD::UNDEF)
2573      return getUNDEF(VT);
2574    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2575    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2576        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2577        Operand.getConstantOperandVal(1) == 0 &&
2578        Operand.getOperand(0).getValueType() == VT)
2579      return Operand.getOperand(0);
2580    break;
2581  case ISD::FNEG:
2582    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2583    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2584      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2585                     Operand.getNode()->getOperand(0));
2586    if (OpOpcode == ISD::FNEG)  // --X -> X
2587      return Operand.getNode()->getOperand(0);
2588    break;
2589  case ISD::FABS:
2590    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2591      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2592    break;
2593  }
2594
2595  SDNode *N;
2596  SDVTList VTs = getVTList(VT);
2597  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2598    FoldingSetNodeID ID;
2599    SDValue Ops[1] = { Operand };
2600    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2601    void *IP = 0;
2602    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2603      return SDValue(E, 0);
2604
2605    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2606    CSEMap.InsertNode(N, IP);
2607  } else {
2608    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2609  }
2610
2611  AllNodes.push_back(N);
2612#ifndef NDEBUG
2613  VerifySDNode(N);
2614#endif
2615  return SDValue(N, 0);
2616}
2617
2618SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2619                                             EVT VT,
2620                                             ConstantSDNode *Cst1,
2621                                             ConstantSDNode *Cst2) {
2622  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2623
2624  switch (Opcode) {
2625  case ISD::ADD:  return getConstant(C1 + C2, VT);
2626  case ISD::SUB:  return getConstant(C1 - C2, VT);
2627  case ISD::MUL:  return getConstant(C1 * C2, VT);
2628  case ISD::UDIV:
2629    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2630    break;
2631  case ISD::UREM:
2632    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2633    break;
2634  case ISD::SDIV:
2635    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2636    break;
2637  case ISD::SREM:
2638    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2639    break;
2640  case ISD::AND:  return getConstant(C1 & C2, VT);
2641  case ISD::OR:   return getConstant(C1 | C2, VT);
2642  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2643  case ISD::SHL:  return getConstant(C1 << C2, VT);
2644  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2645  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2646  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2647  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2648  default: break;
2649  }
2650
2651  return SDValue();
2652}
2653
2654SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2655                              SDValue N1, SDValue N2) {
2656  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2657  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2658  switch (Opcode) {
2659  default: break;
2660  case ISD::TokenFactor:
2661    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2662           N2.getValueType() == MVT::Other && "Invalid token factor!");
2663    // Fold trivial token factors.
2664    if (N1.getOpcode() == ISD::EntryToken) return N2;
2665    if (N2.getOpcode() == ISD::EntryToken) return N1;
2666    if (N1 == N2) return N1;
2667    break;
2668  case ISD::CONCAT_VECTORS:
2669    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2670    // one big BUILD_VECTOR.
2671    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2672        N2.getOpcode() == ISD::BUILD_VECTOR) {
2673      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2674                                    N1.getNode()->op_end());
2675      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2676      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2677    }
2678    break;
2679  case ISD::AND:
2680    assert(VT.isInteger() && "This operator does not apply to FP types!");
2681    assert(N1.getValueType() == N2.getValueType() &&
2682           N1.getValueType() == VT && "Binary operator types must match!");
2683    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2684    // worth handling here.
2685    if (N2C && N2C->isNullValue())
2686      return N2;
2687    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2688      return N1;
2689    break;
2690  case ISD::OR:
2691  case ISD::XOR:
2692  case ISD::ADD:
2693  case ISD::SUB:
2694    assert(VT.isInteger() && "This operator does not apply to FP types!");
2695    assert(N1.getValueType() == N2.getValueType() &&
2696           N1.getValueType() == VT && "Binary operator types must match!");
2697    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2698    // it's worth handling here.
2699    if (N2C && N2C->isNullValue())
2700      return N1;
2701    break;
2702  case ISD::UDIV:
2703  case ISD::UREM:
2704  case ISD::MULHU:
2705  case ISD::MULHS:
2706  case ISD::MUL:
2707  case ISD::SDIV:
2708  case ISD::SREM:
2709    assert(VT.isInteger() && "This operator does not apply to FP types!");
2710    assert(N1.getValueType() == N2.getValueType() &&
2711           N1.getValueType() == VT && "Binary operator types must match!");
2712    break;
2713  case ISD::FADD:
2714  case ISD::FSUB:
2715  case ISD::FMUL:
2716  case ISD::FDIV:
2717  case ISD::FREM:
2718    if (UnsafeFPMath) {
2719      if (Opcode == ISD::FADD) {
2720        // 0+x --> x
2721        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2722          if (CFP->getValueAPF().isZero())
2723            return N2;
2724        // x+0 --> x
2725        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2726          if (CFP->getValueAPF().isZero())
2727            return N1;
2728      } else if (Opcode == ISD::FSUB) {
2729        // x-0 --> x
2730        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2731          if (CFP->getValueAPF().isZero())
2732            return N1;
2733      }
2734    }
2735    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2736    assert(N1.getValueType() == N2.getValueType() &&
2737           N1.getValueType() == VT && "Binary operator types must match!");
2738    break;
2739  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2740    assert(N1.getValueType() == VT &&
2741           N1.getValueType().isFloatingPoint() &&
2742           N2.getValueType().isFloatingPoint() &&
2743           "Invalid FCOPYSIGN!");
2744    break;
2745  case ISD::SHL:
2746  case ISD::SRA:
2747  case ISD::SRL:
2748  case ISD::ROTL:
2749  case ISD::ROTR:
2750    assert(VT == N1.getValueType() &&
2751           "Shift operators return type must be the same as their first arg");
2752    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2753           "Shifts only work on integers");
2754    // Verify that the shift amount VT is bit enough to hold valid shift
2755    // amounts.  This catches things like trying to shift an i1024 value by an
2756    // i8, which is easy to fall into in generic code that uses
2757    // TLI.getShiftAmount().
2758    assert(N2.getValueType().getSizeInBits() >=
2759                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2760           "Invalid use of small shift amount with oversized value!");
2761
2762    // Always fold shifts of i1 values so the code generator doesn't need to
2763    // handle them.  Since we know the size of the shift has to be less than the
2764    // size of the value, the shift/rotate count is guaranteed to be zero.
2765    if (VT == MVT::i1)
2766      return N1;
2767    if (N2C && N2C->isNullValue())
2768      return N1;
2769    break;
2770  case ISD::FP_ROUND_INREG: {
2771    EVT EVT = cast<VTSDNode>(N2)->getVT();
2772    assert(VT == N1.getValueType() && "Not an inreg round!");
2773    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2774           "Cannot FP_ROUND_INREG integer types");
2775    assert(EVT.isVector() == VT.isVector() &&
2776           "FP_ROUND_INREG type should be vector iff the operand "
2777           "type is vector!");
2778    assert((!EVT.isVector() ||
2779            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2780           "Vector element counts must match in FP_ROUND_INREG");
2781    assert(EVT.bitsLE(VT) && "Not rounding down!");
2782    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2783    break;
2784  }
2785  case ISD::FP_ROUND:
2786    assert(VT.isFloatingPoint() &&
2787           N1.getValueType().isFloatingPoint() &&
2788           VT.bitsLE(N1.getValueType()) &&
2789           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2790    if (N1.getValueType() == VT) return N1;  // noop conversion.
2791    break;
2792  case ISD::AssertSext:
2793  case ISD::AssertZext: {
2794    EVT EVT = cast<VTSDNode>(N2)->getVT();
2795    assert(VT == N1.getValueType() && "Not an inreg extend!");
2796    assert(VT.isInteger() && EVT.isInteger() &&
2797           "Cannot *_EXTEND_INREG FP types");
2798    assert(!EVT.isVector() &&
2799           "AssertSExt/AssertZExt type should be the vector element type "
2800           "rather than the vector type!");
2801    assert(EVT.bitsLE(VT) && "Not extending!");
2802    if (VT == EVT) return N1; // noop assertion.
2803    break;
2804  }
2805  case ISD::SIGN_EXTEND_INREG: {
2806    EVT EVT = cast<VTSDNode>(N2)->getVT();
2807    assert(VT == N1.getValueType() && "Not an inreg extend!");
2808    assert(VT.isInteger() && EVT.isInteger() &&
2809           "Cannot *_EXTEND_INREG FP types");
2810    assert(EVT.isVector() == VT.isVector() &&
2811           "SIGN_EXTEND_INREG type should be vector iff the operand "
2812           "type is vector!");
2813    assert((!EVT.isVector() ||
2814            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2815           "Vector element counts must match in SIGN_EXTEND_INREG");
2816    assert(EVT.bitsLE(VT) && "Not extending!");
2817    if (EVT == VT) return N1;  // Not actually extending
2818
2819    if (N1C) {
2820      APInt Val = N1C->getAPIntValue();
2821      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2822      Val <<= Val.getBitWidth()-FromBits;
2823      Val = Val.ashr(Val.getBitWidth()-FromBits);
2824      return getConstant(Val, VT);
2825    }
2826    break;
2827  }
2828  case ISD::EXTRACT_VECTOR_ELT:
2829    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2830    if (N1.getOpcode() == ISD::UNDEF)
2831      return getUNDEF(VT);
2832
2833    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2834    // expanding copies of large vectors from registers.
2835    if (N2C &&
2836        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2837        N1.getNumOperands() > 0) {
2838      unsigned Factor =
2839        N1.getOperand(0).getValueType().getVectorNumElements();
2840      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2841                     N1.getOperand(N2C->getZExtValue() / Factor),
2842                     getConstant(N2C->getZExtValue() % Factor,
2843                                 N2.getValueType()));
2844    }
2845
2846    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2847    // expanding large vector constants.
2848    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2849      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2850      EVT VEltTy = N1.getValueType().getVectorElementType();
2851      if (Elt.getValueType() != VEltTy) {
2852        // If the vector element type is not legal, the BUILD_VECTOR operands
2853        // are promoted and implicitly truncated.  Make that explicit here.
2854        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2855      }
2856      if (VT != VEltTy) {
2857        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2858        // result is implicitly extended.
2859        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2860      }
2861      return Elt;
2862    }
2863
2864    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2865    // operations are lowered to scalars.
2866    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2867      // If the indices are the same, return the inserted element else
2868      // if the indices are known different, extract the element from
2869      // the original vector.
2870      SDValue N1Op2 = N1.getOperand(2);
2871      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2872
2873      if (N1Op2C && N2C) {
2874        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2875          if (VT == N1.getOperand(1).getValueType())
2876            return N1.getOperand(1);
2877          else
2878            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2879        }
2880
2881        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2882      }
2883    }
2884    break;
2885  case ISD::EXTRACT_ELEMENT:
2886    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2887    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2888           (N1.getValueType().isInteger() == VT.isInteger()) &&
2889           "Wrong types for EXTRACT_ELEMENT!");
2890
2891    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2892    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2893    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2894    if (N1.getOpcode() == ISD::BUILD_PAIR)
2895      return N1.getOperand(N2C->getZExtValue());
2896
2897    // EXTRACT_ELEMENT of a constant int is also very common.
2898    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2899      unsigned ElementSize = VT.getSizeInBits();
2900      unsigned Shift = ElementSize * N2C->getZExtValue();
2901      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2902      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2903    }
2904    break;
2905  case ISD::EXTRACT_SUBVECTOR: {
2906    SDValue Index = N2;
2907    if (VT.isSimple() && N1.getValueType().isSimple()) {
2908      assert(VT.isVector() && N1.getValueType().isVector() &&
2909             "Extract subvector VTs must be a vectors!");
2910      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2911             "Extract subvector VTs must have the same element type!");
2912      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2913             "Extract subvector must be from larger vector to smaller vector!");
2914
2915      if (isa<ConstantSDNode>(Index.getNode())) {
2916        assert((VT.getVectorNumElements() +
2917                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2918                <= N1.getValueType().getVectorNumElements())
2919               && "Extract subvector overflow!");
2920      }
2921
2922      // Trivial extraction.
2923      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2924        return N1;
2925    }
2926    break;
2927  }
2928  }
2929
2930  if (N1C) {
2931    if (N2C) {
2932      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2933      if (SV.getNode()) return SV;
2934    } else {      // Cannonicalize constant to RHS if commutative
2935      if (isCommutativeBinOp(Opcode)) {
2936        std::swap(N1C, N2C);
2937        std::swap(N1, N2);
2938      }
2939    }
2940  }
2941
2942  // Constant fold FP operations.
2943  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2944  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2945  if (N1CFP) {
2946    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2947      // Cannonicalize constant to RHS if commutative
2948      std::swap(N1CFP, N2CFP);
2949      std::swap(N1, N2);
2950    } else if (N2CFP && VT != MVT::ppcf128) {
2951      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2952      APFloat::opStatus s;
2953      switch (Opcode) {
2954      case ISD::FADD:
2955        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2956        if (s != APFloat::opInvalidOp)
2957          return getConstantFP(V1, VT);
2958        break;
2959      case ISD::FSUB:
2960        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2961        if (s!=APFloat::opInvalidOp)
2962          return getConstantFP(V1, VT);
2963        break;
2964      case ISD::FMUL:
2965        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2966        if (s!=APFloat::opInvalidOp)
2967          return getConstantFP(V1, VT);
2968        break;
2969      case ISD::FDIV:
2970        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2971        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2972          return getConstantFP(V1, VT);
2973        break;
2974      case ISD::FREM :
2975        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2976        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2977          return getConstantFP(V1, VT);
2978        break;
2979      case ISD::FCOPYSIGN:
2980        V1.copySign(V2);
2981        return getConstantFP(V1, VT);
2982      default: break;
2983      }
2984    }
2985  }
2986
2987  // Canonicalize an UNDEF to the RHS, even over a constant.
2988  if (N1.getOpcode() == ISD::UNDEF) {
2989    if (isCommutativeBinOp(Opcode)) {
2990      std::swap(N1, N2);
2991    } else {
2992      switch (Opcode) {
2993      case ISD::FP_ROUND_INREG:
2994      case ISD::SIGN_EXTEND_INREG:
2995      case ISD::SUB:
2996      case ISD::FSUB:
2997      case ISD::FDIV:
2998      case ISD::FREM:
2999      case ISD::SRA:
3000        return N1;     // fold op(undef, arg2) -> undef
3001      case ISD::UDIV:
3002      case ISD::SDIV:
3003      case ISD::UREM:
3004      case ISD::SREM:
3005      case ISD::SRL:
3006      case ISD::SHL:
3007        if (!VT.isVector())
3008          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3009        // For vectors, we can't easily build an all zero vector, just return
3010        // the LHS.
3011        return N2;
3012      }
3013    }
3014  }
3015
3016  // Fold a bunch of operators when the RHS is undef.
3017  if (N2.getOpcode() == ISD::UNDEF) {
3018    switch (Opcode) {
3019    case ISD::XOR:
3020      if (N1.getOpcode() == ISD::UNDEF)
3021        // Handle undef ^ undef -> 0 special case. This is a common
3022        // idiom (misuse).
3023        return getConstant(0, VT);
3024      // fallthrough
3025    case ISD::ADD:
3026    case ISD::ADDC:
3027    case ISD::ADDE:
3028    case ISD::SUB:
3029    case ISD::UDIV:
3030    case ISD::SDIV:
3031    case ISD::UREM:
3032    case ISD::SREM:
3033      return N2;       // fold op(arg1, undef) -> undef
3034    case ISD::FADD:
3035    case ISD::FSUB:
3036    case ISD::FMUL:
3037    case ISD::FDIV:
3038    case ISD::FREM:
3039      if (UnsafeFPMath)
3040        return N2;
3041      break;
3042    case ISD::MUL:
3043    case ISD::AND:
3044    case ISD::SRL:
3045    case ISD::SHL:
3046      if (!VT.isVector())
3047        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3048      // For vectors, we can't easily build an all zero vector, just return
3049      // the LHS.
3050      return N1;
3051    case ISD::OR:
3052      if (!VT.isVector())
3053        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3054      // For vectors, we can't easily build an all one vector, just return
3055      // the LHS.
3056      return N1;
3057    case ISD::SRA:
3058      return N1;
3059    }
3060  }
3061
3062  // Memoize this node if possible.
