SelectionDAG.cpp revision 3a66a68b0cc81193abfc074b1d360a4950151d38
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/ManagedStatic.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/System/Mutex.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringExtras.h"
45#include <algorithm>
46#include <cmath>
47using namespace llvm;
48
49/// makeVTList - Return an instance of the SDVTList struct initialized with the
50/// specified members.
51static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
52  SDVTList Res = {VTs, NumVTs};
53  return Res;
54}
55
56static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
57  switch (VT.getSimpleVT().SimpleTy) {
58  default: llvm_unreachable("Unknown FP format");
59  case MVT::f32:     return &APFloat::IEEEsingle;
60  case MVT::f64:     return &APFloat::IEEEdouble;
61  case MVT::f80:     return &APFloat::x87DoubleExtended;
62  case MVT::f128:    return &APFloat::IEEEquad;
63  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
64  }
65}
66
67SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
68
69//===----------------------------------------------------------------------===//
70//                              ConstantFPSDNode Class
71//===----------------------------------------------------------------------===//
72
73/// isExactlyValue - We don't rely on operator== working on double values, as
74/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
75/// As such, this method can be used to do an exact bit-for-bit comparison of
76/// two floating point values.
77bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
78  return getValueAPF().bitwiseIsEqual(V);
79}
80
81bool ConstantFPSDNode::isValueValidForType(EVT VT,
82                                           const APFloat& Val) {
83  assert(VT.isFloatingPoint() && "Can only convert between FP types");
84
85  // PPC long double cannot be converted to any other type.
86  if (VT == MVT::ppcf128 ||
87      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
88    return false;
89
90  // convert modifies in place, so make a copy.
91  APFloat Val2 = APFloat(Val);
92  bool losesInfo;
93  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
94                      &losesInfo);
95  return !losesInfo;
96}
97
98//===----------------------------------------------------------------------===//
99//                              ISD Namespace
100//===----------------------------------------------------------------------===//
101
102/// isBuildVectorAllOnes - Return true if the specified node is a
103/// BUILD_VECTOR where all of the elements are ~0 or undef.
104bool ISD::isBuildVectorAllOnes(const SDNode *N) {
105  // Look through a bit convert.
106  if (N->getOpcode() == ISD::BIT_CONVERT)
107    N = N->getOperand(0).getNode();
108
109  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
110
111  unsigned i = 0, e = N->getNumOperands();
112
113  // Skip over all of the undef values.
114  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
115    ++i;
116
117  // Do not accept an all-undef vector.
118  if (i == e) return false;
119
120  // Do not accept build_vectors that aren't all constants or which have non-~0
121  // elements.
122  SDValue NotZero = N->getOperand(i);
123  if (isa<ConstantSDNode>(NotZero)) {
124    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
125      return false;
126  } else if (isa<ConstantFPSDNode>(NotZero)) {
127    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
128                bitcastToAPInt().isAllOnesValue())
129      return false;
130  } else
131    return false;
132
133  // Okay, we have at least one ~0 value, check to see if the rest match or are
134  // undefs.
135  for (++i; i != e; ++i)
136    if (N->getOperand(i) != NotZero &&
137        N->getOperand(i).getOpcode() != ISD::UNDEF)
138      return false;
139  return true;
140}
141
142
143/// isBuildVectorAllZeros - Return true if the specified node is a
144/// BUILD_VECTOR where all of the elements are 0 or undef.
145bool ISD::isBuildVectorAllZeros(const SDNode *N) {
146  // Look through a bit convert.
147  if (N->getOpcode() == ISD::BIT_CONVERT)
148    N = N->getOperand(0).getNode();
149
150  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
151
152  unsigned i = 0, e = N->getNumOperands();
153
154  // Skip over all of the undef values.
155  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
156    ++i;
157
158  // Do not accept an all-undef vector.
159  if (i == e) return false;
160
161  // Do not accept build_vectors that aren't all constants or which have non-0
162  // elements.
163  SDValue Zero = N->getOperand(i);
164  if (isa<ConstantSDNode>(Zero)) {
165    if (!cast<ConstantSDNode>(Zero)->isNullValue())
166      return false;
167  } else if (isa<ConstantFPSDNode>(Zero)) {
168    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
169      return false;
170  } else
171    return false;
172
173  // Okay, we have at least one 0 value, check to see if the rest match or are
174  // undefs.
175  for (++i; i != e; ++i)
176    if (N->getOperand(i) != Zero &&
177        N->getOperand(i).getOpcode() != ISD::UNDEF)
178      return false;
179  return true;
180}
181
182/// isScalarToVector - Return true if the specified node is a
183/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
184/// element is not an undef.
185bool ISD::isScalarToVector(const SDNode *N) {
186  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
187    return true;
188
189  if (N->getOpcode() != ISD::BUILD_VECTOR)
190    return false;
191  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
192    return false;
193  unsigned NumElems = N->getNumOperands();
194  for (unsigned i = 1; i < NumElems; ++i) {
195    SDValue V = N->getOperand(i);
196    if (V.getOpcode() != ISD::UNDEF)
197      return false;
198  }
199  return true;
200}
201
202
203/// isDebugLabel - Return true if the specified node represents a debug
204/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
205bool ISD::isDebugLabel(const SDNode *N) {
206  SDValue Zero;
207  if (N->getOpcode() == ISD::DBG_LABEL)
208    return true;
209  if (N->isMachineOpcode() &&
210      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
211    return true;
212  return false;
213}
214
215/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
216/// when given the operation for (X op Y).
217ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
218  // To perform this operation, we just need to swap the L and G bits of the
219  // operation.
220  unsigned OldL = (Operation >> 2) & 1;
221  unsigned OldG = (Operation >> 1) & 1;
222  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
223                       (OldL << 1) |       // New G bit
224                       (OldG << 2));       // New L bit.
225}
226
227/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
228/// 'op' is a valid SetCC operation.
229ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
230  unsigned Operation = Op;
231  if (isInteger)
232    Operation ^= 7;   // Flip L, G, E bits, but not U.
233  else
234    Operation ^= 15;  // Flip all of the condition bits.
235
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;  // Don't let N and U bits get set.
238
239  return ISD::CondCode(Operation);
240}
241
242
243/// isSignedOp - For an integer comparison, return 1 if the comparison is a
244/// signed operation and 2 if the result is an unsigned comparison.  Return zero
245/// if the operation does not depend on the sign of the input (setne and seteq).
246static int isSignedOp(ISD::CondCode Opcode) {
247  switch (Opcode) {
248  default: llvm_unreachable("Illegal integer setcc operation!");
249  case ISD::SETEQ:
250  case ISD::SETNE: return 0;
251  case ISD::SETLT:
252  case ISD::SETLE:
253  case ISD::SETGT:
254  case ISD::SETGE: return 1;
255  case ISD::SETULT:
256  case ISD::SETULE:
257  case ISD::SETUGT:
258  case ISD::SETUGE: return 2;
259  }
260}
261
262/// getSetCCOrOperation - Return the result of a logical OR between different
263/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
264/// returns SETCC_INVALID if it is not possible to represent the resultant
265/// comparison.
266ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
267                                       bool isInteger) {
268  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
269    // Cannot fold a signed integer setcc with an unsigned integer setcc.
270    return ISD::SETCC_INVALID;
271
272  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
273
274  // If the N and U bits get set then the resultant comparison DOES suddenly
275  // care about orderedness, and is true when ordered.
276  if (Op > ISD::SETTRUE2)
277    Op &= ~16;     // Clear the U bit if the N bit is set.
278
279  // Canonicalize illegal integer setcc's.
280  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
281    Op = ISD::SETNE;
282
283  return ISD::CondCode(Op);
284}
285
286/// getSetCCAndOperation - Return the result of a logical AND between different
287/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
288/// function returns zero if it is not possible to represent the resultant
289/// comparison.
290ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
291                                        bool isInteger) {
292  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
293    // Cannot fold a signed setcc with an unsigned setcc.
294    return ISD::SETCC_INVALID;
295
296  // Combine all of the condition bits.
297  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
298
299  // Canonicalize illegal integer setcc's.
300  if (isInteger) {
301    switch (Result) {
302    default: break;
303    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
304    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
305    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
306    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
307    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
308    }
309  }
310
311  return Result;
312}
313
314const TargetMachine &SelectionDAG::getTarget() const {
315  return MF->getTarget();
316}
317
318//===----------------------------------------------------------------------===//
319//                           SDNode Profile Support
320//===----------------------------------------------------------------------===//
321
322/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
323///
324static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
325  ID.AddInteger(OpC);
326}
327
328/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
329/// solely with their pointer.
330static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
331  ID.AddPointer(VTList.VTs);
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDValue *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
345///
346static void AddNodeIDOperands(FoldingSetNodeID &ID,
347                              const SDUse *Ops, unsigned NumOps) {
348  for (; NumOps; --NumOps, ++Ops) {
349    ID.AddPointer(Ops->getNode());
350    ID.AddInteger(Ops->getResNo());
351  }
352}
353
354static void AddNodeIDNode(FoldingSetNodeID &ID,
355                          unsigned short OpC, SDVTList VTList,
356                          const SDValue *OpList, unsigned N) {
357  AddNodeIDOpcode(ID, OpC);
358  AddNodeIDValueTypes(ID, VTList);
359  AddNodeIDOperands(ID, OpList, N);
360}
361
362/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
363/// the NodeID data.
364static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
365  switch (N->getOpcode()) {
366  case ISD::TargetExternalSymbol:
367  case ISD::ExternalSymbol:
368    llvm_unreachable("Should only be used on nodes with operands");
369  default: break;  // Normal nodes don't need extra info.
370  case ISD::TargetConstant:
371  case ISD::Constant:
372    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
373    break;
374  case ISD::TargetConstantFP:
375  case ISD::ConstantFP: {
376    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
377    break;
378  }
379  case ISD::TargetGlobalAddress:
380  case ISD::GlobalAddress:
381  case ISD::TargetGlobalTLSAddress:
382  case ISD::GlobalTLSAddress: {
383    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
384    ID.AddPointer(GA->getGlobal());
385    ID.AddInteger(GA->getOffset());
386    ID.AddInteger(GA->getTargetFlags());
387    break;
388  }
389  case ISD::BasicBlock:
390    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
391    break;
392  case ISD::Register:
393    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
394    break;
395  case ISD::DBG_STOPPOINT: {
396    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
397    ID.AddInteger(DSP->getLine());
398    ID.AddInteger(DSP->getColumn());
399    ID.AddPointer(DSP->getCompileUnit());
400    break;
401  }
402  case ISD::SRCVALUE:
403    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
404    break;
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
413    break;
414  case ISD::ConstantPool:
415  case ISD::TargetConstantPool: {
416    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
417    ID.AddInteger(CP->getAlignment());
418    ID.AddInteger(CP->getOffset());
419    if (CP->isMachineConstantPoolEntry())
420      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
421    else
422      ID.AddPointer(CP->getConstVal());
423    ID.AddInteger(CP->getTargetFlags());
424    break;
425  }
426  case ISD::LOAD: {
427    const LoadSDNode *LD = cast<LoadSDNode>(N);
428    ID.AddInteger(LD->getMemoryVT().getRawBits());
429    ID.AddInteger(LD->getRawSubclassData());
430    break;
431  }
432  case ISD::STORE: {
433    const StoreSDNode *ST = cast<StoreSDNode>(N);
434    ID.AddInteger(ST->getMemoryVT().getRawBits());
435    ID.AddInteger(ST->getRawSubclassData());
436    break;
437  }
438  case ISD::ATOMIC_CMP_SWAP:
439  case ISD::ATOMIC_SWAP:
440  case ISD::ATOMIC_LOAD_ADD:
441  case ISD::ATOMIC_LOAD_SUB:
442  case ISD::ATOMIC_LOAD_AND:
443  case ISD::ATOMIC_LOAD_OR:
444  case ISD::ATOMIC_LOAD_XOR:
445  case ISD::ATOMIC_LOAD_NAND:
446  case ISD::ATOMIC_LOAD_MIN:
447  case ISD::ATOMIC_LOAD_MAX:
448  case ISD::ATOMIC_LOAD_UMIN:
449  case ISD::ATOMIC_LOAD_UMAX: {
450    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
451    ID.AddInteger(AT->getMemoryVT().getRawBits());
452    ID.AddInteger(AT->getRawSubclassData());
453    break;
454  }
455  case ISD::VECTOR_SHUFFLE: {
456    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
457    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
458         i != e; ++i)
459      ID.AddInteger(SVN->getMaskElt(i));
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries volatility, indexing mode, and
480/// extension/truncation information.
481///
482static inline unsigned
483encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
484  assert((ConvType & 3) == ConvType &&
485         "ConvType may not require more than 2 bits!");
486  assert((AM & 7) == AM &&
487         "AM may not require more than 3 bits!");
488  return ConvType |
489         (AM << 2) |
490         (isVolatile << 5);
491}
492
493//===----------------------------------------------------------------------===//
494//                              SelectionDAG Class
495//===----------------------------------------------------------------------===//
496
497/// doNotCSE - Return true if CSE should not be performed for this node.
498static bool doNotCSE(SDNode *N) {
499  if (N->getValueType(0) == MVT::Flag)
500    return true; // Never CSE anything that produces a flag.
501
502  switch (N->getOpcode()) {
503  default: break;
504  case ISD::HANDLENODE:
505  case ISD::DBG_LABEL:
506  case ISD::DBG_STOPPOINT:
507  case ISD::EH_LABEL:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    llvm_unreachable("EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol: {
627    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
628    Erased = TargetExternalSymbols.erase(
629               std::pair<std::string,unsigned char>(ESN->getSymbol(),
630                                                    ESN->getTargetFlags()));
631    break;
632  }
633  case ISD::VALUETYPE: {
634    EVT VT = cast<VTSDNode>(N)->getVT();
635    if (VT.isExtended()) {
636      Erased = ExtendedValueTypeNodes.erase(VT);
637    } else {
638      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
639      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
640    }
641    break;
642  }
643  default:
644    // Remove it from the CSE Map.
645    Erased = CSEMap.RemoveNode(N);
646    break;
647  }
648#ifndef NDEBUG
649  // Verify that the node was actually in one of the CSE maps, unless it has a
650  // flag result (which cannot be CSE'd) or is one of the special cases that are
651  // not subject to CSE.
652  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
653      !N->isMachineOpcode() && !doNotCSE(N)) {
654    N->dump(this);
655    errs() << "\n";
656    llvm_unreachable("Node is not in map!");
657  }
658#endif
659  return Erased;
660}
661
662/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
663/// maps and modified in place. Add it back to the CSE maps, unless an identical
664/// node already exists, in which case transfer all its users to the existing
665/// node. This transfer can potentially trigger recursive merging.
666///
667void
668SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
669                                       DAGUpdateListener *UpdateListener) {
670  // For node types that aren't CSE'd, just act as if no identical node
671  // already exists.
672  if (!doNotCSE(N)) {
673    SDNode *Existing = CSEMap.GetOrInsertNode(N);
674    if (Existing != N) {
675      // If there was already an existing matching node, use ReplaceAllUsesWith
676      // to replace the dead one with the existing one.  This can cause
677      // recursive merging of other unrelated nodes down the line.
678      ReplaceAllUsesWith(N, Existing, UpdateListener);
679
680      // N is now dead.  Inform the listener if it exists and delete it.
681      if (UpdateListener)
682        UpdateListener->NodeDeleted(N, Existing);
683      DeleteNodeNotInCSEMaps(N);
684      return;
685    }
686  }
687
688  // If the node doesn't already exist, we updated it.  Inform a listener if
689  // it exists.
690  if (UpdateListener)
691    UpdateListener->NodeUpdated(N);
692}
693
694/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
695/// were replaced with those specified.  If this node is never memoized,
696/// return null, otherwise return a pointer to the slot it would take.  If a
697/// node already exists with these operands, the slot will be non-null.
698SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
699                                           void *&InsertPos) {
700  if (doNotCSE(N))
701    return 0;
702
703  SDValue Ops[] = { Op };
704  FoldingSetNodeID ID;
705  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
706  AddNodeIDCustom(ID, N);
707  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725}
726
727
728/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
729/// were replaced with those specified.  If this node is never memoized,
730/// return null, otherwise return a pointer to the slot it would take.  If a
731/// node already exists with these operands, the slot will be non-null.
732SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
733                                           const SDValue *Ops,unsigned NumOps,
734                                           void *&InsertPos) {
735  if (doNotCSE(N))
736    return 0;
737
738  FoldingSetNodeID ID;
739  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
740  AddNodeIDCustom(ID, N);
741  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
742}
743
744/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
745void SelectionDAG::VerifyNode(SDNode *N) {
746  switch (N->getOpcode()) {
747  default:
748    break;
749  case ISD::BUILD_PAIR: {
750    EVT VT = N->getValueType(0);
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
753           "Wrong return type!");
754    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
755    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
756           "Mismatched operand types!");
757    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
758           "Wrong operand type!");
759    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
760           "Wrong return type size");
761    break;
762  }
763  case ISD::BUILD_VECTOR: {
764    assert(N->getNumValues() == 1 && "Too many results!");
765    assert(N->getValueType(0).isVector() && "Wrong return type!");
766    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
767           "Wrong number of operands!");
768    EVT EltVT = N->getValueType(0).getVectorElementType();
769    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
770      assert((I->getValueType() == EltVT ||
771             (EltVT.isInteger() && I->getValueType().isInteger() &&
772              EltVT.bitsLE(I->getValueType()))) &&
773            "Wrong operand type!");
774    break;
775  }
776  }
777}
778
779/// getEVTAlignment - Compute the default alignment value for the
780/// given type.
781///
782unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
783  const Type *Ty = VT == MVT::iPTR ?
784                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
785                   VT.getTypeForEVT(*getContext());
786
787  return TLI.getTargetData()->getABITypeAlignment(Ty);
788}
789
790// EntryNode could meaningfully have debug info if we can find it...
791SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
792  : TLI(tli), FLI(fli), DW(0),
793    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
794    getVTList(MVT::Other)), Root(getEntryNode()) {
795  AllNodes.push_back(&EntryNode);
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808}
809
810void SelectionDAG::allnodes_clear() {
811  assert(&*AllNodes.begin() == &EntryNode);
812  AllNodes.remove(AllNodes.begin());
813  while (!AllNodes.empty())
814    DeallocateNode(AllNodes.begin());
815}
816
817void SelectionDAG::clear() {
818  allnodes_clear();
819  OperandAllocator.Reset();
820  CSEMap.clear();
821
822  ExtendedValueTypeNodes.clear();
823  ExternalSymbols.clear();
824  TargetExternalSymbols.clear();
825  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
826            static_cast<CondCodeSDNode*>(0));
827  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
828            static_cast<SDNode*>(0));
829
830  EntryNode.UseList = 0;
831  AllNodes.push_back(&EntryNode);
832  Root = getEntryNode();
833}
834
835SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
836  return VT.bitsGT(Op.getValueType()) ?
837    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
838    getNode(ISD::TRUNCATE, DL, VT, Op);
839}
840
841SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
842  return VT.bitsGT(Op.getValueType()) ?
843    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
844    getNode(ISD::TRUNCATE, DL, VT, Op);
845}
846
847SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
848  if (Op.getValueType() == VT) return Op;
849  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
850                                   VT.getSizeInBits());
851  return getNode(ISD::AND, DL, Op.getValueType(), Op,
852                 getConstant(Imm, Op.getValueType()));
853}
854
855/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
856///
857SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
858  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  SDValue NegOne =
860    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
861  return getNode(ISD::XOR, DL, VT, Val, NegOne);
862}
863
864SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
865  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
866  assert((EltVT.getSizeInBits() >= 64 ||
867         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
868         "getConstant with a uint64_t value that doesn't fit in the type!");
869  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
870}
871
872SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
873  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
874}
875
876SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
877  assert(VT.isInteger() && "Cannot create FP integer constant!");
878
879  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
880  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
881         "APInt size does not match type size!");
882
883  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
886  ID.AddPointer(&Val);
887  void *IP = 0;
888  SDNode *N = NULL;
889  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
890    if (!VT.isVector())
891      return SDValue(N, 0);
892  if (!N) {
893    N = NodeAllocator.Allocate<ConstantSDNode>();
894    new (N) ConstantSDNode(isT, &Val, EltVT);
895    CSEMap.InsertNode(N, IP);
896    AllNodes.push_back(N);
897  }
898
899  SDValue Result(N, 0);
900  if (VT.isVector()) {
901    SmallVector<SDValue, 8> Ops;
902    Ops.assign(VT.getVectorNumElements(), Result);
903    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
904                     VT, &Ops[0], Ops.size());
905  }
906  return Result;
907}
908
909SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
910  return getConstant(Val, TLI.getPointerTy(), isTarget);
911}
912
913
914SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
915  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
916}
917
918SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
919  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
920
921  EVT EltVT =
922    VT.isVector() ? VT.getVectorElementType() : VT;
923
924  // Do the map lookup using the actual bit pattern for the floating point
925  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
926  // we don't have issues with SNANs.
927  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
928  FoldingSetNodeID ID;
929  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
930  ID.AddPointer(&V);
931  void *IP = 0;
932  SDNode *N = NULL;
933  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
934    if (!VT.isVector())
935      return SDValue(N, 0);
936  if (!N) {
937    N = NodeAllocator.Allocate<ConstantFPSDNode>();
938    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
939    CSEMap.InsertNode(N, IP);
940    AllNodes.push_back(N);
941  }
942
943  SDValue Result(N, 0);
944  if (VT.isVector()) {
945    SmallVector<SDValue, 8> Ops;
946    Ops.assign(VT.getVectorNumElements(), Result);
947    // FIXME DebugLoc info might be appropriate here
948    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
949                     VT, &Ops[0], Ops.size());
950  }
951  return Result;
952}
953
954SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
955  EVT EltVT =
956    VT.isVector() ? VT.getVectorElementType() : VT;
957  if (EltVT==MVT::f32)
958    return getConstantFP(APFloat((float)Val), VT, isTarget);
959  else
960    return getConstantFP(APFloat(Val), VT, isTarget);
961}
962
963SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
964                                       EVT VT, int64_t Offset,
965                                       bool isTargetGA,
966                                       unsigned char TargetFlags) {
967  assert((TargetFlags == 0 || isTargetGA) &&
968         "Cannot set target flags on target-independent globals");
969
970  // Truncate (with sign-extension) the offset value to the pointer size.
