SelectionDAG.cpp revision 384504cea6c392125a2318d8bbb7f25aa0bbff7e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Assembly/Writer.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Target/MRegisterInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include <iostream>
27#include <set>
28#include <cmath>
29#include <algorithm>
30using namespace llvm;
31
32static bool isCommutativeBinOp(unsigned Opcode) {
33  switch (Opcode) {
34  case ISD::ADD:
35  case ISD::MUL:
36  case ISD::MULHU:
37  case ISD::MULHS:
38  case ISD::FADD:
39  case ISD::FMUL:
40  case ISD::AND:
41  case ISD::OR:
42  case ISD::XOR: return true;
43  default: return false; // FIXME: Need commutative info for user ops!
44  }
45}
46
47// isInvertibleForFree - Return true if there is no cost to emitting the logical
48// inverse of this node.
49static bool isInvertibleForFree(SDOperand N) {
50  if (isa<ConstantSDNode>(N.Val)) return true;
51  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
52    return true;
53  return false;
54}
55
56//===----------------------------------------------------------------------===//
57//                              ConstantFPSDNode Class
58//===----------------------------------------------------------------------===//
59
60/// isExactlyValue - We don't rely on operator== working on double values, as
61/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
62/// As such, this method can be used to do an exact bit-for-bit comparison of
63/// two floating point values.
64bool ConstantFPSDNode::isExactlyValue(double V) const {
65  return DoubleToBits(V) == DoubleToBits(Value);
66}
67
68//===----------------------------------------------------------------------===//
69//                              ISD Class
70//===----------------------------------------------------------------------===//
71
72/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
73/// when given the operation for (X op Y).
74ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
75  // To perform this operation, we just need to swap the L and G bits of the
76  // operation.
77  unsigned OldL = (Operation >> 2) & 1;
78  unsigned OldG = (Operation >> 1) & 1;
79  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
80                       (OldL << 1) |       // New G bit
81                       (OldG << 2));        // New L bit.
82}
83
84/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
85/// 'op' is a valid SetCC operation.
86ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
87  unsigned Operation = Op;
88  if (isInteger)
89    Operation ^= 7;   // Flip L, G, E bits, but not U.
90  else
91    Operation ^= 15;  // Flip all of the condition bits.
92  if (Operation > ISD::SETTRUE2)
93    Operation &= ~8;     // Don't let N and U bits get set.
94  return ISD::CondCode(Operation);
95}
96
97
98/// isSignedOp - For an integer comparison, return 1 if the comparison is a
99/// signed operation and 2 if the result is an unsigned comparison.  Return zero
100/// if the operation does not depend on the sign of the input (setne and seteq).
101static int isSignedOp(ISD::CondCode Opcode) {
102  switch (Opcode) {
103  default: assert(0 && "Illegal integer setcc operation!");
104  case ISD::SETEQ:
105  case ISD::SETNE: return 0;
106  case ISD::SETLT:
107  case ISD::SETLE:
108  case ISD::SETGT:
109  case ISD::SETGE: return 1;
110  case ISD::SETULT:
111  case ISD::SETULE:
112  case ISD::SETUGT:
113  case ISD::SETUGE: return 2;
114  }
115}
116
117/// getSetCCOrOperation - Return the result of a logical OR between different
118/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
119/// returns SETCC_INVALID if it is not possible to represent the resultant
120/// comparison.
121ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
122                                       bool isInteger) {
123  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
124    // Cannot fold a signed integer setcc with an unsigned integer setcc.
125    return ISD::SETCC_INVALID;
126
127  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
128
129  // If the N and U bits get set then the resultant comparison DOES suddenly
130  // care about orderedness, and is true when ordered.
131  if (Op > ISD::SETTRUE2)
132    Op &= ~16;     // Clear the N bit.
133  return ISD::CondCode(Op);
134}
135
136/// getSetCCAndOperation - Return the result of a logical AND between different
137/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
138/// function returns zero if it is not possible to represent the resultant
139/// comparison.
140ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
141                                        bool isInteger) {
142  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
143    // Cannot fold a signed setcc with an unsigned setcc.
144    return ISD::SETCC_INVALID;
145
146  // Combine all of the condition bits.
147  return ISD::CondCode(Op1 & Op2);
148}
149
150const TargetMachine &SelectionDAG::getTarget() const {
151  return TLI.getTargetMachine();
152}
153
154//===----------------------------------------------------------------------===//
155//                              SelectionDAG Class
156//===----------------------------------------------------------------------===//
157
158/// RemoveDeadNodes - This method deletes all unreachable nodes in the
159/// SelectionDAG, including nodes (like loads) that have uses of their token
160/// chain but no other uses and no side effect.  If a node is passed in as an
161/// argument, it is used as the seed for node deletion.
162void SelectionDAG::RemoveDeadNodes(SDNode *N) {
163  // Create a dummy node (which is not added to allnodes), that adds a reference
164  // to the root node, preventing it from being deleted.
165  HandleSDNode Dummy(getRoot());
166
167  bool MadeChange = false;
168
169  // If we have a hint to start from, use it.
170  if (N && N->use_empty()) {
171    DestroyDeadNode(N);
172    MadeChange = true;
173  }
174
175  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
176    if (I->use_empty() && I->getOpcode() != 65535) {
177      // Node is dead, recursively delete newly dead uses.
178      DestroyDeadNode(I);
179      MadeChange = true;
180    }
181
182  // Walk the nodes list, removing the nodes we've marked as dead.
183  if (MadeChange) {
184    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
185      SDNode *N = I++;
186      if (N->use_empty())
187        AllNodes.erase(N);
188    }
189  }
190
191  // If the root changed (e.g. it was a dead load, update the root).
192  setRoot(Dummy.getValue());
193}
194
195/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
196/// graph.  If it is the last user of any of its operands, recursively process
197/// them the same way.
198///
199void SelectionDAG::DestroyDeadNode(SDNode *N) {
200  // Okay, we really are going to delete this node.  First take this out of the
201  // appropriate CSE map.
202  RemoveNodeFromCSEMaps(N);
203
204  // Next, brutally remove the operand list.  This is safe to do, as there are
205  // no cycles in the graph.
206  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
207    SDNode *O = I->Val;
208    O->removeUser(N);
209
210    // Now that we removed this operand, see if there are no uses of it left.
211    if (O->use_empty())
212      DestroyDeadNode(O);
213  }
214  delete[] N->OperandList;
215  N->OperandList = 0;
216  N->NumOperands = 0;
217
218  // Mark the node as dead.
219  N->MorphNodeTo(65535);
220}
221
222void SelectionDAG::DeleteNode(SDNode *N) {
223  assert(N->use_empty() && "Cannot delete a node that is not dead!");
224
225  // First take this out of the appropriate CSE map.
226  RemoveNodeFromCSEMaps(N);
227
228  // Finally, remove uses due to operands of this node, remove from the
229  // AllNodes list, and delete the node.
230  DeleteNodeNotInCSEMaps(N);
231}
232
233void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
234
235  // Remove it from the AllNodes list.
236  AllNodes.remove(N);
237
238  // Drop all of the operands and decrement used nodes use counts.
239  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
240    I->Val->removeUser(N);
241  delete[] N->OperandList;
242  N->OperandList = 0;
243  N->NumOperands = 0;
244
245  delete N;
246}
247
248/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
249/// correspond to it.  This is useful when we're about to delete or repurpose
250/// the node.  We don't want future request for structurally identical nodes
251/// to return N anymore.
252void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
253  bool Erased = false;
254  switch (N->getOpcode()) {
255  case ISD::HANDLENODE: return;  // noop.
256  case ISD::Constant:
257    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
258                                            N->getValueType(0)));
259    break;
260  case ISD::TargetConstant:
261    Erased = TargetConstants.erase(std::make_pair(
262                                    cast<ConstantSDNode>(N)->getValue(),
263                                                  N->getValueType(0)));
264    break;
265  case ISD::ConstantFP: {
266    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
267    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
268    break;
269  }
270  case ISD::TargetConstantFP: {
271    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
272    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
273    break;
274  }
275  case ISD::STRING:
276    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
277    break;
278  case ISD::CONDCODE:
279    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
280           "Cond code doesn't exist!");
281    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
282    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
283    break;
284  case ISD::GlobalAddress: {
285    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
286    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
287                                               GN->getOffset()));
288    break;
289  }
290  case ISD::TargetGlobalAddress: {
291    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
292    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
293                                                    GN->getOffset()));
294    break;
295  }
296  case ISD::FrameIndex:
297    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
298    break;
299  case ISD::TargetFrameIndex:
300    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
301    break;
302  case ISD::ConstantPool:
303    Erased = ConstantPoolIndices.
304      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
305                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
306                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
307    break;
308  case ISD::TargetConstantPool:
309    Erased = TargetConstantPoolIndices.
310      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
311                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
312                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
313    break;
314  case ISD::BasicBlock:
315    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
316    break;
317  case ISD::ExternalSymbol:
318    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
319    break;
320  case ISD::TargetExternalSymbol:
321    Erased =
322      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
323    break;
324  case ISD::VALUETYPE:
325    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
326    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
327    break;
328  case ISD::Register:
329    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
330                                           N->getValueType(0)));
331    break;
332  case ISD::SRCVALUE: {
333    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
334    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
335    break;
336  }
337  case ISD::LOAD:
338    Erased = Loads.erase(std::make_pair(N->getOperand(1),
339                                        std::make_pair(N->getOperand(0),
340                                                       N->getValueType(0))));
341    break;
342  default:
343    if (N->getNumValues() == 1) {
344      if (N->getNumOperands() == 0) {
345        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
346                                                 N->getValueType(0)));
347      } else if (N->getNumOperands() == 1) {
348        Erased =
349          UnaryOps.erase(std::make_pair(N->getOpcode(),
350                                        std::make_pair(N->getOperand(0),
351                                                       N->getValueType(0))));
352      } else if (N->getNumOperands() == 2) {
353        Erased =
354          BinaryOps.erase(std::make_pair(N->getOpcode(),
355                                         std::make_pair(N->getOperand(0),
356                                                        N->getOperand(1))));
357      } else {
358        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
359        Erased =
360          OneResultNodes.erase(std::make_pair(N->getOpcode(),
361                                              std::make_pair(N->getValueType(0),
362                                                             Ops)));
363      }
364    } else {
365      // Remove the node from the ArbitraryNodes map.
366      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
367      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
368      Erased =
369        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
370                                            std::make_pair(RV, Ops)));
371    }
372    break;
373  }
374#ifndef NDEBUG
375  // Verify that the node was actually in one of the CSE maps, unless it has a
376  // flag result (which cannot be CSE'd) or is one of the special cases that are
377  // not subject to CSE.
378  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
379      !N->isTargetOpcode()) {
380    N->dump();
381    assert(0 && "Node is not in map!");
382  }
383#endif
384}
385
386/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
387/// has been taken out and modified in some way.  If the specified node already
388/// exists in the CSE maps, do not modify the maps, but return the existing node
389/// instead.  If it doesn't exist, add it and return null.
390///
391SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
392  assert(N->getNumOperands() && "This is a leaf node!");
393  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
394    return 0;    // Never add these nodes.
395
396  // Check that remaining values produced are not flags.
397  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
398    if (N->getValueType(i) == MVT::Flag)
399      return 0;   // Never CSE anything that produces a flag.