3063  SDNode *N;
3064  SDVTList VTs = getVTList(VT);
3065  if (VT != MVT::Glue) {
3066    SDValue Ops[] = { N1, N2 };
3067    FoldingSetNodeID ID;
3068    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3069    void *IP = 0;
3070    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3071      return SDValue(E, 0);
3072
3073    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3074    CSEMap.InsertNode(N, IP);
3075  } else {
3076    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3077  }
3078
3079  AllNodes.push_back(N);
3080#ifndef NDEBUG
3081  VerifySDNode(N);
3082#endif
3083  return SDValue(N, 0);
3084}
3085
3086SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3087                              SDValue N1, SDValue N2, SDValue N3) {
3088  // Perform various simplifications.
3089  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3090  switch (Opcode) {
3091  case ISD::CONCAT_VECTORS:
3092    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3093    // one big BUILD_VECTOR.
3094    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3095        N2.getOpcode() == ISD::BUILD_VECTOR &&
3096        N3.getOpcode() == ISD::BUILD_VECTOR) {
3097      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3098                                    N1.getNode()->op_end());
3099      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3100      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3101      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3102    }
3103    break;
3104  case ISD::SETCC: {
3105    // Use FoldSetCC to simplify SETCC's.
3106    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3107    if (Simp.getNode()) return Simp;
3108    break;
3109  }
3110  case ISD::SELECT:
3111    if (N1C) {
3112     if (N1C->getZExtValue())
3113        return N2;             // select true, X, Y -> X
3114      else
3115        return N3;             // select false, X, Y -> Y
3116    }
3117
3118    if (N2 == N3) return N2;   // select C, X, X -> X
3119    break;
3120  case ISD::VECTOR_SHUFFLE:
3121    llvm_unreachable("should use getVectorShuffle constructor!");
3122    break;
3123  case ISD::INSERT_SUBVECTOR: {
3124    SDValue Index = N3;
3125    if (VT.isSimple() && N1.getValueType().isSimple()
3126        && N2.getValueType().isSimple()) {
3127      assert(VT.isVector() && N1.getValueType().isVector() &&
3128             N2.getValueType().isVector() &&
3129             "Insert subvector VTs must be a vectors");
3130      assert(VT == N1.getValueType() &&
3131             "Dest and insert subvector source types must match!");
3132      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3133             "Insert subvector must be from smaller vector to larger vector!");
3134      if (isa<ConstantSDNode>(Index.getNode())) {
3135        assert((N2.getValueType().getVectorNumElements() +
3136                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3137                <= VT.getVectorNumElements())
3138               && "Insert subvector overflow!");
3139      }
3140
3141      // Trivial insertion.
3142      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3143        return N2;
3144    }
3145    break;
3146  }
3147  case ISD::BITCAST:
3148    // Fold bit_convert nodes from a type to themselves.
3149    if (N1.getValueType() == VT)
3150      return N1;
3151    break;
3152  }
3153
3154  // Memoize node if it doesn't produce a flag.
3155  SDNode *N;
3156  SDVTList VTs = getVTList(VT);
3157  if (VT != MVT::Glue) {
3158    SDValue Ops[] = { N1, N2, N3 };
3159    FoldingSetNodeID ID;
3160    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3161    void *IP = 0;
3162    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3163      return SDValue(E, 0);
3164
3165    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3166    CSEMap.InsertNode(N, IP);
3167  } else {
3168    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3169  }
3170
3171  AllNodes.push_back(N);
3172#ifndef NDEBUG
3173  VerifySDNode(N);
3174#endif
3175  return SDValue(N, 0);
3176}
3177
3178SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3179                              SDValue N1, SDValue N2, SDValue N3,
3180                              SDValue N4) {
3181  SDValue Ops[] = { N1, N2, N3, N4 };
3182  return getNode(Opcode, DL, VT, Ops, 4);
3183}
3184
3185SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3186                              SDValue N1, SDValue N2, SDValue N3,
3187                              SDValue N4, SDValue N5) {
3188  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3189  return getNode(Opcode, DL, VT, Ops, 5);
3190}
3191
3192/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3193/// the incoming stack arguments to be loaded from the stack.
3194SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3195  SmallVector<SDValue, 8> ArgChains;
3196
3197  // Include the original chain at the beginning of the list. When this is
3198  // used by target LowerCall hooks, this helps legalize find the
3199  // CALLSEQ_BEGIN node.
3200  ArgChains.push_back(Chain);
3201
3202  // Add a chain value for each stack argument.
3203  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3204       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3205    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3206      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3207        if (FI->getIndex() < 0)
3208          ArgChains.push_back(SDValue(L, 1));
3209
3210  // Build a tokenfactor for all the chains.
3211  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3212                 &ArgChains[0], ArgChains.size());
3213}
3214
3215/// SplatByte - Distribute ByteVal over NumBits bits.
3216static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3217  APInt Val = APInt(NumBits, ByteVal);
3218  unsigned Shift = 8;
3219  for (unsigned i = NumBits; i > 8; i >>= 1) {
3220    Val = (Val << Shift) | Val;
3221    Shift <<= 1;
3222  }
3223  return Val;
3224}
3225
3226/// getMemsetValue - Vectorized representation of the memset value
3227/// operand.
3228static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3229                              DebugLoc dl) {
3230  assert(Value.getOpcode() != ISD::UNDEF);
3231
3232  unsigned NumBits = VT.getScalarType().getSizeInBits();
3233  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3234    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3235    if (VT.isInteger())
3236      return DAG.getConstant(Val, VT);
3237    return DAG.getConstantFP(APFloat(Val), VT);
3238  }
3239
3240  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3241  if (NumBits > 8) {
3242    // Use a multiplication with 0x010101... to extend the input to the
3243    // required length.
3244    APInt Magic = SplatByte(NumBits, 0x01);
3245    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3246  }
3247
3248  return Value;
3249}
3250
3251/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3252/// used when a memcpy is turned into a memset when the source is a constant
3253/// string ptr.
3254static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3255                                  const TargetLowering &TLI,
3256                                  std::string &Str, unsigned Offset) {
3257  // Handle vector with all elements zero.
3258  if (Str.empty()) {
3259    if (VT.isInteger())
3260      return DAG.getConstant(0, VT);
3261    else if (VT == MVT::f32 || VT == MVT::f64)
3262      return DAG.getConstantFP(0.0, VT);
3263    else if (VT.isVector()) {
3264      unsigned NumElts = VT.getVectorNumElements();
3265      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3266      return DAG.getNode(ISD::BITCAST, dl, VT,
3267                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3268                                                             EltVT, NumElts)));
3269    } else
3270      llvm_unreachable("Expected type!");
3271  }
3272
3273  assert(!VT.isVector() && "Can't handle vector type here!");
3274  unsigned NumBits = VT.getSizeInBits();
3275  unsigned MSB = NumBits / 8;
3276  uint64_t Val = 0;
3277  if (TLI.isLittleEndian())
3278    Offset = Offset + MSB - 1;
3279  for (unsigned i = 0; i != MSB; ++i) {
3280    Val = (Val << 8) | (unsigned char)Str[Offset];
3281    Offset += TLI.isLittleEndian() ? -1 : 1;
3282  }
3283  return DAG.getConstant(Val, VT);
3284}
3285
3286/// getMemBasePlusOffset - Returns base and offset node for the
3287///
3288static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3289                                      SelectionDAG &DAG) {
3290  EVT VT = Base.getValueType();
3291  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3292                     VT, Base, DAG.getConstant(Offset, VT));
3293}
3294
3295/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3296///
3297static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3298  unsigned SrcDelta = 0;
3299  GlobalAddressSDNode *G = NULL;
3300  if (Src.getOpcode() == ISD::GlobalAddress)
3301    G = cast<GlobalAddressSDNode>(Src);
3302  else if (Src.getOpcode() == ISD::ADD &&
3303           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3304           Src.getOperand(1).getOpcode() == ISD::Constant) {
3305    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3306    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3307  }
3308  if (!G)
3309    return false;
3310
3311  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3312  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3313    return true;
3314
3315  return false;
3316}
3317
3318/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3319/// to replace the memset / memcpy. Return true if the number of memory ops
3320/// is below the threshold. It returns the types of the sequence of
3321/// memory ops to perform memset / memcpy by reference.
3322static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3323                                     unsigned Limit, uint64_t Size,
3324                                     unsigned DstAlign, unsigned SrcAlign,
3325                                     bool NonScalarIntSafe,
3326                                     bool MemcpyStrSrc,
3327                                     SelectionDAG &DAG,
3328                                     const TargetLowering &TLI) {
3329  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3330         "Expecting memcpy / memset source to meet alignment requirement!");
3331  // If 'SrcAlign' is zero, that means the memory operation does not need load
3332  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3333  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3334  // specified alignment of the memory operation. If it is zero, that means
3335  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3336  // indicates whether the memcpy source is constant so it does not need to be
3337  // loaded.
3338  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3339                                   NonScalarIntSafe, MemcpyStrSrc,
3340                                   DAG.getMachineFunction());
3341
3342  if (VT == MVT::Other) {
3343    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3344        TLI.allowsUnalignedMemoryAccesses(VT)) {
3345      VT = TLI.getPointerTy();
3346    } else {
3347      switch (DstAlign & 7) {
3348      case 0:  VT = MVT::i64; break;
3349      case 4:  VT = MVT::i32; break;
3350      case 2:  VT = MVT::i16; break;
3351      default: VT = MVT::i8;  break;
3352      }
3353    }
3354
3355    MVT LVT = MVT::i64;
3356    while (!TLI.isTypeLegal(LVT))
3357      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3358    assert(LVT.isInteger());
3359
3360    if (VT.bitsGT(LVT))
3361      VT = LVT;
3362  }
3363
3364  unsigned NumMemOps = 0;
3365  while (Size != 0) {
3366    unsigned VTSize = VT.getSizeInBits() / 8;
3367    while (VTSize > Size) {
3368      // For now, only use non-vector load / store's for the left-over pieces.
3369      if (VT.isVector() || VT.isFloatingPoint()) {
3370        VT = MVT::i64;
3371        while (!TLI.isTypeLegal(VT))
3372          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3373        VTSize = VT.getSizeInBits() / 8;
3374      } else {
3375        // This can result in a type that is not legal on the target, e.g.
3376        // 1 or 2 bytes on PPC.
3377        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3378        VTSize >>= 1;
3379      }
3380    }
3381
3382    if (++NumMemOps > Limit)
3383      return false;
3384    MemOps.push_back(VT);
3385    Size -= VTSize;
3386  }
3387
3388  return true;
3389}
3390
3391static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3392                                       SDValue Chain, SDValue Dst,
3393                                       SDValue Src, uint64_t Size,
3394                                       unsigned Align, bool isVol,
3395                                       bool AlwaysInline,
3396                                       MachinePointerInfo DstPtrInfo,
3397                                       MachinePointerInfo SrcPtrInfo) {
3398  // Turn a memcpy of undef to nop.
3399  if (Src.getOpcode() == ISD::UNDEF)
3400    return Chain;
3401
3402  // Expand memcpy to a series of load and store ops if the size operand falls
3403  // below a certain threshold.
3404  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3405  // rather than maybe a humongous number of loads and stores.
3406  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3407  std::vector<EVT> MemOps;
3408  bool DstAlignCanChange = false;
3409  MachineFunction &MF = DAG.getMachineFunction();
3410  MachineFrameInfo *MFI = MF.getFrameInfo();
3411  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3412  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3413  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3414    DstAlignCanChange = true;
3415  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3416  if (Align > SrcAlign)
3417    SrcAlign = Align;
3418  std::string Str;
3419  bool CopyFromStr = isMemSrcFromString(Src, Str);
3420  bool isZeroStr = CopyFromStr && Str.empty();
3421  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3422
3423  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3424                                (DstAlignCanChange ? 0 : Align),
3425                                (isZeroStr ? 0 : SrcAlign),
3426                                true, CopyFromStr, DAG, TLI))
3427    return SDValue();
3428
3429  if (DstAlignCanChange) {
3430    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3431    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3432    if (NewAlign > Align) {
3433      // Give the stack frame object a larger alignment if needed.
3434      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3435        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3436      Align = NewAlign;
3437    }
3438  }
3439
3440  SmallVector<SDValue, 8> OutChains;
3441  unsigned NumMemOps = MemOps.size();
3442  uint64_t SrcOff = 0, DstOff = 0;
3443  for (unsigned i = 0; i != NumMemOps; ++i) {
3444    EVT VT = MemOps[i];
3445    unsigned VTSize = VT.getSizeInBits() / 8;
3446    SDValue Value, Store;
3447
3448    if (CopyFromStr &&
3449        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3450      // It's unlikely a store of a vector immediate can be done in a single
3451      // instruction. It would require a load from a constantpool first.
3452      // We only handle zero vectors here.
3453      // FIXME: Handle other cases where store of vector immediate is done in
3454      // a single instruction.
3455      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3456      Store = DAG.getStore(Chain, dl, Value,
3457                           getMemBasePlusOffset(Dst, DstOff, DAG),
3458                           DstPtrInfo.getWithOffset(DstOff), isVol,
3459                           false, Align);
3460    } else {
3461      // The type might not be legal for the target.  This should only happen
3462      // if the type is smaller than a legal type, as on PPC, so the right
3463      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3464      // to Load/Store if NVT==VT.
3465      // FIXME does the case above also need this?
3466      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3467      assert(NVT.bitsGE(VT));
3468      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3469                             getMemBasePlusOffset(Src, SrcOff, DAG),
3470                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3471                             MinAlign(SrcAlign, SrcOff));
3472      Store = DAG.getTruncStore(Chain, dl, Value,
3473                                getMemBasePlusOffset(Dst, DstOff, DAG),
3474                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3475                                false, Align);
3476    }
3477    OutChains.push_back(Store);
3478    SrcOff += VTSize;
3479    DstOff += VTSize;
3480  }
3481
3482  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3483                     &OutChains[0], OutChains.size());
3484}
3485
3486static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3487                                        SDValue Chain, SDValue Dst,
3488                                        SDValue Src, uint64_t Size,
3489                                        unsigned Align,  bool isVol,
3490                                        bool AlwaysInline,
3491                                        MachinePointerInfo DstPtrInfo,
3492                                        MachinePointerInfo SrcPtrInfo) {
3493  // Turn a memmove of undef to nop.
3494  if (Src.getOpcode() == ISD::UNDEF)
3495    return Chain;
3496
3497  // Expand memmove to a series of load and store ops if the size operand falls
3498  // below a certain threshold.
3499  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3500  std::vector<EVT> MemOps;
3501  bool DstAlignCanChange = false;
3502  MachineFunction &MF = DAG.getMachineFunction();
3503  MachineFrameInfo *MFI = MF.getFrameInfo();
3504  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3505  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3506  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3507    DstAlignCanChange = true;
3508  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3509  if (Align > SrcAlign)
3510    SrcAlign = Align;
3511  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3512
3513  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3514                                (DstAlignCanChange ? 0 : Align),
3515                                SrcAlign, true, false, DAG, TLI))
3516    return SDValue();
3517
3518  if (DstAlignCanChange) {
3519    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3520    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3521    if (NewAlign > Align) {
3522      // Give the stack frame object a larger alignment if needed.
3523      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3524        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3525      Align = NewAlign;
3526    }
3527  }
3528
3529  uint64_t SrcOff = 0, DstOff = 0;
3530  SmallVector<SDValue, 8> LoadValues;
3531  SmallVector<SDValue, 8> LoadChains;
3532  SmallVector<SDValue, 8> OutChains;
3533  unsigned NumMemOps = MemOps.size();
3534  for (unsigned i = 0; i < NumMemOps; i++) {
3535    EVT VT = MemOps[i];
3536    unsigned VTSize = VT.getSizeInBits() / 8;
3537    SDValue Value, Store;
3538
3539    Value = DAG.getLoad(VT, dl, Chain,
3540                        getMemBasePlusOffset(Src, SrcOff, DAG),
3541                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3542                        false, SrcAlign);
3543    LoadValues.push_back(Value);
3544    LoadChains.push_back(Value.getValue(1));
3545    SrcOff += VTSize;
3546  }
3547  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3548                      &LoadChains[0], LoadChains.size());
3549  OutChains.clear();
3550  for (unsigned i = 0; i < NumMemOps; i++) {
3551    EVT VT = MemOps[i];
3552    unsigned VTSize = VT.getSizeInBits() / 8;
3553    SDValue Value, Store;
3554
3555    Store = DAG.getStore(Chain, dl, LoadValues[i],
3556                         getMemBasePlusOffset(Dst, DstOff, DAG),
3557                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3558    OutChains.push_back(Store);
3559    DstOff += VTSize;
3560  }
3561
3562  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3563                     &OutChains[0], OutChains.size());
3564}
3565
3566static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3567                               SDValue Chain, SDValue Dst,
3568                               SDValue Src, uint64_t Size,
3569                               unsigned Align, bool isVol,
3570                               MachinePointerInfo DstPtrInfo) {
3571  // Turn a memset of undef to nop.