971  EVT PTy = TLI.getPointerTy();
972  unsigned BitWidth = PTy.getSizeInBits();
973  if (BitWidth < 64)
974    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
975
976  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
977  if (!GVar) {
978    // If GV is an alias then use the aliasee for determining thread-localness.
979    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
980      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
981  }
982
983  unsigned Opc;
984  if (GVar && GVar->isThreadLocal())
985    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
986  else
987    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
988
989  FoldingSetNodeID ID;
990  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
991  ID.AddPointer(GV);
992  ID.AddInteger(Offset);
993  ID.AddInteger(TargetFlags);
994  void *IP = 0;
995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
996    return SDValue(E, 0);
997  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
998  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
999  CSEMap.InsertNode(N, IP);
1000  AllNodes.push_back(N);
1001  return SDValue(N, 0);
1002}
1003
1004SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1005  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddInteger(FI);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1013  new (N) FrameIndexSDNode(FI, VT, isTarget);
1014  CSEMap.InsertNode(N, IP);
1015  AllNodes.push_back(N);
1016  return SDValue(N, 0);
1017}
1018
1019SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1020                                   unsigned char TargetFlags) {
1021  assert((TargetFlags == 0 || isTarget) &&
1022         "Cannot set target flags on target-independent jump tables");
1023  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(JTI);
1027  ID.AddInteger(TargetFlags);
1028  void *IP = 0;
1029  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1030    return SDValue(E, 0);
1031  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1032  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1033  CSEMap.InsertNode(N, IP);
1034  AllNodes.push_back(N);
1035  return SDValue(N, 0);
1036}
1037
1038SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1039                                      unsigned Alignment, int Offset,
1040                                      bool isTarget,
1041                                      unsigned char TargetFlags) {
1042  assert((TargetFlags == 0 || isTarget) &&
1043         "Cannot set target flags on target-independent globals");
1044  if (Alignment == 0)
1045    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1046  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1047  FoldingSetNodeID ID;
1048  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1049  ID.AddInteger(Alignment);
1050  ID.AddInteger(Offset);
1051  ID.AddPointer(C);
1052  ID.AddInteger(TargetFlags);
1053  void *IP = 0;
1054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055    return SDValue(E, 0);
1056  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1058  CSEMap.InsertNode(N, IP);
1059  AllNodes.push_back(N);
1060  return SDValue(N, 0);
1061}
1062
1063
1064SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1065                                      unsigned Alignment, int Offset,
1066                                      bool isTarget,
1067                                      unsigned char TargetFlags) {
1068  assert((TargetFlags == 0 || isTarget) &&
1069         "Cannot set target flags on target-independent globals");
1070  if (Alignment == 0)
1071    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1072  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1073  FoldingSetNodeID ID;
1074  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1075  ID.AddInteger(Alignment);
1076  ID.AddInteger(Offset);
1077  C->AddSelectionDAGCSEId(ID);
1078  ID.AddInteger(TargetFlags);
1079  void *IP = 0;
1080  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1081    return SDValue(E, 0);
1082  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1083  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1084  CSEMap.InsertNode(N, IP);
1085  AllNodes.push_back(N);
1086  return SDValue(N, 0);
1087}
1088
1089SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1090  FoldingSetNodeID ID;
1091  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1092  ID.AddPointer(MBB);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1097  new (N) BasicBlockSDNode(MBB);
1098  CSEMap.InsertNode(N, IP);
1099  AllNodes.push_back(N);
1100  return SDValue(N, 0);
1101}
1102
1103SDValue SelectionDAG::getValueType(EVT VT) {
1104  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1105      ValueTypeNodes.size())
1106    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1107
1108  SDNode *&N = VT.isExtended() ?
1109    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1110
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<VTSDNode>();
1113  new (N) VTSDNode(VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1119  SDNode *&N = ExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1128                                              unsigned char TargetFlags) {
1129  SDNode *&N =
1130    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1131                                                               TargetFlags)];
1132  if (N) return SDValue(N, 0);
1133  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1134  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1135  AllNodes.push_back(N);
1136  return SDValue(N, 0);
1137}
1138
1139SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1140  if ((unsigned)Cond >= CondCodeNodes.size())
1141    CondCodeNodes.resize(Cond+1);
1142
1143  if (CondCodeNodes[Cond] == 0) {
1144    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1145    new (N) CondCodeSDNode(Cond);
1146    CondCodeNodes[Cond] = N;
1147    AllNodes.push_back(N);
1148  }
1149  return SDValue(CondCodeNodes[Cond], 0);
1150}
1151
1152// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1153// the shuffle mask M that point at N1 to point at N2, and indices that point
1154// N2 to point at N1.
1155static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1156  std::swap(N1, N2);
1157  int NElts = M.size();
1158  for (int i = 0; i != NElts; ++i) {
1159    if (M[i] >= NElts)
1160      M[i] -= NElts;
1161    else if (M[i] >= 0)
1162      M[i] += NElts;
1163  }
1164}
1165
1166SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1167                                       SDValue N2, const int *Mask) {
1168  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1169  assert(VT.isVector() && N1.getValueType().isVector() &&
1170         "Vector Shuffle VTs must be a vectors");
1171  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1172         && "Vector Shuffle VTs must have same element type");
1173
1174  // Canonicalize shuffle undef, undef -> undef
1175  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1176    return getUNDEF(VT);
1177
1178  // Validate that all indices in Mask are within the range of the elements
1179  // input to the shuffle.
1180  unsigned NElts = VT.getVectorNumElements();
1181  SmallVector<int, 8> MaskVec;
1182  for (unsigned i = 0; i != NElts; ++i) {
1183    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1184    MaskVec.push_back(Mask[i]);
1185  }
1186
1187  // Canonicalize shuffle v, v -> v, undef
1188  if (N1 == N2) {
1189    N2 = getUNDEF(VT);
1190    for (unsigned i = 0; i != NElts; ++i)
1191      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1192  }
1193
1194  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1195  if (N1.getOpcode() == ISD::UNDEF)
1196    commuteShuffle(N1, N2, MaskVec);
1197
1198  // Canonicalize all index into lhs, -> shuffle lhs, undef
1199  // Canonicalize all index into rhs, -> shuffle rhs, undef
1200  bool AllLHS = true, AllRHS = true;
1201  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1202  for (unsigned i = 0; i != NElts; ++i) {
1203    if (MaskVec[i] >= (int)NElts) {
1204      if (N2Undef)
1205        MaskVec[i] = -1;
1206      else
1207        AllLHS = false;
1208    } else if (MaskVec[i] >= 0) {
1209      AllRHS = false;
1210    }
1211  }
1212  if (AllLHS && AllRHS)
1213    return getUNDEF(VT);
1214  if (AllLHS && !N2Undef)
1215    N2 = getUNDEF(VT);
1216  if (AllRHS) {
1217    N1 = getUNDEF(VT);
1218    commuteShuffle(N1, N2, MaskVec);
1219  }
1220
1221  // If Identity shuffle, or all shuffle in to undef, return that node.
1222  bool AllUndef = true;
1223  bool Identity = true;
1224  for (unsigned i = 0; i != NElts; ++i) {
1225    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1226    if (MaskVec[i] >= 0) AllUndef = false;
1227  }
1228  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1229    return N1;
1230  if (AllUndef)
1231    return getUNDEF(VT);
1232
1233  FoldingSetNodeID ID;
1234  SDValue Ops[2] = { N1, N2 };
1235  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1236  for (unsigned i = 0; i != NElts; ++i)
1237    ID.AddInteger(MaskVec[i]);
1238
1239  void* IP = 0;
1240  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1241    return SDValue(E, 0);
1242
1243  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1244  // SDNode doesn't have access to it.  This memory will be "leaked" when
1245  // the node is deallocated, but recovered when the NodeAllocator is released.
1246  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1247  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1248
1249  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1250  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1251  CSEMap.InsertNode(N, IP);
1252  AllNodes.push_back(N);
1253  return SDValue(N, 0);
1254}
1255
1256SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1257                                       SDValue Val, SDValue DTy,
1258                                       SDValue STy, SDValue Rnd, SDValue Sat,
1259                                       ISD::CvtCode Code) {
1260  // If the src and dest types are the same and the conversion is between
1261  // integer types of the same sign or two floats, no conversion is necessary.
1262  if (DTy == STy &&
1263      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1264    return Val;
1265
1266  FoldingSetNodeID ID;
1267  void* IP = 0;
1268  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1269    return SDValue(E, 0);
1270  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1271  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1272  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1273  CSEMap.InsertNode(N, IP);
1274  AllNodes.push_back(N);
1275  return SDValue(N, 0);
1276}
1277
1278SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1279  FoldingSetNodeID ID;
1280  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1281  ID.AddInteger(RegNo);
1282  void *IP = 0;
1283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1284    return SDValue(E, 0);
1285  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1286  new (N) RegisterSDNode(RegNo, VT);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1293                                      unsigned Line, unsigned Col,
1294                                      MDNode *CU) {
1295  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1296  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1297  N->setDebugLoc(DL);
1298  AllNodes.push_back(N);
1299  return SDValue(N, 0);
1300}
1301
1302SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1303                               SDValue Root,
1304                               unsigned LabelID) {
1305  FoldingSetNodeID ID;
1306  SDValue Ops[] = { Root };
1307  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1308  ID.AddInteger(LabelID);
1309  void *IP = 0;
1310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1311    return SDValue(E, 0);
1312  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1313  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1314  CSEMap.InsertNode(N, IP);
1315  AllNodes.push_back(N);
1316  return SDValue(N, 0);
1317}
1318
1319SDValue SelectionDAG::getSrcValue(const Value *V) {
1320  assert((!V || isa<PointerType>(V->getType())) &&
1321         "SrcValue is not a pointer?");
1322
1323  FoldingSetNodeID ID;
1324  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1325  ID.AddPointer(V);
1326
1327  void *IP = 0;
1328  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1329    return SDValue(E, 0);
1330
1331  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1332  new (N) SrcValueSDNode(V);
1333  CSEMap.InsertNode(N, IP);
1334  AllNodes.push_back(N);
1335  return SDValue(N, 0);
1336}
1337
1338/// getShiftAmountOperand - Return the specified value casted to
1339/// the target's desired shift amount type.
1340SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1341  EVT OpTy = Op.getValueType();
1342  MVT ShTy = TLI.getShiftAmountTy();
1343  if (OpTy == ShTy || OpTy.isVector()) return Op;
1344
1345  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1346  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1347}
1348
1349/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1350/// specified value type.
1351SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1352  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1353  unsigned ByteSize = VT.getStoreSize();
1354  const Type *Ty = VT.getTypeForEVT(*getContext());
1355  unsigned StackAlign =
1356  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1357
1358  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1359  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1360}
1361
1362/// CreateStackTemporary - Create a stack temporary suitable for holding
1363/// either of the specified value types.
1364SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1365  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1366                            VT2.getStoreSizeInBits())/8;
1367  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1368  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1369  const TargetData *TD = TLI.getTargetData();
1370  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1371                            TD->getPrefTypeAlignment(Ty2));
1372
1373  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1374  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1375  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1376}
1377
1378SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1379                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1380  // These setcc operations always fold.
1381  switch (Cond) {
1382  default: break;
1383  case ISD::SETFALSE:
1384  case ISD::SETFALSE2: return getConstant(0, VT);
1385  case ISD::SETTRUE:
1386  case ISD::SETTRUE2:  return getConstant(1, VT);
1387
1388  case ISD::SETOEQ:
1389  case ISD::SETOGT:
1390  case ISD::SETOGE:
1391  case ISD::SETOLT:
1392  case ISD::SETOLE:
1393  case ISD::SETONE:
1394  case ISD::SETO:
1395  case ISD::SETUO:
1396  case ISD::SETUEQ:
1397  case ISD::SETUNE:
1398    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1399    break;
1400  }
1401
1402  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1403    const APInt &C2 = N2C->getAPIntValue();
1404    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1405      const APInt &C1 = N1C->getAPIntValue();
1406
1407      switch (Cond) {
1408      default: llvm_unreachable("Unknown integer setcc!");
1409      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1410      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1411      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1412      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1413      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1414      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1415      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1416      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1417      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1418      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1419      }
1420    }
1421  }
1422  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1423    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1424      // No compile time operations on this type yet.
1425      if (N1C->getValueType(0) == MVT::ppcf128)
1426        return SDValue();
1427
1428      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1429      switch (Cond) {
1430      default: break;
1431      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1432                          return getUNDEF(VT);
1433                        // fall through
1434      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1435      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1436                          return getUNDEF(VT);
1437                        // fall through
1438      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1439                                           R==APFloat::cmpLessThan, VT);
1440      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1441                          return getUNDEF(VT);
1442                        // fall through
1443      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1444      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1445                          return getUNDEF(VT);
1446                        // fall through
1447      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1448      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1449                          return getUNDEF(VT);
1450                        // fall through
1451      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1452                                           R==APFloat::cmpEqual, VT);
1453      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1454                          return getUNDEF(VT);
1455                        // fall through
1456      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1457                                           R==APFloat::cmpEqual, VT);
1458      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1459      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1460      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1461                                           R==APFloat::cmpEqual, VT);
1462      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1463      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1464                                           R==APFloat::cmpLessThan, VT);
1465      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpUnordered, VT);
1467      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1468      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1469      }
1470    } else {
1471      // Ensure that the constant occurs on the RHS.
1472      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1473    }
1474  }
1475
1476  // Could not fold it.
1477  return SDValue();
1478}
1479
1480/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1481/// use this predicate to simplify operations downstream.
1482bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1483  // This predicate is not safe for vector operations.
1484  if (Op.getValueType().isVector())
1485    return false;
1486
1487  unsigned BitWidth = Op.getValueSizeInBits();
1488  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1489}
1490
1491/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1492/// this predicate to simplify operations downstream.  Mask is known to be zero
1493/// for bits that V cannot have.
1494bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1495                                     unsigned Depth) const {
1496  APInt KnownZero, KnownOne;
1497  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1498  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1499  return (KnownZero & Mask) == Mask;
1500}
1501
1502/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1503/// known to be either zero or one and return them in the KnownZero/KnownOne
1504/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1505/// processing.
1506void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1507                                     APInt &KnownZero, APInt &KnownOne,
1508                                     unsigned Depth) const {
1509  unsigned BitWidth = Mask.getBitWidth();
1510  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1511         "Mask size mismatches value type size!");
1512
1513  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1514  if (Depth == 6 || Mask == 0)
1515    return;  // Limit search depth.
1516
1517  APInt KnownZero2, KnownOne2;
1518
1519  switch (Op.getOpcode()) {
1520  case ISD::Constant:
1521    // We know all of the bits for a constant!
1522    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1523    KnownZero = ~KnownOne & Mask;
1524    return;
1525  case ISD::AND:
1526    // If either the LHS or the RHS are Zero, the result is zero.
1527    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1528    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1529                      KnownZero2, KnownOne2, Depth+1);
1530    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1532
1533    // Output known-1 bits are only known if set in both the LHS & RHS.
1534    KnownOne &= KnownOne2;
1535    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1536    KnownZero |= KnownZero2;
1537    return;
1538  case ISD::OR:
1539    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1540    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1541                      KnownZero2, KnownOne2, Depth+1);
1542    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1544
1545    // Output known-0 bits are only known if clear in both the LHS & RHS.
1546    KnownZero &= KnownZero2;
1547    // Output known-1 are known to be set if set in either the LHS | RHS.
1548    KnownOne |= KnownOne2;
1549    return;
1550  case ISD::XOR: {
1551    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1552    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1553    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1554    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1555
1556    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1557    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1558    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1559    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1560    KnownZero = KnownZeroOut;
1561    return;
1562  }
1563  case ISD::MUL: {
1564    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1565    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1567    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1568    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1569
1570    // If low bits are zero in either operand, output low known-0 bits.
1571    // Also compute a conserative estimate for high known-0 bits.
1572    // More trickiness is possible, but this is sufficient for the
1573    // interesting case of alignment computation.
1574    KnownOne.clear();
1575    unsigned TrailZ = KnownZero.countTrailingOnes() +
1576                      KnownZero2.countTrailingOnes();
1577    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1578                               KnownZero2.countLeadingOnes(),
1579                               BitWidth) - BitWidth;
1580
1581    TrailZ = std::min(TrailZ, BitWidth);
1582    LeadZ = std::min(LeadZ, BitWidth);
1583    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1584                APInt::getHighBitsSet(BitWidth, LeadZ);
1585    KnownZero &= Mask;
1586    return;
1587  }
1588  case ISD::UDIV: {
1589    // For the purposes of computing leading zeros we can conservatively
1590    // treat a udiv as a logical right shift by the power of 2 known to
1591    // be less than the denominator.
1592    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1593    ComputeMaskedBits(Op.getOperand(0),
1594                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1595    unsigned LeadZ = KnownZero2.countLeadingOnes();
1596
1597    KnownOne2.clear();
1598    KnownZero2.clear();
1599    ComputeMaskedBits(Op.getOperand(1),
1600                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1601    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1602    if (RHSUnknownLeadingOnes != BitWidth)
1603      LeadZ = std::min(BitWidth,
1604                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1605
1606    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1607    return;
1608  }
1609  case ISD::SELECT:
1610    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1611    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1612    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1613    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1614
1615    // Only known if known in both the LHS and RHS.
1616    KnownOne &= KnownOne2;
1617    KnownZero &= KnownZero2;
1618    return;
1619  case ISD::SELECT_CC:
1620    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1621    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1622    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1623    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1624
1625    // Only known if known in both the LHS and RHS.
1626    KnownOne &= KnownOne2;
1627    KnownZero &= KnownZero2;
1628    return;
1629  case ISD::SADDO:
1630  case ISD::UADDO:
1631  case ISD::SSUBO:
1632  case ISD::USUBO:
1633  case ISD::SMULO:
1634  case ISD::UMULO:
1635    if (Op.getResNo() != 1)
1636      return;
1637    // The boolean result conforms to getBooleanContents.  Fall through.
1638  case ISD::SETCC:
1639    // If we know the result of a setcc has the top bits zero, use this info.
1640    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1641        BitWidth > 1)
1642      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1643    return;
1644  case ISD::SHL:
1645    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1646    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1647      unsigned ShAmt = SA->getZExtValue();
1648
1649      // If the shift count is an invalid immediate, don't do anything.
1650      if (ShAmt >= BitWidth)
1651        return;
1652
1653      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1654                        KnownZero, KnownOne, Depth+1);
1655      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1656      KnownZero <<= ShAmt;
1657      KnownOne  <<= ShAmt;
1658      // low bits known zero.
1659      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1660    }
1661    return;
1662  case ISD::SRL:
1663    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1664    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1665      unsigned ShAmt = SA->getZExtValue();
1666
1667      // If the shift count is an invalid immediate, don't do anything.
1668      if (ShAmt >= BitWidth)
1669        return;
1670
1671      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1672                        KnownZero, KnownOne, Depth+1);
1673      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1674      KnownZero = KnownZero.lshr(ShAmt);
1675      KnownOne  = KnownOne.lshr(ShAmt);
1676
1677      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1678      KnownZero |= HighBits;  // High bits known zero.
1679    }
1680    return;
1681  case ISD::SRA:
1682    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1683      unsigned ShAmt = SA->getZExtValue();
1684
1685      // If the shift count is an invalid immediate, don't do anything.
1686      if (ShAmt >= BitWidth)
1687        return;
1688
1689      APInt InDemandedMask = (Mask << ShAmt);
1690      // If any of the demanded bits are produced by the sign extension, we also
1691      // demand the input sign bit.
1692      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1693      if (HighBits.getBoolValue())
1694        InDemandedMask |= APInt::getSignBit(BitWidth);
1695
1696      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1697                        Depth+1);
1698      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1699      KnownZero = KnownZero.lshr(ShAmt);
1700      KnownOne  = KnownOne.lshr(ShAmt);
1701
1702      // Handle the sign bits.
1703      APInt SignBit = APInt::getSignBit(BitWidth);
1704      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1705
1706      if (KnownZero.intersects(SignBit)) {
1707        KnownZero |= HighBits;  // New bits are known zero.
1708      } else if (KnownOne.intersects(SignBit)) {
1709        KnownOne  |= HighBits;  // New bits are known one.
1710      }
1711    }
1712    return;
1713  case ISD::SIGN_EXTEND_INREG: {
1714    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1715    unsigned EBits = EVT.getSizeInBits();
1716
1717    // Sign extension.  Compute the demanded bits in the result that are not
1718    // present in the input.
1719    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1720
1721    APInt InSignBit = APInt::getSignBit(EBits);
1722    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1723
1724    // If the sign extended bits are demanded, we know that the sign
1725    // bit is demanded.
1726    InSignBit.zext(BitWidth);
1727    if (NewBits.getBoolValue())
1728      InputDemandedBits |= InSignBit;
1729
1730    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1731                      KnownZero, KnownOne, Depth+1);
1732    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1733
1734    // If the sign bit of the input is known set or clear, then we know the
1735    // top bits of the result.
1736    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1737      KnownZero |= NewBits;
1738      KnownOne  &= ~NewBits;
1739    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1740      KnownOne  |= NewBits;
1741      KnownZero &= ~NewBits;
1742    } else {                              // Input sign bit unknown
1743      KnownZero &= ~NewBits;
1744      KnownOne  &= ~NewBits;
1745    }
1746    return;
1747  }
1748  case ISD::CTTZ:
1749  case ISD::CTLZ:
1750  case ISD::CTPOP: {
1751    unsigned LowBits = Log2_32(BitWidth)+1;
1752    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1753    KnownOne.clear();
1754    return;
1755  }
1756  case ISD::LOAD: {
1757    if (ISD::isZEXTLoad(Op.getNode())) {
1758      LoadSDNode *LD = cast<LoadSDNode>(Op);
1759      EVT VT = LD->getMemoryVT();
1760      unsigned MemBits = VT.getSizeInBits();
1761      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1762    }
1763    return;
1764  }
1765  case ISD::ZERO_EXTEND: {
1766    EVT InVT = Op.getOperand(0).getValueType();
1767    unsigned InBits = InVT.getSizeInBits();
1768    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1769    APInt InMask    = Mask;
1770    InMask.trunc(InBits);
1771    KnownZero.trunc(InBits);
1772    KnownOne.trunc(InBits);
1773    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1774    KnownZero.zext(BitWidth);
1775    KnownOne.zext(BitWidth);
1776    KnownZero |= NewBits;
1777    return;
1778  }
1779  case ISD::SIGN_EXTEND: {
1780    EVT InVT = Op.getOperand(0).getValueType();
1781    unsigned InBits = InVT.getSizeInBits();
1782    APInt InSignBit = APInt::getSignBit(InBits);
1783    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1784    APInt InMask = Mask;
1785    InMask.trunc(InBits);
1786
1787    // If any of the sign extended bits are demanded, we know that the sign
1788    // bit is demanded. Temporarily set this bit in the mask for our callee.