400
401  if (N->getNumValues() == 1) {
402    if (N->getNumOperands() == 1) {
403      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
404                                           std::make_pair(N->getOperand(0),
405                                                          N->getValueType(0)))];
406      if (U) return U;
407      U = N;
408    } else if (N->getNumOperands() == 2) {
409      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
410                                            std::make_pair(N->getOperand(0),
411                                                           N->getOperand(1)))];
412      if (B) return B;
413      B = N;
414    } else {
415      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
416      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
417                                      std::make_pair(N->getValueType(0), Ops))];
418      if (ORN) return ORN;
419      ORN = N;
420    }
421  } else {
422    if (N->getOpcode() == ISD::LOAD) {
423      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
424                                        std::make_pair(N->getOperand(0),
425                                                       N->getValueType(0)))];
426      if (L) return L;
427      L = N;
428    } else {
429      // Remove the node from the ArbitraryNodes map.
430      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
431      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
432      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
433                                                  std::make_pair(RV, Ops))];
434      if (AN) return AN;
435      AN = N;
436    }
437  }
438  return 0;
439}
440
441/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
442/// were replaced with those specified.  If this node is never memoized,
443/// return null, otherwise return a pointer to the slot it would take.  If a
444/// node already exists with these operands, the slot will be non-null.
445SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
446  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
447    return 0;    // Never add these nodes.
448
449  // Check that remaining values produced are not flags.
450  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
451    if (N->getValueType(i) == MVT::Flag)
452      return 0;   // Never CSE anything that produces a flag.
453
454  if (N->getNumValues() == 1) {
455    return &UnaryOps[std::make_pair(N->getOpcode(),
456                                    std::make_pair(Op, N->getValueType(0)))];
457  } else {
458    // Remove the node from the ArbitraryNodes map.
459    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
460    std::vector<SDOperand> Ops;
461    Ops.push_back(Op);
462    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
463                                          std::make_pair(RV, Ops))];
464  }
465  return 0;
466}
467
468/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
469/// were replaced with those specified.  If this node is never memoized,
470/// return null, otherwise return a pointer to the slot it would take.  If a
471/// node already exists with these operands, the slot will be non-null.
472SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
473                                            SDOperand Op1, SDOperand Op2) {
474  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
475    return 0;    // Never add these nodes.
476
477  // Check that remaining values produced are not flags.
478  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
479    if (N->getValueType(i) == MVT::Flag)
480      return 0;   // Never CSE anything that produces a flag.
481
482  if (N->getNumValues() == 1) {
483    return &BinaryOps[std::make_pair(N->getOpcode(),
484                                     std::make_pair(Op1, Op2))];
485  } else {
486    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
487    std::vector<SDOperand> Ops;
488    Ops.push_back(Op1);
489    Ops.push_back(Op2);
490    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
491                                          std::make_pair(RV, Ops))];
492  }
493  return 0;
494}
495
496
497/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
498/// were replaced with those specified.  If this node is never memoized,
499/// return null, otherwise return a pointer to the slot it would take.  If a
500/// node already exists with these operands, the slot will be non-null.
501SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
502                                            const std::vector<SDOperand> &Ops) {
503  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
504    return 0;    // Never add these nodes.
505
506  // Check that remaining values produced are not flags.
507  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
508    if (N->getValueType(i) == MVT::Flag)
509      return 0;   // Never CSE anything that produces a flag.
510
511  if (N->getNumValues() == 1) {
512    if (N->getNumOperands() == 1) {
513      return &UnaryOps[std::make_pair(N->getOpcode(),
514                                      std::make_pair(Ops[0],
515                                                     N->getValueType(0)))];
516    } else if (N->getNumOperands() == 2) {
517      return &BinaryOps[std::make_pair(N->getOpcode(),
518                                       std::make_pair(Ops[0], Ops[1]))];
519    } else {
520      return &OneResultNodes[std::make_pair(N->getOpcode(),
521                                            std::make_pair(N->getValueType(0),
522                                                           Ops))];
523    }
524  } else {
525    if (N->getOpcode() == ISD::LOAD) {
526      return &Loads[std::make_pair(Ops[1],
527                                   std::make_pair(Ops[0], N->getValueType(0)))];
528    } else {
529      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
530      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
531                                            std::make_pair(RV, Ops))];
532    }
533  }
534  return 0;
535}
536
537
538SelectionDAG::~SelectionDAG() {
539  while (!AllNodes.empty()) {
540    SDNode *N = AllNodes.begin();
541    delete [] N->OperandList;
542    N->OperandList = 0;
543    N->NumOperands = 0;
544    AllNodes.pop_front();
545  }
546}
547
548SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
549  if (Op.getValueType() == VT) return Op;
550  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
551  return getNode(ISD::AND, Op.getValueType(), Op,
552                 getConstant(Imm, Op.getValueType()));
553}
554
555SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
556  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
557  // Mask out any bits that are not valid for this constant.
558  if (VT != MVT::i64)
559    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
560
561  SDNode *&N = Constants[std::make_pair(Val, VT)];
562  if (N) return SDOperand(N, 0);
563  N = new ConstantSDNode(false, Val, VT);
564  AllNodes.push_back(N);
565  return SDOperand(N, 0);
566}
567
568SDOperand SelectionDAG::getString(const std::string &Val) {
569  StringSDNode *&N = StringNodes[Val];
570  if (!N) {
571    N = new StringSDNode(Val);
572    AllNodes.push_back(N);
573  }
574  return SDOperand(N, 0);
575}
576
577SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
578  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
579  // Mask out any bits that are not valid for this constant.
580  if (VT != MVT::i64)
581    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
582
583  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
584  if (N) return SDOperand(N, 0);
585  N = new ConstantSDNode(true, Val, VT);
586  AllNodes.push_back(N);
587  return SDOperand(N, 0);
588}
589
590SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
591  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
592  if (VT == MVT::f32)
593    Val = (float)Val;  // Mask out extra precision.
594
595  // Do the map lookup using the actual bit pattern for the floating point
596  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
597  // we don't have issues with SNANs.
598  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
599  if (N) return SDOperand(N, 0);
600  N = new ConstantFPSDNode(false, Val, VT);
601  AllNodes.push_back(N);
602  return SDOperand(N, 0);
603}
604
605SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
606  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
607  if (VT == MVT::f32)
608    Val = (float)Val;  // Mask out extra precision.
609
610  // Do the map lookup using the actual bit pattern for the floating point
611  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
612  // we don't have issues with SNANs.
613  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
614  if (N) return SDOperand(N, 0);
615  N = new ConstantFPSDNode(true, Val, VT);
616  AllNodes.push_back(N);
617  return SDOperand(N, 0);
618}
619
620SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
621                                         MVT::ValueType VT, int offset) {
622  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
623  if (N) return SDOperand(N, 0);
624  N = new GlobalAddressSDNode(false, GV, VT, offset);
625  AllNodes.push_back(N);
626  return SDOperand(N, 0);
627}
628
629SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
630                                               MVT::ValueType VT, int offset) {
631  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
632  if (N) return SDOperand(N, 0);
633  N = new GlobalAddressSDNode(true, GV, VT, offset);
634  AllNodes.push_back(N);
635  return SDOperand(N, 0);
636}
637
638SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
639  SDNode *&N = FrameIndices[FI];
640  if (N) return SDOperand(N, 0);
641  N = new FrameIndexSDNode(FI, VT, false);
642  AllNodes.push_back(N);
643  return SDOperand(N, 0);
644}
645
646SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
647  SDNode *&N = TargetFrameIndices[FI];
648  if (N) return SDOperand(N, 0);
649  N = new FrameIndexSDNode(FI, VT, true);
650  AllNodes.push_back(N);
651  return SDOperand(N, 0);
652}
653
654SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
655                                        unsigned Alignment,  int Offset) {
656  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
657                                            std::make_pair(Offset, Alignment))];
658  if (N) return SDOperand(N, 0);
659  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
660  AllNodes.push_back(N);
661  return SDOperand(N, 0);
662}
663
664SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
665                                             unsigned Alignment,  int Offset) {
666  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
667                                            std::make_pair(Offset, Alignment))];
668  if (N) return SDOperand(N, 0);
669  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
670  AllNodes.push_back(N);
671  return SDOperand(N, 0);
672}
673
674SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
675  SDNode *&N = BBNodes[MBB];
676  if (N) return SDOperand(N, 0);
677  N = new BasicBlockSDNode(MBB);
678  AllNodes.push_back(N);
679  return SDOperand(N, 0);
680}
681
682SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
683  if ((unsigned)VT >= ValueTypeNodes.size())
684    ValueTypeNodes.resize(VT+1);
685  if (ValueTypeNodes[VT] == 0) {
686    ValueTypeNodes[VT] = new VTSDNode(VT);
687    AllNodes.push_back(ValueTypeNodes[VT]);
688  }
689
690  return SDOperand(ValueTypeNodes[VT], 0);
691}
692
693SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
694  SDNode *&N = ExternalSymbols[Sym];
695  if (N) return SDOperand(N, 0);
696  N = new ExternalSymbolSDNode(false, Sym, VT);
697  AllNodes.push_back(N);
698  return SDOperand(N, 0);
699}
700
701SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
702                                                MVT::ValueType VT) {
703  SDNode *&N = TargetExternalSymbols[Sym];
704  if (N) return SDOperand(N, 0);
705  N = new ExternalSymbolSDNode(true, Sym, VT);
706  AllNodes.push_back(N);
707  return SDOperand(N, 0);
708}
709
710SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
711  if ((unsigned)Cond >= CondCodeNodes.size())
712    CondCodeNodes.resize(Cond+1);
713
714  if (CondCodeNodes[Cond] == 0) {
715    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
716    AllNodes.push_back(CondCodeNodes[Cond]);
717  }
718  return SDOperand(CondCodeNodes[Cond], 0);
719}
720
721SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
722  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
723  if (!Reg) {
724    Reg = new RegisterSDNode(RegNo, VT);
725    AllNodes.push_back(Reg);
726  }
727  return SDOperand(Reg, 0);
728}
729
730SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
731                                      SDOperand N2, ISD::CondCode Cond) {
732  // These setcc operations always fold.
733  switch (Cond) {
734  default: break;
735  case ISD::SETFALSE:
736  case ISD::SETFALSE2: return getConstant(0, VT);
737  case ISD::SETTRUE:
738  case ISD::SETTRUE2:  return getConstant(1, VT);
739  }
740
741  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
742    uint64_t C2 = N2C->getValue();
743    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
744      uint64_t C1 = N1C->getValue();
745
746      // Sign extend the operands if required
747      if (ISD::isSignedIntSetCC(Cond)) {
748        C1 = N1C->getSignExtended();
749        C2 = N2C->getSignExtended();
750      }
751
752      switch (Cond) {
753      default: assert(0 && "Unknown integer setcc!");
754      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
755      case ISD::SETNE:  return getConstant(C1 != C2, VT);
756      case ISD::SETULT: return getConstant(C1 <  C2, VT);
757      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
758      case ISD::SETULE: return getConstant(C1 <= C2, VT);
759      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
760      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
761      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
762      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
763      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
764      }
765    } else {
766      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
767      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
768        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
769
770        // If the comparison constant has bits in the upper part, the
771        // zero-extended value could never match.
772        if (C2 & (~0ULL << InSize)) {
773          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
774          switch (Cond) {
775          case ISD::SETUGT:
776          case ISD::SETUGE:
777          case ISD::SETEQ: return getConstant(0, VT);
778          case ISD::SETULT:
779          case ISD::SETULE:
780          case ISD::SETNE: return getConstant(1, VT);
781          case ISD::SETGT:
782          case ISD::SETGE:
783            // True if the sign bit of C2 is set.
784            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
785          case ISD::SETLT:
786          case ISD::SETLE:
787            // True if the sign bit of C2 isn't set.
