SelectionDAG.cpp revision 383b5f6b91914454a9a8a6d829b4eeb714c75113
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(const TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  DbgInfo->clear();
813  delete DbgInfo;
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839  delete Ordering;
840  Ordering = new SDNodeOrdering();
841  DbgInfo->clear();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  EVT EltVT = VT.getScalarType();
936
937  // Do the map lookup using the actual bit pattern for the floating point
938  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
939  // we don't have issues with SNANs.
940  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
943  ID.AddPointer(&V);
944  void *IP = 0;
945  SDNode *N = NULL;
946  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
947    if (!VT.isVector())
948      return SDValue(N, 0);
949
950  if (!N) {
951    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
952    CSEMap.InsertNode(N, IP);
953    AllNodes.push_back(N);
954  }
955
956  SDValue Result(N, 0);
957  if (VT.isVector()) {
958    SmallVector<SDValue, 8> Ops;
959    Ops.assign(VT.getVectorNumElements(), Result);
960    // FIXME DebugLoc info might be appropriate here
961    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
967  EVT EltVT = VT.getScalarType();
968  if (EltVT==MVT::f32)
969    return getConstantFP(APFloat((float)Val), VT, isTarget);
970  else
971    return getConstantFP(APFloat(Val), VT, isTarget);
972}
973
974SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
975                                       EVT VT, int64_t Offset,
976                                       bool isTargetGA,
977                                       unsigned char TargetFlags) {
978  assert((TargetFlags == 0 || isTargetGA) &&
979         "Cannot set target flags on target-independent globals");
980
981  // Truncate (with sign-extension) the offset value to the pointer size.
982  EVT PTy = TLI.getPointerTy();
983  unsigned BitWidth = PTy.getSizeInBits();
984  if (BitWidth < 64)
985    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
986
987  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
988  if (!GVar) {
989    // If GV is an alias then use the aliasee for determining thread-localness.
990    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
991      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
992  }
993
994  unsigned Opc;
995  if (GVar && GVar->isThreadLocal())
996    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
997  else
998    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddPointer(GV);
1003  ID.AddInteger(Offset);
1004  ID.AddInteger(TargetFlags);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008
1009  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1010                                                      Offset, TargetFlags);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1017  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(FI);
1021  void *IP = 0;
1022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1023    return SDValue(E, 0);
1024
1025  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1026  CSEMap.InsertNode(N, IP);
1027  AllNodes.push_back(N);
1028  return SDValue(N, 0);
1029}
1030
1031SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1032                                   unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent jump tables");
1035  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1036  FoldingSetNodeID ID;
1037  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1038  ID.AddInteger(JTI);
1039  ID.AddInteger(TargetFlags);
1040  void *IP = 0;
1041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1042    return SDValue(E, 0);
1043
1044  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1045                                                  TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1052                                      unsigned Alignment, int Offset,
1053                                      bool isTarget,
1054                                      unsigned char TargetFlags) {
1055  assert((TargetFlags == 0 || isTarget) &&
1056         "Cannot set target flags on target-independent globals");
1057  if (Alignment == 0)
1058    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1059  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddInteger(Alignment);
1063  ID.AddInteger(Offset);
1064  ID.AddPointer(C);
1065  ID.AddInteger(TargetFlags);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1071                                                     Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077
1078SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1079                                      unsigned Alignment, int Offset,
1080                                      bool isTarget,
1081                                      unsigned char TargetFlags) {
1082  assert((TargetFlags == 0 || isTarget) &&
1083         "Cannot set target flags on target-independent globals");
1084  if (Alignment == 0)
1085    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1086  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1089  ID.AddInteger(Alignment);
1090  ID.AddInteger(Offset);
1091  C->AddSelectionDAGCSEId(ID);
1092  ID.AddInteger(TargetFlags);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1098                                                     Alignment, TargetFlags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1107  ID.AddPointer(MBB);
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111
1112  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = new (NodeAllocator) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160
1161  return SDValue(CondCodeNodes[Cond], 0);
1162}
1163
1164// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1165// the shuffle mask M that point at N1 to point at N2, and indices that point
1166// N2 to point at N1.
1167static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1168  std::swap(N1, N2);
1169  int NElts = M.size();
1170  for (int i = 0; i != NElts; ++i) {
1171    if (M[i] >= NElts)
1172      M[i] -= NElts;
1173    else if (M[i] >= 0)
1174      M[i] += NElts;
1175  }
1176}
1177
1178SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1179                                       SDValue N2, const int *Mask) {
1180  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1181  assert(VT.isVector() && N1.getValueType().isVector() &&
1182         "Vector Shuffle VTs must be a vectors");
1183  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1184         && "Vector Shuffle VTs must have same element type");
1185
1186  // Canonicalize shuffle undef, undef -> undef
1187  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1188    return getUNDEF(VT);
1189
1190  // Validate that all indices in Mask are within the range of the elements
1191  // input to the shuffle.
1192  unsigned NElts = VT.getVectorNumElements();
1193  SmallVector<int, 8> MaskVec;
1194  for (unsigned i = 0; i != NElts; ++i) {
1195    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1196    MaskVec.push_back(Mask[i]);
1197  }
1198
1199  // Canonicalize shuffle v, v -> v, undef
1200  if (N1 == N2) {
1201    N2 = getUNDEF(VT);
1202    for (unsigned i = 0; i != NElts; ++i)
1203      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1204  }
1205
1206  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1207  if (N1.getOpcode() == ISD::UNDEF)
1208    commuteShuffle(N1, N2, MaskVec);
1209
1210  // Canonicalize all index into lhs, -> shuffle lhs, undef
1211  // Canonicalize all index into rhs, -> shuffle rhs, undef
1212  bool AllLHS = true, AllRHS = true;
1213  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1214  for (unsigned i = 0; i != NElts; ++i) {
1215    if (MaskVec[i] >= (int)NElts) {
1216      if (N2Undef)
1217        MaskVec[i] = -1;
1218      else
1219        AllLHS = false;
1220    } else if (MaskVec[i] >= 0) {
1221      AllRHS = false;
1222    }
1223  }
1224  if (AllLHS && AllRHS)
1225    return getUNDEF(VT);
1226  if (AllLHS && !N2Undef)
1227    N2 = getUNDEF(VT);
1228  if (AllRHS) {
1229    N1 = getUNDEF(VT);
1230    commuteShuffle(N1, N2, MaskVec);
1231  }
1232
1233  // If Identity shuffle, or all shuffle in to undef, return that node.
1234  bool AllUndef = true;
1235  bool Identity = true;
1236  for (unsigned i = 0; i != NElts; ++i) {
1237    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1238    if (MaskVec[i] >= 0) AllUndef = false;
1239  }
1240  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1241    return N1;
1242  if (AllUndef)
1243    return getUNDEF(VT);
1244
1245  FoldingSetNodeID ID;
1246  SDValue Ops[2] = { N1, N2 };
1247  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1248  for (unsigned i = 0; i != NElts; ++i)
1249    ID.AddInteger(MaskVec[i]);
1250
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254
1255  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1256  // SDNode doesn't have access to it.  This memory will be "leaked" when
1257  // the node is deallocated, but recovered when the NodeAllocator is released.
1258  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1259  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1260
1261  ShuffleVectorSDNode *N =
1262    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1263  CSEMap.InsertNode(N, IP);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1269                                       SDValue Val, SDValue DTy,
1270                                       SDValue STy, SDValue Rnd, SDValue Sat,
1271                                       ISD::CvtCode Code) {
1272  // If the src and dest types are the same and the conversion is between
1273  // integer types of the same sign or two floats, no conversion is necessary.
1274  if (DTy == STy &&
1275      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1276    return Val;
1277
1278  FoldingSetNodeID ID;
1279  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1280  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284
1285  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1286                                                           Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1307  FoldingSetNodeID ID;
1308  SDValue Ops[] = { Root };
1309  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1310  ID.AddPointer(Label);
1311  void *IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321
1322SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1323                                      bool isTarget,
1324                                      unsigned char TargetFlags) {
1325  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1326
1327  FoldingSetNodeID ID;
1328  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1329  ID.AddPointer(BA);
1330  ID.AddInteger(TargetFlags);
1331  void *IP = 0;
1332  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1333    return SDValue(E, 0);
1334
1335  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1336  CSEMap.InsertNode(N, IP);
1337  AllNodes.push_back(N);
1338  return SDValue(N, 0);
1339}
1340
1341SDValue SelectionDAG::getSrcValue(const Value *V) {
1342  assert((!V || V->getType()->isPointerTy()) &&
1343         "SrcValue is not a pointer?");
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1347  ID.AddPointer(V);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1354  CSEMap.InsertNode(N, IP);
1355  AllNodes.push_back(N);
1356  return SDValue(N, 0);
1357}
1358
1359/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1360SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1361  FoldingSetNodeID ID;
1362  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1363  ID.AddPointer(MD);
1364
1365  void *IP = 0;
1366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1367    return SDValue(E, 0);
1368
1369  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1370  CSEMap.InsertNode(N, IP);
1371  AllNodes.push_back(N);
1372  return SDValue(N, 0);
1373}
1374
1375
1376/// getShiftAmountOperand - Return the specified value casted to
1377/// the target's desired shift amount type.
1378SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1379  EVT OpTy = Op.getValueType();
1380  MVT ShTy = TLI.getShiftAmountTy();
1381  if (OpTy == ShTy || OpTy.isVector()) return Op;
1382
1383  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1384  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1385}
1386
1387/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1388/// specified value type.
1389SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  unsigned ByteSize = VT.getStoreSize();
1392  const Type *Ty = VT.getTypeForEVT(*getContext());
1393  unsigned StackAlign =
1394  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1395
1396  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400/// CreateStackTemporary - Create a stack temporary suitable for holding
1401/// either of the specified value types.
1402SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1403  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1404                            VT2.getStoreSizeInBits())/8;
1405  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1406  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1407  const TargetData *TD = TLI.getTargetData();
1408  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1409                            TD->getPrefTypeAlignment(Ty2));
1410
1411  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1412  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1413  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1414}
1415
1416SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1417                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1418  // These setcc operations always fold.
1419  switch (Cond) {
1420  default: break;
1421  case ISD::SETFALSE:
1422  case ISD::SETFALSE2: return getConstant(0, VT);
1423  case ISD::SETTRUE:
1424  case ISD::SETTRUE2:  return getConstant(1, VT);
1425
1426  case ISD::SETOEQ:
1427  case ISD::SETOGT:
1428  case ISD::SETOGE:
1429  case ISD::SETOLT:
1430  case ISD::SETOLE:
1431  case ISD::SETONE:
1432  case ISD::SETO:
1433  case ISD::SETUO:
1434  case ISD::SETUEQ:
1435  case ISD::SETUNE:
1436    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1437    break;
1438  }
1439
1440  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1441    const APInt &C2 = N2C->getAPIntValue();
1442    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1443      const APInt &C1 = N1C->getAPIntValue();
1444
1445      switch (Cond) {
1446      default: llvm_unreachable("Unknown integer setcc!");
1447      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1448      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1449      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1450      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1451      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1452      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1453      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1454      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1455      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1456      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1457      }
1458    }
1459  }
1460  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1461    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1462      // No compile time operations on this type yet.
1463      if (N1C->getValueType(0) == MVT::ppcf128)
1464        return SDValue();
1465
1466      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1467      switch (Cond) {
1468      default: break;
1469      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1473      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1477                                           R==APFloat::cmpLessThan, VT);
1478      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1482      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1486      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1490                                           R==APFloat::cmpEqual, VT);
1491      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1497      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1498      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1501      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1502                                           R==APFloat::cmpLessThan, VT);
1503      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpUnordered, VT);
1505      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1506      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1507      }
1508    } else {
1509      // Ensure that the constant occurs on the RHS.
1510      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1511    }
1512  }
1513
1514  // Could not fold it.
1515  return SDValue();
1516}
1517
1518/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1519/// use this predicate to simplify operations downstream.
1520bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1521  // This predicate is not safe for vector operations.
1522  if (Op.getValueType().isVector())
1523    return false;
1524
1525  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1526  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1527}
1528
1529/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1530/// this predicate to simplify operations downstream.  Mask is known to be zero
1531/// for bits that V cannot have.
1532bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1533                                     unsigned Depth) const {
1534  APInt KnownZero, KnownOne;
1535  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1536  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537  return (KnownZero & Mask) == Mask;
1538}
1539
1540/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1541/// known to be either zero or one and return them in the KnownZero/KnownOne
1542/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1543/// processing.
1544void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1545                                     APInt &KnownZero, APInt &KnownOne,
1546                                     unsigned Depth) const {
1547  unsigned BitWidth = Mask.getBitWidth();
1548  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1549         "Mask size mismatches value type size!");
1550
1551  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1552  if (Depth == 6 || Mask == 0)
1553    return;  // Limit search depth.
1554
1555  APInt KnownZero2, KnownOne2;
1556
1557  switch (Op.getOpcode()) {
1558  case ISD::Constant:
1559    // We know all of the bits for a constant!
1560    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1561    KnownZero = ~KnownOne & Mask;
1562    return;
1563  case ISD::AND:
1564    // If either the LHS or the RHS are Zero, the result is zero.
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1567                      KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-1 bits are only known if set in both the LHS & RHS.
1572    KnownOne &= KnownOne2;
1573    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1574    KnownZero |= KnownZero2;
1575    return;
1576  case ISD::OR:
1577    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1578    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1579                      KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are only known if clear in both the LHS & RHS.
1584    KnownZero &= KnownZero2;
1585    // Output known-1 are known to be set if set in either the LHS | RHS.
1586    KnownOne |= KnownOne2;
1587    return;
1588  case ISD::XOR: {
1589    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1590    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593
1594    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1595    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1596    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1597    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1598    KnownZero = KnownZeroOut;
1599    return;
1600  }
1601  case ISD::MUL: {
1602    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1603    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1604    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1605    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1606    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1607
1608    // If low bits are zero in either operand, output low known-0 bits.
1609    // Also compute a conserative estimate for high known-0 bits.
1610    // More trickiness is possible, but this is sufficient for the
1611    // interesting case of alignment computation.
1612    KnownOne.clear();
1613    unsigned TrailZ = KnownZero.countTrailingOnes() +
1614                      KnownZero2.countTrailingOnes();
1615    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1616                               KnownZero2.countLeadingOnes(),
1617                               BitWidth) - BitWidth;
1618
1619    TrailZ = std::min(TrailZ, BitWidth);
1620    LeadZ = std::min(LeadZ, BitWidth);
1621    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1622                APInt::getHighBitsSet(BitWidth, LeadZ);
1623    KnownZero &= Mask;
1624    return;
1625  }
1626  case ISD::UDIV: {
1627    // For the purposes of computing leading zeros we can conservatively
1628    // treat a udiv as a logical right shift by the power of 2 known to
1629    // be less than the denominator.
1630    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1631    ComputeMaskedBits(Op.getOperand(0),
1632                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1633    unsigned LeadZ = KnownZero2.countLeadingOnes();
1634
1635    KnownOne2.clear();
1636    KnownZero2.clear();
1637    ComputeMaskedBits(Op.getOperand(1),
1638                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1639    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1640    if (RHSUnknownLeadingOnes != BitWidth)
1641      LeadZ = std::min(BitWidth,
1642                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1643
1644    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1645    return;
1646  }
1647  case ISD::SELECT:
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SELECT_CC:
1658    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1659    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1660    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1662
1663    // Only known if known in both the LHS and RHS.
1664    KnownOne &= KnownOne2;
1665    KnownZero &= KnownZero2;
1666    return;
1667  case ISD::SADDO:
1668  case ISD::UADDO:
1669  case ISD::SSUBO:
1670  case ISD::USUBO:
1671  case ISD::SMULO:
1672  case ISD::UMULO:
1673    if (Op.getResNo() != 1)
1674      return;
1675    // The boolean result conforms to getBooleanContents.  Fall through.
1676  case ISD::SETCC:
1677    // If we know the result of a setcc has the top bits zero, use this info.
1678    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1679        BitWidth > 1)
1680      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1681    return;
1682  case ISD::SHL:
1683    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1684    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1685      unsigned ShAmt = SA->getZExtValue();
1686
1687      // If the shift count is an invalid immediate, don't do anything.
1688      if (ShAmt >= BitWidth)
1689        return;
1690
1691      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1692                        KnownZero, KnownOne, Depth+1);
1693      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694      KnownZero <<= ShAmt;
1695      KnownOne  <<= ShAmt;
1696      // low bits known zero.
1697      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1698    }
1699    return;
1700  case ISD::SRL:
1701    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1702    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1703      unsigned ShAmt = SA->getZExtValue();
1704
1705      // If the shift count is an invalid immediate, don't do anything.
1706      if (ShAmt >= BitWidth)
1707        return;
1708
1709      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1710                        KnownZero, KnownOne, Depth+1);
1711      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712      KnownZero = KnownZero.lshr(ShAmt);
1713      KnownOne  = KnownOne.lshr(ShAmt);
1714
1715      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1716      KnownZero |= HighBits;  // High bits known zero.
1717    }
1718    return;
1719  case ISD::SRA:
1720    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1721      unsigned ShAmt = SA->getZExtValue();
1722
1723      // If the shift count is an invalid immediate, don't do anything.
1724      if (ShAmt >= BitWidth)
1725        return;
1726
1727      APInt InDemandedMask = (Mask << ShAmt);
1728      // If any of the demanded bits are produced by the sign extension, we also
1729      // demand the input sign bit.
1730      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1731      if (HighBits.getBoolValue())
1732        InDemandedMask |= APInt::getSignBit(BitWidth);
1733
1734      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1735                        Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero = KnownZero.lshr(ShAmt);
1738      KnownOne  = KnownOne.lshr(ShAmt);
1739
1740      // Handle the sign bits.
1741      APInt SignBit = APInt::getSignBit(BitWidth);
1742      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1743
1744      if (KnownZero.intersects(SignBit)) {
1745        KnownZero |= HighBits;  // New bits are known zero.
1746      } else if (KnownOne.intersects(SignBit)) {
1747        KnownOne  |= HighBits;  // New bits are known one.
1748      }
1749    }
1750    return;
1751  case ISD::SIGN_EXTEND_INREG: {
1752    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1753    unsigned EBits = EVT.getScalarType().getSizeInBits();
1754
1755    // Sign extension.  Compute the demanded bits in the result that are not
1756    // present in the input.
1757    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1758
1759    APInt InSignBit = APInt::getSignBit(EBits);
1760    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1761
1762    // If the sign extended bits are demanded, we know that the sign
1763    // bit is demanded.
1764    InSignBit.zext(BitWidth);
1765    if (NewBits.getBoolValue())
1766      InputDemandedBits |= InSignBit;
1767
1768    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1769                      KnownZero, KnownOne, Depth+1);
1770    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1771
1772    // If the sign bit of the input is known set or clear, then we know the
1773    // top bits of the result.
1774    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1775      KnownZero |= NewBits;
1776      KnownOne  &= ~NewBits;
1777    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1778      KnownOne  |= NewBits;
1779      KnownZero &= ~NewBits;
1780    } else {                              // Input sign bit unknown
1781      KnownZero &= ~NewBits;
1782      KnownOne  &= ~NewBits;
1783    }
1784    return;
1785  }
1786  case ISD::CTTZ:
1787  case ISD::CTLZ:
1788  case ISD::CTPOP: {
1789    unsigned LowBits = Log2_32(BitWidth)+1;
1790    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1791    KnownOne.clear();
1792    return;
1793  }
1794  case ISD::LOAD: {
1795    if (ISD::isZEXTLoad(Op.getNode())) {
1796      LoadSDNode *LD = cast<LoadSDNode>(Op);
1797      EVT VT = LD->getMemoryVT();
1798      unsigned MemBits = VT.getScalarType().getSizeInBits();
1799      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1800    }
1801    return;
1802  }
1803  case ISD::ZERO_EXTEND: {
1804    EVT InVT = Op.getOperand(0).getValueType();
1805    unsigned InBits = InVT.getScalarType().getSizeInBits();
1806    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1807    APInt InMask    = Mask;
1808    InMask.trunc(InBits);
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812    KnownZero.zext(BitWidth);
1813    KnownOne.zext(BitWidth);
1814    KnownZero |= NewBits;
1815    return;
1816  }
1817  case ISD::SIGN_EXTEND: {
1818    EVT InVT = Op.getOperand(0).getValueType();
1819    unsigned InBits = InVT.getScalarType().getSizeInBits();
1820    APInt InSignBit = APInt::getSignBit(InBits);
1821    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1822    APInt InMask = Mask;
1823    InMask.trunc(InBits);
1824
1825    // If any of the sign extended bits are demanded, we know that the sign
1826    // bit is demanded. Temporarily set this bit in the mask for our callee.
1827    if (NewBits.getBoolValue())
1828      InMask |= InSignBit;
1829
1830    KnownZero.trunc(InBits);
1831    KnownOne.trunc(InBits);
1832    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1833
1834    // Note if the sign bit is known to be zero or one.