1789    if (NewBits.getBoolValue())
1790      InMask |= InSignBit;
1791
1792    KnownZero.trunc(InBits);
1793    KnownOne.trunc(InBits);
1794    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1795
1796    // Note if the sign bit is known to be zero or one.
1797    bool SignBitKnownZero = KnownZero.isNegative();
1798    bool SignBitKnownOne  = KnownOne.isNegative();
1799    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1800           "Sign bit can't be known to be both zero and one!");
1801
1802    // If the sign bit wasn't actually demanded by our caller, we don't
1803    // want it set in the KnownZero and KnownOne result values. Reset the
1804    // mask and reapply it to the result values.
1805    InMask = Mask;
1806    InMask.trunc(InBits);
1807    KnownZero &= InMask;
1808    KnownOne  &= InMask;
1809
1810    KnownZero.zext(BitWidth);
1811    KnownOne.zext(BitWidth);
1812
1813    // If the sign bit is known zero or one, the top bits match.
1814    if (SignBitKnownZero)
1815      KnownZero |= NewBits;
1816    else if (SignBitKnownOne)
1817      KnownOne  |= NewBits;
1818    return;
1819  }
1820  case ISD::ANY_EXTEND: {
1821    EVT InVT = Op.getOperand(0).getValueType();
1822    unsigned InBits = InVT.getSizeInBits();
1823    APInt InMask = Mask;
1824    InMask.trunc(InBits);
1825    KnownZero.trunc(InBits);
1826    KnownOne.trunc(InBits);
1827    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1828    KnownZero.zext(BitWidth);
1829    KnownOne.zext(BitWidth);
1830    return;
1831  }
1832  case ISD::TRUNCATE: {
1833    EVT InVT = Op.getOperand(0).getValueType();
1834    unsigned InBits = InVT.getSizeInBits();
1835    APInt InMask = Mask;
1836    InMask.zext(InBits);
1837    KnownZero.zext(InBits);
1838    KnownOne.zext(InBits);
1839    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1840    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1841    KnownZero.trunc(BitWidth);
1842    KnownOne.trunc(BitWidth);
1843    break;
1844  }
1845  case ISD::AssertZext: {
1846    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1847    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1848    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1849                      KnownOne, Depth+1);
1850    KnownZero |= (~InMask) & Mask;
1851    return;
1852  }
1853  case ISD::FGETSIGN:
1854    // All bits are zero except the low bit.
1855    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1856    return;
1857
1858  case ISD::SUB: {
1859    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1860      // We know that the top bits of C-X are clear if X contains less bits
1861      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1862      // positive if we can prove that X is >= 0 and < 16.
1863      if (CLHS->getAPIntValue().isNonNegative()) {
1864        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1865        // NLZ can't be BitWidth with no sign bit
1866        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1867        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1868                          Depth+1);
1869
1870        // If all of the MaskV bits are known to be zero, then we know the
1871        // output top bits are zero, because we now know that the output is
1872        // from [0-C].
1873        if ((KnownZero2 & MaskV) == MaskV) {
1874          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1875          // Top bits known zero.
1876          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1877        }
1878      }
1879    }
1880  }
1881  // fall through
1882  case ISD::ADD: {
1883    // Output known-0 bits are known if clear or set in both the low clear bits
1884    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1885    // low 3 bits clear.
1886    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1887    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1888    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1889    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1890
1891    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1892    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1893    KnownZeroOut = std::min(KnownZeroOut,
1894                            KnownZero2.countTrailingOnes());
1895
1896    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1897    return;
1898  }
1899  case ISD::SREM:
1900    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1901      const APInt &RA = Rem->getAPIntValue();
1902      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1903        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1904        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1905        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1906
1907        // If the sign bit of the first operand is zero, the sign bit of
1908        // the result is zero. If the first operand has no one bits below
1909        // the second operand's single 1 bit, its sign will be zero.
1910        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1911          KnownZero2 |= ~LowBits;
1912
1913        KnownZero |= KnownZero2 & Mask;
1914
1915        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1916      }
1917    }
1918    return;
1919  case ISD::UREM: {
1920    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1921      const APInt &RA = Rem->getAPIntValue();
1922      if (RA.isPowerOf2()) {
1923        APInt LowBits = (RA - 1);
1924        APInt Mask2 = LowBits & Mask;
1925        KnownZero |= ~LowBits & Mask;
1926        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1927        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1928        break;
1929      }
1930    }
1931
1932    // Since the result is less than or equal to either operand, any leading
1933    // zero bits in either operand must also exist in the result.
1934    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1935    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1936                      Depth+1);
1937    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1938                      Depth+1);
1939
1940    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1941                                KnownZero2.countLeadingOnes());
1942    KnownOne.clear();
1943    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1944    return;
1945  }
1946  default:
1947    // Allow the target to implement this method for its nodes.
1948    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1949  case ISD::INTRINSIC_WO_CHAIN:
1950  case ISD::INTRINSIC_W_CHAIN:
1951  case ISD::INTRINSIC_VOID:
1952      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1953                                         Depth);
1954    }
1955    return;
1956  }
1957}
1958
1959/// ComputeNumSignBits - Return the number of times the sign bit of the
1960/// register is replicated into the other bits.  We know that at least 1 bit
1961/// is always equal to the sign bit (itself), but other cases can give us
1962/// information.  For example, immediately after an "SRA X, 2", we know that
1963/// the top 3 bits are all equal to each other, so we return 3.
1964unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1965  EVT VT = Op.getValueType();
1966  assert(VT.isInteger() && "Invalid VT!");
1967  unsigned VTBits = VT.getSizeInBits();
1968  unsigned Tmp, Tmp2;
1969  unsigned FirstAnswer = 1;
1970
1971  if (Depth == 6)
1972    return 1;  // Limit search depth.
1973
1974  switch (Op.getOpcode()) {
1975  default: break;
1976  case ISD::AssertSext:
1977    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1978    return VTBits-Tmp+1;
1979  case ISD::AssertZext:
1980    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1981    return VTBits-Tmp;
1982
1983  case ISD::Constant: {
1984    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1985    // If negative, return # leading ones.
1986    if (Val.isNegative())
1987      return Val.countLeadingOnes();
1988
1989    // Return # leading zeros.
1990    return Val.countLeadingZeros();
1991  }
1992
1993  case ISD::SIGN_EXTEND:
1994    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1995    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1996
1997  case ISD::SIGN_EXTEND_INREG:
1998    // Max of the input and what this extends.
1999    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2000    Tmp = VTBits-Tmp+1;
2001
2002    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2003    return std::max(Tmp, Tmp2);
2004
2005  case ISD::SRA:
2006    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2007    // SRA X, C   -> adds C sign bits.
2008    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2009      Tmp += C->getZExtValue();
2010      if (Tmp > VTBits) Tmp = VTBits;
2011    }
2012    return Tmp;
2013  case ISD::SHL:
2014    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2015      // shl destroys sign bits.
2016      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2017      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2018          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2019      return Tmp - C->getZExtValue();
2020    }
2021    break;
2022  case ISD::AND:
2023  case ISD::OR:
2024  case ISD::XOR:    // NOT is handled here.
2025    // Logical binary ops preserve the number of sign bits at the worst.
2026    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    if (Tmp != 1) {
2028      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029      FirstAnswer = std::min(Tmp, Tmp2);
2030      // We computed what we know about the sign bits as our first
2031      // answer. Now proceed to the generic code that uses
2032      // ComputeMaskedBits, and pick whichever answer is better.
2033    }
2034    break;
2035
2036  case ISD::SELECT:
2037    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2038    if (Tmp == 1) return 1;  // Early out.
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2040    return std::min(Tmp, Tmp2);
2041
2042  case ISD::SADDO:
2043  case ISD::UADDO:
2044  case ISD::SSUBO:
2045  case ISD::USUBO:
2046  case ISD::SMULO:
2047  case ISD::UMULO:
2048    if (Op.getResNo() != 1)
2049      break;
2050    // The boolean result conforms to getBooleanContents.  Fall through.
2051  case ISD::SETCC:
2052    // If setcc returns 0/-1, all bits are sign bits.
2053    if (TLI.getBooleanContents() ==
2054        TargetLowering::ZeroOrNegativeOneBooleanContent)
2055      return VTBits;
2056    break;
2057  case ISD::ROTL:
2058  case ISD::ROTR:
2059    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2061
2062      // Handle rotate right by N like a rotate left by 32-N.
2063      if (Op.getOpcode() == ISD::ROTR)
2064        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2065
2066      // If we aren't rotating out all of the known-in sign bits, return the
2067      // number that are left.  This handles rotl(sext(x), 1) for example.
2068      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2069      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2070    }
2071    break;
2072  case ISD::ADD:
2073    // Add can have at most one carry bit.  Thus we know that the output
2074    // is, at worst, one more bit than the inputs.
2075    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2076    if (Tmp == 1) return 1;  // Early out.
2077
2078    // Special case decrementing a value (ADD X, -1):
2079    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2080      if (CRHS->isAllOnesValue()) {
2081        APInt KnownZero, KnownOne;
2082        APInt Mask = APInt::getAllOnesValue(VTBits);
2083        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2084
2085        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2086        // sign bits set.
2087        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2088          return VTBits;
2089
2090        // If we are subtracting one from a positive number, there is no carry
2091        // out of the result.
2092        if (KnownZero.isNegative())
2093          return Tmp;
2094      }
2095
2096    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2097    if (Tmp2 == 1) return 1;
2098      return std::min(Tmp, Tmp2)-1;
2099    break;
2100
2101  case ISD::SUB:
2102    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2103    if (Tmp2 == 1) return 1;
2104
2105    // Handle NEG.
2106    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2107      if (CLHS->isNullValue()) {
2108        APInt KnownZero, KnownOne;
2109        APInt Mask = APInt::getAllOnesValue(VTBits);
2110        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2111        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2112        // sign bits set.
2113        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2114          return VTBits;
2115
2116        // If the input is known to be positive (the sign bit is known clear),
2117        // the output of the NEG has the same number of sign bits as the input.
2118        if (KnownZero.isNegative())
2119          return Tmp2;
2120
2121        // Otherwise, we treat this like a SUB.
2122      }
2123
2124    // Sub can have at most one carry bit.  Thus we know that the output
2125    // is, at worst, one more bit than the inputs.
2126    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127    if (Tmp == 1) return 1;  // Early out.
2128      return std::min(Tmp, Tmp2)-1;
2129    break;
2130  case ISD::TRUNCATE:
2131    // FIXME: it's tricky to do anything useful for this, but it is an important
2132    // case for targets like X86.
2133    break;
2134  }
2135
2136  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2137  if (Op.getOpcode() == ISD::LOAD) {
2138    LoadSDNode *LD = cast<LoadSDNode>(Op);
2139    unsigned ExtType = LD->getExtensionType();
2140    switch (ExtType) {
2141    default: break;
2142    case ISD::SEXTLOAD:    // '17' bits known
2143      Tmp = LD->getMemoryVT().getSizeInBits();
2144      return VTBits-Tmp+1;
2145    case ISD::ZEXTLOAD:    // '16' bits known
2146      Tmp = LD->getMemoryVT().getSizeInBits();
2147      return VTBits-Tmp;
2148    }
2149  }
2150
2151  // Allow the target to implement this method for its nodes.
2152  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2153      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2154      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2155      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2156    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2157    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2158  }
2159
2160  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2161  // use this information.
2162  APInt KnownZero, KnownOne;
2163  APInt Mask = APInt::getAllOnesValue(VTBits);
2164  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2165
2166  if (KnownZero.isNegative()) {        // sign bit is 0
2167    Mask = KnownZero;
2168  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2169    Mask = KnownOne;
2170  } else {
2171    // Nothing known.
2172    return FirstAnswer;
2173  }
2174
2175  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2176  // the number of identical bits in the top of the input value.
2177  Mask = ~Mask;
2178  Mask <<= Mask.getBitWidth()-VTBits;
2179  // Return # leading zeros.  We use 'min' here in case Val was zero before
2180  // shifting.  We don't want to return '64' as for an i32 "0".
2181  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2182}
2183
2184bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2185  // If we're told that NaNs won't happen, assume they won't.
2186  if (FiniteOnlyFPMath())
2187    return true;
2188
2189  // If the value is a constant, we can obviously see if it is a NaN or not.
2190  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2191    return !C->getValueAPF().isNaN();
2192
2193  // TODO: Recognize more cases here.
2194
2195  return false;
2196}
2197
2198bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2199  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2200  if (!GA) return false;
2201  if (GA->getOffset() != 0) return false;
2202  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2203  if (!GV) return false;
2204  MachineModuleInfo *MMI = getMachineModuleInfo();
2205  return MMI && MMI->hasDebugInfo();
2206}
2207
2208
2209/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2210/// element of the result of the vector shuffle.
2211SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2212                                          unsigned i) {
2213  EVT VT = N->getValueType(0);
2214  DebugLoc dl = N->getDebugLoc();
2215  if (N->getMaskElt(i) < 0)
2216    return getUNDEF(VT.getVectorElementType());
2217  unsigned Index = N->getMaskElt(i);
2218  unsigned NumElems = VT.getVectorNumElements();
2219  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2220  Index %= NumElems;
2221
2222  if (V.getOpcode() == ISD::BIT_CONVERT) {
2223    V = V.getOperand(0);
2224    EVT VVT = V.getValueType();
2225    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2226      return SDValue();
2227  }
2228  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2229    return (Index == 0) ? V.getOperand(0)
2230                      : getUNDEF(VT.getVectorElementType());
2231  if (V.getOpcode() == ISD::BUILD_VECTOR)
2232    return V.getOperand(Index);
2233  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2234    return getShuffleScalarElt(SVN, Index);
2235  return SDValue();
2236}
2237
2238
2239/// getNode - Gets or creates the specified node.
2240///
2241SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2242  FoldingSetNodeID ID;
2243  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2244  void *IP = 0;
2245  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2246    return SDValue(E, 0);
2247  SDNode *N = NodeAllocator.Allocate<SDNode>();
2248  new (N) SDNode(Opcode, DL, getVTList(VT));
2249  CSEMap.InsertNode(N, IP);
2250
2251  AllNodes.push_back(N);
2252#ifndef NDEBUG
2253  VerifyNode(N);
2254#endif
2255  return SDValue(N, 0);
2256}
2257
2258SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2259                              EVT VT, SDValue Operand) {
2260  // Constant fold unary operations with an integer constant operand.
2261  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2262    const APInt &Val = C->getAPIntValue();
2263    unsigned BitWidth = VT.getSizeInBits();
2264    switch (Opcode) {
2265    default: break;
2266    case ISD::SIGN_EXTEND:
2267      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2268    case ISD::ANY_EXTEND:
2269    case ISD::ZERO_EXTEND:
2270    case ISD::TRUNCATE:
2271      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2272    case ISD::UINT_TO_FP:
2273    case ISD::SINT_TO_FP: {
2274      const uint64_t zero[] = {0, 0};
2275      // No compile time operations on this type.
2276      if (VT==MVT::ppcf128)
2277        break;
2278      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2279      (void)apf.convertFromAPInt(Val,
2280                                 Opcode==ISD::SINT_TO_FP,
2281                                 APFloat::rmNearestTiesToEven);
2282      return getConstantFP(apf, VT);
2283    }
2284    case ISD::BIT_CONVERT:
2285      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2286        return getConstantFP(Val.bitsToFloat(), VT);
2287      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2288        return getConstantFP(Val.bitsToDouble(), VT);
2289      break;
2290    case ISD::BSWAP:
2291      return getConstant(Val.byteSwap(), VT);
2292    case ISD::CTPOP:
2293      return getConstant(Val.countPopulation(), VT);
2294    case ISD::CTLZ:
2295      return getConstant(Val.countLeadingZeros(), VT);
2296    case ISD::CTTZ:
2297      return getConstant(Val.countTrailingZeros(), VT);
2298    }
2299  }
2300
2301  // Constant fold unary operations with a floating point constant operand.
2302  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2303    APFloat V = C->getValueAPF();    // make copy
2304    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2305      switch (Opcode) {
2306      case ISD::FNEG:
2307        V.changeSign();
2308        return getConstantFP(V, VT);
2309      case ISD::FABS:
2310        V.clearSign();
2311        return getConstantFP(V, VT);
2312      case ISD::FP_ROUND:
2313      case ISD::FP_EXTEND: {
2314        bool ignored;
2315        // This can return overflow, underflow, or inexact; we don't care.
2316        // FIXME need to be more flexible about rounding mode.
2317        (void)V.convert(*EVTToAPFloatSemantics(VT),
2318                        APFloat::rmNearestTiesToEven, &ignored);
2319        return getConstantFP(V, VT);
2320      }
2321      case ISD::FP_TO_SINT:
2322      case ISD::FP_TO_UINT: {
2323        integerPart x[2];
2324        bool ignored;
2325        assert(integerPartWidth >= 64);
2326        // FIXME need to be more flexible about rounding mode.
2327        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2328                              Opcode==ISD::FP_TO_SINT,
2329                              APFloat::rmTowardZero, &ignored);
2330        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2331          break;
2332        APInt api(VT.getSizeInBits(), 2, x);
2333        return getConstant(api, VT);
2334      }
2335      case ISD::BIT_CONVERT:
2336        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2337          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2338        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2339          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2340        break;
2341      }
2342    }
2343  }
2344
2345  unsigned OpOpcode = Operand.getNode()->getOpcode();
2346  switch (Opcode) {
2347  case ISD::TokenFactor:
2348  case ISD::MERGE_VALUES:
2349  case ISD::CONCAT_VECTORS:
2350    return Operand;         // Factor, merge or concat of one node?  No need.
2351  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2352  case ISD::FP_EXTEND:
2353    assert(VT.isFloatingPoint() &&
2354           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2355    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2356    if (Operand.getOpcode() == ISD::UNDEF)
2357      return getUNDEF(VT);
2358    break;
2359  case ISD::SIGN_EXTEND:
2360    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2361           "Invalid SIGN_EXTEND!");
2362    if (Operand.getValueType() == VT) return Operand;   // noop extension
2363    assert(Operand.getValueType().bitsLT(VT)
2364           && "Invalid sext node, dst < src!");
2365    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2366      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2367    break;
2368  case ISD::ZERO_EXTEND:
2369    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2370           "Invalid ZERO_EXTEND!");
2371    if (Operand.getValueType() == VT) return Operand;   // noop extension
2372    assert(Operand.getValueType().bitsLT(VT)
2373           && "Invalid zext node, dst < src!");
2374    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2375      return getNode(ISD::ZERO_EXTEND, DL, VT,
2376                     Operand.getNode()->getOperand(0));
2377    break;
2378  case ISD::ANY_EXTEND:
2379    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2380           "Invalid ANY_EXTEND!");
2381    if (Operand.getValueType() == VT) return Operand;   // noop extension
2382    assert(Operand.getValueType().bitsLT(VT)
2383           && "Invalid anyext node, dst < src!");
2384    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2385      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2386      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2387    break;
2388  case ISD::TRUNCATE:
2389    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2390           "Invalid TRUNCATE!");
2391    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2392    assert(Operand.getValueType().bitsGT(VT)
2393           && "Invalid truncate node, src < dst!");
2394    if (OpOpcode == ISD::TRUNCATE)
2395      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2396    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2397             OpOpcode == ISD::ANY_EXTEND) {
2398      // If the source is smaller than the dest, we still need an extend.
2399      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2400        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2401      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2402        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2403      else
2404        return Operand.getNode()->getOperand(0);
2405    }
2406    break;
2407  case ISD::BIT_CONVERT:
2408    // Basic sanity checking.
2409    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2410           && "Cannot BIT_CONVERT between types of different sizes!");
2411    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2412    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2413      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2414    if (OpOpcode == ISD::UNDEF)
2415      return getUNDEF(VT);
2416    break;
2417  case ISD::SCALAR_TO_VECTOR:
2418    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2419           (VT.getVectorElementType() == Operand.getValueType() ||
2420            (VT.getVectorElementType().isInteger() &&
2421             Operand.getValueType().isInteger() &&
2422             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2423           "Illegal SCALAR_TO_VECTOR node!");
2424    if (OpOpcode == ISD::UNDEF)
2425      return getUNDEF(VT);
2426    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2427    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2428        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2429        Operand.getConstantOperandVal(1) == 0 &&
2430        Operand.getOperand(0).getValueType() == VT)
2431      return Operand.getOperand(0);
2432    break;
2433  case ISD::FNEG:
2434    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2435    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2436      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2437                     Operand.getNode()->getOperand(0));
2438    if (OpOpcode == ISD::FNEG)  // --X -> X
2439      return Operand.getNode()->getOperand(0);
2440    break;
2441  case ISD::FABS:
2442    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2443      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2444    break;
2445  }
2446
2447  SDNode *N;
2448  SDVTList VTs = getVTList(VT);
2449  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2450    FoldingSetNodeID ID;
2451    SDValue Ops[1] = { Operand };
2452    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2453    void *IP = 0;
2454    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2455      return SDValue(E, 0);
2456    N = NodeAllocator.Allocate<UnarySDNode>();
2457    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2458    CSEMap.InsertNode(N, IP);
2459  } else {
2460    N = NodeAllocator.Allocate<UnarySDNode>();
2461    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2462  }
2463
2464  AllNodes.push_back(N);
2465#ifndef NDEBUG
2466  VerifyNode(N);
2467#endif
2468  return SDValue(N, 0);
2469}
2470
2471SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2472                                             EVT VT,
2473                                             ConstantSDNode *Cst1,
2474                                             ConstantSDNode *Cst2) {
2475  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2476
2477  switch (Opcode) {
2478  case ISD::ADD:  return getConstant(C1 + C2, VT);
2479  case ISD::SUB:  return getConstant(C1 - C2, VT);
2480  case ISD::MUL:  return getConstant(C1 * C2, VT);
2481  case ISD::UDIV:
2482    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2483    break;
2484  case ISD::UREM:
2485    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2486    break;
2487  case ISD::SDIV:
2488    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2489    break;
2490  case ISD::SREM:
2491    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2492    break;
2493  case ISD::AND:  return getConstant(C1 & C2, VT);
2494  case ISD::OR:   return getConstant(C1 | C2, VT);
2495  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2496  case ISD::SHL:  return getConstant(C1 << C2, VT);
2497  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2498  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2499  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2500  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2501  default: break;
2502  }
2503
2504  return SDValue();
2505}
2506
2507SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2508                              SDValue N1, SDValue N2) {
2509  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2510  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2511  switch (Opcode) {
2512  default: break;
2513  case ISD::TokenFactor:
2514    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2515           N2.getValueType() == MVT::Other && "Invalid token factor!");
2516    // Fold trivial token factors.