788            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
789          default:
790            break;
791          }
792        }
793
794        // Otherwise, we can perform the comparison with the low bits.
795        switch (Cond) {
796        case ISD::SETEQ:
797        case ISD::SETNE:
798        case ISD::SETUGT:
799        case ISD::SETUGE:
800        case ISD::SETULT:
801        case ISD::SETULE:
802          return getSetCC(VT, N1.getOperand(0),
803                          getConstant(C2, N1.getOperand(0).getValueType()),
804                          Cond);
805        default:
806          break;   // todo, be more careful with signed comparisons
807        }
808      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
809                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
810        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
811        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
812        MVT::ValueType ExtDstTy = N1.getValueType();
813        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
814
815        // If the extended part has any inconsistent bits, it cannot ever
816        // compare equal.  In other words, they have to be all ones or all
817        // zeros.
818        uint64_t ExtBits =
819          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
820        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
821          return getConstant(Cond == ISD::SETNE, VT);
822
823        // Otherwise, make this a use of a zext.
824        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
825                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
826                        Cond);
827      }
828
829      uint64_t MinVal, MaxVal;
830      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
831      if (ISD::isSignedIntSetCC(Cond)) {
832        MinVal = 1ULL << (OperandBitSize-1);
833        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
834          MaxVal = ~0ULL >> (65-OperandBitSize);
835        else
836          MaxVal = 0;
837      } else {
838        MinVal = 0;
839        MaxVal = ~0ULL >> (64-OperandBitSize);
840      }
841
842      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
843      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
844        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
845        --C2;                                          // X >= C1 --> X > (C1-1)
846        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
847                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
848      }
849
850      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
851        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
852        ++C2;                                          // X <= C1 --> X < (C1+1)
853        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
854                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
855      }
856
857      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
858        return getConstant(0, VT);      // X < MIN --> false
859
860      // Canonicalize setgt X, Min --> setne X, Min
861      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
862        return getSetCC(VT, N1, N2, ISD::SETNE);
863
864      // If we have setult X, 1, turn it into seteq X, 0
865      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
866        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
867                        ISD::SETEQ);
868      // If we have setugt X, Max-1, turn it into seteq X, Max
869      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
870        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
871                        ISD::SETEQ);
872
873      // If we have "setcc X, C1", check to see if we can shrink the immediate
874      // by changing cc.
875
876      // SETUGT X, SINTMAX  -> SETLT X, 0
877      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
878          C2 == (~0ULL >> (65-OperandBitSize)))
879        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
880
881      // FIXME: Implement the rest of these.
882
883
884      // Fold bit comparisons when we can.
885      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
886          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
887        if (ConstantSDNode *AndRHS =
888                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
889          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
890            // Perform the xform if the AND RHS is a single bit.
891            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
892              return getNode(ISD::SRL, VT, N1,
893                             getConstant(Log2_64(AndRHS->getValue()),
894                                                   TLI.getShiftAmountTy()));
895            }
896          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
897            // (X & 8) == 8  -->  (X & 8) >> 3
898            // Perform the xform if C2 is a single bit.
899            if ((C2 & (C2-1)) == 0) {
900              return getNode(ISD::SRL, VT, N1,
901                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
902            }
903          }
904        }
905    }
906  } else if (isa<ConstantSDNode>(N1.Val)) {
907      // Ensure that the constant occurs on the RHS.
908    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
909  }
910
911  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
912    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
913      double C1 = N1C->getValue(), C2 = N2C->getValue();
914
915      switch (Cond) {
916      default: break; // FIXME: Implement the rest of these!
917      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
918      case ISD::SETNE:  return getConstant(C1 != C2, VT);
919      case ISD::SETLT:  return getConstant(C1 < C2, VT);
920      case ISD::SETGT:  return getConstant(C1 > C2, VT);
921      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
922      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
923      }
924    } else {
925      // Ensure that the constant occurs on the RHS.
926      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
927    }
928
929  // Could not fold it.
930  return SDOperand();
931}
932
933/// getNode - Gets or creates the specified node.
934///
935SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
936  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
937  if (!N) {
938    N = new SDNode(Opcode, VT);
939    AllNodes.push_back(N);
940  }
941  return SDOperand(N, 0);
942}
943
944SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
945                                SDOperand Operand) {
946  unsigned Tmp1;
947  // Constant fold unary operations with an integer constant operand.
948  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
949    uint64_t Val = C->getValue();
950    switch (Opcode) {
951    default: break;
952    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
953    case ISD::ANY_EXTEND:
954    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
955    case ISD::TRUNCATE:    return getConstant(Val, VT);
956    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
957    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
958    case ISD::BIT_CONVERT:
959      if (VT == MVT::f32) {
960        assert(C->getValueType(0) == MVT::i32 && "Invalid bit_convert!");
961        return getConstantFP(BitsToFloat(Val), VT);
962      } else if (VT == MVT::f64) {
963        assert(C->getValueType(0) == MVT::i64 && "Invalid bit_convert!");
964        return getConstantFP(BitsToDouble(Val), VT);
965      }
966      break;
967    case ISD::BSWAP:
968      switch(VT) {
969      default: assert(0 && "Invalid bswap!"); break;
970      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
971      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
972      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
973      }
974      break;
975    case ISD::CTPOP:
976      switch(VT) {
977      default: assert(0 && "Invalid ctpop!"); break;
978      case MVT::i1: return getConstant(Val != 0, VT);
979      case MVT::i8:
980        Tmp1 = (unsigned)Val & 0xFF;
981        return getConstant(CountPopulation_32(Tmp1), VT);
982      case MVT::i16:
983        Tmp1 = (unsigned)Val & 0xFFFF;
984        return getConstant(CountPopulation_32(Tmp1), VT);
985      case MVT::i32:
986        return getConstant(CountPopulation_32((unsigned)Val), VT);
987      case MVT::i64:
988        return getConstant(CountPopulation_64(Val), VT);
989      }
990    case ISD::CTLZ:
991      switch(VT) {
992      default: assert(0 && "Invalid ctlz!"); break;
993      case MVT::i1: return getConstant(Val == 0, VT);
994      case MVT::i8:
995        Tmp1 = (unsigned)Val & 0xFF;
996        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
997      case MVT::i16:
998        Tmp1 = (unsigned)Val & 0xFFFF;
999        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1000      case MVT::i32:
1001        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1002      case MVT::i64:
1003        return getConstant(CountLeadingZeros_64(Val), VT);
1004      }
1005    case ISD::CTTZ:
1006      switch(VT) {
1007      default: assert(0 && "Invalid cttz!"); break;
1008      case MVT::i1: return getConstant(Val == 0, VT);
1009      case MVT::i8:
1010        Tmp1 = (unsigned)Val | 0x100;
1011        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1012      case MVT::i16:
1013        Tmp1 = (unsigned)Val | 0x10000;
1014        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1015      case MVT::i32:
1016        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1017      case MVT::i64:
1018        return getConstant(CountTrailingZeros_64(Val), VT);
1019      }
1020    }
1021  }
1022
1023  // Constant fold unary operations with an floating point constant operand.
1024  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1025    switch (Opcode) {
1026    case ISD::FNEG:
1027      return getConstantFP(-C->getValue(), VT);
1028    case ISD::FABS:
1029      return getConstantFP(fabs(C->getValue()), VT);
1030    case ISD::FP_ROUND:
1031    case ISD::FP_EXTEND:
1032      return getConstantFP(C->getValue(), VT);
1033    case ISD::FP_TO_SINT:
1034      return getConstant((int64_t)C->getValue(), VT);
1035    case ISD::FP_TO_UINT:
1036      return getConstant((uint64_t)C->getValue(), VT);
1037    case ISD::BIT_CONVERT:
1038      if (VT == MVT::i32) {
1039        assert(C->getValueType(0) == MVT::f32 && "Invalid bit_convert!");
1040        return getConstant(FloatToBits(C->getValue()), VT);
1041      } else if (VT == MVT::i64) {
1042        assert(C->getValueType(0) == MVT::f64 && "Invalid bit_convert!");
1043        return getConstant(DoubleToBits(C->getValue()), VT);
1044      }
1045      break;
1046    }
1047
1048  unsigned OpOpcode = Operand.Val->getOpcode();
1049  switch (Opcode) {
1050  case ISD::TokenFactor:
1051    return Operand;         // Factor of one node?  No factor.
1052  case ISD::SIGN_EXTEND:
1053    if (Operand.getValueType() == VT) return Operand;   // noop extension
1054    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1055    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1056      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1057    break;
1058  case ISD::ZERO_EXTEND:
1059    if (Operand.getValueType() == VT) return Operand;   // noop extension
1060    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1061    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1062      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1063    break;
1064  case ISD::ANY_EXTEND:
1065    if (Operand.getValueType() == VT) return Operand;   // noop extension
1066    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1067    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1068      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1069      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1070    break;
1071  case ISD::TRUNCATE:
1072    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1073    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1074    if (OpOpcode == ISD::TRUNCATE)
1075      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1076    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1077             OpOpcode == ISD::ANY_EXTEND) {
1078      // If the source is smaller than the dest, we still need an extend.
1079      if (Operand.Val->getOperand(0).getValueType() < VT)
1080        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1081      else if (Operand.Val->getOperand(0).getValueType() > VT)
1082        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1083      else
1084        return Operand.Val->getOperand(0);
1085    }
1086    break;
1087  case ISD::BIT_CONVERT:
1088    // Basic sanity checking.
1089    assert((Operand.getValueType() == MVT::Vector ||   // FIXME: This is a hack.
1090           MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()))
1091           && "Cannot BIT_CONVERT between two different types!");
1092    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1093    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1094      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1095    break;
1096  case ISD::SCALAR_TO_VECTOR:
1097    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1098           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1099           "Illegal SCALAR_TO_VECTOR node!");
1100    break;
1101  case ISD::FNEG:
1102    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1103      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1104                     Operand.Val->getOperand(0));
1105    if (OpOpcode == ISD::FNEG)  // --X -> X
1106      return Operand.Val->getOperand(0);
1107    break;
1108  case ISD::FABS:
1109    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1110      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1111    break;
1112  }
1113
1114  SDNode *N;
1115  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1116    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1117    if (E) return SDOperand(E, 0);
1118    E = N = new SDNode(Opcode, Operand);
1119  } else {
1120    N = new SDNode(Opcode, Operand);
1121  }
1122  N->setValueTypes(VT);
1123  AllNodes.push_back(N);
1124  return SDOperand(N, 0);
1125}
1126
1127
1128
1129SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1130                                SDOperand N1, SDOperand N2) {
1131#ifndef NDEBUG
1132  switch (Opcode) {
1133  case ISD::TokenFactor:
1134    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1135           N2.getValueType() == MVT::Other && "Invalid token factor!");
1136    break;
1137  case ISD::AND:
1138  case ISD::OR:
1139  case ISD::XOR:
1140  case ISD::UDIV:
1141  case ISD::UREM:
1142  case ISD::MULHU:
1143  case ISD::MULHS:
1144    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1145    // fall through
1146  case ISD::ADD:
1147  case ISD::SUB:
1148  case ISD::MUL:
1149  case ISD::SDIV:
1150  case ISD::SREM:
1151    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1152    // fall through.