3572  if (Src.getOpcode() == ISD::UNDEF)
3573    return Chain;
3574
3575  // Expand memset to a series of load/store ops if the size operand
3576  // falls below a certain threshold.
3577  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3578  std::vector<EVT> MemOps;
3579  bool DstAlignCanChange = false;
3580  MachineFunction &MF = DAG.getMachineFunction();
3581  MachineFrameInfo *MFI = MF.getFrameInfo();
3582  bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3583  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3584  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3585    DstAlignCanChange = true;
3586  bool NonScalarIntSafe =
3587    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3588  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3589                                Size, (DstAlignCanChange ? 0 : Align), 0,
3590                                NonScalarIntSafe, false, DAG, TLI))
3591    return SDValue();
3592
3593  if (DstAlignCanChange) {
3594    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3595    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3596    if (NewAlign > Align) {
3597      // Give the stack frame object a larger alignment if needed.
3598      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3599        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3600      Align = NewAlign;
3601    }
3602  }
3603
3604  SmallVector<SDValue, 8> OutChains;
3605  uint64_t DstOff = 0;
3606  unsigned NumMemOps = MemOps.size();
3607
3608  // Find the largest store and generate the bit pattern for it.
3609  EVT LargestVT = MemOps[0];
3610  for (unsigned i = 1; i < NumMemOps; i++)
3611    if (MemOps[i].bitsGT(LargestVT))
3612      LargestVT = MemOps[i];
3613  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3614
3615  for (unsigned i = 0; i < NumMemOps; i++) {
3616    EVT VT = MemOps[i];
3617
3618    // If this store is smaller than the largest store see whether we can get
3619    // the smaller value for free with a truncate.
3620    SDValue Value = MemSetValue;
3621    if (VT.bitsLT(LargestVT)) {
3622      if (!LargestVT.isVector() && !VT.isVector() &&
3623          TLI.isTruncateFree(LargestVT, VT))
3624        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3625      else
3626        Value = getMemsetValue(Src, VT, DAG, dl);
3627    }
3628    assert(Value.getValueType() == VT && "Value with wrong type.");
3629    SDValue Store = DAG.getStore(Chain, dl, Value,
3630                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3631                                 DstPtrInfo.getWithOffset(DstOff),
3632                                 isVol, false, Align);
3633    OutChains.push_back(Store);
3634    DstOff += VT.getSizeInBits() / 8;
3635  }
3636
3637  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3638                     &OutChains[0], OutChains.size());
3639}
3640
3641SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3642                                SDValue Src, SDValue Size,
3643                                unsigned Align, bool isVol, bool AlwaysInline,
3644                                MachinePointerInfo DstPtrInfo,
3645                                MachinePointerInfo SrcPtrInfo) {
3646
3647  // Check to see if we should lower the memcpy to loads and stores first.
3648  // For cases within the target-specified limits, this is the best choice.
3649  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3650  if (ConstantSize) {
3651    // Memcpy with size zero? Just return the original chain.
3652    if (ConstantSize->isNullValue())
3653      return Chain;
3654
3655    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3656                                             ConstantSize->getZExtValue(),Align,
3657                                isVol, false, DstPtrInfo, SrcPtrInfo);
3658    if (Result.getNode())
3659      return Result;
3660  }
3661
3662  // Then check to see if we should lower the memcpy with target-specific
3663  // code. If the target chooses to do this, this is the next best.
3664  SDValue Result =
3665    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3666                                isVol, AlwaysInline,
3667                                DstPtrInfo, SrcPtrInfo);
3668  if (Result.getNode())
3669    return Result;
3670
3671  // If we really need inline code and the target declined to provide it,
3672  // use a (potentially long) sequence of loads and stores.
3673  if (AlwaysInline) {
3674    assert(ConstantSize && "AlwaysInline requires a constant size!");
3675    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3676                                   ConstantSize->getZExtValue(), Align, isVol,
3677                                   true, DstPtrInfo, SrcPtrInfo);
3678  }
3679
3680  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3681  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3682  // respect volatile, so they may do things like read or write memory
3683  // beyond the given memory regions. But fixing this isn't easy, and most
3684  // people don't care.
3685
3686  // Emit a library call.
3687  TargetLowering::ArgListTy Args;
3688  TargetLowering::ArgListEntry Entry;
3689  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3690  Entry.Node = Dst; Args.push_back(Entry);
3691  Entry.Node = Src; Args.push_back(Entry);
3692  Entry.Node = Size; Args.push_back(Entry);
3693  // FIXME: pass in DebugLoc
3694  std::pair<SDValue,SDValue> CallResult =
3695    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3696                    false, false, false, false, 0,
3697                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3698                    /*isReturnValueUsed=*/false,
3699                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3700                                      TLI.getPointerTy()),
3701                    Args, *this, dl);
3702  return CallResult.second;
3703}
3704
3705SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3706                                 SDValue Src, SDValue Size,
3707                                 unsigned Align, bool isVol,
3708                                 MachinePointerInfo DstPtrInfo,
3709                                 MachinePointerInfo SrcPtrInfo) {
3710
3711  // Check to see if we should lower the memmove to loads and stores first.
3712  // For cases within the target-specified limits, this is the best choice.
3713  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3714  if (ConstantSize) {
3715    // Memmove with size zero? Just return the original chain.
3716    if (ConstantSize->isNullValue())
3717      return Chain;
3718
3719    SDValue Result =
3720      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3721                               ConstantSize->getZExtValue(), Align, isVol,
3722                               false, DstPtrInfo, SrcPtrInfo);
3723    if (Result.getNode())
3724      return Result;
3725  }
3726
3727  // Then check to see if we should lower the memmove with target-specific
3728  // code. If the target chooses to do this, this is the next best.
3729  SDValue Result =
3730    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3731                                 DstPtrInfo, SrcPtrInfo);
3732  if (Result.getNode())
3733    return Result;
3734
3735  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3736  // not be safe.  See memcpy above for more details.
3737
3738  // Emit a library call.
3739  TargetLowering::ArgListTy Args;
3740  TargetLowering::ArgListEntry Entry;
3741  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3742  Entry.Node = Dst; Args.push_back(Entry);
3743  Entry.Node = Src; Args.push_back(Entry);
3744  Entry.Node = Size; Args.push_back(Entry);
3745  // FIXME:  pass in DebugLoc
3746  std::pair<SDValue,SDValue> CallResult =
3747    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3748                    false, false, false, false, 0,
3749                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3750                    /*isReturnValueUsed=*/false,
3751                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3752                                      TLI.getPointerTy()),
3753                    Args, *this, dl);
3754  return CallResult.second;
3755}
3756
3757SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3758                                SDValue Src, SDValue Size,
3759                                unsigned Align, bool isVol,
3760                                MachinePointerInfo DstPtrInfo) {
3761
3762  // Check to see if we should lower the memset to stores first.
3763  // For cases within the target-specified limits, this is the best choice.
3764  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3765  if (ConstantSize) {
3766    // Memset with size zero? Just return the original chain.
3767    if (ConstantSize->isNullValue())
3768      return Chain;
3769
3770    SDValue Result =
3771      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3772                      Align, isVol, DstPtrInfo);
3773
3774    if (Result.getNode())
3775      return Result;
3776  }
3777
3778  // Then check to see if we should lower the memset with target-specific
3779  // code. If the target chooses to do this, this is the next best.
3780  SDValue Result =
3781    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3782                                DstPtrInfo);
3783  if (Result.getNode())
3784    return Result;
3785
3786  // Emit a library call.
3787  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3788  TargetLowering::ArgListTy Args;
3789  TargetLowering::ArgListEntry Entry;
3790  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3791  Args.push_back(Entry);
3792  // Extend or truncate the argument to be an i32 value for the call.
3793  if (Src.getValueType().bitsGT(MVT::i32))
3794    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3795  else
3796    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3797  Entry.Node = Src;
3798  Entry.Ty = Type::getInt32Ty(*getContext());
3799  Entry.isSExt = true;
3800  Args.push_back(Entry);
3801  Entry.Node = Size;
3802  Entry.Ty = IntPtrTy;
3803  Entry.isSExt = false;
3804  Args.push_back(Entry);
3805  // FIXME: pass in DebugLoc
3806  std::pair<SDValue,SDValue> CallResult =
3807    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3808                    false, false, false, false, 0,
3809                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3810                    /*isReturnValueUsed=*/false,
3811                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3812                                      TLI.getPointerTy()),
3813                    Args, *this, dl);
3814  return CallResult.second;
3815}
3816
3817SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3818                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3819                                SDValue Swp, MachinePointerInfo PtrInfo,
3820                                unsigned Alignment) {
3821  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3822    Alignment = getEVTAlignment(MemVT);
3823
3824  MachineFunction &MF = getMachineFunction();
3825  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3826
3827  // For now, atomics are considered to be volatile always.
3828  Flags |= MachineMemOperand::MOVolatile;
3829
3830  MachineMemOperand *MMO =
3831    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3832
3833  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3834}
3835
3836SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3837                                SDValue Chain,
3838                                SDValue Ptr, SDValue Cmp,
3839                                SDValue Swp, MachineMemOperand *MMO) {
3840  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3841  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3842
3843  EVT VT = Cmp.getValueType();
3844
3845  SDVTList VTs = getVTList(VT, MVT::Other);
3846  FoldingSetNodeID ID;
3847  ID.AddInteger(MemVT.getRawBits());
3848  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3849  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3850  void* IP = 0;
3851  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3852    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3853    return SDValue(E, 0);
3854  }
3855  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3856                                               Ptr, Cmp, Swp, MMO);
3857  CSEMap.InsertNode(N, IP);
3858  AllNodes.push_back(N);
3859  return SDValue(N, 0);
3860}
3861
3862SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3863                                SDValue Chain,
3864                                SDValue Ptr, SDValue Val,
3865                                const Value* PtrVal,
3866                                unsigned Alignment) {
3867  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3868    Alignment = getEVTAlignment(MemVT);
3869
3870  MachineFunction &MF = getMachineFunction();
3871  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3872
3873  // For now, atomics are considered to be volatile always.
3874  Flags |= MachineMemOperand::MOVolatile;
3875
3876  MachineMemOperand *MMO =
3877    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3878                            MemVT.getStoreSize(), Alignment);
3879
3880  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3881}
3882
3883SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3884                                SDValue Chain,
3885                                SDValue Ptr, SDValue Val,
3886                                MachineMemOperand *MMO) {
3887  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3888          Opcode == ISD::ATOMIC_LOAD_SUB ||
3889          Opcode == ISD::ATOMIC_LOAD_AND ||
3890          Opcode == ISD::ATOMIC_LOAD_OR ||
3891          Opcode == ISD::ATOMIC_LOAD_XOR ||
3892          Opcode == ISD::ATOMIC_LOAD_NAND ||
3893          Opcode == ISD::ATOMIC_LOAD_MIN ||
3894          Opcode == ISD::ATOMIC_LOAD_MAX ||
3895          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3896          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3897          Opcode == ISD::ATOMIC_SWAP) &&
3898         "Invalid Atomic Op");
3899
3900  EVT VT = Val.getValueType();
3901
3902  SDVTList VTs = getVTList(VT, MVT::Other);
3903  FoldingSetNodeID ID;
3904  ID.AddInteger(MemVT.getRawBits());
3905  SDValue Ops[] = {Chain, Ptr, Val};
3906  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3907  void* IP = 0;
3908  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3909    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3910    return SDValue(E, 0);
3911  }
3912  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3913                                               Ptr, Val, MMO);
3914  CSEMap.InsertNode(N, IP);
3915  AllNodes.push_back(N);
3916  return SDValue(N, 0);
3917}
3918
3919/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3920SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3921                                     DebugLoc dl) {
3922  if (NumOps == 1)
3923    return Ops[0];
3924
3925  SmallVector<EVT, 4> VTs;
3926  VTs.reserve(NumOps);
3927  for (unsigned i = 0; i < NumOps; ++i)
3928    VTs.push_back(Ops[i].getValueType());
3929  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3930                 Ops, NumOps);
3931}
3932
3933SDValue
3934SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3935                                  const EVT *VTs, unsigned NumVTs,
3936                                  const SDValue *Ops, unsigned NumOps,
3937                                  EVT MemVT, MachinePointerInfo PtrInfo,
3938                                  unsigned Align, bool Vol,
3939                                  bool ReadMem, bool WriteMem) {
3940  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3941                             MemVT, PtrInfo, Align, Vol,
3942                             ReadMem, WriteMem);
3943}
3944
3945SDValue
3946SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3947                                  const SDValue *Ops, unsigned NumOps,
3948                                  EVT MemVT, MachinePointerInfo PtrInfo,
3949                                  unsigned Align, bool Vol,
3950                                  bool ReadMem, bool WriteMem) {
3951  if (Align == 0)  // Ensure that codegen never sees alignment 0
3952    Align = getEVTAlignment(MemVT);
3953
3954  MachineFunction &MF = getMachineFunction();
3955  unsigned Flags = 0;
3956  if (WriteMem)
3957    Flags |= MachineMemOperand::MOStore;
3958  if (ReadMem)
3959    Flags |= MachineMemOperand::MOLoad;
3960  if (Vol)
3961    Flags |= MachineMemOperand::MOVolatile;
3962  MachineMemOperand *MMO =
3963    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3964
3965  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3966}
3967
3968SDValue
3969SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3970                                  const SDValue *Ops, unsigned NumOps,
3971                                  EVT MemVT, MachineMemOperand *MMO) {
3972  assert((Opcode == ISD::INTRINSIC_VOID ||
3973          Opcode == ISD::INTRINSIC_W_CHAIN ||
3974          Opcode == ISD::PREFETCH ||
3975          (Opcode <= INT_MAX &&
3976           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3977         "Opcode is not a memory-accessing opcode!");
3978
3979  // Memoize the node unless it returns a flag.
3980  MemIntrinsicSDNode *N;
3981  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3982    FoldingSetNodeID ID;
3983    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3984    void *IP = 0;
3985    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3986      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3987      return SDValue(E, 0);
3988    }
3989
3990    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3991                                               MemVT, MMO);
3992    CSEMap.InsertNode(N, IP);
3993  } else {
3994    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3995                                               MemVT, MMO);
3996  }
3997  AllNodes.push_back(N);
3998  return SDValue(N, 0);
3999}
4000
4001/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4002/// MachinePointerInfo record from it.  This is particularly useful because the
4003/// code generator has many cases where it doesn't bother passing in a
4004/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4005static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4006  // If this is FI+Offset, we can model it.
4007  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4008    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4009
4010  // If this is (FI+Offset1)+Offset2, we can model it.
4011  if (Ptr.getOpcode() != ISD::ADD ||
4012      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4013      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4014    return MachinePointerInfo();
4015
4016  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4017  return MachinePointerInfo::getFixedStack(FI, Offset+
4018                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4019}
4020
4021/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4022/// MachinePointerInfo record from it.  This is particularly useful because the
4023/// code generator has many cases where it doesn't bother passing in a
4024/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4025static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4026  // If the 'Offset' value isn't a constant, we can't handle this.
4027  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4028    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4029  if (OffsetOp.getOpcode() == ISD::UNDEF)
4030    return InferPointerInfo(Ptr);
4031  return MachinePointerInfo();
4032}
4033
4034
4035SDValue
4036SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4037                      EVT VT, DebugLoc dl, SDValue Chain,
4038                      SDValue Ptr, SDValue Offset,
4039                      MachinePointerInfo PtrInfo, EVT MemVT,
4040                      bool isVolatile, bool isNonTemporal,
4041                      unsigned Alignment, const MDNode *TBAAInfo) {
4042  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4043    Alignment = getEVTAlignment(VT);
4044
4045  unsigned Flags = MachineMemOperand::MOLoad;
4046  if (isVolatile)
4047    Flags |= MachineMemOperand::MOVolatile;
4048  if (isNonTemporal)
4049    Flags |= MachineMemOperand::MONonTemporal;
4050
4051  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4052  // clients.