2517    if (N1.getOpcode() == ISD::EntryToken) return N2;
2518    if (N2.getOpcode() == ISD::EntryToken) return N1;
2519    if (N1 == N2) return N1;
2520    break;
2521  case ISD::CONCAT_VECTORS:
2522    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2523    // one big BUILD_VECTOR.
2524    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2525        N2.getOpcode() == ISD::BUILD_VECTOR) {
2526      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2527      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2528      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2529    }
2530    break;
2531  case ISD::AND:
2532    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2533           N1.getValueType() == VT && "Binary operator types must match!");
2534    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2535    // worth handling here.
2536    if (N2C && N2C->isNullValue())
2537      return N2;
2538    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2539      return N1;
2540    break;
2541  case ISD::OR:
2542  case ISD::XOR:
2543  case ISD::ADD:
2544  case ISD::SUB:
2545    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2546           N1.getValueType() == VT && "Binary operator types must match!");
2547    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2548    // it's worth handling here.
2549    if (N2C && N2C->isNullValue())
2550      return N1;
2551    break;
2552  case ISD::UDIV:
2553  case ISD::UREM:
2554  case ISD::MULHU:
2555  case ISD::MULHS:
2556  case ISD::MUL:
2557  case ISD::SDIV:
2558  case ISD::SREM:
2559    assert(VT.isInteger() && "This operator does not apply to FP types!");
2560    // fall through
2561  case ISD::FADD:
2562  case ISD::FSUB:
2563  case ISD::FMUL:
2564  case ISD::FDIV:
2565  case ISD::FREM:
2566    if (UnsafeFPMath) {
2567      if (Opcode == ISD::FADD) {
2568        // 0+x --> x
2569        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2570          if (CFP->getValueAPF().isZero())
2571            return N2;
2572        // x+0 --> x
2573        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2574          if (CFP->getValueAPF().isZero())
2575            return N1;
2576      } else if (Opcode == ISD::FSUB) {
2577        // x-0 --> x
2578        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2579          if (CFP->getValueAPF().isZero())
2580            return N1;
2581      }
2582    }
2583    assert(N1.getValueType() == N2.getValueType() &&
2584           N1.getValueType() == VT && "Binary operator types must match!");
2585    break;
2586  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2587    assert(N1.getValueType() == VT &&
2588           N1.getValueType().isFloatingPoint() &&
2589           N2.getValueType().isFloatingPoint() &&
2590           "Invalid FCOPYSIGN!");
2591    break;
2592  case ISD::SHL:
2593  case ISD::SRA:
2594  case ISD::SRL:
2595  case ISD::ROTL:
2596  case ISD::ROTR:
2597    assert(VT == N1.getValueType() &&
2598           "Shift operators return type must be the same as their first arg");
2599    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2600           "Shifts only work on integers");
2601
2602    // Always fold shifts of i1 values so the code generator doesn't need to
2603    // handle them.  Since we know the size of the shift has to be less than the
2604    // size of the value, the shift/rotate count is guaranteed to be zero.
2605    if (VT == MVT::i1)
2606      return N1;
2607    break;
2608  case ISD::FP_ROUND_INREG: {
2609    EVT EVT = cast<VTSDNode>(N2)->getVT();
2610    assert(VT == N1.getValueType() && "Not an inreg round!");
2611    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2612           "Cannot FP_ROUND_INREG integer types");
2613    assert(EVT.bitsLE(VT) && "Not rounding down!");
2614    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2615    break;
2616  }
2617  case ISD::FP_ROUND:
2618    assert(VT.isFloatingPoint() &&
2619           N1.getValueType().isFloatingPoint() &&
2620           VT.bitsLE(N1.getValueType()) &&
2621           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2622    if (N1.getValueType() == VT) return N1;  // noop conversion.
2623    break;
2624  case ISD::AssertSext:
2625  case ISD::AssertZext: {
2626    EVT EVT = cast<VTSDNode>(N2)->getVT();
2627    assert(VT == N1.getValueType() && "Not an inreg extend!");
2628    assert(VT.isInteger() && EVT.isInteger() &&
2629           "Cannot *_EXTEND_INREG FP types");
2630    assert(EVT.bitsLE(VT) && "Not extending!");
2631    if (VT == EVT) return N1; // noop assertion.
2632    break;
2633  }
2634  case ISD::SIGN_EXTEND_INREG: {
2635    EVT EVT = cast<VTSDNode>(N2)->getVT();
2636    assert(VT == N1.getValueType() && "Not an inreg extend!");
2637    assert(VT.isInteger() && EVT.isInteger() &&
2638           "Cannot *_EXTEND_INREG FP types");
2639    assert(EVT.bitsLE(VT) && "Not extending!");
2640    if (EVT == VT) return N1;  // Not actually extending
2641
2642    if (N1C) {
2643      APInt Val = N1C->getAPIntValue();
2644      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2645      Val <<= Val.getBitWidth()-FromBits;
2646      Val = Val.ashr(Val.getBitWidth()-FromBits);
2647      return getConstant(Val, VT);
2648    }
2649    break;
2650  }
2651  case ISD::EXTRACT_VECTOR_ELT:
2652    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2653    if (N1.getOpcode() == ISD::UNDEF)
2654      return getUNDEF(VT);
2655
2656    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2657    // expanding copies of large vectors from registers.
2658    if (N2C &&
2659        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2660        N1.getNumOperands() > 0) {
2661      unsigned Factor =
2662        N1.getOperand(0).getValueType().getVectorNumElements();
2663      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2664                     N1.getOperand(N2C->getZExtValue() / Factor),
2665                     getConstant(N2C->getZExtValue() % Factor,
2666                                 N2.getValueType()));
2667    }
2668
2669    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2670    // expanding large vector constants.
2671    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2672      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2673      EVT VEltTy = N1.getValueType().getVectorElementType();
2674      if (Elt.getValueType() != VEltTy) {
2675        // If the vector element type is not legal, the BUILD_VECTOR operands
2676        // are promoted and implicitly truncated.  Make that explicit here.
2677        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2678      }
2679      if (VT != VEltTy) {
2680        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2681        // result is implicitly extended.
2682        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2683      }
2684      return Elt;
2685    }
2686
2687    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2688    // operations are lowered to scalars.
2689    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2690      // If the indices are the same, return the inserted element.
2691      if (N1.getOperand(2) == N2)
2692        return N1.getOperand(1);
2693      // If the indices are known different, extract the element from
2694      // the original vector.
2695      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2696               isa<ConstantSDNode>(N2))
2697        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2698    }
2699    break;
2700  case ISD::EXTRACT_ELEMENT:
2701    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2702    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2703           (N1.getValueType().isInteger() == VT.isInteger()) &&
2704           "Wrong types for EXTRACT_ELEMENT!");
2705
2706    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2707    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2708    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2709    if (N1.getOpcode() == ISD::BUILD_PAIR)
2710      return N1.getOperand(N2C->getZExtValue());
2711
2712    // EXTRACT_ELEMENT of a constant int is also very common.
2713    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2714      unsigned ElementSize = VT.getSizeInBits();
2715      unsigned Shift = ElementSize * N2C->getZExtValue();
2716      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2717      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2718    }
2719    break;
2720  case ISD::EXTRACT_SUBVECTOR:
2721    if (N1.getValueType() == VT) // Trivial extraction.
2722      return N1;
2723    break;
2724  }
2725
2726  if (N1C) {
2727    if (N2C) {
2728      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2729      if (SV.getNode()) return SV;
2730    } else {      // Cannonicalize constant to RHS if commutative
2731      if (isCommutativeBinOp(Opcode)) {
2732        std::swap(N1C, N2C);
2733        std::swap(N1, N2);
2734      }
2735    }
2736  }
2737
2738  // Constant fold FP operations.
2739  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2740  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2741  if (N1CFP) {
2742    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2743      // Cannonicalize constant to RHS if commutative
2744      std::swap(N1CFP, N2CFP);
2745      std::swap(N1, N2);
2746    } else if (N2CFP && VT != MVT::ppcf128) {
2747      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2748      APFloat::opStatus s;
2749      switch (Opcode) {
2750      case ISD::FADD:
2751        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2752        if (s != APFloat::opInvalidOp)
2753          return getConstantFP(V1, VT);
2754        break;
2755      case ISD::FSUB:
2756        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2757        if (s!=APFloat::opInvalidOp)
2758          return getConstantFP(V1, VT);
2759        break;
2760      case ISD::FMUL:
2761        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2762        if (s!=APFloat::opInvalidOp)
2763          return getConstantFP(V1, VT);
2764        break;
2765      case ISD::FDIV:
2766        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2767        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2768          return getConstantFP(V1, VT);
2769        break;
2770      case ISD::FREM :
2771        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2772        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2773          return getConstantFP(V1, VT);
2774        break;
2775      case ISD::FCOPYSIGN:
2776        V1.copySign(V2);
2777        return getConstantFP(V1, VT);
2778      default: break;
2779      }
2780    }
2781  }
2782
2783  // Canonicalize an UNDEF to the RHS, even over a constant.
2784  if (N1.getOpcode() == ISD::UNDEF) {
2785    if (isCommutativeBinOp(Opcode)) {
2786      std::swap(N1, N2);
2787    } else {
2788      switch (Opcode) {
2789      case ISD::FP_ROUND_INREG:
2790      case ISD::SIGN_EXTEND_INREG:
2791      case ISD::SUB:
2792      case ISD::FSUB:
2793      case ISD::FDIV:
2794      case ISD::FREM:
2795      case ISD::SRA:
2796        return N1;     // fold op(undef, arg2) -> undef
2797      case ISD::UDIV:
2798      case ISD::SDIV:
2799      case ISD::UREM:
2800      case ISD::SREM:
2801      case ISD::SRL:
2802      case ISD::SHL:
2803        if (!VT.isVector())
2804          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2805        // For vectors, we can't easily build an all zero vector, just return
2806        // the LHS.
2807        return N2;
2808      }
2809    }
2810  }
2811
2812  // Fold a bunch of operators when the RHS is undef.
2813  if (N2.getOpcode() == ISD::UNDEF) {
2814    switch (Opcode) {
2815    case ISD::XOR:
2816      if (N1.getOpcode() == ISD::UNDEF)
2817        // Handle undef ^ undef -> 0 special case. This is a common
2818        // idiom (misuse).
2819        return getConstant(0, VT);
2820      // fallthrough
2821    case ISD::ADD:
2822    case ISD::ADDC:
2823    case ISD::ADDE:
2824    case ISD::SUB:
2825    case ISD::UDIV:
2826    case ISD::SDIV:
2827    case ISD::UREM:
2828    case ISD::SREM:
2829      return N2;       // fold op(arg1, undef) -> undef
2830    case ISD::FADD:
2831    case ISD::FSUB:
2832    case ISD::FMUL:
2833    case ISD::FDIV:
2834    case ISD::FREM:
2835      if (UnsafeFPMath)
2836        return N2;
2837      break;
2838    case ISD::MUL:
2839    case ISD::AND:
2840    case ISD::SRL:
2841    case ISD::SHL:
2842      if (!VT.isVector())
2843        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2844      // For vectors, we can't easily build an all zero vector, just return
2845      // the LHS.
2846      return N1;
2847    case ISD::OR:
2848      if (!VT.isVector())
2849        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2850      // For vectors, we can't easily build an all one vector, just return
2851      // the LHS.
2852      return N1;
2853    case ISD::SRA:
2854      return N1;
2855    }
2856  }
2857
2858  // Memoize this node if possible.
2859  SDNode *N;
2860  SDVTList VTs = getVTList(VT);
2861  if (VT != MVT::Flag) {
2862    SDValue Ops[] = { N1, N2 };
2863    FoldingSetNodeID ID;
2864    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2865    void *IP = 0;
2866    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2867      return SDValue(E, 0);
2868    N = NodeAllocator.Allocate<BinarySDNode>();
2869    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2870    CSEMap.InsertNode(N, IP);
2871  } else {
2872    N = NodeAllocator.Allocate<BinarySDNode>();
2873    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2874  }
2875
2876  AllNodes.push_back(N);
2877#ifndef NDEBUG
2878  VerifyNode(N);
2879#endif
2880  return SDValue(N, 0);
2881}
2882
2883SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2884                              SDValue N1, SDValue N2, SDValue N3) {
2885  // Perform various simplifications.
2886  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2887  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2888  switch (Opcode) {
2889  case ISD::CONCAT_VECTORS:
2890    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2891    // one big BUILD_VECTOR.
2892    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2893        N2.getOpcode() == ISD::BUILD_VECTOR &&
2894        N3.getOpcode() == ISD::BUILD_VECTOR) {
2895      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2896      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2897      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2898      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2899    }
2900    break;
2901  case ISD::SETCC: {
2902    // Use FoldSetCC to simplify SETCC's.
2903    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2904    if (Simp.getNode()) return Simp;
2905    break;
2906  }
2907  case ISD::SELECT:
2908    if (N1C) {
2909     if (N1C->getZExtValue())
2910        return N2;             // select true, X, Y -> X
2911      else
2912        return N3;             // select false, X, Y -> Y
2913    }
2914
2915    if (N2 == N3) return N2;   // select C, X, X -> X
2916    break;
2917  case ISD::BRCOND:
2918    if (N2C) {
2919      if (N2C->getZExtValue()) // Unconditional branch
2920        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2921      else
2922        return N1;         // Never-taken branch
2923    }
2924    break;
2925  case ISD::VECTOR_SHUFFLE:
2926    llvm_unreachable("should use getVectorShuffle constructor!");
2927    break;
2928  case ISD::BIT_CONVERT:
2929    // Fold bit_convert nodes from a type to themselves.
2930    if (N1.getValueType() == VT)
2931      return N1;
2932    break;
2933  }
2934
2935  // Memoize node if it doesn't produce a flag.
2936  SDNode *N;
2937  SDVTList VTs = getVTList(VT);
2938  if (VT != MVT::Flag) {
2939    SDValue Ops[] = { N1, N2, N3 };
2940    FoldingSetNodeID ID;
2941    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2942    void *IP = 0;
2943    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2944      return SDValue(E, 0);
2945    N = NodeAllocator.Allocate<TernarySDNode>();
2946    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2947    CSEMap.InsertNode(N, IP);
2948  } else {
2949    N = NodeAllocator.Allocate<TernarySDNode>();
2950    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2951  }
2952  AllNodes.push_back(N);
2953#ifndef NDEBUG
2954  VerifyNode(N);
2955#endif
2956  return SDValue(N, 0);
2957}
2958
2959SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2960                              SDValue N1, SDValue N2, SDValue N3,
2961                              SDValue N4) {
2962  SDValue Ops[] = { N1, N2, N3, N4 };
2963  return getNode(Opcode, DL, VT, Ops, 4);
2964}
2965
2966SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2967                              SDValue N1, SDValue N2, SDValue N3,
2968                              SDValue N4, SDValue N5) {
2969  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2970  return getNode(Opcode, DL, VT, Ops, 5);
2971}
2972
2973/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2974/// the incoming stack arguments to be loaded from the stack.
2975SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2976  SmallVector<SDValue, 8> ArgChains;
2977
2978  // Include the original chain at the beginning of the list. When this is
2979  // used by target LowerCall hooks, this helps legalize find the
2980  // CALLSEQ_BEGIN node.
2981  ArgChains.push_back(Chain);
2982
2983  // Add a chain value for each stack argument.
2984  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2985       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2986    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2987      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2988        if (FI->getIndex() < 0)
2989          ArgChains.push_back(SDValue(L, 1));
2990
2991  // Build a tokenfactor for all the chains.
2992  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2993                 &ArgChains[0], ArgChains.size());
2994}
2995
2996/// getMemsetValue - Vectorized representation of the memset value
2997/// operand.
2998static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
2999                              DebugLoc dl) {
3000  unsigned NumBits = VT.isVector() ?
3001    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3002  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3003    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3004    unsigned Shift = 8;
3005    for (unsigned i = NumBits; i > 8; i >>= 1) {
3006      Val = (Val << Shift) | Val;
3007      Shift <<= 1;
3008    }
3009    if (VT.isInteger())
3010      return DAG.getConstant(Val, VT);
3011    return DAG.getConstantFP(APFloat(Val), VT);
3012  }
3013
3014  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3015  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3016  unsigned Shift = 8;
3017  for (unsigned i = NumBits; i > 8; i >>= 1) {
3018    Value = DAG.getNode(ISD::OR, dl, VT,
3019                        DAG.getNode(ISD::SHL, dl, VT, Value,
3020                                    DAG.getConstant(Shift,
3021                                                    TLI.getShiftAmountTy())),
3022                        Value);
3023    Shift <<= 1;
3024  }
3025
3026  return Value;
3027}
3028
3029/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3030/// used when a memcpy is turned into a memset when the source is a constant
3031/// string ptr.
3032static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3033                                  const TargetLowering &TLI,
3034                                  std::string &Str, unsigned Offset) {
3035  // Handle vector with all elements zero.
3036  if (Str.empty()) {
3037    if (VT.isInteger())
3038      return DAG.getConstant(0, VT);
3039    unsigned NumElts = VT.getVectorNumElements();
3040    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3041    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3042                       DAG.getConstant(0,
3043                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3044  }
3045
3046  assert(!VT.isVector() && "Can't handle vector type here!");
3047  unsigned NumBits = VT.getSizeInBits();
3048  unsigned MSB = NumBits / 8;
3049  uint64_t Val = 0;
3050  if (TLI.isLittleEndian())
3051    Offset = Offset + MSB - 1;
3052  for (unsigned i = 0; i != MSB; ++i) {
3053    Val = (Val << 8) | (unsigned char)Str[Offset];
3054    Offset += TLI.isLittleEndian() ? -1 : 1;
3055  }
3056  return DAG.getConstant(Val, VT);
3057}
3058
3059/// getMemBasePlusOffset - Returns base and offset node for the
3060///
3061static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3062                                      SelectionDAG &DAG) {
3063  EVT VT = Base.getValueType();
3064  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3065                     VT, Base, DAG.getConstant(Offset, VT));
3066}
3067
3068/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3069///
3070static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3071  unsigned SrcDelta = 0;
3072  GlobalAddressSDNode *G = NULL;
3073  if (Src.getOpcode() == ISD::GlobalAddress)
3074    G = cast<GlobalAddressSDNode>(Src);
3075  else if (Src.getOpcode() == ISD::ADD &&
3076           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3077           Src.getOperand(1).getOpcode() == ISD::Constant) {
3078    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3079    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3080  }
3081  if (!G)
3082    return false;
3083
3084  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3085  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3086    return true;
3087
3088  return false;
3089}
3090
3091/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3092/// to replace the memset / memcpy is below the threshold. It also returns the
3093/// types of the sequence of memory ops to perform memset / memcpy.
3094static
3095bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3096                              SDValue Dst, SDValue Src,
3097                              unsigned Limit, uint64_t Size, unsigned &Align,
3098                              std::string &Str, bool &isSrcStr,
3099                              SelectionDAG &DAG,
3100                              const TargetLowering &TLI) {
3101  isSrcStr = isMemSrcFromString(Src, Str);
3102  bool isSrcConst = isa<ConstantSDNode>(Src);
3103  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3104  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3105  if (VT != MVT::iAny) {
3106    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3107    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3108    // If source is a string constant, this will require an unaligned load.
3109    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3110      if (Dst.getOpcode() != ISD::FrameIndex) {
3111        // Can't change destination alignment. It requires a unaligned store.
3112        if (AllowUnalign)
3113          VT = MVT::iAny;
3114      } else {
3115        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3116        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3117        if (MFI->isFixedObjectIndex(FI)) {
3118          // Can't change destination alignment. It requires a unaligned store.
3119          if (AllowUnalign)
3120            VT = MVT::iAny;
3121        } else {
3122          // Give the stack frame object a larger alignment if needed.
3123          if (MFI->getObjectAlignment(FI) < NewAlign)
3124            MFI->setObjectAlignment(FI, NewAlign);
3125          Align = NewAlign;
3126        }
3127      }
3128    }
3129  }
3130
3131  if (VT == MVT::iAny) {
3132    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3133      VT = MVT::i64;
3134    } else {
3135      switch (Align & 7) {
3136      case 0:  VT = MVT::i64; break;
3137      case 4:  VT = MVT::i32; break;
3138      case 2:  VT = MVT::i16; break;
3139      default: VT = MVT::i8;  break;
3140      }
3141    }
3142
3143    MVT LVT = MVT::i64;
3144    while (!TLI.isTypeLegal(LVT))
3145      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3146    assert(LVT.isInteger());
3147
3148    if (VT.bitsGT(LVT))
3149      VT = LVT;
3150  }
3151
3152  unsigned NumMemOps = 0;
3153  while (Size != 0) {
3154    unsigned VTSize = VT.getSizeInBits() / 8;
3155    while (VTSize > Size) {
3156      // For now, only use non-vector load / store's for the left-over pieces.
3157      if (VT.isVector()) {
3158        VT = MVT::i64;
3159        while (!TLI.isTypeLegal(VT))
3160          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3161        VTSize = VT.getSizeInBits() / 8;
3162      } else {
3163        // This can result in a type that is not legal on the target, e.g.
3164        // 1 or 2 bytes on PPC.
3165        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3166        VTSize >>= 1;
3167      }
3168    }
3169
3170    if (++NumMemOps > Limit)
3171      return false;
3172    MemOps.push_back(VT);
3173    Size -= VTSize;
3174  }
3175
3176  return true;
3177}
3178
3179static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3180                                         SDValue Chain, SDValue Dst,
3181                                         SDValue Src, uint64_t Size,
3182                                         unsigned Align, bool AlwaysInline,
3183                                         const Value *DstSV, uint64_t DstSVOff,
3184                                         const Value *SrcSV, uint64_t SrcSVOff){
3185  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3186
3187  // Expand memcpy to a series of load and store ops if the size operand falls
3188  // below a certain threshold.
3189  std::vector<EVT> MemOps;
3190  uint64_t Limit = -1ULL;
3191  if (!AlwaysInline)
3192    Limit = TLI.getMaxStoresPerMemcpy();
3193  unsigned DstAlign = Align;  // Destination alignment can change.