1153  case ISD::FADD:
1154  case ISD::FSUB:
1155  case ISD::FMUL:
1156  case ISD::FDIV:
1157  case ISD::FREM:
1158    assert(N1.getValueType() == N2.getValueType() &&
1159           N1.getValueType() == VT && "Binary operator types must match!");
1160    break;
1161  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1162    assert(N1.getValueType() == VT &&
1163           MVT::isFloatingPoint(N1.getValueType()) &&
1164           MVT::isFloatingPoint(N2.getValueType()) &&
1165           "Invalid FCOPYSIGN!");
1166    break;
1167  case ISD::SHL:
1168  case ISD::SRA:
1169  case ISD::SRL:
1170  case ISD::ROTL:
1171  case ISD::ROTR:
1172    assert(VT == N1.getValueType() &&
1173           "Shift operators return type must be the same as their first arg");
1174    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1175           VT != MVT::i1 && "Shifts only work on integers");
1176    break;
1177  case ISD::FP_ROUND_INREG: {
1178    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1179    assert(VT == N1.getValueType() && "Not an inreg round!");
1180    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1181           "Cannot FP_ROUND_INREG integer types");
1182    assert(EVT <= VT && "Not rounding down!");
1183    break;
1184  }
1185  case ISD::AssertSext:
1186  case ISD::AssertZext:
1187  case ISD::SIGN_EXTEND_INREG: {
1188    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1189    assert(VT == N1.getValueType() && "Not an inreg extend!");
1190    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1191           "Cannot *_EXTEND_INREG FP types");
1192    assert(EVT <= VT && "Not extending!");
1193  }
1194
1195  default: break;
1196  }
1197#endif
1198
1199  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1200  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1201  if (N1C) {
1202    if (N2C) {
1203      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1204      switch (Opcode) {
1205      case ISD::ADD: return getConstant(C1 + C2, VT);
1206      case ISD::SUB: return getConstant(C1 - C2, VT);
1207      case ISD::MUL: return getConstant(C1 * C2, VT);
1208      case ISD::UDIV:
1209        if (C2) return getConstant(C1 / C2, VT);
1210        break;
1211      case ISD::UREM :
1212        if (C2) return getConstant(C1 % C2, VT);
1213        break;
1214      case ISD::SDIV :
1215        if (C2) return getConstant(N1C->getSignExtended() /
1216                                   N2C->getSignExtended(), VT);
1217        break;
1218      case ISD::SREM :
1219        if (C2) return getConstant(N1C->getSignExtended() %
1220                                   N2C->getSignExtended(), VT);
1221        break;
1222      case ISD::AND  : return getConstant(C1 & C2, VT);
1223      case ISD::OR   : return getConstant(C1 | C2, VT);
1224      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1225      case ISD::SHL  : return getConstant(C1 << C2, VT);
1226      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1227      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1228      case ISD::ROTL :
1229        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1230                           VT);
1231      case ISD::ROTR :
1232        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1233                           VT);
1234      default: break;
1235      }
1236    } else {      // Cannonicalize constant to RHS if commutative
1237      if (isCommutativeBinOp(Opcode)) {
1238        std::swap(N1C, N2C);
1239        std::swap(N1, N2);
1240      }
1241    }
1242  }
1243
1244  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1245  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1246  if (N1CFP) {
1247    if (N2CFP) {
1248      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1249      switch (Opcode) {
1250      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1251      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1252      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1253      case ISD::FDIV:
1254        if (C2) return getConstantFP(C1 / C2, VT);
1255        break;
1256      case ISD::FREM :
1257        if (C2) return getConstantFP(fmod(C1, C2), VT);
1258        break;
1259      case ISD::FCOPYSIGN: {
1260        union {
1261          double   F;
1262          uint64_t I;
1263        } u1;
1264        union {
1265          double  F;
1266          int64_t I;
1267        } u2;
1268        u1.F = C1;
1269        u2.F = C2;
1270        if (u2.I < 0)  // Sign bit of RHS set?
1271          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1272        else
1273          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1274        return getConstantFP(u1.F, VT);
1275      }
1276      default: break;
1277      }
1278    } else {      // Cannonicalize constant to RHS if commutative
1279      if (isCommutativeBinOp(Opcode)) {
1280        std::swap(N1CFP, N2CFP);
1281        std::swap(N1, N2);
1282      }
1283    }
1284  }
1285
1286  // Finally, fold operations that do not require constants.
1287  switch (Opcode) {
1288  case ISD::FP_ROUND_INREG:
1289    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1290    break;
1291  case ISD::SIGN_EXTEND_INREG: {
1292    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1293    if (EVT == VT) return N1;  // Not actually extending
1294    break;
1295  }
1296
1297  // FIXME: figure out how to safely handle things like
1298  // int foo(int x) { return 1 << (x & 255); }
1299  // int bar() { return foo(256); }
1300#if 0
1301  case ISD::SHL:
1302  case ISD::SRL:
1303  case ISD::SRA:
1304    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1305        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1306      return getNode(Opcode, VT, N1, N2.getOperand(0));
1307    else if (N2.getOpcode() == ISD::AND)
1308      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1309        // If the and is only masking out bits that cannot effect the shift,
1310        // eliminate the and.
1311        unsigned NumBits = MVT::getSizeInBits(VT);
1312        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1313          return getNode(Opcode, VT, N1, N2.getOperand(0));
1314      }
1315    break;
1316#endif
1317  }
1318
1319  // Memoize this node if possible.
1320  SDNode *N;
1321  if (VT != MVT::Flag) {
1322    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1323    if (BON) return SDOperand(BON, 0);
1324
1325    BON = N = new SDNode(Opcode, N1, N2);
1326  } else {
1327    N = new SDNode(Opcode, N1, N2);
1328  }
1329
1330  N->setValueTypes(VT);
1331  AllNodes.push_back(N);
1332  return SDOperand(N, 0);
1333}
1334
1335SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1336                                SDOperand N1, SDOperand N2, SDOperand N3) {
1337  // Perform various simplifications.
1338  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1339  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1340  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1341  switch (Opcode) {
1342  case ISD::SETCC: {
1343    // Use SimplifySetCC  to simplify SETCC's.
1344    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1345    if (Simp.Val) return Simp;
1346    break;
1347  }
1348  case ISD::SELECT:
1349    if (N1C)
1350      if (N1C->getValue())
1351        return N2;             // select true, X, Y -> X
1352      else
1353        return N3;             // select false, X, Y -> Y
1354
1355    if (N2 == N3) return N2;   // select C, X, X -> X
1356    break;
1357  case ISD::BRCOND:
1358    if (N2C)
1359      if (N2C->getValue()) // Unconditional branch
1360        return getNode(ISD::BR, MVT::Other, N1, N3);
1361      else
1362        return N1;         // Never-taken branch
1363    break;
1364  case ISD::VECTOR_SHUFFLE:
1365    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1366           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1367           N3.getOpcode() == ISD::BUILD_VECTOR &&
1368           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1369           "Illegal VECTOR_SHUFFLE node!");
1370    break;
1371  }
1372
1373  std::vector<SDOperand> Ops;
1374  Ops.reserve(3);
1375  Ops.push_back(N1);
1376  Ops.push_back(N2);
1377  Ops.push_back(N3);
1378
1379  // Memoize node if it doesn't produce a flag.
1380  SDNode *N;
1381  if (VT != MVT::Flag) {
1382    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1383    if (E) return SDOperand(E, 0);
1384    E = N = new SDNode(Opcode, N1, N2, N3);
1385  } else {
1386    N = new SDNode(Opcode, N1, N2, N3);
1387  }
1388  N->setValueTypes(VT);
1389  AllNodes.push_back(N);
1390  return SDOperand(N, 0);
1391}
1392
1393SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1394                                SDOperand N1, SDOperand N2, SDOperand N3,
1395                                SDOperand N4) {
1396  std::vector<SDOperand> Ops;
1397  Ops.reserve(4);
1398  Ops.push_back(N1);
1399  Ops.push_back(N2);
1400  Ops.push_back(N3);
1401  Ops.push_back(N4);
1402  return getNode(Opcode, VT, Ops);
1403}
1404
1405SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1406                                SDOperand N1, SDOperand N2, SDOperand N3,
1407                                SDOperand N4, SDOperand N5) {
1408  std::vector<SDOperand> Ops;
1409  Ops.reserve(5);
1410  Ops.push_back(N1);
1411  Ops.push_back(N2);
1412  Ops.push_back(N3);
1413  Ops.push_back(N4);
1414  Ops.push_back(N5);
1415  return getNode(Opcode, VT, Ops);
1416}
1417
1418SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1419                                SDOperand Chain, SDOperand Ptr,
1420                                SDOperand SV) {
1421  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1422  if (N) return SDOperand(N, 0);
1423  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1424
1425  // Loads have a token chain.
1426  setNodeValueTypes(N, VT, MVT::Other);
1427  AllNodes.push_back(N);
1428  return SDOperand(N, 0);
1429}
1430
1431SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1432                                   SDOperand Chain, SDOperand Ptr,
1433                                   SDOperand SV) {
1434  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, EVT))];
1435  if (N) return SDOperand(N, 0);
1436  std::vector<SDOperand> Ops;
1437  Ops.reserve(5);
1438  Ops.push_back(Chain);
1439  Ops.push_back(Ptr);
1440  Ops.push_back(SV);
1441  Ops.push_back(getConstant(Count, MVT::i32));
1442  Ops.push_back(getValueType(EVT));
1443  std::vector<MVT::ValueType> VTs;
1444  VTs.reserve(2);
1445  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1446  return getNode(ISD::VLOAD, VTs, Ops);
1447}
1448
1449SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1450                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1451                                   MVT::ValueType EVT) {
1452  std::vector<SDOperand> Ops;
1453  Ops.reserve(4);
1454  Ops.push_back(Chain);
1455  Ops.push_back(Ptr);
1456  Ops.push_back(SV);
1457  Ops.push_back(getValueType(EVT));
1458  std::vector<MVT::ValueType> VTs;
1459  VTs.reserve(2);
1460  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1461  return getNode(Opcode, VTs, Ops);
1462}
1463
1464SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1465  assert((!V || isa<PointerType>(V->getType())) &&
1466         "SrcValue is not a pointer?");
1467  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1468  if (N) return SDOperand(N, 0);
1469
1470  N = new SrcValueSDNode(V, Offset);
1471  AllNodes.push_back(N);
1472  return SDOperand(N, 0);
1473}
1474
1475SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1476                                 SDOperand Chain, SDOperand Ptr,
1477                                 SDOperand SV) {
1478  std::vector<SDOperand> Ops;
1479  Ops.reserve(3);
1480  Ops.push_back(Chain);
1481  Ops.push_back(Ptr);
1482  Ops.push_back(SV);
1483  std::vector<MVT::ValueType> VTs;
1484  VTs.reserve(2);
1485  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1486  return getNode(ISD::VAARG, VTs, Ops);
1487}
1488
1489SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1490                                std::vector<SDOperand> &Ops) {
1491  switch (Ops.size()) {
1492  case 0: return getNode(Opcode, VT);
1493  case 1: return getNode(Opcode, VT, Ops[0]);
1494  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1495  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1496  default: break;
1497  }
1498
1499  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val);
1500  switch (Opcode) {
1501  default: break;
1502  case ISD::TRUNCSTORE: {
1503    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1504    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1505#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1506    // If this is a truncating store of a constant, convert to the desired type
1507    // and store it instead.
1508    if (isa<Constant>(Ops[0])) {
1509      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1510      if (isa<Constant>(Op))
1511        N1 = Op;
1512    }
1513    // Also for ConstantFP?
1514#endif
1515    if (Ops[0].getValueType() == EVT)       // Normal store?