4053  if (PtrInfo.V == 0)
4054    PtrInfo = InferPointerInfo(Ptr, Offset);
4055
4056  MachineFunction &MF = getMachineFunction();
4057  MachineMemOperand *MMO =
4058    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4059                            TBAAInfo);
4060  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4061}
4062
4063SDValue
4064SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4065                      EVT VT, DebugLoc dl, SDValue Chain,
4066                      SDValue Ptr, SDValue Offset, EVT MemVT,
4067                      MachineMemOperand *MMO) {
4068  if (VT == MemVT) {
4069    ExtType = ISD::NON_EXTLOAD;
4070  } else if (ExtType == ISD::NON_EXTLOAD) {
4071    assert(VT == MemVT && "Non-extending load from different memory type!");
4072  } else {
4073    // Extending load.
4074    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4075           "Should only be an extending load, not truncating!");
4076    assert(VT.isInteger() == MemVT.isInteger() &&
4077           "Cannot convert from FP to Int or Int -> FP!");
4078    assert(VT.isVector() == MemVT.isVector() &&
4079           "Cannot use trunc store to convert to or from a vector!");
4080    assert((!VT.isVector() ||
4081            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4082           "Cannot use trunc store to change the number of vector elements!");
4083  }
4084
4085  bool Indexed = AM != ISD::UNINDEXED;
4086  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4087         "Unindexed load with an offset!");
4088
4089  SDVTList VTs = Indexed ?
4090    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4091  SDValue Ops[] = { Chain, Ptr, Offset };
4092  FoldingSetNodeID ID;
4093  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4094  ID.AddInteger(MemVT.getRawBits());
4095  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4096                                     MMO->isNonTemporal()));
4097  void *IP = 0;
4098  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4099    cast<LoadSDNode>(E)->refineAlignment(MMO);
4100    return SDValue(E, 0);
4101  }
4102  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4103                                             MemVT, MMO);
4104  CSEMap.InsertNode(N, IP);
4105  AllNodes.push_back(N);
4106  return SDValue(N, 0);
4107}
4108
4109SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4110                              SDValue Chain, SDValue Ptr,
4111                              MachinePointerInfo PtrInfo,
4112                              bool isVolatile, bool isNonTemporal,
4113                              unsigned Alignment, const MDNode *TBAAInfo) {
4114  SDValue Undef = getUNDEF(Ptr.getValueType());
4115  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4116                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4117}
4118
4119SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4120                                 SDValue Chain, SDValue Ptr,
4121                                 MachinePointerInfo PtrInfo, EVT MemVT,
4122                                 bool isVolatile, bool isNonTemporal,
4123                                 unsigned Alignment, const MDNode *TBAAInfo) {
4124  SDValue Undef = getUNDEF(Ptr.getValueType());
4125  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4126                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4127                 TBAAInfo);
4128}
4129
4130
4131SDValue
4132SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4133                             SDValue Offset, ISD::MemIndexedMode AM) {
4134  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4135  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4136         "Load is already a indexed load!");
4137  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4138                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4139                 LD->getMemoryVT(),
4140                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4141}
4142
4143SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4144                               SDValue Ptr, MachinePointerInfo PtrInfo,
4145                               bool isVolatile, bool isNonTemporal,
4146                               unsigned Alignment, const MDNode *TBAAInfo) {
4147  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4148    Alignment = getEVTAlignment(Val.getValueType());
4149
4150  unsigned Flags = MachineMemOperand::MOStore;
4151  if (isVolatile)
4152    Flags |= MachineMemOperand::MOVolatile;
4153  if (isNonTemporal)
4154    Flags |= MachineMemOperand::MONonTemporal;
4155
4156  if (PtrInfo.V == 0)
4157    PtrInfo = InferPointerInfo(Ptr);
4158
4159  MachineFunction &MF = getMachineFunction();
4160  MachineMemOperand *MMO =
4161    MF.getMachineMemOperand(PtrInfo, Flags,
4162                            Val.getValueType().getStoreSize(), Alignment,
4163                            TBAAInfo);
4164
4165  return getStore(Chain, dl, Val, Ptr, MMO);
4166}
4167
4168SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4169                               SDValue Ptr, MachineMemOperand *MMO) {
4170  EVT VT = Val.getValueType();
4171  SDVTList VTs = getVTList(MVT::Other);
4172  SDValue Undef = getUNDEF(Ptr.getValueType());
4173  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4174  FoldingSetNodeID ID;
4175  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4176  ID.AddInteger(VT.getRawBits());
4177  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4178                                     MMO->isNonTemporal()));
4179  void *IP = 0;
4180  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4181    cast<StoreSDNode>(E)->refineAlignment(MMO);
4182    return SDValue(E, 0);
4183  }
4184  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4185                                              false, VT, MMO);
4186  CSEMap.InsertNode(N, IP);
4187  AllNodes.push_back(N);
4188  return SDValue(N, 0);
4189}
4190
4191SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4192                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4193                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4194                                    unsigned Alignment,
4195                                    const MDNode *TBAAInfo) {
4196  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4197    Alignment = getEVTAlignment(SVT);
4198
4199  unsigned Flags = MachineMemOperand::MOStore;
4200  if (isVolatile)
4201    Flags |= MachineMemOperand::MOVolatile;
4202  if (isNonTemporal)
4203    Flags |= MachineMemOperand::MONonTemporal;
4204
4205  if (PtrInfo.V == 0)
4206    PtrInfo = InferPointerInfo(Ptr);
4207
4208  MachineFunction &MF = getMachineFunction();
4209  MachineMemOperand *MMO =
4210    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4211                            TBAAInfo);
4212
4213  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4214}
4215
4216SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4217                                    SDValue Ptr, EVT SVT,
4218                                    MachineMemOperand *MMO) {
4219  EVT VT = Val.getValueType();
4220
4221  if (VT == SVT)
4222    return getStore(Chain, dl, Val, Ptr, MMO);
4223
4224  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4225         "Should only be a truncating store, not extending!");
4226  assert(VT.isInteger() == SVT.isInteger() &&
4227         "Can't do FP-INT conversion!");
4228  assert(VT.isVector() == SVT.isVector() &&
4229         "Cannot use trunc store to convert to or from a vector!");
4230  assert((!VT.isVector() ||
4231          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4232         "Cannot use trunc store to change the number of vector elements!");
4233
4234  SDVTList VTs = getVTList(MVT::Other);
4235  SDValue Undef = getUNDEF(Ptr.getValueType());
4236  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4237  FoldingSetNodeID ID;
4238  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4239  ID.AddInteger(SVT.getRawBits());
4240  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4241                                     MMO->isNonTemporal()));
4242  void *IP = 0;
4243  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4244    cast<StoreSDNode>(E)->refineAlignment(MMO);
4245    return SDValue(E, 0);
4246  }
4247  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4248                                              true, SVT, MMO);
4249  CSEMap.InsertNode(N, IP);
4250  AllNodes.push_back(N);
4251  return SDValue(N, 0);
4252}
4253
4254SDValue
4255SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4256                              SDValue Offset, ISD::MemIndexedMode AM) {
4257  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4258  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4259         "Store is already a indexed store!");
4260  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4261  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4262  FoldingSetNodeID ID;
4263  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4264  ID.AddInteger(ST->getMemoryVT().getRawBits());
4265  ID.AddInteger(ST->getRawSubclassData());
4266  void *IP = 0;
4267  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4268    return SDValue(E, 0);
4269
4270  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4271                                              ST->isTruncatingStore(),
4272                                              ST->getMemoryVT(),
4273                                              ST->getMemOperand());
4274  CSEMap.InsertNode(N, IP);
4275  AllNodes.push_back(N);
4276  return SDValue(N, 0);
4277}
4278
4279SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4280                               SDValue Chain, SDValue Ptr,
4281                               SDValue SV,
4282                               unsigned Align) {
4283  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4284  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4285}
4286
4287SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4288                              const SDUse *Ops, unsigned NumOps) {
4289  switch (NumOps) {
4290  case 0: return getNode(Opcode, DL, VT);
4291  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4292  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4293  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4294  default: break;
4295  }
4296
4297  // Copy from an SDUse array into an SDValue array for use with
4298  // the regular getNode logic.
4299  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4300  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4301}
4302
4303SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4304                              const SDValue *Ops, unsigned NumOps) {
4305  switch (NumOps) {
4306  case 0: return getNode(Opcode, DL, VT);
4307  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4308  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4309  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4310  default: break;
4311  }
4312
4313  switch (Opcode) {
4314  default: break;
4315  case ISD::SELECT_CC: {
4316    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4317    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4318           "LHS and RHS of condition must have same type!");
4319    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4320           "True and False arms of SelectCC must have same type!");
4321    assert(Ops[2].getValueType() == VT &&
4322           "select_cc node must be of same type as true and false value!");
4323    break;
4324  }
4325  case ISD::BR_CC: {
4326    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4327    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4328           "LHS/RHS of comparison should match types!");
4329    break;
4330  }
4331  }
4332
4333  // Memoize nodes.
4334  SDNode *N;
4335  SDVTList VTs = getVTList(VT);
4336
4337  if (VT != MVT::Glue) {
4338    FoldingSetNodeID ID;
4339    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4340    void *IP = 0;
4341
4342    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4343      return SDValue(E, 0);
4344
4345    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4346    CSEMap.InsertNode(N, IP);
4347  } else {
4348    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4349  }
4350
4351  AllNodes.push_back(N);
4352#ifndef NDEBUG
4353  VerifySDNode(N);
4354#endif
4355  return SDValue(N, 0);
4356}
4357
4358SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4359                              const std::vector<EVT> &ResultTys,
4360                              const SDValue *Ops, unsigned NumOps) {
4361  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4362                 Ops, NumOps);
4363}
4364
4365SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4366                              const EVT *VTs, unsigned NumVTs,
4367                              const SDValue *Ops, unsigned NumOps) {
4368  if (NumVTs == 1)
4369    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4370  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4371}
4372
4373SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4374                              const SDValue *Ops, unsigned NumOps) {
4375  if (VTList.NumVTs == 1)
4376    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4377
4378#if 0
4379  switch (Opcode) {
4380  // FIXME: figure out how to safely handle things like
4381  // int foo(int x) { return 1 << (x & 255); }
4382  // int bar() { return foo(256); }
4383  case ISD::SRA_PARTS:
4384  case ISD::SRL_PARTS:
4385  case ISD::SHL_PARTS:
4386    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4387        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4388      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4389    else if (N3.getOpcode() == ISD::AND)
4390      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4391        // If the and is only masking out bits that cannot effect the shift,
4392        // eliminate the and.
4393        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4394        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4395          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4396      }
4397    break;
4398  }
4399#endif
4400
4401  // Memoize the node unless it returns a flag.
4402  SDNode *N;
4403  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4404    FoldingSetNodeID ID;
4405    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4406    void *IP = 0;
4407    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4408      return SDValue(E, 0);
4409
4410    if (NumOps == 1) {
4411      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4412    } else if (NumOps == 2) {
4413      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4414    } else if (NumOps == 3) {
4415      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4416                                            Ops[2]);
4417    } else {
4418      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4419    }
4420    CSEMap.InsertNode(N, IP);
4421  } else {
4422    if (NumOps == 1) {
4423      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4424    } else if (NumOps == 2) {
4425      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4426    } else if (NumOps == 3) {
4427      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4428                                            Ops[2]);
4429    } else {
4430      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4431    }
4432  }
4433  AllNodes.push_back(N);
4434#ifndef NDEBUG
4435  VerifySDNode(N);
4436#endif
4437  return SDValue(N, 0);
4438}
4439
4440SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4441  return getNode(Opcode, DL, VTList, 0, 0);
4442}
4443
4444SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4445                              SDValue N1) {
4446  SDValue Ops[] = { N1 };
4447  return getNode(Opcode, DL, VTList, Ops, 1);
4448}
4449
4450SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4451                              SDValue N1, SDValue N2) {
4452  SDValue Ops[] = { N1, N2 };
4453  return getNode(Opcode, DL, VTList, Ops, 2);
4454}
4455
4456SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4457                              SDValue N1, SDValue N2, SDValue N3) {
4458  SDValue Ops[] = { N1, N2, N3 };
4459  return getNode(Opcode, DL, VTList, Ops, 3);
4460}
4461
4462SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4463                              SDValue N1, SDValue N2, SDValue N3,
4464                              SDValue N4) {
4465  SDValue Ops[] = { N1, N2, N3, N4 };
4466  return getNode(Opcode, DL, VTList, Ops, 4);
4467}
4468
4469SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4470                              SDValue N1, SDValue N2, SDValue N3,
4471                              SDValue N4, SDValue N5) {
4472  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4473  return getNode(Opcode, DL, VTList, Ops, 5);
4474}
4475
4476SDVTList SelectionDAG::getVTList(EVT VT) {
4477  return makeVTList(SDNode::getValueTypeList(VT), 1);
4478}
4479
4480SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4481  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4482       E = VTList.rend(); I != E; ++I)
4483    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4484      return *I;
4485
4486  EVT *Array = Allocator.Allocate<EVT>(2);
4487  Array[0] = VT1;
4488  Array[1] = VT2;
4489  SDVTList Result = makeVTList(Array, 2);
4490  VTList.push_back(Result);
4491  return Result;
4492}
4493
4494SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4495  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4496       E = VTList.rend(); I != E; ++I)
4497    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4498                          I->VTs[2] == VT3)
4499      return *I;
4500
4501  EVT *Array = Allocator.Allocate<EVT>(3);
4502  Array[0] = VT1;
4503  Array[1] = VT2;
4504  Array[2] = VT3;
4505  SDVTList Result = makeVTList(Array, 3);
4506  VTList.push_back(Result);
4507  return Result;
4508}
4509
4510SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4511  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4512       E = VTList.rend(); I != E; ++I)
4513    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4514                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4515      return *I;
4516
4517  EVT *Array = Allocator.Allocate<EVT>(4);
4518  Array[0] = VT1;
4519  Array[1] = VT2;
4520  Array[2] = VT3;
4521  Array[3] = VT4;
4522  SDVTList Result = makeVTList(Array, 4);
4523  VTList.push_back(Result);
4524  return Result;
4525}
4526
4527SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4528  switch (NumVTs) {
4529    case 0: llvm_unreachable("Cannot have nodes without results!");
4530    case 1: return getVTList(VTs[0]);
4531    case 2: return getVTList(VTs[0], VTs[1]);
4532    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4533    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4534    default: break;
4535  }
4536
4537  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4538       E = VTList.rend(); I != E; ++I) {
4539    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4540      continue;
4541
4542    bool NoMatch = false;
4543    for (unsigned i = 2; i != NumVTs; ++i)
4544      if (VTs[i] != I->VTs[i]) {
4545        NoMatch = true;
4546        break;
4547      }
4548    if (!NoMatch)
4549      return *I;
4550  }
4551
4552  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4553  std::copy(VTs, VTs+NumVTs, Array);
4554  SDVTList Result = makeVTList(Array, NumVTs);
4555  VTList.push_back(Result);
4556  return Result;
4557}
4558
4559
4560/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4561/// specified operands.  If the resultant node already exists in the DAG,
4562/// this does not modify the specified node, instead it returns the node that
4563/// already exists.  If the resultant node does not exist in the DAG, the
4564/// input node is returned.  As a degenerate case, if you specify the same
4565/// input operands as the node already has, the input node is returned.
4566SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4567  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4568
4569  // Check to see if there is no change.
4570  if (Op == N->getOperand(0)) return N;
4571
4572  // See if the modified node already exists.
4573  void *InsertPos = 0;
4574  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4575    return Existing;
4576
4577  // Nope it doesn't.  Remove the node from its current place in the maps.
4578  if (InsertPos)
4579    if (!RemoveNodeFromCSEMaps(N))
4580      InsertPos = 0;
4581
4582  // Now we update the operands.
4583  N->OperandList[0].set(Op);
4584
4585  // If this gets put into a CSE map, add it.
4586  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4587  return N;
4588}
4589
4590SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4591  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4592
4593  // Check to see if there is no change.
4594  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4595    return N;   // No operands changed, just return the input node.
4596
4597  // See if the modified node already exists.
4598  void *InsertPos = 0;
4599  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4600    return Existing;
4601
4602  // Nope it doesn't.  Remove the node from its current place in the maps.
4603  if (InsertPos)
4604    if (!RemoveNodeFromCSEMaps(N))
4605      InsertPos = 0;
4606
4607  // Now we update the operands.
4608  if (N->OperandList[0] != Op1)
4609    N->OperandList[0].set(Op1);
4610  if (N->OperandList[1] != Op2)
4611    N->OperandList[1].set(Op2);
4612
4613  // If this gets put into a CSE map, add it.