3194  std::string Str;
3195  bool CopyFromStr;
3196  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3197                                Str, CopyFromStr, DAG, TLI))
3198    return SDValue();
3199
3200
3201  bool isZeroStr = CopyFromStr && Str.empty();
3202  SmallVector<SDValue, 8> OutChains;
3203  unsigned NumMemOps = MemOps.size();
3204  uint64_t SrcOff = 0, DstOff = 0;
3205  for (unsigned i = 0; i != NumMemOps; ++i) {
3206    EVT VT = MemOps[i];
3207    unsigned VTSize = VT.getSizeInBits() / 8;
3208    SDValue Value, Store;
3209
3210    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3211      // It's unlikely a store of a vector immediate can be done in a single
3212      // instruction. It would require a load from a constantpool first.
3213      // We also handle store a vector with all zero's.
3214      // FIXME: Handle other cases where store of vector immediate is done in
3215      // a single instruction.
3216      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3217      Store = DAG.getStore(Chain, dl, Value,
3218                           getMemBasePlusOffset(Dst, DstOff, DAG),
3219                           DstSV, DstSVOff + DstOff, false, DstAlign);
3220    } else {
3221      // The type might not be legal for the target.  This should only happen
3222      // if the type is smaller than a legal type, as on PPC, so the right
3223      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3224      // to Load/Store if NVT==VT.
3225      // FIXME does the case above also need this?
3226      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3227      assert(NVT.bitsGE(VT));
3228      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3229                             getMemBasePlusOffset(Src, SrcOff, DAG),
3230                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3231      Store = DAG.getTruncStore(Chain, dl, Value,
3232                             getMemBasePlusOffset(Dst, DstOff, DAG),
3233                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3234    }
3235    OutChains.push_back(Store);
3236    SrcOff += VTSize;
3237    DstOff += VTSize;
3238  }
3239
3240  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3241                     &OutChains[0], OutChains.size());
3242}
3243
3244static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3245                                          SDValue Chain, SDValue Dst,
3246                                          SDValue Src, uint64_t Size,
3247                                          unsigned Align, bool AlwaysInline,
3248                                          const Value *DstSV, uint64_t DstSVOff,
3249                                          const Value *SrcSV, uint64_t SrcSVOff){
3250  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3251
3252  // Expand memmove to a series of load and store ops if the size operand falls
3253  // below a certain threshold.
3254  std::vector<EVT> MemOps;
3255  uint64_t Limit = -1ULL;
3256  if (!AlwaysInline)
3257    Limit = TLI.getMaxStoresPerMemmove();
3258  unsigned DstAlign = Align;  // Destination alignment can change.
3259  std::string Str;
3260  bool CopyFromStr;
3261  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3262                                Str, CopyFromStr, DAG, TLI))
3263    return SDValue();
3264
3265  uint64_t SrcOff = 0, DstOff = 0;
3266
3267  SmallVector<SDValue, 8> LoadValues;
3268  SmallVector<SDValue, 8> LoadChains;
3269  SmallVector<SDValue, 8> OutChains;
3270  unsigned NumMemOps = MemOps.size();
3271  for (unsigned i = 0; i < NumMemOps; i++) {
3272    EVT VT = MemOps[i];
3273    unsigned VTSize = VT.getSizeInBits() / 8;
3274    SDValue Value, Store;
3275
3276    Value = DAG.getLoad(VT, dl, Chain,
3277                        getMemBasePlusOffset(Src, SrcOff, DAG),
3278                        SrcSV, SrcSVOff + SrcOff, false, Align);
3279    LoadValues.push_back(Value);
3280    LoadChains.push_back(Value.getValue(1));
3281    SrcOff += VTSize;
3282  }
3283  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3284                      &LoadChains[0], LoadChains.size());
3285  OutChains.clear();
3286  for (unsigned i = 0; i < NumMemOps; i++) {
3287    EVT VT = MemOps[i];
3288    unsigned VTSize = VT.getSizeInBits() / 8;
3289    SDValue Value, Store;
3290
3291    Store = DAG.getStore(Chain, dl, LoadValues[i],
3292                         getMemBasePlusOffset(Dst, DstOff, DAG),
3293                         DstSV, DstSVOff + DstOff, false, DstAlign);
3294    OutChains.push_back(Store);
3295    DstOff += VTSize;
3296  }
3297
3298  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3299                     &OutChains[0], OutChains.size());
3300}
3301
3302static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3303                                 SDValue Chain, SDValue Dst,
3304                                 SDValue Src, uint64_t Size,
3305                                 unsigned Align,
3306                                 const Value *DstSV, uint64_t DstSVOff) {
3307  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308
3309  // Expand memset to a series of load/store ops if the size operand
3310  // falls below a certain threshold.
3311  std::vector<EVT> MemOps;
3312  std::string Str;
3313  bool CopyFromStr;
3314  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3315                                Size, Align, Str, CopyFromStr, DAG, TLI))
3316    return SDValue();
3317
3318  SmallVector<SDValue, 8> OutChains;
3319  uint64_t DstOff = 0;
3320
3321  unsigned NumMemOps = MemOps.size();
3322  for (unsigned i = 0; i < NumMemOps; i++) {
3323    EVT VT = MemOps[i];
3324    unsigned VTSize = VT.getSizeInBits() / 8;
3325    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3326    SDValue Store = DAG.getStore(Chain, dl, Value,
3327                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3328                                 DstSV, DstSVOff + DstOff);
3329    OutChains.push_back(Store);
3330    DstOff += VTSize;
3331  }
3332
3333  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3334                     &OutChains[0], OutChains.size());
3335}
3336
3337SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3338                                SDValue Src, SDValue Size,
3339                                unsigned Align, bool AlwaysInline,
3340                                const Value *DstSV, uint64_t DstSVOff,
3341                                const Value *SrcSV, uint64_t SrcSVOff) {
3342
3343  // Check to see if we should lower the memcpy to loads and stores first.
3344  // For cases within the target-specified limits, this is the best choice.
3345  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3346  if (ConstantSize) {
3347    // Memcpy with size zero? Just return the original chain.
3348    if (ConstantSize->isNullValue())
3349      return Chain;
3350
3351    SDValue Result =
3352      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3353                              ConstantSize->getZExtValue(),
3354                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3355    if (Result.getNode())
3356      return Result;
3357  }
3358
3359  // Then check to see if we should lower the memcpy with target-specific
3360  // code. If the target chooses to do this, this is the next best.
3361  SDValue Result =
3362    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3363                                AlwaysInline,
3364                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3365  if (Result.getNode())
3366    return Result;
3367
3368  // If we really need inline code and the target declined to provide it,
3369  // use a (potentially long) sequence of loads and stores.
3370  if (AlwaysInline) {
3371    assert(ConstantSize && "AlwaysInline requires a constant size!");
3372    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3373                                   ConstantSize->getZExtValue(), Align, true,
3374                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3375  }
3376
3377  // Emit a library call.
3378  TargetLowering::ArgListTy Args;
3379  TargetLowering::ArgListEntry Entry;
3380  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3381  Entry.Node = Dst; Args.push_back(Entry);
3382  Entry.Node = Src; Args.push_back(Entry);
3383  Entry.Node = Size; Args.push_back(Entry);
3384  // FIXME: pass in DebugLoc
3385  std::pair<SDValue,SDValue> CallResult =
3386    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3387                    false, false, false, false, 0,
3388                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3389                    /*isReturnValueUsed=*/false,
3390                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3391                                      TLI.getPointerTy()),
3392                    Args, *this, dl);
3393  return CallResult.second;
3394}
3395
3396SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3397                                 SDValue Src, SDValue Size,
3398                                 unsigned Align,
3399                                 const Value *DstSV, uint64_t DstSVOff,
3400                                 const Value *SrcSV, uint64_t SrcSVOff) {
3401
3402  // Check to see if we should lower the memmove to loads and stores first.
3403  // For cases within the target-specified limits, this is the best choice.
3404  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3405  if (ConstantSize) {
3406    // Memmove with size zero? Just return the original chain.
3407    if (ConstantSize->isNullValue())
3408      return Chain;
3409
3410    SDValue Result =
3411      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3412                               ConstantSize->getZExtValue(),
3413                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3414    if (Result.getNode())
3415      return Result;
3416  }
3417
3418  // Then check to see if we should lower the memmove with target-specific
3419  // code. If the target chooses to do this, this is the next best.
3420  SDValue Result =
3421    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3422                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3423  if (Result.getNode())
3424    return Result;
3425
3426  // Emit a library call.
3427  TargetLowering::ArgListTy Args;
3428  TargetLowering::ArgListEntry Entry;
3429  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3430  Entry.Node = Dst; Args.push_back(Entry);
3431  Entry.Node = Src; Args.push_back(Entry);
3432  Entry.Node = Size; Args.push_back(Entry);
3433  // FIXME:  pass in DebugLoc
3434  std::pair<SDValue,SDValue> CallResult =
3435    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3436                    false, false, false, false, 0,
3437                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3438                    /*isReturnValueUsed=*/false,
3439                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3440                                      TLI.getPointerTy()),
3441                    Args, *this, dl);
3442  return CallResult.second;
3443}
3444
3445SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3446                                SDValue Src, SDValue Size,
3447                                unsigned Align,
3448                                const Value *DstSV, uint64_t DstSVOff) {
3449
3450  // Check to see if we should lower the memset to stores first.
3451  // For cases within the target-specified limits, this is the best choice.
3452  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3453  if (ConstantSize) {
3454    // Memset with size zero? Just return the original chain.
3455    if (ConstantSize->isNullValue())
3456      return Chain;
3457
3458    SDValue Result =
3459      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3460                      Align, DstSV, DstSVOff);
3461    if (Result.getNode())
3462      return Result;
3463  }
3464
3465  // Then check to see if we should lower the memset with target-specific
3466  // code. If the target chooses to do this, this is the next best.
3467  SDValue Result =
3468    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3469                                DstSV, DstSVOff);
3470  if (Result.getNode())
3471    return Result;
3472
3473  // Emit a library call.
3474  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3475  TargetLowering::ArgListTy Args;
3476  TargetLowering::ArgListEntry Entry;
3477  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3478  Args.push_back(Entry);
3479  // Extend or truncate the argument to be an i32 value for the call.
3480  if (Src.getValueType().bitsGT(MVT::i32))
3481    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3482  else
3483    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3484  Entry.Node = Src;
3485  Entry.Ty = Type::getInt32Ty(*getContext());
3486  Entry.isSExt = true;
3487  Args.push_back(Entry);
3488  Entry.Node = Size;
3489  Entry.Ty = IntPtrTy;
3490  Entry.isSExt = false;
3491  Args.push_back(Entry);
3492  // FIXME: pass in DebugLoc
3493  std::pair<SDValue,SDValue> CallResult =
3494    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3495                    false, false, false, false, 0,
3496                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3497                    /*isReturnValueUsed=*/false,
3498                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3499                                      TLI.getPointerTy()),
3500                    Args, *this, dl);
3501  return CallResult.second;
3502}
3503
3504SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3505                                SDValue Chain,
3506                                SDValue Ptr, SDValue Cmp,
3507                                SDValue Swp, const Value* PtrVal,
3508                                unsigned Alignment) {
3509  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3510    Alignment = getEVTAlignment(MemVT);
3511
3512  // Check if the memory reference references a frame index
3513  if (!PtrVal)
3514    if (const FrameIndexSDNode *FI =
3515          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3516      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3517
3518  MachineFunction &MF = getMachineFunction();
3519  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3520
3521  // For now, atomics are considered to be volatile always.
3522  Flags |= MachineMemOperand::MOVolatile;
3523
3524  MachineMemOperand *MMO =
3525    MF.getMachineMemOperand(PtrVal, Flags, 0,
3526                            MemVT.getStoreSize(), Alignment);
3527
3528  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3529}
3530
3531SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3532                                SDValue Chain,
3533                                SDValue Ptr, SDValue Cmp,
3534                                SDValue Swp, MachineMemOperand *MMO) {
3535  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3536  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3537
3538  EVT VT = Cmp.getValueType();
3539
3540  SDVTList VTs = getVTList(VT, MVT::Other);
3541  FoldingSetNodeID ID;
3542  ID.AddInteger(MemVT.getRawBits());
3543  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3544  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3545  void* IP = 0;
3546  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3547    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3548    return SDValue(E, 0);
3549  }
3550  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3551  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3552  CSEMap.InsertNode(N, IP);
3553  AllNodes.push_back(N);
3554  return SDValue(N, 0);
3555}
3556
3557SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3558                                SDValue Chain,
3559                                SDValue Ptr, SDValue Val,
3560                                const Value* PtrVal,
3561                                unsigned Alignment) {
3562  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3563    Alignment = getEVTAlignment(MemVT);
3564
3565  // Check if the memory reference references a frame index
3566  if (!PtrVal)
3567    if (const FrameIndexSDNode *FI =
3568          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3569      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3570
3571  MachineFunction &MF = getMachineFunction();
3572  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3573
3574  // For now, atomics are considered to be volatile always.
3575  Flags |= MachineMemOperand::MOVolatile;
3576
3577  MachineMemOperand *MMO =
3578    MF.getMachineMemOperand(PtrVal, Flags, 0,
3579                            MemVT.getStoreSize(), Alignment);
3580
3581  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3582}
3583
3584SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3585                                SDValue Chain,
3586                                SDValue Ptr, SDValue Val,
3587                                MachineMemOperand *MMO) {
3588  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3589          Opcode == ISD::ATOMIC_LOAD_SUB ||
3590          Opcode == ISD::ATOMIC_LOAD_AND ||
3591          Opcode == ISD::ATOMIC_LOAD_OR ||
3592          Opcode == ISD::ATOMIC_LOAD_XOR ||
3593          Opcode == ISD::ATOMIC_LOAD_NAND ||
3594          Opcode == ISD::ATOMIC_LOAD_MIN ||
3595          Opcode == ISD::ATOMIC_LOAD_MAX ||
3596          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3597          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3598          Opcode == ISD::ATOMIC_SWAP) &&
3599         "Invalid Atomic Op");
3600
3601  EVT VT = Val.getValueType();
3602
3603  SDVTList VTs = getVTList(VT, MVT::Other);
3604  FoldingSetNodeID ID;
3605  ID.AddInteger(MemVT.getRawBits());
3606  SDValue Ops[] = {Chain, Ptr, Val};
3607  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3608  void* IP = 0;
3609  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3610    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3611    return SDValue(E, 0);
3612  }
3613  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3614  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3615  CSEMap.InsertNode(N, IP);
3616  AllNodes.push_back(N);
3617  return SDValue(N, 0);
3618}
3619
3620/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3621/// Allowed to return something different (and simpler) if Simplify is true.
3622SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3623                                     DebugLoc dl) {
3624  if (NumOps == 1)
3625    return Ops[0];
3626
3627  SmallVector<EVT, 4> VTs;
3628  VTs.reserve(NumOps);
3629  for (unsigned i = 0; i < NumOps; ++i)
3630    VTs.push_back(Ops[i].getValueType());
3631  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3632                 Ops, NumOps);
3633}
3634
3635SDValue
3636SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3637                                  const EVT *VTs, unsigned NumVTs,
3638                                  const SDValue *Ops, unsigned NumOps,
3639                                  EVT MemVT, const Value *srcValue, int SVOff,
3640                                  unsigned Align, bool Vol,
3641                                  bool ReadMem, bool WriteMem) {
3642  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3643                             MemVT, srcValue, SVOff, Align, Vol,
3644                             ReadMem, WriteMem);
3645}
3646
3647SDValue
3648SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3649                                  const SDValue *Ops, unsigned NumOps,
3650                                  EVT MemVT, const Value *srcValue, int SVOff,
3651                                  unsigned Align, bool Vol,
3652                                  bool ReadMem, bool WriteMem) {
3653  if (Align == 0)  // Ensure that codegen never sees alignment 0
3654    Align = getEVTAlignment(MemVT);
3655
3656  MachineFunction &MF = getMachineFunction();
3657  unsigned Flags = 0;
3658  if (WriteMem)
3659    Flags |= MachineMemOperand::MOStore;
3660  if (ReadMem)
3661    Flags |= MachineMemOperand::MOLoad;
3662  if (Vol)
3663    Flags |= MachineMemOperand::MOVolatile;
3664  MachineMemOperand *MMO =
3665    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3666                            MemVT.getStoreSize(), Align);
3667
3668  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3669}
3670
3671SDValue
3672SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3673                                  const SDValue *Ops, unsigned NumOps,
3674                                  EVT MemVT, MachineMemOperand *MMO) {
3675  assert((Opcode == ISD::INTRINSIC_VOID ||
3676          Opcode == ISD::INTRINSIC_W_CHAIN ||
3677          (Opcode <= INT_MAX &&
3678           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3679         "Opcode is not a memory-accessing opcode!");
3680
3681  // Memoize the node unless it returns a flag.
3682  MemIntrinsicSDNode *N;
3683  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3684    FoldingSetNodeID ID;
3685    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3686    void *IP = 0;
3687    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3688      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3689      return SDValue(E, 0);
3690    }
3691
3692    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3693    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3694    CSEMap.InsertNode(N, IP);
3695  } else {
3696    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3697    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3698  }
3699  AllNodes.push_back(N);
3700  return SDValue(N, 0);
3701}
3702
3703SDValue
3704SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3705                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3706                      SDValue Ptr, SDValue Offset,
3707                      const Value *SV, int SVOffset, EVT MemVT,
3708                      bool isVolatile, unsigned Alignment) {
3709  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3710    Alignment = getEVTAlignment(VT);
3711
3712  // Check if the memory reference references a frame index
3713  if (!SV)
3714    if (const FrameIndexSDNode *FI =
3715          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3716      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3717
3718  MachineFunction &MF = getMachineFunction();
3719  unsigned Flags = MachineMemOperand::MOLoad;
3720  if (isVolatile)
3721    Flags |= MachineMemOperand::MOVolatile;
3722  MachineMemOperand *MMO =
3723    MF.getMachineMemOperand(SV, Flags, SVOffset,
3724                            MemVT.getStoreSize(), Alignment);
3725  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3726}
3727
3728SDValue
3729SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3730                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3731                      SDValue Ptr, SDValue Offset, EVT MemVT,
3732                      MachineMemOperand *MMO) {
3733  if (VT == MemVT) {
3734    ExtType = ISD::NON_EXTLOAD;
3735  } else if (ExtType == ISD::NON_EXTLOAD) {
3736    assert(VT == MemVT && "Non-extending load from different memory type!");
3737  } else {
3738    // Extending load.
3739    if (VT.isVector())
3740      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3741             "Invalid vector extload!");
3742    else
3743      assert(MemVT.bitsLT(VT) &&
3744             "Should only be an extending load, not truncating!");
3745    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3746           "Cannot sign/zero extend a FP/Vector load!");
3747    assert(VT.isInteger() == MemVT.isInteger() &&
3748           "Cannot convert from FP to Int or Int -> FP!");
3749  }
3750
3751  bool Indexed = AM != ISD::UNINDEXED;
3752  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3753         "Unindexed load with an offset!");
3754
3755  SDVTList VTs = Indexed ?
3756    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3757  SDValue Ops[] = { Chain, Ptr, Offset };
3758  FoldingSetNodeID ID;
3759  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3760  ID.AddInteger(MemVT.getRawBits());
3761  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3762  void *IP = 0;
3763  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3764    cast<LoadSDNode>(E)->refineAlignment(MMO);
3765    return SDValue(E, 0);
3766  }
3767  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3768  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3769  CSEMap.InsertNode(N, IP);
3770  AllNodes.push_back(N);
3771  return SDValue(N, 0);
3772}
3773
3774SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3775                              SDValue Chain, SDValue Ptr,
3776                              const Value *SV, int SVOffset,
3777                              bool isVolatile, unsigned Alignment) {
3778  SDValue Undef = getUNDEF(Ptr.getValueType());
3779  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3780                 SV, SVOffset, VT, isVolatile, Alignment);
3781}
3782
3783SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3784                                 SDValue Chain, SDValue Ptr,
3785                                 const Value *SV,
3786                                 int SVOffset, EVT MemVT,
3787                                 bool isVolatile, unsigned Alignment) {
3788  SDValue Undef = getUNDEF(Ptr.getValueType());
3789  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3790                 SV, SVOffset, MemVT, isVolatile, Alignment);
3791}
3792
3793SDValue
3794SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3795                             SDValue Offset, ISD::MemIndexedMode AM) {
3796  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3797  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3798         "Load is already a indexed load!");
3799  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3800                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3801                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3802                 LD->isVolatile(), LD->getAlignment());
3803}
3804
3805SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3806                               SDValue Ptr, const Value *SV, int SVOffset,
3807                               bool isVolatile, unsigned Alignment) {
3808  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3809    Alignment = getEVTAlignment(Val.getValueType());
3810
3811  // Check if the memory reference references a frame index
3812  if (!SV)
3813    if (const FrameIndexSDNode *FI =
3814          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3815      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3816
3817  MachineFunction &MF = getMachineFunction();
3818  unsigned Flags = MachineMemOperand::MOStore;
3819  if (isVolatile)
3820    Flags |= MachineMemOperand::MOVolatile;
3821  MachineMemOperand *MMO =
3822    MF.getMachineMemOperand(SV, Flags, SVOffset,
3823                            Val.getValueType().getStoreSize(), Alignment);
3824
3825  return getStore(Chain, dl, Val, Ptr, MMO);
3826}
3827
3828SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3829                               SDValue Ptr, MachineMemOperand *MMO) {
3830  EVT VT = Val.getValueType();
3831  SDVTList VTs = getVTList(MVT::Other);
3832  SDValue Undef = getUNDEF(Ptr.getValueType());
3833  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3834  FoldingSetNodeID ID;
3835  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3836  ID.AddInteger(VT.getRawBits());
3837  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3838  void *IP = 0;
3839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3840    cast<StoreSDNode>(E)->refineAlignment(MMO);
3841    return SDValue(E, 0);
3842  }
3843  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3844  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3845  CSEMap.InsertNode(N, IP);
3846  AllNodes.push_back(N);
3847  return SDValue(N, 0);
3848}
3849
3850SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3851                                    SDValue Ptr, const Value *SV,
3852                                    int SVOffset, EVT SVT,
3853                                    bool isVolatile, unsigned Alignment) {
3854  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3855    Alignment = getEVTAlignment(SVT);
3856
3857  // Check if the memory reference references a frame index
3858  if (!SV)
3859    if (const FrameIndexSDNode *FI =
3860          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3861      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3862
3863  MachineFunction &MF = getMachineFunction();
3864  unsigned Flags = MachineMemOperand::MOStore;
3865  if (isVolatile)
3866    Flags |= MachineMemOperand::MOVolatile;
3867  MachineMemOperand *MMO =
3868    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3869
3870  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3871}
3872
3873SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3874                                    SDValue Ptr, EVT SVT,
3875                                    MachineMemOperand *MMO) {
3876  EVT VT = Val.getValueType();
3877
3878  if (VT == SVT)
3879    return getStore(Chain, dl, Val, Ptr, MMO);
3880
3881  assert(VT.bitsGT(SVT) && "Not a truncation?");
3882  assert(VT.isInteger() == SVT.isInteger() &&
3883         "Can't do FP-INT conversion!");
3884
3885
3886  SDVTList VTs = getVTList(MVT::Other);
3887  SDValue Undef = getUNDEF(Ptr.getValueType());
3888  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3889  FoldingSetNodeID ID;
3890  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3891  ID.AddInteger(SVT.getRawBits());
3892  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3893  void *IP = 0;
3894  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3895    cast<StoreSDNode>(E)->refineAlignment(MMO);
3896    return SDValue(E, 0);
3897  }
3898  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3899  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3900  CSEMap.InsertNode(N, IP);
3901  AllNodes.push_back(N);
3902  return SDValue(N, 0);
3903}
3904
3905SDValue
3906SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3907                              SDValue Offset, ISD::MemIndexedMode AM) {
3908  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3909  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3910         "Store is already a indexed store!");
3911  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3912  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3913  FoldingSetNodeID ID;
3914  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3915  ID.AddInteger(ST->getMemoryVT().getRawBits());
3916  ID.AddInteger(ST->getRawSubclassData());
3917  void *IP = 0;
3918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3919    return SDValue(E, 0);
3920  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3921  new (N) StoreSDNode(Ops, dl, VTs, AM,
3922                      ST->isTruncatingStore(), ST->getMemoryVT(),
3923                      ST->getMemOperand());
3924  CSEMap.InsertNode(N, IP);
3925  AllNodes.push_back(N);
3926  return SDValue(N, 0);
3927}
3928
3929SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3930                               SDValue Chain, SDValue Ptr,
3931                               SDValue SV) {
3932  SDValue Ops[] = { Chain, Ptr, SV };
3933  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3934}
3935
3936SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3937                              const SDUse *Ops, unsigned NumOps) {
3938  switch (NumOps) {
3939  case 0: return getNode(Opcode, DL, VT);
3940  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3941  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3942  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3943  default: break;
3944  }
3945
3946  // Copy from an SDUse array into an SDValue array for use with
3947  // the regular getNode logic.