1516      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1517    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1518    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1519           "Can't do FP-INT conversion!");
1520    break;
1521  }
1522  case ISD::SELECT_CC: {
1523    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1524    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1525           "LHS and RHS of condition must have same type!");
1526    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1527           "True and False arms of SelectCC must have same type!");
1528    assert(Ops[2].getValueType() == VT &&
1529           "select_cc node must be of same type as true and false value!");
1530    break;
1531  }
1532  case ISD::BR_CC: {
1533    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1534    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1535           "LHS/RHS of comparison should match types!");
1536    break;
1537  }
1538  }
1539
1540  // Memoize nodes.
1541  SDNode *N;
1542  if (VT != MVT::Flag) {
1543    SDNode *&E =
1544      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1545    if (E) return SDOperand(E, 0);
1546    E = N = new SDNode(Opcode, Ops);
1547  } else {
1548    N = new SDNode(Opcode, Ops);
1549  }
1550  N->setValueTypes(VT);
1551  AllNodes.push_back(N);
1552  return SDOperand(N, 0);
1553}
1554
1555SDOperand SelectionDAG::getNode(unsigned Opcode,
1556                                std::vector<MVT::ValueType> &ResultTys,
1557                                std::vector<SDOperand> &Ops) {
1558  if (ResultTys.size() == 1)
1559    return getNode(Opcode, ResultTys[0], Ops);
1560
1561  switch (Opcode) {
1562  case ISD::EXTLOAD:
1563  case ISD::SEXTLOAD:
1564  case ISD::ZEXTLOAD: {
1565    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1566    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1567    // If they are asking for an extending load from/to the same thing, return a
1568    // normal load.
1569    if (ResultTys[0] == EVT)
1570      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1571    if (MVT::isVector(ResultTys[0])) {
1572      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1573             "Invalid vector extload!");
1574    } else {
1575      assert(EVT < ResultTys[0] &&
1576             "Should only be an extending load, not truncating!");
1577    }
1578    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1579           "Cannot sign/zero extend a FP/Vector load!");
1580    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1581           "Cannot convert from FP to Int or Int -> FP!");
1582    break;
1583  }
1584
1585  // FIXME: figure out how to safely handle things like
1586  // int foo(int x) { return 1 << (x & 255); }
1587  // int bar() { return foo(256); }
1588#if 0
1589  case ISD::SRA_PARTS:
1590  case ISD::SRL_PARTS:
1591  case ISD::SHL_PARTS:
1592    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1593        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1594      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1595    else if (N3.getOpcode() == ISD::AND)
1596      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1597        // If the and is only masking out bits that cannot effect the shift,
1598        // eliminate the and.
1599        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1600        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1601          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1602      }
1603    break;
1604#endif
1605  }
1606
1607  // Memoize the node unless it returns a flag.
1608  SDNode *N;
1609  if (ResultTys.back() != MVT::Flag) {
1610    SDNode *&E =
1611      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1612    if (E) return SDOperand(E, 0);
1613    E = N = new SDNode(Opcode, Ops);
1614  } else {
1615    N = new SDNode(Opcode, Ops);
1616  }
1617  setNodeValueTypes(N, ResultTys);
1618  AllNodes.push_back(N);
1619  return SDOperand(N, 0);
1620}
1621
1622void SelectionDAG::setNodeValueTypes(SDNode *N,
1623                                     std::vector<MVT::ValueType> &RetVals) {
1624  switch (RetVals.size()) {
1625  case 0: return;
1626  case 1: N->setValueTypes(RetVals[0]); return;
1627  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1628  default: break;
1629  }
1630
1631  std::list<std::vector<MVT::ValueType> >::iterator I =
1632    std::find(VTList.begin(), VTList.end(), RetVals);
1633  if (I == VTList.end()) {
1634    VTList.push_front(RetVals);
1635    I = VTList.begin();
1636  }
1637
1638  N->setValueTypes(&(*I)[0], I->size());
1639}
1640
1641void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1642                                     MVT::ValueType VT2) {
1643  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1644       E = VTList.end(); I != E; ++I) {
1645    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1646      N->setValueTypes(&(*I)[0], 2);
1647      return;
1648    }
1649  }
1650  std::vector<MVT::ValueType> V;
1651  V.push_back(VT1);
1652  V.push_back(VT2);
1653  VTList.push_front(V);
1654  N->setValueTypes(&(*VTList.begin())[0], 2);
1655}
1656
1657/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1658/// specified operands.  If the resultant node already exists in the DAG,
1659/// this does not modify the specified node, instead it returns the node that
1660/// already exists.  If the resultant node does not exist in the DAG, the
1661/// input node is returned.  As a degenerate case, if you specify the same
1662/// input operands as the node already has, the input node is returned.
1663SDOperand SelectionDAG::
1664UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1665  SDNode *N = InN.Val;
1666  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1667
1668  // Check to see if there is no change.
1669  if (Op == N->getOperand(0)) return InN;
1670
1671  // See if the modified node already exists.
1672  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1673  if (NewSlot && *NewSlot)
1674    return SDOperand(*NewSlot, InN.ResNo);
1675
1676  // Nope it doesn't.  Remove the node from it's current place in the maps.
1677  if (NewSlot)
1678    RemoveNodeFromCSEMaps(N);
1679
1680  // Now we update the operands.
1681  N->OperandList[0].Val->removeUser(N);
1682  Op.Val->addUser(N);
1683  N->OperandList[0] = Op;
1684
1685  // If this gets put into a CSE map, add it.
1686  if (NewSlot) *NewSlot = N;
1687  return InN;
1688}
1689
1690SDOperand SelectionDAG::
1691UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1692  SDNode *N = InN.Val;
1693  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1694
1695  // Check to see if there is no change.
1696  bool AnyChange = false;
1697  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1698    return InN;   // No operands changed, just return the input node.
1699
1700  // See if the modified node already exists.
1701  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1702  if (NewSlot && *NewSlot)
1703    return SDOperand(*NewSlot, InN.ResNo);
1704
1705  // Nope it doesn't.  Remove the node from it's current place in the maps.
1706  if (NewSlot)
1707    RemoveNodeFromCSEMaps(N);
1708
1709  // Now we update the operands.
1710  if (N->OperandList[0] != Op1) {
1711    N->OperandList[0].Val->removeUser(N);
1712    Op1.Val->addUser(N);
1713    N->OperandList[0] = Op1;
1714  }
1715  if (N->OperandList[1] != Op2) {
1716    N->OperandList[1].Val->removeUser(N);
1717    Op2.Val->addUser(N);
1718    N->OperandList[1] = Op2;
1719  }
1720
1721  // If this gets put into a CSE map, add it.
1722  if (NewSlot) *NewSlot = N;
1723  return InN;
1724}
1725
1726SDOperand SelectionDAG::
1727UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1728  std::vector<SDOperand> Ops;
1729  Ops.push_back(Op1);
1730  Ops.push_back(Op2);
1731  Ops.push_back(Op3);
1732  return UpdateNodeOperands(N, Ops);
1733}
1734
1735SDOperand SelectionDAG::
1736UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1737                   SDOperand Op3, SDOperand Op4) {
1738  std::vector<SDOperand> Ops;
1739  Ops.push_back(Op1);
1740  Ops.push_back(Op2);
1741  Ops.push_back(Op3);
1742  Ops.push_back(Op4);
1743  return UpdateNodeOperands(N, Ops);
1744}
1745
1746SDOperand SelectionDAG::
1747UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1748                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1749  std::vector<SDOperand> Ops;
1750  Ops.push_back(Op1);
1751  Ops.push_back(Op2);
1752  Ops.push_back(Op3);
1753  Ops.push_back(Op4);
1754  Ops.push_back(Op5);
1755  return UpdateNodeOperands(N, Ops);
1756}
1757
1758
1759SDOperand SelectionDAG::
1760UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1761  SDNode *N = InN.Val;
1762  assert(N->getNumOperands() == Ops.size() &&
1763         "Update with wrong number of operands");
1764
1765  // Check to see if there is no change.
1766  unsigned NumOps = Ops.size();
1767  bool AnyChange = false;
1768  for (unsigned i = 0; i != NumOps; ++i) {
1769    if (Ops[i] != N->getOperand(i)) {
1770      AnyChange = true;
1771      break;
1772    }
1773  }
1774
1775  // No operands changed, just return the input node.
1776  if (!AnyChange) return InN;
1777
1778  // See if the modified node already exists.
1779  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1780  if (NewSlot && *NewSlot)
1781    return SDOperand(*NewSlot, InN.ResNo);
1782
1783  // Nope it doesn't.  Remove the node from it's current place in the maps.
1784  if (NewSlot)
1785    RemoveNodeFromCSEMaps(N);
1786
1787  // Now we update the operands.
1788  for (unsigned i = 0; i != NumOps; ++i) {
1789    if (N->OperandList[i] != Ops[i]) {
1790      N->OperandList[i].Val->removeUser(N);
1791      Ops[i].Val->addUser(N);
1792      N->OperandList[i] = Ops[i];
1793    }
1794  }
1795
1796  // If this gets put into a CSE map, add it.
1797  if (NewSlot) *NewSlot = N;
1798  return InN;
1799}
1800
1801
1802
1803
1804/// SelectNodeTo - These are used for target selectors to *mutate* the
1805/// specified node to have the specified return type, Target opcode, and
1806/// operands.  Note that target opcodes are stored as
1807/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1808///
1809/// Note that SelectNodeTo returns the resultant node.  If there is already a
1810/// node of the specified opcode and operands, it returns that node instead of
1811/// the current one.
1812SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1813                                     MVT::ValueType VT) {
1814  // If an identical node already exists, use it.
1815  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1816  if (ON) return SDOperand(ON, 0);
1817
1818  RemoveNodeFromCSEMaps(N);
1819
1820  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1821  N->setValueTypes(VT);
1822
1823  ON = N;   // Memoize the new node.
1824  return SDOperand(N, 0);
1825}
1826
1827SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1828                                     MVT::ValueType VT, SDOperand Op1) {
1829  // If an identical node already exists, use it.
1830  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1831                                        std::make_pair(Op1, VT))];
1832  if (ON) return SDOperand(ON, 0);
1833
1834  RemoveNodeFromCSEMaps(N);
1835  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1836  N->setValueTypes(VT);
1837  N->setOperands(Op1);
1838
1839  ON = N;   // Memoize the new node.
1840  return SDOperand(N, 0);
1841}
1842
1843SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1844                                     MVT::ValueType VT, SDOperand Op1,
1845                                     SDOperand Op2) {
1846  // If an identical node already exists, use it.
1847  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1848                                         std::make_pair(Op1, Op2))];
1849  if (ON) return SDOperand(ON, 0);
1850
1851  RemoveNodeFromCSEMaps(N);
1852  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1853  N->setValueTypes(VT);
1854  N->setOperands(Op1, Op2);
1855
1856  ON = N;   // Memoize the new node.
1857  return SDOperand(N, 0);
1858}
1859
1860SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1861                                     MVT::ValueType VT, SDOperand Op1,
1862                                     SDOperand Op2, SDOperand Op3) {
1863  // If an identical node already exists, use it.
1864  std::vector<SDOperand> OpList;
1865  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1866  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1867                                              std::make_pair(VT, OpList))];
1868  if (ON) return SDOperand(ON, 0);
1869
1870  RemoveNodeFromCSEMaps(N);
1871  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1872  N->setValueTypes(VT);
1873  N->setOperands(Op1, Op2, Op3);
1874
1875  ON = N;   // Memoize the new node.
1876  return SDOperand(N, 0);
1877}
1878
1879SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1880                                     MVT::ValueType VT, SDOperand Op1,
1881                                     SDOperand Op2, SDOperand Op3,
1882                                     SDOperand Op4) {
1883  // If an identical node already exists, use it.