4614  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4615  return N;
4616}
4617
4618SDNode *SelectionDAG::
4619UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4620  SDValue Ops[] = { Op1, Op2, Op3 };
4621  return UpdateNodeOperands(N, Ops, 3);
4622}
4623
4624SDNode *SelectionDAG::
4625UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4626                   SDValue Op3, SDValue Op4) {
4627  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4628  return UpdateNodeOperands(N, Ops, 4);
4629}
4630
4631SDNode *SelectionDAG::
4632UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4633                   SDValue Op3, SDValue Op4, SDValue Op5) {
4634  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4635  return UpdateNodeOperands(N, Ops, 5);
4636}
4637
4638SDNode *SelectionDAG::
4639UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4640  assert(N->getNumOperands() == NumOps &&
4641         "Update with wrong number of operands");
4642
4643  // Check to see if there is no change.
4644  bool AnyChange = false;
4645  for (unsigned i = 0; i != NumOps; ++i) {
4646    if (Ops[i] != N->getOperand(i)) {
4647      AnyChange = true;
4648      break;
4649    }
4650  }
4651
4652  // No operands changed, just return the input node.
4653  if (!AnyChange) return N;
4654
4655  // See if the modified node already exists.
4656  void *InsertPos = 0;
4657  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4658    return Existing;
4659
4660  // Nope it doesn't.  Remove the node from its current place in the maps.
4661  if (InsertPos)
4662    if (!RemoveNodeFromCSEMaps(N))
4663      InsertPos = 0;
4664
4665  // Now we update the operands.
4666  for (unsigned i = 0; i != NumOps; ++i)
4667    if (N->OperandList[i] != Ops[i])
4668      N->OperandList[i].set(Ops[i]);
4669
4670  // If this gets put into a CSE map, add it.
4671  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4672  return N;
4673}
4674
4675/// DropOperands - Release the operands and set this node to have
4676/// zero operands.
4677void SDNode::DropOperands() {
4678  // Unlike the code in MorphNodeTo that does this, we don't need to
4679  // watch for dead nodes here.
4680  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4681    SDUse &Use = *I++;
4682    Use.set(SDValue());
4683  }
4684}
4685
4686/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4687/// machine opcode.
4688///
4689SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4690                                   EVT VT) {
4691  SDVTList VTs = getVTList(VT);
4692  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4693}
4694
4695SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4696                                   EVT VT, SDValue Op1) {
4697  SDVTList VTs = getVTList(VT);
4698  SDValue Ops[] = { Op1 };
4699  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4700}
4701
4702SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4703                                   EVT VT, SDValue Op1,
4704                                   SDValue Op2) {
4705  SDVTList VTs = getVTList(VT);
4706  SDValue Ops[] = { Op1, Op2 };
4707  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4708}
4709
4710SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4711                                   EVT VT, SDValue Op1,
4712                                   SDValue Op2, SDValue Op3) {
4713  SDVTList VTs = getVTList(VT);
4714  SDValue Ops[] = { Op1, Op2, Op3 };
4715  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4716}
4717
4718SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4719                                   EVT VT, const SDValue *Ops,
4720                                   unsigned NumOps) {
4721  SDVTList VTs = getVTList(VT);
4722  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4723}
4724
4725SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4726                                   EVT VT1, EVT VT2, const SDValue *Ops,
4727                                   unsigned NumOps) {
4728  SDVTList VTs = getVTList(VT1, VT2);
4729  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4730}
4731
4732SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4733                                   EVT VT1, EVT VT2) {
4734  SDVTList VTs = getVTList(VT1, VT2);
4735  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4736}
4737
4738SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4739                                   EVT VT1, EVT VT2, EVT VT3,
4740                                   const SDValue *Ops, unsigned NumOps) {
4741  SDVTList VTs = getVTList(VT1, VT2, VT3);
4742  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4743}
4744
4745SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4746                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4747                                   const SDValue *Ops, unsigned NumOps) {
4748  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4749  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4750}
4751
4752SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4753                                   EVT VT1, EVT VT2,
4754                                   SDValue Op1) {
4755  SDVTList VTs = getVTList(VT1, VT2);
4756  SDValue Ops[] = { Op1 };
4757  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4758}
4759
4760SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4761                                   EVT VT1, EVT VT2,
4762                                   SDValue Op1, SDValue Op2) {
4763  SDVTList VTs = getVTList(VT1, VT2);
4764  SDValue Ops[] = { Op1, Op2 };
4765  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4766}
4767
4768SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4769                                   EVT VT1, EVT VT2,
4770                                   SDValue Op1, SDValue Op2,
4771                                   SDValue Op3) {
4772  SDVTList VTs = getVTList(VT1, VT2);
4773  SDValue Ops[] = { Op1, Op2, Op3 };
4774  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4775}
4776
4777SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4778                                   EVT VT1, EVT VT2, EVT VT3,
4779                                   SDValue Op1, SDValue Op2,
4780                                   SDValue Op3) {
4781  SDVTList VTs = getVTList(VT1, VT2, VT3);
4782  SDValue Ops[] = { Op1, Op2, Op3 };
4783  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4784}
4785
4786SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4787                                   SDVTList VTs, const SDValue *Ops,
4788                                   unsigned NumOps) {
4789  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4790  // Reset the NodeID to -1.
4791  N->setNodeId(-1);
4792  return N;
4793}
4794
4795/// MorphNodeTo - This *mutates* the specified node to have the specified
4796/// return type, opcode, and operands.
4797///
4798/// Note that MorphNodeTo returns the resultant node.  If there is already a
4799/// node of the specified opcode and operands, it returns that node instead of
4800/// the current one.  Note that the DebugLoc need not be the same.
4801///
4802/// Using MorphNodeTo is faster than creating a new node and swapping it in
4803/// with ReplaceAllUsesWith both because it often avoids allocating a new
4804/// node, and because it doesn't require CSE recalculation for any of
4805/// the node's users.
4806///
4807SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4808                                  SDVTList VTs, const SDValue *Ops,
4809                                  unsigned NumOps) {
4810  // If an identical node already exists, use it.
4811  void *IP = 0;
4812  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4813    FoldingSetNodeID ID;
4814    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4815    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4816      return ON;
4817  }
4818
4819  if (!RemoveNodeFromCSEMaps(N))
4820    IP = 0;
4821
4822  // Start the morphing.
4823  N->NodeType = Opc;
4824  N->ValueList = VTs.VTs;
4825  N->NumValues = VTs.NumVTs;
4826
4827  // Clear the operands list, updating used nodes to remove this from their
4828  // use list.  Keep track of any operands that become dead as a result.
4829  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4830  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4831    SDUse &Use = *I++;
4832    SDNode *Used = Use.getNode();
4833    Use.set(SDValue());
4834    if (Used->use_empty())
4835      DeadNodeSet.insert(Used);
4836  }
4837
4838  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4839    // Initialize the memory references information.
4840    MN->setMemRefs(0, 0);
4841    // If NumOps is larger than the # of operands we can have in a
4842    // MachineSDNode, reallocate the operand list.
4843    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4844      if (MN->OperandsNeedDelete)
4845        delete[] MN->OperandList;
4846      if (NumOps > array_lengthof(MN->LocalOperands))
4847        // We're creating a final node that will live unmorphed for the
4848        // remainder of the current SelectionDAG iteration, so we can allocate
4849        // the operands directly out of a pool with no recycling metadata.
4850        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4851                         Ops, NumOps);
4852      else
4853        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4854      MN->OperandsNeedDelete = false;
4855    } else
4856      MN->InitOperands(MN->OperandList, Ops, NumOps);
4857  } else {
4858    // If NumOps is larger than the # of operands we currently have, reallocate
4859    // the operand list.
4860    if (NumOps > N->NumOperands) {
4861      if (N->OperandsNeedDelete)
4862        delete[] N->OperandList;
4863      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4864      N->OperandsNeedDelete = true;
4865    } else
4866      N->InitOperands(N->OperandList, Ops, NumOps);
4867  }
4868
4869  // Delete any nodes that are still dead after adding the uses for the
4870  // new operands.
4871  if (!DeadNodeSet.empty()) {
4872    SmallVector<SDNode *, 16> DeadNodes;
4873    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4874         E = DeadNodeSet.end(); I != E; ++I)
4875      if ((*I)->use_empty())
4876        DeadNodes.push_back(*I);
4877    RemoveDeadNodes(DeadNodes);
4878  }
4879
4880  if (IP)
4881    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4882  return N;
4883}
4884
4885
4886/// getMachineNode - These are used for target selectors to create a new node
4887/// with specified return type(s), MachineInstr opcode, and operands.
4888///
4889/// Note that getMachineNode returns the resultant node.  If there is already a
4890/// node of the specified opcode and operands, it returns that node instead of
4891/// the current one.
4892MachineSDNode *
4893SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4894  SDVTList VTs = getVTList(VT);
4895  return getMachineNode(Opcode, dl, VTs, 0, 0);
4896}
4897
4898MachineSDNode *
4899SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4900  SDVTList VTs = getVTList(VT);
4901  SDValue Ops[] = { Op1 };
4902  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4903}
4904
4905MachineSDNode *
4906SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4907                             SDValue Op1, SDValue Op2) {
4908  SDVTList VTs = getVTList(VT);
4909  SDValue Ops[] = { Op1, Op2 };
4910  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4911}
4912
4913MachineSDNode *
4914SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4915                             SDValue Op1, SDValue Op2, SDValue Op3) {
4916  SDVTList VTs = getVTList(VT);
4917  SDValue Ops[] = { Op1, Op2, Op3 };
4918  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4919}
4920
4921MachineSDNode *
4922SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4923                             const SDValue *Ops, unsigned NumOps) {
4924  SDVTList VTs = getVTList(VT);
4925  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4926}
4927
4928MachineSDNode *
4929SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4930  SDVTList VTs = getVTList(VT1, VT2);
4931  return getMachineNode(Opcode, dl, VTs, 0, 0);
4932}
4933
4934MachineSDNode *
4935SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4936                             EVT VT1, EVT VT2, SDValue Op1) {
4937  SDVTList VTs = getVTList(VT1, VT2);
4938  SDValue Ops[] = { Op1 };
4939  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4940}
4941
4942MachineSDNode *
4943SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4944                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4945  SDVTList VTs = getVTList(VT1, VT2);
4946  SDValue Ops[] = { Op1, Op2 };
4947  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4948}
4949
4950MachineSDNode *
4951SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4952                             EVT VT1, EVT VT2, SDValue Op1,
4953                             SDValue Op2, SDValue Op3) {
4954  SDVTList VTs = getVTList(VT1, VT2);
4955  SDValue Ops[] = { Op1, Op2, Op3 };
4956  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4957}
4958
4959MachineSDNode *
4960SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4961                             EVT VT1, EVT VT2,
4962                             const SDValue *Ops, unsigned NumOps) {
4963  SDVTList VTs = getVTList(VT1, VT2);
4964  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4965}
4966
4967MachineSDNode *
4968SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4969                             EVT VT1, EVT VT2, EVT VT3,
4970                             SDValue Op1, SDValue Op2) {
4971  SDVTList VTs = getVTList(VT1, VT2, VT3);
4972  SDValue Ops[] = { Op1, Op2 };
4973  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4974}
4975
4976MachineSDNode *
4977SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4978                             EVT VT1, EVT VT2, EVT VT3,
4979                             SDValue Op1, SDValue Op2, SDValue Op3) {
4980  SDVTList VTs = getVTList(VT1, VT2, VT3);
4981  SDValue Ops[] = { Op1, Op2, Op3 };
4982  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4983}
4984
4985MachineSDNode *
4986SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4987                             EVT VT1, EVT VT2, EVT VT3,
4988                             const SDValue *Ops, unsigned NumOps) {
4989  SDVTList VTs = getVTList(VT1, VT2, VT3);
4990  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4991}
4992
4993MachineSDNode *
4994SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4995                             EVT VT2, EVT VT3, EVT VT4,
4996                             const SDValue *Ops, unsigned NumOps) {
4997  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4998  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4999}
5000
5001MachineSDNode *
5002SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5003                             const std::vector<EVT> &ResultTys,
5004                             const SDValue *Ops, unsigned NumOps) {
5005  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5006  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5007}
5008
5009MachineSDNode *
5010SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5011                             const SDValue *Ops, unsigned NumOps) {
5012  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5013  MachineSDNode *N;
5014  void *IP = 0;
5015
5016  if (DoCSE) {
5017    FoldingSetNodeID ID;
5018    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5019    IP = 0;
5020    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5021      return cast<MachineSDNode>(E);
5022  }
5023
5024  // Allocate a new MachineSDNode.
5025  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5026
5027  // Initialize the operands list.
5028  if (NumOps > array_lengthof(N->LocalOperands))
5029    // We're creating a final node that will live unmorphed for the
5030    // remainder of the current SelectionDAG iteration, so we can allocate
5031    // the operands directly out of a pool with no recycling metadata.
5032    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5033                    Ops, NumOps);
5034  else
5035    N->InitOperands(N->LocalOperands, Ops, NumOps);
5036  N->OperandsNeedDelete = false;
5037
5038  if (DoCSE)
5039    CSEMap.InsertNode(N, IP);
5040
5041  AllNodes.push_back(N);
5042#ifndef NDEBUG
5043  VerifyMachineNode(N);
5044#endif
5045  return N;
5046}
5047
5048/// getTargetExtractSubreg - A convenience function for creating
5049/// TargetOpcode::EXTRACT_SUBREG nodes.
5050SDValue
5051SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5052                                     SDValue Operand) {
5053  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5054  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5055                                  VT, Operand, SRIdxVal);
5056  return SDValue(Subreg, 0);
5057}
5058
5059/// getTargetInsertSubreg - A convenience function for creating
5060/// TargetOpcode::INSERT_SUBREG nodes.
5061SDValue
5062SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5063                                    SDValue Operand, SDValue Subreg) {
5064  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5065  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5066                                  VT, Operand, Subreg, SRIdxVal);
5067  return SDValue(Result, 0);
5068}
5069
5070/// getNodeIfExists - Get the specified node if it's already available, or
5071/// else return NULL.
5072SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5073                                      const SDValue *Ops, unsigned NumOps) {
5074  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5075    FoldingSetNodeID ID;
5076    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5077    void *IP = 0;
5078    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5079      return E;
5080  }
5081  return NULL;
5082}
5083
5084/// getDbgValue - Creates a SDDbgValue node.
5085///
5086SDDbgValue *
5087SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5088                          DebugLoc DL, unsigned O) {
5089  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5090}
5091
5092SDDbgValue *
5093SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5094                          DebugLoc DL, unsigned O) {
5095  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5096}
5097
5098SDDbgValue *
5099SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5100                          DebugLoc DL, unsigned O) {
5101  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5102}
5103
5104namespace {
5105
5106/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5107/// pointed to by a use iterator is deleted, increment the use iterator
5108/// so that it doesn't dangle.
5109///
5110/// This class also manages a "downlink" DAGUpdateListener, to forward
5111/// messages to ReplaceAllUsesWith's callers.
5112///
5113class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5114  SelectionDAG::DAGUpdateListener *DownLink;
5115  SDNode::use_iterator &UI;
5116  SDNode::use_iterator &UE;
5117
5118  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5119    // Increment the iterator as needed.
5120    while (UI != UE && N == *UI)
5121      ++UI;
5122
5123    // Then forward the message.
5124    if (DownLink) DownLink->NodeDeleted(N, E);
5125  }
5126
5127  virtual void NodeUpdated(SDNode *N) {
5128    // Just forward the message.
5129    if (DownLink) DownLink->NodeUpdated(N);
5130  }
5131
5132public:
5133  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5134                     SDNode::use_iterator &ui,
5135                     SDNode::use_iterator &ue)
5136    : DownLink(dl), UI(ui), UE(ue) {}
5137};
5138
5139}
5140
5141/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5142/// This can cause recursive merging of nodes in the DAG.
5143///
5144/// This version assumes From has a single result value.
5145///
5146void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5147                                      DAGUpdateListener *UpdateListener) {
5148  SDNode *From = FromN.getNode();
5149  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5150         "Cannot replace with this method!");
5151  assert(From != To.getNode() && "Cannot replace uses of with self");
5152
5153  // Transfer debug values.
5154  TransferDbgValues(FromN, To);
5155
5156  // Iterate over all the existing uses of From. New uses will be added
5157  // to the beginning of the use list, which we avoid visiting.
5158  // This specifically avoids visiting uses of From that arise while the
5159  // replacement is happening, because any such uses would be the result
5160  // of CSE: If an existing node looks like From after one of its operands
5161  // is replaced by To, we don't want to replace of all its users with To
5162  // too. See PR3018 for more info.