3948  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3949  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3950}
3951
3952SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3953                              const SDValue *Ops, unsigned NumOps) {
3954  switch (NumOps) {
3955  case 0: return getNode(Opcode, DL, VT);
3956  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3957  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3958  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3959  default: break;
3960  }
3961
3962  switch (Opcode) {
3963  default: break;
3964  case ISD::SELECT_CC: {
3965    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3966    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3967           "LHS and RHS of condition must have same type!");
3968    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3969           "True and False arms of SelectCC must have same type!");
3970    assert(Ops[2].getValueType() == VT &&
3971           "select_cc node must be of same type as true and false value!");
3972    break;
3973  }
3974  case ISD::BR_CC: {
3975    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3976    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3977           "LHS/RHS of comparison should match types!");
3978    break;
3979  }
3980  }
3981
3982  // Memoize nodes.
3983  SDNode *N;
3984  SDVTList VTs = getVTList(VT);
3985
3986  if (VT != MVT::Flag) {
3987    FoldingSetNodeID ID;
3988    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3989    void *IP = 0;
3990
3991    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3992      return SDValue(E, 0);
3993
3994    N = NodeAllocator.Allocate<SDNode>();
3995    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3996    CSEMap.InsertNode(N, IP);
3997  } else {
3998    N = NodeAllocator.Allocate<SDNode>();
3999    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4000  }
4001
4002  AllNodes.push_back(N);
4003#ifndef NDEBUG
4004  VerifyNode(N);
4005#endif
4006  return SDValue(N, 0);
4007}
4008
4009SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4010                              const std::vector<EVT> &ResultTys,
4011                              const SDValue *Ops, unsigned NumOps) {
4012  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4013                 Ops, NumOps);
4014}
4015
4016SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4017                              const EVT *VTs, unsigned NumVTs,
4018                              const SDValue *Ops, unsigned NumOps) {
4019  if (NumVTs == 1)
4020    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4021  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4022}
4023
4024SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4025                              const SDValue *Ops, unsigned NumOps) {
4026  if (VTList.NumVTs == 1)
4027    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4028
4029#if 0
4030  switch (Opcode) {
4031  // FIXME: figure out how to safely handle things like
4032  // int foo(int x) { return 1 << (x & 255); }
4033  // int bar() { return foo(256); }
4034  case ISD::SRA_PARTS:
4035  case ISD::SRL_PARTS:
4036  case ISD::SHL_PARTS:
4037    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4038        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4039      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4040    else if (N3.getOpcode() == ISD::AND)
4041      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4042        // If the and is only masking out bits that cannot effect the shift,
4043        // eliminate the and.
4044        unsigned NumBits = VT.getSizeInBits()*2;
4045        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4046          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4047      }
4048    break;
4049  }
4050#endif
4051
4052  // Memoize the node unless it returns a flag.
4053  SDNode *N;
4054  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4055    FoldingSetNodeID ID;
4056    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4057    void *IP = 0;
4058    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4059      return SDValue(E, 0);
4060    if (NumOps == 1) {
4061      N = NodeAllocator.Allocate<UnarySDNode>();
4062      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4063    } else if (NumOps == 2) {
4064      N = NodeAllocator.Allocate<BinarySDNode>();
4065      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4066    } else if (NumOps == 3) {
4067      N = NodeAllocator.Allocate<TernarySDNode>();
4068      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4069    } else {
4070      N = NodeAllocator.Allocate<SDNode>();
4071      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4072    }
4073    CSEMap.InsertNode(N, IP);
4074  } else {
4075    if (NumOps == 1) {
4076      N = NodeAllocator.Allocate<UnarySDNode>();
4077      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4078    } else if (NumOps == 2) {
4079      N = NodeAllocator.Allocate<BinarySDNode>();
4080      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4081    } else if (NumOps == 3) {
4082      N = NodeAllocator.Allocate<TernarySDNode>();
4083      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4084    } else {
4085      N = NodeAllocator.Allocate<SDNode>();
4086      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4087    }
4088  }
4089  AllNodes.push_back(N);
4090#ifndef NDEBUG
4091  VerifyNode(N);
4092#endif
4093  return SDValue(N, 0);
4094}
4095
4096SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4097  return getNode(Opcode, DL, VTList, 0, 0);
4098}
4099
4100SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4101                              SDValue N1) {
4102  SDValue Ops[] = { N1 };
4103  return getNode(Opcode, DL, VTList, Ops, 1);
4104}
4105
4106SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4107                              SDValue N1, SDValue N2) {
4108  SDValue Ops[] = { N1, N2 };
4109  return getNode(Opcode, DL, VTList, Ops, 2);
4110}
4111
4112SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4113                              SDValue N1, SDValue N2, SDValue N3) {
4114  SDValue Ops[] = { N1, N2, N3 };
4115  return getNode(Opcode, DL, VTList, Ops, 3);
4116}
4117
4118SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4119                              SDValue N1, SDValue N2, SDValue N3,
4120                              SDValue N4) {
4121  SDValue Ops[] = { N1, N2, N3, N4 };
4122  return getNode(Opcode, DL, VTList, Ops, 4);
4123}
4124
4125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4126                              SDValue N1, SDValue N2, SDValue N3,
4127                              SDValue N4, SDValue N5) {
4128  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4129  return getNode(Opcode, DL, VTList, Ops, 5);
4130}
4131
4132SDVTList SelectionDAG::getVTList(EVT VT) {
4133  return makeVTList(SDNode::getValueTypeList(VT), 1);
4134}
4135
4136SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4137  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4138       E = VTList.rend(); I != E; ++I)
4139    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4140      return *I;
4141
4142  EVT *Array = Allocator.Allocate<EVT>(2);
4143  Array[0] = VT1;
4144  Array[1] = VT2;
4145  SDVTList Result = makeVTList(Array, 2);
4146  VTList.push_back(Result);
4147  return Result;
4148}
4149
4150SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4151  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4152       E = VTList.rend(); I != E; ++I)
4153    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4154                          I->VTs[2] == VT3)
4155      return *I;
4156
4157  EVT *Array = Allocator.Allocate<EVT>(3);
4158  Array[0] = VT1;
4159  Array[1] = VT2;
4160  Array[2] = VT3;
4161  SDVTList Result = makeVTList(Array, 3);
4162  VTList.push_back(Result);
4163  return Result;
4164}
4165
4166SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4167  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4168       E = VTList.rend(); I != E; ++I)
4169    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4170                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4171      return *I;
4172
4173  EVT *Array = Allocator.Allocate<EVT>(3);
4174  Array[0] = VT1;
4175  Array[1] = VT2;
4176  Array[2] = VT3;
4177  Array[3] = VT4;
4178  SDVTList Result = makeVTList(Array, 4);
4179  VTList.push_back(Result);
4180  return Result;
4181}
4182
4183SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4184  switch (NumVTs) {
4185    case 0: llvm_unreachable("Cannot have nodes without results!");
4186    case 1: return getVTList(VTs[0]);
4187    case 2: return getVTList(VTs[0], VTs[1]);
4188    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4189    default: break;
4190  }
4191
4192  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4193       E = VTList.rend(); I != E; ++I) {
4194    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4195      continue;
4196
4197    bool NoMatch = false;
4198    for (unsigned i = 2; i != NumVTs; ++i)
4199      if (VTs[i] != I->VTs[i]) {
4200        NoMatch = true;
4201        break;
4202      }
4203    if (!NoMatch)
4204      return *I;
4205  }
4206
4207  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4208  std::copy(VTs, VTs+NumVTs, Array);
4209  SDVTList Result = makeVTList(Array, NumVTs);
4210  VTList.push_back(Result);
4211  return Result;
4212}
4213
4214
4215/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4216/// specified operands.  If the resultant node already exists in the DAG,
4217/// this does not modify the specified node, instead it returns the node that
4218/// already exists.  If the resultant node does not exist in the DAG, the
4219/// input node is returned.  As a degenerate case, if you specify the same
4220/// input operands as the node already has, the input node is returned.
4221SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4222  SDNode *N = InN.getNode();
4223  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4224
4225  // Check to see if there is no change.
4226  if (Op == N->getOperand(0)) return InN;
4227
4228  // See if the modified node already exists.
4229  void *InsertPos = 0;
4230  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4231    return SDValue(Existing, InN.getResNo());
4232
4233  // Nope it doesn't.  Remove the node from its current place in the maps.
4234  if (InsertPos)
4235    if (!RemoveNodeFromCSEMaps(N))
4236      InsertPos = 0;
4237
4238  // Now we update the operands.
4239  N->OperandList[0].set(Op);
4240
4241  // If this gets put into a CSE map, add it.
4242  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4243  return InN;
4244}
4245
4246SDValue SelectionDAG::
4247UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4248  SDNode *N = InN.getNode();
4249  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4250
4251  // Check to see if there is no change.
4252  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4253    return InN;   // No operands changed, just return the input node.
4254
4255  // See if the modified node already exists.
4256  void *InsertPos = 0;
4257  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4258    return SDValue(Existing, InN.getResNo());
4259
4260  // Nope it doesn't.  Remove the node from its current place in the maps.
4261  if (InsertPos)
4262    if (!RemoveNodeFromCSEMaps(N))
4263      InsertPos = 0;
4264
4265  // Now we update the operands.
4266  if (N->OperandList[0] != Op1)
4267    N->OperandList[0].set(Op1);
4268  if (N->OperandList[1] != Op2)
4269    N->OperandList[1].set(Op2);
4270
4271  // If this gets put into a CSE map, add it.
4272  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4273  return InN;
4274}
4275
4276SDValue SelectionDAG::
4277UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4278  SDValue Ops[] = { Op1, Op2, Op3 };
4279  return UpdateNodeOperands(N, Ops, 3);
4280}
4281
4282SDValue SelectionDAG::
4283UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4284                   SDValue Op3, SDValue Op4) {
4285  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4286  return UpdateNodeOperands(N, Ops, 4);
4287}
4288
4289SDValue SelectionDAG::
4290UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4291                   SDValue Op3, SDValue Op4, SDValue Op5) {
4292  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4293  return UpdateNodeOperands(N, Ops, 5);
4294}
4295
4296SDValue SelectionDAG::
4297UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4298  SDNode *N = InN.getNode();
4299  assert(N->getNumOperands() == NumOps &&
4300         "Update with wrong number of operands");
4301
4302  // Check to see if there is no change.
4303  bool AnyChange = false;
4304  for (unsigned i = 0; i != NumOps; ++i) {
4305    if (Ops[i] != N->getOperand(i)) {
4306      AnyChange = true;
4307      break;
4308    }
4309  }
4310
4311  // No operands changed, just return the input node.
4312  if (!AnyChange) return InN;
4313
4314  // See if the modified node already exists.
4315  void *InsertPos = 0;
4316  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4317    return SDValue(Existing, InN.getResNo());
4318
4319  // Nope it doesn't.  Remove the node from its current place in the maps.
4320  if (InsertPos)
4321    if (!RemoveNodeFromCSEMaps(N))
4322      InsertPos = 0;
4323
4324  // Now we update the operands.
4325  for (unsigned i = 0; i != NumOps; ++i)
4326    if (N->OperandList[i] != Ops[i])
4327      N->OperandList[i].set(Ops[i]);
4328
4329  // If this gets put into a CSE map, add it.
4330  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4331  return InN;
4332}
4333
4334/// DropOperands - Release the operands and set this node to have
4335/// zero operands.
4336void SDNode::DropOperands() {
4337  // Unlike the code in MorphNodeTo that does this, we don't need to
4338  // watch for dead nodes here.
4339  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4340    SDUse &Use = *I++;
4341    Use.set(SDValue());
4342  }
4343}
4344
4345/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4346/// machine opcode.
4347///
4348SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4349                                   EVT VT) {
4350  SDVTList VTs = getVTList(VT);
4351  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4352}
4353
4354SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4355                                   EVT VT, SDValue Op1) {
4356  SDVTList VTs = getVTList(VT);
4357  SDValue Ops[] = { Op1 };
4358  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4359}
4360
4361SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4362                                   EVT VT, SDValue Op1,
4363                                   SDValue Op2) {
4364  SDVTList VTs = getVTList(VT);
4365  SDValue Ops[] = { Op1, Op2 };
4366  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4367}
4368
4369SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4370                                   EVT VT, SDValue Op1,
4371                                   SDValue Op2, SDValue Op3) {
4372  SDVTList VTs = getVTList(VT);
4373  SDValue Ops[] = { Op1, Op2, Op3 };
4374  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4375}
4376
4377SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4378                                   EVT VT, const SDValue *Ops,
4379                                   unsigned NumOps) {
4380  SDVTList VTs = getVTList(VT);
4381  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4382}
4383
4384SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4385                                   EVT VT1, EVT VT2, const SDValue *Ops,
4386                                   unsigned NumOps) {
4387  SDVTList VTs = getVTList(VT1, VT2);
4388  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4389}
4390
4391SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4392                                   EVT VT1, EVT VT2) {
4393  SDVTList VTs = getVTList(VT1, VT2);
4394  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4395}
4396
4397SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4398                                   EVT VT1, EVT VT2, EVT VT3,
4399                                   const SDValue *Ops, unsigned NumOps) {
4400  SDVTList VTs = getVTList(VT1, VT2, VT3);
4401  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4402}
4403
4404SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4405                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4406                                   const SDValue *Ops, unsigned NumOps) {
4407  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4408  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4409}
4410
4411SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4412                                   EVT VT1, EVT VT2,
4413                                   SDValue Op1) {
4414  SDVTList VTs = getVTList(VT1, VT2);
4415  SDValue Ops[] = { Op1 };
4416  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4417}
4418
4419SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4420                                   EVT VT1, EVT VT2,
4421                                   SDValue Op1, SDValue Op2) {
4422  SDVTList VTs = getVTList(VT1, VT2);
4423  SDValue Ops[] = { Op1, Op2 };
4424  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4425}
4426
4427SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4428                                   EVT VT1, EVT VT2,
4429                                   SDValue Op1, SDValue Op2,
4430                                   SDValue Op3) {
4431  SDVTList VTs = getVTList(VT1, VT2);
4432  SDValue Ops[] = { Op1, Op2, Op3 };
4433  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4434}
4435
4436SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4437                                   EVT VT1, EVT VT2, EVT VT3,
4438                                   SDValue Op1, SDValue Op2,
4439                                   SDValue Op3) {
4440  SDVTList VTs = getVTList(VT1, VT2, VT3);
4441  SDValue Ops[] = { Op1, Op2, Op3 };
4442  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4443}
4444
4445SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4446                                   SDVTList VTs, const SDValue *Ops,
4447                                   unsigned NumOps) {
4448  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4449}
4450
4451SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4452                                  EVT VT) {
4453  SDVTList VTs = getVTList(VT);
4454  return MorphNodeTo(N, Opc, VTs, 0, 0);
4455}
4456
4457SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4458                                  EVT VT, SDValue Op1) {
4459  SDVTList VTs = getVTList(VT);
4460  SDValue Ops[] = { Op1 };
4461  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4462}
4463
4464SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4465                                  EVT VT, SDValue Op1,
4466                                  SDValue Op2) {
4467  SDVTList VTs = getVTList(VT);
4468  SDValue Ops[] = { Op1, Op2 };
4469  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4470}
4471
4472SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4473                                  EVT VT, SDValue Op1,
4474                                  SDValue Op2, SDValue Op3) {
4475  SDVTList VTs = getVTList(VT);
4476  SDValue Ops[] = { Op1, Op2, Op3 };
4477  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4478}
4479
4480SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4481                                  EVT VT, const SDValue *Ops,
4482                                  unsigned NumOps) {
4483  SDVTList VTs = getVTList(VT);
4484  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4485}
4486
4487SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4488                                  EVT VT1, EVT VT2, const SDValue *Ops,
4489                                  unsigned NumOps) {
4490  SDVTList VTs = getVTList(VT1, VT2);
4491  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4492}
4493
4494SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4495                                  EVT VT1, EVT VT2) {
4496  SDVTList VTs = getVTList(VT1, VT2);
4497  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4498}
4499
4500SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4501                                  EVT VT1, EVT VT2, EVT VT3,
4502                                  const SDValue *Ops, unsigned NumOps) {
4503  SDVTList VTs = getVTList(VT1, VT2, VT3);
4504  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4505}
4506
4507SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4508                                  EVT VT1, EVT VT2,
4509                                  SDValue Op1) {
4510  SDVTList VTs = getVTList(VT1, VT2);
4511  SDValue Ops[] = { Op1 };
4512  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4513}
4514
4515SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4516                                  EVT VT1, EVT VT2,
4517                                  SDValue Op1, SDValue Op2) {
4518  SDVTList VTs = getVTList(VT1, VT2);
4519  SDValue Ops[] = { Op1, Op2 };
4520  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4521}
4522
4523SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4524                                  EVT VT1, EVT VT2,
4525                                  SDValue Op1, SDValue Op2,
4526                                  SDValue Op3) {
4527  SDVTList VTs = getVTList(VT1, VT2);
4528  SDValue Ops[] = { Op1, Op2, Op3 };
4529  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4530}
4531
4532/// MorphNodeTo - These *mutate* the specified node to have the specified
4533/// return type, opcode, and operands.
4534///
4535/// Note that MorphNodeTo returns the resultant node.  If there is already a
4536/// node of the specified opcode and operands, it returns that node instead of
4537/// the current one.  Note that the DebugLoc need not be the same.
4538///
4539/// Using MorphNodeTo is faster than creating a new node and swapping it in
4540/// with ReplaceAllUsesWith both because it often avoids allocating a new
4541/// node, and because it doesn't require CSE recalculation for any of
4542/// the node's users.
4543///
4544SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4545                                  SDVTList VTs, const SDValue *Ops,
4546                                  unsigned NumOps) {
4547  // If an identical node already exists, use it.
4548  void *IP = 0;
4549  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4550    FoldingSetNodeID ID;
4551    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4552    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4553      return ON;
4554  }
4555
4556  if (!RemoveNodeFromCSEMaps(N))
4557    IP = 0;
4558
4559  // Start the morphing.
4560  N->NodeType = Opc;
4561  N->ValueList = VTs.VTs;
4562  N->NumValues = VTs.NumVTs;
4563
4564  // Clear the operands list, updating used nodes to remove this from their
4565  // use list.  Keep track of any operands that become dead as a result.
4566  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4567  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4568    SDUse &Use = *I++;
4569    SDNode *Used = Use.getNode();
4570    Use.set(SDValue());
4571    if (Used->use_empty())
4572      DeadNodeSet.insert(Used);
4573  }
4574
4575  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4576    // Initialize the memory references information.
4577    MN->setMemRefs(0, 0);
4578    // If NumOps is larger than the # of operands we can have in a
4579    // MachineSDNode, reallocate the operand list.
4580    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4581      if (MN->OperandsNeedDelete)
4582        delete[] MN->OperandList;
4583      if (NumOps > array_lengthof(MN->LocalOperands))
4584        // We're creating a final node that will live unmorphed for the
4585        // remainder of the current SelectionDAG iteration, so we can allocate
4586        // the operands directly out of a pool with no recycling metadata.
4587        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4588                        Ops, NumOps);
4589      else
4590        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4591      MN->OperandsNeedDelete = false;
4592    } else
4593      MN->InitOperands(MN->OperandList, Ops, NumOps);
4594  } else {
4595    // If NumOps is larger than the # of operands we currently have, reallocate
4596    // the operand list.
4597    if (NumOps > N->NumOperands) {
4598      if (N->OperandsNeedDelete)
4599        delete[] N->OperandList;
4600      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4601      N->OperandsNeedDelete = true;
4602    } else
4603      MN->InitOperands(MN->OperandList, Ops, NumOps);
4604  }
4605
4606  // Delete any nodes that are still dead after adding the uses for the
4607  // new operands.