1835    bool SignBitKnownZero = KnownZero.isNegative();
1836    bool SignBitKnownOne  = KnownOne.isNegative();
1837    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1838           "Sign bit can't be known to be both zero and one!");
1839
1840    // If the sign bit wasn't actually demanded by our caller, we don't
1841    // want it set in the KnownZero and KnownOne result values. Reset the
1842    // mask and reapply it to the result values.
1843    InMask = Mask;
1844    InMask.trunc(InBits);
1845    KnownZero &= InMask;
1846    KnownOne  &= InMask;
1847
1848    KnownZero.zext(BitWidth);
1849    KnownOne.zext(BitWidth);
1850
1851    // If the sign bit is known zero or one, the top bits match.
1852    if (SignBitKnownZero)
1853      KnownZero |= NewBits;
1854    else if (SignBitKnownOne)
1855      KnownOne  |= NewBits;
1856    return;
1857  }
1858  case ISD::ANY_EXTEND: {
1859    EVT InVT = Op.getOperand(0).getValueType();
1860    unsigned InBits = InVT.getScalarType().getSizeInBits();
1861    APInt InMask = Mask;
1862    InMask.trunc(InBits);
1863    KnownZero.trunc(InBits);
1864    KnownOne.trunc(InBits);
1865    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1866    KnownZero.zext(BitWidth);
1867    KnownOne.zext(BitWidth);
1868    return;
1869  }
1870  case ISD::TRUNCATE: {
1871    EVT InVT = Op.getOperand(0).getValueType();
1872    unsigned InBits = InVT.getScalarType().getSizeInBits();
1873    APInt InMask = Mask;
1874    InMask.zext(InBits);
1875    KnownZero.zext(InBits);
1876    KnownOne.zext(InBits);
1877    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1878    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1879    KnownZero.trunc(BitWidth);
1880    KnownOne.trunc(BitWidth);
1881    break;
1882  }
1883  case ISD::AssertZext: {
1884    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1885    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1886    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1887                      KnownOne, Depth+1);
1888    KnownZero |= (~InMask) & Mask;
1889    return;
1890  }
1891  case ISD::FGETSIGN:
1892    // All bits are zero except the low bit.
1893    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1894    return;
1895
1896  case ISD::SUB: {
1897    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1898      // We know that the top bits of C-X are clear if X contains less bits
1899      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1900      // positive if we can prove that X is >= 0 and < 16.
1901      if (CLHS->getAPIntValue().isNonNegative()) {
1902        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1903        // NLZ can't be BitWidth with no sign bit
1904        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1905        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1906                          Depth+1);
1907
1908        // If all of the MaskV bits are known to be zero, then we know the
1909        // output top bits are zero, because we now know that the output is
1910        // from [0-C].
1911        if ((KnownZero2 & MaskV) == MaskV) {
1912          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1913          // Top bits known zero.
1914          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1915        }
1916      }
1917    }
1918  }
1919  // fall through
1920  case ISD::ADD: {
1921    // Output known-0 bits are known if clear or set in both the low clear bits
1922    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1923    // low 3 bits clear.
1924    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1925    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1926    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1927    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1928
1929    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1930    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1931    KnownZeroOut = std::min(KnownZeroOut,
1932                            KnownZero2.countTrailingOnes());
1933
1934    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1935    return;
1936  }
1937  case ISD::SREM:
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue().abs();
1940      if (RA.isPowerOf2()) {
1941        APInt LowBits = RA - 1;
1942        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1943        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1944
1945        // The low bits of the first operand are unchanged by the srem.
1946        KnownZero = KnownZero2 & LowBits;
1947        KnownOne = KnownOne2 & LowBits;
1948
1949        // If the first operand is non-negative or has all low bits zero, then
1950        // the upper bits are all zero.
1951        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1952          KnownZero |= ~LowBits;
1953
1954        // If the first operand is negative and not all low bits are zero, then
1955        // the upper bits are all one.
1956        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1957          KnownOne |= ~LowBits;
1958
1959        KnownZero &= Mask;
1960        KnownOne &= Mask;
1961
1962        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1963      }
1964    }
1965    return;
1966  case ISD::UREM: {
1967    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1968      const APInt &RA = Rem->getAPIntValue();
1969      if (RA.isPowerOf2()) {
1970        APInt LowBits = (RA - 1);
1971        APInt Mask2 = LowBits & Mask;
1972        KnownZero |= ~LowBits & Mask;
1973        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1974        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1975        break;
1976      }
1977    }
1978
1979    // Since the result is less than or equal to either operand, any leading
1980    // zero bits in either operand must also exist in the result.
1981    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1982    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1983                      Depth+1);
1984    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1985                      Depth+1);
1986
1987    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1988                                KnownZero2.countLeadingOnes());
1989    KnownOne.clear();
1990    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1991    return;
1992  }
1993  default:
1994    // Allow the target to implement this method for its nodes.
1995    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1996  case ISD::INTRINSIC_WO_CHAIN:
1997  case ISD::INTRINSIC_W_CHAIN:
1998  case ISD::INTRINSIC_VOID:
1999      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2000                                         Depth);
2001    }
2002    return;
2003  }
2004}
2005
2006/// ComputeNumSignBits - Return the number of times the sign bit of the
2007/// register is replicated into the other bits.  We know that at least 1 bit
2008/// is always equal to the sign bit (itself), but other cases can give us
2009/// information.  For example, immediately after an "SRA X, 2", we know that
2010/// the top 3 bits are all equal to each other, so we return 3.
2011unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2012  EVT VT = Op.getValueType();
2013  assert(VT.isInteger() && "Invalid VT!");
2014  unsigned VTBits = VT.getScalarType().getSizeInBits();
2015  unsigned Tmp, Tmp2;
2016  unsigned FirstAnswer = 1;
2017
2018  if (Depth == 6)
2019    return 1;  // Limit search depth.
2020
2021  switch (Op.getOpcode()) {
2022  default: break;
2023  case ISD::AssertSext:
2024    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2025    return VTBits-Tmp+1;
2026  case ISD::AssertZext:
2027    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2028    return VTBits-Tmp;
2029
2030  case ISD::Constant: {
2031    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2032    // If negative, return # leading ones.
2033    if (Val.isNegative())
2034      return Val.countLeadingOnes();
2035
2036    // Return # leading zeros.
2037    return Val.countLeadingZeros();
2038  }
2039
2040  case ISD::SIGN_EXTEND:
2041    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2042    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2043
2044  case ISD::SIGN_EXTEND_INREG:
2045    // Max of the input and what this extends.
2046    Tmp =
2047      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2048    Tmp = VTBits-Tmp+1;
2049
2050    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2051    return std::max(Tmp, Tmp2);
2052
2053  case ISD::SRA:
2054    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055    // SRA X, C   -> adds C sign bits.
2056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2057      Tmp += C->getZExtValue();
2058      if (Tmp > VTBits) Tmp = VTBits;
2059    }
2060    return Tmp;
2061  case ISD::SHL:
2062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2063      // shl destroys sign bits.
2064      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2066          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2067      return Tmp - C->getZExtValue();
2068    }
2069    break;
2070  case ISD::AND:
2071  case ISD::OR:
2072  case ISD::XOR:    // NOT is handled here.
2073    // Logical binary ops preserve the number of sign bits at the worst.
2074    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075    if (Tmp != 1) {
2076      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2077      FirstAnswer = std::min(Tmp, Tmp2);
2078      // We computed what we know about the sign bits as our first
2079      // answer. Now proceed to the generic code that uses
2080      // ComputeMaskedBits, and pick whichever answer is better.
2081    }
2082    break;
2083
2084  case ISD::SELECT:
2085    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2086    if (Tmp == 1) return 1;  // Early out.
2087    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2088    return std::min(Tmp, Tmp2);
2089
2090  case ISD::SADDO:
2091  case ISD::UADDO:
2092  case ISD::SSUBO:
2093  case ISD::USUBO:
2094  case ISD::SMULO:
2095  case ISD::UMULO:
2096    if (Op.getResNo() != 1)
2097      break;
2098    // The boolean result conforms to getBooleanContents.  Fall through.
2099  case ISD::SETCC:
2100    // If setcc returns 0/-1, all bits are sign bits.
2101    if (TLI.getBooleanContents() ==
2102        TargetLowering::ZeroOrNegativeOneBooleanContent)
2103      return VTBits;
2104    break;
2105  case ISD::ROTL:
2106  case ISD::ROTR:
2107    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2108      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2109
2110      // Handle rotate right by N like a rotate left by 32-N.
2111      if (Op.getOpcode() == ISD::ROTR)
2112        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2113
2114      // If we aren't rotating out all of the known-in sign bits, return the
2115      // number that are left.  This handles rotl(sext(x), 1) for example.
2116      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2117      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2118    }
2119    break;
2120  case ISD::ADD:
2121    // Add can have at most one carry bit.  Thus we know that the output
2122    // is, at worst, one more bit than the inputs.
2123    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124    if (Tmp == 1) return 1;  // Early out.
2125
2126    // Special case decrementing a value (ADD X, -1):
2127    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2128      if (CRHS->isAllOnesValue()) {
2129        APInt KnownZero, KnownOne;
2130        APInt Mask = APInt::getAllOnesValue(VTBits);
2131        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2132
2133        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2134        // sign bits set.
2135        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2136          return VTBits;
2137
2138        // If we are subtracting one from a positive number, there is no carry
2139        // out of the result.
2140        if (KnownZero.isNegative())
2141          return Tmp;
2142      }
2143
2144    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2145    if (Tmp2 == 1) return 1;
2146      return std::min(Tmp, Tmp2)-1;
2147    break;
2148
2149  case ISD::SUB:
2150    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2151    if (Tmp2 == 1) return 1;
2152
2153    // Handle NEG.
2154    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2155      if (CLHS->isNullValue()) {
2156        APInt KnownZero, KnownOne;
2157        APInt Mask = APInt::getAllOnesValue(VTBits);
2158        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2159        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2160        // sign bits set.
2161        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2162          return VTBits;
2163
2164        // If the input is known to be positive (the sign bit is known clear),
2165        // the output of the NEG has the same number of sign bits as the input.
2166        if (KnownZero.isNegative())
2167          return Tmp2;
2168
2169        // Otherwise, we treat this like a SUB.
2170      }
2171
2172    // Sub can have at most one carry bit.  Thus we know that the output
2173    // is, at worst, one more bit than the inputs.
2174    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2175    if (Tmp == 1) return 1;  // Early out.
2176      return std::min(Tmp, Tmp2)-1;
2177    break;
2178  case ISD::TRUNCATE:
2179    // FIXME: it's tricky to do anything useful for this, but it is an important
2180    // case for targets like X86.
2181    break;
2182  }
2183
2184  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2185  if (Op.getOpcode() == ISD::LOAD) {
2186    LoadSDNode *LD = cast<LoadSDNode>(Op);
2187    unsigned ExtType = LD->getExtensionType();
2188    switch (ExtType) {
2189    default: break;
2190    case ISD::SEXTLOAD:    // '17' bits known
2191      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2192      return VTBits-Tmp+1;
2193    case ISD::ZEXTLOAD:    // '16' bits known
2194      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2195      return VTBits-Tmp;
2196    }
2197  }
2198
2199  // Allow the target to implement this method for its nodes.
2200  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2201      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2202      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2203      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2204    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2205    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2206  }
2207
2208  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2209  // use this information.
2210  APInt KnownZero, KnownOne;
2211  APInt Mask = APInt::getAllOnesValue(VTBits);
2212  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2213
2214  if (KnownZero.isNegative()) {        // sign bit is 0
2215    Mask = KnownZero;
2216  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2217    Mask = KnownOne;
2218  } else {
2219    // Nothing known.
2220    return FirstAnswer;
2221  }
2222
2223  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2224  // the number of identical bits in the top of the input value.
2225  Mask = ~Mask;
2226  Mask <<= Mask.getBitWidth()-VTBits;
2227  // Return # leading zeros.  We use 'min' here in case Val was zero before
2228  // shifting.  We don't want to return '64' as for an i32 "0".
2229  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2230}
2231
2232bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2233  // If we're told that NaNs won't happen, assume they won't.
2234  if (FiniteOnlyFPMath())
2235    return true;
2236
2237  // If the value is a constant, we can obviously see if it is a NaN or not.
2238  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2239    return !C->getValueAPF().isNaN();
2240
2241  // TODO: Recognize more cases here.
2242
2243  return false;
2244}
2245
2246bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2247  // If the value is a constant, we can obviously see if it is a zero or not.
2248  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2249    return !C->isZero();
2250
2251  // TODO: Recognize more cases here.
2252
2253  return false;
2254}
2255
2256bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2257  // Check the obvious case.
2258  if (A == B) return true;
2259
2260  // For for negative and positive zero.
2261  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2262    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2263      if (CA->isZero() && CB->isZero()) return true;
2264
2265  // Otherwise they may not be equal.
2266  return false;
2267}
2268
2269bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2270  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2271  if (!GA) return false;
2272  if (GA->getOffset() != 0) return false;
2273  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2274  if (!GV) return false;
2275  return MF->getMMI().hasDebugInfo();
2276}
2277
2278
2279/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2280/// element of the result of the vector shuffle.
2281SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2282                                          unsigned i) {
2283  EVT VT = N->getValueType(0);
2284  DebugLoc dl = N->getDebugLoc();
2285  if (N->getMaskElt(i) < 0)
2286    return getUNDEF(VT.getVectorElementType());
2287  unsigned Index = N->getMaskElt(i);
2288  unsigned NumElems = VT.getVectorNumElements();
2289  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2290  Index %= NumElems;
2291
2292  if (V.getOpcode() == ISD::BIT_CONVERT) {
2293    V = V.getOperand(0);
2294    EVT VVT = V.getValueType();
2295    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2296      return SDValue();
2297  }
2298  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2299    return (Index == 0) ? V.getOperand(0)
2300                      : getUNDEF(VT.getVectorElementType());
2301  if (V.getOpcode() == ISD::BUILD_VECTOR)
2302    return V.getOperand(Index);
2303  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2304    return getShuffleScalarElt(SVN, Index);
2305  return SDValue();
2306}
2307
2308
2309/// getNode - Gets or creates the specified node.
2310///
2311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2312  FoldingSetNodeID ID;
2313  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2314  void *IP = 0;
2315  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2316    return SDValue(E, 0);
2317
2318  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2319  CSEMap.InsertNode(N, IP);
2320
2321  AllNodes.push_back(N);
2322#ifndef NDEBUG
2323  VerifyNode(N);
2324#endif
2325  return SDValue(N, 0);
2326}
2327
2328SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2329                              EVT VT, SDValue Operand) {
2330  // Constant fold unary operations with an integer constant operand.
2331  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2332    const APInt &Val = C->getAPIntValue();
2333    switch (Opcode) {
2334    default: break;
2335    case ISD::SIGN_EXTEND:
2336      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2337    case ISD::ANY_EXTEND:
2338    case ISD::ZERO_EXTEND:
2339    case ISD::TRUNCATE:
2340      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2341    case ISD::UINT_TO_FP:
2342    case ISD::SINT_TO_FP: {
2343      const uint64_t zero[] = {0, 0};
2344      // No compile time operations on ppcf128.
2345      if (VT == MVT::ppcf128) break;
2346      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2347      (void)apf.convertFromAPInt(Val,
2348                                 Opcode==ISD::SINT_TO_FP,
2349                                 APFloat::rmNearestTiesToEven);
2350      return getConstantFP(apf, VT);
2351    }
2352    case ISD::BIT_CONVERT:
2353      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2354        return getConstantFP(Val.bitsToFloat(), VT);
2355      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2356        return getConstantFP(Val.bitsToDouble(), VT);
2357      break;
2358    case ISD::BSWAP:
2359      return getConstant(Val.byteSwap(), VT);
2360    case ISD::CTPOP:
2361      return getConstant(Val.countPopulation(), VT);
2362    case ISD::CTLZ:
2363      return getConstant(Val.countLeadingZeros(), VT);
2364    case ISD::CTTZ:
2365      return getConstant(Val.countTrailingZeros(), VT);
2366    }
2367  }
2368
2369  // Constant fold unary operations with a floating point constant operand.
2370  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2371    APFloat V = C->getValueAPF();    // make copy
2372    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2373      switch (Opcode) {
2374      case ISD::FNEG:
2375        V.changeSign();
2376        return getConstantFP(V, VT);
2377      case ISD::FABS:
2378        V.clearSign();
2379        return getConstantFP(V, VT);
2380      case ISD::FP_ROUND:
2381      case ISD::FP_EXTEND: {
2382        bool ignored;
2383        // This can return overflow, underflow, or inexact; we don't care.
2384        // FIXME need to be more flexible about rounding mode.
2385        (void)V.convert(*EVTToAPFloatSemantics(VT),
2386                        APFloat::rmNearestTiesToEven, &ignored);
2387        return getConstantFP(V, VT);
2388      }
2389      case ISD::FP_TO_SINT:
2390      case ISD::FP_TO_UINT: {
2391        integerPart x[2];
2392        bool ignored;
2393        assert(integerPartWidth >= 64);
2394        // FIXME need to be more flexible about rounding mode.
2395        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2396                              Opcode==ISD::FP_TO_SINT,
2397                              APFloat::rmTowardZero, &ignored);
2398        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2399          break;
2400        APInt api(VT.getSizeInBits(), 2, x);
2401        return getConstant(api, VT);
2402      }
2403      case ISD::BIT_CONVERT:
2404        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2405          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2406        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2407          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2408        break;
2409      }
2410    }
2411  }
2412
2413  unsigned OpOpcode = Operand.getNode()->getOpcode();
2414  switch (Opcode) {
2415  case ISD::TokenFactor:
2416  case ISD::MERGE_VALUES:
2417  case ISD::CONCAT_VECTORS:
2418    return Operand;         // Factor, merge or concat of one node?  No need.
2419  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2420  case ISD::FP_EXTEND:
2421    assert(VT.isFloatingPoint() &&
2422           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2423    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2424    assert((!VT.isVector() ||
2425            VT.getVectorNumElements() ==
2426            Operand.getValueType().getVectorNumElements()) &&
2427           "Vector element count mismatch!");
2428    if (Operand.getOpcode() == ISD::UNDEF)
2429      return getUNDEF(VT);
2430    break;
2431  case ISD::SIGN_EXTEND:
2432    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2433           "Invalid SIGN_EXTEND!");
2434    if (Operand.getValueType() == VT) return Operand;   // noop extension
2435    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2436           "Invalid sext node, dst < src!");
2437    assert((!VT.isVector() ||
2438            VT.getVectorNumElements() ==
2439            Operand.getValueType().getVectorNumElements()) &&
2440           "Vector element count mismatch!");
2441    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2442      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2443    break;
2444  case ISD::ZERO_EXTEND:
2445    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2446           "Invalid ZERO_EXTEND!");
2447    if (Operand.getValueType() == VT) return Operand;   // noop extension
2448    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2449           "Invalid zext node, dst < src!");
2450    assert((!VT.isVector() ||
2451            VT.getVectorNumElements() ==
2452            Operand.getValueType().getVectorNumElements()) &&
2453           "Vector element count mismatch!");
2454    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2455      return getNode(ISD::ZERO_EXTEND, DL, VT,
2456                     Operand.getNode()->getOperand(0));
2457    break;
2458  case ISD::ANY_EXTEND:
2459    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2460           "Invalid ANY_EXTEND!");
2461    if (Operand.getValueType() == VT) return Operand;   // noop extension
2462    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2463           "Invalid anyext node, dst < src!");
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2469      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2470      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2471    break;
2472  case ISD::TRUNCATE:
2473    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2474           "Invalid TRUNCATE!");
2475    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2476    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2477           "Invalid truncate node, src < dst!");
2478    assert((!VT.isVector() ||
2479            VT.getVectorNumElements() ==
2480            Operand.getValueType().getVectorNumElements()) &&
2481           "Vector element count mismatch!");
2482    if (OpOpcode == ISD::TRUNCATE)
2483      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2484    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2485             OpOpcode == ISD::ANY_EXTEND) {
2486      // If the source is smaller than the dest, we still need an extend.
2487      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2488            .bitsLT(VT.getScalarType()))
2489        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2490      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2491        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2492      else
2493        return Operand.getNode()->getOperand(0);
2494    }
2495    break;
2496  case ISD::BIT_CONVERT:
2497    // Basic sanity checking.