1884  std::vector<SDOperand> OpList;
1885  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1886  OpList.push_back(Op4);
1887  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1888                                              std::make_pair(VT, OpList))];
1889  if (ON) return SDOperand(ON, 0);
1890
1891  RemoveNodeFromCSEMaps(N);
1892  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1893  N->setValueTypes(VT);
1894  N->setOperands(Op1, Op2, Op3, Op4);
1895
1896  ON = N;   // Memoize the new node.
1897  return SDOperand(N, 0);
1898}
1899
1900SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1901                                     MVT::ValueType VT, SDOperand Op1,
1902                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1903                                     SDOperand Op5) {
1904  // If an identical node already exists, use it.
1905  std::vector<SDOperand> OpList;
1906  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1907  OpList.push_back(Op4); OpList.push_back(Op5);
1908  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1909                                              std::make_pair(VT, OpList))];
1910  if (ON) return SDOperand(ON, 0);
1911
1912  RemoveNodeFromCSEMaps(N);
1913  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1914  N->setValueTypes(VT);
1915  N->setOperands(Op1, Op2, Op3, Op4, Op5);
1916
1917  ON = N;   // Memoize the new node.
1918  return SDOperand(N, 0);
1919}
1920
1921SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1922                                     MVT::ValueType VT, SDOperand Op1,
1923                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1924                                     SDOperand Op5, SDOperand Op6) {
1925  // If an identical node already exists, use it.
1926  std::vector<SDOperand> OpList;
1927  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1928  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1929  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1930                                              std::make_pair(VT, OpList))];
1931  if (ON) return SDOperand(ON, 0);
1932
1933  RemoveNodeFromCSEMaps(N);
1934  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1935  N->setValueTypes(VT);
1936  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
1937
1938  ON = N;   // Memoize the new node.
1939  return SDOperand(N, 0);
1940}
1941
1942SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1943                                     MVT::ValueType VT, SDOperand Op1,
1944                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1945                                     SDOperand Op5, SDOperand Op6,
1946				     SDOperand Op7) {
1947  // If an identical node already exists, use it.
1948  std::vector<SDOperand> OpList;
1949  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1950  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1951  OpList.push_back(Op7);
1952  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1953                                              std::make_pair(VT, OpList))];
1954  if (ON) return SDOperand(ON, 0);
1955
1956  RemoveNodeFromCSEMaps(N);
1957  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1958  N->setValueTypes(VT);
1959  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
1960
1961  ON = N;   // Memoize the new node.
1962  return SDOperand(N, 0);
1963}
1964SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1965                                     MVT::ValueType VT, SDOperand Op1,
1966                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
1967                                     SDOperand Op5, SDOperand Op6,
1968				     SDOperand Op7, SDOperand Op8) {
1969  // If an identical node already exists, use it.
1970  std::vector<SDOperand> OpList;
1971  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
1972  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
1973  OpList.push_back(Op7); OpList.push_back(Op8);
1974  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1975                                              std::make_pair(VT, OpList))];
1976  if (ON) return SDOperand(ON, 0);
1977
1978  RemoveNodeFromCSEMaps(N);
1979  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1980  N->setValueTypes(VT);
1981  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
1982
1983  ON = N;   // Memoize the new node.
1984  return SDOperand(N, 0);
1985}
1986
1987SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1988                                     MVT::ValueType VT1, MVT::ValueType VT2,
1989                                     SDOperand Op1, SDOperand Op2) {
1990  // If an identical node already exists, use it.
1991  std::vector<SDOperand> OpList;
1992  OpList.push_back(Op1); OpList.push_back(Op2);
1993  std::vector<MVT::ValueType> VTList;
1994  VTList.push_back(VT1); VTList.push_back(VT2);
1995  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
1996                                              std::make_pair(VTList, OpList))];
1997  if (ON) return SDOperand(ON, 0);
1998
1999  RemoveNodeFromCSEMaps(N);
2000  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2001  setNodeValueTypes(N, VT1, VT2);
2002  N->setOperands(Op1, Op2);
2003
2004  ON = N;   // Memoize the new node.
2005  return SDOperand(N, 0);
2006}
2007
2008SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2009                                     MVT::ValueType VT1, MVT::ValueType VT2,
2010                                     SDOperand Op1, SDOperand Op2,
2011                                     SDOperand Op3) {
2012  // If an identical node already exists, use it.
2013  std::vector<SDOperand> OpList;
2014  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2015  std::vector<MVT::ValueType> VTList;
2016  VTList.push_back(VT1); VTList.push_back(VT2);
2017  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2018                                              std::make_pair(VTList, OpList))];
2019  if (ON) return SDOperand(ON, 0);
2020
2021  RemoveNodeFromCSEMaps(N);
2022  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2023  setNodeValueTypes(N, VT1, VT2);
2024  N->setOperands(Op1, Op2, Op3);
2025
2026  ON = N;   // Memoize the new node.
2027  return SDOperand(N, 0);
2028}
2029
2030SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2031                                     MVT::ValueType VT1, MVT::ValueType VT2,
2032                                     SDOperand Op1, SDOperand Op2,
2033                                     SDOperand Op3, SDOperand Op4) {
2034  // If an identical node already exists, use it.
2035  std::vector<SDOperand> OpList;
2036  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2037  OpList.push_back(Op4);
2038  std::vector<MVT::ValueType> VTList;
2039  VTList.push_back(VT1); VTList.push_back(VT2);
2040  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2041                                              std::make_pair(VTList, OpList))];
2042  if (ON) return SDOperand(ON, 0);
2043
2044  RemoveNodeFromCSEMaps(N);
2045  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2046  setNodeValueTypes(N, VT1, VT2);
2047  N->setOperands(Op1, Op2, Op3, Op4);
2048
2049  ON = N;   // Memoize the new node.
2050  return SDOperand(N, 0);
2051}
2052
2053SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2054                                     MVT::ValueType VT1, MVT::ValueType VT2,
2055                                     SDOperand Op1, SDOperand Op2,
2056                                     SDOperand Op3, SDOperand Op4,
2057                                     SDOperand Op5) {
2058  // If an identical node already exists, use it.
2059  std::vector<SDOperand> OpList;
2060  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2061  OpList.push_back(Op4); OpList.push_back(Op5);
2062  std::vector<MVT::ValueType> VTList;
2063  VTList.push_back(VT1); VTList.push_back(VT2);
2064  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2065                                              std::make_pair(VTList, OpList))];
2066  if (ON) return SDOperand(ON, 0);
2067
2068  RemoveNodeFromCSEMaps(N);
2069  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2070  setNodeValueTypes(N, VT1, VT2);
2071  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2072
2073  ON = N;   // Memoize the new node.
2074  return SDOperand(N, 0);
2075}
2076
2077/// getTargetNode - These are used for target selectors to create a new node
2078/// with specified return type(s), target opcode, and operands.
2079///
2080/// Note that getTargetNode returns the resultant node.  If there is already a
2081/// node of the specified opcode and operands, it returns that node instead of
2082/// the current one.
2083SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2084  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2085}
2086SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2087                                    SDOperand Op1) {
2088  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2089}
2090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2091                                    SDOperand Op1, SDOperand Op2) {
2092  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2093}
2094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2095                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2096  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2097}
2098SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2099                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2100                                    SDOperand Op4) {
2101  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2102}
2103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2104                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2105                                    SDOperand Op4, SDOperand Op5) {
2106  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2107}
2108SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2109                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2110                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2111  std::vector<SDOperand> Ops;
2112  Ops.reserve(6);
2113  Ops.push_back(Op1);
2114  Ops.push_back(Op2);
2115  Ops.push_back(Op3);
2116  Ops.push_back(Op4);
2117  Ops.push_back(Op5);
2118  Ops.push_back(Op6);
2119  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2120}
2121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2122                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2123                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2124                                    SDOperand Op7) {
2125  std::vector<SDOperand> Ops;
2126  Ops.reserve(7);
2127  Ops.push_back(Op1);
2128  Ops.push_back(Op2);
2129  Ops.push_back(Op3);
2130  Ops.push_back(Op4);
2131  Ops.push_back(Op5);
2132  Ops.push_back(Op6);
2133  Ops.push_back(Op7);
2134  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2135}
2136SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2137                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2138                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2139                                    SDOperand Op7, SDOperand Op8) {
2140  std::vector<SDOperand> Ops;
2141  Ops.reserve(8);
2142  Ops.push_back(Op1);
2143  Ops.push_back(Op2);
2144  Ops.push_back(Op3);
2145  Ops.push_back(Op4);
2146  Ops.push_back(Op5);
2147  Ops.push_back(Op6);
2148  Ops.push_back(Op7);
2149  Ops.push_back(Op8);
2150  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2151}
2152SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2153                                    std::vector<SDOperand> &Ops) {
2154  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2155}
2156SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2157                                    MVT::ValueType VT2, SDOperand Op1) {
2158  std::vector<MVT::ValueType> ResultTys;
2159  ResultTys.push_back(VT1);
2160  ResultTys.push_back(VT2);
2161  std::vector<SDOperand> Ops;
2162  Ops.push_back(Op1);
2163  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2164}
2165SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2166                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2167  std::vector<MVT::ValueType> ResultTys;
2168  ResultTys.push_back(VT1);
2169  ResultTys.push_back(VT2);
2170  std::vector<SDOperand> Ops;
2171  Ops.push_back(Op1);
2172  Ops.push_back(Op2);
2173  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2174}
2175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2176                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2177                                    SDOperand Op3) {
2178  std::vector<MVT::ValueType> ResultTys;
2179  ResultTys.push_back(VT1);
2180  ResultTys.push_back(VT2);
2181  std::vector<SDOperand> Ops;
2182  Ops.push_back(Op1);
2183  Ops.push_back(Op2);
2184  Ops.push_back(Op3);
2185  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2186}
2187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2188                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2189                                    SDOperand Op3, SDOperand Op4) {
2190  std::vector<MVT::ValueType> ResultTys;
2191  ResultTys.push_back(VT1);
2192  ResultTys.push_back(VT2);
2193  std::vector<SDOperand> Ops;
2194  Ops.push_back(Op1);
2195  Ops.push_back(Op2);
2196  Ops.push_back(Op3);
2197  Ops.push_back(Op4);
2198  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2199}
2200SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2201                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2202                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2203  std::vector<MVT::ValueType> ResultTys;
2204  ResultTys.push_back(VT1);
2205  ResultTys.push_back(VT2);
2206  std::vector<SDOperand> Ops;
2207  Ops.push_back(Op1);
2208  Ops.push_back(Op2);
2209  Ops.push_back(Op3);
2210  Ops.push_back(Op4);
2211  Ops.push_back(Op5);
2212  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2213}
2214SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2215                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2216                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2217                                    SDOperand Op6) {
2218  std::vector<MVT::ValueType> ResultTys;
2219  ResultTys.push_back(VT1);
2220  ResultTys.push_back(VT2);
2221  std::vector<SDOperand> Ops;
2222  Ops.push_back(Op1);
2223  Ops.push_back(Op2);
2224  Ops.push_back(Op3);
2225  Ops.push_back(Op4);
2226  Ops.push_back(Op5);
2227  Ops.push_back(Op6);
2228  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2229}
2230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2231                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2232                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2233                                    SDOperand Op6, SDOperand Op7) {
2234  std::vector<MVT::ValueType> ResultTys;
2235  ResultTys.push_back(VT1);
2236  ResultTys.push_back(VT2);
2237  std::vector<SDOperand> Ops;
2238  Ops.push_back(Op1);
2239  Ops.push_back(Op2);
2240  Ops.push_back(Op3);
2241  Ops.push_back(Op4);
2242  Ops.push_back(Op5);
2243  Ops.push_back(Op6);
2244  Ops.push_back(Op7);
2245  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2246}
2247SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2248                                    MVT::ValueType VT2, MVT::ValueType VT3,
2249                                    SDOperand Op1, SDOperand Op2) {
2250  std::vector<MVT::ValueType> ResultTys;
2251  ResultTys.push_back(VT1);
2252  ResultTys.push_back(VT2);
2253  ResultTys.push_back(VT3);
2254  std::vector<SDOperand> Ops;
2255  Ops.push_back(Op1);
2256  Ops.push_back(Op2);
2257  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2258}
2259SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2260                                    MVT::ValueType VT2, MVT::ValueType VT3,
2261                                    SDOperand Op1, SDOperand Op2,
2262                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2263  std::vector<MVT::ValueType> ResultTys;
2264  ResultTys.push_back(VT1);
2265  ResultTys.push_back(VT2);
2266  ResultTys.push_back(VT3);
2267  std::vector<SDOperand> Ops;
2268  Ops.push_back(Op1);
2269  Ops.push_back(Op2);
2270  Ops.push_back(Op3);
2271  Ops.push_back(Op4);
2272  Ops.push_back(Op5);
2273  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2274}
2275SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2276                                    MVT::ValueType VT2, MVT::ValueType VT3,
2277                                    SDOperand Op1, SDOperand Op2,
2278                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2279                                    SDOperand Op6) {
2280  std::vector<MVT::ValueType> ResultTys;
2281  ResultTys.push_back(VT1);
2282  ResultTys.push_back(VT2);
2283  ResultTys.push_back(VT3);
2284  std::vector<SDOperand> Ops;
2285  Ops.push_back(Op1);
2286  Ops.push_back(Op2);
2287  Ops.push_back(Op3);
2288  Ops.push_back(Op4);
2289  Ops.push_back(Op5);
2290  Ops.push_back(Op6);
2291  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2292}
2293SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2294                                    MVT::ValueType VT2, MVT::ValueType VT3,
2295                                    SDOperand Op1, SDOperand Op2,
2296                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2297                                    SDOperand Op6, SDOperand Op7) {
2298  std::vector<MVT::ValueType> ResultTys;
2299  ResultTys.push_back(VT1);
2300  ResultTys.push_back(VT2);
2301  ResultTys.push_back(VT3);
2302  std::vector<SDOperand> Ops;
2303  Ops.push_back(Op1);
2304  Ops.push_back(Op2);
2305  Ops.push_back(Op3);
2306  Ops.push_back(Op4);
2307  Ops.push_back(Op5);
2308  Ops.push_back(Op6);
2309  Ops.push_back(Op7);
2310  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2311}
2312SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2313                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2314  std::vector<MVT::ValueType> ResultTys;
2315  ResultTys.push_back(VT1);
2316  ResultTys.push_back(VT2);
2317  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2318}
2319
2320// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2321/// This can cause recursive merging of nodes in the DAG.