5163  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5164  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5165  while (UI != UE) {
5166    SDNode *User = *UI;
5167
5168    // This node is about to morph, remove its old self from the CSE maps.
5169    RemoveNodeFromCSEMaps(User);
5170
5171    // A user can appear in a use list multiple times, and when this
5172    // happens the uses are usually next to each other in the list.
5173    // To help reduce the number of CSE recomputations, process all
5174    // the uses of this user that we can find this way.
5175    do {
5176      SDUse &Use = UI.getUse();
5177      ++UI;
5178      Use.set(To);
5179    } while (UI != UE && *UI == User);
5180
5181    // Now that we have modified User, add it back to the CSE maps.  If it
5182    // already exists there, recursively merge the results together.
5183    AddModifiedNodeToCSEMaps(User, &Listener);
5184  }
5185}
5186
5187/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5188/// This can cause recursive merging of nodes in the DAG.
5189///
5190/// This version assumes that for each value of From, there is a
5191/// corresponding value in To in the same position with the same type.
5192///
5193void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5194                                      DAGUpdateListener *UpdateListener) {
5195#ifndef NDEBUG
5196  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5197    assert((!From->hasAnyUseOfValue(i) ||
5198            From->getValueType(i) == To->getValueType(i)) &&
5199           "Cannot use this version of ReplaceAllUsesWith!");
5200#endif
5201
5202  // Handle the trivial case.
5203  if (From == To)
5204    return;
5205
5206  // Iterate over just the existing users of From. See the comments in
5207  // the ReplaceAllUsesWith above.
5208  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5209  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5210  while (UI != UE) {
5211    SDNode *User = *UI;
5212
5213    // This node is about to morph, remove its old self from the CSE maps.
5214    RemoveNodeFromCSEMaps(User);
5215
5216    // A user can appear in a use list multiple times, and when this
5217    // happens the uses are usually next to each other in the list.
5218    // To help reduce the number of CSE recomputations, process all
5219    // the uses of this user that we can find this way.
5220    do {
5221      SDUse &Use = UI.getUse();
5222      ++UI;
5223      Use.setNode(To);
5224    } while (UI != UE && *UI == User);
5225
5226    // Now that we have modified User, add it back to the CSE maps.  If it
5227    // already exists there, recursively merge the results together.
5228    AddModifiedNodeToCSEMaps(User, &Listener);
5229  }
5230}
5231
5232/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5233/// This can cause recursive merging of nodes in the DAG.
5234///
5235/// This version can replace From with any result values.  To must match the
5236/// number and types of values returned by From.
5237void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5238                                      const SDValue *To,
5239                                      DAGUpdateListener *UpdateListener) {
5240  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5241    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5242
5243  // Iterate over just the existing users of From. See the comments in
5244  // the ReplaceAllUsesWith above.
5245  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5246  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5247  while (UI != UE) {
5248    SDNode *User = *UI;
5249
5250    // This node is about to morph, remove its old self from the CSE maps.
5251    RemoveNodeFromCSEMaps(User);
5252
5253    // A user can appear in a use list multiple times, and when this
5254    // happens the uses are usually next to each other in the list.
5255    // To help reduce the number of CSE recomputations, process all
5256    // the uses of this user that we can find this way.
5257    do {
5258      SDUse &Use = UI.getUse();
5259      const SDValue &ToOp = To[Use.getResNo()];
5260      ++UI;
5261      Use.set(ToOp);
5262    } while (UI != UE && *UI == User);
5263
5264    // Now that we have modified User, add it back to the CSE maps.  If it
5265    // already exists there, recursively merge the results together.
5266    AddModifiedNodeToCSEMaps(User, &Listener);
5267  }
5268}
5269
5270/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5271/// uses of other values produced by From.getNode() alone.  The Deleted
5272/// vector is handled the same way as for ReplaceAllUsesWith.
5273void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5274                                             DAGUpdateListener *UpdateListener){
5275  // Handle the really simple, really trivial case efficiently.
5276  if (From == To) return;
5277
5278  // Handle the simple, trivial, case efficiently.
5279  if (From.getNode()->getNumValues() == 1) {
5280    ReplaceAllUsesWith(From, To, UpdateListener);
5281    return;
5282  }
5283
5284  // Iterate over just the existing users of From. See the comments in
5285  // the ReplaceAllUsesWith above.
5286  SDNode::use_iterator UI = From.getNode()->use_begin(),
5287                       UE = From.getNode()->use_end();
5288  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5289  while (UI != UE) {
5290    SDNode *User = *UI;
5291    bool UserRemovedFromCSEMaps = false;
5292
5293    // A user can appear in a use list multiple times, and when this
5294    // happens the uses are usually next to each other in the list.
5295    // To help reduce the number of CSE recomputations, process all
5296    // the uses of this user that we can find this way.
5297    do {
5298      SDUse &Use = UI.getUse();
5299
5300      // Skip uses of different values from the same node.
5301      if (Use.getResNo() != From.getResNo()) {
5302        ++UI;
5303        continue;
5304      }
5305
5306      // If this node hasn't been modified yet, it's still in the CSE maps,
5307      // so remove its old self from the CSE maps.
5308      if (!UserRemovedFromCSEMaps) {
5309        RemoveNodeFromCSEMaps(User);
5310        UserRemovedFromCSEMaps = true;
5311      }
5312
5313      ++UI;
5314      Use.set(To);
5315    } while (UI != UE && *UI == User);
5316
5317    // We are iterating over all uses of the From node, so if a use
5318    // doesn't use the specific value, no changes are made.
5319    if (!UserRemovedFromCSEMaps)
5320      continue;
5321
5322    // Now that we have modified User, add it back to the CSE maps.  If it
5323    // already exists there, recursively merge the results together.
5324    AddModifiedNodeToCSEMaps(User, &Listener);
5325  }
5326}
5327
5328namespace {
5329  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5330  /// to record information about a use.
5331  struct UseMemo {
5332    SDNode *User;
5333    unsigned Index;
5334    SDUse *Use;
5335  };
5336
5337  /// operator< - Sort Memos by User.
5338  bool operator<(const UseMemo &L, const UseMemo &R) {
5339    return (intptr_t)L.User < (intptr_t)R.User;
5340  }
5341}
5342
5343/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5344/// uses of other values produced by From.getNode() alone.  The same value
5345/// may appear in both the From and To list.  The Deleted vector is
5346/// handled the same way as for ReplaceAllUsesWith.
5347void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5348                                              const SDValue *To,
5349                                              unsigned Num,
5350                                              DAGUpdateListener *UpdateListener){
5351  // Handle the simple, trivial case efficiently.
5352  if (Num == 1)
5353    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5354
5355  // Read up all the uses and make records of them. This helps
5356  // processing new uses that are introduced during the
5357  // replacement process.
5358  SmallVector<UseMemo, 4> Uses;
5359  for (unsigned i = 0; i != Num; ++i) {
5360    unsigned FromResNo = From[i].getResNo();
5361    SDNode *FromNode = From[i].getNode();
5362    for (SDNode::use_iterator UI = FromNode->use_begin(),
5363         E = FromNode->use_end(); UI != E; ++UI) {
5364      SDUse &Use = UI.getUse();
5365      if (Use.getResNo() == FromResNo) {
5366        UseMemo Memo = { *UI, i, &Use };
5367        Uses.push_back(Memo);
5368      }
5369    }
5370  }
5371
5372  // Sort the uses, so that all the uses from a given User are together.
5373  std::sort(Uses.begin(), Uses.end());
5374
5375  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5376       UseIndex != UseIndexEnd; ) {
5377    // We know that this user uses some value of From.  If it is the right
5378    // value, update it.
5379    SDNode *User = Uses[UseIndex].User;
5380
5381    // This node is about to morph, remove its old self from the CSE maps.
5382    RemoveNodeFromCSEMaps(User);
5383
5384    // The Uses array is sorted, so all the uses for a given User
5385    // are next to each other in the list.
5386    // To help reduce the number of CSE recomputations, process all
5387    // the uses of this user that we can find this way.
5388    do {
5389      unsigned i = Uses[UseIndex].Index;
5390      SDUse &Use = *Uses[UseIndex].Use;
5391      ++UseIndex;
5392
5393      Use.set(To[i]);
5394    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5395
5396    // Now that we have modified User, add it back to the CSE maps.  If it
5397    // already exists there, recursively merge the results together.
5398    AddModifiedNodeToCSEMaps(User, UpdateListener);
5399  }
5400}
5401
5402/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5403/// based on their topological order. It returns the maximum id and a vector
5404/// of the SDNodes* in assigned order by reference.
5405unsigned SelectionDAG::AssignTopologicalOrder() {
5406
5407  unsigned DAGSize = 0;
5408
5409  // SortedPos tracks the progress of the algorithm. Nodes before it are
5410  // sorted, nodes after it are unsorted. When the algorithm completes
5411  // it is at the end of the list.
5412  allnodes_iterator SortedPos = allnodes_begin();
5413
5414  // Visit all the nodes. Move nodes with no operands to the front of
5415  // the list immediately. Annotate nodes that do have operands with their
5416  // operand count. Before we do this, the Node Id fields of the nodes
5417  // may contain arbitrary values. After, the Node Id fields for nodes
5418  // before SortedPos will contain the topological sort index, and the
5419  // Node Id fields for nodes At SortedPos and after will contain the
5420  // count of outstanding operands.
5421  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5422    SDNode *N = I++;
5423    checkForCycles(N);
5424    unsigned Degree = N->getNumOperands();
5425    if (Degree == 0) {
5426      // A node with no uses, add it to the result array immediately.
5427      N->setNodeId(DAGSize++);
5428      allnodes_iterator Q = N;
5429      if (Q != SortedPos)
5430        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5431      assert(SortedPos != AllNodes.end() && "Overran node list");
5432      ++SortedPos;
5433    } else {
5434      // Temporarily use the Node Id as scratch space for the degree count.
5435      N->setNodeId(Degree);
5436    }
5437  }
5438
5439  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5440  // such that by the time the end is reached all nodes will be sorted.
5441  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5442    SDNode *N = I;
5443    checkForCycles(N);
5444    // N is in sorted position, so all its uses have one less operand
5445    // that needs to be sorted.
5446    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5447         UI != UE; ++UI) {
5448      SDNode *P = *UI;
5449      unsigned Degree = P->getNodeId();
5450      assert(Degree != 0 && "Invalid node degree");
5451      --Degree;
5452      if (Degree == 0) {
5453        // All of P's operands are sorted, so P may sorted now.
5454        P->setNodeId(DAGSize++);
5455        if (P != SortedPos)
5456          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5457        assert(SortedPos != AllNodes.end() && "Overran node list");
5458        ++SortedPos;
5459      } else {
5460        // Update P's outstanding operand count.
5461        P->setNodeId(Degree);
5462      }
5463    }
5464    if (I == SortedPos) {
5465#ifndef NDEBUG
5466      SDNode *S = ++I;
5467      dbgs() << "Overran sorted position:\n";
5468      S->dumprFull();
5469#endif
5470      llvm_unreachable(0);
5471    }
5472  }
5473
5474  assert(SortedPos == AllNodes.end() &&
5475         "Topological sort incomplete!");
5476  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5477         "First node in topological sort is not the entry token!");
5478  assert(AllNodes.front().getNodeId() == 0 &&
5479         "First node in topological sort has non-zero id!");
5480  assert(AllNodes.front().getNumOperands() == 0 &&
5481         "First node in topological sort has operands!");
5482  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5483         "Last node in topologic sort has unexpected id!");
5484  assert(AllNodes.back().use_empty() &&
5485         "Last node in topologic sort has users!");
5486  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5487  return DAGSize;
5488}
5489
5490/// AssignOrdering - Assign an order to the SDNode.
5491void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5492  assert(SD && "Trying to assign an order to a null node!");
5493  Ordering->add(SD, Order);
5494}
5495
5496/// GetOrdering - Get the order for the SDNode.
5497unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5498  assert(SD && "Trying to get the order of a null node!");
5499  return Ordering->getOrder(SD);
5500}
5501
5502/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5503/// value is produced by SD.
5504void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5505  DbgInfo->add(DB, SD, isParameter);
5506  if (SD)
5507    SD->setHasDebugValue(true);
5508}
5509
5510/// TransferDbgValues - Transfer SDDbgValues.
5511void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5512  if (From == To || !From.getNode()->getHasDebugValue())
5513    return;
5514  SDNode *FromNode = From.getNode();
5515  SDNode *ToNode = To.getNode();
5516  SmallVector<SDDbgValue *, 2> &DVs = GetDbgValues(FromNode);
5517  SmallVector<SDDbgValue *, 2> ClonedDVs;
5518  for (SmallVector<SDDbgValue *, 2>::iterator I = DVs.begin(), E = DVs.end();
5519       I != E; ++I) {
5520    SDDbgValue *Dbg = *I;
5521    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5522      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5523                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5524                                      Dbg->getOrder());
5525      ClonedDVs.push_back(Clone);
5526    }
5527  }
5528  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5529         E = ClonedDVs.end(); I != E; ++I)
5530    AddDbgValue(*I, ToNode, false);
5531}
5532
5533//===----------------------------------------------------------------------===//
5534//                              SDNode Class
5535//===----------------------------------------------------------------------===//
5536
5537HandleSDNode::~HandleSDNode() {
5538  DropOperands();
5539}
5540
5541GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5542                                         const GlobalValue *GA,
5543                                         EVT VT, int64_t o, unsigned char TF)
5544  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5545  TheGlobal = GA;
5546}
5547
5548MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5549                     MachineMemOperand *mmo)
5550 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5551  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5552                                      MMO->isNonTemporal());
5553  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5554  assert(isNonTemporal() == MMO->isNonTemporal() &&
5555         "Non-temporal encoding error!");
5556  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5557}
5558
5559MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5560                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5561                     MachineMemOperand *mmo)
5562   : SDNode(Opc, dl, VTs, Ops, NumOps),
5563     MemoryVT(memvt), MMO(mmo) {
5564  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5565                                      MMO->isNonTemporal());
5566  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5567  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5568}
5569
5570/// Profile - Gather unique data for the node.
5571///
5572void SDNode::Profile(FoldingSetNodeID &ID) const {
5573  AddNodeIDNode(ID, this);
5574}
5575
5576namespace {
5577  struct EVTArray {
5578    std::vector<EVT> VTs;
5579
5580    EVTArray() {
5581      VTs.reserve(MVT::LAST_VALUETYPE);
5582      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5583        VTs.push_back(MVT((MVT::SimpleValueType)i));
5584    }
5585  };
5586}
5587
5588static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5589static ManagedStatic<EVTArray> SimpleVTArray;
5590static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5591
5592/// getValueTypeList - Return a pointer to the specified value type.
5593///
5594const EVT *SDNode::getValueTypeList(EVT VT) {
5595  if (VT.isExtended()) {
5596    sys::SmartScopedLock<true> Lock(*VTMutex);
5597    return &(*EVTs->insert(VT).first);
5598  } else {
5599    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5600           "Value type out of range!");
5601    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5602  }
5603}
5604
5605/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5606/// indicated value.  This method ignores uses of other values defined by this
5607/// operation.
5608bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5609  assert(Value < getNumValues() && "Bad value!");
5610
5611  // TODO: Only iterate over uses of a given value of the node
5612  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5613    if (UI.getUse().getResNo() == Value) {
5614      if (NUses == 0)
5615        return false;
5616      --NUses;
5617    }
5618  }
5619
5620  // Found exactly the right number of uses?
5621  return NUses == 0;
5622}
5623
5624
5625/// hasAnyUseOfValue - Return true if there are any use of the indicated
5626/// value. This method ignores uses of other values defined by this operation.
5627bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5628  assert(Value < getNumValues() && "Bad value!");
5629
5630  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5631    if (UI.getUse().getResNo() == Value)
5632      return true;
5633
5634  return false;
5635}
5636
5637
5638/// isOnlyUserOf - Return true if this node is the only use of N.
5639///
5640bool SDNode::isOnlyUserOf(SDNode *N) const {
5641  bool Seen = false;
5642  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5643    SDNode *User = *I;
5644    if (User == this)
5645      Seen = true;
5646    else
5647      return false;
5648  }
5649
5650  return Seen;
5651}
5652
5653/// isOperand - Return true if this node is an operand of N.