2498    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2499           && "Cannot BIT_CONVERT between types of different sizes!");
2500    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2501    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2502      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2503    if (OpOpcode == ISD::UNDEF)
2504      return getUNDEF(VT);
2505    break;
2506  case ISD::SCALAR_TO_VECTOR:
2507    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2508           (VT.getVectorElementType() == Operand.getValueType() ||
2509            (VT.getVectorElementType().isInteger() &&
2510             Operand.getValueType().isInteger() &&
2511             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2512           "Illegal SCALAR_TO_VECTOR node!");
2513    if (OpOpcode == ISD::UNDEF)
2514      return getUNDEF(VT);
2515    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2516    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2517        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2518        Operand.getConstantOperandVal(1) == 0 &&
2519        Operand.getOperand(0).getValueType() == VT)
2520      return Operand.getOperand(0);
2521    break;
2522  case ISD::FNEG:
2523    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2524    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2525      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2526                     Operand.getNode()->getOperand(0));
2527    if (OpOpcode == ISD::FNEG)  // --X -> X
2528      return Operand.getNode()->getOperand(0);
2529    break;
2530  case ISD::FABS:
2531    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2532      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2533    break;
2534  }
2535
2536  SDNode *N;
2537  SDVTList VTs = getVTList(VT);
2538  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2539    FoldingSetNodeID ID;
2540    SDValue Ops[1] = { Operand };
2541    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2542    void *IP = 0;
2543    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2544      return SDValue(E, 0);
2545
2546    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2547    CSEMap.InsertNode(N, IP);
2548  } else {
2549    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2550  }
2551
2552  AllNodes.push_back(N);
2553#ifndef NDEBUG
2554  VerifyNode(N);
2555#endif
2556  return SDValue(N, 0);
2557}
2558
2559SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2560                                             EVT VT,
2561                                             ConstantSDNode *Cst1,
2562                                             ConstantSDNode *Cst2) {
2563  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2564
2565  switch (Opcode) {
2566  case ISD::ADD:  return getConstant(C1 + C2, VT);
2567  case ISD::SUB:  return getConstant(C1 - C2, VT);
2568  case ISD::MUL:  return getConstant(C1 * C2, VT);
2569  case ISD::UDIV:
2570    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2571    break;
2572  case ISD::UREM:
2573    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2574    break;
2575  case ISD::SDIV:
2576    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2577    break;
2578  case ISD::SREM:
2579    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2580    break;
2581  case ISD::AND:  return getConstant(C1 & C2, VT);
2582  case ISD::OR:   return getConstant(C1 | C2, VT);
2583  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2584  case ISD::SHL:  return getConstant(C1 << C2, VT);
2585  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2586  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2587  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2588  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2589  default: break;
2590  }
2591
2592  return SDValue();
2593}
2594
2595SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2596                              SDValue N1, SDValue N2) {
2597  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2598  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2599  switch (Opcode) {
2600  default: break;
2601  case ISD::TokenFactor:
2602    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2603           N2.getValueType() == MVT::Other && "Invalid token factor!");
2604    // Fold trivial token factors.
2605    if (N1.getOpcode() == ISD::EntryToken) return N2;
2606    if (N2.getOpcode() == ISD::EntryToken) return N1;
2607    if (N1 == N2) return N1;
2608    break;
2609  case ISD::CONCAT_VECTORS:
2610    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2611    // one big BUILD_VECTOR.
2612    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2613        N2.getOpcode() == ISD::BUILD_VECTOR) {
2614      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2615      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2616      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2617    }
2618    break;
2619  case ISD::AND:
2620    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2621           N1.getValueType() == VT && "Binary operator types must match!");
2622    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2623    // worth handling here.
2624    if (N2C && N2C->isNullValue())
2625      return N2;
2626    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2627      return N1;
2628    break;
2629  case ISD::OR:
2630  case ISD::XOR:
2631  case ISD::ADD:
2632  case ISD::SUB:
2633    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2634           N1.getValueType() == VT && "Binary operator types must match!");
2635    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2636    // it's worth handling here.
2637    if (N2C && N2C->isNullValue())
2638      return N1;
2639    break;
2640  case ISD::UDIV:
2641  case ISD::UREM:
2642  case ISD::MULHU:
2643  case ISD::MULHS:
2644  case ISD::MUL:
2645  case ISD::SDIV:
2646  case ISD::SREM:
2647    assert(VT.isInteger() && "This operator does not apply to FP types!");
2648    // fall through
2649  case ISD::FADD:
2650  case ISD::FSUB:
2651  case ISD::FMUL:
2652  case ISD::FDIV:
2653  case ISD::FREM:
2654    if (UnsafeFPMath) {
2655      if (Opcode == ISD::FADD) {
2656        // 0+x --> x
2657        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2658          if (CFP->getValueAPF().isZero())
2659            return N2;
2660        // x+0 --> x
2661        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2662          if (CFP->getValueAPF().isZero())
2663            return N1;
2664      } else if (Opcode == ISD::FSUB) {
2665        // x-0 --> x
2666        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2667          if (CFP->getValueAPF().isZero())
2668            return N1;
2669      }
2670    }
2671    assert(N1.getValueType() == N2.getValueType() &&
2672           N1.getValueType() == VT && "Binary operator types must match!");
2673    break;
2674  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2675    assert(N1.getValueType() == VT &&
2676           N1.getValueType().isFloatingPoint() &&
2677           N2.getValueType().isFloatingPoint() &&
2678           "Invalid FCOPYSIGN!");
2679    break;
2680  case ISD::SHL:
2681  case ISD::SRA:
2682  case ISD::SRL:
2683  case ISD::ROTL:
2684  case ISD::ROTR:
2685    assert(VT == N1.getValueType() &&
2686           "Shift operators return type must be the same as their first arg");
2687    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2688           "Shifts only work on integers");
2689
2690    // Always fold shifts of i1 values so the code generator doesn't need to
2691    // handle them.  Since we know the size of the shift has to be less than the
2692    // size of the value, the shift/rotate count is guaranteed to be zero.
2693    if (VT == MVT::i1)
2694      return N1;
2695    if (N2C && N2C->isNullValue())
2696      return N1;
2697    break;
2698  case ISD::FP_ROUND_INREG: {
2699    EVT EVT = cast<VTSDNode>(N2)->getVT();
2700    assert(VT == N1.getValueType() && "Not an inreg round!");
2701    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2702           "Cannot FP_ROUND_INREG integer types");
2703    assert(EVT.isVector() == VT.isVector() &&
2704           "FP_ROUND_INREG type should be vector iff the operand "
2705           "type is vector!");
2706    assert((!EVT.isVector() ||
2707            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2708           "Vector element counts must match in FP_ROUND_INREG");
2709    assert(EVT.bitsLE(VT) && "Not rounding down!");
2710    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2711    break;
2712  }
2713  case ISD::FP_ROUND:
2714    assert(VT.isFloatingPoint() &&
2715           N1.getValueType().isFloatingPoint() &&
2716           VT.bitsLE(N1.getValueType()) &&
2717           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2718    if (N1.getValueType() == VT) return N1;  // noop conversion.
2719    break;
2720  case ISD::AssertSext:
2721  case ISD::AssertZext: {
2722    EVT EVT = cast<VTSDNode>(N2)->getVT();
2723    assert(VT == N1.getValueType() && "Not an inreg extend!");
2724    assert(VT.isInteger() && EVT.isInteger() &&
2725           "Cannot *_EXTEND_INREG FP types");
2726    assert(!EVT.isVector() &&
2727           "AssertSExt/AssertZExt type should be the vector element type "
2728           "rather than the vector type!");
2729    assert(EVT.bitsLE(VT) && "Not extending!");
2730    if (VT == EVT) return N1; // noop assertion.
2731    break;
2732  }
2733  case ISD::SIGN_EXTEND_INREG: {
2734    EVT EVT = cast<VTSDNode>(N2)->getVT();
2735    assert(VT == N1.getValueType() && "Not an inreg extend!");
2736    assert(VT.isInteger() && EVT.isInteger() &&
2737           "Cannot *_EXTEND_INREG FP types");
2738    assert(EVT.isVector() == VT.isVector() &&
2739           "SIGN_EXTEND_INREG type should be vector iff the operand "
2740           "type is vector!");
2741    assert((!EVT.isVector() ||
2742            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2743           "Vector element counts must match in SIGN_EXTEND_INREG");
2744    assert(EVT.bitsLE(VT) && "Not extending!");
2745    if (EVT == VT) return N1;  // Not actually extending
2746
2747    if (N1C) {
2748      APInt Val = N1C->getAPIntValue();
2749      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2750      Val <<= Val.getBitWidth()-FromBits;
2751      Val = Val.ashr(Val.getBitWidth()-FromBits);
2752      return getConstant(Val, VT);
2753    }
2754    break;
2755  }
2756  case ISD::EXTRACT_VECTOR_ELT:
2757    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2758    if (N1.getOpcode() == ISD::UNDEF)
2759      return getUNDEF(VT);
2760
2761    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2762    // expanding copies of large vectors from registers.
2763    if (N2C &&
2764        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2765        N1.getNumOperands() > 0) {
2766      unsigned Factor =
2767        N1.getOperand(0).getValueType().getVectorNumElements();
2768      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2769                     N1.getOperand(N2C->getZExtValue() / Factor),
2770                     getConstant(N2C->getZExtValue() % Factor,
2771                                 N2.getValueType()));
2772    }
2773
2774    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2775    // expanding large vector constants.
2776    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2777      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2778      EVT VEltTy = N1.getValueType().getVectorElementType();
2779      if (Elt.getValueType() != VEltTy) {
2780        // If the vector element type is not legal, the BUILD_VECTOR operands
2781        // are promoted and implicitly truncated.  Make that explicit here.
2782        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2783      }
2784      if (VT != VEltTy) {
2785        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2786        // result is implicitly extended.
2787        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2788      }
2789      return Elt;
2790    }
2791
2792    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2793    // operations are lowered to scalars.
2794    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2795      // If the indices are the same, return the inserted element else
2796      // if the indices are known different, extract the element from
2797      // the original vector.
2798      if (N1.getOperand(2) == N2) {
2799        if (VT == N1.getOperand(1).getValueType())
2800          return N1.getOperand(1);
2801        else
2802          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2803      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2804                 isa<ConstantSDNode>(N2))
2805        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2806    }
2807    break;
2808  case ISD::EXTRACT_ELEMENT:
2809    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2810    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2811           (N1.getValueType().isInteger() == VT.isInteger()) &&
2812           "Wrong types for EXTRACT_ELEMENT!");
2813
2814    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2815    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2816    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2817    if (N1.getOpcode() == ISD::BUILD_PAIR)
2818      return N1.getOperand(N2C->getZExtValue());
2819
2820    // EXTRACT_ELEMENT of a constant int is also very common.
2821    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2822      unsigned ElementSize = VT.getSizeInBits();
2823      unsigned Shift = ElementSize * N2C->getZExtValue();
2824      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2825      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2826    }
2827    break;
2828  case ISD::EXTRACT_SUBVECTOR:
2829    if (N1.getValueType() == VT) // Trivial extraction.
2830      return N1;
2831    break;
2832  }
2833
2834  if (N1C) {
2835    if (N2C) {
2836      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2837      if (SV.getNode()) return SV;
2838    } else {      // Cannonicalize constant to RHS if commutative
2839      if (isCommutativeBinOp(Opcode)) {
2840        std::swap(N1C, N2C);
2841        std::swap(N1, N2);
2842      }
2843    }
2844  }
2845
2846  // Constant fold FP operations.
2847  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2848  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2849  if (N1CFP) {
2850    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2851      // Cannonicalize constant to RHS if commutative
2852      std::swap(N1CFP, N2CFP);
2853      std::swap(N1, N2);
2854    } else if (N2CFP && VT != MVT::ppcf128) {
2855      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2856      APFloat::opStatus s;
2857      switch (Opcode) {
2858      case ISD::FADD:
2859        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2860        if (s != APFloat::opInvalidOp)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FSUB:
2864        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FMUL:
2869        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2870        if (s!=APFloat::opInvalidOp)
2871          return getConstantFP(V1, VT);
2872        break;
2873      case ISD::FDIV:
2874        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2875        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2876          return getConstantFP(V1, VT);
2877        break;
2878      case ISD::FREM :
2879        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2880        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2881          return getConstantFP(V1, VT);
2882        break;
2883      case ISD::FCOPYSIGN:
2884        V1.copySign(V2);
2885        return getConstantFP(V1, VT);
2886      default: break;
2887      }
2888    }
2889  }
2890
2891  // Canonicalize an UNDEF to the RHS, even over a constant.
2892  if (N1.getOpcode() == ISD::UNDEF) {
2893    if (isCommutativeBinOp(Opcode)) {
2894      std::swap(N1, N2);
2895    } else {
2896      switch (Opcode) {
2897      case ISD::FP_ROUND_INREG:
2898      case ISD::SIGN_EXTEND_INREG:
2899      case ISD::SUB:
2900      case ISD::FSUB:
2901      case ISD::FDIV:
2902      case ISD::FREM:
2903      case ISD::SRA:
2904        return N1;     // fold op(undef, arg2) -> undef
2905      case ISD::UDIV:
2906      case ISD::SDIV:
2907      case ISD::UREM:
2908      case ISD::SREM:
2909      case ISD::SRL:
2910      case ISD::SHL:
2911        if (!VT.isVector())
2912          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2913        // For vectors, we can't easily build an all zero vector, just return
2914        // the LHS.
2915        return N2;
2916      }
2917    }
2918  }
2919
2920  // Fold a bunch of operators when the RHS is undef.
2921  if (N2.getOpcode() == ISD::UNDEF) {
2922    switch (Opcode) {
2923    case ISD::XOR:
2924      if (N1.getOpcode() == ISD::UNDEF)
2925        // Handle undef ^ undef -> 0 special case. This is a common
2926        // idiom (misuse).
2927        return getConstant(0, VT);
2928      // fallthrough
2929    case ISD::ADD:
2930    case ISD::ADDC:
2931    case ISD::ADDE:
2932    case ISD::SUB:
2933    case ISD::UDIV:
2934    case ISD::SDIV:
2935    case ISD::UREM:
2936    case ISD::SREM:
2937      return N2;       // fold op(arg1, undef) -> undef
2938    case ISD::FADD:
2939    case ISD::FSUB:
2940    case ISD::FMUL:
2941    case ISD::FDIV:
2942    case ISD::FREM:
2943      if (UnsafeFPMath)
2944        return N2;
2945      break;
2946    case ISD::MUL:
2947    case ISD::AND:
2948    case ISD::SRL:
2949    case ISD::SHL:
2950      if (!VT.isVector())
2951        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2952      // For vectors, we can't easily build an all zero vector, just return
2953      // the LHS.
2954      return N1;
2955    case ISD::OR:
2956      if (!VT.isVector())
2957        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2958      // For vectors, we can't easily build an all one vector, just return
2959      // the LHS.
2960      return N1;
2961    case ISD::SRA:
2962      return N1;
2963    }
2964  }
2965
2966  // Memoize this node if possible.
2967  SDNode *N;
2968  SDVTList VTs = getVTList(VT);
2969  if (VT != MVT::Flag) {
2970    SDValue Ops[] = { N1, N2 };
2971    FoldingSetNodeID ID;
2972    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2973    void *IP = 0;
2974    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2975      return SDValue(E, 0);
2976
2977    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2978    CSEMap.InsertNode(N, IP);
2979  } else {
2980    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2981  }
2982
2983  AllNodes.push_back(N);
2984#ifndef NDEBUG
2985  VerifyNode(N);
2986#endif
2987  return SDValue(N, 0);
2988}
2989
2990SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2991                              SDValue N1, SDValue N2, SDValue N3) {
2992  // Perform various simplifications.
2993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2994  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2995  switch (Opcode) {
2996  case ISD::CONCAT_VECTORS:
2997    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2998    // one big BUILD_VECTOR.
2999    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3000        N2.getOpcode() == ISD::BUILD_VECTOR &&
3001        N3.getOpcode() == ISD::BUILD_VECTOR) {
3002      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3003      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3004      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3005      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3006    }
3007    break;
3008  case ISD::SETCC: {
3009    // Use FoldSetCC to simplify SETCC's.
3010    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3011    if (Simp.getNode()) return Simp;
3012    break;
3013  }
3014  case ISD::SELECT:
3015    if (N1C) {
3016     if (N1C->getZExtValue())
3017        return N2;             // select true, X, Y -> X
3018      else
3019        return N3;             // select false, X, Y -> Y
3020    }
3021
3022    if (N2 == N3) return N2;   // select C, X, X -> X
3023    break;
3024  case ISD::BRCOND:
3025    if (N2C) {
3026      if (N2C->getZExtValue()) // Unconditional branch
3027        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3028      else
3029        return N1;         // Never-taken branch
3030    }
3031    break;
3032  case ISD::VECTOR_SHUFFLE:
3033    llvm_unreachable("should use getVectorShuffle constructor!");
3034    break;
3035  case ISD::BIT_CONVERT:
3036    // Fold bit_convert nodes from a type to themselves.
3037    if (N1.getValueType() == VT)
3038      return N1;
3039    break;
3040  }
3041
3042  // Memoize node if it doesn't produce a flag.
3043  SDNode *N;
3044  SDVTList VTs = getVTList(VT);
3045  if (VT != MVT::Flag) {
3046    SDValue Ops[] = { N1, N2, N3 };
3047    FoldingSetNodeID ID;
3048    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3049    void *IP = 0;
3050    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3051      return SDValue(E, 0);
3052
3053    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3054    CSEMap.InsertNode(N, IP);
3055  } else {
3056    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3057  }
3058
3059  AllNodes.push_back(N);
3060#ifndef NDEBUG
3061  VerifyNode(N);
3062#endif
3063  return SDValue(N, 0);
3064}
3065
3066SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3067                              SDValue N1, SDValue N2, SDValue N3,
3068                              SDValue N4) {
3069  SDValue Ops[] = { N1, N2, N3, N4 };
3070  return getNode(Opcode, DL, VT, Ops, 4);
3071}
3072
3073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074                              SDValue N1, SDValue N2, SDValue N3,
3075                              SDValue N4, SDValue N5) {
3076  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3077  return getNode(Opcode, DL, VT, Ops, 5);
3078}
3079
3080/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3081/// the incoming stack arguments to be loaded from the stack.
3082SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3083  SmallVector<SDValue, 8> ArgChains;
3084
3085  // Include the original chain at the beginning of the list. When this is
3086  // used by target LowerCall hooks, this helps legalize find the
3087  // CALLSEQ_BEGIN node.
3088  ArgChains.push_back(Chain);
3089
3090  // Add a chain value for each stack argument.
3091  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3092       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3093    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3094      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3095        if (FI->getIndex() < 0)
3096          ArgChains.push_back(SDValue(L, 1));
3097
3098  // Build a tokenfactor for all the chains.
3099  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3100                 &ArgChains[0], ArgChains.size());
3101}
3102
3103/// getMemsetValue - Vectorized representation of the memset value
3104/// operand.
3105static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3106                              DebugLoc dl) {
3107  assert(Value.getOpcode() != ISD::UNDEF);
3108
3109  unsigned NumBits = VT.getScalarType().getSizeInBits();
3110  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3111    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3112    unsigned Shift = 8;
3113    for (unsigned i = NumBits; i > 8; i >>= 1) {
3114      Val = (Val << Shift) | Val;
3115      Shift <<= 1;
3116    }
3117    if (VT.isInteger())
3118      return DAG.getConstant(Val, VT);
3119    return DAG.getConstantFP(APFloat(Val), VT);
3120  }
3121
3122  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3123  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3124  unsigned Shift = 8;
3125  for (unsigned i = NumBits; i > 8; i >>= 1) {
3126    Value = DAG.getNode(ISD::OR, dl, VT,
3127                        DAG.getNode(ISD::SHL, dl, VT, Value,
3128                                    DAG.getConstant(Shift,
3129                                                    TLI.getShiftAmountTy())),
3130                        Value);
3131    Shift <<= 1;
3132  }
3133
3134  return Value;
3135}
3136
3137/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3138/// used when a memcpy is turned into a memset when the source is a constant
3139/// string ptr.
3140static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3141                                  const TargetLowering &TLI,
3142                                  std::string &Str, unsigned Offset) {
3143  // Handle vector with all elements zero.