4608  SmallVector<SDNode *, 16> DeadNodes;
4609  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4610       E = DeadNodeSet.end(); I != E; ++I)
4611    if ((*I)->use_empty())
4612      DeadNodes.push_back(*I);
4613  RemoveDeadNodes(DeadNodes);
4614
4615  if (IP)
4616    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4617  return N;
4618}
4619
4620
4621/// getMachineNode - These are used for target selectors to create a new node
4622/// with specified return type(s), MachineInstr opcode, and operands.
4623///
4624/// Note that getMachineNode returns the resultant node.  If there is already a
4625/// node of the specified opcode and operands, it returns that node instead of
4626/// the current one.
4627MachineSDNode *
4628SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4629  SDVTList VTs = getVTList(VT);
4630  return getMachineNode(Opcode, dl, VTs, 0, 0);
4631}
4632
4633MachineSDNode *
4634SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4635  SDVTList VTs = getVTList(VT);
4636  SDValue Ops[] = { Op1 };
4637  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4638}
4639
4640MachineSDNode *
4641SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4642                             SDValue Op1, SDValue Op2) {
4643  SDVTList VTs = getVTList(VT);
4644  SDValue Ops[] = { Op1, Op2 };
4645  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4646}
4647
4648MachineSDNode *
4649SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4650                             SDValue Op1, SDValue Op2, SDValue Op3) {
4651  SDVTList VTs = getVTList(VT);
4652  SDValue Ops[] = { Op1, Op2, Op3 };
4653  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4654}
4655
4656MachineSDNode *
4657SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4658                             const SDValue *Ops, unsigned NumOps) {
4659  SDVTList VTs = getVTList(VT);
4660  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4661}
4662
4663MachineSDNode *
4664SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4665  SDVTList VTs = getVTList(VT1, VT2);
4666  return getMachineNode(Opcode, dl, VTs, 0, 0);
4667}
4668
4669MachineSDNode *
4670SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4671                             EVT VT1, EVT VT2, SDValue Op1) {
4672  SDVTList VTs = getVTList(VT1, VT2);
4673  SDValue Ops[] = { Op1 };
4674  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4675}
4676
4677MachineSDNode *
4678SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4679                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4680  SDVTList VTs = getVTList(VT1, VT2);
4681  SDValue Ops[] = { Op1, Op2 };
4682  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4683}
4684
4685MachineSDNode *
4686SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4687                             EVT VT1, EVT VT2, SDValue Op1,
4688                             SDValue Op2, SDValue Op3) {
4689  SDVTList VTs = getVTList(VT1, VT2);
4690  SDValue Ops[] = { Op1, Op2, Op3 };
4691  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4692}
4693
4694MachineSDNode *
4695SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4696                             EVT VT1, EVT VT2,
4697                             const SDValue *Ops, unsigned NumOps) {
4698  SDVTList VTs = getVTList(VT1, VT2);
4699  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4700}
4701
4702MachineSDNode *
4703SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4704                             EVT VT1, EVT VT2, EVT VT3,
4705                             SDValue Op1, SDValue Op2) {
4706  SDVTList VTs = getVTList(VT1, VT2, VT3);
4707  SDValue Ops[] = { Op1, Op2 };
4708  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4709}
4710
4711MachineSDNode *
4712SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4713                             EVT VT1, EVT VT2, EVT VT3,
4714                             SDValue Op1, SDValue Op2, SDValue Op3) {
4715  SDVTList VTs = getVTList(VT1, VT2, VT3);
4716  SDValue Ops[] = { Op1, Op2, Op3 };
4717  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4718}
4719
4720MachineSDNode *
4721SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4722                             EVT VT1, EVT VT2, EVT VT3,
4723                             const SDValue *Ops, unsigned NumOps) {
4724  SDVTList VTs = getVTList(VT1, VT2, VT3);
4725  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4726}
4727
4728MachineSDNode *
4729SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4730                             EVT VT2, EVT VT3, EVT VT4,
4731                             const SDValue *Ops, unsigned NumOps) {
4732  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4733  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4734}
4735
4736MachineSDNode *
4737SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4738                             const std::vector<EVT> &ResultTys,
4739                             const SDValue *Ops, unsigned NumOps) {
4740  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4741  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4746                             const SDValue *Ops, unsigned NumOps) {
4747  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4748  MachineSDNode *N;
4749  void *IP;
4750
4751  if (DoCSE) {
4752    FoldingSetNodeID ID;
4753    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4754    IP = 0;
4755    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4756      return cast<MachineSDNode>(E);
4757  }
4758
4759  // Allocate a new MachineSDNode.
4760  N = NodeAllocator.Allocate<MachineSDNode>();
4761  new (N) MachineSDNode(~Opcode, DL, VTs);
4762
4763  // Initialize the operands list.
4764  if (NumOps > array_lengthof(N->LocalOperands))
4765    // We're creating a final node that will live unmorphed for the
4766    // remainder of the current SelectionDAG iteration, so we can allocate
4767    // the operands directly out of a pool with no recycling metadata.
4768    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4769                    Ops, NumOps);
4770  else
4771    N->InitOperands(N->LocalOperands, Ops, NumOps);
4772  N->OperandsNeedDelete = false;
4773
4774  if (DoCSE)
4775    CSEMap.InsertNode(N, IP);
4776
4777  AllNodes.push_back(N);
4778#ifndef NDEBUG
4779  VerifyNode(N);
4780#endif
4781  return N;
4782}
4783
4784/// getTargetExtractSubreg - A convenience function for creating
4785/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4786SDValue
4787SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4788                                     SDValue Operand) {
4789  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4790  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4791                                  VT, Operand, SRIdxVal);
4792  return SDValue(Subreg, 0);
4793}
4794
4795/// getTargetInsertSubreg - A convenience function for creating
4796/// TargetInstrInfo::INSERT_SUBREG nodes.
4797SDValue
4798SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4799                                    SDValue Operand, SDValue Subreg) {
4800  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4801  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4802                                  VT, Operand, Subreg, SRIdxVal);
4803  return SDValue(Result, 0);
4804}
4805
4806/// getNodeIfExists - Get the specified node if it's already available, or
4807/// else return NULL.
4808SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4809                                      const SDValue *Ops, unsigned NumOps) {
4810  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4811    FoldingSetNodeID ID;
4812    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4813    void *IP = 0;
4814    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4815      return E;
4816  }
4817  return NULL;
4818}
4819
4820/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4821/// This can cause recursive merging of nodes in the DAG.
4822///
4823/// This version assumes From has a single result value.
4824///
4825void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4826                                      DAGUpdateListener *UpdateListener) {
4827  SDNode *From = FromN.getNode();
4828  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4829         "Cannot replace with this method!");
4830  assert(From != To.getNode() && "Cannot replace uses of with self");
4831
4832  // Iterate over all the existing uses of From. New uses will be added
4833  // to the beginning of the use list, which we avoid visiting.
4834  // This specifically avoids visiting uses of From that arise while the
4835  // replacement is happening, because any such uses would be the result
4836  // of CSE: If an existing node looks like From after one of its operands
4837  // is replaced by To, we don't want to replace of all its users with To
4838  // too. See PR3018 for more info.
4839  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4840  while (UI != UE) {
4841    SDNode *User = *UI;
4842
4843    // This node is about to morph, remove its old self from the CSE maps.
4844    RemoveNodeFromCSEMaps(User);
4845
4846    // A user can appear in a use list multiple times, and when this
4847    // happens the uses are usually next to each other in the list.
4848    // To help reduce the number of CSE recomputations, process all
4849    // the uses of this user that we can find this way.
4850    do {
4851      SDUse &Use = UI.getUse();
4852      ++UI;
4853      Use.set(To);
4854    } while (UI != UE && *UI == User);
4855
4856    // Now that we have modified User, add it back to the CSE maps.  If it
4857    // already exists there, recursively merge the results together.
4858    AddModifiedNodeToCSEMaps(User, UpdateListener);
4859  }
4860}
4861
4862/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4863/// This can cause recursive merging of nodes in the DAG.
4864///
4865/// This version assumes that for each value of From, there is a
4866/// corresponding value in To in the same position with the same type.
4867///
4868void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4869                                      DAGUpdateListener *UpdateListener) {
4870#ifndef NDEBUG
4871  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4872    assert((!From->hasAnyUseOfValue(i) ||
4873            From->getValueType(i) == To->getValueType(i)) &&
4874           "Cannot use this version of ReplaceAllUsesWith!");
4875#endif
4876
4877  // Handle the trivial case.
4878  if (From == To)
4879    return;
4880
4881  // Iterate over just the existing users of From. See the comments in
4882  // the ReplaceAllUsesWith above.
4883  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4884  while (UI != UE) {
4885    SDNode *User = *UI;
4886
4887    // This node is about to morph, remove its old self from the CSE maps.
4888    RemoveNodeFromCSEMaps(User);
4889
4890    // A user can appear in a use list multiple times, and when this
4891    // happens the uses are usually next to each other in the list.
4892    // To help reduce the number of CSE recomputations, process all
4893    // the uses of this user that we can find this way.
4894    do {
4895      SDUse &Use = UI.getUse();
4896      ++UI;
4897      Use.setNode(To);
4898    } while (UI != UE && *UI == User);
4899
4900    // Now that we have modified User, add it back to the CSE maps.  If it
4901    // already exists there, recursively merge the results together.
4902    AddModifiedNodeToCSEMaps(User, UpdateListener);
4903  }
4904}
4905
4906/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4907/// This can cause recursive merging of nodes in the DAG.
4908///
4909/// This version can replace From with any result values.  To must match the
4910/// number and types of values returned by From.
4911void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4912                                      const SDValue *To,
4913                                      DAGUpdateListener *UpdateListener) {
4914  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4915    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4916
4917  // Iterate over just the existing users of From. See the comments in
4918  // the ReplaceAllUsesWith above.
4919  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4920  while (UI != UE) {
4921    SDNode *User = *UI;
4922
4923    // This node is about to morph, remove its old self from the CSE maps.
4924    RemoveNodeFromCSEMaps(User);
4925
4926    // A user can appear in a use list multiple times, and when this
4927    // happens the uses are usually next to each other in the list.
4928    // To help reduce the number of CSE recomputations, process all
4929    // the uses of this user that we can find this way.
4930    do {
4931      SDUse &Use = UI.getUse();
4932      const SDValue &ToOp = To[Use.getResNo()];
4933      ++UI;
4934      Use.set(ToOp);
4935    } while (UI != UE && *UI == User);
4936
4937    // Now that we have modified User, add it back to the CSE maps.  If it
4938    // already exists there, recursively merge the results together.
4939    AddModifiedNodeToCSEMaps(User, UpdateListener);
4940  }
4941}
4942
4943/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4944/// uses of other values produced by From.getNode() alone.  The Deleted
4945/// vector is handled the same way as for ReplaceAllUsesWith.
4946void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4947                                             DAGUpdateListener *UpdateListener){
4948  // Handle the really simple, really trivial case efficiently.
4949  if (From == To) return;
4950
4951  // Handle the simple, trivial, case efficiently.
4952  if (From.getNode()->getNumValues() == 1) {
4953    ReplaceAllUsesWith(From, To, UpdateListener);
4954    return;
4955  }
4956
4957  // Iterate over just the existing users of From. See the comments in
4958  // the ReplaceAllUsesWith above.
4959  SDNode::use_iterator UI = From.getNode()->use_begin(),
4960                       UE = From.getNode()->use_end();
4961  while (UI != UE) {
4962    SDNode *User = *UI;
4963    bool UserRemovedFromCSEMaps = false;
4964
4965    // A user can appear in a use list multiple times, and when this
4966    // happens the uses are usually next to each other in the list.
4967    // To help reduce the number of CSE recomputations, process all
4968    // the uses of this user that we can find this way.
4969    do {
4970      SDUse &Use = UI.getUse();
4971
4972      // Skip uses of different values from the same node.
4973      if (Use.getResNo() != From.getResNo()) {
4974        ++UI;
4975        continue;
4976      }
4977
4978      // If this node hasn't been modified yet, it's still in the CSE maps,
4979      // so remove its old self from the CSE maps.
4980      if (!UserRemovedFromCSEMaps) {
4981        RemoveNodeFromCSEMaps(User);
4982        UserRemovedFromCSEMaps = true;
4983      }
4984
4985      ++UI;
4986      Use.set(To);
4987    } while (UI != UE && *UI == User);
4988
4989    // We are iterating over all uses of the From node, so if a use
4990    // doesn't use the specific value, no changes are made.
4991    if (!UserRemovedFromCSEMaps)
4992      continue;
4993
4994    // Now that we have modified User, add it back to the CSE maps.  If it
4995    // already exists there, recursively merge the results together.
4996    AddModifiedNodeToCSEMaps(User, UpdateListener);
4997  }
4998}
4999
5000namespace {
5001  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5002  /// to record information about a use.
5003  struct UseMemo {
5004    SDNode *User;
5005    unsigned Index;
5006    SDUse *Use;
5007  };
5008
5009  /// operator< - Sort Memos by User.
5010  bool operator<(const UseMemo &L, const UseMemo &R) {
5011    return (intptr_t)L.User < (intptr_t)R.User;
5012  }
5013}
5014
5015/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5016/// uses of other values produced by From.getNode() alone.  The same value
5017/// may appear in both the From and To list.  The Deleted vector is
5018/// handled the same way as for ReplaceAllUsesWith.
5019void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5020                                              const SDValue *To,
5021                                              unsigned Num,
5022                                              DAGUpdateListener *UpdateListener){
5023  // Handle the simple, trivial case efficiently.
5024  if (Num == 1)
5025    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5026
5027  // Read up all the uses and make records of them. This helps
5028  // processing new uses that are introduced during the
5029  // replacement process.
5030  SmallVector<UseMemo, 4> Uses;
5031  for (unsigned i = 0; i != Num; ++i) {
5032    unsigned FromResNo = From[i].getResNo();
5033    SDNode *FromNode = From[i].getNode();
5034    for (SDNode::use_iterator UI = FromNode->use_begin(),
5035         E = FromNode->use_end(); UI != E; ++UI) {
5036      SDUse &Use = UI.getUse();
5037      if (Use.getResNo() == FromResNo) {
5038        UseMemo Memo = { *UI, i, &Use };
5039        Uses.push_back(Memo);
5040      }
5041    }
5042  }
5043
5044  // Sort the uses, so that all the uses from a given User are together.
5045  std::sort(Uses.begin(), Uses.end());
5046
5047  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5048       UseIndex != UseIndexEnd; ) {
5049    // We know that this user uses some value of From.  If it is the right
5050    // value, update it.
5051    SDNode *User = Uses[UseIndex].User;
5052
5053    // This node is about to morph, remove its old self from the CSE maps.
5054    RemoveNodeFromCSEMaps(User);
5055
5056    // The Uses array is sorted, so all the uses for a given User
5057    // are next to each other in the list.
5058    // To help reduce the number of CSE recomputations, process all
5059    // the uses of this user that we can find this way.
5060    do {
5061      unsigned i = Uses[UseIndex].Index;
5062      SDUse &Use = *Uses[UseIndex].Use;
5063      ++UseIndex;
5064
5065      Use.set(To[i]);
5066    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5067
5068    // Now that we have modified User, add it back to the CSE maps.  If it
5069    // already exists there, recursively merge the results together.
5070    AddModifiedNodeToCSEMaps(User, UpdateListener);
5071  }
5072}
5073
5074/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5075/// based on their topological order. It returns the maximum id and a vector
5076/// of the SDNodes* in assigned order by reference.
5077unsigned SelectionDAG::AssignTopologicalOrder() {
5078
5079  unsigned DAGSize = 0;
5080
5081  // SortedPos tracks the progress of the algorithm. Nodes before it are
5082  // sorted, nodes after it are unsorted. When the algorithm completes
5083  // it is at the end of the list.
5084  allnodes_iterator SortedPos = allnodes_begin();
5085
5086  // Visit all the nodes. Move nodes with no operands to the front of
5087  // the list immediately. Annotate nodes that do have operands with their
5088  // operand count. Before we do this, the Node Id fields of the nodes
5089  // may contain arbitrary values. After, the Node Id fields for nodes
5090  // before SortedPos will contain the topological sort index, and the
5091  // Node Id fields for nodes At SortedPos and after will contain the
5092  // count of outstanding operands.
5093  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5094    SDNode *N = I++;
5095    unsigned Degree = N->getNumOperands();
5096    if (Degree == 0) {
5097      // A node with no uses, add it to the result array immediately.
5098      N->setNodeId(DAGSize++);
5099      allnodes_iterator Q = N;
5100      if (Q != SortedPos)
5101        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5102      ++SortedPos;
5103    } else {
5104      // Temporarily use the Node Id as scratch space for the degree count.
5105      N->setNodeId(Degree);
5106    }
5107  }
5108
5109  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5110  // such that by the time the end is reached all nodes will be sorted.
5111  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5112    SDNode *N = I;
5113    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5114         UI != UE; ++UI) {
5115      SDNode *P = *UI;
5116      unsigned Degree = P->getNodeId();
5117      --Degree;
5118      if (Degree == 0) {
5119        // All of P's operands are sorted, so P may sorted now.
5120        P->setNodeId(DAGSize++);
5121        if (P != SortedPos)
5122          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5123        ++SortedPos;
5124      } else {
5125        // Update P's outstanding operand count.
5126        P->setNodeId(Degree);
5127      }
5128    }
5129  }
5130
5131  assert(SortedPos == AllNodes.end() &&
5132         "Topological sort incomplete!");
5133  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5134         "First node in topological sort is not the entry token!");
5135  assert(AllNodes.front().getNodeId() == 0 &&
5136         "First node in topological sort has non-zero id!");
5137  assert(AllNodes.front().getNumOperands() == 0 &&
5138         "First node in topological sort has operands!");
5139  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5140         "Last node in topologic sort has unexpected id!");
5141  assert(AllNodes.back().use_empty() &&
5142         "Last node in topologic sort has users!");
5143  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5144  return DAGSize;
5145}
5146
5147
5148
5149//===----------------------------------------------------------------------===//
5150//                              SDNode Class
5151//===----------------------------------------------------------------------===//
5152
5153HandleSDNode::~HandleSDNode() {
5154  DropOperands();
5155}
5156
5157GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5158                                         EVT VT, int64_t o, unsigned char TF)
5159  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5160    Offset(o), TargetFlags(TF) {
5161  TheGlobal = const_cast<GlobalValue*>(GA);
5162}
5163
5164MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5165                     MachineMemOperand *mmo)
5166 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5167  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5168  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5169  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5170}
5171
5172MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5173                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5174                     MachineMemOperand *mmo)
5175   : SDNode(Opc, dl, VTs, Ops, NumOps),
5176     MemoryVT(memvt), MMO(mmo) {
5177  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5178  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5179  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5180}
5181
5182/// Profile - Gather unique data for the node.
5183///
5184void SDNode::Profile(FoldingSetNodeID &ID) const {
5185  AddNodeIDNode(ID, this);
5186}
5187
5188namespace {
5189  struct EVTArray {
5190    std::vector<EVT> VTs;
5191
5192    EVTArray() {
5193      VTs.reserve(MVT::LAST_VALUETYPE);
5194      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5195        VTs.push_back(MVT((MVT::SimpleValueType)i));
5196    }
5197  };
5198}
5199
5200static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5201static ManagedStatic<EVTArray> SimpleVTArray;
5202static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5203
5204/// getValueTypeList - Return a pointer to the specified value type.
5205///
5206const EVT *SDNode::getValueTypeList(EVT VT) {
5207  if (VT.isExtended()) {
5208    sys::SmartScopedLock<true> Lock(*VTMutex);
5209    return &(*EVTs->insert(VT).first);
5210  } else {
5211    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5212  }
5213}
5214
5215/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5216/// indicated value.  This method ignores uses of other values defined by this
5217/// operation.
5218bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5219  assert(Value < getNumValues() && "Bad value!");
5220
5221  // TODO: Only iterate over uses of a given value of the node
5222  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5223    if (UI.getUse().getResNo() == Value) {
5224      if (NUses == 0)
5225        return false;
5226      --NUses;
5227    }
5228  }
5229
5230  // Found exactly the right number of uses?
5231  return NUses == 0;
5232}
5233
5234
5235/// hasAnyUseOfValue - Return true if there are any use of the indicated
5236/// value. This method ignores uses of other values defined by this operation.
5237bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5238  assert(Value < getNumValues() && "Bad value!");
5239
5240  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5241    if (UI.getUse().getResNo() == Value)
5242      return true;
5243
5244  return false;
5245}
5246
5247
5248/// isOnlyUserOf - Return true if this node is the only use of N.
5249///
5250bool SDNode::isOnlyUserOf(SDNode *N) const {
5251  bool Seen = false;
5252  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5253    SDNode *User = *I;
5254    if (User == this)
5255      Seen = true;
5256    else
5257      return false;
5258  }
5259
5260  return Seen;
5261}
5262
5263/// isOperand - Return true if this node is an operand of N.
5264///
5265bool SDValue::isOperandOf(SDNode *N) const {
5266  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5267    if (*this == N->getOperand(i))
5268      return true;
5269  return false;
5270}
5271
5272bool SDNode::isOperandOf(SDNode *N) const {
5273  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5274    if (this == N->OperandList[i].getNode())
5275      return true;
5276  return false;
5277}
5278
5279/// reachesChainWithoutSideEffects - Return true if this operand (which must
5280/// be a chain) reaches the specified operand without crossing any
5281/// side-effecting instructions.  In practice, this looks through token
5282/// factors and non-volatile loads.  In order to remain efficient, this only
5283/// looks a couple of nodes in, it does not do an exhaustive search.
5284bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5285                                               unsigned Depth) const {
5286  if (*this == Dest) return true;
5287
5288  // Don't search too deeply, we just want to be able to see through
5289  // TokenFactor's etc.
5290  if (Depth == 0) return false;
5291
5292  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5293  // of the operands of the TF reach dest, then we can do the xform.
5294  if (getOpcode() == ISD::TokenFactor) {
5295    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5296      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5297        return true;
5298    return false;
5299  }
5300
5301  // Loads don't have side effects, look through them.
5302  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5303    if (!Ld->isVolatile())
5304      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5305  }
5306  return false;
5307}
5308
5309
5310static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5311                            SmallPtrSet<SDNode *, 32> &Visited) {
5312  if (found || !Visited.insert(N))
5313    return;
5314
5315  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5316    SDNode *Op = N->getOperand(i).getNode();
5317    if (Op == P) {
5318      found = true;
5319      return;
5320    }
5321    findPredecessor(Op, P, found, Visited);
5322  }
5323}
5324
5325/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5326/// is either an operand of N or it can be reached by recursively traversing
5327/// up the operands.
5328/// NOTE: this is an expensive method. Use it carefully.