2322///
2323/// This version assumes From/To have a single result value.
2324///
2325void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2326                                      std::vector<SDNode*> *Deleted) {
2327  SDNode *From = FromN.Val, *To = ToN.Val;
2328  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2329         "Cannot replace with this method!");
2330  assert(From != To && "Cannot replace uses of with self");
2331
2332  while (!From->use_empty()) {
2333    // Process users until they are all gone.
2334    SDNode *U = *From->use_begin();
2335
2336    // This node is about to morph, remove its old self from the CSE maps.
2337    RemoveNodeFromCSEMaps(U);
2338
2339    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2340         I != E; ++I)
2341      if (I->Val == From) {
2342        From->removeUser(U);
2343        I->Val = To;
2344        To->addUser(U);
2345      }
2346
2347    // Now that we have modified U, add it back to the CSE maps.  If it already
2348    // exists there, recursively merge the results together.
2349    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2350      ReplaceAllUsesWith(U, Existing, Deleted);
2351      // U is now dead.
2352      if (Deleted) Deleted->push_back(U);
2353      DeleteNodeNotInCSEMaps(U);
2354    }
2355  }
2356}
2357
2358/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2359/// This can cause recursive merging of nodes in the DAG.
2360///
2361/// This version assumes From/To have matching types and numbers of result
2362/// values.
2363///
2364void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2365                                      std::vector<SDNode*> *Deleted) {
2366  assert(From != To && "Cannot replace uses of with self");
2367  assert(From->getNumValues() == To->getNumValues() &&
2368         "Cannot use this version of ReplaceAllUsesWith!");
2369  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2370    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2371    return;
2372  }
2373
2374  while (!From->use_empty()) {
2375    // Process users until they are all gone.
2376    SDNode *U = *From->use_begin();
2377
2378    // This node is about to morph, remove its old self from the CSE maps.
2379    RemoveNodeFromCSEMaps(U);
2380
2381    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2382         I != E; ++I)
2383      if (I->Val == From) {
2384        From->removeUser(U);
2385        I->Val = To;
2386        To->addUser(U);
2387      }
2388
2389    // Now that we have modified U, add it back to the CSE maps.  If it already
2390    // exists there, recursively merge the results together.
2391    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2392      ReplaceAllUsesWith(U, Existing, Deleted);
2393      // U is now dead.
2394      if (Deleted) Deleted->push_back(U);
2395      DeleteNodeNotInCSEMaps(U);
2396    }
2397  }
2398}
2399
2400/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2401/// This can cause recursive merging of nodes in the DAG.
2402///
2403/// This version can replace From with any result values.  To must match the
2404/// number and types of values returned by From.
2405void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2406                                      const std::vector<SDOperand> &To,
2407                                      std::vector<SDNode*> *Deleted) {
2408  assert(From->getNumValues() == To.size() &&
2409         "Incorrect number of values to replace with!");
2410  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2411    // Degenerate case handled above.
2412    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2413    return;
2414  }
2415
2416  while (!From->use_empty()) {
2417    // Process users until they are all gone.
2418    SDNode *U = *From->use_begin();
2419
2420    // This node is about to morph, remove its old self from the CSE maps.
2421    RemoveNodeFromCSEMaps(U);
2422
2423    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2424         I != E; ++I)
2425      if (I->Val == From) {
2426        const SDOperand &ToOp = To[I->ResNo];
2427        From->removeUser(U);
2428        *I = ToOp;
2429        ToOp.Val->addUser(U);
2430      }
2431
2432    // Now that we have modified U, add it back to the CSE maps.  If it already
2433    // exists there, recursively merge the results together.
2434    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2435      ReplaceAllUsesWith(U, Existing, Deleted);
2436      // U is now dead.
2437      if (Deleted) Deleted->push_back(U);
2438      DeleteNodeNotInCSEMaps(U);
2439    }
2440  }
2441}
2442
2443/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2444/// uses of other values produced by From.Val alone.  The Deleted vector is
2445/// handled the same was as for ReplaceAllUsesWith.
2446void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2447                                             std::vector<SDNode*> &Deleted) {
2448  assert(From != To && "Cannot replace a value with itself");
2449  // Handle the simple, trivial, case efficiently.
2450  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2451    ReplaceAllUsesWith(From, To, &Deleted);
2452    return;
2453  }
2454
2455  // Get all of the users in a nice, deterministically ordered, uniqued set.
2456  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2457
2458  while (!Users.empty()) {
2459    // We know that this user uses some value of From.  If it is the right
2460    // value, update it.
2461    SDNode *User = Users.back();
2462    Users.pop_back();
2463
2464    for (SDOperand *Op = User->OperandList,
2465         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2466      if (*Op == From) {
2467        // Okay, we know this user needs to be updated.  Remove its old self
2468        // from the CSE maps.
2469        RemoveNodeFromCSEMaps(User);
2470
2471        // Update all operands that match "From".
2472        for (; Op != E; ++Op) {
2473          if (*Op == From) {
2474            From.Val->removeUser(User);
2475            *Op = To;
2476            To.Val->addUser(User);
2477          }
2478        }
2479
2480        // Now that we have modified User, add it back to the CSE maps.  If it
2481        // already exists there, recursively merge the results together.
2482        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2483          unsigned NumDeleted = Deleted.size();
2484          ReplaceAllUsesWith(User, Existing, &Deleted);
2485
2486          // User is now dead.
2487          Deleted.push_back(User);
2488          DeleteNodeNotInCSEMaps(User);
2489
2490          // We have to be careful here, because ReplaceAllUsesWith could have
2491          // deleted a user of From, which means there may be dangling pointers
2492          // in the "Users" setvector.  Scan over the deleted node pointers and
2493          // remove them from the setvector.
2494          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2495            Users.remove(Deleted[i]);
2496        }
2497        break;   // Exit the operand scanning loop.
2498      }
2499    }
2500  }
2501}
2502
2503
2504//===----------------------------------------------------------------------===//
2505//                              SDNode Class
2506//===----------------------------------------------------------------------===//
2507
2508
2509/// getValueTypeList - Return a pointer to the specified value type.
2510///
2511MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2512  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2513  VTs[VT] = VT;
2514  return &VTs[VT];
2515}
2516
2517/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2518/// indicated value.  This method ignores uses of other values defined by this
2519/// operation.
2520bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2521  assert(Value < getNumValues() && "Bad value!");
2522
2523  // If there is only one value, this is easy.
2524  if (getNumValues() == 1)
2525    return use_size() == NUses;
2526  if (Uses.size() < NUses) return false;
2527
2528  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2529
2530  std::set<SDNode*> UsersHandled;
2531
2532  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2533       UI != E; ++UI) {
2534    SDNode *User = *UI;
2535    if (User->getNumOperands() == 1 ||
2536        UsersHandled.insert(User).second)     // First time we've seen this?
2537      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2538        if (User->getOperand(i) == TheValue) {
2539          if (NUses == 0)
2540            return false;   // too many uses
2541          --NUses;
2542        }
2543  }
2544
2545  // Found exactly the right number of uses?
2546  return NUses == 0;
2547}
2548
2549
2550// isOnlyUse - Return true if this node is the only use of N.
2551bool SDNode::isOnlyUse(SDNode *N) const {
2552  bool Seen = false;
2553  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2554    SDNode *User = *I;
2555    if (User == this)
2556      Seen = true;
2557    else
2558      return false;
2559  }
2560
2561  return Seen;
2562}
2563
2564// isOperand - Return true if this node is an operand of N.