3144  if (Str.empty()) {
3145    if (VT.isInteger())
3146      return DAG.getConstant(0, VT);
3147    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3148             VT.getSimpleVT().SimpleTy == MVT::f64)
3149      return DAG.getConstantFP(0.0, VT);
3150    else if (VT.isVector()) {
3151      unsigned NumElts = VT.getVectorNumElements();
3152      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3153      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3154                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3155                                                             EltVT, NumElts)));
3156    } else
3157      llvm_unreachable("Expected type!");
3158  }
3159
3160  assert(!VT.isVector() && "Can't handle vector type here!");
3161  unsigned NumBits = VT.getSizeInBits();
3162  unsigned MSB = NumBits / 8;
3163  uint64_t Val = 0;
3164  if (TLI.isLittleEndian())
3165    Offset = Offset + MSB - 1;
3166  for (unsigned i = 0; i != MSB; ++i) {
3167    Val = (Val << 8) | (unsigned char)Str[Offset];
3168    Offset += TLI.isLittleEndian() ? -1 : 1;
3169  }
3170  return DAG.getConstant(Val, VT);
3171}
3172
3173/// getMemBasePlusOffset - Returns base and offset node for the
3174///
3175static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3176                                      SelectionDAG &DAG) {
3177  EVT VT = Base.getValueType();
3178  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3179                     VT, Base, DAG.getConstant(Offset, VT));
3180}
3181
3182/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3183///
3184static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3185  unsigned SrcDelta = 0;
3186  GlobalAddressSDNode *G = NULL;
3187  if (Src.getOpcode() == ISD::GlobalAddress)
3188    G = cast<GlobalAddressSDNode>(Src);
3189  else if (Src.getOpcode() == ISD::ADD &&
3190           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3191           Src.getOperand(1).getOpcode() == ISD::Constant) {
3192    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3193    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3194  }
3195  if (!G)
3196    return false;
3197
3198  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3199  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3200    return true;
3201
3202  return false;
3203}
3204
3205/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3206/// to replace the memset / memcpy. Return true if the number of memory ops
3207/// is below the threshold. It returns the types of the sequence of
3208/// memory ops to perform memset / memcpy by reference.
3209static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3210                                     unsigned Limit, uint64_t Size,
3211                                     unsigned DstAlign, unsigned SrcAlign,
3212                                     bool NonScalarIntSafe,
3213                                     bool MemcpyStrSrc,
3214                                     SelectionDAG &DAG,
3215                                     const TargetLowering &TLI) {
3216  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3217         "Expecting memcpy / memset source to meet alignment requirement!");
3218  // If 'SrcAlign' is zero, that means the memory operation does not need load
3219  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3220  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3221  // specified alignment of the memory operation. If it is zero, that means
3222  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3223  // indicates whether the memcpy source is constant so it does not need to be
3224  // loaded.
3225  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3226                                   NonScalarIntSafe, MemcpyStrSrc,
3227                                   DAG.getMachineFunction());
3228
3229  if (VT == MVT::Other) {
3230    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3231        TLI.allowsUnalignedMemoryAccesses(VT)) {
3232      VT = TLI.getPointerTy();
3233    } else {
3234      switch (DstAlign & 7) {
3235      case 0:  VT = MVT::i64; break;
3236      case 4:  VT = MVT::i32; break;
3237      case 2:  VT = MVT::i16; break;
3238      default: VT = MVT::i8;  break;
3239      }
3240    }
3241
3242    MVT LVT = MVT::i64;
3243    while (!TLI.isTypeLegal(LVT))
3244      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3245    assert(LVT.isInteger());
3246
3247    if (VT.bitsGT(LVT))
3248      VT = LVT;
3249  }
3250
3251  unsigned NumMemOps = 0;
3252  while (Size != 0) {
3253    unsigned VTSize = VT.getSizeInBits() / 8;
3254    while (VTSize > Size) {
3255      // For now, only use non-vector load / store's for the left-over pieces.
3256      if (VT.isVector() || VT.isFloatingPoint()) {
3257        VT = MVT::i64;
3258        while (!TLI.isTypeLegal(VT))
3259          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3260        VTSize = VT.getSizeInBits() / 8;
3261      } else {
3262        // This can result in a type that is not legal on the target, e.g.
3263        // 1 or 2 bytes on PPC.
3264        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3265        VTSize >>= 1;
3266      }
3267    }
3268
3269    if (++NumMemOps > Limit)
3270      return false;
3271    MemOps.push_back(VT);
3272    Size -= VTSize;
3273  }
3274
3275  return true;
3276}
3277
3278static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3279                                       SDValue Chain, SDValue Dst,
3280                                       SDValue Src, uint64_t Size,
3281                                       unsigned Align, bool isVol,
3282                                       bool AlwaysInline,
3283                                       const Value *DstSV, uint64_t DstSVOff,
3284                                       const Value *SrcSV, uint64_t SrcSVOff) {
3285  // Turn a memcpy of undef to nop.
3286  if (Src.getOpcode() == ISD::UNDEF)
3287    return Chain;
3288
3289  // Expand memcpy to a series of load and store ops if the size operand falls
3290  // below a certain threshold.
3291  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3292  std::vector<EVT> MemOps;
3293  bool DstAlignCanChange = false;
3294  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3295  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3296  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3297    DstAlignCanChange = true;
3298  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3299  if (Align > SrcAlign)
3300    SrcAlign = Align;
3301  std::string Str;
3302  bool CopyFromStr = isMemSrcFromString(Src, Str);
3303  bool isZeroStr = CopyFromStr && Str.empty();
3304  uint64_t Limit = -1ULL;
3305  if (!AlwaysInline)
3306    Limit = TLI.getMaxStoresPerMemcpy();
3307  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3308                                (DstAlignCanChange ? 0 : Align),
3309                                (isZeroStr ? 0 : SrcAlign),
3310                                true, CopyFromStr, DAG, TLI))
3311    return SDValue();
3312
3313  if (DstAlignCanChange) {
3314    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3315    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3316    if (NewAlign > Align) {
3317      // Give the stack frame object a larger alignment if needed.
3318      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3319        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3320      Align = NewAlign;
3321    }
3322  }
3323
3324  SmallVector<SDValue, 8> OutChains;
3325  unsigned NumMemOps = MemOps.size();
3326  uint64_t SrcOff = 0, DstOff = 0;
3327  for (unsigned i = 0; i != NumMemOps; ++i) {
3328    EVT VT = MemOps[i];
3329    unsigned VTSize = VT.getSizeInBits() / 8;
3330    SDValue Value, Store;
3331
3332    if (CopyFromStr &&
3333        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3334      // It's unlikely a store of a vector immediate can be done in a single
3335      // instruction. It would require a load from a constantpool first.
3336      // We only handle zero vectors here.
3337      // FIXME: Handle other cases where store of vector immediate is done in
3338      // a single instruction.
3339      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3340      Store = DAG.getStore(Chain, dl, Value,
3341                           getMemBasePlusOffset(Dst, DstOff, DAG),
3342                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3343    } else {
3344      // The type might not be legal for the target.  This should only happen
3345      // if the type is smaller than a legal type, as on PPC, so the right
3346      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3347      // to Load/Store if NVT==VT.
3348      // FIXME does the case above also need this?
3349      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3350      assert(NVT.bitsGE(VT));
3351      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3352                             getMemBasePlusOffset(Src, SrcOff, DAG),
3353                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3354                             MinAlign(SrcAlign, SrcOff));
3355      Store = DAG.getTruncStore(Chain, dl, Value,
3356                                getMemBasePlusOffset(Dst, DstOff, DAG),
3357                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3358                                Align);
3359    }
3360    OutChains.push_back(Store);
3361    SrcOff += VTSize;
3362    DstOff += VTSize;
3363  }
3364
3365  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3366                     &OutChains[0], OutChains.size());
3367}
3368
3369static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3370                                        SDValue Chain, SDValue Dst,
3371                                        SDValue Src, uint64_t Size,
3372                                        unsigned Align,  bool isVol,
3373                                        bool AlwaysInline,
3374                                        const Value *DstSV, uint64_t DstSVOff,
3375                                        const Value *SrcSV, uint64_t SrcSVOff) {
3376  // Turn a memmove of undef to nop.
3377  if (Src.getOpcode() == ISD::UNDEF)
3378    return Chain;
3379
3380  // Expand memmove to a series of load and store ops if the size operand falls
3381  // below a certain threshold.
3382  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3383  std::vector<EVT> MemOps;
3384  uint64_t Limit = -1ULL;
3385  if (!AlwaysInline)
3386    Limit = TLI.getMaxStoresPerMemmove();
3387  bool DstAlignCanChange = false;
3388  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3389  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3390  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3391    DstAlignCanChange = true;
3392  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3393  if (Align > SrcAlign)
3394    SrcAlign = Align;
3395
3396  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3397                                (DstAlignCanChange ? 0 : Align),
3398                                SrcAlign, true, false, DAG, TLI))
3399    return SDValue();
3400
3401  if (DstAlignCanChange) {
3402    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3403    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3404    if (NewAlign > Align) {
3405      // Give the stack frame object a larger alignment if needed.
3406      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3407        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3408      Align = NewAlign;
3409    }
3410  }
3411
3412  uint64_t SrcOff = 0, DstOff = 0;
3413  SmallVector<SDValue, 8> LoadValues;
3414  SmallVector<SDValue, 8> LoadChains;
3415  SmallVector<SDValue, 8> OutChains;
3416  unsigned NumMemOps = MemOps.size();
3417  for (unsigned i = 0; i < NumMemOps; i++) {
3418    EVT VT = MemOps[i];
3419    unsigned VTSize = VT.getSizeInBits() / 8;
3420    SDValue Value, Store;
3421
3422    Value = DAG.getLoad(VT, dl, Chain,
3423                        getMemBasePlusOffset(Src, SrcOff, DAG),
3424                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3425    LoadValues.push_back(Value);
3426    LoadChains.push_back(Value.getValue(1));
3427    SrcOff += VTSize;
3428  }
3429  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3430                      &LoadChains[0], LoadChains.size());
3431  OutChains.clear();
3432  for (unsigned i = 0; i < NumMemOps; i++) {
3433    EVT VT = MemOps[i];
3434    unsigned VTSize = VT.getSizeInBits() / 8;
3435    SDValue Value, Store;
3436
3437    Store = DAG.getStore(Chain, dl, LoadValues[i],
3438                         getMemBasePlusOffset(Dst, DstOff, DAG),
3439                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3440    OutChains.push_back(Store);
3441    DstOff += VTSize;
3442  }
3443
3444  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3445                     &OutChains[0], OutChains.size());
3446}
3447
3448static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3449                               SDValue Chain, SDValue Dst,
3450                               SDValue Src, uint64_t Size,
3451                               unsigned Align, bool isVol,
3452                               const Value *DstSV, uint64_t DstSVOff) {
3453  // Turn a memset of undef to nop.
3454  if (Src.getOpcode() == ISD::UNDEF)
3455    return Chain;
3456
3457  // Expand memset to a series of load/store ops if the size operand
3458  // falls below a certain threshold.
3459  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3460  std::vector<EVT> MemOps;
3461  bool DstAlignCanChange = false;
3462  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3463  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3464  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3465    DstAlignCanChange = true;
3466  bool NonScalarIntSafe =
3467    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3468  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3469                                Size, (DstAlignCanChange ? 0 : Align), 0,
3470                                NonScalarIntSafe, false, DAG, TLI))
3471    return SDValue();
3472
3473  if (DstAlignCanChange) {
3474    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3475    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3476    if (NewAlign > Align) {
3477      // Give the stack frame object a larger alignment if needed.
3478      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3479        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3480      Align = NewAlign;
3481    }
3482  }
3483
3484  SmallVector<SDValue, 8> OutChains;
3485  uint64_t DstOff = 0;
3486  unsigned NumMemOps = MemOps.size();
3487  for (unsigned i = 0; i < NumMemOps; i++) {
3488    EVT VT = MemOps[i];
3489    unsigned VTSize = VT.getSizeInBits() / 8;
3490    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3491    SDValue Store = DAG.getStore(Chain, dl, Value,
3492                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3493                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3494    OutChains.push_back(Store);
3495    DstOff += VTSize;
3496  }
3497
3498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3499                     &OutChains[0], OutChains.size());
3500}
3501
3502SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3503                                SDValue Src, SDValue Size,
3504                                unsigned Align, bool isVol, bool AlwaysInline,
3505                                const Value *DstSV, uint64_t DstSVOff,
3506                                const Value *SrcSV, uint64_t SrcSVOff) {
3507
3508  // Check to see if we should lower the memcpy to loads and stores first.
3509  // For cases within the target-specified limits, this is the best choice.
3510  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3511  if (ConstantSize) {
3512    // Memcpy with size zero? Just return the original chain.
3513    if (ConstantSize->isNullValue())
3514      return Chain;
3515
3516    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3517                                             ConstantSize->getZExtValue(),Align,
3518                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3519    if (Result.getNode())
3520      return Result;
3521  }
3522
3523  // Then check to see if we should lower the memcpy with target-specific
3524  // code. If the target chooses to do this, this is the next best.
3525  SDValue Result =
3526    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3527                                isVol, AlwaysInline,
3528                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3529  if (Result.getNode())
3530    return Result;
3531
3532  // If we really need inline code and the target declined to provide it,
3533  // use a (potentially long) sequence of loads and stores.
3534  if (AlwaysInline) {
3535    assert(ConstantSize && "AlwaysInline requires a constant size!");
3536    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3537                                   ConstantSize->getZExtValue(), Align, isVol,
3538                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3539  }
3540
3541  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3542  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3543  // respect volatile, so they may do things like read or write memory
3544  // beyond the given memory regions. But fixing this isn't easy, and most
3545  // people don't care.
3546
3547  // Emit a library call.
3548  TargetLowering::ArgListTy Args;
3549  TargetLowering::ArgListEntry Entry;
3550  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3551  Entry.Node = Dst; Args.push_back(Entry);
3552  Entry.Node = Src; Args.push_back(Entry);
3553  Entry.Node = Size; Args.push_back(Entry);
3554  // FIXME: pass in DebugLoc
3555  std::pair<SDValue,SDValue> CallResult =
3556    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3557                    false, false, false, false, 0,
3558                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3559                    /*isReturnValueUsed=*/false,
3560                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3561                                      TLI.getPointerTy()),
3562                    Args, *this, dl);
3563  return CallResult.second;
3564}
3565
3566SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3567                                 SDValue Src, SDValue Size,
3568                                 unsigned Align, bool isVol,
3569                                 const Value *DstSV, uint64_t DstSVOff,
3570                                 const Value *SrcSV, uint64_t SrcSVOff) {
3571
3572  // Check to see if we should lower the memmove to loads and stores first.
3573  // For cases within the target-specified limits, this is the best choice.
3574  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3575  if (ConstantSize) {
3576    // Memmove with size zero? Just return the original chain.
3577    if (ConstantSize->isNullValue())
3578      return Chain;
3579
3580    SDValue Result =
3581      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3582                               ConstantSize->getZExtValue(), Align, isVol,
3583                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3584    if (Result.getNode())
3585      return Result;
3586  }
3587
3588  // Then check to see if we should lower the memmove with target-specific
3589  // code. If the target chooses to do this, this is the next best.
3590  SDValue Result =
3591    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3592                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3593  if (Result.getNode())
3594    return Result;
3595
3596  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3597  // not be safe.  See memcpy above for more details.
3598
3599  // Emit a library call.
3600  TargetLowering::ArgListTy Args;
3601  TargetLowering::ArgListEntry Entry;
3602  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3603  Entry.Node = Dst; Args.push_back(Entry);
3604  Entry.Node = Src; Args.push_back(Entry);
3605  Entry.Node = Size; Args.push_back(Entry);
3606  // FIXME:  pass in DebugLoc
3607  std::pair<SDValue,SDValue> CallResult =
3608    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3609                    false, false, false, false, 0,
3610                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3611                    /*isReturnValueUsed=*/false,
3612                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3613                                      TLI.getPointerTy()),
3614                    Args, *this, dl);
3615  return CallResult.second;
3616}
3617
3618SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3619                                SDValue Src, SDValue Size,
3620                                unsigned Align, bool isVol,
3621                                const Value *DstSV, uint64_t DstSVOff) {
3622
3623  // Check to see if we should lower the memset to stores first.
3624  // For cases within the target-specified limits, this is the best choice.
3625  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3626  if (ConstantSize) {
3627    // Memset with size zero? Just return the original chain.
3628    if (ConstantSize->isNullValue())
3629      return Chain;
3630
3631    SDValue Result =
3632      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3633                      Align, isVol, DstSV, DstSVOff);
3634
3635    if (Result.getNode())
3636      return Result;
3637  }
3638
3639  // Then check to see if we should lower the memset with target-specific
3640  // code. If the target chooses to do this, this is the next best.
3641  SDValue Result =
3642    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3643                                DstSV, DstSVOff);
3644  if (Result.getNode())
3645    return Result;
3646
3647  // Emit a library call.
3648  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3649  TargetLowering::ArgListTy Args;
3650  TargetLowering::ArgListEntry Entry;
3651  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3652  Args.push_back(Entry);
3653  // Extend or truncate the argument to be an i32 value for the call.
3654  if (Src.getValueType().bitsGT(MVT::i32))
3655    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3656  else
3657    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3658  Entry.Node = Src;
3659  Entry.Ty = Type::getInt32Ty(*getContext());
3660  Entry.isSExt = true;
3661  Args.push_back(Entry);
3662  Entry.Node = Size;
3663  Entry.Ty = IntPtrTy;
3664  Entry.isSExt = false;
3665  Args.push_back(Entry);
3666  // FIXME: pass in DebugLoc
3667  std::pair<SDValue,SDValue> CallResult =
3668    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3669                    false, false, false, false, 0,
3670                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3671                    /*isReturnValueUsed=*/false,
3672                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3673                                      TLI.getPointerTy()),
3674                    Args, *this, dl);
3675  return CallResult.second;
3676}
3677
3678SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3679                                SDValue Chain,
3680                                SDValue Ptr, SDValue Cmp,
3681                                SDValue Swp, const Value* PtrVal,
3682                                unsigned Alignment) {
3683  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3684    Alignment = getEVTAlignment(MemVT);
3685
3686  // Check if the memory reference references a frame index
3687  if (!PtrVal)
3688    if (const FrameIndexSDNode *FI =
3689          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3690      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3691
3692  MachineFunction &MF = getMachineFunction();
3693  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3694
3695  // For now, atomics are considered to be volatile always.
3696  Flags |= MachineMemOperand::MOVolatile;
3697
3698  MachineMemOperand *MMO =
3699    MF.getMachineMemOperand(PtrVal, Flags, 0,
3700                            MemVT.getStoreSize(), Alignment);
3701
3702  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3703}
3704
3705SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3706                                SDValue Chain,
3707                                SDValue Ptr, SDValue Cmp,
3708                                SDValue Swp, MachineMemOperand *MMO) {
3709  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3710  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3711
3712  EVT VT = Cmp.getValueType();
3713
3714  SDVTList VTs = getVTList(VT, MVT::Other);
3715  FoldingSetNodeID ID;
3716  ID.AddInteger(MemVT.getRawBits());
3717  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3718  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3719  void* IP = 0;
3720  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3721    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3722    return SDValue(E, 0);
3723  }
3724  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3725                                               Ptr, Cmp, Swp, MMO);
3726  CSEMap.InsertNode(N, IP);
3727  AllNodes.push_back(N);
3728  return SDValue(N, 0);
3729}
3730
3731SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3732                                SDValue Chain,
3733                                SDValue Ptr, SDValue Val,
3734                                const Value* PtrVal,
3735                                unsigned Alignment) {
3736  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3737    Alignment = getEVTAlignment(MemVT);
3738
3739  // Check if the memory reference references a frame index
3740  if (!PtrVal)
3741    if (const FrameIndexSDNode *FI =
3742          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3743      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3744
3745  MachineFunction &MF = getMachineFunction();
3746  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3747
3748  // For now, atomics are considered to be volatile always.
3749  Flags |= MachineMemOperand::MOVolatile;
3750
3751  MachineMemOperand *MMO =
3752    MF.getMachineMemOperand(PtrVal, Flags, 0,
3753                            MemVT.getStoreSize(), Alignment);
3754
3755  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3756}
3757
3758SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3759                                SDValue Chain,
3760                                SDValue Ptr, SDValue Val,
3761                                MachineMemOperand *MMO) {
3762  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3763          Opcode == ISD::ATOMIC_LOAD_SUB ||
3764          Opcode == ISD::ATOMIC_LOAD_AND ||
3765          Opcode == ISD::ATOMIC_LOAD_OR ||
3766          Opcode == ISD::ATOMIC_LOAD_XOR ||
3767          Opcode == ISD::ATOMIC_LOAD_NAND ||
3768          Opcode == ISD::ATOMIC_LOAD_MIN ||
3769          Opcode == ISD::ATOMIC_LOAD_MAX ||
3770          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3771          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3772          Opcode == ISD::ATOMIC_SWAP) &&
3773         "Invalid Atomic Op");
3774
3775  EVT VT = Val.getValueType();
3776
3777  SDVTList VTs = getVTList(VT, MVT::Other);
3778  FoldingSetNodeID ID;
3779  ID.AddInteger(MemVT.getRawBits());
3780  SDValue Ops[] = {Chain, Ptr, Val};
3781  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3782  void* IP = 0;
3783  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3784    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3785    return SDValue(E, 0);
3786  }
3787  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3788                                               Ptr, Val, MMO);
3789  CSEMap.InsertNode(N, IP);
3790  AllNodes.push_back(N);
3791  return SDValue(N, 0);
3792}
3793
3794/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3795/// Allowed to return something different (and simpler) if Simplify is true.