5654///
5655bool SDValue::isOperandOf(SDNode *N) const {
5656  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5657    if (*this == N->getOperand(i))
5658      return true;
5659  return false;
5660}
5661
5662bool SDNode::isOperandOf(SDNode *N) const {
5663  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5664    if (this == N->OperandList[i].getNode())
5665      return true;
5666  return false;
5667}
5668
5669/// reachesChainWithoutSideEffects - Return true if this operand (which must
5670/// be a chain) reaches the specified operand without crossing any
5671/// side-effecting instructions on any chain path.  In practice, this looks
5672/// through token factors and non-volatile loads.  In order to remain efficient,
5673/// this only looks a couple of nodes in, it does not do an exhaustive search.
5674bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5675                                               unsigned Depth) const {
5676  if (*this == Dest) return true;
5677
5678  // Don't search too deeply, we just want to be able to see through
5679  // TokenFactor's etc.
5680  if (Depth == 0) return false;
5681
5682  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5683  // of the operands of the TF does not reach dest, then we cannot do the xform.
5684  if (getOpcode() == ISD::TokenFactor) {
5685    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5686      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5687        return false;
5688    return true;
5689  }
5690
5691  // Loads don't have side effects, look through them.
5692  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5693    if (!Ld->isVolatile())
5694      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5695  }
5696  return false;
5697}
5698
5699/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5700/// is either an operand of N or it can be reached by traversing up the operands.
5701/// NOTE: this is an expensive method. Use it carefully.
5702bool SDNode::isPredecessorOf(SDNode *N) const {
5703  SmallPtrSet<SDNode *, 32> Visited;
5704  SmallVector<SDNode *, 16> Worklist;
5705  Worklist.push_back(N);
5706
5707  do {
5708    N = Worklist.pop_back_val();
5709    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5710      SDNode *Op = N->getOperand(i).getNode();
5711      if (Op == this)
5712        return true;
5713      if (Visited.insert(Op))
5714        Worklist.push_back(Op);
5715    }
5716  } while (!Worklist.empty());
5717
5718  return false;
5719}
5720
5721uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5722  assert(Num < NumOperands && "Invalid child # of SDNode!");
5723  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5724}
5725
5726std::string SDNode::getOperationName(const SelectionDAG *G) const {
5727  switch (getOpcode()) {
5728  default:
5729    if (getOpcode() < ISD::BUILTIN_OP_END)
5730      return "<<Unknown DAG Node>>";
5731    if (isMachineOpcode()) {
5732      if (G)
5733        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5734          if (getMachineOpcode() < TII->getNumOpcodes())
5735            return TII->get(getMachineOpcode()).getName();
5736      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5737    }
5738    if (G) {
5739      const TargetLowering &TLI = G->getTargetLoweringInfo();
5740      const char *Name = TLI.getTargetNodeName(getOpcode());
5741      if (Name) return Name;
5742      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5743    }
5744    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5745
5746#ifndef NDEBUG
5747  case ISD::DELETED_NODE:
5748    return "<<Deleted Node!>>";
5749#endif
5750  case ISD::PREFETCH:      return "Prefetch";
5751  case ISD::MEMBARRIER:    return "MemBarrier";
5752  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5753  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5754  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5755  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5756  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5757  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5758  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5759  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5760  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5761  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5762  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5763  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5764  case ISD::PCMARKER:      return "PCMarker";
5765  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5766  case ISD::SRCVALUE:      return "SrcValue";
5767  case ISD::MDNODE_SDNODE: return "MDNode";
5768  case ISD::EntryToken:    return "EntryToken";
5769  case ISD::TokenFactor:   return "TokenFactor";
5770  case ISD::AssertSext:    return "AssertSext";
5771  case ISD::AssertZext:    return "AssertZext";
5772
5773  case ISD::BasicBlock:    return "BasicBlock";
5774  case ISD::VALUETYPE:     return "ValueType";
5775  case ISD::Register:      return "Register";
5776
5777  case ISD::Constant:      return "Constant";
5778  case ISD::ConstantFP:    return "ConstantFP";
5779  case ISD::GlobalAddress: return "GlobalAddress";
5780  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5781  case ISD::FrameIndex:    return "FrameIndex";
5782  case ISD::JumpTable:     return "JumpTable";
5783  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5784  case ISD::RETURNADDR: return "RETURNADDR";
5785  case ISD::FRAMEADDR: return "FRAMEADDR";
5786  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5787  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5788  case ISD::LSDAADDR: return "LSDAADDR";
5789  case ISD::EHSELECTION: return "EHSELECTION";
5790  case ISD::EH_RETURN: return "EH_RETURN";
5791  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5792  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5793  case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5794  case ISD::ConstantPool:  return "ConstantPool";
5795  case ISD::ExternalSymbol: return "ExternalSymbol";
5796  case ISD::BlockAddress:  return "BlockAddress";
5797  case ISD::INTRINSIC_WO_CHAIN:
5798  case ISD::INTRINSIC_VOID:
5799  case ISD::INTRINSIC_W_CHAIN: {
5800    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5801    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5802    if (IID < Intrinsic::num_intrinsics)
5803      return Intrinsic::getName((Intrinsic::ID)IID);
5804    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5805      return TII->getName(IID);
5806    llvm_unreachable("Invalid intrinsic ID");
5807  }
5808
5809  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5810  case ISD::TargetConstant: return "TargetConstant";
5811  case ISD::TargetConstantFP:return "TargetConstantFP";
5812  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5813  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5814  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5815  case ISD::TargetJumpTable:  return "TargetJumpTable";
5816  case ISD::TargetConstantPool:  return "TargetConstantPool";
5817  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5818  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5819
5820  case ISD::CopyToReg:     return "CopyToReg";
5821  case ISD::CopyFromReg:   return "CopyFromReg";
5822  case ISD::UNDEF:         return "undef";
5823  case ISD::MERGE_VALUES:  return "merge_values";
5824  case ISD::INLINEASM:     return "inlineasm";
5825  case ISD::EH_LABEL:      return "eh_label";
5826  case ISD::HANDLENODE:    return "handlenode";
5827
5828  // Unary operators
5829  case ISD::FABS:   return "fabs";
5830  case ISD::FNEG:   return "fneg";
5831  case ISD::FSQRT:  return "fsqrt";
5832  case ISD::FSIN:   return "fsin";
5833  case ISD::FCOS:   return "fcos";
5834  case ISD::FTRUNC: return "ftrunc";
5835  case ISD::FFLOOR: return "ffloor";
5836  case ISD::FCEIL:  return "fceil";
5837  case ISD::FRINT:  return "frint";
5838  case ISD::FNEARBYINT: return "fnearbyint";
5839  case ISD::FEXP:   return "fexp";
5840  case ISD::FEXP2:  return "fexp2";
5841  case ISD::FLOG:   return "flog";
5842  case ISD::FLOG2:  return "flog2";
5843  case ISD::FLOG10: return "flog10";
5844
5845  // Binary operators
5846  case ISD::ADD:    return "add";
5847  case ISD::SUB:    return "sub";
5848  case ISD::MUL:    return "mul";
5849  case ISD::MULHU:  return "mulhu";
5850  case ISD::MULHS:  return "mulhs";
5851  case ISD::SDIV:   return "sdiv";
5852  case ISD::UDIV:   return "udiv";
5853  case ISD::SREM:   return "srem";
5854  case ISD::UREM:   return "urem";
5855  case ISD::SMUL_LOHI:  return "smul_lohi";
5856  case ISD::UMUL_LOHI:  return "umul_lohi";
5857  case ISD::SDIVREM:    return "sdivrem";
5858  case ISD::UDIVREM:    return "udivrem";
5859  case ISD::AND:    return "and";
5860  case ISD::OR:     return "or";
5861  case ISD::XOR:    return "xor";
5862  case ISD::SHL:    return "shl";
5863  case ISD::SRA:    return "sra";
5864  case ISD::SRL:    return "srl";
5865  case ISD::ROTL:   return "rotl";
5866  case ISD::ROTR:   return "rotr";
5867  case ISD::FADD:   return "fadd";
5868  case ISD::FSUB:   return "fsub";
5869  case ISD::FMUL:   return "fmul";
5870  case ISD::FDIV:   return "fdiv";
5871  case ISD::FREM:   return "frem";
5872  case ISD::FCOPYSIGN: return "fcopysign";
5873  case ISD::FGETSIGN:  return "fgetsign";
5874  case ISD::FPOW:   return "fpow";
5875
5876  case ISD::FPOWI:  return "fpowi";
5877  case ISD::SETCC:       return "setcc";
5878  case ISD::VSETCC:      return "vsetcc";
5879  case ISD::SELECT:      return "select";
5880  case ISD::SELECT_CC:   return "select_cc";
5881  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5882  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5883  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5884  case ISD::INSERT_SUBVECTOR:    return "insert_subvector";
5885  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5886  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5887  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5888  case ISD::CARRY_FALSE:         return "carry_false";
5889  case ISD::ADDC:        return "addc";
5890  case ISD::ADDE:        return "adde";
5891  case ISD::SADDO:       return "saddo";
5892  case ISD::UADDO:       return "uaddo";
5893  case ISD::SSUBO:       return "ssubo";
5894  case ISD::USUBO:       return "usubo";
5895  case ISD::SMULO:       return "smulo";
5896  case ISD::UMULO:       return "umulo";
5897  case ISD::SUBC:        return "subc";
5898  case ISD::SUBE:        return "sube";
5899  case ISD::SHL_PARTS:   return "shl_parts";
5900  case ISD::SRA_PARTS:   return "sra_parts";
5901  case ISD::SRL_PARTS:   return "srl_parts";
5902
5903  // Conversion operators.
5904  case ISD::SIGN_EXTEND: return "sign_extend";
5905  case ISD::ZERO_EXTEND: return "zero_extend";
5906  case ISD::ANY_EXTEND:  return "any_extend";
5907  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5908  case ISD::TRUNCATE:    return "truncate";
5909  case ISD::FP_ROUND:    return "fp_round";
5910  case ISD::FLT_ROUNDS_: return "flt_rounds";
5911  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5912  case ISD::FP_EXTEND:   return "fp_extend";
5913
5914  case ISD::SINT_TO_FP:  return "sint_to_fp";
5915  case ISD::UINT_TO_FP:  return "uint_to_fp";
5916  case ISD::FP_TO_SINT:  return "fp_to_sint";
5917  case ISD::FP_TO_UINT:  return "fp_to_uint";
5918  case ISD::BITCAST:     return "bitcast";
5919  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5920  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5921
5922  case ISD::CONVERT_RNDSAT: {
5923    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5924    default: llvm_unreachable("Unknown cvt code!");
5925    case ISD::CVT_FF:  return "cvt_ff";
5926    case ISD::CVT_FS:  return "cvt_fs";
5927    case ISD::CVT_FU:  return "cvt_fu";
5928    case ISD::CVT_SF:  return "cvt_sf";
5929    case ISD::CVT_UF:  return "cvt_uf";
5930    case ISD::CVT_SS:  return "cvt_ss";
5931    case ISD::CVT_SU:  return "cvt_su";
5932    case ISD::CVT_US:  return "cvt_us";
5933    case ISD::CVT_UU:  return "cvt_uu";
5934    }
5935  }
5936
5937    // Control flow instructions
5938  case ISD::BR:      return "br";
5939  case ISD::BRIND:   return "brind";
5940  case ISD::BR_JT:   return "br_jt";
5941  case ISD::BRCOND:  return "brcond";
5942  case ISD::BR_CC:   return "br_cc";
5943  case ISD::CALLSEQ_START:  return "callseq_start";
5944  case ISD::CALLSEQ_END:    return "callseq_end";
5945
5946    // Other operators
5947  case ISD::LOAD:               return "load";
5948  case ISD::STORE:              return "store";
5949  case ISD::VAARG:              return "vaarg";
5950  case ISD::VACOPY:             return "vacopy";
5951  case ISD::VAEND:              return "vaend";
5952  case ISD::VASTART:            return "vastart";
5953  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5954  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5955  case ISD::BUILD_PAIR:         return "build_pair";
5956  case ISD::STACKSAVE:          return "stacksave";
5957  case ISD::STACKRESTORE:       return "stackrestore";
5958  case ISD::TRAP:               return "trap";
5959
5960  // Bit manipulation
5961  case ISD::BSWAP:   return "bswap";
5962  case ISD::CTPOP:   return "ctpop";
5963  case ISD::CTTZ:    return "cttz";
5964  case ISD::CTLZ:    return "ctlz";
5965
5966  // Trampolines
5967  case ISD::TRAMPOLINE: return "trampoline";
5968
5969  case ISD::CONDCODE:
5970    switch (cast<CondCodeSDNode>(this)->get()) {
5971    default: llvm_unreachable("Unknown setcc condition!");
5972    case ISD::SETOEQ:  return "setoeq";
5973    case ISD::SETOGT:  return "setogt";
5974    case ISD::SETOGE:  return "setoge";
5975    case ISD::SETOLT:  return "setolt";
5976    case ISD::SETOLE:  return "setole";
5977    case ISD::SETONE:  return "setone";
5978
5979    case ISD::SETO:    return "seto";
5980    case ISD::SETUO:   return "setuo";
5981    case ISD::SETUEQ:  return "setue";
5982    case ISD::SETUGT:  return "setugt";
5983    case ISD::SETUGE:  return "setuge";
5984    case ISD::SETULT:  return "setult";
5985    case ISD::SETULE:  return "setule";
5986    case ISD::SETUNE:  return "setune";
5987
5988    case ISD::SETEQ:   return "seteq";
5989    case ISD::SETGT:   return "setgt";
5990    case ISD::SETGE:   return "setge";
5991    case ISD::SETLT:   return "setlt";
5992    case ISD::SETLE:   return "setle";
5993    case ISD::SETNE:   return "setne";
5994    }
5995  }
5996}
5997
5998const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5999  switch (AM) {
6000  default:
6001    return "";
6002  case ISD::PRE_INC:
6003    return "<pre-inc>";
6004  case ISD::PRE_DEC:
6005    return "<pre-dec>";
6006  case ISD::POST_INC:
6007    return "<post-inc>";
6008  case ISD::POST_DEC:
6009    return "<post-dec>";
6010  }
6011}
6012
6013std::string ISD::ArgFlagsTy::getArgFlagsString() {
6014  std::string S = "< ";
6015
6016  if (isZExt())
6017    S += "zext ";
6018  if (isSExt())
6019    S += "sext ";
6020  if (isInReg())
6021    S += "inreg ";
6022  if (isSRet())
6023    S += "sret ";
6024  if (isByVal())
6025    S += "byval ";
6026  if (isNest())
6027    S += "nest ";
6028  if (getByValAlign())
6029    S += "byval-align:" + utostr(getByValAlign()) + " ";
6030  if (getOrigAlign())
6031    S += "orig-align:" + utostr(getOrigAlign()) + " ";
6032  if (getByValSize())
6033    S += "byval-size:" + utostr(getByValSize()) + " ";
6034  return S + ">";
6035}
6036
6037void SDNode::dump() const { dump(0); }
6038void SDNode::dump(const SelectionDAG *G) const {
6039  print(dbgs(), G);
6040  dbgs() << '\n';
6041}
6042
6043void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6044  OS << (void*)this << ": ";
6045
6046  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6047    if (i) OS << ",";
6048    if (getValueType(i) == MVT::Other)
6049      OS << "ch";
6050    else
6051      OS << getValueType(i).getEVTString();
6052  }
6053  OS << " = " << getOperationName(G);
6054}
6055
6056void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6057  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6058    if (!MN->memoperands_empty()) {
6059      OS << "<";
6060      OS << "Mem:";
6061      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6062           e = MN->memoperands_end(); i != e; ++i) {
6063        OS << **i;
6064        if (llvm::next(i) != e)
6065          OS << " ";
6066      }
6067      OS << ">";
6068    }
6069  } else if (const ShuffleVectorSDNode *SVN =
6070               dyn_cast<ShuffleVectorSDNode>(this)) {
6071    OS << "<";
6072    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6073      int Idx = SVN->getMaskElt(i);
6074      if (i) OS << ",";
6075      if (Idx < 0)
6076        OS << "u";
6077      else
6078        OS << Idx;
6079    }
6080    OS << ">";
6081  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6082    OS << '<' << CSDN->getAPIntValue() << '>';
6083  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6084    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6085      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6086    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6087      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6088    else {
6089      OS << "<APFloat(";
6090      CSDN->getValueAPF().bitcastToAPInt().dump();
6091      OS << ")>";
6092    }
6093  } else if (const GlobalAddressSDNode *GADN =
6094             dyn_cast<GlobalAddressSDNode>(this)) {
6095    int64_t offset = GADN->getOffset();
6096    OS << '<';
6097    WriteAsOperand(OS, GADN->getGlobal());
6098    OS << '>';
6099    if (offset > 0)
6100      OS << " + " << offset;
6101    else
6102      OS << " " << offset;
6103    if (unsigned int TF = GADN->getTargetFlags())
6104      OS << " [TF=" << TF << ']';
6105  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6106    OS << "<" << FIDN->getIndex() << ">";
6107  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6108    OS << "<" << JTDN->getIndex() << ">";
6109    if (unsigned int TF = JTDN->getTargetFlags())
6110      OS << " [TF=" << TF << ']';
6111  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6112    int offset = CP->getOffset();
6113    if (CP->isMachineConstantPoolEntry())
6114      OS << "<" << *CP->getMachineCPVal() << ">";
6115    else
6116      OS << "<" << *CP->getConstVal() << ">";
6117    if (offset > 0)
6118      OS << " + " << offset;
6119    else
6120      OS << " " << offset;
6121    if (unsigned int TF = CP->getTargetFlags())
6122      OS << " [TF=" << TF << ']';
6123  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6124    OS << "<";
6125    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6126    if (LBB)
6127      OS << LBB->getName() << " ";
6128    OS << (const void*)BBDN->getBasicBlock() << ">";
6129  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6130    OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6131  } else if (const ExternalSymbolSDNode *ES =
6132             dyn_cast<ExternalSymbolSDNode>(this)) {
6133    OS << "'" << ES->getSymbol() << "'";
6134    if (unsigned int TF = ES->getTargetFlags())
6135      OS << " [TF=" << TF << ']';
6136  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6137    if (M->getValue())
6138      OS << "<" << M->getValue() << ">";
6139    else
6140      OS << "<null>";
6141  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6142    if (MD->getMD())
6143      OS << "<" << MD->getMD() << ">";
6144    else
6145      OS << "<null>";
6146  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6147    OS << ":" << N->getVT().getEVTString();
6148  }
6149  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6150    OS << "<" << *LD->getMemOperand();
6151
6152    bool doExt = true;
6153    switch (LD->getExtensionType()) {
6154    default: doExt = false; break;
6155    case ISD::EXTLOAD: OS << ", anyext"; break;
6156    case ISD::SEXTLOAD: OS << ", sext"; break;
6157    case ISD::ZEXTLOAD: OS << ", zext"; break;
6158    }
6159    if (doExt)
6160      OS << " from " << LD->getMemoryVT().getEVTString();
6161
6162    const char *AM = getIndexedModeName(LD->getAddressingMode());
6163    if (*AM)
6164      OS << ", " << AM;
6165
6166    OS << ">";
6167  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6168    OS << "<" << *ST->getMemOperand();
6169
6170    if (ST->isTruncatingStore())
6171      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6172
6173    const char *AM = getIndexedModeName(ST->getAddressingMode());
6174    if (*AM)
6175      OS << ", " << AM;
6176
6177    OS << ">";
6178  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6179    OS << "<" << *M->getMemOperand() << ">";
6180  } else if (const BlockAddressSDNode *BA =
6181               dyn_cast<BlockAddressSDNode>(this)) {
6182    OS << "<";
6183    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6184    OS << ", ";
6185    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6186    OS << ">";
6187    if (unsigned int TF = BA->getTargetFlags())
6188      OS << " [TF=" << TF << ']';
6189  }
6190
6191  if (G)
6192    if (unsigned Order = G->GetOrdering(this))
6193      OS << " [ORD=" << Order << ']';
6194
6195  if (getNodeId() != -1)
6196    OS << " [ID=" << getNodeId() << ']';
6197
6198  DebugLoc dl = getDebugLoc();
6199  if (G && !dl.isUnknown()) {
6200    DIScope
6201      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6202    OS << " dbg:";
6203    // Omit the directory, since it's usually long and uninteresting.