2565bool SDOperand::isOperand(SDNode *N) const {
2566  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2567    if (*this == N->getOperand(i))
2568      return true;
2569  return false;
2570}
2571
2572bool SDNode::isOperand(SDNode *N) const {
2573  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2574    if (this == N->OperandList[i].Val)
2575      return true;
2576  return false;
2577}
2578
2579const char *SDNode::getOperationName(const SelectionDAG *G) const {
2580  switch (getOpcode()) {
2581  default:
2582    if (getOpcode() < ISD::BUILTIN_OP_END)
2583      return "<<Unknown DAG Node>>";
2584    else {
2585      if (G) {
2586        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2587          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2588            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2589
2590        TargetLowering &TLI = G->getTargetLoweringInfo();
2591        const char *Name =
2592          TLI.getTargetNodeName(getOpcode());
2593        if (Name) return Name;
2594      }
2595
2596      return "<<Unknown Target Node>>";
2597    }
2598
2599  case ISD::PCMARKER:      return "PCMarker";
2600  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2601  case ISD::SRCVALUE:      return "SrcValue";
2602  case ISD::EntryToken:    return "EntryToken";
2603  case ISD::TokenFactor:   return "TokenFactor";
2604  case ISD::AssertSext:    return "AssertSext";
2605  case ISD::AssertZext:    return "AssertZext";
2606
2607  case ISD::STRING:        return "String";
2608  case ISD::BasicBlock:    return "BasicBlock";
2609  case ISD::VALUETYPE:     return "ValueType";
2610  case ISD::Register:      return "Register";
2611
2612  case ISD::Constant:      return "Constant";
2613  case ISD::ConstantFP:    return "ConstantFP";
2614  case ISD::GlobalAddress: return "GlobalAddress";
2615  case ISD::FrameIndex:    return "FrameIndex";
2616  case ISD::ConstantPool:  return "ConstantPool";
2617  case ISD::ExternalSymbol: return "ExternalSymbol";
2618
2619  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2620  case ISD::TargetConstant: return "TargetConstant";
2621  case ISD::TargetConstantFP:return "TargetConstantFP";
2622  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2623  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2624  case ISD::TargetConstantPool:  return "TargetConstantPool";
2625  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2626
2627  case ISD::CopyToReg:     return "CopyToReg";
2628  case ISD::CopyFromReg:   return "CopyFromReg";
2629  case ISD::UNDEF:         return "undef";
2630  case ISD::MERGE_VALUES:  return "mergevalues";
2631  case ISD::INLINEASM:     return "inlineasm";
2632  case ISD::HANDLENODE:    return "handlenode";
2633
2634  // Unary operators
2635  case ISD::FABS:   return "fabs";
2636  case ISD::FNEG:   return "fneg";
2637  case ISD::FSQRT:  return "fsqrt";
2638  case ISD::FSIN:   return "fsin";
2639  case ISD::FCOS:   return "fcos";
2640
2641  // Binary operators
2642  case ISD::ADD:    return "add";
2643  case ISD::SUB:    return "sub";
2644  case ISD::MUL:    return "mul";
2645  case ISD::MULHU:  return "mulhu";
2646  case ISD::MULHS:  return "mulhs";
2647  case ISD::SDIV:   return "sdiv";
2648  case ISD::UDIV:   return "udiv";
2649  case ISD::SREM:   return "srem";
2650  case ISD::UREM:   return "urem";
2651  case ISD::AND:    return "and";
2652  case ISD::OR:     return "or";
2653  case ISD::XOR:    return "xor";
2654  case ISD::SHL:    return "shl";
2655  case ISD::SRA:    return "sra";
2656  case ISD::SRL:    return "srl";
2657  case ISD::ROTL:   return "rotl";
2658  case ISD::ROTR:   return "rotr";
2659  case ISD::FADD:   return "fadd";
2660  case ISD::FSUB:   return "fsub";
2661  case ISD::FMUL:   return "fmul";
2662  case ISD::FDIV:   return "fdiv";
2663  case ISD::FREM:   return "frem";
2664  case ISD::FCOPYSIGN: return "fcopysign";
2665  case ISD::VADD:   return "vadd";
2666  case ISD::VSUB:   return "vsub";
2667  case ISD::VMUL:   return "vmul";
2668
2669  case ISD::SETCC:       return "setcc";
2670  case ISD::SELECT:      return "select";
2671  case ISD::SELECT_CC:   return "select_cc";
2672  case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
2673  case ISD::VINSERT_VECTOR_ELT: return "vinsert_vector_elt";
2674  case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
2675  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2676  case ISD::SCALAR_TO_VECTOR:   return "scalar_to_vector";
2677  case ISD::VBUILD_VECTOR: return "vbuild_vector";
2678  case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
2679  case ISD::ADDC:        return "addc";
2680  case ISD::ADDE:        return "adde";
2681  case ISD::SUBC:        return "subc";
2682  case ISD::SUBE:        return "sube";
2683  case ISD::SHL_PARTS:   return "shl_parts";
2684  case ISD::SRA_PARTS:   return "sra_parts";
2685  case ISD::SRL_PARTS:   return "srl_parts";
2686
2687  // Conversion operators.
2688  case ISD::SIGN_EXTEND: return "sign_extend";
2689  case ISD::ZERO_EXTEND: return "zero_extend";
2690  case ISD::ANY_EXTEND:  return "any_extend";
2691  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2692  case ISD::TRUNCATE:    return "truncate";
2693  case ISD::FP_ROUND:    return "fp_round";
2694  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2695  case ISD::FP_EXTEND:   return "fp_extend";
2696
2697  case ISD::SINT_TO_FP:  return "sint_to_fp";
2698  case ISD::UINT_TO_FP:  return "uint_to_fp";
2699  case ISD::FP_TO_SINT:  return "fp_to_sint";
2700  case ISD::FP_TO_UINT:  return "fp_to_uint";
2701  case ISD::BIT_CONVERT: return "bit_convert";
2702
2703    // Control flow instructions
2704  case ISD::BR:      return "br";
2705  case ISD::BRCOND:  return "brcond";
2706  case ISD::BR_CC:   return "br_cc";
2707  case ISD::RET:     return "ret";
2708  case ISD::CALLSEQ_START:  return "callseq_start";
2709  case ISD::CALLSEQ_END:    return "callseq_end";
2710
2711    // Other operators
2712  case ISD::LOAD:               return "load";
2713  case ISD::STORE:              return "store";
2714  case ISD::VLOAD:              return "vload";
2715  case ISD::EXTLOAD:            return "extload";
2716  case ISD::SEXTLOAD:           return "sextload";
2717  case ISD::ZEXTLOAD:           return "zextload";
2718  case ISD::TRUNCSTORE:         return "truncstore";
2719  case ISD::VAARG:              return "vaarg";
2720  case ISD::VACOPY:             return "vacopy";
2721  case ISD::VAEND:              return "vaend";
2722  case ISD::VASTART:            return "vastart";
2723  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2724  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2725  case ISD::BUILD_PAIR:         return "build_pair";
2726  case ISD::STACKSAVE:          return "stacksave";
2727  case ISD::STACKRESTORE:       return "stackrestore";
2728
2729  // Block memory operations.
2730  case ISD::MEMSET:  return "memset";
2731  case ISD::MEMCPY:  return "memcpy";
2732  case ISD::MEMMOVE: return "memmove";
2733
2734  // Bit manipulation
2735  case ISD::BSWAP:   return "bswap";
2736  case ISD::CTPOP:   return "ctpop";
2737  case ISD::CTTZ:    return "cttz";
2738  case ISD::CTLZ:    return "ctlz";
2739
2740  // Debug info
2741  case ISD::LOCATION: return "location";
2742  case ISD::DEBUG_LOC: return "debug_loc";
2743  case ISD::DEBUG_LABEL: return "debug_label";
2744
2745  case ISD::CONDCODE:
2746    switch (cast<CondCodeSDNode>(this)->get()) {
2747    default: assert(0 && "Unknown setcc condition!");
2748    case ISD::SETOEQ:  return "setoeq";
2749    case ISD::SETOGT:  return "setogt";
2750    case ISD::SETOGE:  return "setoge";
2751    case ISD::SETOLT:  return "setolt";
2752    case ISD::SETOLE:  return "setole";
2753    case ISD::SETONE:  return "setone";
2754
2755    case ISD::SETO:    return "seto";
2756    case ISD::SETUO:   return "setuo";
2757    case ISD::SETUEQ:  return "setue";
2758    case ISD::SETUGT:  return "setugt";
2759    case ISD::SETUGE:  return "setuge";
2760    case ISD::SETULT:  return "setult";
2761    case ISD::SETULE:  return "setule";
2762    case ISD::SETUNE:  return "setune";
2763
2764    case ISD::SETEQ:   return "seteq";
2765    case ISD::SETGT:   return "setgt";
2766    case ISD::SETGE:   return "setge";
2767    case ISD::SETLT:   return "setlt";
2768    case ISD::SETLE:   return "setle";
2769    case ISD::SETNE:   return "setne";
2770    }
2771  }
2772}
2773
2774void SDNode::dump() const { dump(0); }
2775void SDNode::dump(const SelectionDAG *G) const {
2776  std::cerr << (void*)this << ": ";
2777
2778  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2779    if (i) std::cerr << ",";
2780    if (getValueType(i) == MVT::Other)
2781      std::cerr << "ch";
2782    else
2783      std::cerr << MVT::getValueTypeString(getValueType(i));
2784  }
2785  std::cerr << " = " << getOperationName(G);
2786
2787  std::cerr << " ";
2788  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2789    if (i) std::cerr << ", ";
2790    std::cerr << (void*)getOperand(i).Val;
2791    if (unsigned RN = getOperand(i).ResNo)
2792      std::cerr << ":" << RN;
2793  }
2794
2795  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2796    std::cerr << "<" << CSDN->getValue() << ">";
2797  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2798    std::cerr << "<" << CSDN->getValue() << ">";
2799  } else if (const GlobalAddressSDNode *GADN =
2800             dyn_cast<GlobalAddressSDNode>(this)) {
2801    int offset = GADN->getOffset();
2802    std::cerr << "<";
2803    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
2804    if (offset > 0)
2805      std::cerr << " + " << offset;
2806    else
2807      std::cerr << " " << offset;
2808  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2809    std::cerr << "<" << FIDN->getIndex() << ">";
2810  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2811    int offset = CP->getOffset();
2812    std::cerr << "<" << *CP->get() << ">";
2813    if (offset > 0)
2814      std::cerr << " + " << offset;
2815    else
2816      std::cerr << " " << offset;
2817  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2818    std::cerr << "<";
2819    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2820    if (LBB)
2821      std::cerr << LBB->getName() << " ";
2822    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
2823  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2824    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2825      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2826    } else {
2827      std::cerr << " #" << R->getReg();
2828    }
2829  } else if (const ExternalSymbolSDNode *ES =
2830             dyn_cast<ExternalSymbolSDNode>(this)) {
2831    std::cerr << "'" << ES->getSymbol() << "'";
2832  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2833    if (M->getValue())
2834      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2835    else
2836      std::cerr << "<null:" << M->getOffset() << ">";
2837  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2838    std::cerr << ":" << getValueTypeString(N->getVT());
2839  }
2840}
2841
2842static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2843  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2844    if (N->getOperand(i).Val->hasOneUse())
2845      DumpNodes(N->getOperand(i).Val, indent+2, G);
2846    else
2847      std::cerr << "\n" << std::string(indent+2, ' ')
2848                << (void*)N->getOperand(i).Val << ": <multiple use>";
2849
2850
2851  std::cerr << "\n" << std::string(indent, ' ');
2852  N->dump(G);
2853}
2854
2855void SelectionDAG::dump() const {
2856  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
2857  std::vector<const SDNode*> Nodes;
2858  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
2859       I != E; ++I)
2860    Nodes.push_back(I);
2861
2862  std::sort(Nodes.begin(), Nodes.end());
2863
2864  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2865    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
2866      DumpNodes(Nodes[i], 2, this);
2867  }
2868
2869  DumpNodes(getRoot().Val, 2, this);
2870
2871  std::cerr << "\n\n";
2872}
2873
2874/// InsertISelMapEntry - A helper function to insert a key / element pair
2875/// into a SDOperand to SDOperand map. This is added to avoid the map
2876/// insertion operator from being inlined.
2877void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
2878                                      SDNode *Key, unsigned KeyResNo,
2879                                      SDNode *Element, unsigned ElementResNo) {
2880  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
2881                            SDOperand(Element, ElementResNo)));
2882}
2883