3796SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3797                                     DebugLoc dl) {
3798  if (NumOps == 1)
3799    return Ops[0];
3800
3801  SmallVector<EVT, 4> VTs;
3802  VTs.reserve(NumOps);
3803  for (unsigned i = 0; i < NumOps; ++i)
3804    VTs.push_back(Ops[i].getValueType());
3805  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3806                 Ops, NumOps);
3807}
3808
3809SDValue
3810SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3811                                  const EVT *VTs, unsigned NumVTs,
3812                                  const SDValue *Ops, unsigned NumOps,
3813                                  EVT MemVT, const Value *srcValue, int SVOff,
3814                                  unsigned Align, bool Vol,
3815                                  bool ReadMem, bool WriteMem) {
3816  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3817                             MemVT, srcValue, SVOff, Align, Vol,
3818                             ReadMem, WriteMem);
3819}
3820
3821SDValue
3822SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3823                                  const SDValue *Ops, unsigned NumOps,
3824                                  EVT MemVT, const Value *srcValue, int SVOff,
3825                                  unsigned Align, bool Vol,
3826                                  bool ReadMem, bool WriteMem) {
3827  if (Align == 0)  // Ensure that codegen never sees alignment 0
3828    Align = getEVTAlignment(MemVT);
3829
3830  MachineFunction &MF = getMachineFunction();
3831  unsigned Flags = 0;
3832  if (WriteMem)
3833    Flags |= MachineMemOperand::MOStore;
3834  if (ReadMem)
3835    Flags |= MachineMemOperand::MOLoad;
3836  if (Vol)
3837    Flags |= MachineMemOperand::MOVolatile;
3838  MachineMemOperand *MMO =
3839    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3840                            MemVT.getStoreSize(), Align);
3841
3842  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3843}
3844
3845SDValue
3846SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3847                                  const SDValue *Ops, unsigned NumOps,
3848                                  EVT MemVT, MachineMemOperand *MMO) {
3849  assert((Opcode == ISD::INTRINSIC_VOID ||
3850          Opcode == ISD::INTRINSIC_W_CHAIN ||
3851          (Opcode <= INT_MAX &&
3852           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3853         "Opcode is not a memory-accessing opcode!");
3854
3855  // Memoize the node unless it returns a flag.
3856  MemIntrinsicSDNode *N;
3857  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3858    FoldingSetNodeID ID;
3859    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3860    void *IP = 0;
3861    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3862      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3863      return SDValue(E, 0);
3864    }
3865
3866    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3867                                               MemVT, MMO);
3868    CSEMap.InsertNode(N, IP);
3869  } else {
3870    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3871                                               MemVT, MMO);
3872  }
3873  AllNodes.push_back(N);
3874  return SDValue(N, 0);
3875}
3876
3877SDValue
3878SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3879                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3880                      SDValue Ptr, SDValue Offset,
3881                      const Value *SV, int SVOffset, EVT MemVT,
3882                      bool isVolatile, bool isNonTemporal,
3883                      unsigned Alignment) {
3884  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3885    Alignment = getEVTAlignment(VT);
3886
3887  // Check if the memory reference references a frame index
3888  if (!SV)
3889    if (const FrameIndexSDNode *FI =
3890          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3891      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3892
3893  MachineFunction &MF = getMachineFunction();
3894  unsigned Flags = MachineMemOperand::MOLoad;
3895  if (isVolatile)
3896    Flags |= MachineMemOperand::MOVolatile;
3897  if (isNonTemporal)
3898    Flags |= MachineMemOperand::MONonTemporal;
3899  MachineMemOperand *MMO =
3900    MF.getMachineMemOperand(SV, Flags, SVOffset,
3901                            MemVT.getStoreSize(), Alignment);
3902  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3903}
3904
3905SDValue
3906SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3907                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3908                      SDValue Ptr, SDValue Offset, EVT MemVT,
3909                      MachineMemOperand *MMO) {
3910  if (VT == MemVT) {
3911    ExtType = ISD::NON_EXTLOAD;
3912  } else if (ExtType == ISD::NON_EXTLOAD) {
3913    assert(VT == MemVT && "Non-extending load from different memory type!");
3914  } else {
3915    // Extending load.
3916    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3917           "Should only be an extending load, not truncating!");
3918    assert(VT.isInteger() == MemVT.isInteger() &&
3919           "Cannot convert from FP to Int or Int -> FP!");
3920    assert(VT.isVector() == MemVT.isVector() &&
3921           "Cannot use trunc store to convert to or from a vector!");
3922    assert((!VT.isVector() ||
3923            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3924           "Cannot use trunc store to change the number of vector elements!");
3925  }
3926
3927  bool Indexed = AM != ISD::UNINDEXED;
3928  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3929         "Unindexed load with an offset!");
3930
3931  SDVTList VTs = Indexed ?
3932    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3933  SDValue Ops[] = { Chain, Ptr, Offset };
3934  FoldingSetNodeID ID;
3935  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3936  ID.AddInteger(MemVT.getRawBits());
3937  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3938                                     MMO->isNonTemporal()));
3939  void *IP = 0;
3940  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3941    cast<LoadSDNode>(E)->refineAlignment(MMO);
3942    return SDValue(E, 0);
3943  }
3944  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3945                                             MemVT, MMO);
3946  CSEMap.InsertNode(N, IP);
3947  AllNodes.push_back(N);
3948  return SDValue(N, 0);
3949}
3950
3951SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3952                              SDValue Chain, SDValue Ptr,
3953                              const Value *SV, int SVOffset,
3954                              bool isVolatile, bool isNonTemporal,
3955                              unsigned Alignment) {
3956  SDValue Undef = getUNDEF(Ptr.getValueType());
3957  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3958                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3959}
3960
3961SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3962                                 SDValue Chain, SDValue Ptr,
3963                                 const Value *SV,
3964                                 int SVOffset, EVT MemVT,
3965                                 bool isVolatile, bool isNonTemporal,
3966                                 unsigned Alignment) {
3967  SDValue Undef = getUNDEF(Ptr.getValueType());
3968  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3969                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3970}
3971
3972SDValue
3973SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3974                             SDValue Offset, ISD::MemIndexedMode AM) {
3975  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3976  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3977         "Load is already a indexed load!");
3978  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3979                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3980                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3981                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3982}
3983
3984SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3985                               SDValue Ptr, const Value *SV, int SVOffset,
3986                               bool isVolatile, bool isNonTemporal,
3987                               unsigned Alignment) {
3988  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3989    Alignment = getEVTAlignment(Val.getValueType());
3990
3991  // Check if the memory reference references a frame index
3992  if (!SV)
3993    if (const FrameIndexSDNode *FI =
3994          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3995      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3996
3997  MachineFunction &MF = getMachineFunction();
3998  unsigned Flags = MachineMemOperand::MOStore;
3999  if (isVolatile)
4000    Flags |= MachineMemOperand::MOVolatile;
4001  if (isNonTemporal)
4002    Flags |= MachineMemOperand::MONonTemporal;
4003  MachineMemOperand *MMO =
4004    MF.getMachineMemOperand(SV, Flags, SVOffset,
4005                            Val.getValueType().getStoreSize(), Alignment);
4006
4007  return getStore(Chain, dl, Val, Ptr, MMO);
4008}
4009
4010SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4011                               SDValue Ptr, MachineMemOperand *MMO) {
4012  EVT VT = Val.getValueType();
4013  SDVTList VTs = getVTList(MVT::Other);
4014  SDValue Undef = getUNDEF(Ptr.getValueType());
4015  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4016  FoldingSetNodeID ID;
4017  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4018  ID.AddInteger(VT.getRawBits());
4019  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4020                                     MMO->isNonTemporal()));
4021  void *IP = 0;
4022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4023    cast<StoreSDNode>(E)->refineAlignment(MMO);
4024    return SDValue(E, 0);
4025  }
4026  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4027                                              false, VT, MMO);
4028  CSEMap.InsertNode(N, IP);
4029  AllNodes.push_back(N);
4030  return SDValue(N, 0);
4031}
4032
4033SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4034                                    SDValue Ptr, const Value *SV,
4035                                    int SVOffset, EVT SVT,
4036                                    bool isVolatile, bool isNonTemporal,
4037                                    unsigned Alignment) {
4038  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4039    Alignment = getEVTAlignment(SVT);
4040
4041  // Check if the memory reference references a frame index
4042  if (!SV)
4043    if (const FrameIndexSDNode *FI =
4044          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4045      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4046
4047  MachineFunction &MF = getMachineFunction();
4048  unsigned Flags = MachineMemOperand::MOStore;
4049  if (isVolatile)
4050    Flags |= MachineMemOperand::MOVolatile;
4051  if (isNonTemporal)
4052    Flags |= MachineMemOperand::MONonTemporal;
4053  MachineMemOperand *MMO =
4054    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4055
4056  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4057}
4058
4059SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4060                                    SDValue Ptr, EVT SVT,
4061                                    MachineMemOperand *MMO) {
4062  EVT VT = Val.getValueType();
4063
4064  if (VT == SVT)
4065    return getStore(Chain, dl, Val, Ptr, MMO);
4066
4067  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4068         "Should only be a truncating store, not extending!");
4069  assert(VT.isInteger() == SVT.isInteger() &&
4070         "Can't do FP-INT conversion!");
4071  assert(VT.isVector() == SVT.isVector() &&
4072         "Cannot use trunc store to convert to or from a vector!");
4073  assert((!VT.isVector() ||
4074          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4075         "Cannot use trunc store to change the number of vector elements!");
4076
4077  SDVTList VTs = getVTList(MVT::Other);
4078  SDValue Undef = getUNDEF(Ptr.getValueType());
4079  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4080  FoldingSetNodeID ID;
4081  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4082  ID.AddInteger(SVT.getRawBits());
4083  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4084                                     MMO->isNonTemporal()));
4085  void *IP = 0;
4086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4087    cast<StoreSDNode>(E)->refineAlignment(MMO);
4088    return SDValue(E, 0);
4089  }
4090  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4091                                              true, SVT, MMO);
4092  CSEMap.InsertNode(N, IP);
4093  AllNodes.push_back(N);
4094  return SDValue(N, 0);
4095}
4096
4097SDValue
4098SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4099                              SDValue Offset, ISD::MemIndexedMode AM) {
4100  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4101  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4102         "Store is already a indexed store!");
4103  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4104  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4105  FoldingSetNodeID ID;
4106  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4107  ID.AddInteger(ST->getMemoryVT().getRawBits());
4108  ID.AddInteger(ST->getRawSubclassData());
4109  void *IP = 0;
4110  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4111    return SDValue(E, 0);
4112
4113  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4114                                              ST->isTruncatingStore(),
4115                                              ST->getMemoryVT(),
4116                                              ST->getMemOperand());
4117  CSEMap.InsertNode(N, IP);
4118  AllNodes.push_back(N);
4119  return SDValue(N, 0);
4120}
4121
4122SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4123                               SDValue Chain, SDValue Ptr,
4124                               SDValue SV) {
4125  SDValue Ops[] = { Chain, Ptr, SV };
4126  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4127}
4128
4129SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4130                              const SDUse *Ops, unsigned NumOps) {
4131  switch (NumOps) {
4132  case 0: return getNode(Opcode, DL, VT);
4133  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4134  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4135  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4136  default: break;
4137  }
4138
4139  // Copy from an SDUse array into an SDValue array for use with
4140  // the regular getNode logic.
4141  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4142  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4143}
4144
4145SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4146                              const SDValue *Ops, unsigned NumOps) {
4147  switch (NumOps) {
4148  case 0: return getNode(Opcode, DL, VT);
4149  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4150  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4151  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4152  default: break;
4153  }
4154
4155  switch (Opcode) {
4156  default: break;
4157  case ISD::SELECT_CC: {
4158    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4159    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4160           "LHS and RHS of condition must have same type!");
4161    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4162           "True and False arms of SelectCC must have same type!");
4163    assert(Ops[2].getValueType() == VT &&
4164           "select_cc node must be of same type as true and false value!");
4165    break;
4166  }
4167  case ISD::BR_CC: {
4168    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4169    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4170           "LHS/RHS of comparison should match types!");
4171    break;
4172  }
4173  }
4174
4175  // Memoize nodes.
4176  SDNode *N;
4177  SDVTList VTs = getVTList(VT);
4178
4179  if (VT != MVT::Flag) {
4180    FoldingSetNodeID ID;
4181    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4182    void *IP = 0;
4183
4184    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4185      return SDValue(E, 0);
4186
4187    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4188    CSEMap.InsertNode(N, IP);
4189  } else {
4190    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4191  }
4192
4193  AllNodes.push_back(N);
4194#ifndef NDEBUG
4195  VerifyNode(N);
4196#endif
4197  return SDValue(N, 0);
4198}
4199
4200SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4201                              const std::vector<EVT> &ResultTys,
4202                              const SDValue *Ops, unsigned NumOps) {
4203  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4204                 Ops, NumOps);
4205}
4206
4207SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4208                              const EVT *VTs, unsigned NumVTs,
4209                              const SDValue *Ops, unsigned NumOps) {
4210  if (NumVTs == 1)
4211    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4212  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4213}
4214
4215SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4216                              const SDValue *Ops, unsigned NumOps) {
4217  if (VTList.NumVTs == 1)
4218    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4219
4220#if 0
4221  switch (Opcode) {
4222  // FIXME: figure out how to safely handle things like
4223  // int foo(int x) { return 1 << (x & 255); }
4224  // int bar() { return foo(256); }
4225  case ISD::SRA_PARTS:
4226  case ISD::SRL_PARTS:
4227  case ISD::SHL_PARTS:
4228    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4229        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4230      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4231    else if (N3.getOpcode() == ISD::AND)
4232      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4233        // If the and is only masking out bits that cannot effect the shift,
4234        // eliminate the and.
4235        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4236        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4237          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4238      }
4239    break;
4240  }
4241#endif
4242
4243  // Memoize the node unless it returns a flag.
4244  SDNode *N;
4245  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4246    FoldingSetNodeID ID;
4247    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4248    void *IP = 0;
4249    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4250      return SDValue(E, 0);
4251
4252    if (NumOps == 1) {
4253      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4254    } else if (NumOps == 2) {
4255      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4256    } else if (NumOps == 3) {
4257      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4258                                            Ops[2]);
4259    } else {
4260      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4261    }
4262    CSEMap.InsertNode(N, IP);
4263  } else {
4264    if (NumOps == 1) {
4265      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4266    } else if (NumOps == 2) {
4267      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4268    } else if (NumOps == 3) {
4269      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4270                                            Ops[2]);
4271    } else {
4272      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4273    }
4274  }
4275  AllNodes.push_back(N);
4276#ifndef NDEBUG
4277  VerifyNode(N);
4278#endif
4279  return SDValue(N, 0);
4280}
4281
4282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4283  return getNode(Opcode, DL, VTList, 0, 0);
4284}
4285
4286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4287                              SDValue N1) {
4288  SDValue Ops[] = { N1 };
4289  return getNode(Opcode, DL, VTList, Ops, 1);
4290}
4291
4292SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4293                              SDValue N1, SDValue N2) {
4294  SDValue Ops[] = { N1, N2 };
4295  return getNode(Opcode, DL, VTList, Ops, 2);
4296}
4297
4298SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4299                              SDValue N1, SDValue N2, SDValue N3) {
4300  SDValue Ops[] = { N1, N2, N3 };
4301  return getNode(Opcode, DL, VTList, Ops, 3);
4302}
4303
4304SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4305                              SDValue N1, SDValue N2, SDValue N3,
4306                              SDValue N4) {
4307  SDValue Ops[] = { N1, N2, N3, N4 };
4308  return getNode(Opcode, DL, VTList, Ops, 4);
4309}
4310
4311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4312                              SDValue N1, SDValue N2, SDValue N3,
4313                              SDValue N4, SDValue N5) {
4314  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4315  return getNode(Opcode, DL, VTList, Ops, 5);
4316}
4317
4318SDVTList SelectionDAG::getVTList(EVT VT) {
4319  return makeVTList(SDNode::getValueTypeList(VT), 1);
4320}
4321
4322SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4323  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4324       E = VTList.rend(); I != E; ++I)
4325    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4326      return *I;
4327
4328  EVT *Array = Allocator.Allocate<EVT>(2);
4329  Array[0] = VT1;
4330  Array[1] = VT2;
4331  SDVTList Result = makeVTList(Array, 2);
4332  VTList.push_back(Result);
4333  return Result;
4334}
4335
4336SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4337  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4338       E = VTList.rend(); I != E; ++I)
4339    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4340                          I->VTs[2] == VT3)
4341      return *I;
4342
4343  EVT *Array = Allocator.Allocate<EVT>(3);
4344  Array[0] = VT1;
4345  Array[1] = VT2;
4346  Array[2] = VT3;
4347  SDVTList Result = makeVTList(Array, 3);
4348  VTList.push_back(Result);
4349  return Result;
4350}
4351
4352SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4353  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4354       E = VTList.rend(); I != E; ++I)
4355    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4356                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4357      return *I;
4358
4359  EVT *Array = Allocator.Allocate<EVT>(4);
4360  Array[0] = VT1;
4361  Array[1] = VT2;
4362  Array[2] = VT3;
4363  Array[3] = VT4;
4364  SDVTList Result = makeVTList(Array, 4);
4365  VTList.push_back(Result);
4366  return Result;
4367}
4368
4369SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4370  switch (NumVTs) {
4371    case 0: llvm_unreachable("Cannot have nodes without results!");
4372    case 1: return getVTList(VTs[0]);
4373    case 2: return getVTList(VTs[0], VTs[1]);
4374    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4375    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4376    default: break;
4377  }
4378
4379  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4380       E = VTList.rend(); I != E; ++I) {
4381    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4382      continue;
4383
4384    bool NoMatch = false;
4385    for (unsigned i = 2; i != NumVTs; ++i)
4386      if (VTs[i] != I->VTs[i]) {
4387        NoMatch = true;
4388        break;
4389      }
4390    if (!NoMatch)
4391      return *I;
4392  }
4393
4394  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4395  std::copy(VTs, VTs+NumVTs, Array);
4396  SDVTList Result = makeVTList(Array, NumVTs);
4397  VTList.push_back(Result);
4398  return Result;
4399}
4400
4401
4402/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4403/// specified operands.  If the resultant node already exists in the DAG,
4404/// this does not modify the specified node, instead it returns the node that
4405/// already exists.  If the resultant node does not exist in the DAG, the
4406/// input node is returned.  As a degenerate case, if you specify the same
4407/// input operands as the node already has, the input node is returned.
4408SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4409  SDNode *N = InN.getNode();
4410  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4411
4412  // Check to see if there is no change.
4413  if (Op == N->getOperand(0)) return InN;
4414
4415  // See if the modified node already exists.
4416  void *InsertPos = 0;
4417  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4418    return SDValue(Existing, InN.getResNo());
4419
4420  // Nope it doesn't.  Remove the node from its current place in the maps.
4421  if (InsertPos)
4422    if (!RemoveNodeFromCSEMaps(N))
4423      InsertPos = 0;
4424
4425  // Now we update the operands.
4426  N->OperandList[0].set(Op);
4427
4428  // If this gets put into a CSE map, add it.
4429  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4430  return InN;
4431}
4432
4433SDValue SelectionDAG::
4434UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4435  SDNode *N = InN.getNode();
4436  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4437
4438  // Check to see if there is no change.
4439  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4440    return InN;   // No operands changed, just return the input node.
4441
4442  // See if the modified node already exists.
4443  void *InsertPos = 0;
4444  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4445    return SDValue(Existing, InN.getResNo());
4446
4447  // Nope it doesn't.  Remove the node from its current place in the maps.
4448  if (InsertPos)
4449    if (!RemoveNodeFromCSEMaps(N))
4450      InsertPos = 0;
4451
4452  // Now we update the operands.
4453  if (N->OperandList[0] != Op1)
4454    N->OperandList[0].set(Op1);
4455  if (N->OperandList[1] != Op2)
4456    N->OperandList[1].set(Op2);
4457
4458  // If this gets put into a CSE map, add it.
4459  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4460  return InN;
4461}
4462
4463SDValue SelectionDAG::
4464UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4465  SDValue Ops[] = { Op1, Op2, Op3 };
4466  return UpdateNodeOperands(N, Ops, 3);
4467}
4468
4469SDValue SelectionDAG::
4470UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4471                   SDValue Op3, SDValue Op4) {
4472  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4473  return UpdateNodeOperands(N, Ops, 4);
4474}
4475
4476SDValue SelectionDAG::
4477UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4478                   SDValue Op3, SDValue Op4, SDValue Op5) {
4479  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4480  return UpdateNodeOperands(N, Ops, 5);
4481}
4482
4483SDValue SelectionDAG::
4484UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4485  SDNode *N = InN.getNode();
4486  assert(N->getNumOperands() == NumOps &&
4487         "Update with wrong number of operands");
4488
4489  // Check to see if there is no change.
4490  bool AnyChange = false;
4491  for (unsigned i = 0; i != NumOps; ++i) {
4492    if (Ops[i] != N->getOperand(i)) {
4493      AnyChange = true;
4494      break;
4495    }
4496  }
4497
4498  // No operands changed, just return the input node.