5329bool SDNode::isPredecessorOf(SDNode *N) const {
5330  SmallPtrSet<SDNode *, 32> Visited;
5331  bool found = false;
5332  findPredecessor(N, this, found, Visited);
5333  return found;
5334}
5335
5336uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5337  assert(Num < NumOperands && "Invalid child # of SDNode!");
5338  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5339}
5340
5341std::string SDNode::getOperationName(const SelectionDAG *G) const {
5342  switch (getOpcode()) {
5343  default:
5344    if (getOpcode() < ISD::BUILTIN_OP_END)
5345      return "<<Unknown DAG Node>>";
5346    if (isMachineOpcode()) {
5347      if (G)
5348        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5349          if (getMachineOpcode() < TII->getNumOpcodes())
5350            return TII->get(getMachineOpcode()).getName();
5351      return "<<Unknown Machine Node>>";
5352    }
5353    if (G) {
5354      const TargetLowering &TLI = G->getTargetLoweringInfo();
5355      const char *Name = TLI.getTargetNodeName(getOpcode());
5356      if (Name) return Name;
5357      return "<<Unknown Target Node>>";
5358    }
5359    return "<<Unknown Node>>";
5360
5361#ifndef NDEBUG
5362  case ISD::DELETED_NODE:
5363    return "<<Deleted Node!>>";
5364#endif
5365  case ISD::PREFETCH:      return "Prefetch";
5366  case ISD::MEMBARRIER:    return "MemBarrier";
5367  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5368  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5369  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5370  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5371  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5372  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5373  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5374  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5375  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5376  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5377  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5378  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5379  case ISD::PCMARKER:      return "PCMarker";
5380  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5381  case ISD::SRCVALUE:      return "SrcValue";
5382  case ISD::EntryToken:    return "EntryToken";
5383  case ISD::TokenFactor:   return "TokenFactor";
5384  case ISD::AssertSext:    return "AssertSext";
5385  case ISD::AssertZext:    return "AssertZext";
5386
5387  case ISD::BasicBlock:    return "BasicBlock";
5388  case ISD::VALUETYPE:     return "ValueType";
5389  case ISD::Register:      return "Register";
5390
5391  case ISD::Constant:      return "Constant";
5392  case ISD::ConstantFP:    return "ConstantFP";
5393  case ISD::GlobalAddress: return "GlobalAddress";
5394  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5395  case ISD::FrameIndex:    return "FrameIndex";
5396  case ISD::JumpTable:     return "JumpTable";
5397  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5398  case ISD::RETURNADDR: return "RETURNADDR";
5399  case ISD::FRAMEADDR: return "FRAMEADDR";
5400  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5401  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5402  case ISD::LSDAADDR: return "LSDAADDR";
5403  case ISD::EHSELECTION: return "EHSELECTION";
5404  case ISD::EH_RETURN: return "EH_RETURN";
5405  case ISD::ConstantPool:  return "ConstantPool";
5406  case ISD::ExternalSymbol: return "ExternalSymbol";
5407  case ISD::INTRINSIC_WO_CHAIN: {
5408    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5409    return Intrinsic::getName((Intrinsic::ID)IID);
5410  }
5411  case ISD::INTRINSIC_VOID:
5412  case ISD::INTRINSIC_W_CHAIN: {
5413    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5414    return Intrinsic::getName((Intrinsic::ID)IID);
5415  }
5416
5417  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5418  case ISD::TargetConstant: return "TargetConstant";
5419  case ISD::TargetConstantFP:return "TargetConstantFP";
5420  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5421  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5422  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5423  case ISD::TargetJumpTable:  return "TargetJumpTable";
5424  case ISD::TargetConstantPool:  return "TargetConstantPool";
5425  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5426
5427  case ISD::CopyToReg:     return "CopyToReg";
5428  case ISD::CopyFromReg:   return "CopyFromReg";
5429  case ISD::UNDEF:         return "undef";
5430  case ISD::MERGE_VALUES:  return "merge_values";
5431  case ISD::INLINEASM:     return "inlineasm";
5432  case ISD::DBG_LABEL:     return "dbg_label";
5433  case ISD::EH_LABEL:      return "eh_label";
5434  case ISD::HANDLENODE:    return "handlenode";
5435
5436  // Unary operators
5437  case ISD::FABS:   return "fabs";
5438  case ISD::FNEG:   return "fneg";
5439  case ISD::FSQRT:  return "fsqrt";
5440  case ISD::FSIN:   return "fsin";
5441  case ISD::FCOS:   return "fcos";
5442  case ISD::FPOWI:  return "fpowi";
5443  case ISD::FPOW:   return "fpow";
5444  case ISD::FTRUNC: return "ftrunc";
5445  case ISD::FFLOOR: return "ffloor";
5446  case ISD::FCEIL:  return "fceil";
5447  case ISD::FRINT:  return "frint";
5448  case ISD::FNEARBYINT: return "fnearbyint";
5449
5450  // Binary operators
5451  case ISD::ADD:    return "add";
5452  case ISD::SUB:    return "sub";
5453  case ISD::MUL:    return "mul";
5454  case ISD::MULHU:  return "mulhu";
5455  case ISD::MULHS:  return "mulhs";
5456  case ISD::SDIV:   return "sdiv";
5457  case ISD::UDIV:   return "udiv";
5458  case ISD::SREM:   return "srem";
5459  case ISD::UREM:   return "urem";
5460  case ISD::SMUL_LOHI:  return "smul_lohi";
5461  case ISD::UMUL_LOHI:  return "umul_lohi";
5462  case ISD::SDIVREM:    return "sdivrem";
5463  case ISD::UDIVREM:    return "udivrem";
5464  case ISD::AND:    return "and";
5465  case ISD::OR:     return "or";
5466  case ISD::XOR:    return "xor";
5467  case ISD::SHL:    return "shl";
5468  case ISD::SRA:    return "sra";
5469  case ISD::SRL:    return "srl";
5470  case ISD::ROTL:   return "rotl";
5471  case ISD::ROTR:   return "rotr";
5472  case ISD::FADD:   return "fadd";
5473  case ISD::FSUB:   return "fsub";
5474  case ISD::FMUL:   return "fmul";
5475  case ISD::FDIV:   return "fdiv";
5476  case ISD::FREM:   return "frem";
5477  case ISD::FCOPYSIGN: return "fcopysign";
5478  case ISD::FGETSIGN:  return "fgetsign";
5479
5480  case ISD::SETCC:       return "setcc";
5481  case ISD::VSETCC:      return "vsetcc";
5482  case ISD::SELECT:      return "select";
5483  case ISD::SELECT_CC:   return "select_cc";
5484  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5485  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5486  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5487  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5488  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5489  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5490  case ISD::CARRY_FALSE:         return "carry_false";
5491  case ISD::ADDC:        return "addc";
5492  case ISD::ADDE:        return "adde";
5493  case ISD::SADDO:       return "saddo";
5494  case ISD::UADDO:       return "uaddo";
5495  case ISD::SSUBO:       return "ssubo";
5496  case ISD::USUBO:       return "usubo";
5497  case ISD::SMULO:       return "smulo";
5498  case ISD::UMULO:       return "umulo";
5499  case ISD::SUBC:        return "subc";
5500  case ISD::SUBE:        return "sube";
5501  case ISD::SHL_PARTS:   return "shl_parts";
5502  case ISD::SRA_PARTS:   return "sra_parts";
5503  case ISD::SRL_PARTS:   return "srl_parts";
5504
5505  // Conversion operators.
5506  case ISD::SIGN_EXTEND: return "sign_extend";
5507  case ISD::ZERO_EXTEND: return "zero_extend";
5508  case ISD::ANY_EXTEND:  return "any_extend";
5509  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5510  case ISD::TRUNCATE:    return "truncate";
5511  case ISD::FP_ROUND:    return "fp_round";
5512  case ISD::FLT_ROUNDS_: return "flt_rounds";
5513  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5514  case ISD::FP_EXTEND:   return "fp_extend";
5515
5516  case ISD::SINT_TO_FP:  return "sint_to_fp";
5517  case ISD::UINT_TO_FP:  return "uint_to_fp";
5518  case ISD::FP_TO_SINT:  return "fp_to_sint";
5519  case ISD::FP_TO_UINT:  return "fp_to_uint";
5520  case ISD::BIT_CONVERT: return "bit_convert";
5521
5522  case ISD::CONVERT_RNDSAT: {
5523    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5524    default: llvm_unreachable("Unknown cvt code!");
5525    case ISD::CVT_FF:  return "cvt_ff";
5526    case ISD::CVT_FS:  return "cvt_fs";
5527    case ISD::CVT_FU:  return "cvt_fu";
5528    case ISD::CVT_SF:  return "cvt_sf";
5529    case ISD::CVT_UF:  return "cvt_uf";
5530    case ISD::CVT_SS:  return "cvt_ss";
5531    case ISD::CVT_SU:  return "cvt_su";
5532    case ISD::CVT_US:  return "cvt_us";
5533    case ISD::CVT_UU:  return "cvt_uu";
5534    }
5535  }
5536
5537    // Control flow instructions
5538  case ISD::BR:      return "br";
5539  case ISD::BRIND:   return "brind";
5540  case ISD::BR_JT:   return "br_jt";
5541  case ISD::BRCOND:  return "brcond";
5542  case ISD::BR_CC:   return "br_cc";
5543  case ISD::CALLSEQ_START:  return "callseq_start";
5544  case ISD::CALLSEQ_END:    return "callseq_end";
5545
5546    // Other operators
5547  case ISD::LOAD:               return "load";
5548  case ISD::STORE:              return "store";
5549  case ISD::VAARG:              return "vaarg";
5550  case ISD::VACOPY:             return "vacopy";
5551  case ISD::VAEND:              return "vaend";
5552  case ISD::VASTART:            return "vastart";
5553  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5554  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5555  case ISD::BUILD_PAIR:         return "build_pair";
5556  case ISD::STACKSAVE:          return "stacksave";
5557  case ISD::STACKRESTORE:       return "stackrestore";
5558  case ISD::TRAP:               return "trap";
5559
5560  // Bit manipulation
5561  case ISD::BSWAP:   return "bswap";
5562  case ISD::CTPOP:   return "ctpop";
5563  case ISD::CTTZ:    return "cttz";
5564  case ISD::CTLZ:    return "ctlz";
5565
5566  // Debug info
5567  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5568  case ISD::DEBUG_LOC: return "debug_loc";
5569
5570  // Trampolines
5571  case ISD::TRAMPOLINE: return "trampoline";
5572
5573  case ISD::CONDCODE:
5574    switch (cast<CondCodeSDNode>(this)->get()) {
5575    default: llvm_unreachable("Unknown setcc condition!");
5576    case ISD::SETOEQ:  return "setoeq";
5577    case ISD::SETOGT:  return "setogt";
5578    case ISD::SETOGE:  return "setoge";
5579    case ISD::SETOLT:  return "setolt";
5580    case ISD::SETOLE:  return "setole";
5581    case ISD::SETONE:  return "setone";
5582
5583    case ISD::SETO:    return "seto";
5584    case ISD::SETUO:   return "setuo";
5585    case ISD::SETUEQ:  return "setue";
5586    case ISD::SETUGT:  return "setugt";
5587    case ISD::SETUGE:  return "setuge";
5588    case ISD::SETULT:  return "setult";
5589    case ISD::SETULE:  return "setule";
5590    case ISD::SETUNE:  return "setune";
5591
5592    case ISD::SETEQ:   return "seteq";
5593    case ISD::SETGT:   return "setgt";
5594    case ISD::SETGE:   return "setge";
5595    case ISD::SETLT:   return "setlt";
5596    case ISD::SETLE:   return "setle";
5597    case ISD::SETNE:   return "setne";
5598    }
5599  }
5600}
5601
5602const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5603  switch (AM) {
5604  default:
5605    return "";
5606  case ISD::PRE_INC:
5607    return "<pre-inc>";
5608  case ISD::PRE_DEC:
5609    return "<pre-dec>";
5610  case ISD::POST_INC:
5611    return "<post-inc>";
5612  case ISD::POST_DEC:
5613    return "<post-dec>";
5614  }
5615}
5616
5617std::string ISD::ArgFlagsTy::getArgFlagsString() {
5618  std::string S = "< ";
5619
5620  if (isZExt())
5621    S += "zext ";
5622  if (isSExt())
5623    S += "sext ";
5624  if (isInReg())
5625    S += "inreg ";
5626  if (isSRet())
5627    S += "sret ";
5628  if (isByVal())
5629    S += "byval ";
5630  if (isNest())
5631    S += "nest ";
5632  if (getByValAlign())
5633    S += "byval-align:" + utostr(getByValAlign()) + " ";
5634  if (getOrigAlign())
5635    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5636  if (getByValSize())
5637    S += "byval-size:" + utostr(getByValSize()) + " ";
5638  return S + ">";
5639}
5640
5641void SDNode::dump() const { dump(0); }
5642void SDNode::dump(const SelectionDAG *G) const {
5643  print(errs(), G);
5644}
5645
5646void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5647  OS << (void*)this << ": ";
5648
5649  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5650    if (i) OS << ",";
5651    if (getValueType(i) == MVT::Other)
5652      OS << "ch";
5653    else
5654      OS << getValueType(i).getEVTString();
5655  }
5656  OS << " = " << getOperationName(G);
5657}
5658
5659void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5660  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5661    if (!MN->memoperands_empty()) {
5662      OS << "<";
5663      OS << "Mem:";
5664      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5665           e = MN->memoperands_end(); i != e; ++i) {
5666        OS << **i;
5667        if (next(i) != e)
5668          OS << " ";
5669      }
5670      OS << ">";
5671    }
5672  } else if (const ShuffleVectorSDNode *SVN =
5673               dyn_cast<ShuffleVectorSDNode>(this)) {
5674    OS << "<";
5675    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5676      int Idx = SVN->getMaskElt(i);
5677      if (i) OS << ",";
5678      if (Idx < 0)
5679        OS << "u";
5680      else
5681        OS << Idx;
5682    }
5683    OS << ">";
5684  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5685    OS << '<' << CSDN->getAPIntValue() << '>';
5686  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5687    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5688      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5689    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5690      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5691    else {
5692      OS << "<APFloat(";
5693      CSDN->getValueAPF().bitcastToAPInt().dump();
5694      OS << ")>";
5695    }
5696  } else if (const GlobalAddressSDNode *GADN =
5697             dyn_cast<GlobalAddressSDNode>(this)) {
5698    int64_t offset = GADN->getOffset();
5699    OS << '<';
5700    WriteAsOperand(OS, GADN->getGlobal());
5701    OS << '>';
5702    if (offset > 0)
5703      OS << " + " << offset;
5704    else
5705      OS << " " << offset;
5706    if (unsigned int TF = GADN->getTargetFlags())
5707      OS << " [TF=" << TF << ']';
5708  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5709    OS << "<" << FIDN->getIndex() << ">";
5710  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5711    OS << "<" << JTDN->getIndex() << ">";
5712    if (unsigned int TF = JTDN->getTargetFlags())
5713      OS << " [TF=" << TF << ']';
5714  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5715    int offset = CP->getOffset();
5716    if (CP->isMachineConstantPoolEntry())
5717      OS << "<" << *CP->getMachineCPVal() << ">";
5718    else
5719      OS << "<" << *CP->getConstVal() << ">";
5720    if (offset > 0)
5721      OS << " + " << offset;
5722    else
5723      OS << " " << offset;
5724    if (unsigned int TF = CP->getTargetFlags())
5725      OS << " [TF=" << TF << ']';
5726  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5727    OS << "<";
5728    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5729    if (LBB)
5730      OS << LBB->getName() << " ";
5731    OS << (const void*)BBDN->getBasicBlock() << ">";
5732  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5733    if (G && R->getReg() &&
5734        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5735      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5736    } else {
5737      OS << " #" << R->getReg();
5738    }
5739  } else if (const ExternalSymbolSDNode *ES =
5740             dyn_cast<ExternalSymbolSDNode>(this)) {
5741    OS << "'" << ES->getSymbol() << "'";
5742    if (unsigned int TF = ES->getTargetFlags())
5743      OS << " [TF=" << TF << ']';
5744  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5745    if (M->getValue())
5746      OS << "<" << M->getValue() << ">";
5747    else
5748      OS << "<null>";
5749  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5750    OS << ":" << N->getVT().getEVTString();
5751  }
5752  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5753    OS << " <" << *LD->getMemOperand();
5754
5755    bool doExt = true;
5756    switch (LD->getExtensionType()) {
5757    default: doExt = false; break;
5758    case ISD::EXTLOAD: OS << ", anyext"; break;
5759    case ISD::SEXTLOAD: OS << ", sext"; break;
5760    case ISD::ZEXTLOAD: OS << ", zext"; break;
5761    }
5762    if (doExt)
5763      OS << " from " << LD->getMemoryVT().getEVTString();
5764
5765    const char *AM = getIndexedModeName(LD->getAddressingMode());
5766    if (*AM)
5767      OS << ", " << AM;
5768
5769    OS << ">";
5770  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5771    OS << " <" << *ST->getMemOperand();
5772
5773    if (ST->isTruncatingStore())
5774      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5775
5776    const char *AM = getIndexedModeName(ST->getAddressingMode());
5777    if (*AM)
5778      OS << ", " << AM;
5779
5780    OS << ">";
5781  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5782    OS << " <" << *M->getMemOperand() << ">";
5783  }
5784}
5785
5786void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5787  print_types(OS, G);
5788  OS << " ";
5789  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5790    if (i) OS << ", ";
5791    OS << (void*)getOperand(i).getNode();
5792    if (unsigned RN = getOperand(i).getResNo())
5793      OS << ":" << RN;
5794  }
5795  print_details(OS, G);
5796}
5797
5798static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5799  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5800    if (N->getOperand(i).getNode()->hasOneUse())
5801      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5802    else
5803      errs() << "\n" << std::string(indent+2, ' ')
5804             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5805
5806
5807  errs() << "\n";
5808  errs().indent(indent);
5809  N->dump(G);
5810}
5811
5812void SelectionDAG::dump() const {
5813  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5814
5815  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5816       I != E; ++I) {
5817    const SDNode *N = I;
5818    if (!N->hasOneUse() && N != getRoot().getNode())
5819      DumpNodes(N, 2, this);
5820  }
5821
5822  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5823
5824  errs() << "\n\n";
5825}
5826
5827void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5828  print_types(OS, G);
5829  print_details(OS, G);
5830}
5831
5832typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5833static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5834                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5835  if (!once.insert(N))          // If we've been here before, return now.
5836    return;
5837  // Dump the current SDNode, but don't end the line yet.
5838  OS << std::string(indent, ' ');
5839  N->printr(OS, G);
5840  // Having printed this SDNode, walk the children:
5841  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5842    const SDNode *child = N->getOperand(i).getNode();
5843    if (i) OS << ",";
5844    OS << " ";
5845    if (child->getNumOperands() == 0) {
5846      // This child has no grandchildren; print it inline right here.
5847      child->printr(OS, G);
5848      once.insert(child);
5849    } else {          // Just the address.  FIXME: also print the child's opcode
5850      OS << (void*)child;
5851      if (unsigned RN = N->getOperand(i).getResNo())
5852        OS << ":" << RN;
5853    }
5854  }
5855  OS << "\n";
5856  // Dump children that have grandchildren on their own line(s).
5857  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5858    const SDNode *child = N->getOperand(i).getNode();
5859    DumpNodesr(OS, child, indent+2, G, once);
5860  }
5861}
5862
5863void SDNode::dumpr() const {
5864  VisitedSDNodeSet once;
5865  DumpNodesr(errs(), this, 0, 0, once);
5866}
5867
5868void SDNode::dumpr(const SelectionDAG *G) const {
5869  VisitedSDNodeSet once;
5870  DumpNodesr(errs(), this, 0, G, once);
5871}
5872
5873
5874// getAddressSpace - Return the address space this GlobalAddress belongs to.
5875unsigned GlobalAddressSDNode::getAddressSpace() const {
5876  return getGlobal()->getType()->getAddressSpace();
5877}
5878
5879
5880const Type *ConstantPoolSDNode::getType() const {
5881  if (isMachineConstantPoolEntry())
5882    return Val.MachineCPVal->getType();
5883  return Val.ConstVal->getType();
5884}
5885
5886bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5887                                        APInt &SplatUndef,
5888                                        unsigned &SplatBitSize,
5889                                        bool &HasAnyUndefs,
5890                                        unsigned MinSplatBits) {
5891  EVT VT = getValueType(0);
5892  assert(VT.isVector() && "Expected a vector type");
5893  unsigned sz = VT.getSizeInBits();
5894  if (MinSplatBits > sz)
5895    return false;
5896
5897  SplatValue = APInt(sz, 0);
5898  SplatUndef = APInt(sz, 0);
5899
5900  // Get the bits.  Bits with undefined values (when the corresponding element
5901  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5902  // in SplatValue.  If any of the values are not constant, give up and return
5903  // false.
5904  unsigned int nOps = getNumOperands();
5905  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5906  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5907  for (unsigned i = 0; i < nOps; ++i) {
5908    SDValue OpVal = getOperand(i);
5909    unsigned BitPos = i * EltBitSize;
5910
5911    if (OpVal.getOpcode() == ISD::UNDEF)
5912      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5913    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5914      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5915                     zextOrTrunc(sz) << BitPos);
5916    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5917      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5918     else
5919      return false;
5920  }
5921
5922  // The build_vector is all constants or undefs.  Find the smallest element
5923  // size that splats the vector.
5924
5925  HasAnyUndefs = (SplatUndef != 0);
5926  while (sz > 8) {
5927
5928    unsigned HalfSize = sz / 2;
5929    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5930    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5931    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5932    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5933
5934    // If the two halves do not match (ignoring undef bits), stop here.
5935    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5936        MinSplatBits > HalfSize)
5937      break;
5938
5939    SplatValue = HighValue | LowValue;
5940    SplatUndef = HighUndef & LowUndef;
5941
5942    sz = HalfSize;
5943  }
5944
5945  SplatBitSize = sz;
5946  return true;
5947}
5948
5949bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5950  // Find the first non-undef value in the shuffle mask.
5951  unsigned i, e;
5952  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5953    /* search */;
5954
5955  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5956
5957  // Make sure all remaining elements are either undef or the same as the first
5958  // non-undef value.
5959  for (int Idx = Mask[i]; i != e; ++i)
5960    if (Mask[i] >= 0 && Mask[i] != Idx)
5961      return false;
5962  return true;
5963}
5964