6204    if (Scope.Verify())
6205      OS << Scope.getFilename();
6206    else
6207      OS << "<unknown>";
6208    OS << ':' << dl.getLine();
6209    if (dl.getCol() != 0)
6210      OS << ':' << dl.getCol();
6211  }
6212}
6213
6214void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6215  print_types(OS, G);
6216  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6217    if (i) OS << ", "; else OS << " ";
6218    OS << (void*)getOperand(i).getNode();
6219    if (unsigned RN = getOperand(i).getResNo())
6220      OS << ":" << RN;
6221  }
6222  print_details(OS, G);
6223}
6224
6225static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6226                                  const SelectionDAG *G, unsigned depth,
6227                                  unsigned indent)
6228{
6229  if (depth == 0)
6230    return;
6231
6232  OS.indent(indent);
6233
6234  N->print(OS, G);
6235
6236  if (depth < 1)
6237    return;
6238
6239  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6240    // Don't follow chain operands.
6241    if (N->getOperand(i).getValueType() == MVT::Other)
6242      continue;
6243    OS << '\n';
6244    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6245  }
6246}
6247
6248void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6249                            unsigned depth) const {
6250  printrWithDepthHelper(OS, this, G, depth, 0);
6251}
6252
6253void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6254  // Don't print impossibly deep things.
6255  printrWithDepth(OS, G, 10);
6256}
6257
6258void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6259  printrWithDepth(dbgs(), G, depth);
6260}
6261
6262void SDNode::dumprFull(const SelectionDAG *G) const {
6263  // Don't print impossibly deep things.
6264  dumprWithDepth(G, 10);
6265}
6266
6267static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6268  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6269    if (N->getOperand(i).getNode()->hasOneUse())
6270      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6271    else
6272      dbgs() << "\n" << std::string(indent+2, ' ')
6273           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6274
6275
6276  dbgs() << "\n";
6277  dbgs().indent(indent);
6278  N->dump(G);
6279}
6280
6281SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6282  assert(N->getNumValues() == 1 &&
6283         "Can't unroll a vector with multiple results!");
6284
6285  EVT VT = N->getValueType(0);
6286  unsigned NE = VT.getVectorNumElements();
6287  EVT EltVT = VT.getVectorElementType();
6288  DebugLoc dl = N->getDebugLoc();
6289
6290  SmallVector<SDValue, 8> Scalars;
6291  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6292
6293  // If ResNE is 0, fully unroll the vector op.
6294  if (ResNE == 0)
6295    ResNE = NE;
6296  else if (NE > ResNE)
6297    NE = ResNE;
6298
6299  unsigned i;
6300  for (i= 0; i != NE; ++i) {
6301    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6302      SDValue Operand = N->getOperand(j);
6303      EVT OperandVT = Operand.getValueType();
6304      if (OperandVT.isVector()) {
6305        // A vector operand; extract a single element.
6306        EVT OperandEltVT = OperandVT.getVectorElementType();
6307        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6308                              OperandEltVT,
6309                              Operand,
6310                              getConstant(i, TLI.getPointerTy()));
6311      } else {
6312        // A scalar operand; just use it as is.
6313        Operands[j] = Operand;
6314      }
6315    }
6316
6317    switch (N->getOpcode()) {
6318    default:
6319      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6320                                &Operands[0], Operands.size()));
6321      break;
6322    case ISD::SHL:
6323    case ISD::SRA:
6324    case ISD::SRL:
6325    case ISD::ROTL:
6326    case ISD::ROTR:
6327      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6328                                getShiftAmountOperand(Operands[0].getValueType(),
6329                                                      Operands[1])));
6330      break;
6331    case ISD::SIGN_EXTEND_INREG:
6332    case ISD::FP_ROUND_INREG: {
6333      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6334      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6335                                Operands[0],
6336                                getValueType(ExtVT)));
6337    }
6338    }
6339  }
6340
6341  for (; i < ResNE; ++i)
6342    Scalars.push_back(getUNDEF(EltVT));
6343
6344  return getNode(ISD::BUILD_VECTOR, dl,
6345                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6346                 &Scalars[0], Scalars.size());
6347}
6348
6349
6350/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6351/// location that is 'Dist' units away from the location that the 'Base' load
6352/// is loading from.
6353bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6354                                     unsigned Bytes, int Dist) const {
6355  if (LD->getChain() != Base->getChain())
6356    return false;
6357  EVT VT = LD->getValueType(0);
6358  if (VT.getSizeInBits() / 8 != Bytes)
6359    return false;
6360
6361  SDValue Loc = LD->getOperand(1);
6362  SDValue BaseLoc = Base->getOperand(1);
6363  if (Loc.getOpcode() == ISD::FrameIndex) {
6364    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6365      return false;
6366    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6367    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6368    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6369    int FS  = MFI->getObjectSize(FI);
6370    int BFS = MFI->getObjectSize(BFI);
6371    if (FS != BFS || FS != (int)Bytes) return false;
6372    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6373  }
6374
6375  // Handle X+C
6376  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6377      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6378    return true;
6379
6380  const GlobalValue *GV1 = NULL;
6381  const GlobalValue *GV2 = NULL;
6382  int64_t Offset1 = 0;
6383  int64_t Offset2 = 0;
6384  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6385  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6386  if (isGA1 && isGA2 && GV1 == GV2)
6387    return Offset1 == (Offset2 + Dist*Bytes);
6388  return false;
6389}
6390
6391
6392/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6393/// it cannot be inferred.
6394unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6395  // If this is a GlobalAddress + cst, return the alignment.
6396  const GlobalValue *GV;
6397  int64_t GVOffset = 0;
6398  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6399    // If GV has specified alignment, then use it. Otherwise, use the preferred
6400    // alignment.
6401    unsigned Align = GV->getAlignment();
6402    if (!Align) {
6403      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6404        if (GVar->hasInitializer()) {
6405          const TargetData *TD = TLI.getTargetData();
6406          Align = TD->getPreferredAlignment(GVar);
6407        }
6408      }
6409    }
6410    return MinAlign(Align, GVOffset);
6411  }
6412
6413  // If this is a direct reference to a stack slot, use information about the
6414  // stack slot's alignment.
6415  int FrameIdx = 1 << 31;
6416  int64_t FrameOffset = 0;
6417  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6418    FrameIdx = FI->getIndex();
6419  } else if (isBaseWithConstantOffset(Ptr) &&
6420             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6421    // Handle FI+Cst
6422    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6423    FrameOffset = Ptr.getConstantOperandVal(1);
6424  }
6425
6426  if (FrameIdx != (1 << 31)) {
6427    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6428    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6429                                    FrameOffset);
6430    return FIInfoAlign;
6431  }
6432
6433  return 0;
6434}
6435
6436void SelectionDAG::dump() const {
6437  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6438
6439  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6440       I != E; ++I) {
6441    const SDNode *N = I;
6442    if (!N->hasOneUse() && N != getRoot().getNode())
6443      DumpNodes(N, 2, this);
6444  }
6445
6446  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6447
6448  dbgs() << "\n\n";
6449}
6450
6451void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6452  print_types(OS, G);
6453  print_details(OS, G);
6454}
6455
6456typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6457static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6458                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6459  if (!once.insert(N))          // If we've been here before, return now.
6460    return;
6461
6462  // Dump the current SDNode, but don't end the line yet.
6463  OS << std::string(indent, ' ');
6464  N->printr(OS, G);
6465
6466  // Having printed this SDNode, walk the children:
6467  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6468    const SDNode *child = N->getOperand(i).getNode();
6469
6470    if (i) OS << ",";
6471    OS << " ";
6472
6473    if (child->getNumOperands() == 0) {
6474      // This child has no grandchildren; print it inline right here.
6475      child->printr(OS, G);
6476      once.insert(child);
6477    } else {         // Just the address. FIXME: also print the child's opcode.
6478      OS << (void*)child;
6479      if (unsigned RN = N->getOperand(i).getResNo())
6480        OS << ":" << RN;
6481    }
6482  }
6483
6484  OS << "\n";
6485
6486  // Dump children that have grandchildren on their own line(s).
6487  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6488    const SDNode *child = N->getOperand(i).getNode();
6489    DumpNodesr(OS, child, indent+2, G, once);
6490  }
6491}
6492
6493void SDNode::dumpr() const {
6494  VisitedSDNodeSet once;
6495  DumpNodesr(dbgs(), this, 0, 0, once);
6496}
6497
6498void SDNode::dumpr(const SelectionDAG *G) const {
6499  VisitedSDNodeSet once;
6500  DumpNodesr(dbgs(), this, 0, G, once);
6501}
6502
6503
6504// getAddressSpace - Return the address space this GlobalAddress belongs to.
6505unsigned GlobalAddressSDNode::getAddressSpace() const {
6506  return getGlobal()->getType()->getAddressSpace();
6507}
6508
6509
6510const Type *ConstantPoolSDNode::getType() const {
6511  if (isMachineConstantPoolEntry())
6512    return Val.MachineCPVal->getType();
6513  return Val.ConstVal->getType();
6514}
6515
6516bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6517                                        APInt &SplatUndef,
6518                                        unsigned &SplatBitSize,
6519                                        bool &HasAnyUndefs,
6520                                        unsigned MinSplatBits,
6521                                        bool isBigEndian) {
6522  EVT VT = getValueType(0);
6523  assert(VT.isVector() && "Expected a vector type");
6524  unsigned sz = VT.getSizeInBits();
6525  if (MinSplatBits > sz)
6526    return false;
6527
6528  SplatValue = APInt(sz, 0);
6529  SplatUndef = APInt(sz, 0);
6530
6531  // Get the bits.  Bits with undefined values (when the corresponding element
6532  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6533  // in SplatValue.  If any of the values are not constant, give up and return
6534  // false.
6535  unsigned int nOps = getNumOperands();
6536  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6537  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6538
6539  for (unsigned j = 0; j < nOps; ++j) {
6540    unsigned i = isBigEndian ? nOps-1-j : j;
6541    SDValue OpVal = getOperand(i);
6542    unsigned BitPos = j * EltBitSize;
6543
6544    if (OpVal.getOpcode() == ISD::UNDEF)
6545      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6546    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6547      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6548                    zextOrTrunc(sz) << BitPos;
6549    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6550      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6551     else
6552      return false;
6553  }
6554
6555  // The build_vector is all constants or undefs.  Find the smallest element
6556  // size that splats the vector.
6557
6558  HasAnyUndefs = (SplatUndef != 0);
6559  while (sz > 8) {
6560
6561    unsigned HalfSize = sz / 2;
6562    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6563    APInt LowValue = SplatValue.trunc(HalfSize);
6564    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6565    APInt LowUndef = SplatUndef.trunc(HalfSize);
6566
6567    // If the two halves do not match (ignoring undef bits), stop here.
6568    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6569        MinSplatBits > HalfSize)
6570      break;
6571
6572    SplatValue = HighValue | LowValue;
6573    SplatUndef = HighUndef & LowUndef;
6574
6575    sz = HalfSize;
6576  }
6577
6578  SplatBitSize = sz;
6579  return true;
6580}
6581
6582bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6583  // Find the first non-undef value in the shuffle mask.
6584  unsigned i, e;
6585  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6586    /* search */;
6587
6588  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6589
6590  // Make sure all remaining elements are either undef or the same as the first
6591  // non-undef value.
6592  for (int Idx = Mask[i]; i != e; ++i)
6593    if (Mask[i] >= 0 && Mask[i] != Idx)
6594      return false;
6595  return true;
6596}
6597
6598#ifdef XDEBUG
6599static void checkForCyclesHelper(const SDNode *N,
6600                                 SmallPtrSet<const SDNode*, 32> &Visited,
6601                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6602  // If this node has already been checked, don't check it again.
6603  if (Checked.count(N))
6604    return;
6605
6606  // If a node has already been visited on this depth-first walk, reject it as
6607  // a cycle.
6608  if (!Visited.insert(N)) {
6609    dbgs() << "Offending node:\n";
6610    N->dumprFull();
6611    errs() << "Detected cycle in SelectionDAG\n";
6612    abort();
6613  }
6614
6615  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6616    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6617
6618  Checked.insert(N);
6619  Visited.erase(N);
6620}
6621#endif
6622
6623void llvm::checkForCycles(const llvm::SDNode *N) {
6624#ifdef XDEBUG
6625  assert(N && "Checking nonexistant SDNode");
6626  SmallPtrSet<const SDNode*, 32> visited;
6627  SmallPtrSet<const SDNode*, 32> checked;
6628  checkForCyclesHelper(N, visited, checked);
6629#endif
6630}
6631
6632void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6633  checkForCycles(DAG->getRoot().getNode());
6634}
6635