4499  if (!AnyChange) return InN;
4500
4501  // See if the modified node already exists.
4502  void *InsertPos = 0;
4503  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4504    return SDValue(Existing, InN.getResNo());
4505
4506  // Nope it doesn't.  Remove the node from its current place in the maps.
4507  if (InsertPos)
4508    if (!RemoveNodeFromCSEMaps(N))
4509      InsertPos = 0;
4510
4511  // Now we update the operands.
4512  for (unsigned i = 0; i != NumOps; ++i)
4513    if (N->OperandList[i] != Ops[i])
4514      N->OperandList[i].set(Ops[i]);
4515
4516  // If this gets put into a CSE map, add it.
4517  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4518  return InN;
4519}
4520
4521/// DropOperands - Release the operands and set this node to have
4522/// zero operands.
4523void SDNode::DropOperands() {
4524  // Unlike the code in MorphNodeTo that does this, we don't need to
4525  // watch for dead nodes here.
4526  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4527    SDUse &Use = *I++;
4528    Use.set(SDValue());
4529  }
4530}
4531
4532/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4533/// machine opcode.
4534///
4535SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4536                                   EVT VT) {
4537  SDVTList VTs = getVTList(VT);
4538  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4539}
4540
4541SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4542                                   EVT VT, SDValue Op1) {
4543  SDVTList VTs = getVTList(VT);
4544  SDValue Ops[] = { Op1 };
4545  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4546}
4547
4548SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4549                                   EVT VT, SDValue Op1,
4550                                   SDValue Op2) {
4551  SDVTList VTs = getVTList(VT);
4552  SDValue Ops[] = { Op1, Op2 };
4553  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4554}
4555
4556SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4557                                   EVT VT, SDValue Op1,
4558                                   SDValue Op2, SDValue Op3) {
4559  SDVTList VTs = getVTList(VT);
4560  SDValue Ops[] = { Op1, Op2, Op3 };
4561  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4562}
4563
4564SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4565                                   EVT VT, const SDValue *Ops,
4566                                   unsigned NumOps) {
4567  SDVTList VTs = getVTList(VT);
4568  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4569}
4570
4571SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4572                                   EVT VT1, EVT VT2, const SDValue *Ops,
4573                                   unsigned NumOps) {
4574  SDVTList VTs = getVTList(VT1, VT2);
4575  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4576}
4577
4578SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4579                                   EVT VT1, EVT VT2) {
4580  SDVTList VTs = getVTList(VT1, VT2);
4581  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   EVT VT1, EVT VT2, EVT VT3,
4586                                   const SDValue *Ops, unsigned NumOps) {
4587  SDVTList VTs = getVTList(VT1, VT2, VT3);
4588  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4589}
4590
4591SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4593                                   const SDValue *Ops, unsigned NumOps) {
4594  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4595  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4596}
4597
4598SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                   EVT VT1, EVT VT2,
4600                                   SDValue Op1) {
4601  SDVTList VTs = getVTList(VT1, VT2);
4602  SDValue Ops[] = { Op1 };
4603  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4604}
4605
4606SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4607                                   EVT VT1, EVT VT2,
4608                                   SDValue Op1, SDValue Op2) {
4609  SDVTList VTs = getVTList(VT1, VT2);
4610  SDValue Ops[] = { Op1, Op2 };
4611  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4612}
4613
4614SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4615                                   EVT VT1, EVT VT2,
4616                                   SDValue Op1, SDValue Op2,
4617                                   SDValue Op3) {
4618  SDVTList VTs = getVTList(VT1, VT2);
4619  SDValue Ops[] = { Op1, Op2, Op3 };
4620  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4621}
4622
4623SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4624                                   EVT VT1, EVT VT2, EVT VT3,
4625                                   SDValue Op1, SDValue Op2,
4626                                   SDValue Op3) {
4627  SDVTList VTs = getVTList(VT1, VT2, VT3);
4628  SDValue Ops[] = { Op1, Op2, Op3 };
4629  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4630}
4631
4632SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4633                                   SDVTList VTs, const SDValue *Ops,
4634                                   unsigned NumOps) {
4635  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4636  // Reset the NodeID to -1.
4637  N->setNodeId(-1);
4638  return N;
4639}
4640
4641/// MorphNodeTo - This *mutates* the specified node to have the specified
4642/// return type, opcode, and operands.
4643///
4644/// Note that MorphNodeTo returns the resultant node.  If there is already a
4645/// node of the specified opcode and operands, it returns that node instead of
4646/// the current one.  Note that the DebugLoc need not be the same.
4647///
4648/// Using MorphNodeTo is faster than creating a new node and swapping it in
4649/// with ReplaceAllUsesWith both because it often avoids allocating a new
4650/// node, and because it doesn't require CSE recalculation for any of
4651/// the node's users.
4652///
4653SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4654                                  SDVTList VTs, const SDValue *Ops,
4655                                  unsigned NumOps) {
4656  // If an identical node already exists, use it.
4657  void *IP = 0;
4658  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4659    FoldingSetNodeID ID;
4660    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4661    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4662      return ON;
4663  }
4664
4665  if (!RemoveNodeFromCSEMaps(N))
4666    IP = 0;
4667
4668  // Start the morphing.
4669  N->NodeType = Opc;
4670  N->ValueList = VTs.VTs;
4671  N->NumValues = VTs.NumVTs;
4672
4673  // Clear the operands list, updating used nodes to remove this from their
4674  // use list.  Keep track of any operands that become dead as a result.
4675  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4676  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4677    SDUse &Use = *I++;
4678    SDNode *Used = Use.getNode();
4679    Use.set(SDValue());
4680    if (Used->use_empty())
4681      DeadNodeSet.insert(Used);
4682  }
4683
4684  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4685    // Initialize the memory references information.
4686    MN->setMemRefs(0, 0);
4687    // If NumOps is larger than the # of operands we can have in a
4688    // MachineSDNode, reallocate the operand list.
4689    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4690      if (MN->OperandsNeedDelete)
4691        delete[] MN->OperandList;
4692      if (NumOps > array_lengthof(MN->LocalOperands))
4693        // We're creating a final node that will live unmorphed for the
4694        // remainder of the current SelectionDAG iteration, so we can allocate
4695        // the operands directly out of a pool with no recycling metadata.
4696        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4697                         Ops, NumOps);
4698      else
4699        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4700      MN->OperandsNeedDelete = false;
4701    } else
4702      MN->InitOperands(MN->OperandList, Ops, NumOps);
4703  } else {
4704    // If NumOps is larger than the # of operands we currently have, reallocate
4705    // the operand list.
4706    if (NumOps > N->NumOperands) {
4707      if (N->OperandsNeedDelete)
4708        delete[] N->OperandList;
4709      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4710      N->OperandsNeedDelete = true;
4711    } else
4712      N->InitOperands(N->OperandList, Ops, NumOps);
4713  }
4714
4715  // Delete any nodes that are still dead after adding the uses for the
4716  // new operands.
4717  if (!DeadNodeSet.empty()) {
4718    SmallVector<SDNode *, 16> DeadNodes;
4719    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4720         E = DeadNodeSet.end(); I != E; ++I)
4721      if ((*I)->use_empty())
4722        DeadNodes.push_back(*I);
4723    RemoveDeadNodes(DeadNodes);
4724  }
4725
4726  if (IP)
4727    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4728  return N;
4729}
4730
4731
4732/// getMachineNode - These are used for target selectors to create a new node
4733/// with specified return type(s), MachineInstr opcode, and operands.
4734///
4735/// Note that getMachineNode returns the resultant node.  If there is already a
4736/// node of the specified opcode and operands, it returns that node instead of
4737/// the current one.
4738MachineSDNode *
4739SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4740  SDVTList VTs = getVTList(VT);
4741  return getMachineNode(Opcode, dl, VTs, 0, 0);
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4746  SDVTList VTs = getVTList(VT);
4747  SDValue Ops[] = { Op1 };
4748  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4749}
4750
4751MachineSDNode *
4752SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4753                             SDValue Op1, SDValue Op2) {
4754  SDVTList VTs = getVTList(VT);
4755  SDValue Ops[] = { Op1, Op2 };
4756  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4761                             SDValue Op1, SDValue Op2, SDValue Op3) {
4762  SDVTList VTs = getVTList(VT);
4763  SDValue Ops[] = { Op1, Op2, Op3 };
4764  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4765}
4766
4767MachineSDNode *
4768SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4769                             const SDValue *Ops, unsigned NumOps) {
4770  SDVTList VTs = getVTList(VT);
4771  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4776  SDVTList VTs = getVTList(VT1, VT2);
4777  return getMachineNode(Opcode, dl, VTs, 0, 0);
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2, SDValue Op1) {
4783  SDVTList VTs = getVTList(VT1, VT2);
4784  SDValue Ops[] = { Op1 };
4785  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4791  SDVTList VTs = getVTList(VT1, VT2);
4792  SDValue Ops[] = { Op1, Op2 };
4793  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4798                             EVT VT1, EVT VT2, SDValue Op1,
4799                             SDValue Op2, SDValue Op3) {
4800  SDVTList VTs = getVTList(VT1, VT2);
4801  SDValue Ops[] = { Op1, Op2, Op3 };
4802  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4803}
4804
4805MachineSDNode *
4806SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4807                             EVT VT1, EVT VT2,
4808                             const SDValue *Ops, unsigned NumOps) {
4809  SDVTList VTs = getVTList(VT1, VT2);
4810  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4811}
4812
4813MachineSDNode *
4814SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4815                             EVT VT1, EVT VT2, EVT VT3,
4816                             SDValue Op1, SDValue Op2) {
4817  SDVTList VTs = getVTList(VT1, VT2, VT3);
4818  SDValue Ops[] = { Op1, Op2 };
4819  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             EVT VT1, EVT VT2, EVT VT3,
4825                             SDValue Op1, SDValue Op2, SDValue Op3) {
4826  SDVTList VTs = getVTList(VT1, VT2, VT3);
4827  SDValue Ops[] = { Op1, Op2, Op3 };
4828  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4829}
4830
4831MachineSDNode *
4832SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4833                             EVT VT1, EVT VT2, EVT VT3,
4834                             const SDValue *Ops, unsigned NumOps) {
4835  SDVTList VTs = getVTList(VT1, VT2, VT3);
4836  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4837}
4838
4839MachineSDNode *
4840SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4841                             EVT VT2, EVT VT3, EVT VT4,
4842                             const SDValue *Ops, unsigned NumOps) {
4843  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4844  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4845}
4846
4847MachineSDNode *
4848SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4849                             const std::vector<EVT> &ResultTys,
4850                             const SDValue *Ops, unsigned NumOps) {
4851  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4852  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4853}
4854
4855MachineSDNode *
4856SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4857                             const SDValue *Ops, unsigned NumOps) {
4858  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4859  MachineSDNode *N;
4860  void *IP;
4861
4862  if (DoCSE) {
4863    FoldingSetNodeID ID;
4864    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4865    IP = 0;
4866    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4867      return cast<MachineSDNode>(E);
4868  }
4869
4870  // Allocate a new MachineSDNode.
4871  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4872
4873  // Initialize the operands list.
4874  if (NumOps > array_lengthof(N->LocalOperands))
4875    // We're creating a final node that will live unmorphed for the
4876    // remainder of the current SelectionDAG iteration, so we can allocate
4877    // the operands directly out of a pool with no recycling metadata.
4878    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4879                    Ops, NumOps);
4880  else
4881    N->InitOperands(N->LocalOperands, Ops, NumOps);
4882  N->OperandsNeedDelete = false;
4883
4884  if (DoCSE)
4885    CSEMap.InsertNode(N, IP);
4886
4887  AllNodes.push_back(N);
4888#ifndef NDEBUG
4889  VerifyNode(N);
4890#endif
4891  return N;
4892}
4893
4894/// getTargetExtractSubreg - A convenience function for creating
4895/// TargetOpcode::EXTRACT_SUBREG nodes.
4896SDValue
4897SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4898                                     SDValue Operand) {
4899  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4900  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4901                                  VT, Operand, SRIdxVal);
4902  return SDValue(Subreg, 0);
4903}
4904
4905/// getTargetInsertSubreg - A convenience function for creating
4906/// TargetOpcode::INSERT_SUBREG nodes.
4907SDValue
4908SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4909                                    SDValue Operand, SDValue Subreg) {
4910  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4911  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4912                                  VT, Operand, Subreg, SRIdxVal);
4913  return SDValue(Result, 0);
4914}
4915
4916/// getNodeIfExists - Get the specified node if it's already available, or
4917/// else return NULL.
4918SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4919                                      const SDValue *Ops, unsigned NumOps) {
4920  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4921    FoldingSetNodeID ID;
4922    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4923    void *IP = 0;
4924    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4925      return E;
4926  }
4927  return NULL;
4928}
4929
4930/// getDbgValue - Creates a SDDbgValue node.
4931///
4932SDDbgValue *
4933SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4934                          DebugLoc DL, unsigned O) {
4935  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4936}
4937
4938SDDbgValue *
4939SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4940                          DebugLoc DL, unsigned O) {
4941  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4942}
4943
4944SDDbgValue *
4945SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4946                          DebugLoc DL, unsigned O) {
4947  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4948}
4949
4950namespace {
4951
4952/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4953/// pointed to by a use iterator is deleted, increment the use iterator
4954/// so that it doesn't dangle.
4955///
4956/// This class also manages a "downlink" DAGUpdateListener, to forward
4957/// messages to ReplaceAllUsesWith's callers.
4958///
4959class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4960  SelectionDAG::DAGUpdateListener *DownLink;
4961  SDNode::use_iterator &UI;
4962  SDNode::use_iterator &UE;
4963
4964  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4965    // Increment the iterator as needed.
4966    while (UI != UE && N == *UI)
4967      ++UI;
4968
4969    // Then forward the message.
4970    if (DownLink) DownLink->NodeDeleted(N, E);
4971  }
4972
4973  virtual void NodeUpdated(SDNode *N) {
4974    // Just forward the message.
4975    if (DownLink) DownLink->NodeUpdated(N);
4976  }
4977
4978public:
4979  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4980                     SDNode::use_iterator &ui,
4981                     SDNode::use_iterator &ue)
4982    : DownLink(dl), UI(ui), UE(ue) {}
4983};
4984
4985}
4986
4987/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4988/// This can cause recursive merging of nodes in the DAG.
4989///
4990/// This version assumes From has a single result value.
4991///
4992void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4993                                      DAGUpdateListener *UpdateListener) {
4994  SDNode *From = FromN.getNode();
4995  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4996         "Cannot replace with this method!");
4997  assert(From != To.getNode() && "Cannot replace uses of with self");
4998
4999  // Iterate over all the existing uses of From. New uses will be added
5000  // to the beginning of the use list, which we avoid visiting.
5001  // This specifically avoids visiting uses of From that arise while the
5002  // replacement is happening, because any such uses would be the result
5003  // of CSE: If an existing node looks like From after one of its operands
5004  // is replaced by To, we don't want to replace of all its users with To
5005  // too. See PR3018 for more info.
5006  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5007  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5008  while (UI != UE) {
5009    SDNode *User = *UI;
5010
5011    // This node is about to morph, remove its old self from the CSE maps.
5012    RemoveNodeFromCSEMaps(User);
5013
5014    // A user can appear in a use list multiple times, and when this
5015    // happens the uses are usually next to each other in the list.
5016    // To help reduce the number of CSE recomputations, process all
5017    // the uses of this user that we can find this way.
5018    do {
5019      SDUse &Use = UI.getUse();
5020      ++UI;
5021      Use.set(To);
5022    } while (UI != UE && *UI == User);
5023
5024    // Now that we have modified User, add it back to the CSE maps.  If it
5025    // already exists there, recursively merge the results together.
5026    AddModifiedNodeToCSEMaps(User, &Listener);
5027  }
5028}
5029
5030/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5031/// This can cause recursive merging of nodes in the DAG.
5032///
5033/// This version assumes that for each value of From, there is a
5034/// corresponding value in To in the same position with the same type.
5035///
5036void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5037                                      DAGUpdateListener *UpdateListener) {
5038#ifndef NDEBUG
5039  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5040    assert((!From->hasAnyUseOfValue(i) ||
5041            From->getValueType(i) == To->getValueType(i)) &&
5042           "Cannot use this version of ReplaceAllUsesWith!");
5043#endif
5044
5045  // Handle the trivial case.
5046  if (From == To)
5047    return;
5048
5049  // Iterate over just the existing users of From. See the comments in
5050  // the ReplaceAllUsesWith above.
5051  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5052  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5053  while (UI != UE) {
5054    SDNode *User = *UI;
5055
5056    // This node is about to morph, remove its old self from the CSE maps.
5057    RemoveNodeFromCSEMaps(User);
5058
5059    // A user can appear in a use list multiple times, and when this
5060    // happens the uses are usually next to each other in the list.
5061    // To help reduce the number of CSE recomputations, process all
5062    // the uses of this user that we can find this way.
5063    do {
5064      SDUse &Use = UI.getUse();
5065      ++UI;
5066      Use.setNode(To);
5067    } while (UI != UE && *UI == User);
5068
5069    // Now that we have modified User, add it back to the CSE maps.  If it
5070    // already exists there, recursively merge the results together.
5071    AddModifiedNodeToCSEMaps(User, &Listener);
5072  }
5073}
5074
5075/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5076/// This can cause recursive merging of nodes in the DAG.
5077///
5078/// This version can replace From with any result values.  To must match the
5079/// number and types of values returned by From.
5080void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5081                                      const SDValue *To,
5082                                      DAGUpdateListener *UpdateListener) {
5083  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5084    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5085
5086  // Iterate over just the existing users of From. See the comments in
5087  // the ReplaceAllUsesWith above.
5088  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5089  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5090  while (UI != UE) {
5091    SDNode *User = *UI;
5092
5093    // This node is about to morph, remove its old self from the CSE maps.
5094    RemoveNodeFromCSEMaps(User);
5095
5096    // A user can appear in a use list multiple times, and when this
5097    // happens the uses are usually next to each other in the list.
5098    // To help reduce the number of CSE recomputations, process all
5099    // the uses of this user that we can find this way.
5100    do {
5101      SDUse &Use = UI.getUse();
5102      const SDValue &ToOp = To[Use.getResNo()];
5103      ++UI;
5104      Use.set(ToOp);
5105    } while (UI != UE && *UI == User);
5106
5107    // Now that we have modified User, add it back to the CSE maps.  If it
5108    // already exists there, recursively merge the results together.
5109    AddModifiedNodeToCSEMaps(User, &Listener);
5110  }
5111}
5112
5113/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5114/// uses of other values produced by From.getNode() alone.  The Deleted
5115/// vector is handled the same way as for ReplaceAllUsesWith.
5116void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5117                                             DAGUpdateListener *UpdateListener){
5118  // Handle the really simple, really trivial case efficiently.
5119  if (From == To) return;
5120
5121  // Handle the simple, trivial, case efficiently.
5122  if (From.getNode()->getNumValues() == 1) {
5123    ReplaceAllUsesWith(From, To, UpdateListener);
5124    return;
5125  }
5126
5127  // Iterate over just the existing users of From. See the comments in
5128  // the ReplaceAllUsesWith above.
5129  SDNode::use_iterator UI = From.getNode()->use_begin(),
5130                       UE = From.getNode()->use_end();
5131  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5132  while (UI != UE) {
5133    SDNode *User = *UI;
5134    bool UserRemovedFromCSEMaps = false;
5135
5136    // A user can appear in a use list multiple times, and when this
5137    // happens the uses are usually next to each other in the list.
5138    // To help reduce the number of CSE recomputations, process all
5139    // the uses of this user that we can find this way.
5140    do {
5141      SDUse &Use = UI.getUse();
5142
5143      // Skip uses of different values from the same node.
5144      if (Use.getResNo() != From.getResNo()) {
5145        ++UI;
5146        continue;
5147      }
5148
5149      // If this node hasn't been modified yet, it's still in the CSE maps,
5150      // so remove its old self from the CSE maps.
5151      if (!UserRemovedFromCSEMaps) {
5152        RemoveNodeFromCSEMaps(User);
5153        UserRemovedFromCSEMaps = true;
5154      }
5155
5156      ++UI;
5157      Use.set(To);
5158    } while (UI != UE && *UI == User);
5159
5160    // We are iterating over all uses of the From node, so if a use
5161    // doesn't use the specific value, no changes are made.
5162    if (!UserRemovedFromCSEMaps)
5163      continue;
5164
5165    // Now that we have modified User, add it back to the CSE maps.  If it
5166    // already exists there, recursively merge the results together.
5167    AddModifiedNodeToCSEMaps(User, &Listener);
5168  }
5169}
5170
5171namespace {
5172  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5173  /// to record information about a use.
5174  struct UseMemo {
5175    SDNode *User;
5176    unsigned Index;
5177    SDUse *Use;
5178  };
5179
5180  /// operator< - Sort Memos by User.
5181  bool operator<(const UseMemo &L, const UseMemo &R) {
5182    return (intptr_t)L.User < (intptr_t)R.User;
5183  }
5184}
5185
5186/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5187/// uses of other values produced by From.getNode() alone.  The same value
5188/// may appear in both the From and To list.  The Deleted vector is
5189/// handled the same way as for ReplaceAllUsesWith.
5190void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5191                                              const SDValue *To,
5192                                              unsigned Num,
5193                                              DAGUpdateListener *UpdateListener){
5194  // Handle the simple, trivial case efficiently.
5195  if (Num == 1)
5196    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5197
5198  // Read up all the uses and make records of them. This helps
5199  // processing new uses that are introduced during the
5200  // replacement process.
5201  SmallVector<UseMemo, 4> Uses;
5202  for (unsigned i = 0; i != Num; ++i) {
5203    unsigned FromResNo = From[i].getResNo();
5204    SDNode *FromNode = From[i].getNode();
5205    for (SDNode::use_iterator UI = FromNode->use_begin(),
5206         E = FromNode->use_end(); UI != E; ++UI) {
5207      SDUse &Use = UI.getUse();
5208      if (Use.getResNo() == FromResNo) {
5209        UseMemo Memo = { *UI, i, &Use };
5210        Uses.push_back(Memo);
5211      }
5212    }
5213  }
5214
5215  // Sort the uses, so that all the uses from a given User are together.
5216  std::sort(Uses.begin(), Uses.end());
5217
5218  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5219       UseIndex != UseIndexEnd; ) {
5220    // We know that this user uses some value of From.  If it is the right
5221    // value, update it.
5222    SDNode *User = Uses[UseIndex].User;
5223
5224    // This node is about to morph, remove its old self from the CSE maps.
5225    RemoveNodeFromCSEMaps(User);
5226
5227    // The Uses array is sorted, so all the uses for a given User
5228    // are next to each other in the list.
5229    // To help reduce the number of CSE recomputations, process all
5230    // the uses of this user that we can find this way.
5231    do {
5232      unsigned i = Uses[UseIndex].Index;
5233      SDUse &Use = *Uses[UseIndex].Use;
5234      ++UseIndex;
5235
5236      Use.set(To[i]);
5237    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5238
5239    // Now that we have modified User, add it back to the CSE maps.  If it
5240    // already exists there, recursively merge the results together.
5241    AddModifiedNodeToCSEMaps(User, UpdateListener);
5242  }
5243}
5244
5245/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5246/// based on their topological order. It returns the maximum id and a vector
5247/// of the SDNodes* in assigned order by reference.
5248unsigned SelectionDAG::AssignTopologicalOrder() {
5249
5250  unsigned DAGSize = 0;
5251
5252  // SortedPos tracks the progress of the algorithm. Nodes before it are
5253  // sorted, nodes after it are unsorted. When the algorithm completes
5254  // it is at the end of the list.
5255  allnodes_iterator SortedPos = allnodes_begin();
5256
5257  // Visit all the nodes. Move nodes with no operands to the front of
5258  // the list immediately. Annotate nodes that do have operands with their
5259  // operand count. Before we do this, the Node Id fields of the nodes
5260  // may contain arbitrary values. After, the Node Id fields for nodes
5261  // before SortedPos will contain the topological sort index, and the
5262  // Node Id fields for nodes At SortedPos and after will contain the
5263  // count of outstanding operands.
5264  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5265    SDNode *N = I++;
5266    checkForCycles(N);
5267    unsigned Degree = N->getNumOperands();
5268    if (Degree == 0) {
5269      // A node with no uses, add it to the result array immediately.
5270      N->setNodeId(DAGSize++);
5271      allnodes_iterator Q = N;
5272      if (Q != SortedPos)
5273        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5274      assert(SortedPos != AllNodes.end() && "Overran node list");
5275      ++SortedPos;
5276    } else {
5277      // Temporarily use the Node Id as scratch space for the degree count.
5278      N->setNodeId(Degree);
5279    }
5280  }
5281
5282  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5283  // such that by the time the end is reached all nodes will be sorted.
5284  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5285    SDNode *N = I;
5286    checkForCycles(N);
5287    // N is in sorted position, so all its uses have one less operand
5288    // that needs to be sorted.
5289    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5290         UI != UE; ++UI) {
5291      SDNode *P = *UI;
5292      unsigned Degree = P->getNodeId();
5293      assert(Degree != 0 && "Invalid node degree");
5294      --Degree;
5295      if (Degree == 0) {
5296        // All of P's operands are sorted, so P may sorted now.
5297        P->setNodeId(DAGSize++);
5298        if (P != SortedPos)
5299          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5300        assert(SortedPos != AllNodes.end() && "Overran node list");
5301        ++SortedPos;
5302      } else {
5303        // Update P's outstanding operand count.
5304        P->setNodeId(Degree);
5305      }
5306    }
5307    if (I == SortedPos) {
5308#ifndef NDEBUG
5309      SDNode *S = ++I;
5310      dbgs() << "Overran sorted position:\n";
5311      S->dumprFull();
5312#endif
5313      llvm_unreachable(0);
5314    }
5315  }
5316
5317  assert(SortedPos == AllNodes.end() &&
5318         "Topological sort incomplete!");
5319  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5320         "First node in topological sort is not the entry token!");
5321  assert(AllNodes.front().getNodeId() == 0 &&
5322         "First node in topological sort has non-zero id!");
5323  assert(AllNodes.front().getNumOperands() == 0 &&
5324         "First node in topological sort has operands!");
5325  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5326         "Last node in topologic sort has unexpected id!");
5327  assert(AllNodes.back().use_empty() &&
5328         "Last node in topologic sort has users!");
5329  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5330  return DAGSize;
5331}
5332
5333/// AssignOrdering - Assign an order to the SDNode.
5334void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5335  assert(SD && "Trying to assign an order to a null node!");
5336  Ordering->add(SD, Order);
5337}
5338
5339/// GetOrdering - Get the order for the SDNode.
5340unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5341  assert(SD && "Trying to get the order of a null node!");
5342  return Ordering->getOrder(SD);
5343}
5344
5345/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5346/// value is produced by SD.
5347void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5348  DbgInfo->add(DB, SD);
5349  if (SD)
5350    SD->setHasDebugValue(true);
5351}
5352
5353//===----------------------------------------------------------------------===//
5354//                              SDNode Class
5355//===----------------------------------------------------------------------===//
5356
5357HandleSDNode::~HandleSDNode() {
5358  DropOperands();
5359}
5360
5361GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5362                                         EVT VT, int64_t o, unsigned char TF)
5363  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5364  TheGlobal = GA;
5365}
5366
5367MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5368                     MachineMemOperand *mmo)
5369 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5370  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5371                                      MMO->isNonTemporal());
5372  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5373  assert(isNonTemporal() == MMO->isNonTemporal() &&
5374         "Non-temporal encoding error!");
5375  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5376}
5377
5378MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5379                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5380                     MachineMemOperand *mmo)
5381   : SDNode(Opc, dl, VTs, Ops, NumOps),
5382     MemoryVT(memvt), MMO(mmo) {
5383  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5384                                      MMO->isNonTemporal());
5385  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5386  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5387}
5388
5389/// Profile - Gather unique data for the node.
5390///
5391void SDNode::Profile(FoldingSetNodeID &ID) const {
5392  AddNodeIDNode(ID, this);
5393}
5394
5395namespace {
5396  struct EVTArray {
5397    std::vector<EVT> VTs;
5398
5399    EVTArray() {
5400      VTs.reserve(MVT::LAST_VALUETYPE);
5401      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5402        VTs.push_back(MVT((MVT::SimpleValueType)i));
5403    }
5404  };
5405}
5406
5407static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5408static ManagedStatic<EVTArray> SimpleVTArray;
5409static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5410
5411/// getValueTypeList - Return a pointer to the specified value type.
5412///
5413const EVT *SDNode::getValueTypeList(EVT VT) {
5414  if (VT.isExtended()) {
5415    sys::SmartScopedLock<true> Lock(*VTMutex);
5416    return &(*EVTs->insert(VT).first);
5417  } else {
5418    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5419  }
5420}
5421
5422/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5423/// indicated value.  This method ignores uses of other values defined by this
5424/// operation.
5425bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5426  assert(Value < getNumValues() && "Bad value!");
5427
5428  // TODO: Only iterate over uses of a given value of the node
5429  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5430    if (UI.getUse().getResNo() == Value) {
5431      if (NUses == 0)
5432        return false;
5433      --NUses;
5434    }
5435  }
5436
5437  // Found exactly the right number of uses?
5438  return NUses == 0;
5439}
5440
5441
5442/// hasAnyUseOfValue - Return true if there are any use of the indicated
5443/// value. This method ignores uses of other values defined by this operation.
5444bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5445  assert(Value < getNumValues() && "Bad value!");
5446
5447  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5448    if (UI.getUse().getResNo() == Value)
5449      return true;
5450
5451  return false;
5452}
5453
5454
5455/// isOnlyUserOf - Return true if this node is the only use of N.
5456///
5457bool SDNode::isOnlyUserOf(SDNode *N) const {
5458  bool Seen = false;
5459  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5460    SDNode *User = *I;
5461    if (User == this)
5462      Seen = true;
5463    else
5464      return false;
5465  }
5466
5467  return Seen;
5468}
5469
5470/// isOperand - Return true if this node is an operand of N.
5471///
5472bool SDValue::isOperandOf(SDNode *N) const {
5473  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5474    if (*this == N->getOperand(i))
5475      return true;
5476  return false;
5477}
5478
5479bool SDNode::isOperandOf(SDNode *N) const {
5480  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5481    if (this == N->OperandList[i].getNode())
5482      return true;
5483  return false;
5484}
5485
5486/// reachesChainWithoutSideEffects - Return true if this operand (which must
5487/// be a chain) reaches the specified operand without crossing any
5488/// side-effecting instructions.  In practice, this looks through token
5489/// factors and non-volatile loads.  In order to remain efficient, this only
5490/// looks a couple of nodes in, it does not do an exhaustive search.
5491bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5492                                               unsigned Depth) const {
5493  if (*this == Dest) return true;
5494
5495  // Don't search too deeply, we just want to be able to see through
5496  // TokenFactor's etc.
5497  if (Depth == 0) return false;
5498
5499  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5500  // of the operands of the TF reach dest, then we can do the xform.
5501  if (getOpcode() == ISD::TokenFactor) {
5502    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5503      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5504        return true;
5505    return false;
5506  }
5507
5508  // Loads don't have side effects, look through them.
5509  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5510    if (!Ld->isVolatile())
5511      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5512  }
5513  return false;
5514}
5515
5516/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5517/// is either an operand of N or it can be reached by traversing up the operands.
5518/// NOTE: this is an expensive method. Use it carefully.
5519bool SDNode::isPredecessorOf(SDNode *N) const {
5520  SmallPtrSet<SDNode *, 32> Visited;
5521  SmallVector<SDNode *, 16> Worklist;
5522  Worklist.push_back(N);
5523
5524  do {
5525    N = Worklist.pop_back_val();
5526    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5527      SDNode *Op = N->getOperand(i).getNode();
5528      if (Op == this)
5529        return true;
5530      if (Visited.insert(Op))
5531        Worklist.push_back(Op);
5532    }
5533  } while (!Worklist.empty());
5534
5535  return false;
5536}
5537
5538uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5539  assert(Num < NumOperands && "Invalid child # of SDNode!");
5540  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5541}
5542
5543std::string SDNode::getOperationName(const SelectionDAG *G) const {
5544  switch (getOpcode()) {
5545  default:
5546    if (getOpcode() < ISD::BUILTIN_OP_END)
5547      return "<<Unknown DAG Node>>";
5548    if (isMachineOpcode()) {
5549      if (G)
5550        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5551          if (getMachineOpcode() < TII->getNumOpcodes())
5552            return TII->get(getMachineOpcode()).getName();
5553      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5554    }
5555    if (G) {
5556      const TargetLowering &TLI = G->getTargetLoweringInfo();
5557      const char *Name = TLI.getTargetNodeName(getOpcode());
5558      if (Name) return Name;
5559      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5560    }
5561    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5562
5563#ifndef NDEBUG
5564  case ISD::DELETED_NODE:
5565    return "<<Deleted Node!>>";
5566#endif
5567  case ISD::PREFETCH:      return "Prefetch";
5568  case ISD::MEMBARRIER:    return "MemBarrier";
5569  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5570  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5571  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5572  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5573  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5574  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5575  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5576  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5577  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5578  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5579  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5580  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5581  case ISD::PCMARKER:      return "PCMarker";
5582  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5583  case ISD::SRCVALUE:      return "SrcValue";
5584  case ISD::MDNODE_SDNODE: return "MDNode";
5585  case ISD::EntryToken:    return "EntryToken";
5586  case ISD::TokenFactor:   return "TokenFactor";
5587  case ISD::AssertSext:    return "AssertSext";
5588  case ISD::AssertZext:    return "AssertZext";
5589
5590  case ISD::BasicBlock:    return "BasicBlock";
5591  case ISD::VALUETYPE:     return "ValueType";
5592  case ISD::Register:      return "Register";
5593
5594  case ISD::Constant:      return "Constant";
5595  case ISD::ConstantFP:    return "ConstantFP";
5596  case ISD::GlobalAddress: return "GlobalAddress";
5597  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5598  case ISD::FrameIndex:    return "FrameIndex";
5599  case ISD::JumpTable:     return "JumpTable";
5600  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5601  case ISD::RETURNADDR: return "RETURNADDR";
5602  case ISD::FRAMEADDR: return "FRAMEADDR";
5603  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5604  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5605  case ISD::LSDAADDR: return "LSDAADDR";
5606  case ISD::EHSELECTION: return "EHSELECTION";
5607  case ISD::EH_RETURN: return "EH_RETURN";
5608  case ISD::ConstantPool:  return "ConstantPool";
5609  case ISD::ExternalSymbol: return "ExternalSymbol";
5610  case ISD::BlockAddress:  return "BlockAddress";
5611  case ISD::INTRINSIC_WO_CHAIN:
5612  case ISD::INTRINSIC_VOID:
5613  case ISD::INTRINSIC_W_CHAIN: {
5614    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5615    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5616    if (IID < Intrinsic::num_intrinsics)
5617      return Intrinsic::getName((Intrinsic::ID)IID);
5618    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5619      return TII->getName(IID);
5620    llvm_unreachable("Invalid intrinsic ID");
5621  }
5622
5623  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5624  case ISD::TargetConstant: return "TargetConstant";
5625  case ISD::TargetConstantFP:return "TargetConstantFP";
5626  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5627  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5628  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5629  case ISD::TargetJumpTable:  return "TargetJumpTable";
5630  case ISD::TargetConstantPool:  return "TargetConstantPool";
5631  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5632  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5633
5634  case ISD::CopyToReg:     return "CopyToReg";
5635  case ISD::CopyFromReg:   return "CopyFromReg";
5636  case ISD::UNDEF:         return "undef";
5637  case ISD::MERGE_VALUES:  return "merge_values";
5638  case ISD::INLINEASM:     return "inlineasm";
5639  case ISD::EH_LABEL:      return "eh_label";
5640  case ISD::HANDLENODE:    return "handlenode";
5641
5642  // Unary operators
5643  case ISD::FABS:   return "fabs";
5644  case ISD::FNEG:   return "fneg";
5645  case ISD::FSQRT:  return "fsqrt";
5646  case ISD::FSIN:   return "fsin";
5647  case ISD::FCOS:   return "fcos";
5648  case ISD::FPOWI:  return "fpowi";
5649  case ISD::FPOW:   return "fpow";
5650  case ISD::FTRUNC: return "ftrunc";
5651  case ISD::FFLOOR: return "ffloor";
5652  case ISD::FCEIL:  return "fceil";
5653  case ISD::FRINT:  return "frint";
5654  case ISD::FNEARBYINT: return "fnearbyint";
5655
5656  // Binary operators
5657  case ISD::ADD:    return "add";
5658  case ISD::SUB:    return "sub";
5659  case ISD::MUL:    return "mul";
5660  case ISD::MULHU:  return "mulhu";
5661  case ISD::MULHS:  return "mulhs";
5662  case ISD::SDIV:   return "sdiv";
5663  case ISD::UDIV:   return "udiv";
5664  case ISD::SREM:   return "srem";
5665  case ISD::UREM:   return "urem";
5666  case ISD::SMUL_LOHI:  return "smul_lohi";
5667  case ISD::UMUL_LOHI:  return "umul_lohi";
5668  case ISD::SDIVREM:    return "sdivrem";
5669  case ISD::UDIVREM:    return "udivrem";
5670  case ISD::AND:    return "and";
5671  case ISD::OR:     return "or";
5672  case ISD::XOR:    return "xor";
5673  case ISD::SHL:    return "shl";
5674  case ISD::SRA:    return "sra";
5675  case ISD::SRL:    return "srl";
5676  case ISD::ROTL:   return "rotl";
5677  case ISD::ROTR:   return "rotr";
5678  case ISD::FADD:   return "fadd";
5679  case ISD::FSUB:   return "fsub";
5680  case ISD::FMUL:   return "fmul";
5681  case ISD::FDIV:   return "fdiv";
5682  case ISD::FREM:   return "frem";
5683  case ISD::FCOPYSIGN: return "fcopysign";
5684  case ISD::FGETSIGN:  return "fgetsign";
5685
5686  case ISD::SETCC:       return "setcc";
5687  case ISD::VSETCC:      return "vsetcc";
5688  case ISD::SELECT:      return "select";
5689  case ISD::SELECT_CC:   return "select_cc";
5690  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5691  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5692  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5693  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5694  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5695  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5696  case ISD::CARRY_FALSE:         return "carry_false";
5697  case ISD::ADDC:        return "addc";
5698  case ISD::ADDE:        return "adde";
5699  case ISD::SADDO:       return "saddo";
5700  case ISD::UADDO:       return "uaddo";
5701  case ISD::SSUBO:       return "ssubo";
5702  case ISD::USUBO:       return "usubo";
5703  case ISD::SMULO:       return "smulo";
5704  case ISD::UMULO:       return "umulo";
5705  case ISD::SUBC:        return "subc";
5706  case ISD::SUBE:        return "sube";
5707  case ISD::SHL_PARTS:   return "shl_parts";
5708  case ISD::SRA_PARTS:   return "sra_parts";
5709  case ISD::SRL_PARTS:   return "srl_parts";
5710
5711  // Conversion operators.
5712  case ISD::SIGN_EXTEND: return "sign_extend";
5713  case ISD::ZERO_EXTEND: return "zero_extend";
5714  case ISD::ANY_EXTEND:  return "any_extend";
5715  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5716  case ISD::TRUNCATE:    return "truncate";
5717  case ISD::FP_ROUND:    return "fp_round";
5718  case ISD::FLT_ROUNDS_: return "flt_rounds";
5719  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5720  case ISD::FP_EXTEND:   return "fp_extend";
5721
5722  case ISD::SINT_TO_FP:  return "sint_to_fp";
5723  case ISD::UINT_TO_FP:  return "uint_to_fp";
5724  case ISD::FP_TO_SINT:  return "fp_to_sint";
5725  case ISD::FP_TO_UINT:  return "fp_to_uint";
5726  case ISD::BIT_CONVERT: return "bit_convert";
5727  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5728  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5729
5730  case ISD::CONVERT_RNDSAT: {
5731    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5732    default: llvm_unreachable("Unknown cvt code!");
5733    case ISD::CVT_FF:  return "cvt_ff";
5734    case ISD::CVT_FS:  return "cvt_fs";
5735    case ISD::CVT_FU:  return "cvt_fu";
5736    case ISD::CVT_SF:  return "cvt_sf";
5737    case ISD::CVT_UF:  return "cvt_uf";
5738    case ISD::CVT_SS:  return "cvt_ss";
5739    case ISD::CVT_SU:  return "cvt_su";
5740    case ISD::CVT_US:  return "cvt_us";
5741    case ISD::CVT_UU:  return "cvt_uu";
5742    }
5743  }
5744
5745    // Control flow instructions
5746  case ISD::BR:      return "br";
5747  case ISD::BRIND:   return "brind";
5748  case ISD::BR_JT:   return "br_jt";
5749  case ISD::BRCOND:  return "brcond";
5750  case ISD::BR_CC:   return "br_cc";
5751  case ISD::CALLSEQ_START:  return "callseq_start";
5752  case ISD::CALLSEQ_END:    return "callseq_end";
5753
5754    // Other operators
5755  case ISD::LOAD:               return "load";
5756  case ISD::STORE:              return "store";
5757  case ISD::VAARG:              return "vaarg";
5758  case ISD::VACOPY:             return "vacopy";
5759  case ISD::VAEND:              return "vaend";
5760  case ISD::VASTART:            return "vastart";
5761  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5762  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5763  case ISD::BUILD_PAIR:         return "build_pair";
5764  case ISD::STACKSAVE:          return "stacksave";
5765  case ISD::STACKRESTORE:       return "stackrestore";
5766  case ISD::TRAP:               return "trap";
5767
5768  // Bit manipulation
5769  case ISD::BSWAP:   return "bswap";
5770  case ISD::CTPOP:   return "ctpop";
5771  case ISD::CTTZ:    return "cttz";
5772  case ISD::CTLZ:    return "ctlz";
5773
5774  // Trampolines
5775  case ISD::TRAMPOLINE: return "trampoline";
5776
5777  case ISD::CONDCODE:
5778    switch (cast<CondCodeSDNode>(this)->get()) {
5779    default: llvm_unreachable("Unknown setcc condition!");
5780    case ISD::SETOEQ:  return "setoeq";
5781    case ISD::SETOGT:  return "setogt";
5782    case ISD::SETOGE:  return "setoge";
5783    case ISD::SETOLT:  return "setolt";
5784    case ISD::SETOLE:  return "setole";
5785    case ISD::SETONE:  return "setone";
5786
5787    case ISD::SETO:    return "seto";
5788    case ISD::SETUO:   return "setuo";
5789    case ISD::SETUEQ:  return "setue";
5790    case ISD::SETUGT:  return "setugt";
5791    case ISD::SETUGE:  return "setuge";
5792    case ISD::SETULT:  return "setult";
5793    case ISD::SETULE:  return "setule";
5794    case ISD::SETUNE:  return "setune";
5795
5796    case ISD::SETEQ:   return "seteq";
5797    case ISD::SETGT:   return "setgt";
5798    case ISD::SETGE:   return "setge";
5799    case ISD::SETLT:   return "setlt";
5800    case ISD::SETLE:   return "setle";
5801    case ISD::SETNE:   return "setne";
5802    }
5803  }
5804}
5805
5806const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5807  switch (AM) {
5808  default:
5809    return "";
5810  case ISD::PRE_INC:
5811    return "<pre-inc>";
5812  case ISD::PRE_DEC:
5813    return "<pre-dec>";
5814  case ISD::POST_INC:
5815    return "<post-inc>";
5816  case ISD::POST_DEC:
5817    return "<post-dec>";
5818  }
5819}
5820
5821std::string ISD::ArgFlagsTy::getArgFlagsString() {
5822  std::string S = "< ";
5823
5824  if (isZExt())
5825    S += "zext ";
5826  if (isSExt())
5827    S += "sext ";
5828  if (isInReg())
5829    S += "inreg ";
5830  if (isSRet())
5831    S += "sret ";
5832  if (isByVal())
5833    S += "byval ";
5834  if (isNest())
5835    S += "nest ";
5836  if (getByValAlign())
5837    S += "byval-align:" + utostr(getByValAlign()) + " ";
5838  if (getOrigAlign())
5839    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5840  if (getByValSize())
5841    S += "byval-size:" + utostr(getByValSize()) + " ";
5842  return S + ">";
5843}
5844
5845void SDNode::dump() const { dump(0); }
5846void SDNode::dump(const SelectionDAG *G) const {
5847  print(dbgs(), G);
5848}
5849
5850void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5851  OS << (void*)this << ": ";
5852
5853  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5854    if (i) OS << ",";
5855    if (getValueType(i) == MVT::Other)
5856      OS << "ch";
5857    else
5858      OS << getValueType(i).getEVTString();
5859  }
5860  OS << " = " << getOperationName(G);
5861}
5862
5863void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5864  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5865    if (!MN->memoperands_empty()) {
5866      OS << "<";
5867      OS << "Mem:";
5868      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5869           e = MN->memoperands_end(); i != e; ++i) {
5870        OS << **i;
5871        if (next(i) != e)
5872          OS << " ";
5873      }
5874      OS << ">";
5875    }
5876  } else if (const ShuffleVectorSDNode *SVN =
5877               dyn_cast<ShuffleVectorSDNode>(this)) {
5878    OS << "<";
5879    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5880      int Idx = SVN->getMaskElt(i);
5881      if (i) OS << ",";
5882      if (Idx < 0)
5883        OS << "u";
5884      else
5885        OS << Idx;
5886    }
5887    OS << ">";
5888  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5889    OS << '<' << CSDN->getAPIntValue() << '>';
5890  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5891    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5892      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5893    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5894      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5895    else {
5896      OS << "<APFloat(";
5897      CSDN->getValueAPF().bitcastToAPInt().dump();
5898      OS << ")>";
5899    }
5900  } else if (const GlobalAddressSDNode *GADN =
5901             dyn_cast<GlobalAddressSDNode>(this)) {
5902    int64_t offset = GADN->getOffset();
5903    OS << '<';
5904    WriteAsOperand(OS, GADN->getGlobal());
5905    OS << '>';
5906    if (offset > 0)
5907      OS << " + " << offset;
5908    else
5909      OS << " " << offset;
5910    if (unsigned int TF = GADN->getTargetFlags())
5911      OS << " [TF=" << TF << ']';
5912  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5913    OS << "<" << FIDN->getIndex() << ">";
5914  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5915    OS << "<" << JTDN->getIndex() << ">";
5916    if (unsigned int TF = JTDN->getTargetFlags())
5917      OS << " [TF=" << TF << ']';
5918  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5919    int offset = CP->getOffset();
5920    if (CP->isMachineConstantPoolEntry())
5921      OS << "<" << *CP->getMachineCPVal() << ">";
5922    else
5923      OS << "<" << *CP->getConstVal() << ">";
5924    if (offset > 0)
5925      OS << " + " << offset;
5926    else
5927      OS << " " << offset;
5928    if (unsigned int TF = CP->getTargetFlags())
5929      OS << " [TF=" << TF << ']';
5930  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5931    OS << "<";
5932    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5933    if (LBB)
5934      OS << LBB->getName() << " ";
5935    OS << (const void*)BBDN->getBasicBlock() << ">";
5936  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5937    if (G && R->getReg() &&
5938        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5939      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5940    } else {
5941      OS << " %reg" << R->getReg();
5942    }
5943  } else if (const ExternalSymbolSDNode *ES =
5944             dyn_cast<ExternalSymbolSDNode>(this)) {
5945    OS << "'" << ES->getSymbol() << "'";
5946    if (unsigned int TF = ES->getTargetFlags())
5947      OS << " [TF=" << TF << ']';
5948  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5949    if (M->getValue())
5950      OS << "<" << M->getValue() << ">";
5951    else
5952      OS << "<null>";
5953  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5954    if (MD->getMD())
5955      OS << "<" << MD->getMD() << ">";
5956    else
5957      OS << "<null>";
5958  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5959    OS << ":" << N->getVT().getEVTString();
5960  }
5961  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5962    OS << "<" << *LD->getMemOperand();
5963
5964    bool doExt = true;
5965    switch (LD->getExtensionType()) {
5966    default: doExt = false; break;
5967    case ISD::EXTLOAD: OS << ", anyext"; break;
5968    case ISD::SEXTLOAD: OS << ", sext"; break;
5969    case ISD::ZEXTLOAD: OS << ", zext"; break;
5970    }
5971    if (doExt)
5972      OS << " from " << LD->getMemoryVT().getEVTString();
5973
5974    const char *AM = getIndexedModeName(LD->getAddressingMode());
5975    if (*AM)
5976      OS << ", " << AM;
5977
5978    OS << ">";
5979  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5980    OS << "<" << *ST->getMemOperand();
5981
5982    if (ST->isTruncatingStore())
5983      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5984
5985    const char *AM = getIndexedModeName(ST->getAddressingMode());
5986    if (*AM)
5987      OS << ", " << AM;
5988
5989    OS << ">";
5990  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5991    OS << "<" << *M->getMemOperand() << ">";
5992  } else if (const BlockAddressSDNode *BA =
5993               dyn_cast<BlockAddressSDNode>(this)) {
5994    OS << "<";
5995    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5996    OS << ", ";
5997    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5998    OS << ">";
5999    if (unsigned int TF = BA->getTargetFlags())
6000      OS << " [TF=" << TF << ']';
6001  }
6002
6003  if (G)
6004    if (unsigned Order = G->GetOrdering(this))
6005      OS << " [ORD=" << Order << ']';
6006
6007  if (getNodeId() != -1)
6008    OS << " [ID=" << getNodeId() << ']';
6009}
6010
6011void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6012  print_types(OS, G);
6013  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6014    if (i) OS << ", "; else OS << " ";
6015    OS << (void*)getOperand(i).getNode();
6016    if (unsigned RN = getOperand(i).getResNo())
6017      OS << ":" << RN;
6018  }
6019  print_details(OS, G);
6020}
6021
6022static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6023                                  const SelectionDAG *G, unsigned depth,
6024                                  unsigned indent)
6025{
6026  if (depth == 0)
6027    return;
6028
6029  OS.indent(indent);
6030
6031  N->print(OS, G);
6032
6033  if (depth < 1)
6034    return;
6035
6036  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6037    OS << '\n';
6038    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6039  }
6040}
6041
6042void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6043                            unsigned depth) const {
6044  printrWithDepthHelper(OS, this, G, depth, 0);
6045}
6046
6047void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6048  // Don't print impossibly deep things.
6049  printrWithDepth(OS, G, 100);
6050}
6051
6052void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6053  printrWithDepth(dbgs(), G, depth);
6054}
6055
6056void SDNode::dumprFull(const SelectionDAG *G) const {
6057  // Don't print impossibly deep things.
6058  dumprWithDepth(G, 100);
6059}
6060
6061static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6062  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6063    if (N->getOperand(i).getNode()->hasOneUse())
6064      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6065    else
6066      dbgs() << "\n" << std::string(indent+2, ' ')
6067           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6068
6069
6070  dbgs() << "\n";
6071  dbgs().indent(indent);
6072  N->dump(G);
6073}
6074
6075SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6076  assert(N->getNumValues() == 1 &&
6077         "Can't unroll a vector with multiple results!");
6078
6079  EVT VT = N->getValueType(0);
6080  unsigned NE = VT.getVectorNumElements();
6081  EVT EltVT = VT.getVectorElementType();
6082  DebugLoc dl = N->getDebugLoc();
6083
6084  SmallVector<SDValue, 8> Scalars;
6085  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6086
6087  // If ResNE is 0, fully unroll the vector op.
6088  if (ResNE == 0)
6089    ResNE = NE;
6090  else if (NE > ResNE)
6091    NE = ResNE;
6092
6093  unsigned i;
6094  for (i= 0; i != NE; ++i) {
6095    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6096      SDValue Operand = N->getOperand(j);
6097      EVT OperandVT = Operand.getValueType();
6098      if (OperandVT.isVector()) {
6099        // A vector operand; extract a single element.
6100        EVT OperandEltVT = OperandVT.getVectorElementType();
6101        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6102                              OperandEltVT,
6103                              Operand,
6104                              getConstant(i, MVT::i32));
6105      } else {
6106        // A scalar operand; just use it as is.
6107        Operands[j] = Operand;
6108      }
6109    }
6110
6111    switch (N->getOpcode()) {
6112    default:
6113      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6114                                &Operands[0], Operands.size()));
6115      break;
6116    case ISD::SHL:
6117    case ISD::SRA:
6118    case ISD::SRL:
6119    case ISD::ROTL:
6120    case ISD::ROTR:
6121      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6122                                getShiftAmountOperand(Operands[1])));
6123      break;
6124    case ISD::SIGN_EXTEND_INREG:
6125    case ISD::FP_ROUND_INREG: {
6126      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6127      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6128                                Operands[0],
6129                                getValueType(ExtVT)));
6130    }
6131    }
6132  }
6133
6134  for (; i < ResNE; ++i)
6135    Scalars.push_back(getUNDEF(EltVT));
6136
6137  return getNode(ISD::BUILD_VECTOR, dl,
6138                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6139                 &Scalars[0], Scalars.size());
6140}
6141
6142
6143/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6144/// location that is 'Dist' units away from the location that the 'Base' load
6145/// is loading from.
6146bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6147                                     unsigned Bytes, int Dist) const {
6148  if (LD->getChain() != Base->getChain())
6149    return false;
6150  EVT VT = LD->getValueType(0);
6151  if (VT.getSizeInBits() / 8 != Bytes)
6152    return false;
6153
6154  SDValue Loc = LD->getOperand(1);
6155  SDValue BaseLoc = Base->getOperand(1);
6156  if (Loc.getOpcode() == ISD::FrameIndex) {
6157    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6158      return false;
6159    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6160    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6161    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6162    int FS  = MFI->getObjectSize(FI);
6163    int BFS = MFI->getObjectSize(BFI);
6164    if (FS != BFS || FS != (int)Bytes) return false;
6165    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6166  }
6167  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6168    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6169    if (V && (V->getSExtValue() == Dist*Bytes))
6170      return true;
6171  }
6172
6173  const GlobalValue *GV1 = NULL;
6174  const GlobalValue *GV2 = NULL;
6175  int64_t Offset1 = 0;
6176  int64_t Offset2 = 0;
6177  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6178  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6179  if (isGA1 && isGA2 && GV1 == GV2)
6180    return Offset1 == (Offset2 + Dist*Bytes);
6181  return false;
6182}
6183
6184
6185/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6186/// it cannot be inferred.
6187unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6188  // If this is a GlobalAddress + cst, return the alignment.
6189  const GlobalValue *GV;
6190  int64_t GVOffset = 0;
6191  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6192    // If GV has specified alignment, then use it. Otherwise, use the preferred
6193    // alignment.
6194    unsigned Align = GV->getAlignment();
6195    if (!Align) {
6196      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6197        if (GVar->hasInitializer()) {
6198          const TargetData *TD = TLI.getTargetData();
6199          Align = TD->getPreferredAlignment(GVar);
6200        }
6201      }
6202    }
6203    return MinAlign(Align, GVOffset);
6204  }
6205
6206  // If this is a direct reference to a stack slot, use information about the
6207  // stack slot's alignment.
6208  int FrameIdx = 1 << 31;
6209  int64_t FrameOffset = 0;
6210  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6211    FrameIdx = FI->getIndex();
6212  } else if (Ptr.getOpcode() == ISD::ADD &&
6213             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6214             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6215    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6216    FrameOffset = Ptr.getConstantOperandVal(1);
6217  }
6218
6219  if (FrameIdx != (1 << 31)) {
6220    // FIXME: Handle FI+CST.
6221    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6222    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6223                                    FrameOffset);
6224    if (MFI.isFixedObjectIndex(FrameIdx)) {
6225      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6226
6227      // The alignment of the frame index can be determined from its offset from
6228      // the incoming frame position.  If the frame object is at offset 32 and
6229      // the stack is guaranteed to be 16-byte aligned, then we know that the
6230      // object is 16-byte aligned.
6231      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6232      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6233
6234      // Finally, the frame object itself may have a known alignment.  Factor
6235      // the alignment + offset into a new alignment.  For example, if we know
6236      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6237      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6238      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6239      return std::max(Align, FIInfoAlign);
6240    }
6241    return FIInfoAlign;
6242  }
6243
6244  return 0;
6245}
6246
6247void SelectionDAG::dump() const {
6248  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6249
6250  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6251       I != E; ++I) {
6252    const SDNode *N = I;
6253    if (!N->hasOneUse() && N != getRoot().getNode())
6254      DumpNodes(N, 2, this);
6255  }
6256
6257  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6258
6259  dbgs() << "\n\n";
6260}
6261
6262void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6263  print_types(OS, G);
6264  print_details(OS, G);
6265}
6266
6267typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6268static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6269                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6270  if (!once.insert(N))          // If we've been here before, return now.
6271    return;
6272
6273  // Dump the current SDNode, but don't end the line yet.
6274  OS << std::string(indent, ' ');
6275  N->printr(OS, G);
6276
6277  // Having printed this SDNode, walk the children:
6278  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6279    const SDNode *child = N->getOperand(i).getNode();
6280
6281    if (i) OS << ",";
6282    OS << " ";
6283
6284    if (child->getNumOperands() == 0) {
6285      // This child has no grandchildren; print it inline right here.
6286      child->printr(OS, G);
6287      once.insert(child);
6288    } else {         // Just the address. FIXME: also print the child's opcode.
6289      OS << (void*)child;
6290      if (unsigned RN = N->getOperand(i).getResNo())
6291        OS << ":" << RN;
6292    }
6293  }
6294
6295  OS << "\n";
6296
6297  // Dump children that have grandchildren on their own line(s).
6298  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6299    const SDNode *child = N->getOperand(i).getNode();
6300    DumpNodesr(OS, child, indent+2, G, once);
6301  }
6302}
6303
6304void SDNode::dumpr() const {
6305  VisitedSDNodeSet once;
6306  DumpNodesr(dbgs(), this, 0, 0, once);
6307}
6308
6309void SDNode::dumpr(const SelectionDAG *G) const {
6310  VisitedSDNodeSet once;
6311  DumpNodesr(dbgs(), this, 0, G, once);
6312}
6313
6314
6315// getAddressSpace - Return the address space this GlobalAddress belongs to.
6316unsigned GlobalAddressSDNode::getAddressSpace() const {
6317  return getGlobal()->getType()->getAddressSpace();
6318}
6319
6320
6321const Type *ConstantPoolSDNode::getType() const {
6322  if (isMachineConstantPoolEntry())
6323    return Val.MachineCPVal->getType();
6324  return Val.ConstVal->getType();
6325}
6326
6327bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6328                                        APInt &SplatUndef,
6329                                        unsigned &SplatBitSize,
6330                                        bool &HasAnyUndefs,
6331                                        unsigned MinSplatBits,
6332                                        bool isBigEndian) {
6333  EVT VT = getValueType(0);
6334  assert(VT.isVector() && "Expected a vector type");
6335  unsigned sz = VT.getSizeInBits();
6336  if (MinSplatBits > sz)
6337    return false;
6338
6339  SplatValue = APInt(sz, 0);
6340  SplatUndef = APInt(sz, 0);
6341
6342  // Get the bits.  Bits with undefined values (when the corresponding element
6343  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6344  // in SplatValue.  If any of the values are not constant, give up and return
6345  // false.
6346  unsigned int nOps = getNumOperands();
6347  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6348  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6349
6350  for (unsigned j = 0; j < nOps; ++j) {
6351    unsigned i = isBigEndian ? nOps-1-j : j;
6352    SDValue OpVal = getOperand(i);
6353    unsigned BitPos = j * EltBitSize;
6354
6355    if (OpVal.getOpcode() == ISD::UNDEF)
6356      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6357    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6358      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6359                    zextOrTrunc(sz) << BitPos;
6360    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6361      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6362     else
6363      return false;
6364  }
6365
6366  // The build_vector is all constants or undefs.  Find the smallest element
6367  // size that splats the vector.
6368
6369  HasAnyUndefs = (SplatUndef != 0);
6370  while (sz > 8) {
6371
6372    unsigned HalfSize = sz / 2;
6373    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6374    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6375    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6376    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6377
6378    // If the two halves do not match (ignoring undef bits), stop here.
6379    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6380        MinSplatBits > HalfSize)
6381      break;
6382
6383    SplatValue = HighValue | LowValue;
6384    SplatUndef = HighUndef & LowUndef;
6385
6386    sz = HalfSize;
6387  }
6388
6389  SplatBitSize = sz;
6390  return true;
6391}
6392
6393bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6394  // Find the first non-undef value in the shuffle mask.
6395  unsigned i, e;
6396  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6397    /* search */;
6398
6399  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6400
6401  // Make sure all remaining elements are either undef or the same as the first
6402  // non-undef value.
6403  for (int Idx = Mask[i]; i != e; ++i)
6404    if (Mask[i] >= 0 && Mask[i] != Idx)
6405      return false;
6406  return true;
6407}
6408
6409#ifdef XDEBUG
6410static void checkForCyclesHelper(const SDNode *N,
6411                                 SmallPtrSet<const SDNode*, 32> &Visited,
6412                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6413  // If this node has already been checked, don't check it again.
6414  if (Checked.count(N))
6415    return;
6416
6417  // If a node has already been visited on this depth-first walk, reject it as
6418  // a cycle.
6419  if (!Visited.insert(N)) {
6420    dbgs() << "Offending node:\n";
6421    N->dumprFull();
6422    errs() << "Detected cycle in SelectionDAG\n";
6423    abort();
6424  }
6425
6426  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6427    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6428
6429  Checked.insert(N);
6430  Visited.erase(N);
6431}
6432#endif
6433
6434void llvm::checkForCycles(const llvm::SDNode *N) {
6435#ifdef XDEBUG
6436  assert(N && "Checking nonexistant SDNode");
6437  SmallPtrSet<const SDNode*, 32> visited;
6438  SmallPtrSet<const SDNode*, 32> checked;
6439  checkForCyclesHelper(N, visited, checked);
6440#endif
6441}
6442
6443void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6444  checkForCycles(DAG->getRoot().getNode());
6445}
6446